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Abstract

In civil engineering forced vibration tests on structures such as bridges, long-span frame structures or build-
ings are usual costly and time consuming as they require a specific excitation by impact hammers or heavy
shakers in order to excite the modes of interest with sufficient energy. Therefore often ambient vibration
tests based on the ’natural’ excitation of the structure due to wind or traffic loads are used, permitting to
continuously measure the structural response without interruption of its use during large time intervals.

In order to study the dynamic behavior of structures computational efficient methods are required for: (i)
the simulation of the loads and (ii) the estimation of the structural response to these loads using output-only
model identification.

In this paper, we introduce a technique in which, first, the load is simulated by the recently proposed "H-
fractional spectral moments’ (H-FSM) decomposition, which allows to represent a stationary colored Gaus-
sian process in closed form as output of a system of linear fractional differential equations. Then, the identi-
fication of the model parameters and the system response is based on the H-fractional extended Kalman filter
algorithm, a time domain approach which allows to consider uncertainties in the model of the structure as
well as the autocorrelation of the process noise. The method is applied to a single degree of freedom system
excited by different autocorrelated loads in order to estimate the stiffness and damping parameters.

1 Introduction

In the last four decades ambient vibration tests gained great attention in civil engineering. A literature review
can be found e.g. in [1]. The first use of the ambient vibration technique for the dynamic characterization of
full-scale structures is reported in the *70s. Since then the technique is extensively used in engineering in the
scope of parameter identification (frequencies, damping ratios and modal shapes) [2, 3, 4, 5, 6, 7, 8], model
updating [9, 8] as well as damage detection and health monitoring [10, 11, 12] of slender structures such
as pedestrian bridges, chimneys, long-span frame structures or high-rise buildings. While forced vibration
tests are in general costly, time consuming and often require a temporary out of service state of the structure,
ambient vibration tests can be conducted using the excitation by natural and/or service loads as wind, traffic
or humans. Such loads are caused by the superposition of multiple inputs and thus lead to a broad-band
excitation of a significant number of vibration modes [13, 14]. Due to their inherent random nature, they
have to be modeled as stochastic processes.

In the last years, many experimental modal identification methods for output-only measurements, such as the
the peak picking method, the stochastic subspace identification method, the natural excitation technique have
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been proposed. A comparative study on system identification techniques for the evaluation of the dynamic
behavior of structures from ambient vibration test is given in [5].

All of these methods have in common that the load process is assumed to be white. However, in practical
application where the power spectral density of the excitation is not constant within the system bandpass, the
time-correlation of the load process is not negligible and thus the pure white noise assumption is not justi-
fied.In [15] a multi-dimensional Auto Regressive Moving Average (ARMA) parameter identification method
is derived which allows to consider the excitation by sinusoidal loads, non-stationary white noise as well as
colored noise with a rational spectrum. The latter property is also used in [16] where the state space model
is augmented for correlated process noise using the spectral factorization theorem. It allows to model a wide
sense stationary random process with PSD of rational form as an output of a linear system with white noise
input. This system is then added to the original system by augmenting the state space representation leading
to an overall linear system driven by white noise once again. The parameter identification can be then carried
out with the help of the extended Kalman filter (EKF), a minimum variance estimator [17, 16].

Hence, the study of the dynamic behavior of the structure can be divided into two parts, namely the simulation
of the random loads and the estimation of its response to these loads using output-only model identification
methods.

Recently a new method for the representation of PSD and correlation function (AC) by means of a gen-
eralized Taylor expansion using fractional spectral moments (FSMs) was introduced in [18]. In contrast
to common spectral fitting methods as AR, MA or ARMA models, where the coefficients are determined
with respect to some optimization criteria and lack any further physical interpretation, the coefficients of the
generalized Taylor series are derived in analytical form and have the meaning of spectral moments of non-
integer type. The concept is used in [19] to derive a linear fractional differential equation, whose output is a
stationary colored Gaussian process with target PSD, e.g. known from measurements. The method is called
"H-fractional spectral moments decomposition’ as the coefficients for the noise simulation are calculated
from the FSMs of the linear transfer function H (w). In [20] it is applied for the simulation of wind loads and
univariate/multivariate wind velocity fields, respectively.

Based on the H-FSMs decomposition the new issue presented in this paper is the derivation of a state space
representation of arbitrarily correlated load processes in analytical form which neither require the factoriza-
tion of the PSD nor any optimization procedure. Following the approach described in [16], the obtained
state space model is augmented to the structural state space representation for the overall dynamic response
analysis. As once again a linear system with white noise input is obtained, the extended Kalman filter can
be applied for solving the parameter identification problem using output-only measurements of the system
response.

In the following, the H-FSM method is described and some relevant applications in wind and ocean en-
gineering are presented. Then, the Kalman filter algorithm is introduced and modified in order to include
time-correlated process noise by state space augmentation. Here we will follow an approach given in [16]
which uses the spectral factorization theorem for this purpose. The method is introduced for the validation
of the developed generalized state space representation. Finally, the fractional algorithm is applied to a sin-
gle degree of freedom system excited by the three load cases in order to estimate the stiffness and damping
parameter of the system. A more detailed derivation of the proposed method can be found in [21].

2 Fractional representation of stationary Gaussian processes

2.1 Reconstruction of the PSD of correlated Gaussian processes by H-FSMs de-
composition

In the following the main results of the method for the representation of colored Gaussian processes described
in [19] are summarized for clarity’s sake. Three load cases scenarios, i.e. process with exponential AC, von
Karmén and Pierson Moskowitz PSD, are examined which are used throughout the paper for verification of
the method.
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Using this method the colored load process {F'(t)} with assigned PSD Sp(w) is simulated as output of
a linear differential equation excited by Gaussian white noise. This can be expressed using the a linear
differential operator £(-) in the form

L(F(t) =W(t) (D

where {IW (t)} denotes the zero-mean Gaussian white noise process. The corresponding input-output relation
in terms of the PSD are given by
Sp(w) = H(w)*Sw(w) 2

where H (w) is the transfer function and Sy (w) denotes the PSD of zero-mean Gaussian white noise process
{W(t)} of intensity gy characterized by the Fourier pair Sy (w) = qw /27 and R(7) = E[W (t)W(t +
T)] = qw (7). Assuming Arg[H (w)] = 0 the filter is defined from the target PSD

H(w) = [Hw)| = / j;sp«w) 3)

It must be noted that the assumption Arg[H (w)] = 0 leads to a non-causal system, i.e. h(t) # 0 for ¢ < 0,
hence, the generated time series of the process {F'(t)} is not just depending on the realizations W (t),
W(t_1), W(t_2), ... of the white noise process {W(¢) } for ¢ < 0 but also on future values W (¢;), W (t2), ...
for t > 0. Nevertheless, due to the linearity of the underlying differential equation and the statistical inde-
pendence of the Gaussian white noise process, the output remains a strict stationary Gaussian process.

The transfer function H (w) and its Fourier transform can be reconstructed by H-fractional spectral moments
(FSMs) defined as

oo
() = [ H) ol do @
— 0o
as shown in [18]. The transfer function h(¢) and its Fourier transform H (w) can be represented by
1 p+ico B
W) =5z [ vOIa(=) 1 do. ©
™ p—ico
1 p+ico N
Hw)=— Iy (- —d 6
@) = g |, M el ©

where v(y) = I'(y) cos(ym/2). Both integrals are performed along the imaginary axis with fixed real part
p which belongs to the fundamental strip of the Mellin transform calculated from Eq. (4). In some cases
these contour integrals cannot be calculated in analytical form, but as the Gamma function I'(+y) decays
exponentially fast in vertical strips, i.e. for Imy — oo, depending on the decay of Il (7y), the integrals
might be truncated along the imaginary axis with constant real part Rey = p and approximated by their
sums

An & _
h(t) ~ S 3 vl (=) [ )
k=—m
An & _
H(w) ~ 47:7 ST (=) ®)
k=—m

Defining v, = p + ikAn, the integral is calculated up to a certain value 7 = FmAn by discretizing the
interval into 2m + 1 small increments Ar).

2.1.1 Numerical examples

Three load processes which are widely used in wind and ocean engineering are discussed.

1. Exponentially autocorrelated wind gusts
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Figure 1: Exact (continuous) and approximated (dotted) power spectral densities for the three load cases:
exponential AC, von Kdrman and P-M PSD

The most simplest model for the description of along wind turbulences is a process with exponential AC
function R(7) = o2e~!l and corresponding rational low-frequency power spectrum S (w) given by

2

SF((,Q) _ - aoc

) ®

The H-FSMs of the transfer function H(w) = /27Sr(w)/q in Eq. (3) can be easily calculated by Mathe-
matica leading to

1\ 7% 2402 ol 1+
Mu(y) = ((12> o r <—§) r <2> ; — 1< Rey <0 (10)

The PSD Sr(w) of the process is reconstructed by the relation S (w) = |H (w)|?q/(2). The approximation
of the transfer function H(w) in Eq. (8) is calculated choosing a = 0.5 [1/s], 0 = 3 [N] and p = 0.6,
An = 0.2 for the discretization of the integral involved taking into account m = 20 FSMs. From the results
depicted in Fig. (1) it can be stressed that the proposed reconstruction leads to a good approximation of the
analytic PSD. Moreover, the quality of the approximation depends solely on the chosen discretization of the
integral given in Eq. (6).

2. Wind gusts with von Kdrmdn velocity PSD

In general, if the PSD is rational it is not difficult to find a transfer function by spectral factorization [22,
p- 180—-195]. However, if the PSD of the process noise is given by a not rational function, there is no general
method available for the analytically derivation of the transfer function H(s) by spectral factorization and
this is in fact a nontrivial task [23]. This is the case for the widely used von Karman spectrum of along-wind
turbulences given by

2
o 145 (133902)

SKa’I‘(w) = 2:| 11/6

- (i)
T,
[1 + (133002

where o, L is the standard deviation of the fluctuating component of the wind speed at height z and the
integral turbulence scale lengths, respectively and %, denotes the total velocity with which the assumed
frozen-turbulence field propagates in space (Taylor’s frozen-in turbulence hypothesis [24]). The PSD of the
corresponding wind load is given by

2oV/E 4/37 L
Sr(w) = (pCdAEZ)Q ‘Xa(z7w)’25Kar(w) Xa(z,w) = |1+ ( wf ) (12)

Uy
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using the aerodynamic admittance x,(z,w) [25] and where p denotes the air density, Cy the drag coefficient,
A the projected area of the structure and @(z) is the mean wind speed at hight z. Numerical values for the
parameters for Germany can be taken e.g. from the national annexe of the "Eurocode 1: Actions on structures,
Part 1-4: General actions/Wind actions” (DIN EN 1991-1-4:2010-12). In the example the parameters were
chosen arbitrarily: L = 10 [m], 0 = 1 [m/s], z = 3 [m], %, = 18.25 [m/s], Cp =1, A = 0.1 [m?] and
p = 1.25 [kg/m]. The H-FSMs of the transfer function obtained can be calculated by introducing Eq. (12)
into Eq. (3) using Mathematica. This leads to

214 3
My (y) = C(r) + ZQ: DU [ s Pl 20’515, el gl el B a2 "
k=0 (- )’“b%A LSS
12
for —1 < Rery < 7/6 with
3imDA T (i T (- ) g (14 ez
E L

(1 4 e3imr)(1 + BLY) 1

where ¢, = 1+ 4k — 37, b = 70.8, A = 4A, D = /87 L( ACdap)2/q and ,Fylar,...ap; b1, ...bg; 2] is
the generalized hypergeometric function. The analytical form of the H-FSMs leads, also in this case, to a
very efficient application of the method. In Fig. (1) the results are illustrated having chosen the following
parameters: p = 0.6, An = 0.15, m = 30.

3. Wind waves with Pierson Moskowitz PSD
In this last example the process noise is generated from a wind wave PSD of fully developed sea introduced
by Pierson and Moskowitz (P-M). It was developed on the basis of 460 spectrums obtained from measure-
ments in the North Atlantic Ocean from 1955 to 1960 and is given by
a _ b

SPM(w) = Ee wd (14)
where a = 0.0081¢2, b = 0.74(g/t19.5)* and g is the acceleration due to gravity. Assuming a stationary
process the wave force acting on a vertical pile with diameter D at hight z is given by

8 h(k(z 4+ h))\?
Sp(e.w) = (WU§K§+K@2) (m;n(h((;h) ))) Spar(w) (15)

with Ky = 1/2pCyD, K1 = pC,,,wD?/4 and where k is the angular wave number, h the water depth, p is
the density of the sea water, C,, is the inertia coefficient and o, is the standard deviation of the fluid particle
velocity [26]. In general C,,, ranges between 1.6 — 2.5 and for a vertical cylinder C;,, = 2.0 can be assumed.
The drag coefficient Cy never falls below 0.6 and for a smooth cylinder Cy = 1.0 [27]. Eq. (15) is valid for
non-breaking waves and when the dimension of the structure is small compared to the wave length A, i.e.
when D < 0.2)\. A detailed description of the derivation of Eq. (15) can be found in [26]. The H-FSMs are
given, also in this case, in analytical form

2¢72 |acosh[k(h + 2)]? B 111 bB?
IT = Ab:i/8&nlcloly | —=, -1 =, 1 — ¢, ———=
1(7) bé \/ Agsinh[ie \ATVETTleFe | =7, i 1 me o | F
1333 bB? 5 1
CB T _ F - .- e 72*—Cb*A1—26B26
f |:C :|2 2|:474,272 C; 2A2:| 2 8
1 1 1 1 bB?
F[QC—Q] [[—2c)o Fy [0—4,04- et c+1; 2A2]> (16)

for Rey < —1/2 and ¢ = 1/8 — /4, A=8/n02K3 and B = K?. In the example a pile with diameter
D = 0.1 [m], drag coefficient Cy = 0.6 and inertia coefficient C,,, = 2 which is excited by wind-induced
(195 = 20 [m/s], oo, = 1 [m/s]) ocean waves with wave length A = 20 [m] and water depth h = 15 [m]
is assumed. The corresponding PSD of the wave loads and the approximation using m = 40 FSMs and
p = 1.6, An = 0.3 for the discretization of the integral involved is depicted in Fig. (1). Once again a good
agreement between the approximated and the exact PSD is obtained.
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2.2 Digital simulation of the load process
The obtained fractional representation of the transfer function H(w) can be now used for a reconstruction of

the correlated noise process { F'(¢) } in terms of the H-FSMs given by [20]

47t J _ino

)= /p+ZOOHH(—7)(Il_”W)(t)d7 (17

where (17 f) (t) denotes the Riesz fractional integral. The integral representation of the colored load process
defined in Eq. (17) can be approximated by the truncated sum

F(ty~ — > Hp(—y) (I W)(t) (18)
k

Hence, the main difficulty in the simulation of the process lies in the efficient calculation of the Riesz frac-
tional integral (I'=7*W)(t) of the Gaussian white noise process {W (¢)}. It can be shown that the Griinwald
- Letnikov form of the Riesz fractional integral is given by:

J n—j
(DW)(jm) ~ lim ;ammﬁ — k1) + Tlggokz_oamww + k) (19)
where (1)t
w(7) = 2 cos(ym/2) < k > (20)
As shown in [20] Eq. (19) can be calculated efficiently in matrix form by Z(y) = A(y)W
(IVW)(O) 20[0 a1 ... 0p W(O) GO
gl
2y = | VIO = e ow = | TS e
(I"W)(nT) ap ... 0129 W {(nr) G,

where the discretized white noise process W in the interval [0, n7] is described by the realizations of a zero-
mean Gaussian random process G, G1, . . . , G, with standard deviation ,/q7. The vector of the colored load
process F = [F(0), F(7),..., F(n7)]T is finally obtained by

m

F= 203 T2 - ) = Y hew)W (22)

k=—m k=—m

by means of the matrix transfer function h(vy;) = An(47) 'y (—y%)A(1 — ). A verification of the
result in Eq. (22) by means of the three load cases can be found in [21].

2.2.1 Generalized state space representation of colored random processes

Based on the result given in Eq. (22) we will now develop a general state space representation for colored
load processes. It must be stressed that it is valid for arbitrary correlated Gaussian processes and can be
given directly once the H-FSMs in Eq. (4) are calculated.

Due to the Toeplitz form of the coefficient matrix A (+y) the matrix transfer function h(~) in Eq. (22) can
be calculated easily. Furthermore, if Rey > —1 is chosen, then the coefficients () decrease with inverse
power law behavior as k increases and can be neglected in this case after a finite number of terms p, which
mainly depends on the decay of the correlation function. It must be noted that for an input vector W of
length n, the first and last p samples of the output F' can be regarded as the ’transition states’ whereas the
remaining n — 2p samples are the ’steady states’ which are needed in the following for the formulation of a
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Figure 2: Steady state realization of the load process: the load F; 1 of the next time step is generated by
shifting the p-dimensional vector W ; of increments of white noise

recursive state space form. The calculation of one steady state realization F; = F'(j7) of the discrete load
process F, with 7 = 0,1,...,n is given by

_ T - - _ T - -
ap(l =) Gj—p Bp Gjp
ap-1(1 =) Gj—pt1 Bp-1 Gj—p+1
A’]’] m e . e o e o
=0 3 e 2w || G [ =2 | |G (23)
ap-1(1 =) Gjip-1 Bp-1 Gj+p-1
L op(I =) 1 L Gjtp | L Gp 1 L Gjtp |
where
An &
Op="r 2. Tn(=map(l =) (24)

as illustrated in Fig. (2). As one can see from Eq. (23) the actual sample F; = bW of the load process
is calculated by the time-invariant vector b = [3,, Bp—1, ..., 200, ..., Bp—1, Bp] including the weights of the
(2p + 1) elements of the vector of the white input noise W; = [Gj_,, ..., G}, ..., Gj4p] consisting out of the
p previous and past samples of the Gaussian noise process. This allows to formulate a recursive state space
representation, which is needed later in order to include the colored noise process { F'(t)} into the Kalman
filter algorithm, by a forward shift of the white noise process as shown in Fig. (2). This leads to the following
state space form

X;C_‘_l = AdX;g + Bawg F, = Cdxﬁg (25)

where X} = [Gr—p, Gk—p+1, -y Gk, <oy Gp—1, GHP]T and with time-invariant transfer matrices A4, By
and Cy

001 0 ... ... 0 0] [0 ] T8, 1"
01 0 ...... 0 0 Byt
...... 01 0 ......
Ag=|.. ... .. 0 ol By=| ... Ca=| 26 (26)
0 ..o 01 0 Bp1
L0 0 .. 0 0 1 | 8, |

In the following the subindex d for discrete-time will be omitted for simplicity of notation. It shall be
highlighted that Eq. (25) is a general state space representation of stationary arbitrarily colored load processes
with known PSD. Once, the H-FSM of the PSD are determined using Eq. (4) the corresponding state space
form is defined by Eq. (25).
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Time Update (Prediction) Measurement Update (Correction)

Prior estimate Kalman gain matrix Posterior estimate
Xp4+1 = Txg Ky = ia:a:k;HHT(Evvk + HikaHHT)—l
Prior error covariance: Posterior estimate

Seonis = TE0a, TV + SZ0u ST Xpt1 = g1 + Kip (21 — HXp1)

Posterior error covariance
P =% — K. HX

TLf+1 TL+1 TTE+1

Table 1: Kalman filter algorithm

3 Kalman filter algorithm for correlated process noise

The Kalman filter was developed in 1960 by Rudolf Kdlmén [17]. It is an optimal recursive algorithm to
estimate the state x € R” of a linear dynamic system discretized in the time domain using noisy measurement
data z € R™. The discretized state space model of a system excited by a Gaussian white noise process w is
generated by two equations, the system and measurement equation

Xp+1 = IXg + Swy z; = Hx; + vi 27

where T € R™*"™, § € R™" and H € R™*" are the transfer matrices and w;, € R" and v;, € R" are
uncorrelated stationary zero-mean white noise processes. The transfer matrix T relates the actual state & to
the state at the next time step £ + 1. The model uncertainties or unmeasured disturbances are represented by
the added m-dimensional noise vector w;, which is related to the actual state by the matrix S. The KF is based
on a Gaussian noise model, i.e. the measurement error v, o< N(0,X,, 1) as well as the state error wy
N(0,3,,,) are modeled as independent, white noises with normal distribution where %, ;, € R"™*™,
Ywwk € R™™ denote the measurement and process noise covariance matrix, respectively. The algorithm
is characterized by an iterative prediction-correction structure as shown in Tab. (1). In the prediction step
a time update of the current state x; and error covariance matrix X, j is taken in order to obtain a prior
estimate of the process state X1 and its associated error covariance matrix SjngJ,_l of the next time step.
The time-update of the current state is calculated from the undisturbed system equation X1 = Tx; where
the prediction error leads to the update of the covariance matrix and where the tilde indicates the true state

€z k1 = Xht1 — X1 = T(Xp — Xi) + S(Wy, — wy)
Yozt = Blet pir€oni1] = T8oap TT 4+ S8y ST (28)

In the correction step the measurement equation is used to predict the likeliest measurement for the given
prior state estimate. Once the actual measurement is obtained, the difference di, = HXxj — z; between the
predicted measurement and the actual measurement, also known as innovation or residual, is calculated. The
Kalman gain matrix K, is determined in order to correct the prior state estimate Xy in the measurement
update. It is the result of the minimization of the mean-square error of the posterior state estimate X1

- T .
€kl = Xpy1 — Xkr1 Bl py1€a k1] — min. (29)

It leads to the Kalman gain matrix K which is used to calculate the optimal estimate xj1 and its associated
posterior error covariance X, 1 as shown in Tab. (1) [28].
In case of colored noises a modification of the KF algorithm based on the spectral factorization theorem has
been proposed in [16] which allows to relax the white noise assumption by introducing either (i) correlation
of measurement and process noise, (ii) autocorrelated measurement noise or (iii) autocorrelated process noise
into the model. Here, the latter case is considered. To this aim, a state space representation of the transfer
function H (w) in the form

x(t) = Ax(t) + Bu(t) F(t) = Cx(t) (30)
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must be found where the input «(¢) is a Gaussian white noise process and the state x(t) = [z1(t), z2(t), ..., zn(t)]
is of order n. State-space equations such as Eq. (30) are non-unique. Among the so-called canonical state
space models the controllable canonical form is given, setting [29]

— a - T

~by —b1 ... ... ~bn1 1 0

1 0 ...0 0 0 “
A=| 0 1 ...... B=|... C= (€2))

0 0 S fm-1
0 0 1 0 0 o0 |
The discretization of Eq. (30) finally leads to the linear state space representation

X;c—&-l = Adxk + Bawg F = Cdxgc 32)

which will be used in the following to extend the KF for colored process noise {F'(t)} with target PSD
Sr(w). The state space representation of some fundamental stochastic processes such as random bias, first-
and second-order Markov process, Brownian motion can be found e.g. in [16]. In [30], the method is applied
to introduce a colored process describing the surface roughness of the road into the Kalman filter in order to
estimate the states of the vehicle. Comparing Eq. (32) with the state space representation (25) obtained in the
previous section by H-FSMs decomposition, the strong resemblance of these two representations is obvious.

3.1 Modification of the Kalman Filter

Following the approach given in [16] the Kalman filter is extended for colored process noise with given PSD
by passing a white noise wy, through a linear filter. Augmenting the state vector X, = [Xy, xﬁﬂ]T where
x, are the states of the system and x| represents additional states related to the state space representation
of the transfer function H (w) of the load process derived either by spectral factorization (32) or by H-FSMs
decomposition (25), leads to a state space model

Xk+1 o Td SdCd X 0
o=l L
Xk Vi
za,kz[Hdo]{Xéﬂ]ﬂo} (33)
which is once again a linear system excited by white noise. Hence, after rewriting Eq. (33)

Xo k41 = LaXgk + SaWi Zak = HoXq o + Vo i (34)

the KF algorithm given in Tab. (1) can be run on the augmented state space model (33) using the modified
transfer matrices T, S, and H,, respectively.

In order to apply the method for identification problems a further modification is needed in order to estimate
the unknown parameters. Following the approach of the extended Kalman filter (EKF), the state x,, ;, has to
be augmented to include the model parameters p; leading to a nonlinear system equation of the extended
state Xegt k = [Xa ks Pk’

Xext,k+1 = f(xeact,k> + Sextwext,k Zegt k = h(xext,k) + Vext k (35)

as the system matrices T,, H, depend nonlinearly on the estimates of the state x,, ; and the parameters py,
known from the previous time step. In case of weak nonlinearities the identification problem is solved using
the EKF which linearizes about the current mean and covariance by applying a first order Taylor expansion
of Eq. (35) near the current state estimate leading to the time variant extended system matrices T'cy¢ 1, Hegt i

_ Of (xeatk) Oh(Xeat)

e 36
b 8xext,k a$ext,k ( )

Heact,k =
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to be calculated at each time step. The standard KF algorithm shown in Tab. (1) can be now run on the lin-
earized model: first the prior estimate is calculated by the nonlinear state space model given in Eq. (35), then
the update of the error covariances and the measurement update is calculated by introducing the extended
system matrices.

3.2 Numerical examples

The proposed method is now applied to a single degree of freedom (SDOF) system excited by the introduced
three load cases in order to estimate the stiffness and damping parameter.

1. Exponentially correlated wind gusts:

The first example is taken from [16] and is used in order to show the consistency of the introduced algorithm
based on the H-FSMs decomposition and the factorization method introduced there. In this example the
(long period) longitudinal dynamics of an aircraft are approximated by the continuous state space model
of a harmonic oscillator with natural eigenfrequency w = +/k/m and ratio of critically damping D =
c¢/(2mw)~! given by

. 0 1 0
x= [—wQ —2Dw]x+[1/m]wc 37)

where x = ¢, d)]T and ¢ denotes the pitch angle, i.e. the angle between the longitudinal axis of the aircraft
and the horizon. The colored process noise w,. represents wind gusts with exponential AC function R(7) =
o2e~!. Performing the spectral factorization on the corresponding PSD in Eq. (9) results in the so-called
shaping filter H (s), that is the Laplace transform counterpart of the transfer function H(w), of the noise

we(t) in the form
o

H(s) = 38

() = —— (38)
Further details on the spectral factorization can be found in [16, 22]. Using the controllable canonical state
space representation in Eq. (31), the shaping filter H(s), given in Eq. (38) corresponds in the time domain

to the first order Markov model

i = —ax' +u we = 2’ 39)

which is excited by a Gaussian white noise w’ with standard deviation o. It is used in order to augment the
state space model in Eq. (37) leading to

0 1 0 0
Xg=| —w? —2Dw 1/m |[x,+ | 0 | (40)
0 0 —a 1
where x, = [¢, qB, 2|7 denote the augmented state. After discretization of the augmented model, e.g. by

Euler approximation or by using the matrix exponential function, a linear model excited by Gaussian white
noise in the form of Eq. (34) is obtained. It will be used in this example for the generation of the ’true’
measurement of the pitch angle ¢(¢) used in the KF algorithm.

By means of the approach using fractional calculus the augmented state space model is obtained by the fol-
lowing procedure: (i) the system’s state space representation is formulated, (ii) the H-FSMs are calculated
from the target PSD and the weights (3 of the Gaussian white noise are determined using Eq. (24), (iii)
the initial vector x;, of increments of Gaussian white noise and the system matrices of the generalized state
space model in Eq. (25) are stored and introduced in Eq. (33) to obtain the augmented state space model.
In the following, the KF algorithm based on this approach will be indicated as H-fractional KF’ and the
corresponding noise is denoted as *H-fractional noise’, respectively.

The evaluation of the pitch angel and the input force is estimated from out-put only measurements using the
H-fractional KF. Fig. (3) depicts the evaluation and AC of the pitch angle ¢(t) (Top) and the corresponding
process noise exciting the system (Bottom). In order to illustrate that the KF algorithm not just updates the
pitch angle ¢(t) but also the H-fractional noise, the load process is depicted in gray for the case without
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Pitch Angle ¢(t) AC of the Pitch Angle ¢(t)
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Process Noise AC of the Process Noise

Figure 3: Top: Evaluation of the pitch angle ¢(t) forw = V2 [rad/s], D = 0.05 [-], Bottom: Colored process
noise generated by spectral factorization (black), by H-FSMs (gray) and estimated by the fractional KF (red
dotted)

consideration of the measurement date and in red after applying the KF algorithm.

In order to estimate the system’s stiffness & = 10 [N/m] and damping constant ¢ = 0.707 [Nm/s] (D = 0.05)
now the so-called *H-fractional EKF’ is applied. It is assumed that noisy measurement date of the pitch an-
gle ¢(t) and the velocity gb(t) is available taking into account a measurement error of o, = 1 [cm] which
corresponds to 1 % of the maximal deflections. It is assumed that a set of 20 measurements of a duration
of 10 [min.] each are available. The H-fractional EKF as well as the standard EKF is run on the samples.
In the latter case the correlation of the load process is neglected and modeled as white noise with equivalent
standard deviation. The initial values of the stiffness and damping parameter ko, ¢o are selected considering
an estimation error e, = |ko — k|/k. s, = |éo — ¢|/c of 50 %. The mean value as well as the corre-
sponding 90 % confidence intervals of the identified model parameters are depicted in Fig. (4). In case of
the H-fractional EKF the stiffness parameter is estimated with high accuracy while the identification of the

case initial identified standard identification
) estimate parameters deviation error
l;o Co k é o} oe €k €c

[N/m] | [Ns/m]| [N/m] | [Ns/m]| [N/m]| [Ns/m]| [%] [%]

Exponential 5 0.35 9.93 0.79 0.15 | 0.12 0.7 11.7

von Kérmén 5 0.35 10.01 0.82 0.28 | 0.18 0.1 16.2

Pierson 5 035 | 996 | 081 |020] 018 | 04 | 146

Moskowitz

true values k = 10 [N/m], ¢ = 0.707 [Ns/m]

Table 2: Identification results for the different load cases
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Estimated k=10 [N/m] Estimated ¢=0.70711 [Ns/m]
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t[s] t[s]

Figure 4: Estimation of the stiffness k£ [N/m] and damping constant ¢ [Ns/m] of the SDOF system excited by
an exponentially correlated load process by means of H-fractional EKF (red) and the standard EKF (blue).
The dotted lines represent the corresponding 90 % confidence intervals.

Estimated k=10 [N/m] Estimated ¢=0.70711 [Ns/m]

14+

0 200 400 600 0 200 400 600
t[s] t[s]

Figure 5: Estimation of the stiffness k£ [N/m] and damping constant ¢ [Ns/m] of the SDOF system excited by
wind loads with von Kdrmaén velocity PSD by means of H-fractional EKF (red) and the standard EKF (blue).
The dotted lines represent the corresponding 90 % confidence intervals.

damping parameter leads to an error of 11.7 %. As the damping parameter of weakly damped systems has no
significant effect on the modal frequencies and the observed system response of naturally excited systems,
the accuracy of the damping estimation is not very high and even in numerical simulations errors of about 20
% are not unusual [31]. Neglecting the correlation of the load process leads to poor identification results as
shown by means of the standard EKF which fails to identify both the stiffness and damping parameter. The
results of the parameter identification of the H-fractional EKF are summarized in Tab. (2).

2. Wind gusts with von Kdrmdn velocity PSD

As shown in section 2 the corresponding H-FSMs are different, but the implementation of the filter is the
same as in the previous example. The results of the parameter identification for the H-Fractional EKF and
the standard EKF are illustrated in Fig. (5). Once again the standard EKF leads to poor identification results
while the introduced method allows to estimate the stiffness parameter with high and the damping parameter
with satisfying accuracy.

3. Wind waves with Pierson-Moskowitz PSD
The results of the parameter identification are shown in Fig. (6). The estimated stiffness and damping pa-
rameter corresponds to the generalized quantities of the first eigenmode of a clamped vertical pile which is
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Estimated k=10 [N/m] Estimated ¢=0.70711 [Ns/m]
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Figure 6: Estimation of the stiffness k£ [N/m] and damping constant ¢ [Ns/m] of the SDOF system excited
by wind loads with P-M PSD by means of H-fractional EKF (red) and the standard EKF (blue). The dotted
lines represent the corresponding 90 % confidence intervals.

excited by wind-induced ocean waves. The accuracy of the parameter identification is comparable to the pre-
vious examples and the results are summarized in Tab. (2). In contrast to the standard EKF, the uncertainties
in the damping estimation are reflected in the high standard deviation of the estimate which leads in all three
cases to a relative wide 90 % confidence interval.

4 Conclusions

In this paper we introduced the H-fractional extended Kalman filter for the treatment of arbitrarily autocor-
related load processes in the scope of parameter identification problems.

The system’s input was represented as output of a fractional differential equation with white noise as input.
In contrast to other techniques, such as the spectral factorization method or ARMA models, the coefficients
for the noise simulation are calculated in analytical form from the fractional spectral moments of the linear
transfer function. Three load cases of engineering interest have been studied: a process with (i) exponential
autocorrelation function and (ii) von Kdrméan power spectral density, which are extensively used in wind en-
gineering in order to model along wind turbulences, and (iii) with Pierson Moskowitz power spectral density
which is widely used in coastal engineering applications for the description of wind induced waves. In all
three cases, we succeeded to give the coefficients for the generation of the load processes in analytical form.
Furthermore, a generalized state space representation for colored processes have been developed, which can
be given immediately, once the H-fractional spectral moments of the transfer function are calculated. Aug-
menting the state space model of the excited system by the linear model corresponding to the load process,
results in an overall linear system driven by white noise once again to which the extended Kalman filter, a
commonly used algorithm for recursive parameter identification, can be applied.

This method, indicated as H-fractional extended Kalman filter algorithm, is applied to a SDOF system excited
by the three load cases in order to estimate the stiffness and damping parameter using noisy measurement
data of the system response. In all examples the stiffness parameter was estimated with high accuracy and
the damping parameter was identified with satisfying accuracy.

Most output-only identification techniques represent the systems’s input as white noise process. In order to
illustrate the effect of such a rough simplification if the white noise assumption is violated, the method was
compared with the standard extended Kalman filter. It has been shown that neglecting the autocorrelation of
the load process leads to poor identification results for both the stiffness and the damping parameter.
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