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A teleoperation system allows the human to manipulate in remote/inaccessible/dangerous
or scaled environments. From a control point of view, the haptic control loop, where motion
and force data are exchanged between the master and the slave manipulator, is very challenging
as it is closed over a communication network, e.g. the Internet. The communication network
introduces unreliabilities such as (time-varying) time delay and packet loss, which are not only
distorting the human haptic perception of the remote environment but can destabilize the overall
system. In recent years control approaches based on the passivity framework and the scattering
transformation have been developed in order to stabilize the teleoperation system in the presence of
such communication unreliabilities, see e.g. [1,2]. The major reason for the success of the passivity
formalism in teleoperation is that it can cope with the largely unknown, nonlinear and time-varying
human arm and environment dynamics, which, however, can assumed to be passive. The scattering
transformation transforms passive systems into finite gain L2-stable systems with a L2 gain γ ≤ 1
and guarantees the finite gain L2-stability of the overall teleoperation system for all communication
network operators that are small gain, e.g. constant time delay but also appropriately handled
packet loss [2]. However, the passivity framework is known to be conservative resulting in a
distorted display of the remote environment properties. Current research is concentrating on
relaxing this conservatism. In this work we will use the approximate knowledge on damping
properties of the human arm, the controlled manipulators and the environment. In fact, we can
show that these subsystems are QSR-dissipative [4], which will be exploited to the benefit of
transparency in teleoperation architectures. The approach is based on the generalized scattering
transformation [3] which applies to QSR-dissipative systems, ensuring finite gain L2-stability for
arbitrary small gain network operators in the closed loop, analogously to the standard scattering
transformation.

A dynamical system Σ : ẋ = f(x, u), y = h(x, u), x ∈ <n, u, y ∈ <p is called QSR-dissipative
if there exist a positive semi-definite function V : <n → <+ such that for each admissible u and
each t ≥ 0

V (x(t))− V (x(0)) ≤
∫ t

0

[
u y

]T
P
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u
y

]
dτ, with P =

[
Q S
ST R

]
.

where the dependencies of u, y from τ are not explicitly written for ease of notation. The uncertain
environment and human arm subsystems can be represented as input-feedforward-output-feedback
passive systems (IF-OFP), a subclass of QSR-dissipative systems, which are represented by the
choice Q = −δI, R = −εI, S = ηI, δ, ε ∈ <, η = 1

2 with I the unity matrix. The system is
called passive if δ = ε = 0, output-feedback strictly passive (OFP(ε)) if δ = 0 and ε > 0, and
input-feedforward strictly passive (IFP(δ)) if δ > 0 and ε = 0. If one or both of the values δ, ε are
negative there is a shortage of passivity. The damping force term fd(x, ẋ, t) of environment and
human arm is assumed to be continuous, potentially time-varying and nonlinear function for which
fd(x, ẋ, t) ≥ dminẋ holds. A nonlinear mass-spring-damper system can be shown to be IFP(δ) with
the input/output pair velocity/force and δ > 0 depending on the minimum linear damping coeffi-
cient dmin, and OFP(ε) with the input/output pair force/velocity and ε > 0 also depending on it.
In Fig. 1 the feedback interconnection structure is illustrated for a force-velocity architecture: the
human arm and the environment are IFP(δh) and IFP(δe), respectively; the impedance controlled
manipulators, with force and gravity compensation are OFP(εm) and OFP(εs), respectively. Feed-
back interconnected IFP and OFP systems still exhibit IF-OFP properties. Particularly, it can be



Figure 1: Teleoperation system with time delay and
generalized scattering transformation
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Figure 2: Comparison of displayed with
environment impedance

shown that an OFP(ε1) with an IFP(δ2) system in its feedback is OFP(ε1 +δ2) whereas an IFP(δ1)
with an OFP(ε2) system in its feedback is IFP(δ1 + ε2). Accordingly, the lefthand subsystem Σl
in Fig. 1 with f∗m + f∗h as input and ẋm as output is OFP(εl) with εl = εm + δh > 0, and the
righthand subsystem Σr with ẋ∗s as input and fs as output is IFP(δr) with δr = εs + δe > 0. In
general, from now on we consider the networked interconnection of an OFP(εl) and an IFP(δr)
system with εl, δr > 0.

The generalized scattering transformation is a linear input/output transformation represented
by the matrixM in Fig. 1. Instead of the lefthand output variable ẋm the variable ul is transmitted.
Analogously, vr is transmitted instead of fs where[

ul
vl

]
= M

[
ẋm
f∗m

]
,
[
ur
vr

]
= M

[
ẋ∗s
fs

]
, M =

[
cos θI sin θI
− sin θI cos θI

] [ √
bI 0
0 1√

b
I

]
where θ ∈ [−π2 ,

π
2 ] represents the rotation angle crucial for the stability result and b > 0 is a

free tuning parameter. The choice of the transformation angle θ is based on the IFP- and OFP-
properties of each side.

The main result of this work is the following: Finite gain L2-stability of the overall system
consisting of networked interconnection of an OFP(εl) and an IFP(δr) system with εl, δr > 0 is
ensured for any small gain operator in the network, if θ ∈ [θl, θr]. Here θl is one of the two solutions
of cot 2θl = εlb, which simultaneously satisfies sin(θl) cos(θl)− εl sin2(θl) > 0; and θr is one of the
two solutions of cot 2θr = −δrb−1, which simultaneously satisfies sin(θr) cos(θr)− δr cos2(θr) > 0.
Hence, instead of choosing θ = 45◦ as for standard scattering transformation [1], here θ can be
chosen out of an interval. We can show that transparency can be improved, i.e. the displayed
mechanical properties at the master side come closer to the real environment properties, by proper
choice of θ 6= 45◦. This is exemplarily demonstrated in simulation where the proposed approach
is applied for negligible slave dynamics and a linear time-invariant spring-damper environment
with a δr = dmin = 30 and passive lefthandside system, i.e. εl = 0. The resulting system is
delay-independently stable for all θ ∈ [45◦, 89◦]. Furthermore, the displayed stiffness for θ = 89◦

with the generalized scattering approach is with 85 N/m by far closer to the environment stiffness
of 100 N/m than with the scattering transformation θ = 45◦, where it is only 18 N/m, see Fig. 2.
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