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Abstract—In this article we propose a novel approach for controller part is designed for zero time delay, while the
networked control systems with unknown constant time delay second guarantees delay-independent stability and logi-sen
A distributed controller is considered, under the assumpton ity to time delay. Low sensitivity to time delay ensuréat
that static controllers directly connected to the plant, ca be th f fully d d ith i ing i
implemented. Stability and sensitivity to time delay goalscan € periormance grace u. y degrades with increasing .|me
be conjointly defined. The necessary and sufficient conditcs ~ delay value. Combined with good performance for zero time
for the existence of a controller which guarantees delay- delay, satisfactory performance is achieved in a wide range
independent stability and a frequency dependent maximum of of time delay values.
the norm of the sensitivity function with respect to time dehy Delay-independent stability as well as a frequency de-

are formulated as a feasibility problem with polynomial matrix dent . f th f th itivity functi
inequality constraints. In a numerical example we show thathe pendent maximum of the norm or the sensitivity tunction

proposed formulation can give usefull solutions in non-trvial ~ With respect to time delay can be guaranteed by the
cases. norm of the loop, where the time delay and the "extended

by the static controller plant” reside. The necessary and
. INTRODUCTION sufficient conditions for the existence of a controller whic
N networked control systems (NCS) the plant and thguarantees a maximutd, norm of the above mentioned
controller are spatially separated, and connected througdbp are formulated as a feasibility problem with polynoimia
a communication network, see [1]-[3] for an overview. Thénatrix constraints. In a numerical example it is shown that
motivation for replacing classical point-to-point ar@ut the proposed approach can supply useful solutions in non-
ture with NCS originates, among others, from the flexitrivial cases.
ble reconfiguration NCS offer ; nodes can be added or This work is a continuation of the results in [6], [7] and
removed without additional wiring effort. The number ofwas originally inspired by the scattering transformatiéh [
active nodes sharing the communication line has an effefd]. The scattering transformation, is a method frequently
on the communication time delay, the packet loss, and thécountered in force feedback telepresence systems with ar
available communication bandwidth, parameters which assitrary constant time delay. Major contribution of thisiele
therefore not exactly known during the controller designeompared to the above is the formulation of the controller
Advantageously, NCS offer additional degrees of freedom fajesign problem as a feasibility problem with polynomial
the controller design, i.e. some limited computational ow matrix constraints, as well as the consideration of a more
is available on the plant side, which can be used to implemegéneral transformation.
low order controllers. The remainder of this article is organized as follows.
In this article the unknown constant time delay challenggection Il presents the necessary background and Section Il
is addressed. Time delay in the control loop deteriorat@fie problem formulation. The stability analysis is given
the performance and may lead to instability. For a genergl Section IV and performance issues are discussed in
overview on constant time delay systems see [4], [5]. CorBection V. In Section VI a controller design strategy is
stant time delay methods are distinguished between delgyresented and in Section VII a numerical example in given.
dependent and delay-independent, according to whetherCanclusions are presented in Section VIII.
bound on the time delay value is necessary for stability or
not. Delay-independent methods are usually based on the Il. PRELIMINARIES
small gain theorem, i.e. the gain of the open loop transfeNotation : The set of non-negative real numbers is de-
function must be smaller than one over all frequencies, Wwhimoted byR_, the Euclidean space of dimensiomby R™,
is known to be rather conservative. and the set of real and complex valued matrices with
Here, a novel distributed controller approach is proposegimensionsnx m by R™™ and C"™™ respectively. For
for delay-independent stability, under the assumptiort tha matrix M the transposition and conjugate transposition
only static controllers can be implemented on the plant.sidare denoted byM™ and M*. The notationM > 0 is used
A two degrees of freedom controller is considered. The firsh denote its positive definiteness>(** <”,“ <" for posi-
, _ _ tive semi-definiteness, negative definiteness, negatine- se
This work was supported in part by the German Research Féanda definiteness respectively). With the unit matrix is denoted
(DFG) within the Priority Programme SPP 1305 “Regelungstieedigital !
vernetzter dynamischer Systeme”. and with diagM,...,My], the block diagonal matrix with
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where x(t) € R"u(t) e R™y(t) € RP are the state, input
and output vectors respectively. With capital letters, the
Laplace transforms of the corresponding signals are de-
noted and withG(s) = C(sl —A)~1B+ D the transfer func-
tion of (1), wheres= o0+ jw is the Laplace variable. The
norm of a transfer function ab is denoted byG(jw)| and

its Heo NOrm, i.e. maxG(jw)|,Vw, by ||G||«. Loe denotes the —

extended space of Lebesgue integrable functions. For eonve <

nient notation, when non-ambiguous the time argurhamid "

the Laplace variable are dropped. Fig. 1. Networked control system with local and remote aninneasures.

A. Sensitivity function L . .
y The communication network is modelled as a forward time

The sensitivity function of a system (1) with transferde|ay operatoZy, (controller to plant channel) and a back-

function G, with respect to a paramet&, is given by ward time delay operatofr,(plant to controller channel)
S(s) = dG(s)/G(s) _ T dG(S). with inputs uj(t),ur(t) and outputsv(t),v(t), see Fig. 1.
dT/T G(s) dT The relation between the left and right transmitted vari-
Low |SE(s)| implies that a variation iT slightly affectsG, ables is given byur(t) = uj(t—T1) and v (t) = v (t — T2).
i.e. the input-output behaviour of the system. The time delaysT;,T, € R are constant but unknown.
, For further reference, the following subsystems are de-
B. The Kalman-Yakubovich-Popov lemma fined: % :ur() —w(), =:vi() —u(), SoL =205,

Given a controllable and observable system (1) witlsee also Fig. 1. Note that the indé¢) denotes the right
transfer functiorG(s) and the matriceQ = Q" ¢ R™™M Sc  subsystem, including the local controller and the plantl an
RP*M R=R" ¢ RP*P, the following statements are equiva-the index(), the left, comprising the whole remote controller.

lent [10] : Wwith  the proposed controller  structure, for
1) For all w € R with det(jwl —A) #0 zero time delay, whens=s (2) (3) holds, we
| ‘T'Q s | have z=M1lg=M"1s =M"IMz,=2,, The Ileft
[ G(jw) } { ST R ] [ G(jw) } <0 static transformatiotM ! cancels the right on and the

standard feedback interconnection between the plgrend
. T the controllerZ; is recovered. In consequence, for zero time
[ A'P+PA PB ]j{ 0 | } [ Q S} [ 0 | }<0 delay, 2. can be designed with typical controller design
B'/P 0 cD S R C D]~ techniques. Note, that the standard approach indepegdentl
I1l. PROBLEM FORMULATION of the time delay is recovered fodl = 1.

In the remainder of this article we consider that the
controller Z; is a-priori designed for zero time delay. We
Yurthermore assume, that the closed loop system is well
l‘['.)osed, i.e. for each input signal € Ly there exists a

2) There exists a symmetric matrix=P' such that

The plantz,, is given by (1), withxp € R", up € R™yp €
RP being its state, input and output vectors respectivel
see Fig. 1. On the plant side a static-output-feedbacktnp
feedforward (SOFIF) controller is used. The local statin-co unique solution for the signatsue, ye, Ui, v, Ur, Vr, Up, yp that

I mp
troller with input and output vectorsy yp|, [up ] €R causally depends ow. Clearly, considering the standard

respectively, is described by an invertible transformaé h i — | the closed | b bl
. (mp) x (M p) . ] “approach, i.eM =, the closed loop system can be unstable,
tionMeR between the plant input-output vec s shown e.g. in [11] for passive subsystems. The main

:/(z)arrizpt’)I:sns? tihee right hand transmitted through the netWorgesult of this paper are the necessary and sufficient conditi

) of the existence of a transformatidvl which guarantees
s =Mzp, with Zg =[upypl, S =[ur vl (2)  delay-independent stability as well as a frequency depende
The remote controller is decomposed in the same structur@aximum for the norm of the sensitivity function of the
i.e. a static part described by the inverse transformafion  closed loop system with respect to time delay.
between the left hand transmitted through the network vari-
abless and the input-output vecta, i.e.
zz=M1g, with z =[yc uJ s =[u v, (3)
and the dynamic controller . given by (1), In the rest of this article we restrict to single-input-
with x. € R™ ec RP,y. € R™ being its state, input single-output case, i.en= 1. The elements of the matrix
and output vectors respectively, see Fig. 1. By=w—u:. M € R>*? are denoted bym; =a,my>=b,mp; =c,myr=d,
the control error is denoted, withy € L, being the desired where we choos@,b,c,d such that dd¥l 0. The closed
value andu, the lefthand output oM. In order to avoid loop transfer functionG(s) from the reference inpuw
confusion, in the following we refer to the local and remotdo the plant outputy, is computed by the transformation
SOFIF controllers simply as transformatidh equations (2),(3) to be,

IV. STABILITY ANALYSIS



G(s) = Go(S)Gyr (s)e ™, whereGy(s) = Gp(9)Ge(9) apply here. However, here, we concentrate on the necessary

B 1+GP(S)GC(S)A: and sufficient conditions for constant time delay.

1-GoL(s
Gu(9) = T oo s ?;)(e)sp andGoL = GG (5) V. PERFORMANCE ANALYSIS
—GoL
. Vi c+dGy U b-—aGe In the following, the sensitivity to time delay and the
with Gy = — = Vi - (6)  steady state behaviour are discussed
U a+bGp Vi d—cGe y '

According to (4) the system can be seen as a series coR- Sensitivity to time delay
nection of the standard closed loop system without time
delay Gy, and the systen®;, which describes the influence
of the time delay and the transformatidh in the closed

According to the previous section in the remainder of this
section it is assumed thdGo || < 1, i.e. the system is de-

loop behaviour. Under this setup delay-independent itabil lay independently stable. Here, it is shown that a lower lboun

is equivalent to a small gain condition of the loop where th@" ”GOL”“‘ < 1 can further guaran_tgt_a a freqL_Jency_ dependent
naximum of the norm of the sensitivity function with respect

time delay and the "extended by the local static controller ~ s .
"o ; to time delay. The sensitivity function of the closed loop
plant” reside, see Fig. 1 . L
system with respect to the round trip time delay= T; + T»

Proposition 1: The closed loop system is delay- 77" . . :
independently stable if and only @o, is stable and is given by the infinite dimensional transfer function

« T dG* G
|GoL| < 1, for all w> 0. (7) =G ar - sTe’STﬁ,
Proof: For delay independent stability the system must bﬁ/hereG*(s) = Go(5)Gy (9) is the transfeorqunction (4) with-

stable forT; = T, = o, i.e. when there is no connection
between plant and controller. This means tl&gtG, and
consequentlyGo. must be stable. Now, consider the full
open loop transfer function, including the forward and back . woT||GoL [|e

ward time delayT = T; + T, i.e. GoLe /T, For stability ISF (jaw)| < T—Golllw’ (8)
|GoLe 19T| < 1 must be satisfied, when di@o e 1T} < Ol

out the purely time shifting pare~S. For S¥° the next
Theorem holds
Theorem 1: When ||Go ||« < 1 for eachay holds

Proof : For the norm of the sensitivity function we have

—18C holds. For arbitraryT and w # 0, e /“T defines an
. : ; ‘o woT |GoL woT|GoL| _ woT||GoL |«
arbitrary phase shift. Thus, for alb > 0, |Go| < 1 must |SF (jwb)| = |1_GO|Lej(LOT| <3- ||GOL|| <o ||GOL||
hold. - ) B where the dependence ¢ay is suppressed for convenience
The addition of the transformatidvl allows a larger class gf notation. -

of controllers for delay-independent stability compared t From the derivative of (8) with respect #Goy ||« it is

the standard small gain theorem. This may lead to lesgraightforward to see that the right part of (8) is a styictl

conservative controller design. In fact, even delay-delpeh  jncreasing function 0flGoL ||. Thus, instead of minimizing

approaches are outperformed as shown in [6] for & speci@e norm of the infinite dimensional functiors$" we can

case of the proposed approach. minimize ||GoL|l». Note that this conforms to the small
Remark 1: Instead of the necessary and sufficient stabilityain stability requirementGoy || < 1. However, Theorem 1

condition (7), the conditiofiGoL || < 1 can be used, as the gyarantees a worst case bound for the sensitivity function a

computation of||GoL || is amenable to many analysis tools,not the actual value.

e.g. linear matrix inequalities. Conservatism of the ditgbi  |nsensitivity, i.e. S¥ =0, can be achieved with a

condition [|Got || < 1 comes from the fact thaGoy | must  proportional controller Gg(s) = 2, independently of the

be less than one in the zero frequency as well. plant. This follows from substitutings. in (5) resulting
Remark 2: Proposition 1 implies strict stability iy, 2. 5 Go = 0= § =0= Gy (s) = 1. The closed loop trans-

Z; is the combination of the plark, with the local SOFIF  fer function (4) reduces tG(s) = Go(s)e " with the time

controller. Thus, in case of an unstable plant, it must be pr@hifting part having no effect on the transient responsés Th

stabilized by the static output-feedback, restricting #pe s the limit case in which the controller is completely Idgal

proach to static-output-feedback stabilizable plantshdt’'s implemented. Only the reference input is transmitted

not the case, a higher order dynamic transformaticshould through the communication network, as implied®y_ = 0.

be considered. This is subject for future research. In general, a proportional controller does not meet the
Remark 3: Special cases of the proposed setup are thgarformance requirements and a compromise should be made

scattering transformation used in passive telepresense Syetween performance and sensitivity to time delay.
tems with time delay and packet loss in the communi-

cation network [11], as well as the more general trand3- Steady state behaviour

formation introduced by the authors in [7] for input- The steady state behaviour of the proposed controller
feedforward-output-feedback passive systems. In fact, Btructure is equivalent to the steady state behaviour of
all these cases, instead of the stability condition (7}the typical feedback interconnection of plant and congroll
the more conservative ongGy||«||Gilj~ < 1 is considered without time delay, as easily derivable by settisg=0
as||GoL [l < [|Gr|l||Gi |- By resolving to this more conser- in (4) and (5) resulting inG(0) = Gp(0). In terms of
vative condition many scattering based approaches for-timsteady state error the proposed approach clearly outper-
varying delay [12] and packet loss [13] are straightforwtard forms the standard small gain approach which is the



only alternative delay-independent method without localepresentation obe (11). InequalitiesFp <0, F; <0 (9),
control measures. The standard small gain approach rieiply finite gainL, stability X, andX, with arbitrary large
quires |G¢(jw)Gp(jw)| < 1,w >0, i.e. free integrators in gainsyp, . € R™ respectively, which is equivalent to strict
the open loop are not allowed. In the proposed approachability.
free integrators in plant or controller do not necessarily Remark 4: The optimization parametesg, ., i.e. the ar-
appear as free integrators B (5). As a result delay- bitrary largelL, gains ofZ, %, are in real problems bounded
independent stability can still be guaranteed by Propmsiti by the computational capabilities of the solvers. Therfor
while the integrator guarantees steady state error zeris. Thhey can be a-priori set to a large constant value, reducing
can be easily demonstrated using examples, 84fs) = the constraint$p, Fc <0 (9) from polynomial to quadratic.
;ll,GC(s) = S(%%O),a: 0.866,b=0.5,c= —0.5,d = 0.866. Remark 5 Inequalities Fp,Fc <0 (9), which guarantee
strict stability of 2,2, can be replaced by a number of
guadratic inequalities. The stability area for the plargdfe
Based on the above, the problem of guaranteeing delayack gain inZ; can be a-priori defined based on classical
independent stability as well as a frequency dependentethods, like the Nyquist plot or the root locus. It is shown
maximum for the norm of the sensitivity function with in the proof that the plant feedback gaindpis —I;/I3. In
respect to time delay, can be expressed as a minimizatioonsequence, the constraint for strict stability>pfcan be
problem of |GoL||«. In the following it is shown that the expressed as a number of inequalities of theferEK ki or
controller dgsign problem of findi_ng a transformatiehso _:_1 > ki, wherek; are the limits of the pre-defined admissible
that||GoL | is bounded by a specific value can be expressedaility areas. Equivalently, the stability constraiot &,

as a feasibility problem with polynomial matrix constrant ~o, pe expressed by a number of quadratic inequalities of
In the following theorem the optimization parameters arg,e formls/l, < kj or I/14 > k;.

VI. CONTROLLER DESIGN

denoted by bold letters. _ _ Remark 6: Any non-convex polynomial constraint can
Theorem 2: +||Go|_||m < Ye« if and only if there pe reformulated into a bilinear one with increased dimen-
are yo,%p € R", I1,l2,13,14€ R, and symmetric matrices sjon [14]. Bilinear problems are in general hard to solve,

Pp, Pc, Pex so that fori € {ex, p,c}, and it is known that even the BMI feasibility problemNg-
F— [ AP+ 'in PiBi ] + hard [15]. Nevertheless, as shown in the numerical example,
Bi Pi 0 9 the available solvers can give useful solutions in nonétiv
o 11" 0o | ©) cases based on the proposed formulation.
[ C D } Qi [ C D } <0, Remark 7: For controller design methods that can be
implemented as problems with bilinear constraints, e.gGLQ
Pp>0, Pc>0, lila=lals, l1#l4 control, the co-design ok; and the transformatioM is
with Q for i € {ex, p,c} given byQ; = T;"diag{1,—y?}Ti,  straightforward. The co-design is achieved by considering
I 1 —ls —ly the controller parameter&, B¢,Cc,Dc as optimization pa-
Tex= [ b 13 —lp —ly ] ) (10)  rameters and adding the additional performance conssraint

Nevertheless, by this way, well established linearization

T _ 0 I3 |0 I4 techniques, which lead to an efficient solution ¥rcannot
P03 14 |7 7 1y =1y |’ be applied.
andAg, Bex, Cex, Dex representing the extended system of the VIl. NUMERICAL EXAMPLE
parallel connection OFp, Zc andZpc=2poZe i.€. The considered system is the NN8 example, extracted from
Aex = diag/Ap, Ac, Apc]  Bg, = [Bp Bc Bpd] (11) the publicly available benchmark collection COMBI[16],
Ce = diagCp Cc Cpc] Dgx = [Dp D¢ Dcpl, regarding only its first input and output, resulting thus in a
SISO system. Its state space representation is given by
and A{ Ap 0] B{ Bp} —025 01 1 0
T BCp A ¢~ | BDp Ap=| -005 0 O, By=|0|,
Cpc =[DcCp Cc] Dpc = DcDy. 0 0 -1 1
For a feasible solutiody¢,l>¢,l3¢,l4¢, d can be freely Cp=[100, Dp=0.
chosen. The rest of the elements Mf are given bya=  The exact design procedure is described in the next section.
laf/d,b=12¢/d,c=11d/l2s.
Proof : See the appendix. B A Design of controller Z.

The boundness 0fGoL ||« by Yex is equivalent to strict
stability of %;,%;, and |GoL(jw)| < Ve, Y. It is shown in
the proof that a bound 96 (jw)|, Vw can be concluded by _
the values on thgw axis of the extended systebny, (11). J= /yz(r) +0.Olu2(T)dr, (12)
The KYP lemma is then used in order to reformulate the 3
condition for the values ofGe(jw)| to a finite dimensional with a full state observer. The poles of the observer are
matrix inequality, i.eFex <0 (9), based on the state spaceplaced in the positions [-2 -3 -4], resulting in the conteoll

As controllerZ. a Linear Quadratic Regulator is consid-
ered minimizing the cost function



T =300 ms

o

No local controller

&
S
T

Magnitude [dB]
=
o
T
\

Local controller

-150 i i
-2 -1 100

Frequency [rad/s]

Fig. 2. Bode diagram of the sensitivity function with resptectime delay,
of the systems with and without the transformatidn for T = 300ms.
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Fig. 3. Impulse response of the systems with and without rdmesforma-
tion M, for different values of the time delay.
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B. Design of transformation M

For the design of the transformatidd, (9) is solved

using the YALMIP Matlab toolbox [17] with the local solver

PENBMI [18]. The gaingy, y are kept constant to $0The

constraintly # I4, which cannot be handled by the solver, is

1) Senditivity to time delay: The sensitivity function with
respect to round trip time delay of the two systems, for round
trip time delayT = 300ms, is shown in Fig. 2. The sensitivity
is plotted until the maximum cutoff frequency of the two
closed loop systems. The sensitivity of the system with the
transformation is less than the one without the transfdomat
in almost all the frequencies of interest.

2) Impulse response: The impulse response to the plant
input, is shown in Fig. 3 foll=0,150,300,600ms. For zero
time delay both systems give the same response. The system
with the transformation remains stable in all cases, and its
response is slightly affected by the time delay value. On the
contrary, the system without the transformation is seresiti
to time delay, and becomes unstableTat288ms.

VIII. CONCLUSIONS

In this article a novel control approach is proposed with
a two degrees of freedom controller for delay-independent
stability and low sensitivity to time delay. The first coriteo
part guarantees specific performance measures for zero time
delay, while the second part deals with delay-independent
stability and low sensitivity to time delay. The necessarg a
sufficient conditions of the existence of a controller which
guarantees delay-independent stability and a frequeney de
pendent maximum of the norm of the sensitivity function
with respect to time delay are formulated as a feasibility
problem with polynomial matrix constraints. In simulation
it is shown that the proposed formulation can give usefull
solutions in non-trivial cases. In a numerical example the
proposed approach significantly reduces the sensitivity to
time delay. Future research is to approach multiple-input-
multiple-output systems, and time-varying delay.

APPENDIX

Firstly, we prove an alternative formulation of the
static output feedback stabilizability problem for system
with D # 0. This is necessary as we cannot consider without
loss of generality Dp = D¢ = 0 since the right and the left
transformationsv andM 1 are not independent systems.

Lemma 1: The closed loop system of a systén{1) with
a static output feedback gain matix i.e.

u=w+Ky (24)

substituted by, — |4 > 0.2, in order to further avoid solutions is strictly stable if and only if there is a symmetric positiv
close to singularity. The optimization problem is solveddefinite matrixP=PT >0 and ay € R* so that

iteratively for decreasing values ¢f. A feasible solution
was always obtained for ajk > 0.58, independently of the
initial values oflq,15,13,14. The initial values only slightly

affected the CPU optimization time, which fgg = 0.58

fluctuated from 3.6s to 4s, in an AMD Athlon 64 Dual
Core Processor 3800+ CPU running under Debian Linuxrgof :

T [o 1
BTP 0 CD]Q[C D}SO

I 0 0 I 1o
P A e

Strict stability of LTI systems is equivalent to

|

with Q=T7 [

ATP+PA PB] [o [

The free parameter was fixed tb= 1. The elements of the finite gainL, stability. Finite gainL, stability is equivalent

best obtained transformation ame-= 22.51,b= 151083 c=
—0.017,d =1 and theH., norm ||Goy || = 0.5767.

C. Smulations

In the following, a comparison is presented between th

systems with and without the transformation.

to the existence of a quadratic positive definite function
V =x"Px:R"— R, i.e. a symmetric positive definite ma-
trix P=PT > 0 so that for eaclw € R™ the following holds

[[w]=e

Y+yTy <ywiw=V+ [ v)\// T[ (l) Y
(18)



| T b2 —a?d?y? b?cd —abd?? —abc?+acdy? —abed + abedy? I
Gp + b2d?—b2d?? —abcd+abcdy?  —abd?+ b2cdy? Gp
Ge * * a’c? —a?c?y?  acd —abc?y? Ge¢ <0, Vo (A7)
GpGc * * * a?d? — b?c?y? GpGc

negative feedback sigrk; <0 (9) is obtained. The last

Equation (14) can be rewritten as
constraintly # 14 = ad —bc # 0 implies the invertibility of
the mappingVl.

MR
wi| | I =K y |- -
For eachlq,l,l3,14 under the restriction (26), one of the
Between the states of the planaind its input-output vector parameters,b,c,d can be freely chosen. We consider here
d as a free parameter, the other cases are equivalent. The rest

(19)

we have ! o | y
MEEE I
an.d further ) ATPAPA PB ) a
v_2pr[Ax+Bu]_{uH S oHu
Substituting (19)-(21) in (18) it results in 2) @
[S]TF[L(]SO. 22 B

Controllability implies that each state can be reached. [4]
Further, since the system is assumed to be well-posed, i.e.
the matrix [l — KD] is invertible, for the input signali we
getu = [l — KD]"*w+ [I — KD]~KCx. Sincew can be freely
chosen, so cam. Thus, necessary and sufficient condition [6]
for (22) is that the matrix F is negative semi-definite. m

We are now able to state the proof of Theorem 2
Proof of Theorem 2: The fact thal|Goy ||« is bounded byye
is equivalent to the strict stability df,,>, and

GoL(jw)" GoL(jw) < Yo, V. (23)

By substituting (6) in (23), and separating the terms with(®!
respect toGp, G¢,Gp, G; and their products, (23) can be
rewritten as in (17). By denoting the extended system (11)9]
by Gex = [Gp Gc GpGC]T, after some mathematical manipu-
lation (17) becomes

(7]

[20]

| R | 0 |
. T. T . <0, V
{ Cex(jw) } ex{ 0 —¥& ] ex[ Gex(jw) ] R [11]
ith To — bc bd —ac -—ad (24)
W ec=1 20 bd —ac —bc |- (12]
Setting bc=1;, bd=I,, ac=I3, ad=I4 (25)
under the constraint
b ls ¢ [13]
2=2 =2l =1l (26)
lb 1y d

the matrixTe is given by (10). Using the KYP lemma, (24) [14]
is equivalent to the existence of a symmetric maldx= PJ,
so thatFe <0 (9).

The constraintsFy, Fc < 0 (9) imply the strict stability
of the 2;,%,. From (2) and (25) it is straightforward to
see thatup = 1/aur — b/ayy, i.e. the feedback gain aof,
in subsystemZ, is —b/a=—I;/l3. Based on Lemma 1
strict stability of 3, is equivalent to the existence of a
symmetric positive definite matriR = PT > 0 and ay € R*

15]

[16]

so thatF <0 (15) with T given by [17]
0 1
T= . 27
1 14/la } @

By multiplying F (15) with I§, Fpo <0 (9) is obtained.
Following the same procedure f&j and considering the

of the parameters are given by = 'H“, b

_ba_dqh
—H,C—dE. [ ]
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