
TO APPEAR IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL, FEB. 2013 1
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Abstract

Digital control design is commonly constrained to time-triggered control systems with periodic

sampling. The emergence of more and more complex and distributed systems urges the development

of advanced triggering schemes that utilize communication, computation, and energy resources more

efficiently. This paper addresses the question whether certainty equivalence is optimal for an event-

triggered control system with resource constraints. The problem setting is an extension of the stochastic

linear quadratic system framework, where the joint design of the control law and the event-triggering

law minimizing a common objective is considered. Three differing variants are studied that reflect the

resource constraints: a penalty term to acquire the resource, a limitation on the number of resource

acquisitions, and a constraint on the average number of resource acquisitions. By reformulating the

underlying optimization problem, a characterization of the optimal control law is possible. This charac-

terization shows that the certainty equivalence controller is optimal for all three optimization problems.

Index Terms

Event-triggered control, certainty equivalence, networked control systems, resource-aware control,

stochastic optimal control

I. INTRODUCTION

Recent technological advances in communications, embedded systems and sensing have raised

the interest in the analysis and design of resource-constrained control systems. Energy, com-
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putation, and communication limitations have inspired thecontrol community to search for

advanced transmission schemes beyond the time-triggered periodic scheme, e.g., [1]–[5]. The

results are related to the domain of control over communications [1], [2], multi-agent systems [3],

distributed optimization algorithms [4], and embedded control design [5]. The underlying design

methodologies usually presume an a-priori defined control law on which the event-triggering

strategies are established. In other words, the choice for the control law does not take into

account resource constraints for updating the controller.

This motivates us to ask what structural properties a control law must have to be optimally

suited for an event-triggered transmission scheme. In particular, the open question addressed in

this note is whether a certainty equivalence controller is still optimal for event-triggered systems

in the presence of resource constraints.

There exists several results that are related to the problemsetting in this note. The design

of optimal event-triggered control for stochastic continuous-time systems is studied in [6] for a

limited number of control updates with the control waveformrestrained to be constant between

transmissions. The problem is shown to be related to optimalstopping time problems, which

enable an analytical solution in certain cases. In [7], the problem of optimally assigning a

limited number of state resets is considered. For a finite-horizon LQG control problem, it is

shown that time-varying thresholds of the state signal are optimal for triggering a state reset.

Optimal sensor querying and control within the LQG framework with costly queries has been

studied by [8], [9]. It is found that the optimal control law is certainty equivalent and the timings

for queries can be determined offline. Rather than limiting the number of update transmissions,

the control problems stated in [10]–[12] pose constraints on the number of bits that may be

transmitted over a resource-constrained channel per time step. Inspired by [10], it is shown

in [11], [12] that the certainty equivalence controller is optimal within the LQG framework

under such communication constraints. The design of optimal event-triggered control where the

event-trigger and the controller are merely restricted to be causal mappings of their observations

has not been addressed in the aforementioned literature andis the subject of this note.

Our contribution is to show that a certainty equivalence controller is optimal under three

variants of resource constraints. The system model under consideration can be regarded as an

extension of the stochastic linear quadratic systems framework. The optimal event-triggered

control design consists of developing (i) an optimal control law and (ii) an optimal event-trigger
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at the sensor. At every time instance, the event-trigger decides upon its observations whether it is

worth to update the controller with a current measurement. Based on the available information,

the control law applies control inputs to regulate the process. Three different types of resource

constraints are considered. The first one is inspired by workin [13] and penalizes every controller

update with an additional cost. The other two resource constraints restrain either the number

of updates as appeared in [6], [7] or its average. As the information available at the control

station and the sensor station differ, the present stochastic optimal control problem has a non-

classical information pattern [14]. This is in contrast to the aforementioned works, which recover

a classical information pattern [6]–[9]: Either control decisions are taken only at update times

[6], [7] limiting the number of admissible policies, or, rather than letting the sensor decide,

the controller decides if it shall receive updates [8], [9].Opposed to these approaches, our

problem setting prohibits the application of common tools of stochastic optimal control because

of the non-classical information pattern. Therefore, we develop a reformulation technique for

the underlying optimization problem that enables a characterization of the optimal control law.

Without having to determine the optimal event-triggering policy, we are able to state that the

certainty-equivalence controller is optimal for all threeoptimization problems. A preliminary

version of this work first appeared in the conference paper [15].

The remaining part is organized as follows. Section II introduces the system model and the

three problem settings to be analyzed. By using a reformulated problem setting, optimal control

policies are characterized in section III. In section IV, extensions and limitations of the obtained

results are discussed and section V gives concluding remarks.

Notation. In this paper, the operator(·)T denotes the transpose operator of a matrix. The

expectation operator is denoted byE[·] and the conditional expectation is denoted byE[·|·]. The

sequence of a signalxk is denoted by{xk}. The truncated sequence up to timek is denoted

by Xk = {x0, . . . , xk}. For Greek letters, a sequence{δk} up to timek is denoted byδk. With

abuse of notation, we interpretXk as a set, when referring to its information and as a column

vector, when referring to its signal evolution.

II. PROBLEM FORMULATION

The system under consideration is illustrated in Figure 1 and can be viewed as a resource-

constrained control system. For the sake of illustration, the constraint is represented by a resource-

July 16, 2012 DRAFT



TO APPEAR IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL, FEB. 2013 4

constrained communication channelN . The other part of the system consists of a processP,

an event-triggerE , and a controllerC. The stochastic discrete-time processP to be controlled

is described by the following time-invariant difference equation

xk+1 = Axk +Buk + wk, (1)

whereA ∈ R
n×n, B ∈ R

n×d. The variablesxk and uk denote the state and the control input

and are taking values inRn andRd, respectively. The initial statex0 is a random variable with

finite mean and covariance. The system noise process{wk} is i.i.d. (independent identically

distributed) andwk takes values inRn and is zero-mean and has finite covariance. The random

variablesx0 andwk are statistically independent for eachk. Let (Ω,A,P) denote the probability

space generated by the initial statex0 and noise sequence{wk}. We callx0 andwk the primitive

random variables of the system. The statistics of the process P are known a-priori to both, the

event-triggerE and the controllerC. It should be remarked that the results in this note also apply

for time-variant systems. The consideration of time-invariant systems is because of notational

convenience.

The event-triggerE situated at the sensor station has access to the complete state information

and decides, whether the controllerC should receive an update over the feedback channelN .

The controller calculates inputsuk to regulate the processP.

Concerning our system model, it is needed to define the amountof information available at

the control station at each time stepk. The output signal of the event-trigger,δk, takes values

in {0, 1} deciding whether information is transmitted at timek, i.e.,

δk =











1, measurementxk sent,

0, no measurement transmitted.

Therefore, the signalyk is defined as

yk =











xk, δk = 1,

∅, δk = 0.
(2)

As various steps of decisions are made within one time periodk, a causal ordering is specified

by the following sequence in which the events within the system occur.

· · · → xk → δk → yk → uk → xk+1 → · · ·
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Establishing such time-ordering in advance can be crucial for optimal policies, particularly, when

having distributed decision-makers [16]. We allow the control input and the event-triggering out-

put to depend on their complete past history. Let the event-triggering lawf = {f0, f1, . . . , fN−1}

and the control lawγ = {γ0, γ1, . . . γN−1} denote admissible policies for the finite horizonN

with

δk = fk(X
k), uk = γk(Y

k).

We assume that the mappingsfk and γk are measurable mappings of their available informa-

tion Xk andY k, respectively.

We define the information available at the event-trigger andthe controller at time stepk as

theσ-algebra generated byXk andY k, respectively. These are denoted byIE

k andIC

k . It should

be noticed thatIC

k ⊂ IE

k becauseyk can be expressed as a function ofXk implying that the

information available at the controller can be recovered bythe event-trigger. Since we assume

the control law to be deterministic, and we haveIC

k ⊂ IE

k , the control inputsUk−1 are known

by the event-trigger at timek.

The communication channelN takes the role of restricting or penalizing transmissions in the

feedback loop. This will be reflected in the optimization problem. LetJC be the control objective

defined as

JC = xT
NQNxN +

N−1
∑

k=0

xT
kQxk + uT

kRuk, (3)

and letJE be the communication cost given by the number of transmissions, i.e.,

JE =
N−1
∑

k=0

δk. (4)

We consider three different optimization problems that shall be analyzed in the next section.

Problem A: Let λ ≥ 0. Find the optimalf∗ andγ∗ that

inf
f,γ

E [JC + λJE ] .

Problem B: Let m be a non-negative integer. Find the optimalf∗ andγ∗ that

inf
f,γ

E [JC] , s.t. JE ≤ m.
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Fig. 1. System model of the resource-constrained control system with processP , event-triggerE , controller C, and

communication channelN .

Problem C: Let m̄ ≥ 0. Find the optimalf∗ andγ∗ that

inf
f,γ

E [JC] , s.t. E[JE ] ≤ m̄.

Let us denoteU to be the set of all admissible policy pairs(f, γ). For notational convenience,

we define the cost functionJ(f, γ) for (f, γ) ∈ U to be

J(f, γ) =











E [JC + λJE ] for Problem A,

E [JC] for Problem B,C.
(5)

Problems A-C can be regarded as two person team problems witha non-classical information

pattern, where the decision-makers are given by the event-trigger and the controller. Optimization

problems A and C imply a soft constraint on the number of transmissions during time intervalN ,

whereas Problem B poses a hard constraint on the number of transmissions, which is to be

fulfilled for every sample pathω ∈ Ω. It could be conjectured that Problem A and Problem C

are equivalent for appropriate choices ofλ andm̄. But as we can not assert that all solutions of

Problem C can be reached through Problem A for varying weightλ, we regard them as different

problems.1

III. CHARACTERIZATION OF OPTIMAL CONTROL POLICIES

Finding the joint optimal policies of the event-triggered controller is in general difficult for

all three problem settings. The controller and event-trigger have different information available,

1A sufficient condition that both problems are equivalent is given by showing that the set of Pareto-optimal points inR
2 of

the vector optimization with cost vector[E[JC ],E[JE ]]
T are boundary points of a convex set [17].
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and it is well known that such problems are usually very hard to solve [18]. Stochastic control

problems with non-classical information pattern generally do not allow to apply concepts like

dynamic programming directly.

Nevertheless, it is possible to obtain structural results of the optimal solution. The key idea

that yields such structural result is based on the followingcommon concept in optimal control.

Definition 1 (Dominating policies):A set of policy pairsU ′ ⊂ U is called adominating class

of policies for problems A, B, or C, if for any feasible(f, γ) ∈ U , there exists a feasible

(f ′, γ′) ∈ U ′, such that

J(f ′, γ′) ≤ J(f, γ),

whereJ is the cost function defined by (5) for the corresponding problem.

Once a dominating class of policies is found, the above definition implies that we can restrict

the solutions of the optimization problem to such policies.Subsequently, we show that the set

of policy pairs where the controller is a certainty equivalence controller denoted byγ∗ is a

dominating class of policies. A certainty equivalence controller is given by solving a related

deterministic control problem, where all primitive randomvariables are set to their means, and

by replacing the state variable by its least squares estimate within the deterministic solution. The

remaining goal is to prove that for any pair(f, γ), we can find a pair(f ′, γ∗) whose costs are at

most that of(f, γ).

In order to achieve this, we introduce a suitable reparametrization of the triggering law. Given

a policy (f, γ), we define another policy(g, γ) whereg = {g0, . . . , gN−1} is the triggering law,

andgk is a function of{x0,W
k−1}, such that

gk(x0,W
k−1) = fk(X

k), k ∈ {0, . . . , N − 1}, ω ∈ Ω, (6)

when both systems use the control lawγ. As the control inputsUk−1 are known at the event-

trigger at timek by the lawγ due toIC

k ⊂ IE

k , the variables{x0,W
k−1} can be fully recovered

by the state sequenceXk and vice versa. Therefore, the triggering lawg satisfying (6) always

exists. On the other hand, this also implies that given(g, γ), there is always a(f, γ) satisfying (6).

The next intermediate result states on the optimal control law for fixedg.

Lemma 1:Let the triggering lawg be a function of primitive variables given by

δk = gk(x0,W
k−1), k ∈ {0, . . . , N − 1}. (7)
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If the triggering lawg is fixed, then the optimal control lawγ∗ minimizing J(g, γ) of problems

A-C is a certainty equivalence controller given by

uk = γ∗

k(Y
k) = −Lk E[xk|I

C

k ], k ∈ {0, . . . , N − 1} (8)

with

Lk =
(

R +BTPk+1B
)−1

BTPk+1A,

Pk = ATPk+1A+Q− ATPk+1B
(

R +BTPk+1B
)−1

BTPk+1A,

(9)

wherePN = QN andPk ∈ R
n×n is non-negative definite fork ∈ {0, . . . , N}.

Proof: Since g is fixed, the outputδk is a random variable described by a function of

primitive random variables that is independent of the choice of the control lawγ. In case of

Problem A, this implies thatE[JE ] is a constant for a fixedg. With regard to Problem B and

C, it implies that the choice ofg determines uniquely whether the constraints are satisfied

irrespectively from the control lawγ. Thus, solving the optimization problems A-C for a fixedg

reduces to minimizingE[JC] over all admissible control lawsγ. The resulting objective function

is purely quadratic, and tools from stochastic control can be applied [19]. Similarly to [19], we

first show that the estimation error at the controller definedby

ek = xk − E[xk|I
C

k ] (10)

is a random variable that can be described as a function of primitive random variablesx0

andW k−1 which is independent of the control lawγ. Let us fix a control lawγ and consider

two types of systems: a forced and an un-forced system. In thefirst system, control inputs are

determined by the lawγ and the system evolves by equation (1) and (2), whereas the second

system has zero-input and is given by

x̃k+1 = Ax̃k + w̃k,

ỹk =











x̃k, δ̃k = 1,

∅, δ̃k = 0.

We assume the primitive random variables are identical for both systems, i.e.,

x̃0 = x0, w̃k = wk, k = 0, . . . , N − 1. (11)
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Since the triggering outputδk is a function of primitive random variables defined by (7) that is

independent ofγ, we have

δ̃k = δk, k = 0, . . . , N − 1.

Because of linearity, we can rewrite the systems into the following matrix-vector notation

xk = Fkx0 +GkU
k−1 +HkW

k−1,

x̃k = Fkx0 +HkW
k−1,

whereUk−1, W k−1 are the augmented signal vectors andFk, Gk, andHk are appropriate matrices

constructed fromA andB. As Uk−1 is measurable with respect to the information patternIC

k ,

the conditional expectations are given by

E[xk|I
C

k ] = Fk E[x0|I
C

k ] +GkU
k−1 +Hk E[W

k−1|IC

k ],

E[x̃k|I
C

k ] = Fk E[x0|I
C

k ] +Hk E[W
k−1|IC

k ].

Hence, we obtain

xk − E[xk|I
C

k ] = x̃k − E[x̃k|I
C

k ].

Given the lawsγ and g, it is trivial to show that there exists a bijective mapping betweenY k

and Ỹ k. This implies that theσ-algebraĨC

k generated bỹY k is identical toIC

k . This is because

the vectorsδk and δ̃k are identical random variables, and

ỹk =











yk −GkU
k−1, δk = 1,

∅, δk = 0,

while

y0 = ỹ0, u0 = γ0(y0) = γ0(ỹ0),

y1 =











ỹ0 +G1γ0(ỹ0), δ̃1 = 1,

∅, δ̃1 = 0,

u1 =











γ1(ỹ0, ỹ0 +G1γ0(ỹ0)), δ̃1 = 1,

γ1(ỹ0), δ̃1 = 0,
...
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Therefore, we can write

ek = x̃k − E[x̃k|Ĩ
C

k ]. (12)

Sincex̃k−E[x̃k|Ĩ
C

k ] in Equation (12) can be expressed in terms of primitive random variables

and is independent of the control lawγ, we showed that the estimation errorek is given by a

function of primitive random variables which is independent of γ.

Next, we use the identity to reformulateJC defined by (3), see lemma 6.1 of chapter 8 in [20]

that is given by

JC =xT
0 P0x0 +

N−1
∑

k=0

(uk + Lkxk)
T(BTPk+1B +R)(uk + Lkxk)

+
N−1
∑

k=0

wT
k Pk+1(Axk +Buk) + (Axk +Buk)

TPk+1wk

+

N−1
∑

k=0

wT
k Pk+1wk,

whereLk andPk are given by (9). Let us define

Γk = BTPk+1B +R, k ∈ {0, . . . , N − 1}.

By taking expectation and incorporating independence ofwk with respect toxk anduk, we have

E[JC] =E[xT
0 P0x0] + E[

N−1
∑

k=0

wT
k Pk+1wk]

+ E[
N−1
∑

k=0

(uk + Lkxk)
TΓk(uk + Lkxk)].

The first two terms are constant and can be omitted from the optimization. After replacingxk

with E[xk|IC

k ] + ek, we have

(uk + Lkxk)
TΓk(uk + Lkxk) =

=(uk + Lk E[xk|I
C

k ] + Lkek)
TΓk(uk + Lk E[xk|I

C

k ] + Lkek)

=(uk + Lk E[xk|I
C

k ])
TΓk(uk + Lk E[xk|I

C

k ])

+ (uk + Lk E[xk|I
C

k ])
TΓkLkek + eTkL

T
k Γk(uk + Lk E[xk|I

C

k ])

+ eTkL
T
k ΓkLkek. (13)
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By applying the tower property of conditional expectations, we obtain

E[(uk + Lk E[xk|I
C

k ])
TΓkLkek] =

= E[E[(uk + Lk E[xk|I
C

k ])
TΓkLkek|I

C

k ]]

= E[(uk + Lk E[xk|I
C

k ])
TΓkLk E[ek|I

C

k ]].

The second equality is becauseuk = γk(IC

k ) andE[xk|IC

k ] are measurable functions with respect

to IC

k . In fact,

E[ek|I
C

k ] = E[xk|I
C

k ]− E[E[xk|I
C

k ]|I
C

k ]

= E[xk|I
C

k ]− E[xk|I
C

k ] = 0.

Thus, the cross terms in Equation (13) vanish and we obtain

E[JC] =E[xT
0 P0x0] + E[

N−1
∑

k=0

wT
k Pk+1wk] + E[

N−1
∑

k=0

eTkL
T
k ΓkLkek]

+ E[

N−1
∑

k=0

(uk + Lk E[xk|I
C

k ])
TΓk(uk + Lk E[xk|I

C

k ])]. (14)

As the first three terms are constant, we observe thatE[JC] attains its minimum forγ∗ given by

Equation (8). This concludes the proof.

Built upon this intermediate result, we obtain the following theorem which states the main

result of this note.

Theorem 1:Let the system be given by (1) and (2). The class of policiesUCE ⊂ U defined

by

UCE = {(f, γ∗) | γ∗ = −Lk E[xk|I
C

k ], Lk given by (9)}

is a dominating class of policies for the problem settings A-C.

Proof: According to Definition 1, it suffices to show that for any feasible pair (f, γ) ∈ U ,

there is a feasible policy(f ′, γ∗) ∈ UCE whose costs are at most that of(f, γ).

Given a feasible pair(f, γ), there exists a feasible pair(g, γ) with gk being a function of

primitive variables that satisfies (6). Condition (6) implies that for(f, γ) and (g, γ), we have

identical random variablesuk andδk for k ∈ {0, . . . , N−1} and therefore identical costs. In the

same way for the pair(g, γ∗), we can find a triggering lawf ′ being a function ofXk, such that
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both (g, γ∗) and (f ′, γ∗) output identical random variablesuk and δk for k ∈ {0, . . . , N − 1}.

Due to Lemma 1, we obtain

J(f, γ) = J(g, γ) ≥ min
γ

J(g, γ) = J(g, γ∗) = J(f ′, γ∗).

Since(g, γ∗) is feasible, the pair(f ′, γ∗) is also feasible. This concludes the proof.

IV. D ISCUSSION

Theorem 1 implies that we can characterize optimal control policies to be certainty equivalent

control laws given by (8). Characterizing the optimal solution by Theorem 1 opens up the

possibility of calculating the optimal event-triggered controller with standard approaches. The

remaining problem to solve Problems A-C is discussed in the next paragraph. Apart from that,

we comment on extensions and limitations of the obtained result. There, it can be noticed that

Theorem 1 also holds for noisy measurements and certain types of communication models.

1) Design of the optimal event-triggering lawf∗: Given Theorem 1, designing the optimal

event-triggering law can be considered as the joint optimization of the estimatorE[xk|I
C

k ] and

the event-triggerf, which has been already studied in the literature. This has been addressed for

Problem A in [13], [15], [21] and for Problem B in [22], [23]. Assuming that the distributions

of the primitive random variables are symmetric, the work in[21] shows for first-order linear

systems that the optimal event-trigger is a symmetric threshold function and the state estimator

is given by a linear predictor. For higher-order systems, this result remains unproven. Under

the restriction to symmetric policies, the optimal event-triggering law f∗ can be calculated by

dynamic programming as discussed in [13], [15]. In case of Problem C the remaining problem

can be posed in the framework of constrained Markov decisionprocesses [24].

2) Noisy state observation:Under the assumption that only noisy observations are available,

Theorem 1 is still valid if the right-hand side of the measurement equation is linear in the state

variable. On the assumption that the transmitted information is measurable with respect toIE

k ,

it still holds thatIC

k ⊂ IE

k . Applying a reparametrization of the policy pair as presented in [25],

the argumentation in Section III carries over to noisy observations and the certainty equivalence

controller is optimal for problems A-C.

3) Zero-order hold control waveform:If we restrain the control waveform to be constant

between transmissions as in [6], the proposed reparametrization technique is still valid. Nev-

ertheless, it is not possible to eliminate the last term in (14) due to the fact thatuk must be
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constant between transmissions. This implies that the costs can not be completely decoupled and

our results can not be extended to this case.

4) Fixed event-triggering laws:It is clear that, when the event-triggering law is predefined

in advance, no structural properties can be characterized in general. An exception is [26], where

symmetric event-triggering laws are studied. Within this special class of event-triggering laws,

it is shown that certainty equivalence controllers are optimal for a quadratic cost function.

5) Communication models:When introducing more realistic models for the communication

channels with packet dropouts and time-delay, it has been shown in [27] that certainty equivalence

is still optimal if an instantaneous error-free acknowledgement channel exists. In the presence

of time-delays in the acknowledgement channel, the paper [27] shows that certainty equivalence

is optimal when allowing to have only one unacknowledged packet in the system at each time

stepk.

V. CONCLUSION

This work shows that the certainty equivalence controller is optimal for an extended LQG

framework that incorporates communication constraints. The communication constraints are set

within the packet level of the communication network restraining the number of transmissions.

This result opens up the possibility to calculate the optimal event-triggered controller by common

approaches. Comments on limitations and extensions show that the obtained result is also valid

in the presence of noisy measurements and certain types of communication models.
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