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Event-triggered Control Systems
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Abstract

Digital control design is commonly constrained to timeygygred control systems with periodic
sampling. The emergence of more and more complex and distdbsystems urges the development
of advanced triggering schemes that utilize communicatimmputation, and energy resources more
efficiently. This paper addresses the question whetheaiogrtequivalence is optimal for an event-
triggered control system with resource constraints. Tiblem setting is an extension of the stochastic
linear quadratic system framework, where the joint desifjthe control law and the event-triggering
law minimizing a common objective is considered. Threedtiffg variants are studied that reflect the
resource constraints: a penalty term to acquire the respardimitation on the number of resource
acquisitions, and a constraint on the average number oluirescacquisitions. By reformulating the
underlying optimization problem, a characterization af tiptimal control law is possible. This charac-

terization shows that the certainty equivalence contradl@ptimal for all three optimization problems.

Index Terms

Event-triggered control, certainty equivalence, netwdrkontrol systems, resource-aware control,

stochastic optimal control

I. INTRODUCTION

Recent technological advances in communications, emigesidgems and sensing have raised

the interest in the analysis and design of resource-constitecontrol systems. Energy, com-
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putation, and communication limitations have inspired tdoatrol community to search for
advanced transmission schemes beyond the time-triggemeddic scheme, e.g., [1]-[5]. The
results are related to the domain of control over commuiainaf1], [2], multi-agent systems [3],
distributed optimization algorithms [4], and embeddedtodrdesign [5]. The underlying design
methodologies usually presume an a-priori defined conal dn which the event-triggering
strategies are established. In other words, the choicehrcontrol law does not take into
account resource constraints for updating the controller.

This motivates us to ask what structural properties a cotam must have to be optimally
suited for an event-triggered transmission scheme. Incodat, the open question addressed in
this note is whether a certainty equivalence controlletilsaptimal for event-triggered systems
in the presence of resource constraints.

There exists several results that are related to the proBkttmg in this note. The design
of optimal event-triggered control for stochastic contins-time systems is studied in [6] for a
limited number of control updates with the control wavefamstrained to be constant between
transmissions. The problem is shown to be related to optstegdping time problems, which
enable an analytical solution in certain cases. In [7], theblem of optimally assigning a
limited number of state resets is considered. For a finitezbn LQG control problem, it is
shown that time-varying thresholds of the state signal gtemal for triggering a state reset.
Optimal sensor querying and control within the LQG framdwaiith costly queries has been
studied by [8], [9]. It is found that the optimal control lag/¢ertainty equivalent and the timings
for queries can be determined offline. Rather than limitimg mumber of update transmissions,
the control problems stated in [10]-[12] pose constraimtsttte number of bits that may be
transmitted over a resource-constrained channel per tiee $nspired by [10], it is shown
in [11], [12] that the certainty equivalence controller igtimal within the LQG framework
under such communication constraints. The design of op&@went-triggered control where the
event-trigger and the controller are merely restrictedda@ausal mappings of their observations
has not been addressed in the aforementioned literaturésahd subject of this note.

Our contribution is to show that a certainty equivalencetiler is optimal under three
variants of resource constraints. The system model undesigeration can be regarded as an
extension of the stochastic linear quadratic systems frame The optimal event-triggered

control design consists of developing (i) an optimal conaiar and (ii) an optimal event-trigger
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at the sensor. At every time instance, the event-triggeiddsaipon its observations whether it is
worth to update the controller with a current measuremeased on the available information,
the control law applies control inputs to regulate the pssc&hree different types of resource
constraints are considered. The first one is inspired by wofk3] and penalizes every controller
update with an additional cost. The other two resource caims$ restrain either the number
of updates as appeared in [6], [7] or its average. As the nmédion available at the control
station and the sensor station differ, the present stachagtimal control problem has a non-
classical information pattern [14]. This is in contrastle aforementioned works, which recover
a classical information pattern [6]-[9]: Either controlc®ons are taken only at update times
[6], [7] limiting the number of admissible policies, or, har than letting the sensor decide,
the controller decides if it shall receive updates [8], [@pposed to these approaches, our
problem setting prohibits the application of common todlstochastic optimal control because
of the non-classical information pattern. Therefore, weettgp a reformulation technique for
the underlying optimization problem that enables a char&ation of the optimal control law.
Without having to determine the optimal event-triggerir@iqy, we are able to state that the
certainty-equivalence controller is optimal for all threptimization problems. A preliminary
version of this work first appeared in the conference papg}. [1

The remaining part is organized as follows. Section Il idtrces the system model and the
three problem settings to be analyzed. By using a reformdlptoblem setting, optimal control
policies are characterized in section lll. In section IVtemsions and limitations of the obtained
results are discussed and section V gives concluding remark

Notation. In this paper, the operatdr)’ denotes the transpose operator of a matrix. The
expectation operator is denoted By| and the conditional expectation is denotedHjy-]. The
sequence of a signal, is denoted by{x,}. The truncated sequence up to tirhés denoted
by X* = {xo,...,2}. For Greek letters, a sequen{®.} up to timek is denoted by*. With
abuse of notation, we interpréf* as a set, when referring to its information and as a column

vector, when referring to its signal evolution.

[I. PROBLEM FORMULATION

The system under consideration is illustrated in Figure d ean be viewed as a resource-

constrained control system. For the sake of illustratibe ,donstraint is represented by a resource-
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constrained communication chann®l. The other part of the system consists of a prodess
an event-trigge€, and a controlleC. The stochastic discrete-time procé8s0 be controlled

is described by the following time-invariant differenceuaton
Tp+1 = Axg + Buyg + wy, (1)

where A € R™*", B € R™*?, The variablesr, andu; denote the state and the control input
and are taking values iR" andR?, respectively. The initial state, is a random variable with
finite mean and covariance. The system noise pro¢ess is i.i.d. (independent identically
distributed) andwv, takes values ifR™ and is zero-mean and has finite covariance. The random
variablesr, andwy, are statistically independent for eathLet (€2, A, P) denote the probability
space generated by the initial stateand noise sequendev, }. We callzy andwy, the primitive
random variables of the system. The statistics of the pssPeare known a-priori to both, the
event-triggel€ and the controlle€. It should be remarked that the results in this note alsoyappl
for time-variant systems. The consideration of time-iraair systems is because of notational
convenience.

The event-triggef€ situated at the sensor station has access to the completargtamation
and decides, whether the controltérshould receive an update over the feedback chanhel
The controller calculates inputs, to regulate the process.

Concerning our system model, it is needed to define the amufuinformation available at
the control station at each time stép The output signal of the event-triggey,, takes values

in {0,1} deciding whether information is transmitted at tirhei.e.,

1, measurement, sent,
o) =
0, no measurement transmitted

Therefore, the signa), is defined as

L, 516 = 17
Yk = (2)
g, 4. =0.
As various steps of decisions are made within one time pérjal causal ordering is specified

by the following sequence in which the events within the esysbccur.

cee > X = Ok > Yp > Up —> Tyl —> -
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Establishing such time-ordering in advance can be crucrabptimal policies, particularly, when
having distributed decision-makers [16]. We allow the colinput and the event-triggering out-
put to depend on their complete past history. Let the ewigdering lawf = {fy,f;,...,fx_1}
and the control lawy = {vy,71,...7~v-1} denote admissible policies for the finite horizéh
with

We assume that the mappinfis and ~, are measurable mappings of their available informa-
tion X* andY*, respectively.

We define the information available at the event-trigger Hral controller at time step as
the o-algebra generated by* andY*, respectively. These are denoted HyandZ{ . It should
be noticed thalZ{ C Z¢ becausey, can be expressed as a function Xf implying that the
information available at the controller can be recoveredhsy event-trigger. Since we assume
the control law to be deterministic, and we halle C Z¢, the control inputd/*~! are known
by the event-trigger at time.

The communication channgl” takes the role of restricting or penalizing transmissionthie

feedback loop. This will be reflected in the optimizationldeam. Let.J. be the control objective

defined as Vot
Jo = anQnoy + > 1) Quy, + uy Rug, 3
k=0
and let.J; be the communication cost given by the number of transmissiice.,
N-1
Je = bk 4)
k=0

We consider three different optimization problems thatlldba analyzed in the next section.
Problem A: Let A > 0. Find the optimal™ and~* that

inf E [Jo + AJg] .
£y

Problem B: Let m be a non-negative integer. Find the optinialand~+* that

infE[J], stJe<m.
Y
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Fig. 1.  System model of the resource-constrained contrstesy with processP, event-triggere, controller C, and

communication channeV'.

Problem C: Let m > 0. Find the optimal* and~* that

Y

Let us denoté/ to be the set of all admissible policy paiis ). For notational convenience,
we define the cost functio(f, v) for (f,v) € U to be

E[Jc+ AJe] for Problem A
J(t,7) = ()
E[Jc] for Problem B,C

Problems A-C can be regarded as two person team problemsawitim-classical information
pattern, where the decision-makers are given by the evigigier and the controller. Optimization
problems A and C imply a soft constraint on the number of tra@asions during time intervav,
whereas Problem B poses a hard constraint on the number refntissions, which is to be
fulfilled for every sample pathv € Q. It could be conjectured that Problem A and Problem C
are equivalent for appropriate choices)ofindm. But as we can not assert that all solutions of
Problem C can be reached through Problem A for varying welgkte regard them as different
problemst

[Il. CHARACTERIZATION OF OPTIMAL CONTROL POLICIES

Finding the joint optimal policies of the event-triggereohtroller is in general difficult for

all three problem settings. The controller and event-grggave different information available,

1A sufficient condition that both problems are equivalentiigeg by showing that the set of Pareto-optimal point&R of

the vector optimization with cost vect§E[Jc], E[Je]]T are boundary points of a convex set [17].
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and it is well known that such problems are usually very harddlve [18]. Stochastic control
problems with non-classical information pattern gengrdlb not allow to apply concepts like
dynamic programming directly.

Nevertheless, it is possible to obtain structural resultthe optimal solution. The key idea
that yields such structural result is based on the follondgaghmon concept in optimal control.
Definition 1 (Dominating policies)A set of policy paird{’ C U is called adominating class
of policies for problems A, B, or C, if for any feasibléf,v) € U, there exists a feasible

(f',9") e U', such that
J(f',7) < J(f,7),

where J is the cost function defined by (5) for the corresponding fenwb

Once a dominating class of policies is found, the above digfmimplies that we can restrict
the solutions of the optimization problem to such policiBabsequently, we show that the set
of policy pairs where the controller is a certainty equivale controller denoted by* is a
dominating class of policies. A certainty equivalence coligr is given by solving a related
deterministic control problem, where all primitive randmariables are set to their means, and
by replacing the state variable by its least squares esimighin the deterministic solution. The
remaining goal is to prove that for any paft v), we can find a paiff’, v*) whose costs are at
most that of(f, 7).

In order to achieve this, we introduce a suitable repararagion of the triggering law. Given
a policy (f,y), we define another policyg, v) whereg = {g,,...,gx_1} iS the triggering law,
andg, is a function of{z,, W*~!}, such that

gk(x()v Wk_l) = fk’(Xk)v ke {07 e -vN - 1}7("} € Qv (6)

when both systems use the control lawAs the control inputd/*~! are known at the event-

trigger at timek by the law~y due toZ{ C Z¢, the variablesz,, W*~'} can be fully recovered

by the state sequencg&” and vice versa. Therefore, the triggering lgvgatisfying (6) always

exists. On the other hand, this also implies that giieeny), there is always &, v) satisfying (6).
The next intermediate result states on the optimal conénolfbr fixedg.

Lemma 1:Let the triggering lawg be a function of primitive variables given by

or = gip(vo, WF ), ke{0,...,N—1}. 7
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If the triggering lawg is fixed, then the optimal control law* minimizing J(g,~) of problems

A-C is a certainty equivalence controller given by
up =Y (Y*) = =Ly E[x|Z], ke€{0,...,N —1} (8)

with

Ly = (R+ B "PB) " BTPuA,
9)
Po= A"PiyA+Q— A"P. B(R+ B"Pey1 B) BTy 1A,

where Py = Qn and P, € R™*" is non-negative definite fot € {0,..., N}.

Proof: Since g is fixed, the outputy, is a random variable described by a function of
primitive random variables that is independent of the oba€ the control lawy. In case of
Problem A, this implies thaE|.J¢] is a constant for a fixed. With regard to Problem B and
C, it implies that the choice of determines uniquely whether the constraints are satisfied
irrespectively from the control law. Thus, solving the optimization problems A-C for a fixed
reduces to minimizindg[.J| over all admissible control laws. The resulting objective function
is purely quadratic, and tools from stochastic control carapplied [19]. Similarly to [19], we

first show that the estimation error at the controller defibgd
€ = T — E[[L’MIIS] (10)

is a random variable that can be described as a function afifpre random variables:

and W*~1 which is independent of the control law Let us fix a control lawy and consider
two types of systems: a forced and an un-forced system. Ifirdiesystem, control inputs are
determined by the lawy and the system evolves by equation (1) and (2), whereas tunde

system has zero-input and is given by
T = ATy + Wy,

'i'ky Sk’ = 17

Uk = .
o, 5. =0

We assume the primitive random variables are identical @ih lsystems, i.e.,

i’():l'o, @k:wk, kZO,...,N—l. (11)
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Since the triggering outpuy, is a function of primitive random variables defined by (7)ttlsa
independent ofy, we have
op =0k, k=0,...,N—1.

Because of linearity, we can rewrite the systems into thievieghg matrix-vector notation
ry = Fxo + GRUM + H WL
Iy = Fyag + HyW L,
whereU*~1, W+~ are the augmented signal vectors andG,, andH, are appropriate matrices

constructed fromA and B. As U*~! is measurable with respect to the information pattgfn

the conditional expectations are given by
Elax|Z7] = F E[zo| ] + GR UM + Hy E[W* I,
E[#4|Z5) = Fy E[xo|Z8] + H, E]W TS
Hence, we obtain
wy, — B[zl Zi] = & — E[7| T ).

Given the lawsy and g, it is trivial to show that there exists a bijective mappingtweeny
andY*. This implies that ther-algebraZ¢ generated by'* is identical toZ¢. This is because

the vectorss* andé* are identical random variables, and
yr — GRURL 6, =1,
@7 6/6 - 07

while

Yo = Yo, uo = Yo(yo) = Y0(%0),

(

Jo + Givo(io), 01 =1,
1 = _

o, 5, =0,

( ~

Y1 (Yo, Yo + G170(%0)), 01 =1,
Uy =

\71(?90)7 9 =0,
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Therefore, we can write

Sincei, — E[#|Zf] in Equation (12) can be expressed in terms of primitive ramgtariables
and is independent of the control layy we showed that the estimation errgris given by a
function of primitive random variables which is indepenteh-.

Next, we use the identity to reformulate defined by (3), see lemma 6.1 of chapter 8 in [20]
that is given by

N-1
JC :xgpoxo + Z(uk + Lkl‘k)T(BTP]H_lB + R)(uk + Lkl'k)
k=0
N-1
+ Z wy Pey1(Azy + Bug) + (Azy, + Bug) " Peyywy
k=0
N-1
+ ) wi Peywy,
k=0

where L, and P, are given by (9). Let us define
I,=B"P,, B+R, ke{0,...,N—1}.

By taking expectation and incorporating independence,oWith respect tor, andu,, we have
N-1
E[Je] = Elag Powo] + E[Y  wy Peyyuwy]
k=0
N-1

+ E[Z(uk + kak)TFk(uk + Lkl'k)]
k=0

The first two terms are constant and can be omitted from thien@ation. After replacinge,
with E[z;|ZS] + ex, we have
(ug + Lyxy) "Tr(up + Lyxy) =
=(ug + Ly E[x1]TE) + Lier) " Tr(up + Ly E[2x|ZE] + Lier)
=(uy, + Ly Efwy|ZE]) T (up + Ly Elay|ZE])
+ (ug + Ly, B[z T ) " T Lier + ef Ly T (up, + Ly E[zx|Z5])

+ e LI Ty Liey. (13)
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By applying the tower property of conditional expectationg obtain
E[(ur + Ly, E[z4|Z{]) "Th Lier] =
= E[E[(ur + Ly E[x4|Z5]) T Lier|ZF]]
= E[(uy + Ly, E[a|Z5]) T L Elex| Z¢]).

The second equality is becausg= v, (Z%) andE[z,|Z¢] are measurable functions with respect

to Z¢. In fact,
ElexlZ{] = Elue|ZE] — E[E[a| ]| Z]
= E[wy|Z{] — Elai|Z{] = 0.

Thus, the cross terms in Equation (13) vanish and we obtain

N-1 N-1

ElJc] = E[%Tpoxo] + E[Z wngHwk] + E[Z eELEFkLkek]
k=0 k=0

+E[Y (up + Ly E[zk|ZE) " Tr (us, + Ly E[21|Z5])]. (14)
0

As the first three terms are constant, we observeEh&{ attains its minimum for* given by

=

e
i

Equation (8). This concludes the proof. [ |
Built upon this intermediate result, we obtain the follogitheorem which states the main
result of this note.
Theorem 1:Let the system be given by (1) and (2). The class of politiegs C U defined
by
Uce = {(f,7") | 7" = —Li E[z|Z{], Lk given by (9}

is a dominating class of policies for the problem setting€ A-
Proof: According to Definition 1, it suffices to show that for any fiwe pair (f,~) € U,
there is a feasible policyf’, v*) € Uce whose costs are at most that (@f ).
Given a feasible pai(f, ), there exists a feasible pafg,~) with g, being a function of
primitive variables that satisfies (6). Condition (6) ingdlithat for(f,~) and (g,~), we have
identical random variables;, andd; for £ € {0,..., N — 1} and therefore identical costs. In the

same way for the paifg, v*), we can find a triggering law being a function ofX*, such that
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both (g,~v*) and (f’,v*) output identical random variables, and 4, for k € {0,..., N — 1}.

Due to Lemma 1, we obtain

J(t.7) = J(g,7) = min J(g,7) = J(8,7") = J(t', 7).

Since (g, v*) is feasible, the paiff’,v*) is also feasible. This concludes the proof. n

IV. DISCUSSION

Theorem 1 implies that we can characterize optimal conbties to be certainty equivalent
control laws given by (8). Characterizing the optimal sntby Theorem 1 opens up the
possibility of calculating the optimal event-triggeredntwller with standard approaches. The
remaining problem to solve Problems A-C is discussed in i paragraph. Apart from that,
we comment on extensions and limitations of the obtainedlteBhere, it can be noticed that
Theorem 1 also holds for noisy measurements and certairs typpeommunication models.

1) Design of the optimal event-triggering lat¥. Given Theorem 1, designing the optimal
event-triggering law can be considered as the joint opttion of the estimatoE[z,|Z¢] and
the event-triggef, which has been already studied in the literature. This le@s laddressed for
Problem A in [13], [15], [21] and for Problem B in [22], [23]. 5uming that the distributions
of the primitive random variables are symmetric, the wor2m] shows for first-order linear
systems that the optimal event-trigger is a symmetric tiolesfunction and the state estimator
is given by a linear predictor. For higher-order systemsg thsult remains unproven. Under
the restriction to symmetric policies, the optimal everggering lawf* can be calculated by
dynamic programming as discussed in [13], [15]. In case oblem C the remaining problem
can be posed in the framework of constrained Markov deciprogesses [24].

2) Noisy state observationJnder the assumption that only noisy observations are avail
Theorem 1 is still valid if the right-hand side of the measueat equation is linear in the state
variable. On the assumption that the transmitted inforomais measurable with respect g,
it still holds thatZ¢ c Z¢. Applying a reparametrization of the policy pair as presdrin [25],
the argumentation in Section Il carries over to noisy obsgons and the certainty equivalence
controller is optimal for problems A-C.

3) Zero-order hold control waveformlIf we restrain the control waveform to be constant
between transmissions as in [6], the proposed reparamgdnztechnique is still valid. Nev-

ertheless, it is not possible to eliminate the last term ih) (due to the fact that;, must be
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constant between transmissions. This implies that thes @ast not be completely decoupled and
our results can not be extended to this case.

4) Fixed event-triggering lawsit is clear that, when the event-triggering law is predefined
in advance, no structural properties can be characterizgéneral. An exception is [26], where
symmetric event-triggering laws are studied. Within thpedal class of event-triggering laws,
it is shown that certainty equivalence controllers areroptifor a quadratic cost function.

5) Communication modelswWhen introducing more realistic models for the communarati
channels with packet dropouts and time-delay, it has beanrsin [27] that certainty equivalence
is still optimal if an instantaneous error-free acknowlehgnt channel exists. In the presence
of time-delays in the acknowledgement channel, the pap8rdl2ows that certainty equivalence
is optimal when allowing to have only one unacknowledgedkpa the system at each time
stepk.

V. CONCLUSION

This work shows that the certainty equivalence controlfepptimal for an extended LQG
framework that incorporates communication constraintee §ommunication constraints are set
within the packet level of the communication network resirey the number of transmissions.
This result opens up the possibility to calculate the optiewant-triggered controller by common
approaches. Comments on limitations and extensions shaiitt obtained result is also valid

in the presence of noisy measurements and certain typeshahaaication models.
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