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Abstract— The overall performance of a robotic system is system safety. As a result, there exists an interdependency
commonly expressed by a single scenario-specific metric which petween the performance metrics of each module as well
is supposed to be optimized. However, the metric describing 55 the gverall system performance metric. Another domain

the performance of a single subtask within a scenario may h th interd d . t lti-rob
be different. Nevertheless, the scenario performance is most where these Interdependencies are apparent are muiti-robo

likely dependent on the subtask performances but a mutual Systems. In these systems a complex task can be decomposed
transformation is not straightforward in general, especially in many simpler highly diverse tasks where each might
in complex robotic systems. This leads to what we call the have a different performance criterion. However, a common

common pricing problem, i.e. the problem to determine the  gingj6 scenario metric is required in order to solve the task
functional relationship among a set of different performance .
allocation problem [5].

criteria and then account for this relationship in the various ; o . )
optimizations throughout all system layers. In this paper we Incorporating these metric interdependencies into thie var
present an approach to first learn a probabilistic model of ous optimizations occurring throughout the system is Ugual
the metric interdependencies, and thereafter utilize this model not straightforward. One possibility is to formulate a riult
for performance estimation and optimal task parameterization — ,yiective optimization problem and solve it by identifyitig
during planning and execution respectively. The proposed Paret timal frontier. Evoluti lqorith
method is validated in a simulation. areto-optimal frontier. Evolutionary algorithms are aneo
mon approach to this problem [6], [7], but they usually are
. INTRODUCTION computationally expensive. Additionally, these algarith

. . . . .assume that the functional relationship among the difteren
Nowadays the diversity of available robotic hardware is, . "~ . S S :
: : . . . objectives is given, which is not the case in general. An
growing rapidly leading to robotic systems with stronger . . . ) -
. . analytic relation between the different metrics might bedha
heterogeneity. Accordingly, robots become more and more

. T . to identify or too complex to model. A straightforward and
functional resulting in a larger variety of performablekss . . L

o ) . . frequently used approach to model this relationship is to
and in increasing multi-tasking capabilities. . . : L . :

: : . . .simply combine the metrics by a subjective choice of weights

While this enables a wide scope of possible roboti .

L . rom the designer [8]-[10]. Thereby these approaches re-

applications, it also poses strong demands to the respect

| ; S AR
control framework. To really exploit its available capabil duce the problem to a single-objective optimization proble

. o whose solution is biased by the chosen weights. There exist
ties and maximize the overall system performance, a robot

: recent approaches that incorporate estimation methods for
needs to possess an operational framework that enables bp P

) )
efficient resource allocation and task execution. The systetﬁose unknown functions [L1], but they concentrate only

. : o on identifying the Pareto-optimal set and not on explicitly
performance is in general scenario specific and can f

Q o . . :
example be the completion time as in the DARPA Granafetermlnmg the functional refationships.

) In this paper we address both the problem of how to

Challenge [1] or the number of scored goals as in the . : . .
. AR model the functional interdependencies between the v&riou
RoboCupSoccer [2]. While such scenario criteria represent a

: efrformance metrics throughout the system and how to use
mean to measure the global performance, respective lo

L . . fis model during system operation to optimize the perfor-
performance criteria may be entirely different when con- . -
o o mance. We call this problem the common pricing problem
sidering the specific subtasks the robot needs to perforg}]d we tackle it using a orobabilistic approach. Eirst a
in order to fulfill the overall task. The performance of a gap bp ' !

L ) bprobabilistic model of the interdependencies is learndtw T
localization subtask for example is commonly measured generation of the model is based on [4] which provides a
the uncertainty of its pose estimate [3]. Especially in nebi P

robots the localization performance indirectly influenties guantitative determination of the interdependencies iwith

lobal metric [4], such as completion time or the numbed set of arbitrary metrics through the usage of Bayesian
9 ' P Networks (BN). Furthermore, a method to tightly connect

of scored goals. Another case are subtasks with conflictiqﬁ . . . .
. e planning with the task execution of a robotic system
goals. The obstacle-avoidance subtask may have a negative

: L . is proposed. The probabilistic model is used to provide a
influence on the overall performance, but it is crucial fa th o
performance estimation of the common global performance
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Section Il the problem setting is presented, followed by th€onsider for example a mobile robot that is supposed to
learning mechanism for the performance interdependencipash a box along a marked path. For this it needs to track
in Section Il and the performance estimation and tasthe path as well as the box with a camera. Assume the
parametrization in Section IV. Section V presents simatati global performance metric is the distance reached within a
results for a box-pushing scenario. specified time. In contrast, the performance of a tracking
module is commonly expressed by the accuracy of its pose
estimate. The reached distance is likely to be dependent on
In order to cope with the complexity robotic systems ar¢ne achieved tracking accuracy, but to model this relaton i
commonly composed of various modules responsible fofertainly not straightforward. Therefore a method is reepli
different types of tasks. Each moduleis parameterized to obtain the functional relationship(©,c/) for all i within
to optimize some module-specific objectiee In general 3 set of arbitrary metrics.
those modules share common variables, which can be theln this respect, we utilize the probabilistic system inter-

mutual input/output but also some system state or parametgependence analysis described in [4] to learn a probabilist
From this sharing of information results a dependence of thfiodel of the metric interdependencies. First a set of perfor
performance; of modulej on the performance of another mance metrics needs to be specified for each task the robot
module i. This leads to a performance interdependencean perform. During system operation these criteria are per
throughout the system which needs to be taken into accoufanently computed and logged. The collected performance
during performance optimization. More specifically, leeth data serve as input for the performance interdependence
vector ¢ = (co(),---,6())T be the combination of all+1  analysis. The metric values are first discretized and then
performance criteria in the system. The performan(®,¢) a Bayesian Network (BN) structure, which best reflects
of a modulei is dependent on a vect® = (61,...,6m)"  the interdependencies between the metrics, is searched. As
of m adjustable system parametefsand on the vector proposed in [4], a combination of a Markov Chain Monte
¢ =(co(),-.-,G-1(),Gi+1,.--,6()T of all other performance Carlo [12] and K2 [13] search is used to identify the best
criteria. structure. As quality measure the Bayesian Information Cri
Optimizing ¢ represents a multi-objective optimizationterion (BIC) [14] is used. The BIC evaluates the likelihodd o
problem. A solution that minimizes ali,i € {0,...,I}, the data being generated by the given structure, penalized b
can not be found in general, but it is rather given by thehe complexity of the structure. The structure with the kigth
optimization of one criteria under constrairits= [ki,..,k]  BIC value is chosen and then trained with the gathered metric
on the others: data by sequential parameter update.
minco(O, c,) The number and size of the intervals used for the dis-
) © . (1) cretization of the metric values should not be too small, in
subject tocj(©,¢j) <kj, Vj € {L,...,1}. order to maintain the contained information. However, in
In case the analytic forms af(©,c!) are known for alli, cr_:lse_they are set too large, the respective probe_lbiIiFy dis-
the metric interdependencies, at least part of them, coald fibutions become too flat what makes the determination of
simply removed by substitution. However, a major problenfnutual mterd.ependen_mes hard, as well. A possible saiutio
of complex robotic systems is that this functional relasioip {0 Select the intervals is for example to use an entropyebase
is often hard to determine or too complex to be modeled. [APProach, such as [15]. o
other words the relationshig(®,c) is usually not known; While the BN indicates _only the quqlngmve mterde_pen—_
so its derivation is the first core problem addressed in thd€nce between the metrics, a quantitative evaluation is
paper. obtained using information-theoretic analysis based @n th
The mapping of global and local performance metrics t6lative mutual information
the indices is not fixed but rather dependent on the current NXY) = 1(X,Y) @
operational phase of the system. This leads to the second ' H(X,Y)’
major problem in our focus, namely how to utilize a derived where I(X,Y) is the mutual information ofX andY and
during the planning and execution phases of the system. H(X,Y) their joint entropy. The relative information entropy
In order to address these problems, we utilize the proly(. .) satisfies the requirements of a distance metric and
abilistic approach, shown in Fig. 1 on the right, to leamn thus can be used to identify and compare the strength of the
from experimental data (Sec. lll). This learned functionajnterdependencies among all pairs within a set of metrics.

interdependence is thereafter utilized during systemaperrhe BN is subsequently used during system operation as
tion, shown in Fig. 1 on the left, to solve the multi-objeetiv gescribed next.

optimization. The latter is split into a planning step (S&k.

A) and an execution step (Sec. IV-B), which differ with IV. PERFORMANCEESTIMATION AND TASK

respect to the ordering of the criteria and the used conssrai PARAMETERIZATION

After the offline learning and training of the BN, inference
I1l. L EARNING OF THE PERFORMANCE DEPENDENCIES  can be applied to it to determine how a change of one metric
As mentioned above an exact description of the interdexffects the state of another one. This is used online for the

pendence between different metrics is in general not knowperformance estimation and task parameterization.

Il. PROBLEM SETTING
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Fig. 1. Overview of the presented approach: the performasti@ation and task parameterization utilizes the metric d@pendencies of the performance
interdependence analysis [4] to (i) provide a performantienage to the planning module and (ii) optimize the task pararsaiéthe execution.

A. Performance Estimation During the execution phase all modules required to per-

During the planning phase the robot aims to determinform a task are active. If the metric interdependencies are
from a set of possible plans the one which yields in the be8¢9'ected, then each module will try to optimize their speci
achievable performance. The respective criteria is si@nafT: 1 NS Optimization represents another case of (1) with a

specific and commonly reflects the progress of the overdfiierent ordering compared to Sec. IV-A. However, neglect
global mission. In the following it is referred to as globalIng th_e metric mt_erdependenmes and directly optimizing
cost ¢y and w.l.0.g. we set = (cg,Cr) with ¢y = Go the may likely result in an exceedance of the worst case global

global metric anctr = (c1,...ci) the local ones performance metricgmax IN consequence, to ensure that the
For the estimation of, inference on the trained BN is previous worst case global performance requirement is met,
used. The conditional probabilitie®r(ci — Ui | © = z,cj — the system interdependencies are taken into account and an
. (| - [d

uj) for a metric ¢; given metric ¢; and parametersd Z‘eqlﬂ!ty colnstralnkg — Sgmax> G accordlnlgt;col (3) |fs set.
are calculated. This is done for all values and u;j the n additional reason to set a worst case global performance

metrics and valueg the parameters can take according t onstrair?t i_s t9 improve robustne_ss by allowing room for
their discretization. In the following; denotes the discrete ocal optimization when external disturbances are apparen
probability distribution of a discretized metre.

These distributions are used to derive the performan%nj
estimate

Continuing with the previous example of the box-pushing
bot, ¢y corresponds to the negative distance the box has
been pushed after a specified time. The negation is only used
for simplification to have a consistent cost character of the
metrics. Let us further assume that the task is classified as
) " 4 ‘ ) successful as long as the robot manages to push the box
bution C. Equation (3) is a special case of (1) Wt =Cg  arther than a thresholsiin. Then the planning module sets
and equality constrainter = E[Cr(©)] for T € {1,...,1}. a boundcgmax= —Smin What loosens the constraints for the
Based (_)n:g,“the plannln.g module derives the best plan a”?‘racking module, since the bes§ is no longer needed to

forwards it to the execution modules. be achieved while still ensuring that the task is completed.
B. Optimal Task Parameterization under Global Metric Con_Thereby the track|_ng module .Of the robot is aPIe 0 take
straints means to improve its pose estimate as longg@s €y max IS

ensured.
After the planning phase is completed, the planner assigns

the task to the task execution. In this section it is assumed The used paramete®r are adjusted in order to optimize
that the planner has generated a plan that requires a glokiz¢ expectedct while satisfying the global constrairky.
performancecy that is no worse thartgmax in order to Thereby the dimension of the frontier of Pareto-optimal
classify the task as successful. solutionsc* is reduced fronR'+1 — R!.

ég = ménE[Cg |19,Cr(0)], ©))

wherec’= E|[C] is the expected value of a probability distri-



During the task execution the set
Ng={O] Pr(cg>cgmax| ©) < £} @)

of parameters, for which the probability thaj will exceed
Cgmax iS smaller than a threshok] is derived. The threshold
€ €[0,1] is chosen by the designeky defines the feasible
set of values that satisfy the global cost constraint. Froi
this parameter sef\y the best parametei® that optimize
the local costs must be chosen. This is a multi-objectiv
optimization problem. One approach to determine a sing
Pareto-optimum for this problem, is by iteratively optimig
the local costs based on some specified priority or b
iteratively calculating\; for i € {O,...,1 —1}: o ; o Ir » 2

forward movement x in meters
N={O0| 0N 1APr(ci >k |0O) <e}. (5)
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. . . . . Fig. 2. Example box trajectory: the horizontal axys< 0) is the desired
This is sequentially reduced until a single task Metyc trajectory, the dot indicates the box center and the arraatbplied force,

is left. Among all© € Aq the parameter set here shown for a single robot.
©p = argmingE[Cy | O] (6)
[SISAW]

in order to affect the box position and orientation. For

which yields the best task performanzgis chosen. Thereby simplification of the robot strategy the forces are applied

a unique point on the frontier of Pareto-optimal solutiosis iperpendicular to the face of the box, and can be applied to a

determined. pre-specified fixed number of contact points. The magnitude
With (3) and (6) the required performance estimation angf F depends on the robot’s maximum speggdy, the robot’s

task parameterization are given respectively. The praposenaximum forceFyax and the current box velocityyoyx and

approach considers the system interdependencies as blagkmodeled as

box functions which need to be approximated. The structure

learning of the Bayesian Network results in a model that {(1_ VbOX> Fmax » if Vbox < Vmax

captures the most important interactions between the vari- Vmax (7)
ables while trying to keep the modeling complexity low. As
a result even complex relations can be modeled. This makesnote thatvimay and Fmax belong to the set of paramete®s
the proposed approach very flexible, especially for modulast the tasks. The desired point of contact is calculated et ea
design of robotic tasks. However, the learning of the stmect time instant based on the current translational and rotatio
of Bayesian Network is computationally expensive and cagrrorsye,, = y* —y(t) andqur = @* — @(t), respectively. Here
only be performed offline. The presented approach has begn— g andg* = 0 are the desired translational and rotational
validated in a simulated box-pushing scenario, as explaingg|yes of the center of mass of the bekt) and @(t) are the

in the next section. measured translational and rotational values differiragnfr

V. VALIDATION IN SIMULATED BOX-PUSHING the true valuey(t) and g(t) by zero mean Gaussian noise
Nirans(t) and nigt (t) with the corresponding vanancer,%ans

One important aspect of the performance estimation anghq g2, i.e.

0 , otherwise.

task parameterization, presented in Sec. Il, is the interac
tion between the planning and the execution modules. We y(t) = y(t)+nrans(t) and
highlight the efficacy of our concept for cost determination P(t) = @t)+nee(t).

through a box-pushing scenario which is used by several

research groups in the field of multi-robot task allocation If the desired contact point differs from the actual point,

and coalition formation as a benchmark, e.g. [5], [16]. Théhe robot decides to change its position and no force is
next section describes the scenario setup followed by tiexerted, otherwise it keeps pushing. In the multi-roboecas

results. an additional criterion for choosing the desired point is
. ) whether it is already occupied by another robot or not.
A. Box-Pushing Scenario For the evaluation of our approach we compare a single-

In our specific setup the target is to push a rigid box asobot system with a coalition of two less capable robots in
far as possible along a straight line within a specified timegerms of maximum forceéqnax All robots have the same
without introducing any rotational or translational esan task knowledge, which from the perspective of the execution
the box pose Fig. 2. For this purpose, two separate taskapdule means that the task plans for the box-pushing task
which try to minimize the rotational and translational e€rroare implemented the same way on all robots. The box
respectively, are considered. Each task calculates a forceis modeled as a rigid body with equally distributed mass
that will be exerted on the longitudinal side of the boxand a velocity proportional friction. The mass and friction



o%[degreé  0fangM  Fmax+NRODOtSN]  Vmax 7]

5 0.1 4 0.4

10 0.3 8 0.7

15 0.5 12 1
TABLE |

SIMULATION PARAMETERS

coefficient are kept constant. Additionally, the robotsates
stay in contact with the box. All the parameters settingsluse
for the simulations are shown in Table |. For each possible
parameter/noise configuration we run 100 simulations with (a) Single Robot
a runtime oftsj, = 100 seconds each. After each simulation
run we record the average translational error

_ 1 N 2
Ctrans = r/ ly" =y)|“dt, ®)
T Jo
and the average rotational error
N 1 /7 . o~ 2
G = [ [0~ o) *at. ©
T JO
which together form the task-specific cost vector
. Crot
r= < Ctrans ) ) (10) (b) Two Robots

In addition, we measure the distance the box manages
to travel within the fixed simulation time. We define the
common global performance metrag as the negative dis-
tance. Thus, minimizing the global cos is equivalent to
maximizing the distance(t =tsin) traveled within the fixed
simulation time Table Il and Table Il present the results obtained by

applying the Performance Estimation (PE) and the Task
Cg = —X(t = tsim). (11) Parameterization (TP) described in Sec. IV-A and IV-B to
the box-pushing scenario. For the task parameterization,
€ =0.9 was set and the worst case global performance
bound cgmax Was chosen equal te-3m and —6m for the
Gsingle-robot and two-robot task, respectively. The pregos

methods are compared with two alternative approaches. In

by the ”“mb?f of rob_ots_allocated to the tQSk' In other Wordﬁﬁe first approach the dependencies are not considered at all
frequent position switching results in a higher valuepof ie. the Bayesian Networks are not used (No BN). In the

As stated in Sec. lll, the metrics need to be discretized for o .
L . - second approach the task specific performance mggids
the search and training of the Bayesian Network. Here five” "~ : . . .
. o optimized without any constraint oty, i.e. miNE[C | O],
discretization levels are chosen. . c)
. denoted as TO, Task Optimization. The columns of the tables
B. Performance Interdependence Analysis give the expected values of the performance metrics given
In order to obtain the mutual interdependence betwedhe set of task paramete®s = (F,, Vinay) | that are optimal
the gathered metrics retrieved during the simulation rungyith regard to the respective criteria. An exception is thet fi
the system interdependence analysis of Sec. Ill is appliethw, where the expectation is taken over all observations
Fig. 3 shows the learned BNs for the single-robot and thiedependent o, i.e. E[Ci], since the dependencies of the
two-robot case, from which the dependencies between theetrics upon the task parameters are not known.
parameter = (Frmjlx,vnm)T and the performance metrics In the single-robot case, the performance estimation mod-
Crot, Ctrans @nd ¢y are identified qualitatively. In both BNs ule estimates &g that is 461% smaller than the estimatgd
Fnax @s well as thevnax are the root nodes and influencein the TO approach wheregq; is optimized. This indicates
all other metrics. This indicates the suitability of the twothat neglecting the interdependencies and only optimizing
parameters for the system control. The main difference fahe local task metrics might have a negative impact on the
the two-robot case in Fig. 3(b) compared to the single-robafiobal performance metric, as already mentioned in Sec. IV-
case in Fig. 3(a) is the more intense relatiorcefns to the  B. Of course optimizing ovecy comes at the expense of
other metrics. the task specific performance metrigs; and Cyans Which

Fig. 3. Learned Bayesian Networks.

C. Performance Estimation and Task Parameterization

In case@(t =t;) > Z the run is considered as failed and
a penalty ofcy = 30m is assigned.

As a further cost metric the resource ratigs introduced,
which is the number of not actively pushing robots divide



[ EICq1O7T | E[Cot[©7T] | ElCuans| O] [ Fanax

| Vimax |

the problem by learning the interdependencies among the
performance metrics from gathered system data. Thergafter
the learned model is used to tightly couple the optimiza-
tions in the planning and execution layers of a robotic
system by solving a multi-objective optimization. This is
achieved during system operation by inferring a global cost
and by optimizing task parameters while still guaranteeing
performance bounds of higher prioritized tasks. The method
is systematic in the sense that it can combine metrics of

No BN —9.2833 0.0049 0.0068 * *
TO —3.0002 0.0040 0.0060 4 0.4
PE —16.8400 0.0090 0.0075 8 1
TP —3.400 0.0040 0.0060 4 0.7

TABLE I

PERFORMANCE ESTIMATES AND OPTIMAL PARAMETER SET FOR ONE
ROBOT.

l [ E[Cy | OF] [ E[Crot [O7] [ E[Cirans | O] [ Frnax [ Vﬁn@

No BN 5.2141 0.1318 0.2041 * *
TO —6.0010 0.0072 0.0068 2 0.7
PE —12.4100 0.0192 0.0075 4 0.7
TP —6.3500 0.0072 0.0068 2 1.0

TABLE Il
PERFORMANCE ESTIMATES AND OPTIMAL PARAMETER SET FOR TWO
ROBOTS

different units without requiring any subjective intertien
of the system designer.

Future work will focus on investigating the scalability
of the method and the use of incremental learning of the
parameters of the Bayesian Network.
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increase by 125% and 25% respectively. Accordingly, for
the two-robot case, they is 106% smaller, whilec,,; and
Cirans deteriorate by 166% and 1%, respectively, when [;}
comparing the PE to the TO approach. From these example%;]
the trade-off between global task performance and local
task performance metrics is clear. When the proposed ta
parameterization (TP) is applied, the estimatgdsignifi-
cantly increases compared to the PE approach for both the
single-robot and two-robot cases. However, the worst cask
of cgmax being equal to—3m and —6m, respectively, is
guaranteed with a probability of 90%. Additionally, thekas [6]
specific costs are much smaller than in the PE approach.
While the performance estimation module offers the plannefy,
the best achievable global performance estimate, the task
parameterization allows the system to trade-off betweeal lo
and global task performances. 8]
In the approach where no dependencies have been learned
(No BN), the robot is not aware of the relation between[]
the performance metrics and the task parameters. If the tasa
parameter choices have a significant impact on the global
performance, then a bad estimate is computed. For exam
in the two-robot case, if the task parameters are chosen
aggressively, i.e. very high values of boByax and Vimax
then there is a high failure rate of the task. This high failur[*1]
rate results in a very high value of the estimated global
performance metric. As a result, a planning module woul@i2]
deduce that using two robots to complete the pushing taﬁ%]
is much worse than using a single robot. However, if the
dependencies are taken into account, in the two-robot casél4l
better worst case performancgmax= —6 than the single- [15]
robot cas&gmax= —3 (TP in Table Ill and I, respectively)

can be guaranteed.
[16]

VI. CONCLUSION

The paper addresses the problem of achieving coher-
ence among the various performance optimizations occur-
ring throughout the subtask modules of a complex robotic
system. A probabilistic approach is presented, that handle
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