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Abstract— We investigate the effect of quantization on the structure of the quantization process, usually leads tmaelo
performance of multiple-input multiple-output (MIMO) channels  Jower bound especially in the high SNR regime, it provides
in terms of achievable communication rates. To this end, we a good approximation in the low SNR regime. In fact many

derive a lower bound on the channel capacity of quantized MIMO - it h t It b di
channels based on the Bussgang decomposition. The work is ofPT€VIOUS results (such as thgr result) can be re-proved in

interest in the case when low resolution A/D-converters (ADCs) & Substantially easier and more elegant way. Moreover, we
have to be used to enable higher sampling rate and to simplify extensively handle the 1-bit case with noise correlatiod an
the hardware. An essential aspect of our derivation is that we show that depending on the correlation structure of theenois
take into account possible noise correlation. The low signal-to- the 1oy SNR capacity loss can be higher or smaller tan
noise ratio (SNR) analysis of the special case of 1-bit quantization d to th tized S isinal b
reveals that noise correlation might reduce the capacity loss due compared to ? unquantized case. “rP“S'”g y we obcerve
to quantization when compared to the uncorrelated noise case, that even for simple SIMO channels with 1-bit output, the

where it is well known that the capacity decreases by the factor mutual information achieved by QPSK can be exceeded.

2/ after the 1-bit quantization at low SNR. . Our paper is organized as follows. Section Il describes the
Index Terms: Quantization, MIMO channel, Noise Corre-general system model. In Sections Il and IV, an (approxanat
lation, Capacity Lower Bound, Low SNR analysis. lower bound of the mutual information with Gaussian input

is derived based on the Bussgang decomposition. Finally, we

handle the 1-bit symmetric quantizer case in more detail in
In future multiple-input multiple-output (MIMO) commu- Section V.

nication systems, low power and low cost are becoming keyNotation: Vectors and matrices are denoted by lower and

requirements. Among other things, it is desirable to redbee upper case italic bold letters. The operatos$™, (o) and

analog-to-digital converter (ADC) resolution in order @@ve tr(e) stand for transpose, Hermitian transpose and trace of a

power and chip area [1]. In fact, in high speed systems theatrix, respectivelyl,, denote the }/ x M) identity matrix.

sampling/conversion power may reach values in the order @f denotes thei-th element of the vecton and a; . with

the processing power. Therefore, coarse ADCs, acting as lawe {R, I'} is the real or imaginary part af,. The operator ]

resolution scalar quantizers, may be a cost-effectivetisolu stands for expectation with respect to the random variables

for such applications, especially when the array size besontinally, diag A) denotes a diagonal matrix containing only

very large or when the sampling rate becomes very high (in tttee diagonal elements o and nondiagA) = A — diag(A).

GHz range) [2]. Unfortunately, most of the contributions on Il SYSTEM MODEL

MIMO communications assume that the receiver has access '

to the channel data with infinite precision. In [3], [4], the We start from a general system model of a MIMO channel

effects of 1-bit quantization are studied from an informati With M transmit antennas and¥ receive antennas shown in

theoretical point of view for MIMO systems, where thé-ig- 1 and described by

I. INTRODUCTION

channel is perfectly known at the receiver and th_e noise is r=Q(y), with )
uncorrelated. It turns out that the well known reductionaf |
SNR channel capacity by fact@r= due to 1-bit quantization y=Hz+n, (2)

holds also for the general MIMO case with uncorrelated noise

o her is the unquantized receive vector of dimensidh
In [5], the non-coherent MIMO channel was studied in detal erey is the unquantized receive vector of dimensidy;

€ CV*M js the channel matrix and is the unknown data
gCtor, whilen is an i.i.d. Gaussian noise with covariance ma-

[6] and [7] showed that the channel capacity loss due fix R,,,. The operato)(-) represents the scalar quantization

the 1-bit quantization of the single-input single-outp8t§0) ; : }
AWGN channel can be reduced at low SNR by using a 1—&{00635’ where the real pagts and the imaginary partg,

asymmetric quantizer or by oversampling, while [8] studieﬁ each _s!gnal component, is mapped to a quantized value
: . . o fom a finite set of code words as follows
the SISO capacity problem with multi-bit quantization.
In this work, we provided a lower bound on the channel, . = Q(yi.), if yi.€ [r%’j’c,r;f‘c’), ce{R,I}, 1<i<N.
capacity based on the Bussgang decomposition [9] of the 3)
quantized output for the general case of correlated noi§ehereby,r§f’c andr;” are the lower value and the upper limits

Although this simple method, which neglects the deterrtimis associated to the duantized valye. The restriction to scalar



gquantization is motivated by the fact that vector quanitrat Next, we introduce a new MIMO Gaussian channel that is

is rather uncommon for ADC implementations. described by the same effective channel mafidx and the
Our goal is to derive a lower bound on the achievabkame effective noise covariance matrix

rates, where we assume for analytical tractability a Ganssi ,

input distribution. Evidently, this distribution is not cessarily re=Hwz+ng, (10)

the capacity achieving distribution and just provides adow p,; giffers from the original channel by the fact, that théseo

bound for it. The analysis that follows considers the casgctory,, is Gaussian distributed with the same covariance

where perfect channel statdd( and R,,;) is available at .,4+rix R, = E[ngnt]. In [11], it was shown that, for

the receiver, which is principally possible even with cears, given noise covariance matrix (known at the receiver), the
quantization [10]. However, the presented framework can kg, ssian distributed noise minimizes the mutual inforamati
applied independently of the kind of channel state inforamat \,ich leads to the following lower bound

at the transmitter.

I(z;7) > I(z;7q). (11)
H Y I(x;r¢) corresponds to the mutual information of the MIMO
x Q(e) > r Gaussian channel, that reads as
M N I(w;rg) =logy [1n + R, H'R,. H"|,  (12)

n
when the channel input is Gaussian distributed with the

Fig. 1. Quantized MIMO Channel. covariance matrix?,.,. Again, H' and R,,,, are given in (8)
and (9) respectively.
Now, the main difficulty consists of deriving the covariance
I1l. GAUSSIAN MODEL OF THE QUANTIZED MIMO matricesR,, and R,, assuming a Gaussian input. For the
CHANNEL USING THE BUSSGANGDECOMPOSITION 1-bit quantizer, these matrices can be found in a closed form
ee Section V). However, for general scalar quantizers, we
g& an approximate evaluation, which will be described & th
following section.

The Bussgang theorem implies that one can decompose
output of the nonlinear quantizer = Q(y) into a desired
signal component and an uncorrelated distoréon

IV. APPROXIMATION OF THECOVARIANCE MATRICES FOR
GENERAL SCALAR QUANTIZERS

where F' can be obtained from the linear MMSE estimation Each quantization process can be given a distortion factor
of r from y pf{’c) to indicate the relative amount of quantization noise
generated, which is defined as follows

r=Fyte (4)

F =E[ry"Elyy"] "' = R, R, (5) iy
i,c qi,c
and the distortion erroe has the following correlation matrix plhe) = T (13)
Yi,cYi,c
Re. = E[(r — Fy)(r — Fy)"] whereq; . = r; . —y; . is the quantization error ang, _,, . =
=R, - R,,F" - FR, + FR,,F" (6) Ely? ] is the variance ofy;.. The distortion factorp(*®
=R, — RT‘yR;leyW'- depends on the quantizer characteristics and the protyabili

density function ofy; .. Note that the signal-to-quantization

Based on this decomposition, the channel outputan be noise ratio (SQR) has an inverse relationship with regard to
written as function of the channel input in the followingfior the distortion factor

_ , 1

r=Fy+te SQR™®) = ot (14)
=FHzx+Fn+e ) Pq’
=H'z+7, For a symmetric input probability density function and a

symmetric quantizer, we can assume without loss of gemerali

where we introduced the effective channel that the following properties holds for al < i < N

H = FH @ (R, I}
_ -1
=R, R, H, Elgid = 0 (15)
and the non-Gaussian effective noigewith the covariance E[ricgic] = 0 (16)
matrix Elyictic] = *Pz(f’c)ryi,cyl,ca (17)
vy = Reo + FR,, F
Ry = Ree + FRyy (9) 1These properties can be always enforced by scaling eachizgrmoutput

=R, — RryR;y1 R, + RryR;y1 RWR;;RW. by an appropriate factor.



which are for instance valid for a uniform or non-uniformin a similar way, we evaluate,,,, for i # j:

guantizer minimizing thenean square error (distortion) be- w1 *

tween the inputy; . and the output; .. Obviously, Eq. (17) Blaigj] = By, [Elaigjlu;)]

follows from Egs (13) and (16). Assuming now that the = Ey]‘[E[qﬂyj]E[q;‘yj]]
channel input is Gaussian then the quantizer input signals ~ Eyj{rqiij';.ly.ij[Qﬁyj]]
v, are Gaussian distributed and thus, they undergo the same L
distortion factorp,, i.e., pi"® = p, Vive. Furthermore, the = TyaTy Bli]

optimal parameters of the uniform as well as the non-uniform = *quzjyﬂ"g;lyj “(=PqgTy;y;)

qyar)tizer an_d the resulting distor.tion factay fpr Gauss_ian _ Pgﬂj-y- _ pgryiyw (26)

distributed signals are tabulated in [12] for different t@6- . )

olutions b. Recent research work on the optimal quantizatioffére we used Eq. (24) and (18) and we approximated

of a Gaussian source can be found in [13], [14], [15]. NoWhe Bayesian estimatoE[q;|y;] with the linear estimator.

let ¢; = q;.1 + jgi.; be the complex quantization error. UndefTom (26) and (18) we deduce the covariance matrix of the

the assumption of uncorrelated real and imaginary pag; of duantization error:

we obtain: I Ry, ~ pydiag R,,) + p2nondiad R,
e E[[q’qi} e (18) = pgRyy — (1= pg)pynondiag R, ).
Tvias = BT = PaTyiyi- Inserting the expressions (24) and (27) into Eq. (21), we

For the uniform quantizer case, it was shown in [15], that thghtain:

optimal quantization_steyzis for a_Gaussian source decreases R, ~ (1— py)(Ry, — p;nondiadR,,))

asv/b2~" and thatp, is asymptotically well approximated by ~ (1= po) (1= po) Ry + podiad R,,))

%2 and decreases &2~ 2". N Pa Pa)ftyy T Pq vyl

On the other hand, the optimal non-uniform quantizdP Summary, using (25), the effective channel from (8) be-
achieves, under high-resolution assumption, approxigmtiie COMes

(27)

(28)

following distortion [16] H'=(1-py)H, (29)
3 while the effective noise covariance matrix from (9) can be
Pq = 72_%- (19) obtained by means of (25) and (28)
Based on these considerations, we aim at approximating the Ry =~ R — (1 - P)2Ryy +(1- P)ann (30)
required correlation matriceR, and R, based on the scalar = (1—pg) (1 — pg) Ry + pgdiag(Ry,)) -
pq- In fact, we have Finally, we obtain the approximate lower bound on the mutual
R, = E[yr"| = Ely(y + @)"] = R,y + Ry, (20) information as?
and R, can be expressed as i(w’ra)w g R —
R,. =E[(y+q)(y+ 9" = Ryy+ Ryg+ R}, + Ryy. (21) 8|1+ (1=00) ((1=00) BP0 Ry) ™ H R (31)7
We now derive all required covariance matrices by usinghere
the _fa_ct thaj[ the quantization errgy, conditioned_onyl-, is R,, = R, + HR, H". (32)
statistically independent of all other random variableshaf ) .
system. With these result, we can study the asymptotic of the mutual

information at low and high SNR. In fact, for the low SNR

First we calculate,.,. = E[y;q*] for i # 5: .
vids lvid;) 7 regime we have

Blyig;] = Ey[Elyiq;ly;]] Ry, ~ Ry, (33)
= Ey,[Elyily;]Elg] lvs]] and thus we get a first order approximate lower bound
= By [Tyiyj ry_jt’j y;Elay ‘%]} (22) 1(#;76)liow snr™
= Tyiyjry_jlij[ijJ;] tr((lqu) (1=pg) Ry + podiag(Ryy,)) ™" HRmHH) .
= —PgTyiy;- (23) (34)

On the other hand, at the high SNR regime, the approximate
In (22), the Bayesian estimatdt[y;|y;] corresponds to the |ower bound converges to the value

linear estimatorryiyjr;jbjyj since the vectory is jointly I(@:re)] N

Gaussian distributed. Eq. (23) follows from (18). 776 Thigh SNR™

Summarizing the results of (18) and (23), we obtain log, (pi —1) (diag(HRmHH))fl HRMHHL
Ry = —p,Ryy. (24) ! (35)
and therefore, we get 2Due to the non-exact computation @,,/, the derived approximate

lower bound expression (31) is not guaranteed to be stilmaldound for
R,=R,,+Ry;,=(1-p,)Ry, = R,,. (25) I(x;7r) > I(z;57q).



V. ANALYSIS OF THE 1-BIT QUANTIZATION and the following noise covariance matrix

In this section, we deal with the special case of symmetric 1 7
1-bit quantization, where, fortunately, the required etation R, = { o1 ] ; (43)
matrices can be obtained in an exact way. In fact, it is
known from the classicadrcsine law [17] that the output of a Parametrized by the noise correlation factofulfilling |r| <
decision devicer; . = sign[y; .| € {—1,1} has the following . Further, the power of the scalar input is denoted by
correlation matrix P = El[|z|%]. For the case- = —1 (the two noise compo-
9 _ . _ L nents are oppositely correlated), and under 1-bit quaitiza
Ry = — {aTCSiH (dlag(Ryy)*ERyydlag(Ryy)*f)}, (36) the obtained lower bound on the mutual information with
. N : . ... Gaussian input is shown in Fig. 2 as function of the input
where the arcsine function is applied element-wise to itgima : L .
power. Interestingly, the lower bound exhibits a non-mondat

argument. Additionally, the correlation matrix betweere th : . : .
. . . . behavior with respect to the signal power (i.e. the SNR),
input and the output of the 1-bit quantizer can be obtalneqen. . : .
which leads to the conclusion that noise might be favorable
as [17] . . .
5 ) for the mutual information of quantized output channel. For
R,, = \/7diag(Ryy)‘2Ryy. (37) comparison, the achievable rate of the same channel with
.77 QPSK input is depicted. It can be shown that this corresponds
Then, we get the effective channel from (8) as to the capacity of two parallel erasure channels with anueeas

. probability of erfc(1/P/2) [18]
H = \/zdiag(Ryy)*EH, (38)
™

QPSK _ .
while the effective noise covariance in (9) becomes I (z,7) = 2(1 — erfe(/P/2)). (44)
2 . 1 . 1
R, = {arcsin (dlag(Ryy)*ERyydlag(Ryy)*i)} -

2 . 1 . 1
;d'ag(Ryy)ifRyyd'ag(Ryy)ij +

We can observe that for certain range of the input power,
the Gaussian symbol alphabet can achieve higher mutual
information than the QPSK schemes despite of the 1-bit autpu
guantization. Other numerical experiments shows that this

2 . _1 . 1 interesting phenomenon usually occurs in quantized MIMO
LA Ry ) Ry diag( Ry, ) channels, where the number of outputs exceed the number of
(39) inputs.

Finally, the lower bound on the mutual information of the 1- Next, Fig. 3 shows, for the same channel, the ratio of the low

bit quantized MIMO channel with Gaussian input is computegNR mutual information with 1-bit output to the one without
from (.12)' . . guantization as function of the noise correlation coeffitie
Again, We can conS|de_r the low SNR regime whétg, ~ Thereby, we make use of the asymptotic value of the mutual
Ry, to _obtam t_he following asymptotic lower bound of the}nformation from (40) as well as the approximation given in
mutual information (34) with p, = 1 — 2/x. First of all, the delivered approx-
imation seems to be accurate when the correlation factor is
not near to 1. Then, for > 0 the rate ratio is obviously
. higher that the valug/m and reaches its maximum around
[arcsin (diag(Rnn)*%R,mdiag(R,m)*%)} diag R,,)"7 ). r = 0.7, whereas forr < 0 the loss in terms of achievable
(40 information rate becomes more pronounced. Consequehtly, i

For the case that the noise covariance matrix is diagonial, tHF'e signal subspadeh ™ and the noise subspade,,, exhibits

first order asymptotic of the mutual information simplifies t a certain S|r_n||ar_|ty th_en the channel capacity reductioe du
to quantization is quite small. However, if they are nearly

I(a; 7) | bt uncorr. noise~ Etr (H R, H" R;;), (41) orthogonal then the loss becomes substantial.
™

I(a; 7)o o> tr (HRMHHdiag(Rm,)—%

low SNR

which coincides with the result that has been shown in [3], VI. CONCLUSION

stating that the MIMO achievable rate under 1-bit quaniizat \We studied the mutual information of MIMO channels
reduces by the factal/r at the low SNR regime and thereforewith output quantization and correlated noise. Based on the
the derived lower bound (40) is asymptotically tight, whee t Bussgang decomposition, a lower bound on the achievable
noise is uncorrelated. rate has been derived, which is useful when analyzing the low
A A simple example SNR bghavior _of the mutual information. We dealt a_Iso with
the 1-bit quantizer case and showed that the reduction of the

ﬁwet ”?W .con5|der| ? S'm%le exa;.mptl.e, whe[)e 'nter‘:s’t'r}qutual information becomes smaller thapr under certain
effects of noise correlation and quantization can be oSl . qitions for the channel matrix and the noise covariance

consists of d x2 single-input multiple-output (SIMO) channel . 4ix -~ Additionally, we observed that the additive noise
with the following channel vector might, at certain level, be favorable when the observatien a

h— 1 (42) guantized, since the lower bound on the mutual information

1| curves is not necessary monotonic with the SNR. Although,
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we focused on the single user scenario, similar analysis cdi

be

(1]
(2]

(3]

(4]

(5]

(6]

(7]
(8]

carried out for the multi-user broadcast channel.
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