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Abstract— We investigate the effect of quantization on the
performance of multiple-input multiple-output (MIMO) channels
in terms of achievable communication rates. To this end, we
derive a lower bound on the channel capacity of quantized MIMO
channels based on the Bussgang decomposition. The work is of
interest in the case when low resolution A/D-converters (ADCs)
have to be used to enable higher sampling rate and to simplify
the hardware. An essential aspect of our derivation is that we
take into account possible noise correlation. The low signal-to-
noise ratio (SNR) analysis of the special case of 1-bit quantization
reveals that noise correlation might reduce the capacity loss due
to quantization when compared to the uncorrelated noise case,
where it is well known that the capacity decreases by the factor
2/π after the 1-bit quantization at low SNR.

Index Terms: Quantization, MIMO channel, Noise Corre-
lation, Capacity Lower Bound, Low SNR analysis.

I. I NTRODUCTION

In future multiple-input multiple-output (MIMO) commu-
nication systems, low power and low cost are becoming key
requirements. Among other things, it is desirable to reducethe
analog-to-digital converter (ADC) resolution in order to save
power and chip area [1]. In fact, in high speed systems the
sampling/conversion power may reach values in the order of
the processing power. Therefore, coarse ADCs, acting as low-
resolution scalar quantizers, may be a cost-effective solution
for such applications, especially when the array size becomes
very large or when the sampling rate becomes very high (in the
GHz range) [2]. Unfortunately, most of the contributions on
MIMO communications assume that the receiver has access
to the channel data with infinite precision. In [3], [4], the
effects of 1-bit quantization are studied from an information
theoretical point of view for MIMO systems, where the
channel is perfectly known at the receiver and the noise is
uncorrelated. It turns out that the well known reduction of low
SNR channel capacity by factor2/π due to 1-bit quantization
holds also for the general MIMO case with uncorrelated noise.
In [5], the non-coherent MIMO channel was studied in detail
and a similar conclusion has been made. On the other hand,
[6] and [7] showed that the channel capacity loss due to
the 1-bit quantization of the single-input single-output (SISO)
AWGN channel can be reduced at low SNR by using a 1-bit
asymmetric quantizer or by oversampling, while [8] studied
the SISO capacity problem with multi-bit quantization.

In this work, we provided a lower bound on the channel
capacity based on the Bussgang decomposition [9] of the
quantized output for the general case of correlated noise.
Although this simple method, which neglects the deterministic

structure of the quantization process, usually leads to a loose
lower bound especially in the high SNR regime, it provides
a good approximation in the low SNR regime. In fact many
previous results (such as the2/π result) can be re-proved in
a substantially easier and more elegant way. Moreover, we
extensively handle the 1-bit case with noise correlation and
show that depending on the correlation structure of the noise,
the low SNR capacity loss can be higher or smaller than2/π
compared to the unquantized case. Surprisingly, we observed
that even for simple SIMO channels with 1-bit output, the
mutual information achieved by QPSK can be exceeded.

Our paper is organized as follows. Section II describes the
general system model. In Sections III and IV, an (approximate)
lower bound of the mutual information with Gaussian input
is derived based on the Bussgang decomposition. Finally, we
handle the 1-bit symmetric quantizer case in more detail in
Section V.

Notation: Vectors and matrices are denoted by lower and
upper case italic bold letters. The operators(•)T, (•)H and
tr(•) stand for transpose, Hermitian transpose and trace of a
matrix, respectively.1M denote the (M ×M ) identity matrix.
ai denotes thei-th element of the vectora and ai,c with
c∈ {R, I} is the real or imaginary part ofai. The operator E[•]
stands for expectation with respect to the random variables.
Finally, diag(A) denotes a diagonal matrix containing only
the diagonal elements ofA and nondiag(A) = A− diag(A).

II. SYSTEM MODEL

We start from a general system model of a MIMO channel
with M transmit antennas andN receive antennas shown in
Fig. 1 and described by

r = Q(y), with (1)

y = Hx+ η, (2)

wherey is the unquantized receive vector of dimensionN ,
H ∈ C

N×M is the channel matrix andx is the unknown data
vector, whileη is an i.i.d. Gaussian noise with covariance ma-
trix Rηη. The operatorQ(·) represents the scalar quantization
process, where the real partsyi,R and the imaginary partsyi,I
of each signal componentyi is mapped to a quantized value
from a finite set of code words as follows

ri,c = Q(yi,c), if yi,c ∈ [rloi,c, r
up
i,c), c ∈ {R, I}, 1 ≤ i ≤ N.

(3)
Thereby,rloi,c andrupi,c are the lower value and the upper limits
associated to the quantized valueri,c. The restriction to scalar



quantization is motivated by the fact that vector quantization
is rather uncommon for ADC implementations.

Our goal is to derive a lower bound on the achievable
rates, where we assume for analytical tractability a Gaussian
input distribution. Evidently, this distribution is not necessarily
the capacity achieving distribution and just provides a lower
bound for it. The analysis that follows considers the case
where perfect channel state (H and Rηη) is available at
the receiver, which is principally possible even with coarse
quantization [10]. However, the presented framework can be
applied independently of the kind of channel state information
at the transmitter.
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Fig. 1. Quantized MIMO Channel.

III. G AUSSIAN MODEL OF THE QUANTIZED MIMO
CHANNEL USING THE BUSSGANGDECOMPOSITION

The Bussgang theorem implies that one can decompose the
output of the nonlinear quantizerr = Q(y) into a desired
signal component and an uncorrelated distortione

r = Fy + e, (4)

whereF can be obtained from the linear MMSE estimation
of r from y

F = E[ryH]E[yyH]−1 = RryR
−1
yy , (5)

and the distortion errore has the following correlation matrix

Ree = E[(r − Fy)(r − Fy)H]

= Rrr −RryF
H − FRyr + FRyyF

H

= Rrr −RryR
−1
yy Ryr.

(6)

Based on this decomposition, the channel outputr can be
written as function of the channel input in the following form

r = Fy + e

= FHx+ Fη + e

= H ′x+ η′,

(7)

where we introduced the effective channel

H ′ = FH

= RryR
−1
yy H,

(8)

and the non-Gaussian effective noiseη′ with the covariance
matrix

Rη′η′ = Ree + FRηηF
H

= Rrr −RryR
−1
yy Ryr +RryR

−1
yy RηηR

−1
yy Ryr.

(9)

Next, we introduce a new MIMO Gaussian channel that is
described by the same effective channel matrixH ′ and the
same effective noise covariance matrix

rG = H ′x+ ηG, (10)

but differs from the original channel by the fact, that the noise
vector ηG is Gaussian distributed with the same covariance
matrix Rη′η′ = E[ηGη

H
G]. In [11], it was shown that, for

a given noise covariance matrix (known at the receiver), the
Gaussian distributed noise minimizes the mutual information,
which leads to the following lower bound

I(x; r) ≥ I(x; rG). (11)

I(x; rG) corresponds to the mutual information of the MIMO
Gaussian channel, that reads as

I(x; rG) = log2

∣

∣

∣
1N +R−1

η′η′H
′RxxH

′H
∣

∣

∣
, (12)

when the channel inputx is Gaussian distributed with the
covariance matrixRxx. Again,H ′ andRη′η′ are given in (8)
and (9) respectively.

Now, the main difficulty consists of deriving the covariance
matricesRrr and Rry assuming a Gaussian input. For the
1-bit quantizer, these matrices can be found in a closed form
(see Section V). However, for general scalar quantizers, we
get an approximate evaluation, which will be described in the
following section.

IV. A PPROXIMATION OF THECOVARIANCE MATRICES FOR

GENERAL SCALAR QUANTIZERS

Each quantization process can be given a distortion factor
ρ
(i,c)
q to indicate the relative amount of quantization noise

generated, which is defined as follows

ρ(i,c)q =
E[q2i,c]

ryi,cyi,c

, (13)

whereqi,c = ri,c−yi,c is the quantization error andryi,cyi,c
=

E[y2i,c] is the variance ofyi,c. The distortion factorρ(i,c)q

depends on the quantizer characteristics and the probability
density function ofyi,c. Note that the signal-to-quantization
noise ratio (SQR) has an inverse relationship with regard to
the distortion factor

SQR(i,c) =
1

ρ
(i,c)
q

. (14)

For a symmetric input probability density function and a
symmetric quantizer, we can assume without loss of generality
that the following properties holds for all0 ≤ i ≤ N
c ∈ {R, I}:1

E[qi,c] = 0 (15)

E[ri,cqi,c] = 0 (16)

E[yi,cqi,c] = −ρ(i,c)q ryi,cyi,c
, (17)

1These properties can be always enforced by scaling each quantizer output
by an appropriate factor.



which are for instance valid for a uniform or non-uniform
quantizer minimizing themean square error (distortion) be-
tween the inputyi,c and the outputri,c. Obviously, Eq. (17)
follows from Eqs (13) and (16). Assuming now that the
channel input is Gaussian then the quantizer input signals
yi,c are Gaussian distributed and thus, they undergo the same
distortion factorρq, i.e., ρ(i,c)q = ρq ∀i∀c. Furthermore, the
optimal parameters of the uniform as well as the non-uniform
quantizer and the resulting distortion factorρq for Gaussian
distributed signals are tabulated in [12] for different bitres-
olutions b. Recent research work on the optimal quantization
of a Gaussian source can be found in [13], [14], [15]. Now,
let qi = qi,R + jqi,I be the complex quantization error. Under
the assumption of uncorrelated real and imaginary part ofyi,
we obtain:

rqiqi = E[qiq
∗

i ] =ρqryiyi
,

ryiqi = E[yiq
∗

i ] =− ρqryiyi
.

(18)

For the uniform quantizer case, it was shown in [15], that the
optimal quantization step∆ for a Gaussian source decreases
as

√
b2−b and thatρq is asymptotically well approximated by

∆2

12 and decreases asb2−2b.
On the other hand, the optimal non-uniform quantizer

achieves, under high-resolution assumption, approximately the
following distortion [16]

ρq ≈ π
√
3

2
2−2b. (19)

Based on these considerations, we aim at approximating the
required correlation matricesRyr andRrr based on the scalar
ρq. In fact, we have

Ryr = E[yrH] = E[y(y + q)H] = Ryy +Ryq, (20)

andRrr can be expressed as

Rrr = E[(y+q)(y+q)H] = Ryy+Ryq+RH
yq+Rqq. (21)

We now derive all required covariance matrices by using
the fact that the quantization errorqi, conditioned onyi, is
statistically independent of all other random variables ofthe
system.

First we calculateryiqj = E[yiq
∗

j ] for i 6= j:

E[yiq
∗

j ] = Eyj

[

E[yiq
∗

j |yj ]
]

= Eyj

[

E[yi|yj ]E[q∗j |yj ]
]

= Eyj

[

ryiyj
r−1
yjyj

yjE[q
∗

j |yj ]
]

(22)

= ryiyj
r−1
yjyj

E[yjq
∗

j ]

= −ρqryiyj
. (23)

In (22), the Bayesian estimatorE[yi|yj ] corresponds to the
linear estimatorryiyj

r−1
yjyj

yj since the vectory is jointly
Gaussian distributed. Eq. (23) follows from (18).

Summarizing the results of (18) and (23), we obtain

Ryq = −ρqRyy, (24)

and therefore, we get

Ryr = Ryy +Ryq = (1− ρq)Ryy = Rry. (25)

In a similar way, we evaluaterqiqj for i 6= j:

E[qiq
∗

j ] = Eyj

[

E[qiq
∗

j |yj ]
]

= Eyj

[

E[qi|yj ]E[q∗j |yj ]
]

≈ Eyj

[

rqiyj
r−1
yjyj

yjE[q
∗

j |yj ]
]

= r∗yjqi
r−1
yjyj

E[yjq
∗

j ]

= −ρqr
∗

yjyi
r−1
yjyj

· (−ρqryjyj
)

= ρ2qr
∗

yjyi
= ρ2qryiyj

, (26)

where we used Eq. (24) and (18) and we approximated
the Bayesian estimatorE[qi|yj ] with the linear estimator.
From (26) and (18) we deduce the covariance matrix of the
quantization error:

Rqq ≈ ρqdiag(Ryy) + ρ2qnondiag(Ryy)

= ρqRyy − (1− ρq)ρqnondiag(Ryy).
(27)

Inserting the expressions (24) and (27) into Eq. (21), we
obtain:

Rrr ≈ (1− ρq)(Ryy − ρqnondiag(Ryy))

= (1− ρq) ((1− ρq)Ryy + ρqdiag(Ryy)) .
(28)

In summary, using (25), the effective channel from (8) be-
comes

H ′ = (1− ρq)H, (29)

while the effective noise covariance matrix from (9) can be
obtained by means of (25) and (28)

Rη′η′ ≈ Rrr − (1− ρ)2Ryy + (1− ρ)2Rηη

= (1− ρq) ((1− ρq)Rηη + ρqdiag(Ryy)) .
(30)

Finally, we obtain the approximate lower bound on the mutual
information as2

I(x; rG)≈
log2

∣

∣

∣
1+(1−ρq) ((1−ρq)Rηη+ρqdiag(Ryy))

−1
HRxxH

H
∣

∣

∣
,

(31)
where

Ryy = Rηη +HRxxH
H. (32)

With these result, we can study the asymptotic of the mutual
information at low and high SNR. In fact, for the low SNR
regime we have

Ryy ≈ Rηη, (33)

and thus we get a first order approximate lower bound

I(x; rG)|low SNR≈
tr
(

(1−ρq) ((1−ρq)Rηη + ρqdiag(Rηη))
−1

HRxxH
H
)

.

(34)
On the other hand, at the high SNR regime, the approximate
lower bound converges to the value

I(x; rG)|high SNR≈

log2

∣

∣

∣

∣

(
1

ρq
− 1)

(

diag(HRxxH
H)
)

−1

HRxxH
H

∣

∣

∣

∣

.

(35)

2Due to the non-exact computation ofRη′η′ , the derived approximate
lower bound expression (31) is not guaranteed to be still a lower bound for
I(x; r) ≥ I(x; rG).



V. A NALYSIS OF THE 1-BIT QUANTIZATION

In this section, we deal with the special case of symmetric
1-bit quantization, where, fortunately, the required correlation
matrices can be obtained in an exact way. In fact, it is
known from the classicalarcsine law [17] that the output of a
decision deviceri,c = sign[yi,c] ∈ {−1, 1} has the following
correlation matrix

Rrr =
2

π

[

arcsin
(

diag(Ryy)
−

1

2Ryydiag(Ryy)
−

1

2

)]

, (36)

where the arcsine function is applied element-wise to its matrix
argument. Additionally, the correlation matrix between the
input and the output of the 1-bit quantizer can be obtained
as [17]

Rry =

√

2

π
diag(Ryy)

−
1

2Ryy. (37)

Then, we get the effective channel from (8) as

H ′ =

√

2

π
diag(Ryy)

−
1

2H, (38)

while the effective noise covariance in (9) becomes

Rη′η′ =
2

π

[

arcsin
(

diag(Ryy)
−

1

2Ryydiag(Ryy)
−

1

2

)]

−
2

π
diag(Ryy)

−
1

2Ryydiag(Ryy)
−

1

2+

2

π
diag(Ryy)

−
1

2Rηηdiag(Ryy)
−

1

2 .

(39)
Finally, the lower bound on the mutual information of the 1-
bit quantized MIMO channel with Gaussian input is computed
from (12).

Again, we can consider the low SNR regime whereRyy ≈
Rηη to obtain the following asymptotic lower bound of the
mutual information

I(x; r)|1-bit
low SNR≥ tr

(

HRxxH
Hdiag(Rηη)

−
1

2

[

arcsin
(

diag(Rηη)
−

1

2Rηηdiag(Rηη)
−

1

2

)]

−1

diag(Rηη)
−

1

2

)

.

(40)
For the case that the noise covariance matrix is diagonal, this
first order asymptotic of the mutual information simplifies to

I(x; r)|1-bit, uncorr. noise
low SNR '

2

π
tr
(

HRxxH
HR−1

ηη

)

, (41)

which coincides with the result that has been shown in [3],
stating that the MIMO achievable rate under 1-bit quantization
reduces by the factor2/π at the low SNR regime and therefore
the derived lower bound (40) is asymptotically tight, when the
noise is uncorrelated.

A. A simple example

We now consider a simple example, where interesting
effects of noise correlation and quantization can be observed. It
consists of a1×2 single-input multiple-output (SIMO) channel
with the following channel vector

h =

[

1
1

]

, (42)

and the following noise covariance matrix

Rηη =

[

1 r
r 1

]

, (43)

parametrized by the noise correlation factorr fulfilling |r| ≤
1. Further, the power of the scalar input is denoted by
P = E[|x|2]. For the caser = −1 (the two noise compo-
nents are oppositely correlated), and under 1-bit quantization,
the obtained lower bound on the mutual information with
Gaussian input is shown in Fig. 2 as function of the input
power. Interestingly, the lower bound exhibits a non-monotonic
behavior with respect to the signal power (i.e. the SNR),
which leads to the conclusion that noise might be favorable
for the mutual information of quantized output channel. For
comparison, the achievable rate of the same channel with
QPSK input is depicted. It can be shown that this corresponds
to the capacity of two parallel erasure channels with an erasure
probability of erfc(

√

P/2) [18]

IQPSK(x, r) = 2(1− erfc(
√

P/2)). (44)

We can observe that for certain range of the input power,
the Gaussian symbol alphabet can achieve higher mutual
information than the QPSK schemes despite of the 1-bit output
quantization. Other numerical experiments shows that this
interesting phenomenon usually occurs in quantized MIMO
channels, where the number of outputs exceed the number of
inputs.

Next, Fig. 3 shows, for the same channel, the ratio of the low
SNR mutual information with 1-bit output to the one without
quantization as function of the noise correlation coefficient r.
Thereby, we make use of the asymptotic value of the mutual
information from (40) as well as the approximation given in
(34) with ρq = 1 − 2/π. First of all, the delivered approx-
imation seems to be accurate when the correlation factor is
not near to 1. Then, forr > 0 the rate ratio is obviously
higher that the value2/π and reaches its maximum around
r = 0.7, whereas forr < 0 the loss in terms of achievable
information rate becomes more pronounced. Consequently, if
the signal subspacehhH and the noise subspaceRηη exhibits
a certain similarity then the channel capacity reduction due
to quantization is quite small. However, if they are nearly
orthogonal then the loss becomes substantial.

VI. CONCLUSION

We studied the mutual information of MIMO channels
with output quantization and correlated noise. Based on the
Bussgang decomposition, a lower bound on the achievable
rate has been derived, which is useful when analyzing the low
SNR behavior of the mutual information. We dealt also with
the 1-bit quantizer case and showed that the reduction of the
mutual information becomes smaller than2/π under certain
conditions for the channel matrix and the noise covariance
matrix. Additionally, we observed that the additive noise
might, at certain level, be favorable when the observation are
quantized, since the lower bound on the mutual information
curves is not necessary monotonic with the SNR. Although,
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we focused on the single user scenario, similar analysis can
be carried out for the multi-user broadcast channel.
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