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Mass spectrometry-based proteomics 

Overview 

The term proteome was coined more than 15 years ago and comprises the entire set of proteins 
expressed by a genome in a cell tissue, biofluid or organism at certain time point [1]. Proteomics 
[2] provides a complementary approach to genomics and transcriptomics technologies and 
allows the global study of biological processes directly at the protein level. Despite in principle 
encoded in the genome, the proteome provides a much higher complexity produced by 
alternative splicing, processing and post-translational modifications such as phosphorylation, 
acetylation, methylation, glycosylation and ubiquitination [3-6]. Furthermore, the dynamic nature 
of gene expression, subcellular localization, protein-protein interaction, and protein stability 
extend the complexity on protein level [7, 8]. Proteomics has undergone a tremendous progress 
from visualizing proteins on two-dimensional gels [9] to the identification and quantification of 
more than 10,000 proteins from a human cell line [10, 11].   

Mass spectrometry (MS) has become the dominant technique in system-wide protein and 
peptide identification [12, 13]. Moreover, it has proven to be successful in quantification of 
proteins [14-16] and the analysis of post-translational modifications [17]. Mainly two evolving 
technologies have enabled the rapid progress in proteomics: first, new techniques for peptide 
sequencing using mass spectrometry, including the development of soft ionization methods, 
such as electrospray ionization (ESI) and matrix-assisted laser desorption/ ionization (MALDI); 
and second, the miniaturization of liquid chromatography (LC). The following paragraphs 
provide a brief overview of a general mass spectrometry-based proteomics workflow and 
fundamental techniques commonly used.  

Mass spectrometry-based proteomics research can be classified into two major approaches: 
top-down and bottom-up [18]]. In the first, intact proteins are introduced into the mass 
spectrometer for the determination of their intact and fragment masses. If sufficient informative 
fragments are observed, the approach provides a complete description of the primary structure 
of the protein and location of modifications [19]. However, the analysis of intact proteins by 
tandem mass spectrometry is a major challenge due to the fact that fractionation and separation 
of proteins from a complex mixture is limited with traditional methods such as gel 
electrophoresis or chromatographic techniques [20]. In addition, multiple charge states derived 
from electrospray ionization and low fragmentation efficiency of large molecules complicate 
spectra interpretation [21].  

In the vast majority of proteomics studies the bottom-up (or shotgun) strategy is applied, in 
which the peptide detection is used to infer the presence of a protein. Here, the extracted 
proteins are first digested into a complex peptide mixture that is subsequently separated by 
sample pre-fractionation or enrichment techniques. Proteins are then identified by tandem mass 
spectrometry and database search. This approach is suitable for the high-throughput analysis of 
complex samples. Moreover it is attractive because of its sensitivity and proteome coverage. 



Chapter 1 | General introduction 
 

 

4 
 

However, information, e.g. about protein isoforms or distinguishability of close homologues, is 
lost upon the conversion of intact proteins into peptide mixtures, which can result in inaccurate 
identifications.  

The shotgun proteomics workflow; sample preparation 

A generic shotgun proteomics workflow is depicted in Figure 1 and may include multiple steps 
before mass spectrometric analysis. After protein extraction from a biological sample, such as 
cells, tissues or body fluids, the protein mixture can be analyzed directly, fractionated or 
subjected to some form of (affinity) enrichment for the analysis of (low abundant) sub-
proteomes, post-translationally modified proteins or protein complexes. In each case, proteins 
are then digested into peptides using a sequence-specific protease. The most commonly used 
enzyme here is trypsin, which specifically cleaves proteins on the carboxyl-terminal side of 
lysine and arginine residues [22]. The resulting peptides contain a basic residue at the 
C-terminus and an average length of 10 amino acids and therefore are well suited for 
subsequent peptide sequencing. Alternative proteases such as LysC, AspN and GluC generate 
complementary peptides and can be used to increase the protein sequence coverage. For 
protein digestion, one-dimensional gel electrophoresis followed by in-gel digestion is still widely 
used, but also in solution digestion or the filter-aided sample preparation (FASP) protocol [23] 
can be performed.  

 

Figure 1 | Generic bottom-up proteomics workflow; adapted from [24].  

A typical mass-spectrometry-based proteomics experiment comprises a variety of experimental steps. Individual 

steps can be achieved by several different means. 

The complexity of the generated peptide mixture typically exceeds the capacity of tandem mass 
spectrometers and thus requires additional levels of chromatographic separation. On that 
account, liquid chromatography is online coupled to mass spectrometry (LC-MS/MS) and almost 
exclusively ion-pair reversed phase separation is applied due to the well suiting solvent 
components (water, acetonitrile, organic acids). Under aqueous acidic conditions, the 
protonated peptides are retained on the widely used C18 material of the chromatography 
column. Subsequently peptides elute with increasing percentage of organic solvent according to 
their hydrophobic properties. It has been shown that long narrow columns and small particle 
size significantly improve peak capacity, resolution, sensitivity and dynamic range of the 
chromatographic separation [25-28]. Heated columns and working with higher pressure 
overcome the increased backpressure of the column resulting from longer columns and 
decreased bead size. A typical nanoflow LC-MS/MS approach employs columns lengths of 10 
to 50 cm with an inner diameter of 50 to 100 µm, a particle size of 1 to 5 µm and applies flow 
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rates in the range of 100 to 500 nL/min.  

As peptide mixture are more complex in large scale proteomics studies, the introduction of 
further dimensions of separation is often favored to increase the coverage and dynamic range. 
The pre-fractionation is performed according to the physiochemical properties of the peptide 
population, such as charge, isoelectric point or hydrophobicity. Hereby, best possible 
orthogonality of the chosen separation techniques is required. Common approaches for the 
separation of peptides are isoelectric focusing (IEF), strong cation or anion exchange 
chromatography (SCX/SAX) or hydrophilic interaction chromatography (HILIC). Alternatively, 
specific subsets of peptides containing certain modifications can be targeted through different 
enrichment techniques.  

Mass spectrometric instrumentation 

In general, a mass spectrometer consists of three parts: an ionization source to generate gas-
phase ions, a mass analyzer to separate ions according to their mass-to-charge (m/z) ratio and 
an ion detector. Ionization is commonly achieved by either matrix-assisted laser desorption/ 
ionization or electrospray ionization. Once ions are produced, they are transferred into the mass 
spectrometer via an electrostatic potential between the ion source and the mass analyzer and 
subsequently separated according to their m/z ratio. Following separation, the ions reach the 
detector and generate a signal which is translated into a mass spectrum containing the signal 
intensity plotted against the m/z value. Alternatively, structural information can be acquired by 
fragmentation and separation of the ion population in a tandem mass spectrometer.  

Soft ionization techniques 

Electrospray ionization (ESI) [29] and matrix-assisted laser desorption/ ionization (MALDI) [30] 
are the two most common techniques to gently ionize labile biomolecules without destroying 
them (Figure 2). ESI ionizes the analytes out of solution and is therefore particularly suited for 
coupling with liquid chromatography. The analytes are dissolved in a volatile solvent and 
sprayed from a fine capillary on which a high voltage is applied. The ESI process [31] begins 
with the creation of an electrically charged spray (Taylor Cone) followed by the formation of 
small charged droplets. The continuous evaporation of solvent increases the surface charge 
density of the droplet, until the Coulomb repulsion overcomes the surface tension (Raleigh limit) 
and disrupts the droplet into smaller highly charged droplets. The final formation of gas phase 
ions occurs by fission cycles of the droplet eventually leading to only one remaining analyte ion 
(charge residue model, CRM) [32] and/ or via ejection of individual analyte ions from the droplet 
surface (ion evaporation model, IEM) [33, 34]. An important development in the ESI technique 
was the nanoelectrospray (nanoESI) where the lower flow rate of a few nanoliter per minute 
significantly increase the ionization efficiency and thereby improve the sensitivity [26].  

In matrix-assisted laser desorption ionization (MALDI), the analyte is co-crystallized with an 
excess of ultraviolet-absorbing matrix molecule. The ionization process is initialized by 
irradiation with pulsed laser beams, followed by desorption of clusters of matrix and analyte ions 
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into the gas phase. MALDI predominantly produces singly charged ions and is commonly used 
to analyze relatively simple analyte mixtures. An important advantage of MALDI is that the 
2-dimensional coordinates are preserved which is of great use in the imaging mass 
spectrometry field [35].  

 

Figure 2 | Soft ionization techniques; adapted from [24]. 

General principle of analyte ion formation by (A) MALDI and (B) ESI.  

Mass analyzers 

The common mass analyzers used for proteomic research can be categorized in two major 
types: the scanning and ion-beam mass spectrometers, such as quadrupole and time-of-flight 
(TOF) analyzers, and the trapping mass spectrometers, such as ion traps (three-dimensional 
(3D) or linear (2D) ion trap), Orbitrap and Fourier-transform ion cyclotron resonance (FTICR) 
analyzer. Each analyzer has certain performance characteristics, such as resolution, mass 
accuracy, mass range, sensitivity, analysis speed and dynamic range, which are summarized in 
Table 1. Various hybrid instruments have been designed to combine the capabilities of different 
mass analyzers and to respond to specific needs during analysis.  

Table 1 | Performance characteristics of mass analyzers; adapted from [19, 26].  

 
Quadrupole TOF ion trap  Orbitrap  FTICR  

Mass resolution <2000  >30,000  10,000  >200,000  >750,000  

Mass accuracy  100-1000 ppm  2-5 ppm  100-1000 ppm  1-5 ppm  <2 ppm  

m/z range  <4000  >500,000  <4000  <2000  <2000  

Dynamic range  1e
4 

 1e
3 

 1e
3 

 5e
3 

 1e
3 

 

Scan speed  sec  μsec  20-200 msec  20-200 msec  20-200 msec  
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Orbitrap-based mass spectrometers 

Orbitrap-based mass spectrometers became the workhorse in proteomics [36, 37] and were 
applied throughout this thesis. A short overview is given in the following section.  

The orbitrap as new type of mass analyzer was invented by Makarov in 2000 [38, 39] and since 
then the instrument technology has undergone several major improvements towards increased 
acquisition speed, higher resolving power, mass accuracy and sensitivity driven by several 
substantial developments [37]. Ion packages, collected externally in a curved quadrupole, the 
C-trap, are injected in the orbitrap analyzer and trapped in an electrostatic field generated by an 
outer barrel-like electrode and a central spindle electrode. The ions orbit harmonically around 
the central electrode and oscillate along the z-axis with a frequency independent of initial 
energy, angle or velocity and characteristic of their m/z values. The axial oscillation is recorded 
as image current on the two halves of the outer electrode and converted into a mass spectrum 
by Fourier transformation. The orbitrap analyzer combines very high mass accuracy with high 
resolution capabilities. In fact, recent developments, mainly the introduction of the so called 
high-field compact orbitrap and enhanced Fourier transform algorithm for signal deconvolution, 
further improve scan speed and resolution [40-42].  

 

Figure 3 | Schematic overview of a LTQ-Orbitrap mass spectrometer; adapted from [36].  

The front part is a linear (dual-pressure cell) ion trap capable of detecting MS and MSn spectra. In the C-trap, ions 

are accumulated and focused to either subject them to fragmentation in the HCD collision cell or directly inject and 

detect them into the orbitrap analyzer, the central mass analyzer of the instrument (upper panel). The lower panel 

depicts a model of the orbitrap analyzer. Upon injection, the ions oscillate around the central electrode (A) with a 

freƋuency (ωz) characteristic for their m/z value. The induced image current is detected and a m/z spectrum from 

the different ions is determined after Fourier transformation.  

m/z

k
  z



Chapter 1 | General introduction 
 

 

8 
 

For proteomic applications, the orbitrap mass analyzer is typically coupled to a linear ion trap 
(LTQ) (Figure 3), combining the advantages of the orbitrap with the scan speed and exquisite 
sensitivity of the ion trap [43, 44]. A linear ion trap consists of a quadrupole where the ions are 
trapped by a potential barrier on endcap electrodes and provide a high ion capacity [45]. The 
performance of linear ion traps was further increased by the implementation of a dual-pressure 
cell design [46]. The combination of the two mass analyzers enables operation of the instrument 
in parallel fashion. While the acquisition of a high resolution full MS spectrum in the orbitrap, the 
linear ion trap simultaneously carries out fragmentation and detection of selected precursors, 
the so called “high-low strategy” [47, 48]. A significant development in instrumentation 
represents the addition of a multipole collision cell which enables beam-type collision induced 
dissociation (also known as higher energy collision induced dissociation, HCD) with orbitrap 
readout [49]. This allows the acquisition of both peptide and fragment ions with high mass 
accuracy, the so called “high-high strategy”, which turned out to advantageous in various 
proteomic applications like PTM analysis [50, 51].  

Protein Identification by Tandem Mass Spectrometry 

Principle 

Tandem mass spectrometry enables the determination of the primary sequence of a peptide as 
well as the analysis of post-translational modifications. The basic principle is to acquire two or 
more mass spectra. The first (full scan) mass spectrum is generated from the precursor ions to 
determine the m/z values of the intact peptides. For the second mass spectrum, the precursor of 
interest is isolated, fragmented and the various fragment ions are recorded. Tandem mass 
spectrometry can either be performed in instruments containing two analyzers (‘tandem in 
space’) or consecutively inside the same analyzer (‘tandem in time’). Each concept has certain 
advantages and disadvantages, but both are widely used. The former one is mainly applied in 
triple quadrupole, quadrupole TOF or orbitrap mass spectrometers, examples for the latter one 
are ion traps or FT-ICR instruments. 

Peptide sequencing by tandem mass spectrometry 

A variety of fragmentation techniques are employed in tandem mass spectrometry, among them 
collision induced dissociation (CID) and electron transfer dissociation (ETD) are the most 
common ones in proteomics research. Depending on the mechanism of fragmentation, the 
peptide backbone can principally break at three types of bond and consequently generate 
different fragment ions. The nomenclature of the resulting peptide fragments was first 
introduced by Roepstorff and Fohlmann [52] and later modified by Johnson et al. [53] (Figure 4). 
Fragment ions which contain the N-terminal side of the peptide are termed as a, b, and c ions, 
while C-terminal fragments are termed x, y, z. 

Collision induced dissociation remains the most commonly employed activation techniques. In 
CID, peptides fragment by collision with inert gas molecules (N2, He, Ar). These multiple 
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collisions result in the accumulation of vibrational energy until chemical bonds are broken. The 
cleavage of the peptide bond is characteristic in CID, resulting in b and y ion dominated spectra 
which are highly useful for peptide sequence determination. Low-energy CID is often performed 
in ion traps where the activation occurs by excitation in an RF field, increasing the kinetic energy 
of the peptides. Although excellent for peptide identification, during the CID process, the 
weakest bond preferentially breaks, which leads to problems in the analysis of labile 
modifications, such as phosphorylation or glycosylation as well as large peptides. Moreover, ion 
trap CID spectra suffer from the low recovery of fragments in the low mass region (~30% of the 
precursor mass) [54]. This is a major limitation for isobaric tag-based quantification where the 
quantitative information derives from reporter ions in the low mass region. An alternative, 
especially in conjunction with orbitrap instruments, offers the beam-type collision induced 
dissociation (also known as higher energy collision induced dissociation, HCD) [49]. Here, the 
ions pass through the C-trap into a dedicated octopole collision cell, so called HCD cell, where 
the fragmentation is carried out. The fragment ions are recorded in the orbitrap analyzer, 
providing high mass accuracy detection of the fragment ions over the full mass range.  

In ETD, protonated peptides ions react with an electron donor. The transfer of an additional 
electron leads to a charge-reduced ion with an unpaired electron and generate c- and z-ions by 
the cleavage of the N-Cα bond [55].  

 

Figure 4 | Peptide fragmentation nomenclature according to Roepstorff and Fohlmann 

N-terminal fragments are named an, bn, cn ions and C-terminal fragments are xn, yn and zn ions. 

Database processing 

For large scale proteomic studies, database searching is the most frequently used strategy for 
peptide and protein identification and has recently been comprehensively reviewed [56]. 
Numerous commercial and public database search programs, such as Mascot [57], Sequest 
[58] or Andromeda [59], are available, all working with the same basic functionality. The 
peptides sequences are identified by correlating acquired peptide fragment mass spectrum with 
theoretical fragment ion spectra generated for each peptide present in the protein sequence 
database (Figure 5A). The pool of candidates is constructed from the search database 
according to user-specific criteria, such as mass tolerance for intact peptide and fragment 
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masses, enzyme specificity and types of modifications allowed. The matched peptide 
sequences are then scored according to the similarity between experimental and theoretical 
spectrum. The search score, although dependent on the scoring scheme applied, serves as the 
primary discrimination parameter to discern true from false identifications. Once the peptides 
have been identified, they can be assigned to proteins. This depicts another crucial step since 
one peptide sequence can occur in several protein sequences, most often homologue proteins, 
splicing variants or redundant entries in the protein database [60, 61].  

 

Figure 5 | Peptide identification from tandem mass spectra by database searching; adapted from [56]. 

(A) Peptides are identified by correlation of acquired tandem mass spectra against theoretical spectra for each 

database peptide. Peptide spectrum matches are scored according to their degree of similarity between the 

spectra. Candidate peptides are ranked according to the computed search score and only the highest scoring 

peptide hit is used for further analysis. (B) False-discovery rate control by the target-decoy strategy (left) and 

probability-based filtering (right). Here, a probability (Bayesian statistics) is computed for each peptide assignment 

in the database to estimate the FDR.  

False peptide assignments commonly occur in all scoring algorithms due to low quality or 
chimeric spectra, incorrectly determined charge state peptide mass, or sequence variants not 
present in the database [56]. Two general approaches evolved (Figure 5B) to control the 
number of false positive identifications. In the target-decoy, all tandem spectra are searched 
against the target (forward peptide sequences) and a decoy (reversed or randomized 
sequences) database. With the assumption that any matches in the decoy search are false 
assignments, a score cut-off to filter peptide assignments and the corresponding false-discovery 
rate (FDR) can be computed. An alternative is the Bayesian statistic approach, where a local 
peptide probability is estimated upon score distribution models of true and false hits.  

A B
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Mass spectrometry-based quantitative proteomics 

Mass spectrometry-based proteomics has become increasingly quantitative and a multitude of 
techniques for relative and absolute quantification have been developed for this purpose 
(Figure 6) [14, 15, 62]. Quantitative proteomics workflows can be generally divided into methods 
using stable isotope labeling and label-free methods. In the former approach, introduced heavy 
isotopes induce a mass shift in the differentially labeled peptides that can be recognized by the 
mass spectrometer and at the same time serves as the basis of quantification. Label-free 
approaches instead compare the mass spectrometric response (e.g. signal intensity, number of 
acquired spectra) of two or more separate analyses.  

 

Figure 6 | Common quantitative mass spectrometry workflows; adapted from [14, 15]. 

Boxes in blue and yellow represent two experimental conditions. Horizontal lines indicate when samples are 

combined. Dashed lines indicate points at which experimental variation and thus quantification errors can occur.  

Stable isotope labeling is based on the stable isotope dilution theory that states that the 
physiochemical properties of the labeled and native version of a peptide are identical and thus 
they behave identical during sample preparation and mass spectrometric analysis. Therefore, 
two (or more) samples can be combined during sample processing and, given the mass shift 
introduced by the heavy isotopes of the label, relative quantification is achieved by comparing 
their respective signal intensities. Isotope labels can be introduced metabolically (e.g. SILAC 
[63]), chemically (e.g. iTRAQ [64], TMT [65], ICAT [66], dimethyl labeling [67]) or enzymatically 
(18O labeling [68]) at protein or peptide level.  

Chemical labeling approaches have become widely used in proteomics since the tag is 
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introduced after biosynthesis and therefore, unlike metabolic tagging, the method can be 
applied to all kinds of samples. Perhaps most popular at this time are isobaric tags, such as 
tandem mass tags (TMT) and isobaric tags for absolute and relative quantification (iTRAQ), 
both of which target primary amines of the peptide/ protein N-terminus and the ε-amino group of 
lysine using NHS chemistry. The reagents are designed such that the differentially labeled 
peptides have identical mass in the precursor ions spectra. The quantitative information derives 
upon fragmentation from the differentially isotope encoded reporter ions in the lower mass 
region of the tandem mass spectra. The main advantage of isobaric reagents is that they allow 
quantification with high sample multiplexity [69, 70] in the same MS analysis without increasing 
the complexity of LC separation or precursor mass spectra. However, a common problem in 
isobaric labeling strategies is the interference of the reporter ion signal with near isobaric ions 
and co-isolated peptides that may distort the quantification accuracy. Recently, several 
strategies to overcome this issue have been developed (see also Chapter 3) [71-75]. Alongside 
the isobaric labeling strategies, dimethyl labeling offers an alternative. Here, the primary amine 
groups of the peptides are labeled with formaldehyde via reductive amination. The relative 
quantification is achieved by integration of the MS1 signal of the ‘heavy’ and ‘light’ labeled 
peptides in the survey scan. The reaction is fast and specific, and the reagents are inexpensive, 
which makes the method attractive. However, deuterated formaldehyde is used to achieve a 
sufficient mass shift of 4 Da, which can result in small retention time differences during LC 
separation.  

Currently two fundamentally different label-free quantification strategies can be distinguished: 
intensity-based and spectral counting. The second approach is based on the empirical 
observation that the higher the amount protein in the sample, the more spectrum matches can 
be obtained for a certain protein. Intensity-based quantification employs the integrated area 
under the curve of extracted ion chromatograms (XIC) [76] of a certain peptide for gaining the 
quantitative information. Peptide identification is subsequently based on the tandem mass 
spectrum, which is acquired during the same MS analysis. Relative quantification is achieved by 
the comparison of the same peptide signal between two or more experiments. Moreover, LC 
alignment software tools can optimize the chromatographic profiles of peptides [77, 78] and 
improve reproducibility and sample coverage. A main feature of intensity-based label-free 
quantification is that there are, in principle, no limits to the number of samples for comparison. 
Also, a good quantitative accuracy and high dynamic range can be achieved, but at the expense 
of data acquisition and analysis time.  

The aforementioned methods suit well for the relative quantification of proteins between 
samples but also absolute quantification can be achieved with spiked in isotopic labeled 
peptides [79, 80] and label-free approaches [81-83].  

Chemical proteomics 

The ability to quantitatively measure the changes of proteins and their various isoforms to a 
depth of 4-10,000 proteins and across a dynamic range of 4-6 orders of magnitude represents 
an important advance in state-of-the-art proteomics [10, 11]. However, the abundance of a 
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protein is not necessarily directly linked to its activity. For instance, kinases are mediator of 
various biochemical processes and therefore are highly post-translationally regulated but 
commonly low in abundance. Thus, methods for the enrichment of such sub-proteomes are 
required for the detailed investigation of their protein function and biological role. Chemical 
proteomics integrates organic chemistry, cell biology and biochemistry with mass spectrometry 
to design chemical probes engineered to capture specific protein targets or classes of 
structurally or functionally related proteins (sub-proteomes). Chemoproteomics techniques 
enable the study of native proteins in a cell extract under conditions that preserve the protein 
integrity, posttranslational modifications and regulatory interaction partners. Various approaches 
have been developed and have been reviewed comprehensively elsewhere [84-87].  

 

Figure 7 | Schematic experimental workflow in chemical proteomics, adapted from [86]. 

(A) Compound-centric chemical proteomics (CCCP): The drug of interest (or functionalized derivated) is 

immobilized on a solid support matrix. The immobilized compound is subsequently incubated with a protein 

extract to specifically enrich for target proteins. Competition with free excess inhibitor added to the protein 

extract reduces the abundance of captured target protein. (B) Activity-based protein profiling (ABPP): A 

bifunctional reactive probe is designed to specifically target the active site of an enzyme family. A protein lysate is 

incubated with the probe to covalently attach to its target. In the second step, probes and targets are purified 

using affinity chromatography. In all cases, purified proteins are identified and quantified by mass spectrometry.  

Chemical proteomics can be grouped into two categories based either on the enzymatic activity 
of a particular protein family (activity-based protein profiling, ABPP) or the mechanism of action 
of an immobilized bioactive molecule (compound-centric chemical proteomics, CCCP). 

A B
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In activity-based approaches, a bifunctional reactive probe is designed to specifically target the 
active site of an enzyme class and is used as an affinity tool to purify these enzymes 
(Figure 7A) [88].  

In the compound centric or affinity-based profiling, the drug or compound of interest is 
immobilized covalently (or via a biotin tag) on a solid support matrix (Figure 7B). The 
immobilized compound is then incubated with a protein sample to specifically enrich for target 
proteins that are subsequently analyzed by LC-MS/MS. The chemical synthesis of a suitable 
functionalized analogue (typically comprising an amino, carboxyl or hydroxyl group) of the 
compound of choice is commonly required. For this purpose, information of the structure activity 
relationship (SAR) of a compound is beneficial to ensure that the modified molecule retains 
similar target binding properties. Ideally, the affinity probe is a potent binder of the target 
proteins with Kd values in the nanomolar range. This allows the better removal of unspecific 
background proteins with stringent purification methods without losing lower abundant specific 
binders. The compound-centric chemoproteomic approach has successfully been applied to 
diverse target classes such as protein kinases [89-94], histone acetylases [95], ATP/ADP 
binding proteins [96], cyclic nucleotides [97, 98] and phosphatidylinositols [99, 100]. Applications 
of this approach are mainly in drug discovery [89, 101, 102], but CCCP has also been used to 
characterize the function of the target protein within its biological context [103-105].  

Kinase profiling 

Protein kinases are involved in the regulation of many cellular processes and aberrant kinase 
signaling has been recognized in a variety of human diseases. The role of kinases is further 
discussed in a later section. As kinases are often low abundant signaling proteins, the selective 
enrichment of this target class is a crucial step when studying their biological function. To date, 
various strategies for kinase profiling have been developed [106, 107].  

Conventionally the activation status of a kinase has been determined based on its activity in an 
in vitro assay. Phospho-specific antibodies in combination with western blotting, or enzyme-
linked immunosorbent assay (ELISA) formats allow the high-throughput screening for kinase 
activity in classic pathway analysis tools [108]. In kinase peptide substrate arrays, immobilized 
peptides are incubated with one or multiple upstream kinases. Phosphorylation is subsequently 
determined by phospho-imaging (radioactive [33P]ATP) or fluorescence microscopy (anti-
phospho antibodies) [107]. A main drawback of these strategies is the lack of specific antibodies 
and/or specific substrates [109].  

Chemical proteomics techniques in conjunction with mass spectrometry have been 
demonstrated to be a powerful tool [89, 91, 110, 111]. As introduced above, a suitable ATP-
competitive kinase inhibitor (affinity compound) is covalently immobilized on a biocompatible 
matrix such as sepharose and purifies kinases from a complex lysate by competitively binding to 
the ATP pocket within the kinase domain. The main advantage of chemical proteomics is that it 
enables an unbiased study of native kinases within their cellular environment. This means, the 
proteins kinases occur at natural abundances, post-translationally modified and in the presence 
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of in vivo cofactors and interaction partners.  

One such successful approach is the kinobead technology introduced by Bantscheff et al. [89]. 
Kinobeads make use of several immobilized broad range ATP-competitive kinase inhibitors for 
the specific enrichment of a large subset of the native kinome. Apart from kinases, over 2000 
additional ATP and nucleotide dependent proteins, such as chaperones, helicases, ATPases, 
motor proteins, transporters and metabolic enzymes, share a similar structural domain and 
frequently bind to the beads. In conjunction with quantitative mass spectrometry, kinobeads 
enable the differential profiling of kinase expression in cells or tissues [103, 105]. When 
configured as competition binding assay, it can be used to determine the selectivity of small 
molecule kinase inhibitors against hundreds of proteins in a single experiment [89]. For this 
application, different concentrations of the drug are titrated into protein extracts or cell culture 
that is subsequently subjected to kinase enrichment. The free drug in the lysate competes with 
the affinity matrix for binding into the ATP binding pocket. Kinase targets that bind the inhibitor 
show a dose dependent reduction in binding to the kinobeads, whereas non-targets are 
unaffected. Despite the conceptual advantages, kinobeads also have shortcomings, notably 
incomplete coverage of the kinome (see also Chapter 4). In addition to the presence of kinases, 
their regulation and catalytic activity are relevant for their physiological function. Recent studies 
therefore combined chemical and phosphoproteomics for comparative large-scale kinome 
profiling, characterizing the activity of kinase inhibitor drugs in disease or kinome signaling 
across the cell cycle [92, 93, 112]. 

Kinases and their role in cancer 

Signaling mechanisms are essential for cells to communicate and in this way maintain the cells 
regular behavior in the body. Phosphorylation by protein kinases is recognized as a major 
mechanism in the regulation of diverse cellular processes, such as cell proliferation, 
differentiation, migration, metabolism and apoptosis. Consequently their activity and interplay 
has to be tightly controlled and is an absolute requirement for proper function of the cell 
[113, 114]. The enzymatic activity of a kinase involves the transfer of a high energy phosphate 
group, typically the Ȗ-phosphate group of an ATP, to serine, threonine or tyrosine residues of 
the target protein (substrate). Dephosphorylation of proteins in turn is catalyzed by protein 
phosphatases (Figure 8).The reversible phosphorylation usually results in a functional change of 
the target protein by altering the enzyme activity, cellular localization or association with other 
proteins.  

The human kinome consists of 518 putative protein kinases, comprising 1.7% of the human 
genome and therefore represent one of the largest gene families [115]. Protein kinases can be 
grouped into seven major families (ACG, CAMK, CK1, CMGK, STE, TK, TKL) according to their 
structural agreements and conserved catalytic domain.  
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Figure 8 | The human kinome.  

(A) The human kinome-tree (© Cell Signaling Technology) depicting the major groups of human protein kinases. 

(B) Schematic representation of the interplay of protein kinases and phosphatases in signaling pathways.  

Since protein kinases play a pivotal role as signaling molecules, aberrant behavior has been 
implicated in a variety of diseases, in particular in oncology but also in chronic diseases, such 
as inflammation, diabetes, neurodegenerative disorders and cardiovascular diseases [116-118]. 
Oncogenic kinases mainly acquire transforming capacity by the accumulation of multiple genetic 
lesions, which eventually lead to the constitutive activation of usually strictly controlled pathways 
[119]. Thus, abnormal cell growth and division as well as increased angiogenesis and apoptosis 
resistance are consequences [120, 121]. Occasionally, a single gene alternation results in the 
manifestation of cancer, for instance, the Philadelphia chromosome translocation in chronic 
myelogenous leukemia (CML). Here, the BCR-Abl gene fusion results in constitutive activation 
of the Abl kinase and thus unregulated cell division [122]. Other prominent examples include the 
ErbB2 receptor mutation in breast cancer and the KIT receptor in gastrointestinal stroma 
tumors. In other cases, deregulated kinases may play a more indirect role. The diverse steps of 
tumor development are comprehensively summarized by Hanahan and Weinberg in the 
hallmarks of cancer.  

Small molecule kinase inhibitors 

Given their crucial role in disease, protein kinases represent an important class of drug targets 
[117, 119, 123]. Over the past decade, about 20 small-molecule kinase inhibitors have been 
approved for clinical use (all in oncology) and several hundreds more are under investigation in 
clinical trials [124]. Most of the current small-molecule inhibitors are ATP competitive and bind to 
the structurally highly conserved ATP binding pocket within the kinase domain, thereby 
inhibiting kinase activity. ATP-competitive kinase inhibitors are likely to target multiple protein 
kinases and other nucleotide binding proteins making the synthesis of truly selective drugs a 
challenging task. On the other hand, in oncology, the lack of specificity may not only lead to 
undesired side effects of the drug but may be advantageous by increasing the therapeutic 
potential or preventing drug resistance. For example, Imatinib (Gleevec®) inhibits BCR-Abl and 
therefore was first approved for the treatment of CML. The drug further shows potent inhibition 
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of c-Kit and PDGFR and hence is also used in the treatment of gastrointestinal tumors (GIST) 
and myeloproliferative diseases [125].  

In contrast, allosteric inhibitors interact with a structural domain outside the ATP-binding site. 
This mode of inhibition tends to be highly selective since the inhibitor utilizes binding sites and 
regulatory mechanisms unique to a particular kinase. As an example, the mode of action of 
some AKT inhibitors in clinical trials is dependent on the pleckstrin homology (PH) domain. This 
domain is important for the recruitment of AKT to the plasma membrane via interaction with 
phosphoinositides, the initial step for activation of AKT kinase activity. A number of inhibitors 
have been developed that target the PH domain and thereby hinder the activation of AKT [126]. 
One of them is MK-2206 [127] which is currently tested in numerous phase I or phase II studies.  

Regardless whether the kinase inhibitor acts in an ATP-competitive or allosteric manner, the 
determination of an inhibitor’s selectivity is of central importance for the correct interpretation of 
its biological effects.  

AKT kinase and signaling 

To illustrate the function of protein kinases in more detail, the following section describes AKT 
as a central node within the PI3K/AKT signaling cascade. The serine/threonine kinase AKT, 
also known as protein kinase B, belongs to the AGC kinase family and is a key mediator of cell 
growth, proliferation and apoptosis [126, 128]. There are three known isoforms of AKT1, AKT2, 
AKT3, all highly homologous to each other but with distinct functions [129]. Structurally, these 
homologues contain three functional domains: a N-terminal PH-domain, a central catalytic 
kinase domain and a C-terminal hydrophobic regulatory domain. The activation of AKT occurs 
within the PI3K signaling pathway (Figure 9). Growth factor or cytokine induced dimerization of 
receptor tyrosine kinases (RTK) leads to their autophosphorylation. The activated RTK in turn 
activates PI3K (phosphatidylinositol-3 kinase) either by direct binding or indirectly via IRS1. 
PI3K converts phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-
trisphosphate (PIP3), which recruits AKT and PDK1 via their PH domain to the plasma 
membrane. AKT then becomes activated via phosphorylation of two key residues, Ser 473 and 
Thr 308, by the mTor complex 2 (mTORC2) and PDK1, respectively [130]. Once activated, AKT 
acts on diverse downstream targets and thereby is involved in cell proliferation, survival, cell 
growth, glucose metabolism, cell mortality and angiogenesis [131, 132]. For example, the 
PI3K/AKT pathway promotes cell survival by the inactivation of several proapoptotic factors, 
including Bcl-2-associated death promoter (BAD), procaspase-9 and Forkhead (FKHR) 
transcription factors. Moreover, the activation of the IκB kinase (IKK) leads to the expression of 
survival factors. The inactivation of glycogen synthase kinase 3 beta (GSK3b) by AKT enhances 
the cyclinD1 level and drives cell cycle progression. In addition, it stimulates glycolysis, lipid 
production and glucose uptake in response to insulin [128].  
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Figure 9 | Schematic of the PI3K/AKT signaling pathway and its main components.  

Upon activation by external growth factors, PI3K is recruited to activated receptor tyrosine kinases leading to an 

increase in PIP3 levels followed by AKT translocation to the plasma membrane via its PH domain. AKT is activated 

by phosphorylation of two distinct residues, Thr-308 and Ser-473, by PDK1 and mTORC2, respectively. Once 

activated, AKT activates multiple downstream targets.   

Given the wide range of biological processes AKT mediated signaling is involved in, 
upregulation of the PI3K/AKT pathway is an established occurrence in human cancer. PI3K/AKT 
pathway activation is predominantly promoted by deregulation of PTEN, AKT, PI3K and RTKs. 
Loss of the tumor suppressor PTEN results in elevated PI3K signaling. In addition, RTKs and 
PI3K are constantly active or overexpressed in many types of cancer [133, 134]. Regarding 
AKT, gene amplification or overexpression is a common incident in various types of cancer, 
such as breast, gastric, pancreatic and ovarian tumors, and missense mutation in the 
PH-domain are known to exist [126, 133, 135]. Moreover, mutations in kRas, an upstream target 
of AKT, are for example observed in about 90% of pancreatic cancer patients and thus the 
PI3K/AKT pathway is commonly upregulated in this type of cancer [136, 137].  
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Aim and outline of this thesis 

Protein kinases are pivotal regulators of cell signaling that modulate their function and activity 
through specific phosphorylation events. Major diseases, such as cancer, have been recognized 
to be caused by deregulated kinase signaling. Knowledge about kinases involved in these 
signaling pathways and about the selectivity of therapeutic kinase inhibitor drugs improves the 
understanding of critical cellular pathways and is important for the correct interpretation of their 
biological and pharmacological effects. Chemical proteomics techniques in combination with 
quantitative mass spectrometry have emerged as important tools for the large scale 
characterization of kinase signaling and drug selectivity. The research described in this thesis 
comprises several projects with the common goal to study kinase signaling in cancer.  

In the first two chapters, quantitative mass spectrometry methods, as the analytical technique of 
choice throughout this thesis, were systematically evaluated and optimized for the application of 
target profiling by kinase-centric chemical proteomics. In chapter 2 a novel state of the art hybrid 
linear ion trap high field Orbitrap mass spectrometer, the Orbitrap Elite, was characterized in 
detail for proteomic application. The performance of a number of data-dependent acquisition 
scan types enabled on this instrument was evaluated. The main results obtained from the 
analysis of complex digests of human cell lines showed that the very high resolution and scan 
speed available on this instrument significantly improved the success of protein identification, 
confirming that the Orbitrap Elite is a valuable and versatile tool for mass spectrometry based 
proteomics.  

Chapter 3 focuses on the establishment and optimization of mass spectrometry based 
quantification strategies. Isobaric tagging using reagents such as TMT are popular tools for 
mass spectrometry based quantitative proteomics. Here, a new mode of data processing was 
developed to improve the identification of reporter ions in high resolution tandem mass spectra 
by intra-spectrum mass differences resulting in more accurate quantification. Moreover, relative 
quantification by isobaric mass tags was compared to an intensity-based label-free 
quantification for selectivity profiling of small-molecule kinase inhibitors. The results suggested 
better characteristics of the label-free approach for that particular kind of application.  

Chapter 4 describes the development of a new affinity probe targeting AKT and many other 
protein kinases to expand the kinome coverage of the published kinobeads. Together with some 
other improvements, the probe was applied to the selectivity profiling of several AKT inhibitors. 
The results provided detailed information about affinity and selectivity of the drugs, allowing a 
better interpretation of their pharmacological and systems biological effects.  

In the last chapter, established chemical proteomics and phosphoproteomics technologies in 
conjunction with quantitative mass spectrometry was used for the profiling of murine Kras-
induced pancreatic ductal adenocarcinoma cell lines in respect of their responsiveness to the 
AKT inhibitor triciribine. It was shown that this approach can indeed be used for studying 
signaling pathways. Several known pathways were detected to be differentially regulated in 
sensitive cell lines, indicating again the high diversity of tumor biology.  
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Abbreviations 

ABPP  activity-based protein profiling 

CCCP  Compound-centric chemical proteomics 

CID  collision induced dissociation 

CLM  chronic myelogenous leukemia 

CRM  charge residue model 

ESI  electrospray ionization 

ETD  electron transfer dissociation 

FASP  filter-aided sample preparation 

FDR  false-discovery rate 

FT-ICR Fourier transform ion cyclotron mass spectrometer 

GIST  gastrointestinal tumors 

HCD  higher energy collision induced dissociation 

HILIC  hydrophilic interaction chromatography 

ICAT  isotope-coded affinity tag 

IEF  isoelectric focusing 

IEM  ion evaporation model 

iTRAQ  isobaric tag for relative and absolute quantitation 

LC  liquid chromatography 

LC-MS/MS liquid chromatography coupled to tandem mass spectrometry 

MALDI  matrix-assisted laser desorption/ ionization 

MS  mass spectrometry 

PH  pleckstrin homology domain 

SAR  structure activity relationship 

SAX  strong anion exchange chromatography 

SCX  strong cation exchange chromatography 

SILAC  stable isotope labeling with amino acids in cell culture 

TMT  tandem mass tag 

TOF  time-of-flight 

XIC  extracted ion chromatogram 
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Introduction 

Improvements in analytical technology, notably in peptide separation, quantitative mass 
spectrometry and informatics are continuing to drive progress in proteome research [1-3]. To 
date, most experimental approaches involve the analysis of complex peptide mixtures derived 
from the enzymatic digestion of proteins from total lysates of cells, tissues or body fluids. The 
resulting peptides are then separated by (multi-dimensional) liquid chromatography (LC) 
followed by peptide analysis employing tandem mass spectrometry (MS/MS). The sheer 
number of peptides derived from complete proteomes as well as their high dynamic range of 
abundance arising from the vast differences in the expression levels of the underlying proteins 
in a given biological material requires the use of mass spectrometers with high sensitivity, 
dynamic range and data acquisition speed. In order to generate confident peptide identifications 
from the generated tandem mass spectra, mass accuracy is an important parameter to consider 
for protein sequence database searching [4-6]. Some ten years ago, quadrupole time-of-flight 
instruments featuring mass accuracy of between 10 and 100 ppm were highly successful 
platforms for protein identification in proteomics. However, these were gradually overtaken by 
(linear) ion trap instruments owing to their superior sensitivity and speed despite the fact that the 
mass accuracy of these devices was generally much lower. The subsequent coupling of a linear 
ion trap with an FT-ICR device [7] and, later, the Orbitrap mass analyzer [8, 9] provided 
significant steps forward in protein identification by database searching owing to the 
combination of the outstanding mass accuracy, resolution and intra-scan dynamic range of the 
FT-ICR or Orbitrap for peptide mass measurements and the exquisite sensitivity of the ion trap 
for fragment ion measurements [10, 11]. The next significant development in Orbitrap 
instruments was the addition of a multipole collision cell which enabled beam type collision 
induced dissociation experiment (also known as higher energy collision induced dissociation, 
HCD) [12] with Orbitrap readout. This allows the measurement of peptide and fragment ions 
with high mass accuracy which turned out to be advantageous in a number of proteomic 
applications, notably for the analysis of post-translational modifications (PTMs) and peptide 
quantification using tandem mass tags [13-15]. The latest modification to the theme of a hybrid 
ion trap Orbitrap mass spectrometer is the Orbitrap Elite featuring a so-called compact high field 
Orbitrap and an enhanced Fourier Transform (FT) algorithm for signal deconvolution [16, 17]. In 
combination, these two elements improve both scan speed and resolution (max. of 240,000) 
and the first few reports in the literature showed that this instrument is particularly useful for 
analyzing intact proteins (so-called top down analysis) [16, 18] but also capable of in-depth 
bottom up analysis of complex proteomes [19, 20]. In this study, details on the performance of a 
number of data-dependent acquisition scan types enabled on this instrument for proteomic 
applications are reported. The main results obtained from the analysis of complex digests of 
human cell lines show that mass accuracy can be improved to below one ppm for all peptide 
ions when measured at very high resolution, that HCD is competitive with CID fragmentation in 
terms of protein identification performance at sample loadings between 0.1 and 1000 ng on 
column, that protein identification resulting from CID fragmentation can be significantly improved 
if using the correct mass tolerances and that, overall, the Orbitrap Elite improves peptide and 
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protein identification over its predecessor the Orbitrap Velos by a significant margin in all 
parameters assessed. 
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Material and Methods 

Sample preparation 

E.coli K1β DH5α was grown aerobically at γ7 °C in LB medium. Exponentially growing cells 
were lysed by sonication in 50 mM Tris-HCl (pH 7.5) containing protease inhibitors 
(SIGMAFAST, Sigma-Aldrich, Munich, Germany). The cytosolic protein extract was reduced 
using 20 mM dithiothreitol, alkylated with 100 mM iodoacetamide and digested in solution with 
trypsin (1:50 w/w enzyme:substrate ratio, Promega Corp., Madison, WI, USA). Peptides were 
purified prior to LC-MS/MS analyses using C18 μZipTips (Millipore Corporation, Billerica, MA, 
USA) according to the manufacturer’s protocol. HeLa Sγ cervix carcinoma cells were cultured in 
Dulbecco's Modified Eagle Medium (DMEM) with high glucose (PAA, Pasching, Austria) 
supplemented with 10% (v/v) fetal bovine serum (FBS, PAA, Pasching, Austria) at 37 °C in 
humidified air and 10% CO2. Cells were washed with phosphate buffered saline (PBS) and 
harvested by lysis using 50mM Tris/HCl pH 7.5, 5% Glycerol, 1.5 mM MgCl2, 150 mM NaCl, 
0.8% NP-40, 1 mM dithiothreitol and 25 mM NaF with freshly added protease inhibitors and 
phosphatase inhibitors (5x phosphatase inhibitor cocktail1, Sigma-Aldrich, Munich, Germany, 5x 
phosphatase inhibitor cocktail 2, Sigma-Aldrich, Munich, Germany, 1 mM sodium ortho-
vanadate and 20 nM Calyculin A, LC Laboratories, Woburn, MA, USA). Protein extracts were 
clarified by ultracentrifugation for 1 h at 145,000 xg at 4 °C and protein concentration was 
determined by the Bradford method. Lysates were diluted in 8 M urea, 0.1 M Tris/HCl followed 
by protein digestion with trypsin (Promega Corp., Madison, WI, USA) according to the FASP 
protocol [21]. After overnight digestion, peptides were eluted from the filters with 50 mM TEAB 
and purified on C18 StageTips as described [22]. 

LC-MS/MS measurements 

Mass spectrometry was performed by coupling an Eksigent nanoLC-Ultra 1D+ (Eksigent, 
Dublin, CA) to an Orbitrap Elite instrument (Thermo Scientific, Bremen, Germany). Peptides 
were delivered to a trap column (100 μm×β cm, packed in-house with Reprosil-Pur C18-AQ 5 µm 
resin, Dr. Maisch, Ammerbuch, Germany) at a flow rate of 5 µL/min in 100% solvent A (0.1% 
formic acid, FA, in HPLC grade water). After 10 min of loading and washing, peptides were 
transferred to an analytical column (75µm×40 cm, packed in-house with Reprosil-Gold C18, 3 
µm resin, Dr. Maisch, Ammerbuch, Germany) and separated using a linear gradient from 7% to 
35% of solvent B (0.1% FA in acetonitrile) at a flow rate of 300 nL/minute. Instrument parameter 
settings for HCD fragmentation were optimized using 1 µg E.coli digest and a 60 min gradient 
(see Figure 2). Unless otherwise stated, HeLa samples were analyzed using a 60 min gradient 
using the same gradient protocol as mentioned above. The Orbitrap Elite instrument was 
operated in data-dependent mode, automatically switching between MS and MS2. Full scan MS 
spectra (m/z 300 – 1300) were acquired in the Orbitrap at 30,000 (m/z 400) resolution (unless 
stated otherwise) using an automatic gain control (AGC) target value of 1e6 charges. Internal 
calibration was performed using (Si(CH3)2O)6H+ (m/z 445.120025) present in ambient 
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laboratory air. Low resolution CID tandem mass spectra were generated for up to 30 peptide 
precursors (AGC target value of 2.5E3, 35% normalized collision energy) in the linear ion trap 
(CID normal, rapid, turbo). High resolution HCD MS/MS spectra of up to 15 precursors were 
generated in the multipole collision cells (AGC target value 2E4, normalized collision energy of 
30%) and analysed in the Orbitrap at a resolution of 15,000. Precursor ion isolation width was 
set to 2.0 m/z, the maximum injection time for MS/MS was 100 ms and dynamic exclusion was 
set to 120 s for both CID and HCD. Experiments using the LTQ Orbitrap Velos (Thermo 
Scientific, Bremen, Germany) employed the same LC conditions and the same general data 
acquisition parameters with the following exceptions: low resolution CID tandem mass spectra 
were generated for up to 30 peptide precursors with a target value of 5E3 charges and 35% 
normalized collision energy. HCD MS/MS spectra of up to 10 precursors were acquired with a 
target value of 3E4 charges and a normalized collision energy of 30%. Fragments were 
analysed in the Orbitrap at a resolution of 7,500. 

Peptide and protein identification and quantification 

For HCD parameter optimization using E. coli digests, raw MS data files were converted to peak 
lists using Mascot Distiller (v2.3.0, Matrix Science, London, UK) and searched against the 
Escherichia coli taxonomy restricted SwissProt database (version 57.15, 22,646 sequences) 
using the Mascot search engine (v2.3.0) and the following parameters: precursor tolerance 10 
ppm, fragment tolerance 0.02 Da, full tryptic specificity, up to two missed cleavage sites, mis-
assignment of the monoisotopic signal to the first 13C isotope allowed, carbamidomethylation of 
cystein residues was set as fixed modification and methionine oxidation as a variable 
modification. Database search results were imported into Scaffold (v3.6.2, Proteome Software, 
Portland, OR) for further evaluation. For all experiments using HeLa samples, raw MS data 
were processed by MaxQuant (v1.2.7.3) for peak detection and quantification [11]. MS/MS 
spectra were searched against the IPI human database (v3.68, 87,061 sequences, 
supplemented with 262 common contaminants) using the Andromeda search engine [23] with 
the following search parameters: full tryptic specificity, up to two missed cleavage sites, 
Carbamidomethylation of cystein residues was set as a fixed modification and N-terminal 
protein acetylation and methionine oxidation as variable modifications. Mass spectra were re-
calibrated within MaxQuant (first search 20 ppm precursor tolerance) and subsequently re-
searched with a mass tolerance of 6 ppm. Unless otherwise noted, fragment ion mass tolerance 
was set to 20 ppm for HCD spectra and 0.5 Da (1.5 Da) for low resolution CID normal and CID 
rapid (CID turbo) spectra. Search results were filtered to a maximum false discovery rate (FDR) 
of 0.01 for proteins and peptides and a peptide length of at least 6 amino acids was required.  
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Results and Discussion 

Precursor ion resolution drives peptide mass accuracy 

Given the fact that peptide precursor ion mass accuracy is an important parameter for protein 
identification by database searching, it was first evaluated to what extent the improved 
resolution capability of the Orbitrap Elite would translate into (an expected) higher peptide 
precursor mass accuracy.  

 

Figure 1 | HCD parameter optimization.  

All parameters shown were optimized using 1 ug E.coli digest and a 60 min LC gradient time. The evaluation 

criteria included the number of identified spectra, peptides and proteins. (A) Collision energy (in %), (B) automatic 

gain control settings (number of collected precursor ion charges for fragmentation), (C) number of most abundant 

precursor ions picked for fragmentation in one cycle, (D) signal threshold of precursor ions for triggering an MS/MS 

spectrum, and (E) survey scan start m/z values.  

To address this, 1 µg of a HeLa digest was analysed by a 60 min LC-MS/MS experiment using 
HCD fragmentation (see Materials and Methods as well as Figure 1 for optimized HCD 
parameters) and varying the Orbitrap resolution for survey scans (i.e. intact peptide mass 
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spectra) from the minimum possible of 15,000 to the maximum possible of 240,000 (at m/z 400; 
HCD resolution kept constant at 15,000 for all experiments). 

 

Figure 2 | Partial survey mass spectra recorded from a complex protein digest sample on an Orbitrap Elite 

instrument at different resolution settings.  

(A) 15,000 (48ms transient), (B) 30,000 (96ms transient), (C) 60,000 (192ms transient), (D) 120,000 (384ms 

transient) and (E) 240,000 (768ms transient). Peptide precursors of all charge states relevant for shotgun 

proteomic experiments are fully resolved already at the lowest possible resolution. As expected, mass accuracy 

increases with increasing mass resolution and a significant gain in the number of identified proteins, peptides and 

peptide spectrum matches (PSMs) can be observed between 15,000 and 30,000 resolution while a slight decrease 

occurs at 240,000 resolution. 

While practically all peptide precursor charges relevant for bottom-up proteomics (2+ to 4+) can 
be readily resolved at a resolution of 15,000, it is apparent that mass accuracy increases as a 
function of mass resolution (Figure 2). This increase is quite pronounced from 15k resolution 
(median 1.24±1.31 ppm StdDev) to 30k (0.77±1.06 ppm) and continues to improve, albeit at a 
lesser rate, up to 240k resolution (0.19±0.36 ppm). Concomitant with the increase of mass 
accuracy, the number of identified spectra (peptide spectrum matches, PSMs), peptides and 
proteins (both at 0.01 FDR) also increases significantly between 15k and 30k resolution. 
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Beyond 30k however, this effect diminishes for two reasons: i) the Orbitrap transient lengths 
required to achieve a desired resolution increases linearly (15k=48ms; 30k=96ms; 60k=192ms; 
120k=384ms; 240k=768ms) which in turn reduces the number of sequential HCD MS/MS 
spectra that can be acquired per unit time (clearly visible at 240k resolution) and ii) the number 
of isobaric peptides of different amino acid composition and sequence diminishes at mass 
accuracies of below 1 ppm [6, 24, 25] resulting in similar identification success for resolution 
settings of between 30k and 120k.  

Fragment ion mass accuracy improves database search performance 

It is generally accepted that the tandem mass spectrum carries much more information for 
peptide identification than the peptide precursor mass alone because the former contains 
peptide sequence information while the latter merely contains amino acid composition 
information. This is why the technique was already very successful some 15 years ago when 
low resolution instruments such as triple quadrupoles and 3D ion traps dominated the field [26-
28]. Still, mass accuracy in the tandem mass spectrum does have considerable influence on the 
quality of a search result and it should therefore be standard practice to apply search tolerances 
that reflect the actual fragment ion mass accuracy distribution delivered by the employed mass 
analyser. Albeit obvious to analytical (bio-) chemists, this general rule is often ignored, in part for 
historic reasons (often resulting in too wide mass tolerances), in part to improve target-decoy 
search statistics that are often used to estimate the false discovery rate of protein identification 
[29, 30]. The results shown in the following suggest that using search tolerances that are not 
rooted in the actual data distribution should be avoided. The Orbitrap Elite offers a number of 
scan types including HCD (fragment ions are recorded in the Orbitrap) and three variants of 
resonance CID (fragment ions are recorded in the ion trap) of different scan speed (CID normal, 
33,000 amu/sec; CID rapid, 66,000 amu/sec; CID turbo, 125.000 amu/sec). Using the same 
complex HeLa cell lysate digest and LC-MS/MS conditions as above, data for all four tandem 
MS scan modes were acquired and the observed mass error for all fragment ions of the 
identified peptides were plotted (Figure 3). The HCD data shows the tightest fragment ion 
accuracy with 95% of all fragment ions measured within 0.024 Da (Figure 3 A, ~124,000 data 
points). This is not surprising given the high inherent mass accuracy of the Orbitrap mass 
analyser. The analogous figures for the ion trap CID experiments are 0.24 Da (CID normal, 
Figure 3 B, ~116,000 data points), 0.29 Da (CID rapid, Figure 3 C, ~136,500 data points) and 
2.13 Da (CID turbo, Figure 3 D, ~96,500 data points) respectively.  

With the exception of the CID turbo scan (which cannot be calibrated and shows very poor 
mass accuracy), the fragment ion mass errors are actually much better than what many 
practitioners in the field assume and/or use [31]. It is particularly noteworthy that the 2x faster 
scan speed of the CID rapid method only results in a rather small degradation of mass accuracy 
compared to the CID normal scan. Using the measured fragment ion mass errors shown, it is 
possible to define the mass tolerance for database searching objectively and the impact of 
choosing fragment ion mass tolerances on protein identification results are shown in Figure 4.  
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Figure 3 | Distribution of fragment ion mass error of identified proteins using different scan types.   

(A) HCD experiments (recorded in the Orbitrap) show the lowest mass error with 95% of all ions measured within a 

mass error of 0.024 Da. (B) analogous plot for the CID normal scan type (95% of all fragments are within 0.24 Da). 

(C) analogous plot for the CID rapid method (95% of all fragments are within 0.29 Da) and (D) analogous plot for 

the CID turbo scan mode (95% of all fragments are within 2.13 Da). Solid lines indicate the mean mass error of all 

identified fragment ions within a ± 0.5 Da window for HCD, CID normal and CID rapid scans (± 2.0 Da for CID turbo). 

The CID normal and the much faster CID rapid method show almost equal mass accuracy. Dashed lines show the 

5% and 95% percentile of the data within the given mass window.  

Varying the mass tolerance for the HCD data between 0.02 and 0.05 Da has little impact on 
database search results because this level of mass accuracy is sufficient to distinguish 
practically all naturally occurring amino acids (save the isobaric amino acids Ile and Leu) and 
also most y- and b-type fragment ions. The choice of mass tolerance is more important for 
searching ion trap CID data. Given the data shown in Figure 2, an MS/MS search tolerance of 
0.25 Da to 0.3 Da should be sufficient to include all meaningful fragment ions of a (single) 
peptide and which would also readily distinguish peptides containing amino acid combinations 
such as Asn/Asp or Gln/Glu which differ by approx. one Dalton in mass. The results of actual 
searches entirely confirm this expectation (Figure 4). Search tolerances of 0.25 – 0.5 Da lead to 
a similar number of identified PSMs, peptides and proteins using the CID normal and CID rapid 
scans but considerably fewer at tolerances of 1 Da or higher. It is noteworthy that although the 
median search engine score (here Andromeda) increases as the search tolerance is relaxed, 
the number of identified peptides and proteins actually decreases. 
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Figure 4 | Andromeda score distribution (PSM level) along with the number of identified proteins, peptides and 

PSMs for different scan types and searched with varying fragment ion mass tolerance.  

There is a clear dependency of the number of identifications (proteins, peptides, PSMs) on the employed fragment 

ion search tolerance. The median Andromeda score increases with less stringent mass tolerance possibly indicating 

that more fragment ions in a spectrum can be assigned (albeit erroneously) to the identified peptides sequence. At 

the same time, the number of identified peptides and proteins deceases for all CID scan types at high tolerances 

due to the generation of larger numbers of decoy identifications which requires the removal of genuine 

identifications to reach a desired false discovery rate (here 0.01 at peptide and protein level). 

This behaviour can be rationalized as follows: at higher fragment ion tolerances, more fragment 
ions in the tandem mass spectrum may be (but likely erroneously) matched to a given peptide 
sequence. At the same time, more decoy hits are generated which, in turn, leads to the removal 
of a considerable fraction of genuine identifications to reach a desired FDR (here 0.01 at 
peptide and protein level). This loss of identifications occurs for no good reason (because the 
underlying data is better) and can easily be avoided by empirically determining the actual 
fragment mass accuracy of a given instrument and data acquisition method. Search engines 
often do not systematically make use of mass accuracy in tandem mass spectra but the above 
results suggest that this may improve their performance. It also has to be noted that the CID 
rapid scan displayed a slightly better performance than the CID normal scan which is why the 
former was used for the subsequent experiments. 
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HCD vs CID for protein identification 

There is an on-going debate in the field about the importance of high vs low resolution / 
accuracy tandem MS (e.g. HCD vs CID) for protein identification [14, 32, 33]. Roughly speaking, 
the arguments of the high resolution proponents revolve around the low rate of false positive 
matches when using tight mass tolerances for database searching and those of the low 
resolution proponents around data acquisition speed (i.e. the higher number of probed peptide 
precursors). In this context, it is worth noting that low resolution CID on the Orbitrap Elite comes 
with an actual resolution of ~3,000 for CID rapid and ~5,000 for CID normal. At this resolution, it 
is actually possible to determine the charge states of the majority of tryptic peptides. In the 
following, the performance of HCD and CID rapid across five orders of magnitude of sample 
loading (ranging from 0.1 ng digest to 1,000 ng digest on column; Figure 5) was compared.  

 

Figure 5 | Comparison of HCD and CID rapid for analytical parameters relevant for protein identification.  

Sample loading on column was varied across five orders of magnitude (0.1 ng to 1,000 ng). (A) Number of MS/MS 

events for CID rapid (grey) and HCD (black). (B) Absolute number of tandem mass spectra identified. (C) Percentage 

of identified tandem mass spectra at 1% FDR. (D) Number of identified peptides. (E) Number of identified proteins 

and (F) Summed peptide intensities for all identified proteins. While CID rapid acquired more data per unit time, 

the overall performance of the two scan types for peptide and protein identification were similar with a tendency 

of HCD identifying more individual peptides. 
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The CID rapid method (fragmenting up to 30 precursors in ~4s cycle time) indeed generated 
~40% more tandem MS spectra than HCD (fragmenting up to 15 precursors in ~3s cycle time) 
at any sample loading (Figure 5 A) and the absolute and relative number of tandem mass 
spectra leading to a successful identification was also higher for CID rapid than for HCD at very 
low sample loadings (Figure 5 B, C). However, the number of peptide identifications was slightly 
higher for HCD most of the time (Figure 5 D) but protein identifications (Figure 5 E) were very 
similar across all sample loadings suggesting that the overall higher number of tandem mass 
spectra generated by CID can be balanced by the overall higher specificity of individual HCD 
spectra for database searching. This is relevant for the identification of post-translationally 
modified proteins for which the identification of the PTM typically relies on a single peptide and, 
indeed, HCD has recently been shown to be superior to CID for the analysis of Ser and Thr 
phosphorylated peptides [31, 34]. The all but identical protein intensity distribution of the CID 
and HCD data across all sample loadings (Figure 5 F) supports the above interpretation of the 
results. 

Sample coverage and dynamic range 

Shotgun digestion of entire proteomes generates peptide mixtures too complex, both in number 
and abundance range, for current mass spectrometers to handle [35, 36]. As a result, the run to 
run reproducibility of complex proteome analysis can be rather low. This shortcoming may be 
addressed in a number of ways including the use of replicate analysis, long gradient times on 
one-dimensional chromatography systems, multi-dimensional peptide separations, in-silico 
matching of MS features between experiments [20, 37-40] but also by increasing data 
acquisition speed if available. Given the faster scan rates of the high field Orbitrap, the 
reproducibility of the straightforward 1D-LC-MS/MS approach in popular use today was 
assessed by 10 replicate analysis of the same sample (1 µg HeLa digest on column) for three 
different LC gradient times (Figure 6). For a 60 minute separation, approx.1,700 proteins on 
average were identified in each run and, collectively, 1,903 proteins were identified across the 
10 runs. 1,350 of these proteins (71%) reproduced in 10/10 experiments, a further 162 were 
found 9/10 times and so forth and just 35 proteins were detected only once. Increasing the 
gradient time to 110 minutes or 225 min increased the number of identified proteins by 14% to 
2,171 (approx. 2,000 on average per run) and 27% to 2,424 (2,300 on average per run) 
respectively and the rate of complete reproducibility across 10 runs rose to 80% and 83% 
respectively. This analysis indicates that running a small number of replicates can increase 
proteome coverage somewhat (Figure 6 B, C) but it also shows that that it is generally more 
efficient to extend the LC time of the analysis instead of running replicates in order to cover a 
desired number of proteins. Still, given the expense of total analysis time, the gain in terms of 
protein identifications between 60 min and 225 min LC time is rather modest. One factor 
accounting for this is that LC resolution degrades at extended gradient times leading to a 
progressive increase in re-analysing the same peptide time and again (indicated by the rapid 
increase of PSMs but almost constant number of peptides, Figure 6 D). 
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Figure 6 | Run to run reproducibility, effect of LC separation time on protein identification and dynamic range.   

(A) Reproducibility and rate of protein identification across 10 replicate runs of identical samples and three LC 

gradient times. The majority of proteins is identified in 10/10 runs and further proteins are identified in 9/10, 8/10 

runs and so forth. (B) The number of identified proteins rapidly saturates with increasing numbers of replicates. (C) 

Venn diagram of proteins identified in 10 replicate runs using gradient times of 60, 110 and 225 minutes. (D) 

Median number of identified spectra, unique peptides and proteins for the 10 replicate runs and gradient times. 

(E) Intensity range (summed peptide intensity per protein divided by protein mass) of identified proteins covering 

5 orders of magnitude dynamic range. Increasing analysis time shifts the distribution towards lower signal intensity 

indicating that lower abundance proteins are identified at extended gradient times.  

The pure number of protein identifications aside, one challenge in proteomics is the 
measurement of the vast dynamic range of protein expression. The summed mass 
spectrometric intensity of peptides identified for a given protein (and normalised for protein size 
to account for the fact that large proteins generally yield more tryptic peptides than small 
proteins) can serve as a rough approximation of its relative quantity in a proteomic sample. 
Figure 5E shows this intensity distribution of proteins for the different LC gradients and the 
dynamic range spans approximately 5 orders of magnitude (4 orders of magnitude when 
removing the bottom 5% of intensities to account for difficulties in consistently detecting the 
lowest intensity signals between experiments). Interestingly, dynamic range is roughly the same 
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for all three gradient times used indicating an inherent limitation of the detection system. 
However, the same plot also shows that increasing analysis time allowed a considerably higher 
number of identifications of medium abundance proteins as judged from the shift of the 
distribution towards lower signal intensities. For analytical practice, the above observations 
collectively suggest that extending LC times might be useful for cases in which sample 
quantities are scarce but that multi-dimensional separations will likely be much more effective 
for samples of ‘unlimited’ quantities [38, 41]. 

Orbitrap Velos vs Orbitrap Elite 

The overall performance of the Orbitrap Elite instrument was assessed by comparing it to its 
highly successful predecessor, the Orbitrap Velos. The main differences between the two 
instruments are i) the high field Orbitrap analyser of the Elite essentially improving scan speed 
and dynamic range at a given resolution, ii) enhanced FT data processing leading to higher 
resolution at a given scan speed and iii) improvements to the front end ion optics leading to 
higher ion currents and thus shorter fill times and better sensitivity of the dual pressure linear ion 
trap. The results of the comparisons using 100 ng HeLa digest analysed by a 60 min LC-MS/MS 
experiment are summarized in Table 1.  

Table 1 | Comparison of performance metrics of the Orbitrap Elite and Orbitrap Velos. 

 
Orbitrap Velos, HCD Orbitrap Elite, HCD % Difference 

MS/MS scans 6,141 15,619 +154 

Proteins 797 1,313 +65 

Unique Peptides 3,540 5,730 +62 

PSMs 3,954 6,300 +59 

Scan Rate (Hz) 3.2 4.8 +50 

Dynamic Range (log) 
a)

 

3.6 3.8 +158 

    

 
Orbitrap Velos; CID normal Orbitrap Elite, CID normal % Difference 

MS/MS scans 11,132 21,949 +97 

Proteins 884 1,368 +55 

Unique Peptides 3,466 4,789 +38 

PSMs 4,074 6,423 +58 

Scan Rate (Hz) 4.8 6.3 +24 

Dynamic Range (log) 
a)

 

3.5 4.0 +316 

    

 
Orbitrap Velos, CID normal Orbitrap Elite, CID rapid % Difference 

MS/MS scans 11,132 23,781 +114 

Proteins 884 1,451 +64 

Unique Peptides 3,466 5,205 +50 

PSMs 4,074 7,069 +74 

Scan Rate (Hz) 4.8 7.1 +32 

Dynamic Range (log) 
a)

 

3.5 4.0 +316 
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Noteworthy, both instruments used identical LC systems and column and the Orbitrap Velos 
was independently optimized for proteomic samples as described in the experimental section. 
The use of the high field Orbitrap allowed increasing the number of acquired tandem mass 
spectra by 100-150%. This increase in scan speed was most pronounced for HCD experiments 
because all spectra are sequentially read out in the Orbitrap. For HCD, the overall scan rate 
was improved from 3.2 to 4.8 spectra per second. This in turn increased the number of PSMs, 
peptides and proteins by approximately 60%. The combined improvements in the instrument 
hardware also lead to a substantial performance increase in CID experiments with ion trap read 
out. The scan speed increased from 4.8 to 6.3 Hz and the number of PSMs, peptides and 
proteins increased by ~50%. The use of the new CID rapid scan mode, improved performance 
further to 7.1 spectra per second and ~60% more PSMs, peptides and proteins compared to the 
Orbitrap Velos. The above experiments also showed a very substantial increase in dynamic 
intensity range of the identified proteins (calculated as for Figure 6 E). The Orbitrap Elite 
showed an increase of dynamic range of 5-15% in log space corresponding to 150-300% in 
absolute intensity over the Orbitrap Velos (95% top intensity percentile as discussed in the 
previous section). This can in part be attributed to the faster scan speed and higher sensitivity of 
the instrument and in part to the higher inherent intra scan dynamic range of the high field 
Orbitrap analyzer [42]. This substantial increase in dynamic range is of considerable benefit for 
both protein identification (detection of more peptides) and quantification (higher signal for 
peptides). 

 

 



Elite performance evaluation | Chapter 2 
 

 

47 
 

Concluding remarks 

In this study, a hybrid linear ion trap high field Orbitrap mass spectrometer was characterised for 
proteomic applications. The very high resolution available on this instrument allows 95% of all 
peptide masses to be measured with sub ppm accuracy which, in turn, improves protein 
identification by database searching. It was further shown again that mass accuracy in tandem 
mass spectra is a valuable parameter for improving the success of protein identification without 
compromising quality. Furthermore, the new CID rapid scan type of the Orbitrap Elite shows 
similar performance to HCD fragmentation and both allow the identification of hundreds of 
proteins from as little as 0.1 ng of protein digest on column. The Orbitrap Elite outperforms its 
predecessor by a considerable margin on each metric assessed. The performance increase for 
proteomic applications is similar to that reported recently for the Q Exactive, which is a hybrid 
quadrupole Orbitrap instrument [43] confirming that the high field Orbitrap Elite is a valuable and 
versatile tool for mass spectrometry based proteomics.  
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Abbreviations 

AGC  automatic gain control 

CID  collision induced dissociation 

FASP  filter aided sample preparation 

FDR  false discovery rate 

FT  Fourier transformation 

FT-ICR Fourier transform ion cyclotron mass spectrometer 

HCD  higher energy collision induced dissociation 

LC-MS/MS liquid chromatography coupled to tandem mass spectrometry 

ppm  parts per million 

PSM  peptide spectrum match 
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Introduction 

Mass spectrometry (MS) based proteomics has become increasingly quantitative and a 
multitude of techniques have been developed for this purpose, such as label-free or stable 
isotope labeling approaches [1] [2, 3]. Chemical labeling using isobaric reagents, such as 
isobaric tags for relative and absolute quantification (iTRAQ) [4] and tandem mass tags (TMT) 
[5], have gained popularity because they enable multiplexed quantification of peptides and 
proteins (up to eight for iTRAQ and six for TMT labels). A particularity of this type of stable 
isotope labelling is that the quantification information is derived from differentially labelled 
peptide reporter ions present in the fragment ion rather than the precursor ion spectra. When 
isobaric peptide labelling was introduced, the mass spectrometric analysis mainly utilized 
collision induced dissociation (CID) on hybrid quadrupole time of flight (qTOF), TOF-TOF or 
triple quadrupole instruments because these mass analysers cover the mass range in which 
isobaric labelling reporter ions are found. This capability was later extended to ion traps which 
are important work horses of MS-based proteomics using the so-called pulsed q dissociation 
(PQD) technique [1, 6] and using beam-type CID (also referred to higher energy collision 
induced dissociation, HCD) in a multipole collision cell on recent versions of hybrid ion trap-
Orbitrap instruments [7-9]. However both PQD and HCD have their shortcomings. The 
fragmentation efficiency of PQD is rather low and reporter ion mass precision in ion traps is only 
moderate which negatively impacts on sensitivity for peptide identification and precision of 
peptide quantification. At least for the commonly used LTQ Orbitrap XL instrument, HCD also 
suffers from rather low sensitivity for peptide identification compared to the classical ion trap 
CID experiment but HCD enables efficient reporter ion generation in conjunction with high mass 
accuracy detection. Several groups have therefore recently reported data acquisition schemes 
that combine the benefits of both methods by alternating the acquisition of CID and HCD 
spectra from the same peptide precursors [7, 10]. The two tandem MS spectra are then 
combined by software and allow peptide identification and quantification from the same 
spectrum.  

Recent reports [1, 11] have shown that the accuracy of isobaric tagging based quantification is 
impaired by co-elution peptides which are co-fragmented when within the isolation window for 
selection. This results in the underestimation of accurate protein abundance, so-called ‘ratio 
compression’, and several attempts for a solution have been suggested [12-15]. In contrast, MS 
intensity-based label-free quantification approaches do not suffer from such a systematic bias. 
More over label-free strategies can provide a higher analytical depth with no principle limit in 
dynamic range or number of experiments to be compared. However, they tend to be less 
precise and a robust LC-MS setup is highly required. Regarding quantification with isobaric 
tags, it has furthermore been observed that high collision energy HCD spectra collected on an 
LTQ-Orbitrap XL instrument also contain many non-TMT signals that are nearly isobaric with 
TMT reporter ions which in turn may distort quantification accuracy depending on the mass 
tolerance used for picking and integrating TMT signals from the spectrum. In this study, it is 
shown that this signal interference issue can be easily eliminated by identifying TMT reporter 
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ions in HCD spectra not by their measured m/z values but by using the known mass differences 
between TMT reporter ions present within the same tandem mass spectrum. This leads to i) 
removal of all non-TMT signals from the spectra and ii) sub-ppm fragment ion mass errors at 
which the TMT reporter masses become unique in terms of chemical composition. The data on 
the quantification of proteins of a complex E. coli proteome as well as in a chemoproteomic 
binding assay for the kinase inhibitor lapatinib shows that the quality of peptide and protein 
quantification can be improved. This data analysis strategy is generically applicable for any 
tandem mass spectrometer and is easily implemented in software. Besides, protein 
quantification results from the improved isobaric tags were compared to results obtained with 
label-free quantification for a selectivity assay using the kinase inhibitor erlotinib in order to 
estimate the impact of ratio compression on the determination of dose-response curves of target 
proteins. Here, the label-free approach showed superior performance over TMT-based 
quantification by a higher coverage of the kinome as well as a more accurate determination of 
inhibitor potencies suggesting to use intensity-based label-free quantification for that particular 
kind of application.  
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Material and Methods 

Standard laboratory reagents were purchased from Sigma, Roth and Merck unless otherwise 
noted. The commercial bovine serum albumin digest was purchased from Michrom 
Bioresources. Lapatinib and erlotinib were purchased from LC laboratories and TMT 6-plex 
reagent from Thermo Scientific.  

Sample preparation 

Post-delivery human placenta tissue (obtained from Freising hospital following informed 
consent) was thoroughly washed with cold phosphate buffered saline (PBS) and homogenized 
in lysis buffer (50 mM Tris/HCl pH 7.5, 5% Glycerol, 1.5 mM MgCl2, 150 mM NaCl, 0.8% NP-40, 
1 mM dithiothreitol and 25 mM NaF with freshly added protease inhibitors and phosphatase 
inhibitors) using a tissue grinder. Lysates were incubated for 30 min at 4 °C and protein extracts 
were clarified by ultracentrifugation for 1 h at 145,000 x g at 4 °C. Protein concentration was 
determined by the Bradford method. 

E.coli K1β DH5α was grown aerobically at γ7 °C in LB medium. Exponentially growing cells 
were lysed by sonication in 50 mM Tris-HCl (pH 7.5) containing protease inhibitors 
(SIGMAFAST, Sigma-Aldrich, Munich, Germany). The cytosolic protein extract was reduced 
using 20 mM dithiothreitol, alkylated with 100 mM iodoacetamide and digested in solution with 
trypsin (1:50 w/w enzyme:substrate ratio, Promega Corp., Madison, WI, USA). Peptides were 
purified prior to LC-MS/MS analyses using C18 μZipTips (Millipore Corporation, Billerica, MA, 
USA) according to the manufacturer’s protocol. 

Affinity purification 

Kinobead pulldowns were performed as described previously [6]. Briefly, placenta lysates were 
diluted with equal volumes of 1x compound pulldown (CP) buffer (50 mM Tris/HCl pH 7.5, 5% 
glycerol, 1.5 mM MgCl2, 150 mM NaCl, 25 mM NaF, 1 mM dithiothreitol and freshly added 
protease inhibitors (SIGMAFAST, Sigma-Aldrich) and phosphatase inhibitors (5x phosphatase 
inhibitor cocktail1, Sigma-Aldrich, Munich, Germany, 5x phosphatase inhibitor cocktail 2, Sigma-
Aldrich, Munich, Germany, 1 mM sodium ortho-vanadate and 20 nM Calyculin A, LC 
Laboratories, Woburn, MA, USA)). If necessary, lysates were further diluted to a final protein 
concentration of 5 mg/ml using 1x CP buffer supplemented with 0.4% NP-40.  

For selectivity profiling experiments, the placenta lysates (10 mg total protein each) were pre-
incubated with 0 nM (DMSO control), 1 nM, 10 nM, 100 nM, 1 µM or 10 µM of free compound 
(lapatinib, erlotinib) on an end-over-end shaker for 45 min at 4°C. Subsequently, lysates were 
incubated with kinobeads for 1 h at 4°C. The beads were washed with 1x CP buffer and 
collected by centrifugation. Bound proteins were eluted with 2x NuPAGE LDS Sample Buffer 
(Invitrogen, Darmstadt, Germany) and eluates were reduced and alkylated by 50 mM 
dithiothreitol and 55 mM iodoacetamide. 
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Samples were then run into a 4–12% NuPAGE gel (Invitrogen, Darmstadt, Germany) for about 
0.5 cm to concentrate the sample prior to in-gel tryptic digestion. In-gel trypsin digestion was 
performed according to standard procedures. 

TMT labeling of tryptic peptides 

TMT labeling was performed as described previously [6]. Briefly, tryptic peptides were labeled 
by adding 50 μL labeling buffer (20 mM TEAB, 60% acetonitrile) containing 0.1 mg of TMT 
reagent and incubation for 1 h at room temperature. For selectivity profiles, DMSO control was 
labeled with TMT131 reagent, 1 nM, 10 nM, 100 nM, 1 µM and 10 µM conditions with TMT130, 
TMT129, TMT128, TMT127 and TMT 126, respectively. Then, 8 μL of hydroxylamine (5%) was 
added and incubated for additional 15 min to quench the reaction. 30 ng of TMT labeled BSA 
digest (TMT 126:127:128:129:130:131 = 1:2:4:8:16:32) was spiked into 6 μg TMT-labeled E.coli 
digest (1:1:1:1:1:1). For selectivity assays, equal amounts of differently labeled peptide extracts 
were mixed. Priot to LC-MS/MS analysis, peptides were purified using C18 μZipTips (Millipore 
Corporation, Billerica, MA, USA) according to the manufacturer’s protocol. 

SAX separation  

For in-depth analysis of the TMT labeled chemoproteomic sample, peptides were first separated 
to 6 fractions using strong anion exchange chromatography (SAX) prior to LC-MS/MS 
measurement [16]. Briefly, TMT-labeled peptides were separated on a pipet-based anion 
exchanger, which was prepared by stacking 6 layers of a 3M Empore Anion Exchange disk 
(Sigma-Aldrich, Germany) in a β00 μl pipet tip.  

Columns were equilibrated with 100 μl MeOH, followed by 100 μl 1M NaOH and 100 μl Britton & 
Robinson (BR) buffer pH 11 (20mM acetic acid, 20mM phosphoric acid 85 %, 20mM boric acid 
titrated with NaOH to the desired pH). Peptides were loaded in BR buffer pH 11 (flow-through 
equals first fraction) and fractions were subsequently eluted with BR buffer solutions of pH 8, 6, 
5, 4 and 3, respectively. Each flow-through was captured on a StageTip containing three layers 
of C18 One Empore disk (Sigma-Aldrich, Germany) and purified as described [17].  

LC-MS/MS measurements  

Mass spectrometry was performed on a LTQ Orbitrap XL mass spectrometer (Thermo Fisher 
Scientific, Germany) coupled to a nanoLC Ultra 1D+ liquid chromatography system (Eksigent, 
CA). Peptides were separated using an in house packed trap column (β0 mm x 75 μm RepoSil-
Pur C18, Dr. Maisch, Germany) in line with an analytical column (β00 mm x 75 μm RepoSil-Pur 
C18, Dr. Maisch, Germany). Gradient elution of TMT-labeled peptides was performed from 2 to 
28% solvent B (0.1 M formic acid in 100% acetonitrile) within 180 min or 225 min at a flowrate of 
300 nL/min. Non-labeled peptides were separated using a linear gradient from 2% to 35% 
solvent B within 225 min. The eluent was sprayed via emitter tips (PicoTip, New Objective, MA) 
using a nano-electrospray ion source (Proxeon Biosystems, DK).  
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The mass spectrometer was operated in positive ion mode. Full scan MS spectra were acquired 
in the orbitrap recording a window between 300 and 1200 m/z at a resolution of 60,000 (at m/z 
400) after accumulation to a target value of 1,000,000.  

The TMT-labeled samples were analyzed using a CID-HCD dual scan approach [7, 18]. CID of 
the five most intense ions was performed in the LTQ at a normalized collision energy of 35% 
after accumulation to a target value of 5000 for a maximum of 500 ms. Subsequently, HCD 
tandem mass spectra were triggered from the same five precursor ions. HCD ions were 
generated in the HCD collision cell using a normalized collision energy of 75%, a target value of 
30,000 and 750 ms maximal accumulation time and subsequently detected in the orbitrap at a 
resolution of 7500. Precursor ions were put on a dynamic exclusion list for 30 s. Internal 
calibration was enabled for both MS and MS/MS mode using the ion signal of (Si(CH3)2O)6 as a 
lock mass.  

Analysis of the label-free samples was performed with a top 8 CID approach using the same 
parameter settings as for TMT-labeled samples.  

Data processing 

The raw CID-HCD data was processed into Mascot searchable files (mgf) using Mascot Distiller 
(Matrix Science, UK). Two separate .mgf files were generated, each with peak processing and 
picking optimized for either peptide identification by CID or TMT quantification by HCD spectra. 
Briefly, uncentroiding of tandem MS spectra and isotope fitting was enabled for optimal CID 
scan processing (_CID.mgf). For HCD scans, peak lists were generated without further peak 
processing (_HCD.mgf). Then, the two .mgf files were merged into a single .mgf file using the 
provided Perl script (CID-HCDmerge). In short, for each HCD spectrum the TMT reporter ions 
were detected by their characteristic mass differences. The intensities of the reporter ions were 
extracted and their mass offset corrected. Further processing and visualization of the TMT 
intensities was done in MATLAB (The MathWorks, Germany). The processed reporter signals 
were pasted into the corresponding CID spectrum of the _CID.mgf file, deleting the respective 
m/z window at the same time. Resulting peak lists (_CID_cut_HCD.mgf) were searched using 
the Mascot search engine version 2.3.01 (Matrix Science, UK). Data from the BSA/E.coli 
experiment was searched against the SwissProt database version 57.15 (515,203 entries). Data 
from the human samples were searched against the human International Protein Index (IPI) 
database version 3.68 (87,061 entries). A precursor tolerance of 10 ppm and a fragment 
tolerance of 0.6 Da was used in all cases. Enzyme specificity was set to trypsin and up to two 
missed cleavage sites were allowed. TMT 6plex at N-termini and lysine residues was set as 
fixed modification and, for the lapatinib selectivity data set, also carbamidomethylation at 
cystein. Variable modifications included N-terminal acetylation, oxidation of methionine, 
phosphorylation of serine, threonine and tyrosine and pyroglutamic acid formation of glutamine 
and glutamic acid, for the BSA/E.coli experiment in addition carboxy- (BSA) and carbamido- 
(E.coli) methylation at cystein. Quantification of TMT-labeled peptides was performed by Mascot 
without any further isotope corrections or normalization (already done within the pearl script).   
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Quantitative analysis using intensity-based label-free quantification was performed by the 
Progenesis software (version 3.1; Nonlinear Dynamics, Newcastle, UK) Briefly, after selecting 
one sample as a reference, the retention times of all eluting precursor m/z values in all other 
samples within the experiment were aligned creating a large list of “features” representing the 
same peptide in each sample. Features with two to five charges were included for further 
analysis. Features with two or less isotopes were excluded. After alignment and feature filtering, 
replicate samples were grouped together, and raw abundances of all features were normalized 
to determine a global scaling factor for correcting experimental variation such as differences in 
the quantity of protein loaded into the instrument. Briefly, for each sample, one unique factor is 
calculated and used to correct all features in the sample for experimental variation as described 
previously [19]. MS/MS spectra were transformed into peak lists and exported to generate 
Mascot generic files. The Mascot generic files were searched against the protein sequence 
database IPI human (v. 3.68, 87,061 sequences) using Mascot (version 2.3.01, Matrix Science, 
London, UK). Search parameters were as follows: precursor tolerance 10 ppm, fragment 
tolerance 0.02 Da, full tryptic specificity with up to two missed cleavage sites, miss-assignment 
of the monoisotopic peak to the first 13C peak, fixed modification of carbamidomethylation of 
cysteine residues and variable modification of N-terminal protein acetylation and methionine 
oxidation. Search results for spectrum to peptide matches were exported in .xml format and 
then imported into Progenesis software to enable the combination of peptide quantification and 
identification. Peptides with mascot ion scores ≤γβ (p = 0.05 identity threshold) were filtered out, 
and only unique peptides for corresponding proteins were used for identification and 
quantification. In dose response measurements, protein quantification was performed by 
summing, the feature intensities of all unique peptides of a protein.  
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Results and Discussion 

In a typical dual CID-HCD data acquisition workflow is shown in Figure 1 including data 
obtained from a LTQ-Orbitrap XL. TMT labeled peptides are fragmented first by ion trap CID 
(Figure 1 A) and second by collision cell HCD (Figure 1 B). While the CID spectra are rich in 
peptide sequence ions, the HCD spectrum shows intense TMT reporter ion signals. The 
information from the two spectra can be combined by extracting the TMT ions from the HCD 
spectra and inserting them into the CID spectra. The resulting chimeric HCD/CID spectrum 
(panel C) can then be used for both peptide identification and quantification.  

Figure 1 | Tandem mass spectra of the TMT-labeled tryptic peptide EISDGDVIISGNK.  

Panel A: resonance type CID spectrum collected in the ion trap part of the LTQ-Orbitrap XL used in this study. The 

typical range of b- and y-type fragment ions indicative of the peptide sequence are shown. No TMT ions are 

detected owing to the so-called low mass cut-off of ion trap spectra. Panel B: high energy HCD spectrum (75% 

normalized collision energy) of the same peptide collected in the Orbitrap. Only few sequence ions are detected 

under these conditions but instead, intense TMT reporter signals are present in the low mass part of the spectrum. 

Panel C: combined CID/HCD spectrum in which the TMT ions from panel B are inserted into the CID spectrum to 

allow peptide identification and quantification from the same spectrum. Note that it generally requires first to 

remove all ions from the TMT range of the CID spectrum prior to inserting these ions from the HCD spectrum. The 

intensity of the inserted HCD ions also needs adjusting because the intensity scales of HCD and CID spectra are 

different. Both these steps are performed by the script provided. BPI: base peak intensity. 
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Interference of reporter ion signals 

In order to obtain high TMT reporter ion intensities, relatively high collision energies are often 
used (here 75% normalized collision energy). When integrating data across an LC-MS/MS 
experiment of a complex proteome, many ion signals in addition to the expected TMT reporter 
ions can be detected in this m/z range (Figure 2 A). These interfering signals are generally 
weaker than the TMT ions but still span three orders of magnitude in intensity. A noticeable but 
relatively small population of ions can be identified as TMT-labeled peptides from poorly 
calibrated HCD spectra (when using the lock mass option for calibrating MS/MS spectra which 
fails in a number of cases [10]). Another, also small population of ions can be attributed to 
ordinary peptide fragment ions with similar masses to those of TMT reporter ions (e.g. the a2 
ion of GV at 129.10288 and others). Similar ions are also observed on qTOF systems (data – 
not shown - kindly provided by Christian Frese, Marco Hennrich and Shabaz Mohammed, 
Netherlands Proteomics Centre). However, a large proportion of the observed signals in the 
TMT region of Orbitrap HCD spectra do not correspond to any plausible chemical compositions 
and may in part be attributed to artifacts related to amplifying and processing the transient 
signal of the Orbitrap [20]. Particularly puzzling is by the large ion population between m/z 126 
and 127 for which cannot be explained at present in part because it is not very reproducible and 
most of the signals do not correspond to plausible chemical compositions. When analyzing data 
from a different sample, which was labeled with a different batch of TMT, the dense ion 
population is observed between m/z 128 and 129 (data not shown).  

Enhanced reporter ion peak picking for accurate quantification 

From the observations made above, the considerable danger thus arises that the presence of 
near isobaric but non-TMT signals may distort quantification results. This source of 
quantification error is different to ones reported earlier which arise from co-selection of several 
TMT labeled peptides of similar precursor ion m/z values for fragmentation. The latter can be 
(partially) overcome by narrow precursor selection, MS3 experiments or by estimating the 
contribution of each co-selected precursor to the total TMT signal [1, 9, 21]. In order to 
overcome the separate issue of near isobaric signal interference, it was evaluated if TMT ions 
can not only be identified in tandem mass spectra by their expected m/z value (+/- a tolerated 
error) but instead by the precisely known mass differences between the individual TMT 
channels (Figure 2 A). The simple rational behind this approach, and which is also often used in 
de-novo peptide sequencing [22], is that the observed mass differences within a single tandem 
mass spectrum are often more accurate than the actual calibration of this spectrum. In this 
case, TMT ions can be identified from even very poorly calibrated spectra. The only prerequisite 
for this to work is the detection of at least two TMT channels in one tandem MS spectrum.  
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Figure 2 | Identification of TMT ions by mass difference processing.  

Panel A: Raw data intensity profile of the TMT mass region of HCD spectra across a complete LC-MS/MS run. The 

six TMT signal clusters are clearly visible and span four orders of magnitude in intensity. Satellite clusters are 

observed for most TMT channels. These ions represent genuine TMT peptides for which the lock mass calibration 

failed and other genuine peptide fragment ions that happen to have a very similar mass. There are many additional 

signals that cannot be attributed to any plausible chemical composition and which can distort the quantification. 

The median mass error for the six TMT channels in this data set is between 2.1 and 3.3 ppm. The median mass 

difference between adjacent TMT ions within the same HCD spectrum is between 105 and 165 µDa. The 

theoretical mass difference between TMT channels is also given for reference. Panel B: Result of the mass 

difference processing step. TMT ions are first identified by their known mass differences from within each HCD 

spectrum. This removes all non-TMT signals from the data. Second, the TMT signals are recalibrated using the 

known masses of the individual TMT reporter ions, which improves mass error to between 0.5 and 0.8 ppm. Both 

these steps are performed by the provided script. 

When processing the data shown in Figure 2 A using this idea, it turns out that the mass 
differences between TMT signals within a single spectrum are measured within 0.1-0.2 mDa 
regardless of whether or not the tandem mass spectrum is properly calibrated. The detection of 
any of the 15 possible TMT pairs (using any pair-wise combination of the six TMT channels) 
thus allows their assignment as bona fide TMT ions. At the same time, any ions without a 
pairing partner are recognized as non-TMT and can, therefore, be removed without losing 
quantification information. Furthermore the masses of the detected TMT ions can be 
recalibrated to improve mass accuracy. Figure 2B shows the result of this processing: indeed, 
all of the non-TMT signals are removed and the poorly calibrated TMT spectra are recovered. 
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Prior to this mass difference processing, TMT reporter ions were detected with a median mass 
error of 2.9 ppm while after mass difference processing, this figure was improved to 0.5-0.8 
ppm. At this mass error, all TMT reporter ion masses are unique in terms of chemical 
composition and thus enable unambiguous assignment. It should be noted that in the present 
case, a median mass error of 2.9 ppm is already very good. If however, the lock mass option for 
the calibration of tandem MS spectra fails to detect a lock mass, the instrument default 
calibration is used instead and, consequently, the mass error in these spectra increases 
typically to 5-15 ppm depending on how old the current default calibration is. This level of mass 
error is also typically observed on modern quadrupole TOF instruments. The utility of the mass 
difference processing method described here will therefore also be of considerable value on 
instruments other than the one used in this study. 

Figure 3 | Application of the method to the quantification of complex proteomes.  

A two-fold dilution series of TMT-labeled BSA digests (32:16:8:4:2:1) was spiked into a background of a TMT-

labeled cytosolic E.coli digest (1:1:1:1:1:1) and analyzed by LC-MS/MS using a top5 CID and top5 HCD tandem MS 

method on the same peptide precursor ions. Panel A: data quantification results without mass difference 

processing Panel B: same data as in panel A but processed using the mass difference method. E.coli proteins are 

closer to the expected 1:1 ratios and the quantification of BSA extends to the lowest dilution (32:1). Panel C: 

Selectivity profiling data of the kinase inhibitor lapatinib. At a dose of 1 µM, only the known target proteins EGFR 

and ERBB2/4 show the expected significant inhibition of binding to kinobeads. This data was processed using the 

mass difference method. 
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Application of the mass difference analysis strategy 

The mass difference processing method was applied to the analysis of two complex proteomes. 
The first was a controlled experiment in which a two-fold dilution series of a TMT labeled BSA 
digest (expected TMT ratios of 0.5:0.25:0.125:0.0625:0.03125) was spiked into an E. coli 
cytosolic digest in which equimolar quantities of all six TMT labels were combined (expected 
TMT ratios for all proteins 1:1:1:1:1:1). Figure 3 shows the quantification data without (panel A) 
and with (panel B) the mass difference processing. As one might expect, the improvements for 
the E. coli proteins are quite moderate but the mass difference processed data shows better 
overall quantification accuracy (all bars closer to the expected 100%) but the overall variation for 
quantification is still around 20%. As one also might expect, the quantification of BSA is 
improved for the largest dilution step because here, the presence of interfering ions would have 
the strongest effect on quantification. Figure 3 C shows the application of the mass difference 
processing approach for the selectivity profiling of the kinase inhibitor lapatinib using a chemical 
proteomics approach [6]. Briefly, cell lysates are incubated with a kinase inhibitor (here 1µM) 
and subsequently with the kinobeads affinity matrix that consist of immobilized broad spectrum 
kinase inhibitors and which is used to capture kinases from the lysates. TMT labeled samples 
from kinases captured in the presence and absence of the drug are analyzed by LC-MS/MS 
using the CID/HCD approach described above. The data clearly shows, that at 1µM of lapatinib, 
only the known lapatinib targets EGFR and ERBB2/4 show significant inhibition of binding to the 
beads while most other kinases show no or only moderate binding inhibition. 

Comparison of TMT-based and label-free quantification 

For the selectivity profiling of small molecule kinase inhibitors it s highly important to achieve 
good quantification accuracy over a high dynamic range combined with the best possible 
coverage of the kinome. With this, a precise curve fitting and IC50 determination of the dose-
dependent reduction of binding of the inhibited target proteins over a wide range of kinases is 
possible. Isobaric tags in combination with the above described analysis strategy provides 
excellent mass accuracy and thereby improves the quality of peptide and protein quantification. 
Nevertheless, ratio compression of co-elution peptides diminish the absolute dynamic range and 
multiplexing generally leads to less identifications partly due to a higher spectral complexity [23]. 
Reduction of the sample complexity through fractionation has been shown to have a beneficial 
effect [12] as well as the reduction of undesired high charge states [23]. Also label-free 
quantification approaches recently became a very popular alternative, though the independently 
performed experimental steps may introduce higher systematic and non-systematic variations, 
leading to less accurate quantification [24].  

For a performance evaluation of the two quantification strategies, a competition binding assay of 
the dual EGFR/HER2 kinase inhibitor erlotinib was directly compared in triplicate analysis. 
Briefly, kinase enrichment using kinobeads was performed after pre-incubation of separate 
placenta lysates with increasing concentrations of the erlotinib. Proteins were eluted from 
kinobeads and in-gel digested with trypsin into peptides.  



Chapter 3 | Quantitative mass spectrometry 
 

 

66 
 

 

Figure 4 | Comparison of TMT labelling and intensity-based label-free quantification for chemical proteomics.  

An erlotinib competition binding assay using the kinobead technology was analyzed in triplicates. (A) Number of 

protein kinases identified and quantified with each quantification method. The label-free approach leads to 30% 

more identifications. (B) Variation of protein quantification. Overall CV of protein quantification of 11% for TMT 

and 24% for label-free quantification were obtained. (C-E) IC50 curves of targets identified by TMT (red) and label-

free (green) quantification. (F) Additional protein kinase targets exclusively identified by the label-free approach. 
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The samples were then split into two equal portions and one was directly subjected to LC-
MS/MS for label-free quantification using MS1 peak abundances. The other half of the sample 
was subjected to isobaric labelling using TMT 6plex reagent. Labeled samples were combined 
and one third was directly analyzed by LC-MS/MS using the dual CID-HCD acquisition 
approach. The remaining TMT-labeled sample of the triplicates was pooled and separated into 
six fractions using strong anion exchange chromatography prior to LC-MS/MS measurement. 
For the TMT-labeled samples, the above described data analysis strategy was applied. Label-
free quantification was achieved by analysis with the Progenesis software.  

Protein coverage and quantification reproducibility 

In the label-free setup, a total of 795 proteins including 134 protein kinases (on average 612 
proteins and 105 kinases) were identified and quantified from the triplicate analysis with about 
70% and 65% reproducibility of identification between the three replicate, respectively. The 
directly analyzed TMT labeled sample identified 103 protein kinases out of a total of 312 
proteins with about 55% of kinases and 70% of proteins identified in all three replicates 
(Figure 4 A). For selectivity screening of drugs, a broader coverage of the target space is 
generally favoured as obtained selectivity profile is more complete and the chance to identify 
new possible targets is higher. In terms of quantification, the large majority of ratios of the 
different concentrations of the drug to the vehicle control should be 1:1 since erlotinib is 
described as a very selective inhibitor. TMT labelling provided a higher accuracy of 
quantification with a coefficient of variation of 0.11 compared to 0.24 for the label-free 
quantification method (Figure 4 B). The higher precision for the TMT labelled samples may 
partly be attributed to the stringent filter criteria applied by the data processing script. However, 
this less variation was expected for TMT labelled samples since stable isotope labelling 
strategies are known to provide a very high accuracy [24].  

Dose-response and IC50 determination 

The most important goal in this kind of selectivity profiling is the determination of competition 
binding curves of the inhibitor for those protein targets that can be identified and further potency 
of the inhibition by calculation of the half-maximal binding concentration (IC50). Accurate 
quantification is thereby highly required for a good correlation upon curve fitting. In order to 
evaluate the suitability of the two quantification strategies for competition binding assays to 
obtain accurate half-maximal binding concentrations, the determined IC50 values upon curve 
fitting were compared (Figure 4 C-E).  A reduction in binding was observed for the primary 
target EGFR as well as for the cyclin G-associated kinase (GAK) and the receptor-interacting 
serine/threonine-protein kinase 2 (RIPK2), both known binders to the drug. Regarding the 
determined IC50, significantly lower values could be calculated from the label-free strategy. For 
example, an IC50 value of 90.67 nM was obtained for EGFR with label-free quantification, in 
contrast, the TMT approach resulted in more than 10x higher value of 1.2 μM. Similar 
differences were received for GAK (LF-IC50:: 11.2 nM, TMT- IC50:: 73.4 nM) and for RIPK2 
(LF-IC50:: 298.6 nM, TMT- IC50:: >10 μM). This shift to higher values in the TMT-labeled samples 
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can be explained by a high peptide interference of co-fragmented peak during data acquisition 
which can be reduced by an altered acquisition method [1, 21] or post-acquisition by correction 
of the interference signal during data analysis[25].  

In addition to the weaker potencies obtained by TMT-based quantification, additional kinases 
with reduced binding were found in the label-free data, namely the integrin-linked kinase (ILK; 
IC50: 18.4 nM), the dual specificity mitogen-activated protein kinase kinase 5 (MAP2K5; 
IC50: 32.6 nM) and, with weak effect, the fibroblast growth factor receptor (FGFR; IC50: not 
determined). The detection of these possible new targets could only be achieved due to the 
broader coverage of the kinome by the label-free approach since those kinases could not be 
identified in the TMT-labeled sample. The effect of a significantly reduced number of peptide 
and protein identification with TMT and iTRAQ, especially with increasing multiplexity, is 
commonly known. Thringholm et al found isobaric labelled peptides to have an increased 
average charge state and showed that the identification efficiency could be increased by 
reversing the enhanced charge state effect of labelled peptides [23].  

Figure 5 | Evaluation of pre-fractionation of TMT-labeled sample for chemoproteomics binding assays. 

An erlotinib competition binding assay was quantified by direct analysis of TMT-labeled sample (TMT), TMT-

labeling with subsequent SAX separation into six fractions (TMT-SAX), and label-free quantification (LF). (A) 

Number of protein kinases identified and quantified with each quantification method. (B) IC50 curves of the 

primary target EGFR obtained from analysis with each quantification method.  

Evaluation of pre-fractionation of kinase identification and IC50 

determination 

An alternative to overcome the reduced identification events for isobaric tagging methods and at 
the same time decrease interfering signals by co-eluting peptides is the reduction of sample 
complexity though fractionation. This was achieved by tip-based strong anion exchange (SAX) 
separation of the TMT-labeled into six fractions (TMT-SAX). SAX separation was performed in 
single analysis which is why the results were compared against only one replicate of the above 
described competition binding experiments. In terms of number of identifications, fractionation 
could partly recover the lower identification rate of isobaric labeled samples. The analysis 
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resulted in the identification of 74 kinases (194 proteins) for TMT, 95 kinases (363 proteins) for 
TMT-SAX and 114 kinases (605 proteins) for label-free (Figure 5 A). Unfortunately the issue of 
ratio compression remained almost the same and no obvious improvements in obtained binding 
curves and subsequent IC50 determination have been received (Figure 5 B).  
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Concluding remarks 

Collectively, the data shows that the identification of TMT reporter ions in high energy HCD 
spectra by intra-spectrum mass differences has merit because it eliminates all non-TMT ions 
from such spectra, improves the mass accuracy of the resulting data and leads to some 
improvement for the quantification of proteins in complex proteomes. The same approach can 
also be taken for iTRAQ labeled samples or indeed for any isobaric tagging strategy. In addition, 
this data processing idea is generically useful for high-resolution mass spectrometry platforms 
and can easily be extended to other applications (e.g. the detection of post-translationally 
modified peptides such as glycopeptides using specific fragment ion combinations, identification 
of immonium ions etc.). The processing is also easily implemented in software. In fact, the 
vendor of the Orbitrap mass spectrometry system used in this study has agreed to incorporate 
the mass difference processing in one of the upcoming versions of the Proteome Discoverer 
(Bernard Delange, personal communication). 

Besides, a general comparison of TMT-based and label-free quantification for the use in 
selectivity profiling of kinase inhibitors by chemoproteomic competition binding assays revealed 
a higher better coverage and more accurate determination of binding potencies in the 
investigated setup.  
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BSA  bovine serum albumin 

CID  collision induced dissociation 

HCD  higher energy collision induced dissociation 

IC50  half maximal inhibitory concentration 

iTRAQ  isobaric tags for relative and absolute quantification 

LC-MS/MS liquid chromatography coupled to tandem mass spectrometry 

MS  mass spectrometry 

ppm  parts per million 

PQD  pulsed Q dissociation 

qTOF  quadrupole time-of-flight mass spectrometer 

SAX  strong anion exchange chromatography 

TMT  tandem mass tag 

TOF  time-of-flight 
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Introduction 

Protein kinases play a pivotal role in signal transduction and therefore are attractive drug targets 
in diseases such as cancer and inflammation [1-5]. To date, about 20 small molecule drugs are 
approved for clinical use (all in oncology) and several hundred further compounds are under 
investigation in clinical trials [6]. Most of these agents exert their inhibitory effects via binding to 
the structural highly conserved ATP-binding pocket within the kinase domain. As a result, kinase 
inhibitors (KIs) are likely to target multiple protein kinases or ATP-hydrolysing/binding enzymes 
making the discovery of truly selective inhibitors a formidable challenge. In a physiological 
context, off-targets may lead to undesired side effects but may also increase the therapeutic 
potential of a drug. Hence, determining an inhibitor’s full protein selectivity profile is important for 
the correct interpretation of its biological effects on a cellular and organismal level. Traditional 
methods to assess the selectivity of kinase inhibitors are based on in vitro kinase activity assays 
using large panels of recombinant kinases [7-9]. Despite being powerful and widely used, these 
panels have shortcomings: notably, they mostly utilize an exogenously expressed catalytic 
kinase domain thus ignoring regulatory sequence elements present in the full length protein, 
activity regulating post-translational modifications and the influence of further proteins and co-
factors present in cells [10, 11]. 

To complement such in-vitro assays, affinity based chemical proteomic methods have been 
developed to allow for a more unbiased analysis of a drug’s potential to interact with kinases or 
other cellular proteins. One of such successful approaches makes use of immobilized low 
selectivity kinase inhibitors for the specific enrichment of a large subset of the native kinome 
and other nucleotide binding proteins directly from cell or tissue extracts of biological 
significance (exemplified by the kinobead technology) [12-16]. Kinobeads enable differential 
profiling of kinase expression in cells and tissues and, when configured as a competition binding 
assay in conjunction with quantitative mass spectrometry, allows for the determination of the 
selectivity of a small molecule kinase inhibitor against hundreds of proteins in a single 
experiment [17-20]. Despite conceptual advantages, chemical proteomic methods also have 
shortcomings, notably incomplete coverage of the kinome. For example, the published kinobead 
method [12], which uses a mixture of seven immobilized kinase inhibitors, does not effectively 
address AKT kinases due to the lack of suitable affinity probes. The serine/threonine kinase 
AKT, also known as protein kinase B, belongs to the AGC subfamily of protein kinases and is a 
key mediator of cell growth, proliferation and apoptosis [21, 22]. Aberrant activation of the AKT 
pathway has been identified in a wide variety of human cancers including tumours of the breast, 
prostate, ovaries and skin [23-26]. Therefore, inhibiting AKT activity is viewed as an attractive 
therapeutic approach and several small molecule inhibitors targeting this enzyme have been 
reported and are being tested in the clinic [27-29]. Given the above shortcomings, developing a 
chemical affinity probe targeting AKT and structurally related kinases is desirable in order to 
expand the kinome coverage of kinobeads. This was achieved by retro engineering the potent 
and reasonably selective AKT inhibitor GSK690693 [27] into a broad kinase binder. In 
combination with the previous version of kinobeads, the new AKT probe enabled the 
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determination of selectivity profiles of the ATP-competitive AKT inhibitors GSK690693 and 
GSK2141795 [30] and to identify a number of off-targets which may be responsible for desired 
and undesired biological effects. In addition, the target profile of the allosteric AKT inhibitors 
perifosine [31] and MK-2206 [32], both targeting the pleckstin homology (PH) domain of AKT, 
were determined in a kinobead competition assay exhibiting a direct inhibitory effect on AKT 
and some possible off-targets.  
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Material and Methods 

Sample preparation 

Post-delivery human placenta tissue (obtained from Freising hospital following informed 
consent) was thoroughly washed with cold phosphate buffered saline (PBS) and homogenized 
in lysis buffer (50 mM Tris/HCl pH 7.5, 5% Glycerol, 1.5 mM MgCl2, 150 mM NaCl, 0.8% NP-40, 
1 mM dithiothreitol and 25 mM NaF with freshly added protease inhibitors and phosphatase 
inhibitors) using a tissue grinder. Lysates were incubated for 30 min at 4 °C and protein extracts 
were clarified by ultracentrifugation for 1 h at 145,000 x g at 4 °C. Protein concentration was 
determined by the Bradford method. 

K562, Colo205, HCC827 and SR cells were cultured in Roswell Park Memorial Institute 1640 
medium (RPMI1640) medium, SKNBE2 and SKOV3 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) and OVCAR8 and Malme3M cells were cultured in Iscove´s modified 
Dulbecco´s medium (IMDM), all supplemented with 10% fetal bovine serum (FBS). Cells were 
cultured in humidified air supplemented with 5% CO2 at 37 °C. Cells were washed with cold 
phosphate buffered saline (PBS) and harvested by lysis using 50 mM Tris/HCl pH 7.5, 5% 
Glycerol, 1.5 mM MgCl2, 150 mM NaCl, 0.8% NP-40, 1 mM dithiothreitol and 25 mM NaF with 
freshly added protease inhibitors and phosphatase inhibitors (5x phosphatase inhibitor 
cocktail1, Sigma-Aldrich, Munich, Germany, 5x phosphatase inhibitor cocktail 2, Sigma-Aldrich, 
Munich, Germany, 1 mM Na3VO4 and 20 nM Calyculin A, LC Laboratories, Woburn, MA, USA). 
Protein extracts were clarified by ultracentrifugation for 1 h at 145,000 x g at 4 °C and protein 
concentration was determined by the Bradford method.  

Compound coupling 

Compounds were immobilized on sepharose beads through covalent linkage using primary 
amino (compound) and carboxyl groups as described previously [12]. One ml of NHS-activated 
sepharose (GE Healthcare, Freiburg, Germany) and the compound (2µmol/mL) were 
equilibrated in DMSO. 15 μl of triethylamine was added to start the coupling reaction and the 
mixture was incubated on an end-over-end shaker for 16-20 h in the dark. Free NHS-groups on 
the beads were blocked by adding 50 μl amino ethanol and incubation on an end-over-end 
shaker for 16-20 h in the dark. Coupled beads were washed and stored in isopropanol at 4°C in 
the dark. The coupling reaction was monitored by HPLC.  

Compound deprotection 

Sepharose beads (2 µmol/mL; 1mL) functionalized with oNBS protected compound were 
washed and equilibrated in DMF. For the deprotection reaction, NMP (2 mL), DBU (1.5 mL) and 
mercapto ethanol (1.5 mL) were added and incubated on an end-over-end shaker for 15 min at 
room temperature. Subsequently, beads were washed and stored in isopropanol at 4°C in the 
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dark.  

Affinity purification 

AKT probe and kinobead pulldowns were performed as described previously [12]. Briefly, 
lysates of a cell mix were diluted with equal volumes of 1x compound pulldown (CP) buffer (50 
mM Tris/HCl pH 7.5, 5% glycerol, 1.5 mM MgCl2, 150 mM NaCl, 25 mM NaF, 1 mM dithiothreitol 
and freshly added protease inhibitors and phosphatase inhibitors (5x phosphatase inhibitor 
cocktail1, Sigma-Aldrich, Munich, Germany, 5x phosphatase inhibitor cocktail 2, Sigma-Aldrich, 
Munich, Germany, 1 mM sodium ortho-vanadate and 20 nM Calyculin A, LC Laboratories, 
Woburn, MA, USA)). If necessary, lysates were further diluted to a final protein concentration of 
5 mg/ml using 1x CP buffer supplemented with 0.4% NP-40.  

For selectivity profiling experiments, the lysates (5 mg total protein each) were pre-incubated 
with 0 nM (DMSO control), 2.5 nM, 25 nM, 250 nM, 2.5 µM or 25 µM of free compound 
(GSK690693, GSK2141795) on an end-over-end shaker for 45 min at 4°C. Subsequently, 
lysates were incubated with beads (coupled AKT probe or kinobeads) for 1 h at 4°C, for both 
qualitative and quantitative experiments. The beads were washed with 1x CP buffer and 
collected by centrifugation. Bound proteins were eluted with 2x NuPAGE LDS Sample Buffer 
(Invitrogen, Darmstadt, Germany) and eluates were reduced and alkylated by 50 mM 
dithiothreitol and 55 mM iodoacetamide. 

Samples were then run into a 4–12% NuPAGE gel (Invitrogen, Darmstadt, Germany) for about 
0.5 cm to concentrate the sample prior to in-gel tryptic digestion. In-gel trypsin digestion was 
performed according to standard procedures. 

LC-MS/MS measurements 

Nanoflow LC-MS/MS was performed by coupling an Eksigent nanoLC-Ultra 1D+ (Eksigent, 
Dublin, CA) to a LTQ-Orbitrap XL ETD (Thermo Scientific, Bremen, Germany). Peptides were 
delivered to a trap column (100 μm×β cm, packed in-house with Reprosil-Pur C18-AQ 5 µm 
resin, Dr. Maisch, Ammerbuch, Germany) at a flow rate of 5 µL/min in 100% solvent A (0.1% 
formic acid in HPLC grade water). After 10 min of loading and washing, peptides were 
transferred to an analytical column (75µm×40 cm, packed in-house with Reprosil-Pur C18-AQ, 3 
µm resin, Dr. Maisch, Ammerbuch, Germany) and separated using a 210 min gradient from 7% 
to 35% of solvent B (0.1% formic acid in acetonitrile) at 300 nL/minute flow rate. The LTQ 
Orbitrap XL was operated in data dependent mode, automatically switching between MS and 
MS2. Full scan MS spectra were acquired in the Orbitrap at 60,000 (m/z 400) resolution after 
accumulation to a target value of 1,000,000. Internal calibration was performed using the ion 
signal (Si(CH3)2O)6 H+ at m/z 445.120025 present in ambient laboratory air. Tandem mass 
spectra were generated for up to eight peptide precursors in the linear ion trap for fragment by 
using collision-induced dissociation at a normalized collision energy of 35% after accumulation 
to a target value of 5,000 for max 500 ms. 

Measurements using the Orbitrap Elite (Thermo Scientific, Bremen, Germany) employed the 
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same LC conditions as described and similar data acquisition parameters. Full scan MS spectra 
were acquired in the Orbitrap at 30,000 resolution. Tandem mass spectra were generated for up 
to 15 peptide precursors for fragment by using higher energy collisional dissociation (HCD) at 
normalized collision energy of 30% and a resolution of 15,000 with a target value of 100,000 
charges after accumulation for max 100 ms. 

Peptide and protein identification and quantification 

For qualitative analysis, raw MS data files were converted to peak lists using Mascot Distiller 
(version 2.3.0, Matrix Science, London, UK) and searched against the IPI human database 
(v3.68, 87,061 sequences) using the Mascot search engine (version 2.3.0, Matrix Science, 
London, UK) and the following parameters: precursor tolerance 10 ppm, fragment tolerance 
0.6(0.02) Da (for CID (HCD) data), full tryptic specificity with up to two missed cleavage sites, 
miss-assignment of the monoisotopic peak to the first 13C peak, carbamidomethylation of 
cysteine residues was set as fixed modification and methionine oxidation as a variable 
modification. The database search results were imported into Scaffold (version 3.6.2, Proteome 
Software, Portland, OR) for further evaluation.  

Quantitative analysis using intensity-based label-free quantification was performed by the 
Progenesis software (version 3.1; Nonlinear Dynamics, Newcastle, UK) Briefly, after selecting 
one sample as a reference, the retention times of all eluting precursor m/z values in all other 
samples within the experiment were aligned creating a large list of “features” representing the 
same peptide in each sample. Features with two to five charges were included for further 
analysis. Features with two or less isotopes were excluded. After alignment and feature filtering, 
replicate samples were grouped together, and raw abundances of all features were normalized 
to determine a global scaling factor for correcting experimental variation such as differences in 
the quantity of protein loaded into the instrument. Briefly, for each sample, one unique factor is 
calculated and used to correct all features in the sample for experimental variation according to 
Hauck et al. [33]. MS/MS spectra were transformed into peak lists and exported to generate 
Mascot generic files. The Mascot generic files were searched against the protein sequence 
database IPI human (v. 3.68, 87,061 sequences) using Mascot (version 2.3.0, Matrix Science, 
London, UK). Search parameters were as follows: precursor tolerance 10 ppm, fragment 
tolerance 0.02 Da, full tryptic specificity with up to two missed cleavage sites, miss-assignment 
of the monoisotopic peak to the first 13C peak, fixed modification of carbamidomethylation of 
cysteine residues and variable modification of N-terminal protein acetylation and methionine 
oxidation. Search results for spectrum to peptide matches were exported in .xml format and 
then imported into Progenesis software to enable the combination of peptide quantification and 
identification. Peptides with mascot ion scores ≤γβ (p = 0.05 identity threshold) were filtered out, 
and only unique peptides for corresponding proteins were used for identification and 
quantification. In dose response measurements, protein quantification was performed by 
summing, the feature intensities of all unique peptides of a protein.  
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Results and Discussion 

Design and synthesis of affinity probes targeting AKT and AGC family 

kinases 

The potent ATP-competitive AKT inhibitor GSK690693 (Figure 1 A) was chosen as starting 
point for the design of chemical affinity probes as this compound inhibits all three isoforms of 
AKT (1, 2, 3) at low nanomolar concentrations and further shows potent activity against a 
number of AGC family members as well as other protein kinases [27]. For affinity probes 
intended for KI selectivity profiling, low kinase selectivity (but potent binding) is desirable in 
order to enable the measurement of many kinases simultaneously. The merits of three linkable 
compounds were therefore explored (Figure 1 A): probe 1 corresponds to the parental 
compound which can be immobilized via its secondary amine. Considerations leading to the 
design and synthesis of probe 2 and probe 3 (Synthetic schemes, detailed procedures and 
characterization of synthesized compounds can be found online in the Supporting Information: 
(http://pubs.acs.org/doi/suppl/10.1021/pr400455j) were based on the co-crystal structure of 
GSK690693 and the kinase domain of AKT2 (PDB code: 3DOE) as well as the described 
structure activity relationship (SAR) of GSK690693 [27]. The inhibitor occupies the ATP binding 
pocket with the 1,2,5-oxidazole moiety located in the hinge region. Several inter- and 
intramolecular hydrogen bonds of the 1,2,5-oxidazole and the imidazopyridine ring, together 
with hydrophobic interactions with the glycine rich loop, provide strong interactions between the 
kinase and the inhibitor. Furthermore, the alkynol group at position C4 of the imidazopyridine 
core is located in the back cleft pocket and improves potency for AKT and, importantly, 
selectivity against other kinases of the AGC family [27]. The piperidinyl side chain is exposed to 
the solvent and also provides hydrogen bonding to the carboxylic acid side chain of Glu 236 in 
the substrate binding area of AKT. This feature makes this side of the molecule attractive for 
modification with a linker provided that the basicity of the amino group can be kept intact. 
Structural and SAR information together would predict that probe 3 should be more selective for 
AKT than probe 2. 

Protein binding profiles of AKT probes 

The protein binding profiles of the three immobilized compounds (probe 1, 2 and 3) were 
assessed in pulldown experiments using lysates of human placenta followed by mass 
spectrometry for protein identification. A triplicate analysis resulted in the identification of 
204 proteins (6 kinases) for probe 1, 347 proteins (50 kinases) for probe 2 and 458 proteins 
(11 kinases) for probe 3. This clearly identified probe 2 as the most effective kinase binder, and 
in fact the only one capable of capturing all three isoforms of AKT. Visualization of the identified 
kinases on the phylogenetic kinome tree (Figure 1 B) revealed that probe 2 captures a 
considerable number of further AGC kinases as well as members of the CMGC and CAMK 
kinase families. 
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Figure 1 | Comparison of AKT affinity matrices.  

(A) Chemical structures of the AKT inhibitor GSK690693 and the affinity probes 1-3 immobilized on sepharose 

beads. (B) Kinome-tree representing the different classes of kinases enriched by probe 1 (blue), probe 2 (red) and 

probe 3 (green). The size of the circle reflects the number of unique spectra assigned to a kinase and serves as 

semi quantitative measure for the quantity of an enriched kinase. 

The broad kinase binding profile can be rationalized i) by the high structural conservation of the 
kinase domain and ATP binding pocket within the AGC family and ii) by the removal of the 
alkynol moiety which was previously shown to improve selectivity e.g. against ROCK and RSK 
[27]. Probes 1 and 3 were ineffective in capturing AKT and also captured only few other 
kinases. This may not be surprising for probe 1 as the basicity of the secondary amine of the 
piperidinyl side chain present in GSK690693 and important for AKT binding is not preserved in 
the immobilized configuration. The fairly low degree of kinase binding may be rationalized by the 
rather short and bulky group attaching the compounds to the beads which may prevent the 
molecule to reach deep enough into the ATP binding pocket. This argument does not apply for 
probe 3 as its linker is the same as that of probe 2. Instead, it is possible that the functional 
alkynol group cannot efficiently penetrate the very narrow opening into the back pocket of the 
ATP binding site of kinases so that even small conformational changes in the compound and/or 
the native, full length protein structure might considerably impair proper binding. It is noteworthy 
though that probe 3 appears to be an effective binder for the phosphatidylinositol kinase PI4KA, 
a lipid kinase that has recently been implicated in hepatitis C replication in human cells [34]. 

N

O N

NH2

N

N N

O

OH

N

O

N

O N

NH2

N

N N

O
N
H

O
O

H
N

O

N

O N

NH2

N

N N

O
N
H

O
O

H
N

OH

O

probe 1

probe2

probe3

© Cell Signaling Technology

probe 1

probe 2

probe 3

A B

N

O N

NH2

N

N N

O

OH

NH

GSK690693



Chapter 4 | Characterization of chemical affinity probes 
 

 

84 
 

Apart from kinases, the three probes bind to multiple other proteins. This is not unusual as 
proteins may bind unspecifically to the beads but also because the immobilised KIs are ATP 
mimetics which have the potential to bind nucleotide binding proteins of which there are many 
hundreds in mammalian cells. Gene ontology (GO) analysis of the identified proteins (Figure 2) 
reveals that all probes do bind a considerable number of these proteins as well as further 
RNA/DNA binding proteins. Using the number of unique tandem mass spectra of identified 
proteins as a semi-quantitative measure for protein abundance, it can be noted that about two 
thirds of the total proteins binding to probe 2 can be rationalized by one of the aforementioned 
GO categories. In contrast, less than one third of these proteins explain the binding profiles of 
probes 1 and 3. 

 

Figure 2 | Gene ontology (GO) term analysis (molecular function) for proteins identified by the affinity probes 

shown in Figure 1 of the main manuscript.  

(A-C) distribution of the number of proteins binding to probes 1-3 respectively across GO categories. Probe 2 

clearly identifies the largest number of kinases and nucleotide binding proteins. (D-E) distribution of protein 

quantities binding to probes 1-3 respectively (semi-quantitative measure using the number of unique identified 

tandem mass spectra) across GO categories. Almost half of the protein amount binding to probe 2 can be 

rationalized by the GO categories kinase activity and nucleotide binding.  
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Figure 3 | CoŵparisoŶ of the eŶriĐhŵeŶt profiles of kiŶoďeads without ;KBαͿ aŶd with ;KBβͿ the additioŶ of 
probe 2.  

The heat map shows the identified kinases using the number of unique spectra as a semi quantitative for the 

quantity of an enriched kinase. The darker the color, the more abundant the enriched kinase. The addition of 

probe 2 adds significantly to the kinome coverage of kinobeads. 

Having established that probe 2 is an effective affinity tool for capturing protein kinases notably 
of the AGC branch, next it was investigated if the probe would extend the kinome coverage of 
kinobeads as published by Bantscheff et al. [12]. For this purpose, pulldown experiments (in 
triplicate) were performed from lysates of human placenta either using kinobeads as published 
(seven immobilized compounds, KBα) or kinobeads supplemented with probe β (KBȕ). In 
pulldowns using KBα, 1γ0 kinases (total of 860 proteins, Figure 3, Figures 4) were identified 
and KBȕ pulldown experiments lead to the identification of 1γ9 kinases out of a total of 815 
proteins. As expected, more than 80% of the protein kinases were identified in both 
experiments. Twenty-three kinases (15 from the AGC family) were exclusively found in the KBȕ 
experiment (Figure 4 B, C) and members of the AGC family were present in significantly higher 
amounts on KBȕ compared to KBα (Figure 4). The 14 kinases exclusively identified on KBα 
originate from many different areas of the kinome tree and these hits were mostly identified with 
few spectra thus representing kinases with either low affinity to the kinobeads or kinases of very 
low abundance in the sample. Taken together, probe 2 both qualitatively and quantitatively adds 
to the published version of the kinobeads which is why this chemical affinity tool was used for all 
subsequent experiments. 
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Figure 4 | Comparison of the kinase enrichment profiles of KBα aŶd KBβ part I.  

Number of proteins (A) and protein kinases (B) identified with each version of the kinobeads. (C) Kinometree 

representing the different classes of kinases enriched ďy the KBα (ďlueͿ and KBβ (redͿ.  

Evaluation of a cell line mixture for kinome-wide selectivity  

For kinome profiling and in particular for selectivity profiling assays of kinase inhibitors, the best 
possible coverage of the kinome is highly desirable. Despite the lack of sufficient affinity probes, 
also the finite set of kinases expressed by a single cell line or type of tissue limits the accessible 
kinome for affinity purification. A combination of several cell lines as protein source increases 
the number of available kinases in the lysate and thereby may enhance the kinome coverage.  

For this purpose, suitable cancer cell lines that were most diverse in the set of kinases 
expressed (based on data from a NCI60 panel study [35] and other projects run in the 
laboratory) were selected for the generation of a cell line mix. Overall, 9 different cell lines (A431 
(vulva), Colo205 (colon), HCC827 (lung), K562 (blood), Malme3M (skin), OVCAR8 (ovary), 
SKNBE2 (brain), SKOV3 (ovary), SR (blood)) were analyzed in single cell line pulldowns and 
ranked according to their contribution to the diversity of the kinome (Figure 5 A, B). 
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Figure 5 | Comparison of individual cell lines and cell line mixtures for kinome profiling.  

(A) Histogram showing the combination of cell lines with their predicted number of identifiable kinases for the best 

cell line mixture. (B) Number of kinases identified by individual cell lines and different cell line mixtures. (C) The 

heat map shows the abundance of identified kinases using the number of unique spectra as semi-quantitative 

measurement for the quantity of an enriched kinase. The darker the color, the more abundant the enriched kinase. 

The data predicts a best sell line mix when combining three to five cell lines and all cell line mixture tested 

outperform the enrichment of any individual cell line. Mix 2 performed best in number of identified kinases and 

their balance in quantity. Mix 1: Colo205, SKNBE2, SKOV3; mix 2: Colo205, SKNBE2, OVCAR8, K562; mix 3: Colo205, 

SKNBE2, SKOV3, K562; mix 4: Colo205, SKNBE2, SKOV3, OVCAR8; mix 5: Colo205, SKNBE2, SKOV3, OVCAR8, K562, ; 

mix 6: Colo205, SKNBE2, OVCAR8, K562, SKOV3, HCC827, A431, Malme3M, SR.  

On average 112 kinases were identified per cell line and when analyzing the combination of cell 
lines giving the highest number of kinases for 1 to 9 cell lines per mix, a total of 176 kinases out 
of eight lines are predicted to be identified (Figure 5 A). A considerable saturation effect can be 
observed with the combination of 4 to 5 cell lines and only a minor gain of additional kinases 
can be expected with more cell lines. Therefore only mixtures of three, four and five cell lines 
and the combination of all nine cell lines were experimentally validated. In total, six different cell 
line mixtures with the highest diversity predicted were profiled. As expected, the number of 
identified kinases in the mixtures was higher than for a single cell line but could not match the 
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predicted figure due to a dilution effect of low abundant or weak binding kinases. Mixes 2 
(Colo205, SKNBE2, OVCAR8, K562) and 3 (Colo205, SKNBE2, SKOV3, K562), both containing 
four cell lines, outperformed the others with 158 and 162 identified kinases, respectively. In fact, 
with increasing number of combined cell lines, the number of kinases was decreasing. 
Considering the number of unique spectra as semi-quantitative measurement for the kinase 
abundance, the data supports that any combination of cell lines is superior to a cell line alone 
and provides a higher abundance of kinases especially in the moderately abundance range 
(Figure 5 C). Besides, the bad performance of the combination of all 9 cell line (mix 6) can be 
rationalized. The heat map indicates that mainly kinases with high affinity and/or high 
abundance are captured by the kinobeads and thereby prevent binding of kinases with medium 
and low affinity or abundance in the lysate. Moreover, mix 2 showed a good balance in 
capturing high, medium and low abundant kinases in addition to the overall high number of 
identified kinases and thus was selected as superior cell line mixture for subsequent profiling of 
small molecule inhibitors.  

Establishment of a correction factor for partial depletion 

In a competition binding assay of drugs by chemical proteomics, the determined half maximum 
inhibition values (IC50) highly depend on the experimental setup and can considerably vary from 
values obtained by other in vitro assays. Equilibrium of binding is a prerequisite and can be 
achieved by keeping the concentration of the affinity ligands during incubation at low levels and 
using a large excess of lysate. However, individual target proteins, in particular the ones with 
low expression level but high affinity to the capturing matrix, may be depleted from the lysate.  

 

Figure 6 | Enrichment factors for proteins in a competition binding assay.  

(A) Histogram showing the number of kinases and non kinases with an enrichment factor in the binned range. 

Kinases show a higher depletion from the lysate than other proteins with 91% of the kinases and 52% of the non 

kinases already being captured during the first pull down experiment. (B) Formula for the calculation of the 

enrichment factor r and the determination of the KD value out of the IC50 value. [AXim] = concentration of 

immobilized inhibitor; [T] = target concentration.  

To compensate for this, a correction factor derived from the Cheng-Prussoff equation [36] was 
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established by Benjamin Ruprecht (under my supervision during his M.Sc thesis), that can be 
applied to transform the experiment specific IC50 values into more unbiased target-specific 
dissociation constants (KD). Similar to the approach introduced by Sharma et al., an enrichment 
ratio (r) can be calculated from the intensities of a given protein from two subsequent pull downs 
from the same lysate [16, 37]. The determined IC50 values from the competition experiment are 
then multiplied with the enrichment ratio to obtain the KD value (Figure 6 B). The data revealed a 
severe degree of depletion for the explored experimental setup (5mg of mixed lysate, 100μL of 
KBȕ matrix). A median decrease in abundance in the second pull down of 91% was achieved 
for protein kinases and 52% for non kinases, respectively, confirming the importance of an IC50 
correction in competition experiments to elude the bias, introduced by the biochemical workflow, 
and to obtain more meaningful values for the potency of inhibition (Figure 6 A). The correction 
factor was of particular importance for the subsequent studies, where selectivity profiles of 
several small molecule inhibitors were assessed. 

Kinase inhibitor selectivity profile of AKT-competitive AKT inhibitors 

To demonstrate the utility of the new kinobeads KBȕ, the AKT inhibitors GSK690693 [38-40] 
(phase I, terminated) and GSK2141795 [30] (active phase I trials in patients with solid tumors or 
lymphomas) were subjected to kinase selectivity profiling in the mixed lysate. Briefly, KBȕ 
pulldowns were performed after pre-incubation of separate lysates with increasing 
concentrations of the respective drug. Protein targets that bind the drug in the lysate show a 
dose dependent reduction in binding to the kinobeads while proteins unaffected by the drug 
show no reduction in binding. Proteins were eluted from kinobeads, digested with trypsin into 
peptides and analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS) [41]. 
Following protein identification by database searching, proteins were quantified using their LC-
MS/MS intensities and dose response curves were generated from the resulting data. The 
results of these experiments show clear similarities as well as differences in the selectivity 
profiles of the two compounds. Both expectedly show inhibition of AKT1 and 2 (Figure 7 A, B; 
Table 1; AKT3 was only detected in assays using GSK2141795) and IC50 values of 138 nM 
(AKT1) and 128 nM (AKT2) were determined for GSK690693. GSK2141795 inhibited kinobead 
binding of AKT1, AKT2 and AKT3 with IC50 values of 180 nM, 328 nM and 38 nM respectively 
(Table 1). Applying the correction factor introduced above, this results in KD values for AKT1, 2 
and 3 of 16 nM, 49 nM and 5 nM respectively (for GSK2141795) which are in line with literature 
data using biochemical assays that report potencies of 2 nM for AKT1, 2 - 13 nM for AKT2 and 
3-9 nM AKT3 for GSK690693 [7, 27, 39]. It has to be noted that compound potencies 
determined by kinobead assays are often weaker than those obtained from biochemical kinase 
assays. This can be attributed to fundamental differences in assay conditions: in vitro kinase 
assays generally measure isolated recombinant kinase domains while the kinobead assay 
measures full-length native kinases expressed in cell lines or tissues. In addition, the respective 
lysates contain other cellular proteins and co-factors not present in recombinant assays that 
might regulate kinase activity or otherwise interfere with or bind to the free compound (e. g. 
acting as a compound sink).  
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Figure 7 | Target selectivity profiles of the clinical AKT inhibitors GSK690693 and GSK2141795.  

(A) Competition binding curves for the identified isoforms of the primary target AKT. (C) Comparison of the 

proteomic target profiles of GSK690693 and GSK2141795. It is evident that the selectivity range of GSK2141795 is 

much narrower than that of GSK690693. Only targets identified in both data sets are shown. 

Apart from AKT, the profile of GSK690693 contains 13 further kinases with sub- μM IC50 values, 
which is in sharp contrast to GSK2141795 for which only four such cases are detected 
(Figure 7 C, Table 1). The selectivity of GSK690693 towards kinases has been studied before 
[7, 27, 39] documenting low to mid nM binding constants for members of the protein kinase A 
(13-24 nM) and protein kinase C (2-250 nM) family of proteins, GSK3a (5200 nM) and GSK3b 
(100-140 nM), ROCK1 (280-890 nM) and ROCK2 (200 nM), MARK2 (720 nM), RPS6KA4 (51 
nM) as well as PAK4 (10-18 nM). These targets are also found in the kinobead assay with 
binding inhibition values of between 15-340 nM. In addition to these previously known targets, 
this assay revealed binding inhibition of CDC42BPB (also known as MRCKB, IC50 = 550 nM). 
Interestingly, the kinase domain of MRCKB resembles that of PAK kinases and it is thus likely, 
that MRCKB constitutes a novel target of GSK690693. Taken together, the selectivity profile of 
this compound is fairly broad and the particular kinases inhibited should help in understanding 
the cellular action of the molecule. While anticancer activity of the compound may be 
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rationalized based on several of the inhibited kinases, each playing a role in various types of 
cancer (e.g. AKT [21-26], PKC [42-44], ROCK [45], PAK [46], MRCKB [47]), the inhibition of 
other kinases in the target spectrum may be more problematic. For example, potent inhibition of 
GSK3 might be a double edged sword. On the one hand, GSK3 activity has been linked to 
cancer [48, 49]; on the other hand, in concert with AKT and mTOR, GSK3 is an important 
mediator of the insulin pathway and its inhibition may lead to impaired glucose uptake, induce 
hyperglycemia, hyperinsulinemia and glucose intolerance [50]. Similarly, PKA signalling 
pathways are active in many cell types and mediate a wide spectrum of normal biological 
functions. If and how pharmacological PKA inhibition might be beneficial for treating cancer or 
detrimental for normal cells is therefore not necessarily clear [51, 52]. 

Table 1 | Comparative list of putative targets of GSK690693 and GSK2141795 along with IC50 values as 

determined by the kinobead competition binding assay.  

 
IC

50
 [nM] 

Kinase GSK690693 GSK2141795 

AKT1 138  180 

AKT2 128  328 

CDC42BPB 550 > 10000 

CDK7 > 10000 2100 

CSNK1A1 > 10000 3690 

GSK3A 147 > 10000 

GSK3B 111 > 10000 

MARK2 50 2900 

PAK4 15 > 10000 

PRKAA1 148 > 10000 

PRKACA 14 29 

PRKACB 26 249 

PRKCA 49 > 10000 

PRKCD 48 849 

PRKD2 > 10000 2260 

PRKG1 497 3 

ROCK1 1808 1570 

ROCK2 340 1850 

RPS6KA4 40 > 10000 

TAOK2 1285 > 10000 
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Judged from the kinobead selectivity profile, the target spectrum of GSK2141795 appears to be 
much narrower than that of GSK690693. Apart from the AKTs, only the PKC family members 
PRKACA and PRKACB as well as the cGMP-dependent protein kinase PRKG1 are potently 
inhibited (Table 1). The much tighter selectivity profile of GSK2141795 is likely beneficial as 
some of the potential biological toxicity issues might be circumvented. Still, while the inhibition of 
PKCs may contribute to the anticancer effects of this compound, the physiological 
consequences of the very potent inhibition (IC50 = 2.5 nM, KD = 0.05 nM) of PRKG1 cannot be 
clearly anticipated at present. This kinase is a key mediator of a plethora of normal cellular and 
organ functions such as modulating cellular calcium, platelet activation, smooth muscle 
contraction, axonal guidance and learning to name a few [53-56], which on their own or in 
combination might indicate toxic side effects. However, results of ongoing phase I clinical trials 
have not been reported thus far, referring any such considerations into the realm of speculation 
at the present time.  

 

Figure 8 | Competition binding curves for GSK2141795 targets. 

Examples of IC50 curves for targets identified in the kinobead selectivity profiling of GSK2141795. (A) All three 

isoforms of the primary target AKT are inhibited. (B,C) Binding curves of additional protein kinase targets. (D) 

Identification of potential non-kinase targets. 
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Given that kinobeads not only bind kinases and other nucleotide binding proteins but also 
capture binding proteins from cell lysates under denaturing conditions, one frequently observes 
non-kinase targets and co-purification of interacting proteins in competition binding experiments 
(Figure 8). For example, spectrin alpha 1 (SPTAN1) shows a dose dependent reduction in 
binding to kinobeads. This protein contains an SH3 domain suggesting that it might co-purify 
with a phosphorylated kinase that itself is inhibited by GSK2141795. The ATP-dependent 5’-γ’ 
DNA helicase ERCC2 also shows a dose dependent reduction of kinobead binding in response 
to drug treatment. Given the ATP-hydrolysing activity of this enzyme, which is involved in 
nucleotide excision repair following DNA damage, it is tempting to speculate that it might be a 
non-kinase off-target of GSK2141795. How this might impact the phenotype of cells treated with 
the compound remains to be investigated. 

Kinase inhibitor selectivity profile of allosteric AKT inhibitors 

Although the kinase inhibitor selectivity profiling by chemical proteomics is primarily suitable for 
ATP-competitive inhibitors, as both, affinity matrix and inhibitor, compete in binding to the 
conserved ATP-binding pocket within the kinase domain, this approach was further applied to 
the profiling of the allosteric AKT inhibitors perifosine [31] and MK-2206 [32]. Perifosine belongs 
to the class of alkylophospholipids and decreases AKT phosphorylation in vivo in a dose 
dependent manner via interaction with the PH-domain of AKT [31]. MK-2206 is a highly potent 
allosteric inhibitor that binds to and inhibits the activity of AKT in a non-ATP competitive manner 
probably by binding to a regulatory domain within AKT, but the exact mechanism of action 
remains to be elucidated [32, 57]. Both compounds surprisingly showed direct reduction in 
kinobead binding of the AKT family with IC50 values of 120 nM and 44 nM for AKT1 and 2 for 
perifosine (Figure 9 A; AKT3 could not be detected). IC50 values for AKT1, 2 and 3 of 19 nM, 
20 nM and 18 nM, respectively, were determined for MK-2206 (Figure 9 D). This data suggests 
that binding of the inhibitor to the PH- or regulatory domain induces a conformational change in 
the ATP-pocket of AKT, thus leading to decreased binding to the kinobeads, or the inhibition of 
AKT activity by a mechanism independent from phosphorylation prevention. As the PH-domain 
is suspected to be the primary binding site of the two compounds, also other proteins containing 
this domain are likely to show an effect. However, no inhibition was observed for these kinases 
identified in the screen.  

Apart from AKT, mitogen activated protein kinases (MAPKs) represent important off-targets of 
perifosine (Figure 9 B, C). MAPK pathways are evolutionary conserved signalling cascades that 
control fundamental cellular processes such as growth, proliferation, differentiation, migration 
and apoptosis [58]. They compromise several levels in which a MAP kinase (MAPK, ERK) is 
activated by a MAP kinase kinase (MAP2K, MEK), which in turn is activated by a MAP kinase 
kinase kinase (MAP3K). Regarding the importance of MAPK pathways, it is not surprising that 
the play a critical role in the development and progression of a broad spectrum of cancer types 
[58-61]. Most prominent is the Raf/MEK/ERK pathway, which is deregulated in approximately 
one third of human tumors. The effect of perifosine on the MEK/ERK pathway was investigated 
in various studies and different cancer types leading to controversial results. 
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Figure 9 | Competition binding curves for targets of the allosteric AKT inhibitors perifosine and MK-2206.  

IC50 curves for targets identified in the kinobead selectivity profiling of perifosine (A-C) and MK-2206 (D-F). 

(A) Isoforms 1 and 2 of the primary target AKT are inhibited. (B,C) Binding curves of additional MAP kinase targets. 

(D) All three isoforms of the primary target AKT are inhibited. (E) Binding curves of additional MAP kinase targets. 

(F) Identification of potential non-kinase targets. 

Treatment with perifosine decreased the level of ERK phosphorylation in a dose-dependent 
fashion in for example lung cancer or leukemia cell lines [62-64]. Other studies show perifosine-
induced MEK and ERK phosphorylation, indicating the MEK/ERK pathway mediated cell 
proliferation as a compensatory mechanism in tumor cells [65-67]. Here for the first time, direct 
inhibition of several members of the MAP kinase family by perifosine was shown with binding 
inhibition values from 6 nM for MAPK6 to 88 nM for MAP4K4 (Figure 9 B, C). Tzarum et al. 
recently reported p38α MAK kinase activation induced by perifosine and other 
phosphatidylinositol ether lipid analogues via binding in a hydrophobic pocket near the MAPK 
insert region unique to MAP kinases [68]. The resulting conformational changes act as an 
activation switch, inducing autophosphorylation. Whether the reduced binding of MAP kinases is 
caused by these perifosine-induced structural alterations remains to be investigated. In spite of 
that perifosine shows promising results in clinical trials in single and combination treatment [69-
73].  

Similar to perifosine, MK-2206 influences binding of MAPK3 and MAP2K1/2 but despite low IC50 
values between 5 nM and 37 nM (Figure 9 E), the inhibitory effect seems to be weaker 
regarding the high residual binding upon high compound concentrations. Interestingly, the same 
MAP kinases like for perifosine are affected, indicating a similar binding mechanism of both 
drugs. In addition, also non-kinase targets were found to be inhibited by MK-2206 (Figure 9 F). 
The Poly [ADP-ribose] polymerase 16 (PARP16), for instance, shows a dose dependent 
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reduction of binding to the kinobeads. PARP16 has a DNA-binding domain and is mainly 
involved in the detection and initiation of single-strand DNA breaks (SSB) within DNA repair and 
programmed cell death. As transient PARP inhibition causes impaired DNA damage detection 
or repair, this could be effective in cancer therapy and many PARP inhibitors are currently in 
clinical trials [74-76]. Given the nucleotide binding activity of the protein, it is likely that it might 
be a direct target of the nucleotide analogue MK-2206. In addition, also the ferrochelatase 
FECH shows a weak inhibition upon drug treatment. Given that defects in this enzyme are 
associated with erythropoietic protoporphyria, the inhibition might cause skin irritations as side 
effect upon drug treatment [77].  
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Concluding remarks 

In summary, a novel chemical affinity probe was described for capturing AKT isoforms and 
about 50 further kinases primarily from the AGC branch of the kinome phylogenetic tree. This 
not only increases the range of kinases that can be assayed by the established kinobead 
technology, it also substantially reduces the bias of kinobeads towards the representation of 
tyrosine and tyrosine like kinases. The application of the new probes to the selectivity profiling of 
AKT kinase inhibitors confirmed the broad selectivity of GSK690693 and, for the first time, 
established the much narrower profile of GSK2141795 generating new hypothesis as to how 
this clinical AKT inhibitor exerts its cellular effects. Moreover, it was successfully demonstrated 
that selectivity profiling by kinobeads can also be applied to allosteric inhibitors as shown by the 
screening of perifosine and MK-2206. This work shows that retro-engineering kinase inhibitors 
into broad kinase binders works and it is entirely feasible to apply the same or a similar strategy 
to other kinase families should reasonable chemical starting points exist. In light of the current 
chemoproteomic literature [37, 78, 79] it is unlikely that a single true pan-kinase compound 
probe can be developed but continuing efforts by this lab and others in the field [5, 80] will likely 
eventually fill the remaining gaps. 
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GO  gene ontology 

HCD  higher energy collision induced dissociation 

IC50  half maximal inhibitory concentration 

IMDM  Iscove´s modified Dulbecco´s medium 

KD  dissociation constant 

KB  kinobeads 

KI  kinase inhibitor 

LC-MS/MS liquid chromatography coupled to tandem mass spectrometry 

PBS  phosphate buffered saline 

PH  pleckstrin homology domain 

RPMI1640 Roswell Park Memorial Institute 1640 medium 

SAR  structure activity relationship 
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Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a median survival rate 
below 6 months and an overall 5 year survival rate below 5%. Risk factors for pancreatic cancer 
are mainly increased age, family history, smoking and diabetes [1, 2]. The bad prognosis is due 
to aggressive malignancy, lack of effective therapies and delayed diagnosis. Although surgery 
offers the only effective cure for pancreatic cancer, patients relapse in over 80% of cases [3]. 
These facts reflect the aggressive nature of this disease and the insufficiency of current therapy. 
To improve the prognosis, it is important to better understand the molecular basis of the 
disease.  

Regarding morphological characteristics, PDAC gradually evolves through precursor lesions, 
the so-called intraepithelial neoplasias (PanIN), stages I to III to invasive PDAC [4]. The genetic 
hallmark of PDAC is mutation in the proto-oncogene Kras, which is one of the earliest genetic 
events seen in human PanIN progression [5]. Besides Kras, mutations in the tumor suppressor 
genes CDKN2A/p16, TP53/p53 and SMAD4/DPC4 add to the progression of PDAC [6]. While 
the contribution of the latter mutations is well understood, Kras-dependent effector pathways in 
PDAC signaling are still poorly described [4]. Kras belongs to the small GTPase family and 
transmits growth factor induced signaling. Activated Kras engages multiple effector pathways, 
notably the Raf/MEK/ERK, the PI3K/AKT and RalGDS pathways, which control proliferation and 
survival [7]. In PDAC, the PI3K/AKT pathway is activated in approximately 60% of cases and 
regulates chemotherapeutic and apoptotic resistance, proliferation and angiogenesis of cells [8, 
9]. Although this suggests the importance of the pathway in PDAC, it is not clear, to what extend 
the effector and downstream pathways contribute to PDAC carcinogenesis.  

The PI3K/AKT pathway is uniformly activated in human PDAC and mouse models of 
Kras-driven pancreatic cancer [7, 10] and has been introduced as an attractive target for cancer 
therapy [11-13]. Noteworthy, AKT phosphorylation is inversely correlated with survival of PDAC 
patients [7, 14].  

Due to the frequent activation of the PI3K/AKT pathway, AKT inhibitors seem to be promising 
therapeutic targets and several drugs targeting AKT have been developed by now [15-19]. One 
of them is the small molecule inhibitor triciribine, which inhibits all three isoforms of AKT [20]. 
Triciribine (TCN) is a tricyclic nucleoside, which, once inside cells, gets converted to its active 
metabolite triciribine monophosphate (TCN-P) by the adenosine kinase (ADK) [21]. TCN-P is 
able to bind the pleckstrin homology (PH) domain of AKT. Activation of AKT is thereby inhibited 
in an allosteric manner, since AKT translocation to the plasma membrane via the PH domain is 
a prerequisite for phosphorylation of AKT [22]. Triciribine has been subject of various clinical 
trials and is currently in phase I studies for metastatic breast cancer and ovarian cancer. 
However the efficiency of AKT inhibitors in pancreatic cancer has not yet been evaluated.  

Proteomics approaches have shown to be powerful tools in cancer research. In pancreatic 
cancer studies, mass spectrometry-based proteomics was used for the proteomic profiling of 
diseased tissue, juice or cell lines and the identification of several promising biomarkers [11, 23-
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28]. Quantitative proteomics methods are increasingly used to address signaling in a systematic 
fashion. Recently developed chemical proteomics screening methods allow the examination of 
many kinase mediated signaling pathways in parallel [29]. The Kinobead approach allows the 
purification of several hundred kinases and other ATP-binding proteins from cell lines or tissues 
(see also chapter 4) [29, 30]. In combination with quantitative mass spectrometry, it enables the 
identification and relative quantification of the purified proteins across many biological samples. 
Although initially developed to profile the selectivity of small molecule kinase inhibitors, the 
Kinobead approach can be used to profile the expression of kinases in cells or tissues as well 
as to examine the effect of kinase inhibitors in cancer signaling in vivo.  

In the following study, the potency of triciribine in eight murine cell lines of Kras-driven 
pancreatic cancer with different growth characteristics was evaluated. Triciribine-induced growth 
inhibition was accessed to evaluate the impact of AKT signaling on cell survival and progression 
in the individual pancreatic cell lines. In addition, a systematic selectivity profile of the active 
metabolite of the inhibitor, TCN-P, was determined in vivo and identified numerous off-targets. 
Moreover, chemical proteomic and phosphoproteomic approaches combined with quantitative 
mass spectrometry was applied to understand the effect of triciribine on signaling networks of 
pancreatic cancer cells differing in response to the drug. The results demonstrate a clear 
dependency on the AKT-mTOR signaling pathway of drug sensitive cells, whereas in more 
resistant pancreatic cells, increased Ras-Erk1/2 signaling is observed.  
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Material and Methods 

Sample preparation 

Primary dispersed murine pancreatic cancer cells were established from genetically engineered 
KrasG12D-based mouse models of PDAC and kindly provided by the group of 
Prof. Dr. Schneider (II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische 
Universität München). 

All eight cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS). Cells were cultured in humidified air supplemented with 5% 
CO2 at 37 °C. Cells were washed with cold phosphate buffered saline (PBS) and harvested by 
lysis using 50 mM Tris/HCl pH 7.5, 5% Glycerol, 1.5 mM MgCl2, 150 mM NaCl, 0.8% NP-40, 1 
mM dithiothreitol and 25 mM NaF with freshly added protease inhibitors and phosphatase 
inhibitors (5x phosphatase inhibitor cocktail1, Sigma-Aldrich, Munich, Germany, 5x phosphatase 
inhibitor cocktail 2, Sigma-Aldrich, Munich, Germany, 1 mM Na3VO4 and 20 nM Calyculin A, LC 
Laboratories, Woburn, MA, USA). Protein extracts were clarified by ultracentrifugation for 1 h at 
145,000 x g at 4 °C and protein concentration was determined by the Bradford method.  

Kinase inhibitor treatment 

The AKT inhibitor triciribine (ENZO Life Science, Lörrach, Germany) was dissolved as 10 mM 
stock solution in DMSO and stored at -20 °C. For the cell viability assay, PDAC cells were 
seeded in 96-well plates at 2 x 103 cells/well and grown in 175 µL DMEM supplemented with 
10% (v/v) FBS for 12 h prior to experimental treatment. Next, 50 µL of fresh medium 

supplemented with different concentrations of kinase inhibitor (10 nM, 50 nM, 100 nM, 1 µM, 
5 µM and 25 µM in 0,1% DMSO; control cells were treated with 0,1% DMSO as vehicle) 
were added to the cells. Cell viability was monitored after 96 h of treatment using the 
XTT cell proliferation kit II (Roche Applied Science) according to manufacturer’s 
protocol.  

For the in vivo selectivity profile, 1.8 x 106 cells of cell line 7662 were seeded in 150mm dishes 
and grown in 20mL medium. Upon 80-90% confluence, cells were treated with 100μl medium 
supplemented with different concentrations of triciribine (2.5 nM, 25 nM, 250 nM, 2.5 μM in 0.1% 
DMSO; control cells were treated with 0.1% DMSO as vehicle) and incubated for 4h. After that 
cells were lyzed as described in the section before.  

For comparison of sensitive and resistant cell lines upon drug treatment, 7662 and 53631 cells 
were seeded in 150mm dishes and grown in 20 mL medium to 80-90% confluence. Next, cells 
were treated for 1 h with 1 µM inhibitor in 0.1% DMSO or 0.1% DMSO as vehicle control. For 
kinase enrichment, cells were lysed as described in the section before. For phosphopeptide 
enrichment, cells were washed with cold phosphate buffered saline (PBS) and harvested in lysis 
buffer (50 mM TEAB pH 7.5, 8 M urea, 5 mM NaH2PO4 and 25 mM NaF with freshly added 
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protease inhibitors and phosphatase inhibitors (5x phosphatase inhibitor cocktail1, Sigma-
Aldrich, Munich, Germany, 5x phosphatase inhibitor cocktail 2, Sigma-Aldrich, Munich, 
Germany, 1 mM Na3VO4 and 20 nM Calyculin A, LC Laboratories, Woburn, MA, USA) and 
subjected to ultrasonication. Protein extracts were clarified by centrifugation for 1 h at 
20,000 x g at 4 °C and protein concentration was determined by the Bradford method.  

Immunoblot Analysis 

Anti-AKT, p-AKT and ȕ-actin antibodies were purchased from Cell Signaling Technology 
(provided by New England Biolabs Inc., Ipswich, MA). For immunoblot analysis, cell lysates 
from in vivo triciribine selectivity profile experiments were used. 50 µg of lysate was mixed with 
an equal volume of 2 x Nu-PAGE LDS sample buffer containing 10 mM dithiothreitol and boiled 
for 5 min at 95 °C. Proteins were subsequently separated by 4–12% NuPAGE gel and 
transferred onto to polyvinylidene difluoride membranes (Invitrogen, Darmstadt, Germany). 
Membranes were blocked for 1 h in blocking solution (2% bovine serum albumin in 1 x Tris 
Buffered Saline, TBS, 20 mM Tris-HCl, pH 7.4, 150 mM NaCl, and 0.1% Tween-20) at room 
temperature and probed overnight at 4 °C with the respective primary antibody. 
Immunoreactivity was detected using IRDye conjugated secondary antibody (LI-COR, 
Nebraska) and visualized by Odyssey imaging system (LI-COR). 

Affinity purification 

Kinobead pulldowns were performed as described previously [29]. Briefly, lysates of a cell mix 
were diluted with equal volumes of 1x compound pulldown (CP) buffer (50 mM Tris/HCl pH 7.5, 
5% glycerol, 1.5 mM MgCl2, 150 mM NaCl, 25 mM NaF, 1 mM dithiothreitol and freshly added 
protease inhibitors and phosphatase inhibitors (5x phosphatase inhibitor cocktail1, Sigma-
Aldrich, Munich, Germany, 5x phosphatase inhibitor cocktail 2, Sigma-Aldrich, Munich, 
Germany, 1 mM sodium ortho-vanadate and 20 nM Calyculin A, LC Laboratories, Woburn, MA, 
USA)). If necessary, lysates were further diluted to a final protein concentration of 5 mg/ml using 
1x CP buffer supplemented with 0.4% NP-40.  

Kinobeads (100 µL settles beads) were incubated with lysates (total of 5 mg of protein) for 1 h at 
4°C. Subsequently, beads were washed with 1x CP buffer and collected by centrifugation. 
Bound proteins were eluted with 2x NuPAGE LDS Sample Buffer (Invitrogen, Darmstadt, 
Germany) and eluates were reduced and alkylated by 50 mM dithiothreitol and 55 mM 
iodoacetamide. Samples were then run into a 4–12% NuPAGE gel (Invitrogen, Darmstadt, 
Germany) for about 0.5 cm to concentrate the sample prior to in-gel tryptic digestion. In-gel 
trypsin digestion was performed according to standard procedures. 

Dimethyl labeling for phospho-analysis 

For each condition 2 mg of protein was reduced and alkylated using 50 mM dithiothreitol and 55 
mM iodoacetamide. Next, the initial digestion was performed by adding Lys-C (Wako Pure 
Chemical Industries, Ltd., Osaka, Japan) at an enzyme/ protein ratio of 1:100 and incubation for 
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4 h at 37 °C. The sample was diluted 4-fold to a final urea concentration of 2 M using 50 mM 
TEAB buffer. The final digestion was performed by adding trypsin (sequencing grade; Promega, 
Madison, WI) at an enzyme/protein ratio of 1:100 and incubation overnight at 37 °C. Formic acid 
(FA) was added to a final concentration of 5%, after which the peptide mixtures were desalted 
using Sep-Pak Vac C18 cartridges (50 mg; Waters, Eschborn, Germany). Subsequently, on-
column stable isotope dimethyl labeling was performed as described previously [31]. Briefly, 
5 mL of labeling solution (11.3 mM NaH2PO4, 38.7 mM Na2PO4, 9 mM NaBH3CN and 4% H-
formaldehyde for light label or 4% D-formaldehyde for intermediate label, respectively) was 
added to the sample on column. The peptides from the triciribine treated sample were labeled 
with light dimethyl labels and those from the untreated control sample with intermediate dimethyl 
labels. Samples were washed 4 mL 0.1% FA and eluted using 1 mL 0.1% FA in 60% 
acetonitrile. Finally, corresponding eluates were mixed in a 1:1 ratio, dried in vacuo and stored 
at -20 °C. Labeling incorporation and mixing accuracy were assessed by LC-MS/MS.  

Phosphopeptide enrichment 

Online Fe3+-IMAC was used as first phosphopeptide enrichment step. The mixture of dimethyl 
labeled peptides with 1:1 ratio were dissolved in solvent A (0.07% TFA in 30% acetonitrile, 
pH 2.1) and loaded onto a ProPac IMAC 10 column (Thermo Fisher Scientific Inc., Waltham, 
USA) using an ÄKTA explorer FPLC system (Amersham Pharmacia, Little Chalfont, UK) at a 
flow rate of 100 µL/min for 10 min. Separation of peptides was performed using a nonlinear 
80 min gradient at a flow rate of 300 µL: from 0 to 15 min, 100% solvent A; from 15 to 75 min, to 
45% solvent B (0.5% NH4OH, pH 11.6); from 75 to 80 min, to 100% solvent B. The column was 
subsequently washed for 5 min with 100% solvent B and finally equilibrated with 100% solvent 
A for 5 min. Peptide elution was monitored by UV absorption at 216 and 280 nm. The flow-
through and peak containing phosphopeptides were collected separately and dried in vacuo and 
stored at -20 °C.  

For subsequent phosphopeptide enrichment from the IMAC flow-through sample, Ti4+-IMAC 
was employed. Ti4+-IMAC material was prepared and used essentially as previously described 
previously [32, 33]. 25 mg prepared Ti4+-IMAC beads were loaded onto Sep-Pak Vac C18 
cartridges (50 mg; Waters, Eschborn, Germany). The enrichment procedure was as follows: the 
Ti4+-IMAC material was pre-equilibrated five times with 1 mL of loading buffer (80% ACN, 6% 
TFA). Next, dried IMAC flow-through sample was resuspended in 1 mL of loading buffer and 
loaded onto the equilibrated column. Then the Ti4+-IMAC material was washed with ten times 
1 mL washing buffer A (50% ACN, 0.5% TFA, 200 mM NaCl) and subsequently with ten times 
1 mL washing buffer B (50% ACN, 0.1% TFA). Bound peptides were first eluted by 800 µL of 
10% ammonia in water. Finally, the remaining peptides were eluted with 800 µL of 2% FA in 
80% acetonitrile into a second tube. The collected eluates were dried in vacuo and stored at -
20 °C for LC-MS/MS analysis. 
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LC-MS/MS measurements 

The kinase enriched peptide samples were analyzed on an Orbitrap Elite mass spectrometer 
(Thermo Scientific, Bremen, Germany), phospho-proteome analysis was performed on an LTQ-
Orbitrap Velos (Thermo Scientific, Bremen, Germany).  

Nanoflow LC-MS/MS was performed by coupling an Eksigent nanoLC-Ultra 1D+ (Eksigent, 
Dublin, CA) to an Orbitrap Elite. Peptides were delivered to a trap column (100 μm×β cm, 
packed in-house with Reprosil-Pur C18-AQ 5 µm resin, Dr. Maisch, Ammerbuch, Germany) at a 
flow rate of 5 µL/min in 100% solvent A (0.1% formic acid in HPLC grade water). After 10 min of 
loading and washing, peptides were transferred to an analytical column (75µm×40 cm, packed 
in-house with Reprosil-Pur C18-GOLD, 3 µm resin, Dr. Maisch, Ammerbuch, Germany) and 
separated using a 210 min gradient from 4% to 32% of solvent B (0.1% formic acid, 5% DMSO 
in acetonitrile; solvent A: 0.1% formic acid, 5% DMSO in water) at 300 nL/minute flow rate. The 
Orbitrap Elite was operated in data dependent mode, automatically switching between MS and 
MS2. Full scan MS spectra were acquired in the Orbitrap at 30,000 (m/z 400) resolution after 
accumulation to a target value of 1,000,000. Internal calibration was performed using a DMSO 
derivate at m/z 401.92272. Tandem mass spectra were generated for up to 15 peptide 
precursors in the orbitrap for fragmentation using higher energy collision induced dissociation 
(HCD) at normalized collision energy of 30% and a resolution of 15,000 with a target value of 
20,000 charges after accumulation for max 100 ms. 

Measurements using the LTQ-Orbitrap Velos employed equal LC conditions as described and 
similar data acquisition parameters. Sample loading and washing was performed for 12 min at a 
flow rate of 2 µL/min, followed by 13 min at a flow rate of 5 µL/min. Peptides were separated 
using a 210 min gradient from 3% to 27% of solvent A. Full scan MS spectra were acquired in 
the Orbitrap at 30,000 resolution. Tandem mass spectra were generated for up to 10 peptide 
precursors for fragmentation using higher energy collision induced dissociation (HCD) at 
normalized collision energy of 35% and a resolution of 7,500 with a target value of 40,000 
charges after accumulation for max 250 ms. 

Peptide and protein identification and quantification 

The raw mass spectral data were processed using the MaxQuant software (version 1.2.7.3) for 

peak detection and quantification [34]. MS/MS spectra were searched against the IPI human 
database (v3.68, 87,061 sequences, supplemented with 262 common contaminants) using the 
Andromeda search engine [35].  

Search parameters for kinase enrichment data were the following: full tryptic specificity, up to 
two missed cleavage sites, carbamidomethylation of cystein residues was set as a fixed 
modification and N-terminal protein acetylation, methionine oxidation and phosphorylation of 
serine, threonine, and tyrosine residues as variable modifications. Mass spectra were re-
calibrated within MaxQuant (first search 20 ppm precursor tolerance) and subsequently re-
searched with a mass tolerance of 6 ppm, fragment ion mass tolerance was set to 20 ppm. 

Search results were filtered to a maximum false discovery rate (FDR) of 0.01 for proteins and 
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peptides and a peptide length of at least six amino acids was required. 

Search parameters for phosphopeptide enrichment data were similar to parameters for kinase 
enrichment data with the following exceptions: up to four missed cleavage sites, dimethylation 
and dimethylation:2 H(4) of lysines and protein N-termini was set as labels for quantification. 
Mass spectra were re-calibrated within MaxQuant (first search 20 ppm precursor tolerance) and 
subsequently re-searched with a mass tolerance of 6 ppm, fragment ion mass tolerance was set 

to 20 ppm. Search results were filtered to a maximum false discovery rate (FDR) of 0.05 for 
proteins and peptides and a peptide length of at least six amino acids was required. 

Statistical analysis 

Statistical analysis of quantified proteins was performed using Microsoft Excel and Multiple 
Experiment Viewer (MeV, version 4.5.1).  Differential kinase expression between the different 
cell lines was assessed based on the iBAQ normalized intensities provided by MaxQuant 
analysis with adjusted one-way ANOVA. P-values were adjusted for multiple testing to control 
the false discover rate at 5%. Differences in kinase expression and phosphorylation status 
between “treated” and “control” samples were tested with Student’s t-statistic via the empirical 
Bayesian statistics (p < 0.05).  

Kinase motif analysis 

The significantly enriched phosphorylation motifs set was extracted from the phosphopeptide 
data using the Motif-X algorithm [36]. All phosphorylated peptides with confidently identified 
phosphorylation sites and significant changes were used as the data set to extract significantly 
enriched phosphorylation motifs. The phosphopeptides were centered at the phosphorylated 
amino acid residues and aligned, and six positions upstream and downstream of the 
phosphorylation site were included. The IPImouse database was used as background data set. 
The occurrence threshold was set to a minimum of six peptides, and the significance threshold 
was set to 0.01. Sequence logos were generated with Weblogo [37] (available at 
http://weblogo.berkeley.edu). 

Pathway and complex analysis 

Pathway membership of the identified proteins were analyzed by the Ingenuity Pathway 
Analysis (IPA) tool (Ingenuity Systems, Redwood City, CA, USA) for their functional significance 
and in the context of biological association networks. To investigate effects of triciribine 
treatment of many macromolecular complexes, the list of significantly expressed proteins 
(p < 0.05) was analyzed using Comprehensive Resource of Mammalian protein complexes [38], 
a database of manually curated and validated mammalian protein complexes. 
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Results and Discussion 

Identification of differential kinase protein expression in PDAC cell lines 

and their dependence on AKT for survival 

To explore the role of the PI3K/AKT signaling pathway in Kras-induced pancreatic ductal 
adenocarcinoma, eight murine KrasG12D-driven PDAC cell lines were analyzed according to their 
sensitivity towards the allosteric AKT inhibitor triciribine as activated AKT is common in PDAC 
and drives tumor progression. Cell lines were treated with triciribine for 72 h and viability was 
measured using XTT assays. Calculated EC50 values ranked between 164.5 nM for the most 
sensitive (7662) and >10 μM for the most resistant cell line (53631) (Figure 1 A, C); this 
represents a similar range of growth inhibition and is in line with recent reports, e.g. for 
astrocytomas cells [41]. On this basis, cell lines were assigned into ‘sensitive’ and ‘resistant’ 
classes based on their divergence from the mean log10 EC50 values (Figure 1 B).  

 

Figure 1 | Characterization of PDAC cell lines upon triciribine sensitivity.  

(A) Cell viability of eight pancreatic cell lines was determined by XTT assay after treatment with various 

concentrations of allosteric AKT inhibitor triciribine for 72 h. Cell lines show differential sensitivity to inhibitor 

treatment. (B) Classification of triciribine sensitivity based on the divergence from the mean log10 EC50 value. Cell 

lines were assigned as sensitive with an EC50 value lower than the mean EC50 value, and resistant with an EC50 value 

higher that the mean. (C) Determined EC50 values for the individual cell lines.  

For further characterization of these murine PDAC cells, differential kinase protein expression 
was determined. Briefly, cell lines derived from primary PDAC tumors of a genetically 
engineered KrasG12D mouse model were grown in vitro, lyzed and subjected to kinase 
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enrichment using kinobeads. Following tryptic digestion, protein identification and intensity-
based label-free quantification was performed via LC-MS/MS on an Orbitrap Elite mass 
spectrometer and using the MaxQuant software package. Each analysis was performed in 
biological triplicates to enable statistical analysis within and across cell lines. Collectively, 303 
protein kinases were identified with a false discovery rate of < 1%. Adjusted Bonferroni F-
statistics based on the normalized MS intensity data of kinases quantified in at least 12 out of all 
24 samples resulted in 88 kinases with significant differential expression between cell lines (p < 
0.01) (Figure 2). Unsupervised clustering of the significant kinases and cell line replicates 
showed grouping of the triplicates, but only weak grouping of the kinases, indicating high 
diversity in the underlying cancer cells.  

 

Figure 2 | Differential expression analysis of the 88 significantly differential expressed protein kinases.  

Unsupervised clustering showed grouping of the triplicates but does not reveal obvious grouping of differentially 

expressed kinases. Columns are the eight cell lines in triplicate analysis and rows are the significant kinases. Red 

indicates higher, green indicates lower expression level and black indicates median expression level. Missing values 

are colored in grey.  
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Interestingly, the expression analysis of the kinome profiles show a similar behaviour in 
grouping of the cell lines since the more resistance cell lines (53631, 5436, 31107, 6552) are in 
the same cluster as well as the sensitive lines (5139, 7662, S411) display a higher similarity. 
Two groups within the cluster analysis are of notice as their differential expression pattern 
correlates very well with the viability data (Figure 1). One group (*1) mainly contains receptor 
tyrosine kinases (PDGFRb, EphB2, DDR2, FGFR1) and is highly expressed in the sensitive cell 
lines. Tyrosine kinases have been shown to be overexpressed in pancreatic cancer and are 
associated with an aggressive tumor phenotype [42-46]. Especially the growth factor receptors, 
such as fibroblast growth factor receptor (FGFR) and platelet-derived growth factor receptor 
(PDGFR) are particularly interesting as they represent upstream targets of AKT and mediate 
PI3K/AKT signaling in pancreatic cancer [47, 48]. An increased level of these receptors may 
lead to aberrant activation of AKT signaling yielding in a higher sensitivity to triciribine. This is 
consistent with studies from Berndt et al. [22] that showed higher efficiency of triciribine in 
tumors expressing persistently phosphorylated AKT. The other group (*2) shows a higher 
expression level in the group of resistant cell lines. The group contains several MAP3 kinases 
and ribosomal protein S6 kinases (RSK) which are downstream signaling proteins of the Ras-
Erk1/2 pathway that has shown to play a pivotal role in cancer cell migration and invasion and, 
hence, may provide an alternative AKT-independent signaling pathway in these cells 
reasonable for the resistance to AKT inhibition [49-52].  

Kinase inhibitor selectivity profile of the AKT inhibitor triciribine 

Triciribine (TCN) has shown to be an inhibitor of AKT phosphorylation by binding to the PH 
domain in vivo but does not inhibit AKT kinase activity per se [20, 22]. It is important to point out 
that triciribine, a tricyclic nucleotide, has to be phosphorylated in cell by the adenosine kinase to 
be transformed into its active metabolite TCN-P. The study of Yang et al. [20] has shown that 
triciribine inhibits potently proliferation and induces apoptosis in tumor models that contain 
hyper-phosphorylated AKT, but does not inhibit activation of upstream activators of AKT, such 
as PI3K and PDK1, or other members of the AGC family, suggesting that triciribine is a selective 
AKT activation inhibitor. Apart from that, not much is known about the selectivity of triciribine 
and potential direct off-targets. Therefore a selectivity screening by quantitative chemical 
proteomics using the kinobead technology [29] was performed with in vivo inhibitor treatment of 
the most sensitive PDAC cell line (7662) to identify possible (direct) off-targets of the active 
metabolite of triciribine. Briefly, cells were treated for 4h with increasing concentrations of 
triciribine. After cell lysis, kinases were enriched using kinobeads. Following digestion and 
analysis by LC-MS/MS, proteins identification and label-free quantification was performed by the 
Progenesis software and Mascot search engine. As expected, no reduction in abundance of 
AKT was detected in the kinobead assay, but dose-dependent inhibition of phosphorylated AKT 
could be detected via immunoblot analysis (Figure 3 A, B) with a determined IC50 value of 
24 nM, which is about five times lower compared to a previously reported value of 130 nM 
determined from studies in astrocytoma cells [41], and almost 30 fold lower than the described 
KD value of 690 nM for binding of AKT to the PH domain [22].   
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Figure 3| Competition binding curves for targets of the allosteric AKT inhibitors triciribine.  

Selectivity profile of triciribine was assessed in vivo by treatment of 7662 cells with increasing concentrations of 

inhibitor (range of 2.5 nM to 25 μM; 0.1% DMSO as vehicle control). (A, B) Western blot analysis and of the 

primary target AKT. Triciribine treatment does not affect the expression level of AKT, whereas the phospho-AKT 

level decreases in a dose-dependent manner.  (C-E) Binding curves of potential protein kinase targets.  

Apart from AKT, the profile of triciribine revealed nine kinases with dose-dependent inhibition in 
response to drug treatment (Figure 3 C-E). The determined IC50 values rank between 28.6 nM 
and 406 nM. As none of the identified targets contain a PH domain, they are likely to be off-
targets that bind the activated inhibitor in an ATP-competitive manner. The potently inhibited 
bone morphogenic protein receptors (BMPR1a and BMPR2) play an important role in oocytosis 
but have also been linked to cell growth and metastasis in prostate cancer where these cells 
frequently have reduced levels of BMPRs [53]. Therefore, one could speculate that the inhibition 
of these receptors would negatively affect triciribine therapy. On the other hand, anticancer 
activity of the drug may be enhanced by several other inhibited kinases that are associated with 
positive regulation of cell proliferation and each playing a role in various types of cancer 
(FGFR1 [42, 54], DDR2 [46], Ilk [55], Axl [56, 57]). However, it cannot be ruled out, that the 
observed reduced binding of some kinases are due to secondary effects upon in vivo drug 
treatment which cannot be distinguished by the kinobead technology [58]. For example, as 
some of the targets are involved in cell proliferation processes, the observed regulation might be 
a side-effect to triciribine-induced cell death.  

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Rps6ka5

Bmpr2

Bmpr1a

0.0
025

0.0
25

0.2
5

2.5 25

Triciribine [µM]

R
e

si
d

u
a

l 
b

in
d

in
g

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Tgfbr2

Fgfr1

Dddr2

0.
00

25

0.
02

5
0.

25 2.
5 25

Triciribine [µM]

R
e

si
d

u
a

l 
b

in
d

in
g

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Axl

Ilk

Jak1

0.0
025

0.0
25

0.2
5

2.5 25

Triciribine [µM]

R
e

si
d

u
a

l 
b

in
d

in
g

β-actin

pan-AKT

p-AKT (Ser-473)

0.0

0.5

1.0

DM
SO

0.
00

25
0.

02
5

0.
25 2.

5

pan-AKT

pAKT

Triciribine [µM]

R
e

la
ti

v
e

 s
ig

n
a

l 
in

te
n

si
ty

C D E

A B

Triciribine [μM]



Chapter 5 | Chemical and phosphoproteomic characterization of triciribine action 
 

 

118 
 

Characterization of the kinome of PDAC cell lines upon drug treatment 

The cell viability studies on Kras-induced pancreatic cell lines revealed a differential sensitivity 
to the AKT inhibitor triciribine which was most dominant at an inhibitor concentration of 1 µM. 
Hence, a quantitative comparison of the kinome expression profile upon drug treatment was 
performed on the two cell lines characterized as most sensitive (7662) and most resistant 
(53631) to identify differentially regulated kinases and signaling pathways. Briefly, cells were 
treated with 1 µM triciribine or DMSO vehicle for 1 h, following lysis and kinase enrichment 
using kinobeads. Experiments were performed in triplicates to allow statistical analysis within 
and across cell lines. In total, 244 and 239 protein kinases were identified and quantified in at 
least two replicates in the resistant and sensitive cell line with an overlap of 214 kinases (80%). 
Paired students t-test based on the normalized intensity data resulted in almost no significant 
changes in kinases expression upon triciribine treatment (p < 0.05; log2 fold change >1) for 
both, resistant and sensitive, cell lines (Figure 4 A, B). This was partly expected as drug 
treatment over a short time period (1h) initially influences the activity status of a protein but a 
response on gene expression level can mainly be detected after long-term treatment.  

Hence, an additional detailed comparison of the kinome expression level of the untreated cells 
was performed to identify general differences that may be indicative for individual tumor biology 
in the two pancreatic cell lines. Indeed, the analysis revealed 93 significant protein kinases 
(p < 0.05). To define a robust difference in kinase level, a cutoff of a minimal 2-fold change was 
set, leading to 55 kinases highly expressed in the resistant cell line (7662) and 22 kinases with 
higher expression level in the sensitive cells (Figure 4 C). Kinases more abundant in the 
sensitive line predominantly were receptor tyrosine kinases, such as ephrin receptor family 
members, growth factor receptors and DDR2, whereas serine/ threonine protein kinases, such 
as ribosomal protein S6 kinases (S6Ks), NUAK2 and MAP kinases, showed higher abundance 
in the resistant cell line. These differences in abundance are also confirm with the global 
differential kinome expression analysis of all eight PDAC cell lines.  

In order to explore the cellular signaling pathways overrepresented in either of the two cell lines, 
a molecular pathway analysis was performed. Expectedly, differential tumor biology affected 
multiple pathways, mainly dependent on Ras and PI3K signaling, such as ephrin receptor 
signaling, NFκB signaling and PTEN signaling, and highly affected cancer progression. For 
example, ephrin receptors are strongly expressed in the sensitive cell line and have been 
functionally implicated in a number of tumors with role in cell proliferation, tumor metastasis and 
angiogenesis [59-61]. Ephrin signaling mediates cell proliferation and migration via the 
PI3K/AKT cascade, indicating that tumor progression is driven by that pathway in this cell line 
and therefore they are likely to respond more quickly to the drug treatment than pancreatic 
tumor cells dependent on other pathways. On the other hand, kinases with a role in NFκB 
signaling are more abundant in the resistant cell line. The NFκB pathway mediates survival and 
cell proliferation, and although being a common downstream pathway of AKT, it can as well be 
activated in an AKT-independent fashion via MAP2 kinases and JNK1. Moreover, it has been 
shown that the IKBKE kinase (2-fold higher abundance in 53631 cells) activates AKT 
independent of PI3K/PDK1/mTORC2 and the pleckstrin homology domain leading to sustained 
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malignant transformation [43]. These results indicate that the resistant cell line is driven by 
alternative activation mechanisms of AKT downstream signaling pathways. Collectively, 
Figure 5 shows the similarities and differences in the general signaling of the two different cell 
lines within a regulated molecular network involved in cell death and survival, cellular 
development and cellular growth and proliferation. The identified network highlights the PI3K 
and NFκB complexes as key nodes whereby upstream proteins again show higher expression 
in the sensitive cell line and downstream targets are more dominant in the resistant one. 

 

Figure 4| Quantitative protein kinase expression profiles of the sensitive and resistant cell lines in response to 

triciribine treatment and in comparison among each other.  

The volcano plots illustrate the differences in mean log intensity levels and the associated significance to 

determine kinase profiles. The y-axis is the probability that the protein is differentially expressed. The x-axis 

indicates the log2 value of fold changes between the two conditions. Treatment with 1 µM triciribine was 

performed on the sensitive 7662 cell line (A) and the resistant 53631 cell line (B). Proteins which are significantly 

down-regulated in the treatment compared to the control are located in the upper left of the graphs, up-regulated 

proteins are located in the upper right. The p-values shown were obtained from paired Student͛s t-tests. Dashed 

lines represent p=0.05 and fold-change > 2. 
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Figure 5| Top protein network from significantly differential expressed kinases between triciribine sensitive and 

resistant cell lines generated by Ingenuity Pathway analysis. 

Ingenuity Pathways Analysis (IPA) computes networks according to the fit of the input dataset with a scoring 

system indicating the likelihood of the focus proteins within a network. The lines between proteins represent 

known interactions (solid: direct interaction, dashed: indirect interaction). Highlighted nodes indicate associated 

proteins and non-highlighted proteins are those identified by IPA. Proteins which showed differential expression 

leǀels in ͞sensitiǀe͟ ǀersus ͞resistant͟ are colored red if the level was significantly higher in sensitive cells, green if 

the level was significantly higher in resistant cells. Proteins colored in grey were identified without significant 

changes and not colored proteins were not present in the data.  

Quantitative phosphoproteomic profiling of pancreatic cell lines upon drug 

treatment 

To investigate the drug-specific alterations in the phosphoproteome upon AKT pathway 
inhibition and assess the involved signaling pathways upon drug treatment in sensitive and 
resistant cell lines, a differential phosphoproteome approach was applied to identify and quantify 
drug-regulated phosphorylation events. Sensitive and resistant cell lines were treated with either 
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vehicle control or inhibitor for 1 h, followed by cell lysis and digestion into peptides. To 
quantitatively compare phosphorylation changes, tryptic peptides were isotopically labeled by 
reductive dimethylation using the light dimethyl label for the triciribine treated condition and the 
intermediate dimethyl label for the control. Equal peptide amounts were mixed and subjected to 
a global phosphoproteomics workflow using immobilized metal ion affinity (IMAC) followed by 
Ti (IV) based IMAC enrichment and LC-MS/MS analysis (see “Material and Methods” for 
details). To ensure robustness and reproducibility of the measured changes, experiments were 
performed in triplicate analysis. In total, 8,322 phosphorylation sites from 2,380 phosphoproteins 
were identified over all experiments with and FDR of less than 1% on peptide and protein level 
using MaxQuant. When considering the two separate cell lines, 3,399 unique phosphosites from 
1,585 phosphoproteins were reliably quantified (in at least two independent experiments) in the 
sensitive cell line, the respective numbers for the resistant cell line are 1,951 unique 
phosphosites and 1037 phosphoproteins (Figure 6 A). The frequency distribution of the 
phosphorylated residues (serine: 82.9%; threonine: 15.9%; tyrosine: 1.2%) is similar to 
frequency distributions obtained before [62] indicating no bias of the applied phospho-
enrichment towards a certain type of phosphorylation.  

Kinase motif classification and amino acid frequency analysis 

The amino acid sequence surrounding a given phosphosite may provide insight into kinases, 
phosphatases and phospho-binding domains involved into in its regulation and signaling. In 
order to classify the phosphorylation sites, the Motif-X algorithm [36, 63] was used to identify 
phosphorylation-specific motifs among the up- or downregulated phosphopeptides in both cell 
lines. Analysis of 79 significantly regulated unique phosphopeptides (63 downregulated and 16 
upregulated sites based on the Significance B test of the MaxQuant module Perseus) 
(Figure 6 B) of the sensitive cell line revealed six specific motifs for pS sites (Figure 6 D). For 
the resistant cell line, only one acidic motif could be identified from the analysis of 22 
significantly regulated unique phosphopeptides (18 downregulated and 4 upregulated sites) 
(Figure 6 C). Interestingly, the highest scoring motif (RxxsxxxE) from the sensitive data set has 
been associated with AKT kinase activity; further motifs could be associated with MAPK 
(xxsPxx) and PKA (Rxsxx) kinase activity. One population of peptides was significantly 
regulated in both data sets and could be assigned to a motif containing a high number of acidic 
residues (sxxE). Such acidic motifs are typically correlated with casein kinase 2 (CK2), although 
no known CK2 substrates could be identified.  

Taken together, the kinase sequence motif analysis indicate specific response of the sensitive 
cell line upon triciribine treatment, with affected phosphorylation sites that are target sites of 
kinases downstream of Kras-mediated signaling, such as AKT and MAP kinases.  

Pathway network analysis of triciribine regulated phosphoproteins 

The vast majority of identified phosphoproteins showed a 1:1 ratio between control and treated 
groups. However, 272 phosphoproteins were quantified significantly in the sensitive cell line 
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(p < 0.05), 65 of them downregulated and 30 upregulated in response to drug treatment (fold-
change > 1.5). The respective numbers for the resistant cell line are 139 significant 
phosphoproteins with downregulation of 7 and upregulation of 17 phosphoproteins. For the 
known primary triciribine target AKT, no phosphopeptides could be detected in any of the 
experiments, thus no direct evaluation of the activity status of AKT was possible. The sensitive 
and resistant cell line shared only three regulated phosphoproteins (Ilf3, Bbx and Gnl1), all of 
them with regulation in the same direction and therefore most likely without a pivotal role in 
differential triciribine response.  

 

Figure 6 | Phosphorylation consensus motif analysis of cell lines sensitive and resistant to AKT inhibitor 

triciribine.  

Number of (A) identified and (B) upon triciribine treatment significantly regulated unique phosphosites in the 

sensitive (7662) and resistant (53631) pancreatic cell line. Phosphorylation-specific motifs for (C) the resistant and 

(D) the sensitive cell line using the Motif-X algorithm. Significantly regulated phosphorylation sites were analyzed 

against the IPI mouse background with a minimum occurrence of 6 matches per motif. Scores (in brackets) 

represent the sum of the negative log of the probabilities used for generating a single motif. Sequence motifs were 

classified according to know recognition motifs.  
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To assess the extent to which the set of differential phosphoproteins are enriched in any 
pathway module, significantly up-/ down-regulated phosphosites were analyzed with Ingenuity 
Pathway Analysis. For the resistant cell line, pathways around cell death and survival, and 
cellular development are enriched. Nevertheless, no distinct regulatory direction could be 
associated with AKT signaling, indicating minor dependence on this pathway node for cell 
survival and tumor progression in this pancreatic cell line. In the sensitive cell line, the most 
prominent network related to protein synthesis, cancer and infectious disease, and 
downregulated DNA methylation and transcriptional repression signaling, cell cycle regulation, 
and mTOR signaling were among the top significantly enriched pathways. Specifically 
interesting in that content is the mTOR signaling pathway (Figure 7), with several transcription 
factors (eIFs) as well as tumor suppressor genes (TSC1 and 2) and oncogenes (ULK1) with 
known relevance to cancer.  

TSC1 and TSC1 are tumor suppressor genes that form a heterodimeric complex TSC1-TSC2. 
This complex acts within the PI3K-AKT downstream pathway via the suppression of mTORC1 
complex activity and hence mTOR signaling [64-66]. AKT directly phosphorylates TSC2 on 4 or 
5 distinct residues [65, 67, 68] leading to the inhibition of the complex and hence initiation of 
TOR-dependent signaling [69, 70], and resulting in increased protein synthesis capacity driving 
cell growth and proliferation [71]. Phosphorylation of both TSC1 and TSC2 is moderately 
upregulated upon drug treatment, initially suggesting inhibitory regulation of the TSC1-TSC2 
complex. However, none of the detected phosphosites matches to described regulatory 
residues and whether these other known phosphorylation sites on TSC1 or TSC2 bear a 
physiological significance and differentially affect downstream regulation is yet to be discovered 
[65, 72]. Therefore it is conceivable that the here robust quantified phosphosites for TSC1 (Ser-
110) and TSC2 (Ser-937, Ser-1309) promote complex stability and hence inhibit activation of 
mTORC1 complex and TOR-dependent signaling. In the present study, several of the best-
characterized targets of mTOR are regulated, for example, S6K2 as well as eIF4B (including the 
crucial Ser-422 phosphopeptide) and eIF3, showed decreased phosphorylation level when 
treated with triciribine inhibitor, indicating downregulation of mTOR signaling due to AKT 
inhibition [73-77]. mTOR activity leads to S6K1/2 phosphorylation and activation, which in turn 
act on eIFs and eIF-binding proteins, and results in ribosomal biogenesis and the activation of 
specific mRNA populations  For example, Ser-422 on eIF4B can be phosphorylated by S6 
kinases through an mTOR-sensitive pathway [73, 78]. Significance of eIF4B Ser-422 for eIF3 
binding and stimulation of cap-dependent translation was in turn confirmed by several groups 
[79-82]. It has further been shown that overexpression of eIF4B in Drosophila cultured cells 
stimulates cell proliferation, whereas eIF4B silencing by RNAi or knockdown leads to polysome 
depletion, translational repression, and decreased cell survival and proliferation [83, 84]. 
Noteworthy in this context is also the eIF4E-binding protein (4EBP) with almost 1.7 fold 
decreased phosphorylation level, which inhibits the translation of eIF4E-bound mRNAs. 4EBP 
phosphorylation by mTOR relieves its inhibitory activity, hence resulting in increased translation, 
and it has been shown that accumulation of dephosphorylated 4EBP upon mTOR inhibition 
limits the eiF4E-dependent translation of mRNAs required for vGPCR-induced cell proliferation 
[85]. Another indication for decreased mTOR signaling after AKT inhibition provides the target 
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ULK1, which was upregulated in the data set. It has been shown that the serine/ threonine-
protein kinase ULK1 is activated upon nutrient starvation or mTOR inhibition, and induces 
autophagy by phosphorylating Beclin-1, eventually causing apoptosis [86, 87].  

 

Figure 7 | Effects of triciribine on the mTOR signaling pathway.  

Pathway analysis of the significantly regulated phosphoproteins using Ingenuity Pathway Analysis (IPA) upon 

triciribine treatment in the sensitive cell line revealed mTOR signaling as one of the top regulated pathways. 

Proteins ǁhich shoǁed differential regulated leǀels in ͞treatŵent͟ ǀersus ͞control͟ are colored red if the leǀel ǁas 
significantly lower upon treatment, green if the level was significantly higher. Proteins not colored were not 

present in the data. 

Taken together, the present phosphoproteomic study provides evidence for a strong 
dependence on the PI3K/AKT-mediated mTOR signaling pathway for cell survival and tumor 
progression in the triciribine sensitive 7662 pancreatic cell line. The mTORC complex 
represented a key node for several significantly regulated phosphoproteins, all of them with a 
pivotal role in fundamental biological processes and described connection to various cancer 
types.  
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Concluding remarks 

In this study, chemoproteomic and phosphoproteomic analysis in combination with quantitative 
mass spectrometry using isotopic labeling and label-free intensity-based approaches were 
applied to comprehensively characterize several pancreatic cancer cell lines for their 
responsiveness to the allosteric AKT inhibitor triciribine. Such an experimental strategy enables 
the study of dynamic drug targets behaviour in a particular cell line, or, as shown in the present 
work, the comparison of target expression and posttranslational modifications in different cell 
lines characterized by differential biological sensitivity to a certain drug of interest, such as 
triciribine. The results offer additional explanations for the pharmacological effects seen in these 
cells with triciribine, and especially the, for the first time, established selectivity profile of the 
clinical phase I drug triciribine highlights the potential of the drug in specific subgroups of 
pancreatic cancer and other tumor types. The data supports that in a subset of the tested cell 
lines, tumor progression is clearly driven by PI3K/AKT/mTOR signaling, while others seem to be 
more dependent on other Ras-mediated pathways, such as ERK signaling. The present study 
provides evidence for the sensitivity of a specific group of pancreatic cancer cell lines and may 
pave the way for additional triciribine studies on a large PDAC cell line platform or a number of 
primary tissues as well as eventually in vivo studies. 
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Summary 

Protein kinases are key regulators of major biological signaling processes in cell and a variety of 
diseases like cancer have been associated with deregulation of kinase activity. As a 
consequence, protein kinases are among the most intensively studied signaling molecules in 
pathophysiological biology and received considerable attention as therapeutic targets. So far, 
numerous aberrant kinases have been identified to play a pivotal role in all states of 
tumorigenesis and about 20 small molecule kinase inhibitor drugs are in clinical use today (all in 
oncology). Therefore, the kinome-wide characterization of cancer signaling as well as the true 
target spectrum of small molecule drugs may offer new insight in the therapeutic potential. 
However, challenges in assessing kinase function and drug selectivity in a more physiological 
context is often hampered by the generally low expression level of kinases and the extensive 
post-translation modification in vivo.  

Over the last years, chemical proteomics and phosphorylation profiling technologies based on 
quantitative mass spectrometry have emerged as a powerful tool of choice to study (drug-
dependent) kinase signaling. However, additional technical improvements can still be made and 
novel instrumentations and methods continue to be developed. The primary objective of this 
thesis was to develop and optimize quantitative mass spectrometry-based chemoproteomic 
approaches to study kinase activity in cancer in a global and systematic fashion.  

Undoubtedly, state of the art mass spectrometric technology, as the analytical technique of 
choice, is one prerequisite. Therefore, the performance of the Orbitrap Elite, a novel hybrid 
linear ion trap high field Orbitrap mass spectrometer, was first systematically evaluated for 
proteomic application. The very high resolution available on this instrument allows 95% of all 
peptide masses to be measured with sub-ppm accuracy which in turn improves protein 
identification by database searching. It was further confirmed that mass accuracy in tandem 
mass spectra is a valuable parameter for improving the success of protein identification. The 
new CID rapid scan type of the Orbitrap Elite achieves similar performance as HCD 
fragmentation and both allow the identification of hundreds of proteins from as little as 0.1 ng of 
protein digest on column. The considerably improved performance makes the instrument a 
valuable and versatile tool for mass spectrometry based proteomics. As quantitative 
measurements became increasingly important for proteomics studies, a robust quantification 
method for the analysis of kinase inhibitor selectivity assays using kinobeads was established. A 
novel mode of data processing was developed that identifies reporter ions from isobaric labeling 
tags via the accurate mass differences within a single tandem mass spectrum instead of 
applying fixed mass error tolerances for all tandem mass spectra. This approach leads to 
unambiguous reporter ion identification and complete removal of common interfering signals 
and thereby considerably improves mass accuracy and protein quantification. However, 
intensity-based label-free approaches have shown to be more suitable for selectivity profiling as 
kinome coverage was significantly improved and determination of binding potencies were more 
accurate compared to literature evidence.  

Improvements of the biochemical workflow were mainly achieved by the design and synthesis of 
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a new chemical affinity probe targeting AKT and about 50 other kinases and, thus, expending 
the general scope of the previously published kinobeads. In combination with kinobeads, the 
synthesized probe was applied to the selectivity profiling of the ATP-competitive AKT inhibitors 
GSK690693 and GSK2141795, and the allosteric AKT inhibitors perifosine and MK-2206 in 
human cell lines. The results confirmed the inhibition of all AKT isoforms and of a number of 
known, as well as CDC42BPB as a novel, putative target for GSK690693. This work also 
established, for the first time, the kinase selectivity profile of the clinical phase I drug 
GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-
dependent 5’-γ’ DNA helicase ERCCβ as a potential new non-kinase off-target. Besides, it was 
shown that selectivity profiling by kinobeads can also be applied to allosteric inhibitors. Several 
MAP kinases have shown to be off-targets for perifosine. Profiling of MK-2206 revealed the 
DNA binding PARP16 and also the ferrochelatase FECH as putative non-kinase off-targets.  

Last, but not least, the established instrumental and biochemical methods were applied to the 
characterization of murine Kras-induced pancreatic ductual adenocarcinoma (PDAC) cell lines 
according to their sensitivity to the AKT inhibitor triciribine. Phosphoproteomics analysis 
identified about 270 significantly regulated phosphoproteins in a triciribine sensitive cell line, 
suggesting the dependence of this PDAC cell lines on the AKT-mTOR signaling pathway. In 
contrast, growth of resistant cell lines seems to be driven by other Ras-mediated pathways, 
such as Ras-ERK signaling. These findings confirm the high diversity of the underlying 
molecular biology in cancerous diseases, in particular in pancreatic cancer.  
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Zusammenfassung 

Proteinkinasen sind Schlüsselregulatoren der wesentlichen Signalprozesse in Zellen und eine 
Vielzahl an Krankheiten, wie Krebs, wurden mit deregulierter Kinaseaktivität assoziiert. 
Infolgedessen gehören Proteinkinasen zu den am besten erforschten Signalmolekülen in der 
pathophysiologischen Biologie und erlangten erhebliche Aufmerksamkeit als therapeutische 
Zielproteine. Bislang wurden zahlreiche aberrante Kinasen mit zentraler Rolle in allen Stadien 
der Tumorentstehung identifiziert und etwa β0 ‚small molecule‘ Kinaseinhibitoren sind 
gegenwärtig in klinischer Anwendung (alle im Bereich der Onkologie). Die gezielte, Kinase-
zentrierte Untersuchung von Signalkomplexen in Krebs sowie des tatsächlichen Wirkspektrums 
der ‚small molecule inhbiitor‘ Medikamente bietet daher die Möglichkeit, neue Erkenntnisse mit 
therapeutischem Protential zu gewinnen. Einblicke in Kinasefunktion und Arzneiselektivität in 
einem physiologischeren Kontext zu erlangen, ist jedoch durch das generell niedrige 
Expressionslevel von Kinasen und deren umfangreiche posttranslationale Modifikationen 
erschwert.  

In den letzten Jahren haben sich Technologien der chemischen Proteomik und Erstellung von 
Phosphorylierungsprofilen als wirksame Werkzeuge herausgestellt, um (Medikamenten-
abhängige) Kinasesignalwege zu untersuchen. Durch die stete Entwicklung neuartiger 
Instrumente und Methoden koennen auch weiterhin technische Fortschritte erzielt werden. Die 
vorrangige Zielsetzung dieser Arbeit war die Entwicklung und Optimierung quantitativer 
Massenspektrometrie basierender chemoproteomischer Ansätze zur globalen und 
systematischen Untersuchung von Krebs-abhängiger Kinaseaktivität.  

Modernste massenspektrometrische Technologie, als Analysetechnik der Wahl, ist zweifellos 
eine Grundvorraussetzung. Daher wurde die Leistungsfähigkeit der Orbitrap Elite, eines neuen 
hybriden Ionenfallen Hochfrequenz-Orbitrap Massenspektrometer, systematisch auf die 
proteomische Anwendbarkeit beurteilt. Die auf dem Instrument verfügbare sehr hohe Auflösung 
erlaubt die Messung von 90% aller Peptidmassen innerhalb sub-ppm Genauigkeit, was 
wiederum die Proteinidentifikation bei der Datenbanksuche verbessert. Es wurde neuerlich 
bestätigt, dass Massengenauigkeit in Tandemmassenspektren ein nützlicher Parameter zur 
Erfolgssteigerung der Proteinidentifikation ist. Der neuartige ‚CID rapid‘ Scantyp der Orbitrap 
Elite erzielt vergleichbare Leistung wie HCD Fragmentation und beide ermöglichen die 
Identifizierung von Hunderten Proteinen in nur 0,1 ng an Proteinverdau auf der Säule. Die 
beträchtlich verbesserte Leistung macht das Instrument zu einem wertvollen und vielseitigen 
Werkzeug der Massenspektrometrie-basierten Proteomik. Da quantitative Messungen in 
proteomischen Studien zunehmend an Bedeutung gewonnen haben, wurde eine robuste 
Quantifizierungsmethode zur Analyse von Selektivitätsbestimmungen von Kinaseinhibitoren 
etabliert. Eine neuartige Methode der Identifizierung von Reporterionen isobarer Massentags 
wurde entwickelt, welche mittels der exakten Massendifferenzen innerhalb eines einzigen 
Tandemmassenspektrums anstelle einer festen Massentoleranz für alle 
Tandemmassenspektren arbeitet. Dieser Ansatz führt zur eindeutigen Identifizierung von 
Reporterionen und kompletten Beseitigung häufig auftretender Störsignale, und verbessert 
dadurch erheblich die Massengenauigkeit und Proteinquantifizierung. Intensitäts-basierte 
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markierungsfreie Ansätze erwiesen sich jedoch als geeigneter zur Selektivitätsbestimmung, da 
die Abdeckung des Kinoms maȕgeblich erhöht war und die bestimmten Bindungsaffinitäten 
stärker den Literaturwerten glichen.  

Der biochemischen Arbeitsablaufs wurden vorwiegend durch Design und Synthese einer neuen 
chemischen Affinitätssonde verbessert, welche AKT und etwa 50 weitere Kinases anreichert 
und dadurch die Bandbreite der zuvor publizierten Kinobeads erweitert wird. In Kombination mit 
Kinobeads wurde die synthetisierte Sonde zur Selektivitätsbestimmung der ATP-kompetitiven 
AKT Inhibitoren GSK690693 und GSK2141795, sowie der allosterischen AKT Inhibitoren 
Perifosine und MK-2206 in humanen Zelllinien herangezogen. Die Ergebnisse bestätigten die 
Inhibierung aller Isoformen von AKT und zahlreicher bekannter Zielproteine von GSK690693, 
sowie CDC42BPB als potentiell neues Zielprotein. Diese Arbeit etablierte zudem erstmalig das 
Selektivitätsprofil des, in klinischer Phase I befindlichen, Medikaments GSK2141795 und 
identifizierte PRKG1 als Zielkinase im geringen nanomolaren Bereich, ebenso wie die ATP-
abhängige DNA Helikase ERCC2 als vermeintlich neues nicht-Kinase Zielprotein. Ferner konnte 
gezeigt werden, dass die Selektivitätsbestimmung mittels Kinobeads ebenfalls auf allosterische 
Inhibitoren anwendbar ist. Mehrere MAP Kinasen erwiesen sich als zusätzliche Zielproteine von 
Perifosine. Das Profil von MK-2206 zeigte das DNA-bindende PARP16 sowie die 
Ferrochelatase FECH als vermeintliche nicht-Kinase Zielproteine auf.  

Zuletzt wurden die etablierten instrumentellen und biochemischen Methoden herangezogen, um 
murine Zelllinien von Kras-induzierten duktalen Adenokarzinomen des Pankreas (PDAC) 
entsprechend ihrer Sensitivität gegenüber des AKT Inhibitors Triciribine zu charakterisieren. 
Eine phosphoproteomische Analyse identifizierte circa 270 signifikant regulierte 
Phosphoproteine in einer Triciribine-sensitiven Zelllinie, welche die Abhängigkeit dieser PDAC-
Zelllinie von dem AKT-mTOR Signalweg nahe legt. Im Gegensatz dazu scheint das Wachstum 
resistenter Zellinien von anderen Ras-vermittelten Signalwegen, wie Ras-ERK Signalisierung, 
angetrieben zu werden. Diese Resultate bestätigen die hohe Diversität der zugrundeliegenden 
Molekularbiologie in kanzerösen Krankheiten, besonders in Pankreaskrebs.  
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