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Abstract— Cooperative manipulation of multiple robots
presents an interesting control application scenario of coupled
dynamical systems with a common goal. Here, we treat the
problem of moving a formation of physically interconnected
robots to a desired goal while maintaining the formation. This
control problen is for example relevant in cooperative transport
of an object from an initial to a final configuration by mobile
robotic manipulators. To achieve the control goal we formulate
an LQR-like optimal control problem that, in addition to
goal regulation and minimization of input energy, includes the
formation rigidity constraint in a relaxed form expressed as a
biquadratic penalty term. The control problem is solved by two
different iterative algorithms, a gradient descent using adjoint
states and a quasi-Newton method, that determine a static linear
state-feedback matrix. The proposed control design and the
iterative algorithms are validated and compared in numerical
simulations showing the efficacy of both approaches.

I. INTRODUCTION

Technological advances in communications and robotics

have inspired researchers to investigate the interaction of

several mobile robots to achieve a common goal. This

includes for example the situation where the group of robots

collaboratively transport an object from an initial point to

a specified end point. The benefits of cooperative object

manipulation are higher manipulation performance in terms

of higher payload, geometric extension of the object, and

potential synergies in the sensing and actuation capacities

compared to a single robot. An important issue of mobile

cooperative manipulation is the desired rigidity of the robot

formation in order to ensure that the object is not deformed.

Our goal here is to design an optimal control law that both

maintains rigidity and regulates the desired goal configura-

tion. Both design goals are essential when multiple mobile

robot manipulators cooperatively drive an object from an

initial to a final configuration without squeezing the object.

Many recent research activities on multi-robot problems

focus on distributing motion commands of interconnected

robots based on the desired movement of a rigid body using

advanced robot dynamics [1]–[3]. Since contact forces are

always present in the cooperation of robots, their inclusion

into the control scheme facilitates a desired compliant in-

teraction, called impedance control. These impedance-based

control schemes are distributed among several cooperating

manipulators in [4] including a stability analysis. A second

research direction treats formation control with agents with
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integrator dynamics. In [5], a biquadratic, positive definite

function is used for the leader-follower approach in mobile

robots with unicycle dynamics. Using the rigidity constraint

in the control design in combination with a leader-follower

network is presented in [6]. A general framework for main-

taining the formation of agents with integrator dynamics is

employed for directed triangle formations in [7], [8].

The intention of this work is to bring these two research

directions closer by considering a formation control problem

with robotic manipulators with advanced dynamics. The

contribution of this work includes the derivation of advanced

system dynamics as they appear in multi-robot cooperative

manipulation. We then formulate an optimal control problem

which takes both control goals of formation rigidity and goal

regulation into account. By relaxing the formation rigidity

constraint of a cooperative multi-robot transportation we

obtain a biquadratic cost functional, closely resembling the

LQR cost functional. However, because of the specific form

of the cost functional, standard LQR methods are not applica-

ble. Hence, we present two iterative algorithms to determine

the feedback matrix, inspired by results in [9], [10]. These

iterative algorithms are based on the simulation of trajec-

tories of the system state and an adjoint state. Numerical

simulations demonstrate the effectiveness of the approach. A

full-scale experimental evaulation of the proposed algorithm

with multiple mobile manipulators is presented in [11].

The remainder of this paper is structured as follows.

Section II describes the system dynamics of a coopera-

tive multi-robot team. Furthermore a control problem is

presented which relaxes the rigid formation constraint into

a biquadratic cost term. Two algorithms to compute the

feedback law are presented in Section III. An evaluation of

the approach through simulations is shown in Section IV.

Notation: Bold symbols denote vectors. The pose of the

i-th end-effector frame Σi is expressed in a world coordinate

system Σw. An object-centered frame Σo is aligned to the

principal axes of the object. The matrix Ri
o describes the

rotation of Σi relative to Σo. The vectorization of a matrix

is denoted by vec(· ), the inverse operation of reshaping a

vector into a matrix of appropriate dimensions is denoted by

mat(· ). The identity matrix of dimension n is signified by

In. The zero matrix of dimension m×n is denoted by 0m×n.

II. PROBLEM FORMULATION

A system model for cooperative multi-robot cooperation

is presented in this section and forms the system dynamics.

Then, based on the dynamics, the control goal considered in

this paper is formulated.



A. Multi-robot cooperation - a state space model

We consider a team of cooperating robots manipulating

a single object. The dynamics of each individual robot i =
1, . . . , N evolves according to the feedback linearized system

dynamics incorporating impedance control given by [12]

Miξ̈i +Di

(

ξ̇i − ξ̇i,d
)

+Ki

(

ξi − ξi,d
)

= fd − f i, (1)

where ξi ∈ R
n, i = 1, . . . , N is the Cartesian position of

the individual robot, and its time derivatives ξ̇ and ξ̈ are

velocity and acceleration, respectively. The positive definite

impedance parameters inertia Mi, damping Di, and stiff-

ness Ki ∈ R
n×n are chosen constant. The movement of

each robot is driven by the desired robot velocity ξ̇d and

the desired force of each manipulator fd, representing the

control inputs. The coupling between the subsystems in (1) is

expressed through the force f i ∈ R
n at the ith manipulator

which results not only from environment contact but also

from the coupling of the robots through the object.

The force f i =
1
N
(fmotion + f ext) + f i,int is composed

of the interaction forces of all n robots f i,int, called internal

force, of the rigid body dynamics of the object fmotion, and

of environmental contact force f ext, called external force.

With the factor 1
N

, we assume that the force is distributed

equally among the cooperating robots which is valid for

equal impedance paraemters Mi, Di, and Ki. Since we

assume the object dynamics to be acurately known, fmotion

is neglected and no external force f ext acting on the object

is considered, i.e. f i = f i,int. In order to express f i,int in

terms of ξ and ξd, we make the following assumption.

Assumption 1: The force f i,int can be approximated as

f i,int = Ki

(

ξi,d − ξi
)

−Ro
wG

†
i

n
∑

j=1

Gj(R
w
o )Kj

(

ξj,d − ξj
)

, (2)

where G = [G1, . . . , GN ] ∈ R
n×nN is the grasp matrix

describing the relation between the forces of each robot

frame and the object frame, G† is its Pseudo-inverse, and

Rw
o is the orthonormal transformation matrix from Σo to Σw.

This is valid since movements in multi-robot manipulation

are generally not high-speed, yielding vanishing terms w.r.t

Di and Mi.

Let xi =

[

(
t
∫

t0

ξ̇i,ddt)
T , ξTi , ξ̇

T

i

]T

be the system state

and ui =
[

ξ̇
T

i,d,f
T
i,d

]T

be the control input. Then by

combining (1) and (2) a state space model for the single

manipulator in cooperation is given by

ẋi = Aiixi +Biiui +
∑

j∈{1...N}\{i}
Aijxj , (3)

with

Aii =





0 0 0
0 0 1

1
N
M−1

i Ki − 1
N
M−1

i Ki − 1
N
M−1

i Di



 , (4)

Aij = M−1
i Ro

wG
†
i





0 0 0
0 0 0

Gj0R
wKj −GjR

w
o Kj 0



 , (5)

and

Bii =





1 0
0 0

M−1
i Di −M−1

i



 , (6)

where Aii is the system matrix of a single decoupled robotic

system, Bii is the input matrix, and Aij is the interaction ma-

trix of system j to system i. By stacking the individual robot

states into x =
[

xT
1 , . . . ,x

T
N

]T ∈ R
3nN and the individual

control inputs into u =
[

uT
1 , . . . ,u

T
N

]T ∈ R
2nN we obtain

the system dynamics for the multi-robot cooperative system

in a standard LTI system form

ẋ = Ax+Bu. (7)

In the following, we consider the complete system ma-

trix A which consists of the blocks from (4) and (5) and

is thus written as A = [Aij ]. Equivalently, the input matrix

results in B = diag(B11, . . . , BNN ).

B. Control goal

We want to design a linear state feedback control law u =
−Kx which optimally drives a formation of interconnected

robots described by the system dynamics (7) from an initial

configuration x0 to a desired end point xe while maintaining

the initial formation. This control goal is formulated in an

LQR-like setting setting with rigidity constraint.

In order to derive the rigidity constraint consider the set

o f edges E such that the structure is rigid during the

movement phase. Rigidity of the formation is described by

an edge function f(x) =
(

. . . , ‖ξi − ξj‖22, . . .
)

∈ R
‖E‖

which is required to satisfy f(x) = p. The state variable x

is concenated by xi and thus involves the manipulator

positions ξi. Here, p = (. . . , pij , . . .) is the desired rigid

distance between the manipulators, and therefore considered

to be constant in the following. Differentiating f w.r.t time

leads to
(

ξi − ξj
)T
(

ξ̇i − ξ̇j

)

= 0 ∀(i, j) ∈ E. (8)

The geometrical interpretation of (8) is that the difference

in position between two linked robots is orthogonal to

the difference in velocity. In order to include the rigidity

condition (8) into our LQR-like setting, we transform it

into a quadratic term of the states. Thus (8) is written as

x̄T
i,jQijx̄i,j with x̄i,j = [xT

i , x
T
j ]

T by defining the blocks

[qii] =





0n×n 0n×n 0n×n

0n×n 0n×n
1
2In

0n×n
1
2In 0n×n



 ∀(i, j) ∈ E and

[qij ] = [qji] =





0n×n 0n×n 0n×n

0n×n 0n×n − 1
2In

0n×n − 1
2In 0n×n



 ∀(i, j) ∈ E.

(9)

The resultant matrix Qij =
[ qii qij
qji qjj

]

is symmetric but

indefinite and thus it cannot be employed in a standard LQR



problem directly. Since the equality constraint described

in (8) can be violated in both directions, the indefiniteness of

x̄T
i,jQijx̄i,j is obvious, and its apparent global minimum is

−∞. The biquadratic term (x̄T
i,jQijx̄i,j)

2 on the other hand

has a minimum of 0, and is thus suitable to be included in

an optimization as a penalty term. Minimizing (x̄T
i,jQijx̄i,j)

2

for all (i, j) ∈ E relaxes the rigidity equality constraint (8)

into a minimization problem. Proper partitioning allows

writing (x̄T
i,jQijx̄i,j)

2 as

(xTQkx)
2 ∀ k ∈ {1, ..., ||E||} . (10)

This gives the first part of the desired cost functional. In

order to achieve goal regulation to the desired end point xe,

we employ the standard transformation of x into

x̃ = x− xe, (11)

and including the term x̃T Q̃x̃ into the cost functional. It is

important to note however that the rigidity condition (10) still

needs to be satisfied in the original coordinate system x. In

order to combine both coordinate systems in the same cost

functional we introduce an extended state vector

x̄ =
(

x̃T , 1
)T

. (12)

Thus, we reformulate the rigidity penalty term (10) into
(

xTQkx
)2 ∀ k ∈ {1, ..., ||E||}

=

(

(

x̃

1

)T (
Qk Qkxe

xe
TQk xe

TQkxe

)(

x̃

1

)

)2

=
(

x̄T Q̄kx̄
)2 ∀ k ∈ {1, ..., ||E||} . (13)

We can now combine all of the terms into one cost

functional and restate our control goal.

The goal of our optimal control problem is to find a control

law u = −K̄x̄ with structure K̄ = [K̃, 02nN×1] in order to

minimize the following cost functional

J = x̄(T )TSx̄(T )+

∫ T

0

||E||
∑

k=1

(

x̄T (t)q̄kQ̄kx̄(t)
)2

+ uT (t)Ru(t) + x̄T Q̄x̄dt, (14)

where S and Q̄ have the structure S = diag(S̃, 0) and Q̄ =
diag(Q̃, 0) in order not to penalize the additional 1-state, Q̄k

is given in (13) and q̄k ≥ 0 is a scalar weighting factor.

The zero column in K̄ is used to discard the augmented

1-state. The term x̄(T )TSx̄(T ) represents the final penalty

term resulting from the distance between x and xe for the

final time T . An indirect influence on the control input

constraints is realized by uT (t)Ru(t). This cost functional

represents our combined control goals of maintained forma-

tion, through the term
∑||E||

k=1

(

x̄T (t)Q̄kx̄(t)
)2

, and goal

regulation, through the term x̄T Q̄x̄.

III. MAIN RESULTS

In this section, we present two algorithms to achieve our

control goal described by the cost functional (14). Further-

more, an idea is presented to alleviate the local character of

the resulting control law.

A. Optimal control design via gradient descent method using

adjoint states

In this subsection we describe a solution algorithm to

determine a suboptimal feedback to minimize the biquadratic

cost functional (14), inspired by the results in [10]. While

there is a linear relationship in the standard LQR problem

between the primal states x and the adjoint states λ given

by λ(t) = Px(t), allowing for the solution to use a Riccati

equation for the matrix P , this is not the case here. Because

of the biquadratic term in the cost functional we are forced

to use an alternative method based on simulated trajectories

which is explained in the following.

Given the biquadratic cost functional (14) we want to

iteratively determine the optimal state-feedback law. The

corresponding Lagrangian function of the problem is

L =x̄(T )TSx̄(T ) +

∫ T

0

||E||
∑

k=1

(

x̄T (t)q̄kQ̄kx̄(t)
)2

+ x̄T Q̄x̄

+ λ̄
T
(t)( ˙̄x(t)− (Ā− B̄K̄)x̄(t))

+ x̄T (t)K̄TRK̄x̄(t)dt+ µ̄(x̄(0)− x̄0), (15)

where Ā = diag(A, 0) and B̄ = [BT , 0T1×2nN ]T .

Partial integration of (15) gives

L =x̄(T )TSx̄(T ) +

∫ T

0

||E||
∑

k=1

(

x̄T (t)q̄kQ̄kx̄(t)
)2

+ x̄T (t)K̄TRK̄x̄(t) + x̄T Q̄x̄− x̄T (t) ˙̄λ(t)

− x̄T (t)(Ā− B̄K̄)T λ̄(t)dt

+
[

λ̄(t)T x̄(t)
]T

0
++µ̄(x̄(0)− x̄0). (16)

We can derive equations for the adjoint state through the

optimality condition ∂L
∂x̄

= 0. This gives

˙̄λ(t) =(Ā− B̄K̄)T λ̄(t)− 2K̄TRK̄x̄(t)− 2Q̄x̄(t)

− 4

||E||
∑

k=1

(x̄T (t)q̄kQ̄kx̄(t))q̄kQ̄kx̄(t) (17a)

λ̄(T ) = −2Sx̄(T ), µ̄ = −λ̄(0). (17b)

The last equation gives justification that λ̄(0) is free.

Proposition 1: The gradient of the cost functional with

respect to the feedback matrix K̄ is

∇K̄J =

∫ T

0

2RK̄x̄(t)x̄T (t) +BT λ̄(t)x̄T (t)dt. (18)

Proof: The gradient is determined from the Lagrange

function. We get

∇K̄J •H =

∫ T

0

2x̄T (t)HTRK̄x̄(t) + x̄T (t)HTBT λ̄(t)dt

=

∫ T

0

2RK̄x̄(t)x̄T (t) +BT λ̄(t)x̄T (t)dt •H,

where H is a variation in K̄, and where • denotes the

Frobenius inner product.

The feedback matrix is then iteratively determined using

the following algorithm.



Algorithm 1:

1) Simulate the states x̄(t) for the finite horizon T .

2) Simulate the adjoint states λ̄(t) for the same horizon

according to (17).

3) Compute the gradient according to (18).

4) Update the feedback matrix

K̄(k+1) = K̄(k) − γk∇K̄J (k),

where γk is a scalar step length.

5) If

∣

∣

∣

J(k)−J(k−1)

J(k−1)

∣

∣

∣
< ǫ, stop. Otherwise, increase k and

go back to step 1.

The choice of the step size γk is important for the speed

of convergence. A popular method is to choose a step size

satisfying the Wolfe conditions [13] given by

J(K̄ + γkmat(sk))− J(K̄) ≤ γkc1(vec(∇K̄J))T sk
(19a)

(vec(∇K̄+γksk
J))T sk ≥ c2(vec(∇K̄J))T sk, (19b)

where c1 ∈ (0, 1) and c2 ∈ (c1, 1). For Algorithm 1,

the search direction sk is given by the vectorization of the

negative gradient, i.e. sk = −vec(∇K̄J). An alternative step

size for Algorithm 1 is the Barzilai-Borwein step size [14]

which uses information of the previous step and is given as

γk =
(∆vec(K̄))T (∆vec(K̄))

(∆vec(K̄))T (∆vec(∇K̄J))T
, (20)

where ∆vec(K̄) = vec(K(k)) − vec(K̄(k−1)) and

∆vec(∇K̄J) = vec((∇K̄J)(k))− vec((∇K̄J)(k−1)).

B. Minimization via BFGS method

The downside of Algorithm 1 presented in the previous

section is that gradient methods generally converge slowly.

However, the availability of the gradient according to (18)

allows us to use more advanced optimization methods,

like the Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method [15]. That means that instead of the negative

gradient we use the following search direction

sk = −Dkvec(∇K̄(k)J),

where Dk approximates the inverse of the Hessian matrix.

We obtain the following algorithm.

Algorithm 2:

1) Choose c1, c2 ∈ R, K̄0 ∈ R
m×n. Pick a positive

definite matrix D0 ∈ R
mn×mn, e.g. D0 = Imn.

2) Compute the search direction sk as

sk = −Dkvec(∇K̄J),

where the gradient ∇K̄J is given by to (18).

3) Compute the step size γk according to the Wolfe

conditions (19).

4) Update the feedback matrix

K̄(k+1) = K̄(k) + γkmat(sk).

5) Set pk = vec(K̄(k+1)) − vec(K̄(k)) and qk =
(vec(∇K̄(k+1)J))− (vec(∇K̄(k)J)). Update Dk as

Dk+1 = Dk +
(pk −Dkqk)p

T
k + pk(pk −Dkqk)

T

pT
k qk

− (pk −Dkqk)
Tqk

(pT
k qk)

2
pkp

T
k .

6) If

∣

∣

∣

J(k)−J(k−1)

J(k−1)

∣

∣

∣
< ǫ, stop. Otherwise, increase k and

go back to step 1.

Remark 1: Even though the two algorithms should lead to

the same control law with the same cost this is not always

the case. We attribute this to the nonconvexity of the cost

functional causing the algorithms to converge to different

local minima caused by the differences in search directions

and step sizes. Also note that because the optimization

problem has a finite horizon, the resulting control law is

not guaranteed to be stabilizing for t → ∞.

C. Averaging over the initial configuration x0

One possible problem concerning the resulting feedback

matrices of Algorithms 1 and 2 is that they are optimized

w.r.t. to one specific initial configuration x0. In practice

however, the initial configuration might not be known in

advance or might be slightly disturbed from the assumed

one. In order to circumvent this problem, we propose to

average over several initial configurations for the simulated

trajectories to obtain a control law that performs well for an

area. The algorithms principally remain unchanged except

for the gradient which is now given by

∇K̄J =
1

nsamples

(

nsamples
∑

i=1

∫ T

0

2RK̄x̄i(t)x̄
T
i (t)

+BT λ̄i(t)x̄
T
i (t)dt

)

, (21)

where x̄i(t) and λ̄i(t) are the trajectories resulting from

the ith initial configuration, and nsamples is the number of

selected initial configurations, see [10] for more details.

Remark 2: While this extension enlarges the area of possi-

ble initial configurations, this does not lead to a globally op-

timal control law. In fact, our numerical investigations show

that initial configurations that are not considered directly in

the design may lead to undesirable performance. This is also

later shown in the example in Section IV-B.

IV. NUMERICAL INVESTIGATION

This section validate the control design algorithm.

A. Comparison between the presented algorithms

In this subsection we want to compare the computa-

tional performance between Algorithm 1 using the Barzilai-

Borwein step size (20) and Algorithm 2. As a system, we

consider three physically interconnected robots with system

dynamics described by (7), all with identical parameters

Mi = I3, Di = 2
√
3I3 and Ki = 3I3. Since each system

has nine states, we have a total system dimension of 27.



As a comparison scenario we move an initial triangle on

the edges of the rectangle marked by the four crosses in

Figure 1 in steps of length 0.5, resulting in 40 different

starting points. The weighting matrices are chosen as q̄k = 5,

R = I18, Q̄ = diag(I27, 0), S = diag(I27, 0) with a

horizon of 40. The optimization algorithms stop when the

change in cost between iterations is less than 10−3. The

results of the comparison are summarized in Table I. We

see that the number of iterations is comparable for both

algorithms. The fact that the number of iterations is lower

for the gradient method is counter-intuitive and might be

due to the fact that different local minima are found by

the two algorithms We observed in our investigations that

even though both algorithms may achieve almost compa-

rable costs, the actual resulting control matrices might be

completely different. While the gradient descent algorithm

has advantages in the computation time, the BFGS algorithm

always achieves lower cost. The longer computation time of

the BFGS algorithm for the same number of iterations is

due to the step size computation according to the Wolfe

conditions (19) which takes considerably longer than the

computation of the Barzilai-Borwein step size. Note that for

some categories we chose the median instead of the average

because the BFGS algorithm produces some outliers that are

not representative for its overall performance. In conclusion,

if computational time is not an issue, the BFGS algorithm

should be preferred because of the lower achieved cost.

TABLE I

COMPARISON BETWEEN ALGORITHMS 1 AND 2

Algorithm 1 Algorithm 2

Median number of iterations 184 191

Average achieved cost 82.09 75.92

Median computation time [s] 59.1 142.4

Average cost decrease by BFGS - 9.2%

Median cost decrease by BFGS - 8.1%

B. Illustrating numerical example

In this subsection we want to illustrate the result of

Algorithm 2 with averaging over the initial configuration x0.

The system parameters are identical to the previous sub-

section. As weighting matrices we choose R = 5I18,

S = diag(10I27, 0), q̄k = 100 and Q̄ = diag(0.1I27, 0)
because we want to emphasize maintaining of the formation.

The optimization horizon is 40 seconds. The optimization

algorithm stops when the change in cost between iterations

is less than 10−3. For the design, we pick 4 different initial

configurations. The coordinates of the center points of the

respective triangles are given in Table II and are marked

as gray crosses in Figure 1. In the simulations the goal is

to move the triangle formation of the three interconnected

robots from four different initial configurations to a desired

end point. These four initial configurations and the end point

are also given in the table. Three of the initial configurations

belong to the area surrounded by the four points used in the

design, with two of them used directly in the design, while

the fourth point is outside the area.

Figure 1 shows the resulting movements from all four

initial configurations. We can see that the control design

works well for all three points inside the area because the

desired end point is reached and all the intermediate steps

also show the initial formation. This shows that the relaxed

rigidity condition is satisfied by the control design and the

control law achieves all of its goals. For the point outside the

area the desired end point is still reached but it can clearly

be seen that the formation is violated in the intermediate

steps because the formation stretches in all directions. This

illustrates that the optimized control law has a local character

and is not guaranteed to work well away from the initial

configurations used during the optimization.

Remark 3: A phenomenon we observed during our nu-

merical investigations is that while the classical LQR prob-

lem is invariant to scaling in the cost functional, meaning

that the control law for Q and R is identical as the control

law for cQ and cR with c > 0 ∈ R, this is not the case here.

Finding the exact reason will be part of future work.

TABLE II

STARTING AND END POINTS FOR VISUALIZING EXAMPLE

Phase Center Point

Design x0,1 = [2,−2]
Design x0,2 = [2, 4]
Design x0,3 = [−2, 4]
Design x0,4 = [−2,−2]
Simulation x0,1 = [2, 0]
Simulation x0,2 = [2, 4]
Simulation x0,3 = [−2, 4]
Simulation x0,4 = [−4,−1]

Design & Simulation xe = (
√
3

6
, 2.5)

C. Comparison with open loop input

In this subsection we compare the performance of the

resulting feedback matrix from Algorithm 2 with an open

loop input obtained with the Matlab function fminunc.

The test scenario is the movement of a formation of three

robots with identical system parameters as in Section IV-B.

The open loop case corresponds to the generation of desired

trajectories which are tracked by the impedance control law.

The shape is a triangle with an initial center point (0, 0).
The desired end formation is a triangle with center point

(
√
3
6 , 2.5) which is rotated by −π

2 . We choose the weighting

matrices Qk = 40I27, R = 5I18, S = diag(10I27, 0) and

Q̄ = diag(10−2I27, 0), with the horizon 20.

The presented Algorithm 2 leads to a feedback control

law which achieves the cost 11.13 after 958 iterations and

1543 seconds of computation time. The open loop trajectory

is able to achieve a lower cost of 7.92 which is clear by

the additional degree of freedom in the input signal but the

computation time is much higher (117021 seconds ≈ 1.35

days). Besides computation time the feedback clearly has ad-

vantages when disturbances or uncertainties are considered.

V. CONCLUSIONS

In this paper we introduce an advanced state-space model

of physically interconnected robots. Based on the model, we



0

0

1

2

2

3

4

4

5

−1

−2

−2−4
−3

x in [m]

y
in

[m
]

1

1

1 1

1

2

2

2 2

2

3

3

3 3

3

Fig. 1. Three mobile robots drive from four different initial configurations (red dashed, yellow dashed dotted, green solid, blue dashed) to a common goal
while trying to maintain the formation. Bold colored triangles illustrate the initial robot configuration, the bold black triangle is the final configuration. The
blue triangle clearly loses formation because the shape of the triangle stretches during the movement, while the other three triangles maintain their shape.

formulate a novel LQR-optimal control problem to design

a control law which drives a formation of interconnected

robots from an initial configuration to a desired end point.

An important new property is the inclusion of formation

rigidity as a penalty term into the cost functional, thus

combining the two research directions of formation control

with advanced robot dynamics. The resulting cost functional

includes biquadratic terms. Two iterative algorithms, the first

based on gradient descent, the second on a quasi-newton

method, are presented to solve the optimal control problem

and derive the feedback matrix. The presented algorithms

are validated in numerical simulations. The algorithms are

compared in a large-scale experiment with anthropomorphic

robotic platforms in a companion paper [11].
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