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Abstract—Power systems are increasingly stressed by variable
and unpredictable generation from various sources. We identify
the qualitative framework of flexibility as an adequate tool
to specify requirements that allow the system to handle this
variability. An open problem is the quantification of technical
flexibility that incorporates limitations from transmission system
and component behavior in contrast to existing copper plate
supply and demand balance approaches. We develop such a
quantitative method for single components on the basis of a
priori specified reliability criteria. Our framework bases on a
combined static power flow and small signal stability analysis. In
a perturbative approach we derive sensitivity-based formula for
eigenvalue variations under nonlinear changes of steady power
flow set points. To this end, we define rigorously the terms flex-
ibility metric and technical flexibility of single components. We
provide an algorithmic procedure for computation of tolerance
ranges of individual system components such that the overall
behavior remains reliable.

Index Terms—Flexibility, Reliability, Power System Control

I. INTRODUCTION

In operation of electric power systems, difficulties are en-

countered in accommodating increasingly variable generation

and demand. To adapt to unpredictable changes in power

balance and to reduce their significance for reliable power pro-

vision, the deployed system architecture including operation

schemes must provide a certain degree of tolerance to uncer-

tainty and variability. This property is called flexibility [1].

Required flexibility to remain in reliable operation is a widely

used term although at times without proper definition [2].

Qualitatively it is seen that flexibility of a power system is

constituted by its components and dynamics at all time scales;

moreover, it is affected by the overall loading level leading to

trade-offs between efficiency in the sense of maximum asset

utilization and inherent tolerance to loading variations [1].

Quantitative specification of flexibility requirements has been

widely recognized as key for successful transitioning towards

novel operational architectures, and flexibility metrics form a

novel area of research, see [2], [3], [4], [5], [6] and references

therein. Yet quantitative tools are missing that incorporate

technical limitations stemming from the transmission system

or control equipment, see [6], [7], [8].

In the cited studies, flexibility metrics are derived from ca-

pacity requirements to meet with changes in steady state power

balance. A flexibility “trinity” as qualitative relation between

power ramping, power, and energy was proposed in [2] in the

so-called power node framework, and a methodology to assess

technical available operational flexibility is derived. In [5], the

insufficient ramping resources probability is proposed on the

basis of generation adequacy metrics supporting long term

planning of power systems. In [6], a metric is presented to

quantify technical flexibility levels of individual generators and

the whole system in order to accommodate power imbalance.

None of the proposed methods handles technical limitations

arising from power transfer via the transmission system or

dynamic limitations. However, international experience shows

that load ramp events on the scale of minutes to hours play a

significant role in flexibility assignment [9], i.e. the interplay

of changes in power flow set points and controller adjustments

to meet with new steady state reliability requirements for

dynamic operation. Moreover, the characterization of system-

wide technical flexibility in a single parameter might be

insufficient to guarantee reliable power provision for multiple

disturbance scenarios that differ in their locational structure

and in local magnitude of imbalance.

Here, we propose a method to quantify flexibility of single

components in electric power systems on the basis of reli-

ability specifications. We incorporate attributes of the trans-

mission system in dispatching load imbalances and provide a

sensitivity-based quantitative framework that accounts for rela-

tions between steady state power flow variations and reliability

of controlled system component dynamics. As input we use

dynamic generator models and an external power disturbance

causing steady state power imbalance. Then, the output is a

measure for the displacement of an a priori chosen eigenvalue.

Technical flexibility is defined on the basis of reliability of

operation being specified by the technical flexibility metric of

choice.

Notation: The brackets 〈·, ·〉 denote the inner product,

the function d(·, ·) denotes distance, LHP denotes the open

left half plane of the set of complex numbers C, the vector ei
represents the i-th unit vector, and ∇xf := ∂f/∂x is the

Jacobian matrix of partial derivatives of a vector valued

function f w.r.t. elements of the vector x. The asterisk ∗

denotes the formal adjoint.

II. TECHNICAL FLEXIBILITY IN POWER SYSTEMS

Assessment of technical flexibility is a tool that involves

methods from power flow calculations and models describing

power system component behavior. Technical flexibility is

measured at hand of eigenvalue displacements in the complex

plane w.r.t. a priori specified flexibility metrics. The mathe-

matical framework and problem setting is given.



A. Characterization of Flexibility and Technical Limitations

The authors of [5] define flexibility as the “ability of a

system to deploy its resources to respond to change in net

load, where net load is defined as the remaining system load

not served by variable generation”. In [6], “the term flexibility

describes the ability of a power system to cope with vari-

ability and uncertainty in both generation and demand, while

maintaining a satisfactory level of reliability at a reasonable

cost, over different time horizons”. In [6], the qualitative

characterization is complemented by quantitative assessment

of individual generators and system flexibility at hand of the

relations

flex(i) =
0.5[Pmax(i)− Pmin(i) + Ramp(i)∆t]

Pmax(i)
, (1a)

FLEX =
∑

i

[
Pmax(i)

∑

i Pmax(i)
flex(i)

]

. (1b)

The measures (1) yield capacity based numbers indicating the

ability of the i-th unit or the system as a whole to tolerate

steady state load variations within a time interval ∆t and

within the operational ranges Pmax(i)− Pmin(i).
Here, we highlight the fact that two systems can be com-

pared in their respective system flexibility only with respect to

a certain flexibility metric. The authors of [6] emphasize this

fact, too, by denoting (1b) a “relative” concept. For instance,

given same demand and identical amount of available wind

generation one system is more flexible than another one, when

it can accommodate more wind generation. In that case a

system-wide wind accommodation (curtailment) factor would

serve as (negative) flexibility metric.

When technical limitations are considered, a nodal capacity

based system-level characterization of flexibility may fail, so

that (1b) may not serve as metric in the sense of giving

meaning to system comparison on the basis of FLEX. The

reason for this are technical limitations such as congestion

in the transmission system: a steady state power disturbance

needs to be dispatched over lines during the accommodation

process, so that system flexibility (1b) is in fact necessary

but not a sufficient criterion for feasibility of the dispatch

when other technical factors limit the process. In this context,

paradoxically, congestion can even lead to the phenomenon

that an increase in installed transmission lines might lead to

a decrease in flexibility of some power system component(s),

see [7], [10]. Therefore, technical flexibility associated with

generation capacity should also encompass how and where

power is generated, how it is transported (how it is traded and

when consumed), as noted in [1].

Going beyond simple generation adequacy or nodal capacity

calculations, tools for quantitative assessment of technical

flexibility must methodologically take into account limitations

stemming from transmission system and control equipment

properties; that is, methods from power flow calculations

must be combined with models describing controlled generator

behavior. This methodological challenge has already been

formulated in [8] and in the context of quantifying technical

flexibility for power systems and components it is noted

in [5], [7].

Methods for studies related to power flow solutions base on

static optimization schemes and they are classically separated

from methods to solve power system problems related to

dynamic behavior in time [8]. A characterization of today’s

power systems control and planning schemes is illustrated in

Fig. 1; the time scale characteristic is taken from [11] and

we adapted the scheme by spatial scales. Technical flexibility

assessment for reliable operation encompasses the gray shaded

classical domains. Real-time balancing of power across the

network couples dynamic components across various time

scales. Assessing flexibility of dynamic components at time

scale ∼ 10−1 sec necessarily involves more detailed generator

models than technical flexibility quantification at a slower time

scale. For instance, a generator can be described by the clas-

sical generator model including only phases and frequencies

as states, or the more detailed 2-axis machine model with an

IEEE Type 1 exciter including seven states, see [12]. The role

of nonlocal coupling via power balance becomes significant

when the grid becomes highly loaded. Then, inherent tolerance

to local small variations reduces and the power system moves

from being elastic to brittle [1].

In such situations an ill-conditioned power flow Jacobian

causes sensitive entanglements of components at far distant

places in the network across several time scales, see [8], [13].

Thus, intertwining static power flow methods with dynamic

models may be accomplished at hand of the power flow Jaco-

bian. Investigations where steady state power flow is combined

with analysis of system dynamics is reported for instance

in [14] or [15]. There, the power flow Jacobian determines

real-time operational properties because it is integral part of

the linearized system matrix determining linear behavior. The

cited studies relate dynamics to power flow in situations where

the Jacobian becomes singular, i.e. the system is at a voltage

collapse point.
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Fig. 1. Temporal and spatial scales of operational and planning schemes

B. Mathematical Setting for Technical Flexibility

The controlled dynamics of an electric power system ΣPS

are in general represented by a system of nonlinear differential

algebraic equations

ΣPS

{
ẋ = f(x,y)
0 = g(x,y)

, (2)



where x ∈ R
n represents the controlled dynamical vari-

ables (depending on the chosen generator model), and the

vector y ∈ Rq represents the algebraic variables (e.g. voltage

magnitudes and angles at buses, stator variables); the nonlinear

relation g(x,y) = 0 refers to algebraic network equations,

i.e. load flow at PQ buses from where also power balance

including PV buses is determined, see [15]. Dynamic stability

analysis and operation rely on linearization of dynamics about

a stationary power flow solution as operational set point. De-

fine zT = (xT ,yT ) ∈ Rn+q . Then, the unique operational set

point is a vector, denoted by zopt, defined via a residual R(z)
as

R(zopt) :=

[
f (xopt,yopt)
g(xopt,yopt)

]

= 0, (3)

and it can be computed using for example static optimization

as zopt = argmin ||R(z)||2.

The dynamics of small perturbations ∆zT = (∆xT ,∆yT )
evolving about zopt are derived from linearization of (2), so

that

d

dt

[
∆x

0

]

=

[

∇xf |zopt
∇yf |zopt

∇xg|zopt
∇yg|zopt

]

︸ ︷︷ ︸

=:A(zopt)

[
∆x

∆y

]

. (4)

Here, the linearized system matrix A(zopt) , ∇z R(z)|zopt

contains the Jacobian of the algebraic network equations ∇yg,

see [12]. Small signal stability of the controlled system can be

determined by means of the generalized eigenvalue problem

A(zopt)vi = λiBvi, B =

[
I 0
0 0

]

, (5)

where λi = σi + jωi is a complex eigenvalue, and vi

the associated right-eigenvector. A negative growth rate σi

yields an exponentially decaying motion in the direction of

the eigenvector vi whereat the frequency ωi characterizes the

oscillation while decaying in time.

Problem Setting: When stationary power flow from gen-

eration or demand changes, the steady state zopt for the

power system will change to a new one, denoted by z+
opt.

Denote by d ∈ Rn+q a large, steady, external disturbance of

unpredicted power infeed or outflow affecting the system (4).

The new operational set point is determined from the forced

residual equation satisfying

R(z+
opt) + d = 0. (6)

By that, the small signal assumption made above is no more

valid. In these situations local generator controller settings are

adapted to zopt, but large enough power flow changes within

the network require controller parameters derived on the basis

of z+
opt to guarantee reliable operational behavior.

The problem under consideration is to assess techni-

cal flexibility under externally forced steady state power

flow changes δzopt(d) = z+
opt(d)− zopt(d = 0). We seek to

quantify technical flexibility by means of the displacement

of a characteristic eigenvalue δλ = λ+ − λ = δσ + jδω

due to changes in behavior induced by the set point varia-

tion δz(d). Technical flexibility is then quantified on the basis

of acceptable displacements of the chosen eigenvalue char-

acterizing the changed linear dynamics. What “acceptable”

means, needs to be defined a priori leading to the concept

of reliability/flexibility metrics of interest.

Remark 1: The dominant eigenvalue, i.e. the one with

the largest growth rate, could be a suitable choice for the

characteristic eigenvalue, because it usually is most important

for stabilization.

In the following we assume R to be twice continuously

differentiable w.r.t. z. Moreover, the multiplicities of the

eigenvalues of A are maintained after the system matrix

changes due to the effect of the steady forcing with d.

III. QUANTIFICATION OF FLEXIBILITY BASED ON

RELIABILITY CERTIFICATES

Rigorous definitions of reliability, the associated metrics,

and technical flexibility of individual components are given.

For this purpose, a formula for estimates of eigenvalue vari-

ations under nonlinear power flow changes is derived and

we state an algorithmic procedure for quantification. We

highlight problems towards multiple component and system-

wide technical flexibility assessment.

A. Reliability, Certificates, and Metrics

As emphasized in Section II, measuring and comparison of

component flexibilities, here at hand of δλ, requires a metric

to give a technical meaning to the distance d(λ+, λ). In the

context of technical flexibility, as proposed in this paper, such

a metric is determined by reliability; reliability is defined by

a set of points λ+ ∈ C that are admissible after steady state

changes occur.

Definition 1 (Reliability region, and reliability certificates):

Consider a steady state operational behavior of ΣPS charac-

terized by λ ∈ LHP. A reliability region is given as set

Cα(λ) := {s ∈ C : d(λ, s) < α, α > 0} , (7)

where the distance function d(λ, s) is called reliability speci-

fication w.r.t. a steady state behavior, and the constant α is a

level set value.

The small perturbation behavior of ΣPS is called α-reliable

when the dominant eigenvalue λ+ ∈ C is contained in Cα(λ)
after a (large enough) disturbance has induced a change of

steady state. Then λ+ ∈ Cα(λ) is called reliability certificate.

That is, the boundary of a reliability region, denoted

by ∂Cα(λ), quantifies what we mean by reliable in terms of

giving a quantitative sense to tolerated deviations δσ and δω.

For example, a reliability specification as in Fig. 2(a), tolerates

only little deviations in the direction of the unstable region,

but exhibits greater tolerance in the negative direction. This

has the physical interpretation of having lower tolerance in

those directions in the LHP, where the electromechanical mode

becomes poorly dampened, see [12] and [16], and critical

(driven) system resonances or even dynamic instability might

occur, see [16] and [17].
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Fig. 2. Reliability regions and two eigenvalue deviations before (a) and after
(b) scaling with M(λc); only the upper complex half plane is depicted due
to the symmetry of the spectrum.

Specifying the boundary ∂Cα(λ) as constant value reliability

gives rise to a metric that characterizes ∂Cα(λ).
Definition 2 (Reliability/Flexibility metric): Denote

by λc ∈ ∂Cα(λ) the points lying on a reliability boundary.

A metric specifying constant levels of reliability ∂Cα(λ)
is a distance function d(·, λ) given by the inner product

parameterized by weighting matrices M(λc) ≻ 0 such that

for each λc ∈ ∂Cα(λ) the complex number λc − λ =: δλc

satisfies

d(λc, λ) , ||δλc||M :=

√
(
δσc

δωc

)T [
mσ 0
0 mω

](
δσc

δωc

)

= 1.

(8)

Thus, defining in each direction how far a dominant eigen-

value is allowed to deviate determines a set of weighting

matrices that set these distances point-wise to unity. Such a

mapping, as depicted in Fig. 2(a) and Fig. 2(b), allows to

compare deviations δλ w.r.t. a reliability boundary/metric in

terms of ratios ||δλ||/||δλc||.
Example: Consider a disturbance that has effect δλ1

when forcing the system at a component “1”, and the ef-

fect δλ2 when forcing the system at a different component “2”,

as illustrated in Fig. 2(a). Both deviations are of equal size

when measured by the standard 2-norm, i.e. ||δλ1|| = ||δλ2||.
However, w.r.t. the reliability specification δCα(λ), which

determines unique weighting matrices M1,M2, compari-

son of the two components in their technical flexibility

yields ||δλ1||M1
> ||δλ2||M2

, as depicted in Fig. 2(b). We

therefore have less technical flexibility in component “1” than

in component “2”, because the eigenvalue deviation is greater

w.r.t. the specified metric.

B. Estimating Eigenvalue Displacements

The difference δλ can be approximated to first order by the

first variation of the function λ at point zopt with respect to

the input d. The first variation is mathematically represented

by the Gâteaux differential

δλ(zopt;d) = lim
τ→0

λ+(zopt + τδzopt(d))− λ(zopt)

τ
(9a)

= τ 〈Sd(λ),d〉 (9b)

where Sd is a sensitivity vector for λ called Gâteaux deriva-

tive. It represents the direction of the steady system response

measured by δλ with respect to the steady external distur-

bance d. The estimate of the eigenvalue displacement (9a)

has a linear dependence in d via Sd. The nonlinearity of δλ,

which originates in the change of set point, is contained in the

Gâteaux derivative. The sensitivity vector can be analytically

obtained from a Lagrangian approach known in constrained

optimization. Given the pre-disturbance eigenvalue λ, the

objective is to find the value λ(A(z+
opt)) that is most distant

to the initial eigenvalue, i.e. ||δλ|| is maximized, whereat we

require that λ(A(z+
opt)) satisfies the post-disturbance eigen-

value problem (5); this constraint optimization problem yields

a possible Lagrangian function of the form

L = ||δλ|| −
〈
w,

[
λ+B −A(z+

opt(d))
]
v
〉
, (10)

where w is a vector of Lagrange multipliers which coincides

with the left-eigenvector associated to λ.

Applying necessary optimality conditions, see [18] for full

details, one finds that the displacement δλ w.r.t. changes in

the stationary power flow solution δzopt computes via an

eigenvalue sensitivity vector Sz as

δλ = 〈Sz, δzopt〉, Sz =
[

∇z [A(zopt)v]|zopt

]∗

w. (11)

Here one has to use the normalization condition 〈w,Bv〉 = 1,

see [18] for proof and detailed derivation.

Based on (6) we can directly relate δλ to a distur-

bance d. Assuming the disturbance to be small and writing

it as κd, κ > 0, ||d||2 = 1, the relation between δzopt and κd
computes from (6) by taking differentials, i.e.

∇zR(z)|zopt
δzopt + κd = 0 (12a)

⇒ δzopt = −
[

∇zR(z)|zopt

]−1

κd. (12b)

Then, substitution of δzopt in (11) using expression (12b)

yields

δλ =

〈

Sz(λ),−
[

∇zR(z)|zopt

]−1

κd

〉

(13a)

= κ

〈

−

([

∇zR(z)|zopt

]−1
)∗

Sz(λ),d

〉

(13b)

from where we obtain the sought eigenvalue sensitivity with

respect to the disturbance vector d as

Sd = −

([

∇zR(z)|zopt

]−1
)∗

Sz(λ). (14)

C. Defining Technical Flexibility and Algorithmic Procedure

Reliability can be described by specifying the region of

interest Cα. We quantify technical flexibility of a component

according to the allowable disturbance magnitude at the com-

ponent of choice.

Definition 3 (Technical flexibility of one component):

Consider a reliability specification in terms of a specified

set Cα(λ), and the index i for the component of interest

described by zi. The technical flexibility of the i-th component



w.r.t. a power injection d = κei, κ > 0 is the value flex+i
obtained as

flex+i = argmax
κ

κei s.t. λ+ δλ ∈ Cα(λ). (15)

The technical flexibility of the i-th component w.r.t. a power

drop d = κei, κ < 0 is the value flex−i obtained as

flex−i = argmin
κ

κei s.t. λ+ δλ ∈ Cα(λ). (16)

The respective deviation δλ is as defined in (13).

The maximal component flexibilities flex±i can directly be

compared against each other, because they are obtained as

those values where the eigenvalue deviation first hits the

constant-value reliability boundary. An algorithm to compute

these quantities is as follows:

1) Choose a detailed enough generator model, and compute

a steady state operational point zopt according to (3).

2) Setup the system matrix A(zopt) of the linearized

dynamics according to (4).

3) Compute the eigendata of interest (λ,v,w) by solving

the generalized eigenvalue problem (5) and its adjoint

version.

4) Define a reliability region Cα(λ) ⇔ metric M(λc).
5) Compute the sensitivity field Sd as in (14) via the

sensitivity Sz given in (11).

6) Choose a component i of interest, set d = κei and

compute flex±i according to Def. 3.

D. Towards Multiple Component and Whole System Flexibility

Multiple component or system flexibility could be defined

using a vector of component flexibilities. Then, to obtain a

single measure similar to FLEX, one has to apply again a

norm on this vector. It is not clear what a suitable norm

with associated metric could be. Moreover, the issue of di-

rectionality arises, since there might be several combinations

of differing component flexibilities that lead to the same value

of system flexibility. In that context system flexibility is best

characterized by a volume in parameter space of component

flexibilities, where certain directions might be more sensitive

than others. These phenomena are known in multivariable

systems and lead to problems in multi-criteria optimization

and control assignment, where useful trade-offs have to be

explored.

IV. CONCLUSION

In this paper we develop a sensitivity-based framework to

quantify technical flexibility which has the power to include

limitations from transmission system and component dynamics

in flexibility studies. By that, we close a methodological

gap between existing operational schemes considering either

dynamics or static dispatch planning. Our method relies on

eigenvalue computations and on the information contained

in the Jacobian of the residual being related to set point

changes. We raised the issue of defining suitable metrics and

put it on mathematical grounds in contrast to existing works

where these terms are used in a rather casual sense. This

framework is to be understood as a first step in the direction

of technical flexibility assignment. Crucial extensions are to

overcome smallness of changes, or to define a similar frame-

work using different dynamic stability methods, for instance

based on energy function methods. A subsequent work is in

progress where this method is applied to an IEEE test case.

For verification and analysis of limitations of the proposed

framework, application to real data from stressed power system

situations should be considered, as well as testing in large-

scale numerical simulations.
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