
 

Features 

 Geometry • Defined explicitly or via a voxel model 

Material • Multiple materials in one problem 

B.C. • Defined anywhere explicitly or via an STL file 

Analysis • Static and modal analysis 

Post-processing • Evaluate various quantities and plot on deformed geometry/cutting plane/path 
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Abstract 

An object-oriented Finite Cell Method (FCM) toolbox for MATLAB was designed and implemented to 
solve linear elasticity problems from solid mechanics. In classical Finite Element Method (FEM) the 
geometry is discretized directly, which is a problem in case of complex geometries. The FCM 
overcomes this problem by embedding the physical domain into a fictitious domain. The 
implementation is based on high-order FEM (p-FEM) with hierarchic shape functions. For the FCM 
an adaptive integration scheme and a weak treatment of boundary conditions is used. 
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Conclusions / Outlook 

As the result of the intensive work over 3 months of a team of 6 highly motivated students, this 
toolbox fulfills the initial requirements of the project. Its 15000 lines of MATLAB object-oriented code 
allow the simulation of 2D and 3D linear mechanical problems via the Finite Cell Method.  

Using state-of-the-art methods for clean programming, thoroughly commented, documented and 
tested, the code was also designed to allow further extensions. The first steps of the further 
development of the program will consist of optimizing the computation time. New functionality may 
then be the subject of future master theses or software lab projects. 

We would like to express our deep gratitude to our supervisors Tino Bog and Nils Zander for having 
taken a lot of their time to guarantee the success of the project. 

 

 

Results 

p-FEM – 2D and 3D 

A cantilever beam was modeled in 2D and 3D. For the 2D case a distributed load was applied on 
the top. For the 3D case a body load (gravity) was added and a traction load was defined at the free 
end. Using modal analysis, that is also available in the toolbox, the eigenmodes of the beam can 
also be obtained in both 2D and 3D. 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

FCM – 2D 

 
 
 
 
 
 
 

FCM – 3D 

 

p-FEM 2D p-FEM 3D 

Modal  Analysis 

A cantilever I-beam with circular holes 
was explicitly defined using the toolbox. 
It is subject to a body load (self weight) 
and is clamped using weak boundary 
conditions.  

A human femur bone is defined via a 
voxel model. The bone is subject to a 
traction force at the top. The load 
surface is described by an STL file. The 
bottom surface of the whole mesh is 
fixed using strong boundary conditions. 
 

An explicitly defined annular disc is 
embedded in a square-shaped domain. 
The disc is fixed at the outer edge using 
weak boundary conditions, and has a 
radial displacement on the inner edge. A 
radial body load is also applied.  
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p-FEM Theory 

High-order FEM (p-FEM) is based on the idea to choose polynomials of higher order as ansatz 
functions. In order to achieve convergence, the polynomial degree is increased, while the mesh is 
kept the same. The advantage of p-FEM compared to h-FEM lies in its convergence properties.  For 
numerical problems with smooth solutions, an exponential rate of convergence is obtained. In fact, 
the asymptotic rate of convergence of a uniform p-extension for linear elliptic problems is always 
faster than or equal to the convergence rate of a uniform h-extension [1].  
 
The ansatz space is built with hierarchic shape functions, i.e. all the lower order shape functions are 
contained in the higher order basis. The 1D ansatz space is given by the linear shape functions 
(nodal modes) and the higher order shape functions (internal modes) using the Legendre 
polynomials. The shape functions for 2D and 3D ansatz spaces are constructed using the tensor 
product of 1D hierarchic shape functions. In 2D we distinguish between nodal modes, edge modes 
and internal modes (see figure below). In 3D there are additionally face modes, which are defined 
for each face and take the value zero over all other faces.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FCM Theory 
Domain Description 

In the Finite Cell Method (FCM) the physical domain is embedded in a fictitious domain to create a 
domain with simpler shape. This domain is then discretized with a Cartesian grid. A parameter α is 
introduced to indicate, if a point (e.g. integration point) belongs to the physical domain (𝛼 = 1) or the 
fictitious domain (𝛼 = 0). The material parameters (Young’s modulus and density) are scaled with 𝛼 
such that in the physical domain the original values are kept, whereas in the fictitious domain both 
values become zero. Due to numerical reasons 𝛼 is chosen to be very small (e.g. 1e-10) to avoid 
solver problems. 
 
The original boundary value problem is recovered on the integration level. To this end, elements are 
recursively subdivided into cells, if they are cut by a domain boundary. This leads to a fine cell mesh 
in the area of domain boundaries and a coarse cell mesh in areas with one domain only. The cells 
are just used to numerically integrate their specific area. So the integration error due to material 
discontinuities is localized to the cells where the domain changes. The adaptive cell refinement of 
the elements is realized with octrees in 3D and quadtrees in 2D. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Boundary Conditions 

Since the Finite-Cell mesh does not resolve the physical domain, the boundary conditions cannot 
be imposed in a classical manner. Instead, they are enforced in a weak sense. Considering the 
weak form of equilibrium for linear elasticity: 
 

 𝛻𝑣 ⋅ 𝜎 𝑑𝛺 
 

𝛺

−  𝑣 ⋅ 𝜎 ⋅ 𝑛 𝑑𝛤
 

𝛤𝐷 

 =   𝑏 ⋅ 𝑣 𝑑𝛺
 

𝛺

 +  𝑣 ⋅ 𝜎 ⋅ 𝑛 𝑑𝛤
 

𝛤𝑁 

 

 
              with Neumann boundary conditions  𝜎 ⋅  𝑛 = 𝑡     𝑜𝑛   Γ𝑁  
              and Dirichlet boundary conditions          𝑢 = 𝑢     𝑜𝑛   Γ𝐷 
 
 

 

 

 

 

To maintain positive definiteness of the stifness matrix, a penalty term is added to the weak form:  
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Convergence rate of the annular disc problem 
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A 3D bone defined via voxel model solved using FCM 

Displacement Magnitude 

An explicitly defined 3D I-beam solved using FCM 

Displacement Magnitude 

 
As implemented in the FCM Toolbox, some issues arose in dealing with weak 
boundary conditions for embedded geometries. For simple geometries, the 
boundary needs only a coarse description.  To carry out numerical integration 
that is sufficiently accurate for higher order shape functions, a Gaussian 
quadrature is applied for each boundary element. Also, to account for 
boundary description elements intersecting cell boundaries, each quadrature 
point is evaluated in its own cell. Determining which cell contains a quadrature 
point is done efficiently due to the structured Cartesian grid. 

 
 
Neumann boundary conditions are satisfied in a weak sense through the 
integral term over  Γ𝑁. Dirichlet boundary conditions can only be enforced 
strongly if Γ𝐷  conforms to the mesh. Therefore, in FCM they are satisfied 
in a weak sense, using Nitsche’s method, by adding the integral 
−  𝑢 − 𝑢 ⋅ 𝑡 𝑑Γ

 

Γ𝐷 
= 0  to the weak form of the equilibrium equation. 

[2] 

3-recursive refinements 

5-recursive refinements 

7-recursive refinements 

9-recursive refinements 

A 2D problem of an annular disc solved using FCM 

Displacement Magnitude 


