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M. H. Castãneda†, M. Stein†, F. Antreich⋆, E. Taşdemir‡, L. Kurz‡, T. G. Noll‡ and J. A. Nossek†
†Technische Universität München, Germany

⋆Deutsches Zentrum für Luft- und Raumfahrt (DLR), Germany
‡RWTH Aachen, Germany

Email: {mario.castaneda,josef.a.nossek}@tum.de

BIOGRAPHY
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INTRODUCTION

Accurate synchronization and positioning in space and
time is a key enabler for a wide variety of technical ap-
plications ranging from remote farming, automatic dock-
ing and landing to network synchronization and location-
based services. Today, radio-based positioning systems like
Global Satellite Navigation Systems (GNSS) offer the pos-
sibility to perform precise positioning by means of range
measurements to a set of satellites. While long spread-
ing codes are employed in order to attain a high spread-
ing gain protecting against thermal noise, as well as intra-
and intersystem interference, GNSS is inherently vulnera-
ble to terrestrialradio frequency interference(RFI) due to
the low receive power of the desired signal. Such interfer-
ence might arise from wide-band communication systems
operating in neighboring frequency bands or from jamming
devices which are intentionally perturbing the GNSS signal
acquisition and tracking. Due to the large distances be-
tween the satellites and GNSS receivers, the transmit sig-
nals of the satellites are strongly attenuated and hence, an
interferer with relatively low transmit power suffices in or-
der to drown the GNSS receivers in interference and hin-
der its operation. Therefore, one of the major nuisances
for precise positioning with conventional GNSS receivers
is RFI.

Typical approaches for RF interference mitigation ex-
ploit the signal structure of the interferer. For example
Frequency Domain Adaptive Filtering(FDAF) methods are
based on frequency-domain analysis for interference de-
tection. FDAF can be applied effectively for narrow-band
interference since this kind of interference signal can eas-
ily be identified by means of frequency spectrum analy-
sis [1]. However, broad-band signals like strong, band-
limited noise can hardly be identified since correlation in
time-/frequency-domain is generally not evident. In order

to counteract this kind of interference, filtering in spatial
domain provides a powerful alternative. Using receivers
with multiple contiguous antenna elements allows detec-
tion of spatially correlated signals. A single interferer is
always concentrated in the spatial domain and can be de-
tected based on estimates of the spatial correlation matrix.
In [2], an effective method has been demonstrated for sup-
pression of strong, broad-band interference signals. How-
ever, this approach does not consider temporal correlation
of the interference signal. As shown in this paper, exclu-
sively using the spatial correlation matrix in presence of
temporally correlated interference leads to suboptimal fil-
tering due to imperfect characterization of the receive sig-
nal model. The fact that with a reasonably small number
of antenna elements, spatial filtering also mitigates signals
of interest in a wide spatial area motivates a joint estima-
tion of the spatio-temporal correlation matrix. Practically
speaking, a narrowband interferer should be mitigated in
the time-frequency domain whereas wideband interferers
should preferably be cancelled in spatial domain.

In this work we develop an efficient method to jointly
estimate the space-time correlation matrix of interference
and noise with a multiple antenna receiver under the as-
sumption that the space-time correlation matrix of the in-
terference follows a Kronecker structure. Aided by the fact
thatmaximum likelihood(ML) estimation of the signal pa-
rameters, as the time delay and angle of arrival, depend on
the spatial and temporal correlation matrix, we show that
optimum performance for signal parameter estimation is
possible when space-time interference mitigation is based
on correct estimates of the spatial and temporal correlation
matrices of the interference and noise. In addition, we show
the performance degradation for the case when mismatched
filtering is performed based on the incorrect assumption of
spatially and temporally white interference.

Notation

In this paper we define scalars, column vectors and
matrices with lower case letters, lower case bold letters
and upper case bold letters, respectively. The transposi-
tion, Hermitian (complex conjugation and transposition)
and complex conjugation of a matrixG is denoted byGT,
GH andG∗, respectively. The determinant of matrixG
is given by|G|. With G ∈ C

m×n, the operator vec(G)
returns themn-dimensional vector resulting from stacking
the columns ofG. Them ×m identity matrix is given by
1m. Given a vectorh ∈ C

m, diag(h) returns anm×m di-
agonal matrix with the elements ofh on the diagonal. The
Euclidean norm of the vectorh is defined as‖h‖22. The op-
erator⊗ denotes the Kronecker product such that for two
matricesG andH whereG ∈ C

m×n, we have

G⊗H =







G1,1H · · · G1,nH
... · · ·

...
Gm,1H · · · Gm,nH






,
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with Gi,j as thei, j-th element of the matrixG.

Outline

This work is organized as follows. First we present the
general system model. Afterwards we analyze the inter-
ference which is spatially and temporally correlated. We
then present the maximum likelihood estimation of the sig-
nal parameters, which depend on the spatial and temporal
correlation matrix of the interference. Thereafter, we dis-
cuss the estimation of the spatial and temporal correlation
matrix. Afterwards, we provide simulation results, which
show the gain in the accuracy of the time delay estimation
which is achieved by considering the correct spatial and
temporal correlation matrices of the interference. We con-
clude the paper with some closing remarks.

SYSTEM MODEL

We assume a GNSS receiver equipped with auniform
linear antenna(ULA) array consisting ofM isotropic radi-
ators, separated by half the signal wavelength, such that re-
ceive/transmit array gain is independent of the beamform-
ing direction [3]. The signal of a single satellite is im-
pinging on the array with an angleθ0 in the presence of
L ≤ M interferers, which impact the sensor elements from
directionsθℓ with ℓ = 1, . . . , L. For simplicity, all multi-
path effects are neglected. The complex baseband Doppler-
compensated receive signal at the antenna array at timet

and with bandwidthB can therefore be described by

y(t) = γ0 a(θ0) c(t− τ0) +

L
∑

ℓ=1

a(θℓ)bℓ(t) + n(t) ∈ C
M ,

(1)
where

a (θ) =











1
e−jπ sin θ

...
e−j(M−1)π sin θ











∈ C
M , (2)

is the array steering vector which depends on the angle of
arrival θ. In addition,γ0 ∈ C andτ0 ∈ R are the complex
amplitude and delay of the receive satellite signal, respec-
tively. Furthermore,c(t) is the satellite signal (which is
known at the GNSS receiver),bℓ(t) ∈ C is the signal of the
ℓ-th interferer (with unknown temporal structure and band-
width Bℓ < B) andn(t) ∈ C

M is the zero-meanadditive
white Gaussian noise(AWGN) at theM elements of the
antenna array with

E
[

n(t)nH(t)
]

= σ2
n1M , (3)

whereσ2
n is the variance of the noise. Without loss of gen-

erality, we assume the variance of the signalc(t) to be1,

such that the SNR of the satellite signal is given by

SNR=
|γ0|

2

σ2
n

. (4)

Furthermore, we denote the variance of the zero-mean in-
terferer asσ2

ℓ , such that we define theinterference to noise
ratio (INR) of theℓ-th interferer as

INRℓ =
σ2
ℓ

σ2
n
. (5)

The receive signal is sampled with a sampling periodTs =
1
2B . The number of samples in each block is defined asN .
The channel parameters are assumed to be constant forK

blocks. We denote then-th receive sample of thek-th block
asyk,n, such that

yk,n = y (((k − 1)N + n)Ts) , (6)

wheren = 1, . . . , N , k = 1, . . . ,K andy(t) is given in
(1).

We collect theN samples over theM antennas of thek-
th block in the matrixYk ∈ C

M×N and thus, thesampled
receive signal at the antenna array of the GNSS receiver for
thek-th block period is denoted by

Yk =
[

yk,1 · · · yk,N

]

= γ0 a(θ0) c
T
k(τ0) +ABk +Nk, (7)

where

A =
[

a(θ1) · · · a(θL)
]

∈ C
M×L (8)

Bk =







bT
k,1
...

bT
k,L






∈ C

L×N (9)

Nk =
[

nk,1 · · · nk,N

]

∈ C
M×N (10)

with theN -dimensional vectors

ck(τ0) = [c(((k − 1)N + 1)Ts − τ0) · · · c(kNTs − τ0)]
T

(11)

bk,ℓ =
[

bℓ(((k − 1)N + 1)Ts) · · · bℓ(kNTs)
]T

(12)

nk,i = n(((k − 1)N + i)Ts) for i = 1, . . . , N.

(13)

With the previous assumptions, i.e. withB as the band-
width of the receive signal andTs = 1

2B as the sampling
period, the AWGN samples arespatially and temporally
white, i.e.

E
[

nk,in
H
k,i

]

= σ2
n1M (14)

E
[

nk,in
H
k,j

]

= 0, (15)

for i 6= j.
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CORRELATED INTERFERENCE

Temporal Correlation

For blockk, the interference component in (7) is given
by ABk ∈ C

M×N . We model theL interference signals
bk,ℓ as independent Gaussian random processes

E
[

bk,ib
H
k,j

]

= 0, for i 6= j, (16)

with zero mean

E [bk,ℓ] = 0, (17)

and correlation matrix

E
[

bk,ℓb
H
k,ℓ

]

= σ2
ℓ RT, (18)

for ℓ = 1, . . . , L and whereσ2
ℓ is the variance of theℓ-

th interfering signal. Although eachℓ-th interfering signal
has a distinct varianceσ2

ℓ , i.e. theL interferers share a com-
mon temporal structure, i.e. the temporal correlation matrix
RT. This assumption is justified under a scenario where
the different sources of interference are transmitters from
the same interfering system. The different variancesσ2

ℓ

for ℓ = 1, . . . , L capture the different receive signal power
of the interferers due to differences in transmit power and
path loss, i.e. distance from the interfering sources and the
GNSS receiver.

Furthermore, a similar interference component asABk

which fulfills the Kronecker model (29) can also result
from a single interferer with multipath. Although, in this
case theL multipath signals are correlated, spatial smooth-
ing can be applied to decorrelate the signals [4] and obtain
a spatial correlation matrix of full rank, i.e.L.

Let us assume the rank of the temporal correlation matrix
RT ∈ C

N×N to bep. With the eigenvalue decomposition
of the temporal correlation matrixRT given by

RT = VΛTV
H, (19)

whereV ∈ C
N×p contains thep eigenvectors which are

orthonormal, i.e.
VHV = 1p. (20)

In addition,

ΛT = diag
(

[λT,1, · · · , λT,p]
T
)

, (21)

whereλT,i for i = 1, . . . , p are thep ≤ N eigenvalues of
the temporal correlation matrixRT. Note that we allow the
temporal correlation matrix to be rankdeficientsincep can
be less thanN , in which caseRT is not invertible.

With the definition (18), theN elements on the diagonal
of RT are all equal to one and hence,

tr (RT) = tr (ΛT) = N. (22)

Furthermore the matrixRT has a Toeplitz structure, since
the involved interference processes are taken to be station-
ary.

Spatial Correlation

The spatial correlation matrix of the interference compo-
nent in (7) is given by

RS = AΣAH (23)

= UΛSU
H, (24)

where
Σ = diag

(

[

σ2
1 , · · · , σ

2
L

]T
)

. (25)

In addition, (24) represents the eigenvalue decomposition
of RS, with U ∈ C

M×L containing theL eigenvectors
which are orthonormal, i.e.

UHU = 1L. (26)

Moreover,

ΛS = diag
(

[λS,1, · · · , λS,L]
T
)

, (27)

whereλS,i for i = 1, . . . , L are theL ≤ M eigenvalues of
the spatial correlation matrixRS.

Furthermore, we have

tr (RS) = tr (ΛS) = M

L
∑

ℓ=1

σ2
ℓ . (28)

Similar to the temporal case, the matrixRS has a Toeplitz
structure due to the Vandermonde structure of the steering
vector (c.f. (2)).

Spatio-Temporally Correlated Interference

Based on the previous definitions and after stacking the
interfering signals into a vector vec(ABk) ∈ C

MN , we
observe that the correlation matrix of this resulting vector
has the following structure

E
[

vec(ABk) vec(ABk)
H
]

= RT ⊗RS, (29)

i.e. it results from Kronecker product of two correlation
matrices, namely the temporal and spatial correlation ma-
trices. In such case, the interference component is defined
by processes which are separable [5].

Based onABk, the temporal correlation matrix depends
on the spatial correlation matrix (see eigenvalue decompo-
sition ofRT in (19)) as follows

RS = E
[

(ABk)VΛ−1
T VH (ABk)

H
]

, (30)

and similarly the spatial correlation matrix depends on the
temporal correlation matrix (see eigenvalue decomposition
of RS in (24)) as follows

RT = E
[

(ABk)
H
UΛ−1

S UH (ABk)
]

. (31)
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Since we allow the matricesRS andRT to be rank defi-
cient, i.e. p ≤ N andL ≤ M , note thatVΛ−1

T VH and
UΛ−1

S UH arenot necessarily the inverses ofRT andRS,
respectively, since the inverse does not actually exist. The
computation of (30) and (31) based on the temporal and
spatial correlation matrix can be interpreted as performing
a spatial and temporalprewhitening, respectively.

With (30) and (31) and employing the eigenvalue decom-
position ofRS (24) andRT (19), we can model the inter-
ference component in (7) as

ABk = UΛ
1

2

SZkΛ
1

2

T V
H, (32)

where the matrixZk ∈ C
L×p contains i.i.d. complex Gaus-

sian random variables with zero-mean and unit-variance
such that definingZk based on its columns and rows

Zk =
[

z′k,1 · · · z′k,p
]

, (33)

=







zT
k,1
...

zT
k,L






(34)

the following holds over the columns ofZk

E
[

z′k,mz
′,H
k,m

]

= 1L (35)

E
[

z′k,mz
′,H
k,n

]

= 0, (36)

for m,n = 1, . . . , p with m 6= n, and over the rows ofZk

E
[

zk,iz
H
k,i

]

= 1p (37)

E
[

zk,iz
H
k,j

]

= 0, (38)

for i, j = 1, . . . , L with j 6= i.

MAXIMUM LIKELIHOOD ESTIMATION

With the fact that the noise and the interferenceABk

are independent and Gaussian distributed, the correlation
matrix of the effective noise vector vec(ABk +Nk) ∈
C

MN , i.e. of the interference plus noise, reads as

R = RT ⊗RS + σ2
n1MN , (39)

where we used (29).
Given the observationYk and the correlation matrixR,

the likelihood function with respect to signal parameters,
i.e. the channel coefficientγ0, the time delayτ0 and the
angle of arrivalθ0, is given by

e
(

−vec(Yk−γ0 a(θ0)c
T
k
(τ0))

H
R

−1vec(Yk−γ0 a(θ0)c
T
k
(τ0))

)

πMN |R|
.

Furthermore, taking the natural logarithm of the previous
likelihood function and employing

vec
(

γ0 a(θ0) c
T
k(τ0)

)

= γ0ck(τ0)⊗ a(θ0),

the log-likelihood function without the constant terms reads
as

L(Yk, γ0, τ0, θ0) = −
(

vec(Yk)
H
−γ∗

0 (ck(τ0)⊗ a(θ0))
H
)

×

R−1(vec(Yk)−γ0 (ck(τ0)⊗ a(θ0))) .
(40)

Hence, themaximum likelihood(ML) estimates of the sig-
nal parameters can be obtained from
{

γ̂0, θ̂0, τ̂0

}

= arg max
γ0,θ0,τ0

L(Yk, γ0, τ0, θ0). (41)

Taking the derivative of (41) with respect toγ0 and set-
ting it to zero, we obtain the maximum likelihood estimate
of the channel coefficient

γ̂0 =
(ck(τ0)⊗ a(θ0))

H
R−1vec(Yk)

(ck(τ0)⊗ a(θ0))
H
R̂−1 (ck(τ0)⊗ a(θ0))

. (42)

Substituting this estimate forγ0 in the log-likelihood func-
tion (41) gives us the maximum likelihood estimates ofθ0
andτ0

{

θ̂0, τ̂0

}

= argmax
θ0,τ0

∣

∣

∣
(ck(τ0)⊗ a(θ0))

H
R−1vec(Yk)

∣

∣

∣

2

(ck(τ0)⊗a(θ0))
H
R−1(ck(τ0)⊗a(θ0))

.

(43)
However, in order to compute the ML estimates (42) and

(43), we need to knowR defined in (39). This implies that
we need to estimate the spatial correlation matrixRS and
temporal correlation matrixRT of the interference. Given
an estimate of the spatial and temporal correlation matrix
R̂T andR̂S, we can compute an estimate ofR as follows

R̂ = R̂T ⊗ R̂S + σ2
n1MN . (44)

The estimateR̂ of the correlation matrixR can thus be
employed in (42) and (43) to obtain estimates of the signal
parametersγ0, θ0 andτ0. In the following section, we ad-
dress the issue of the estimation of the spatial and temporal
correlation matrix.

SPATIO-TEMPORAL COVARIANCE MATRIX
ESTIMATION

The estimation of correlation matrices is of vital impor-
tance in many signal processing applications. In several sit-
uations, the correlation matrix has a certain structure like
the Kronecker product of two smaller correlation matri-
ces as in the considered scenario (29). Further examples
of such processes can be found in communications, where
multiple-input multiple-output(MIMO) channels resulting
from multiple antennas at the transmitter and receiver can
be described by the Kronecker model [6, 7] due to the spa-
tial correlations at the transmitter and receiver. In otherap-
plications, we have spatio-temporal correlations [8] suchas
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the noise processes in the signal modelling ofmagnetoen-
cephalography(MEG) andelectroencephalography(EEG)
data [9, 10]. Similarly, the spatio-temporal correlationsfol-
low a Kronecker product in radar applications [11].

In the literature, several methods are proposed for the
estimation of the correlation matrix following a Kronecker
product structure [12, 13]. A very simple approach consists
in simply computing the unstructured sample correlation
matrix. Nevertheless, the shortcomings of computing the
unstructured sample correlation matrix is that it ignores the
inherent structure of the correlation matrix and therefore,
requires a large number of samples to have a meaningful
estimate. Certain structure and characteristics of the ma-
trix, as for instance a Toeplitz structure, can be taken into
consideration by finding, for instance, the closest correla-
tion matrix in the Frobenius norm sense with a such struc-
ture [14].

Another possible solution is to consider an iterative ap-
proach, like the so calledflip-flop algorithm, where one
of the involved correlation matrices is computed at a time
based on a previous estimate of the other correlation ma-
trix [12, 13]. The algorithm is repeated until convergence
based on several possible criteria, like in the Frobenius
norm sense or according to the likelihood function. The
iterative nature of the algorithm is due to the fact that the
estimation of the correlation matrices are coupled (see (30)
and (31)).

In contrast to the previous iterative solutions, in this
work we present an approach where the spatial and tem-
poral correlation matrix can be computed directly. This al-
gorithm is detailed in the following.

Proposed Estimation Algorithm

It can be shown that E
[

YkY
H
k

]

, results in

E
[

YkY
H
k

]

= E
[(

γ0 a(θ0) c
T
k(τ0) +ABk +Nk

)

×
(

γ∗
0 c

∗
k(τ0)a

H(θ0) +BH
kA

H +NH
k

)]

=E
[(

γ0 a(θ0)c
T
k(τ0)+UΛ

1

2

SZkΛ
1

2

T V
H+Nk

)

×
(

γ∗
0 c

∗
k(τ0)a

H(θ0)+VΛ
1

2

T Z
H
kΛ

1

2

SU
H+NH

k

)]

=|γ0|
2 a(θ0)E

[

cT
k(τ0)c

∗
k(τ0)

]

aH(θ0)

+UΛ
1

2

S E
[

ZkΛTZ
H
k

]

Λ
1

2

SU
H + E

[

NkN
H
k

]

≈ UΛ
1

2

S E
[

ZkΛTZ
H
k

]

Λ
1

2

SU
H + E

[

NkN
H
k

]

= UΛ
1

2

S

(

p
∑

i=1

λT,i E
[

z′k,iz
′,H
k,i

]

)

Λ
1

2

SU
H

+

N
∑

j=1

E
[

nk,jn
H
k,j

]

= tr (ΛT)UΛSU
H +Nσ2

n1M

= tr (ΛT)RS +Nσ2
n1M

= N
(

RS + σ2
n1M

)

, (45)

where in the first and second expression we employ (7)
and (32). In the third expression we use the fact that
the signal, interference and noise are independent from
one another. The approximation results from the fact that
|γ0|

2 ≪
∑L

ℓ=1 σ
2
ℓ and |γ0|2 ≪ σ2

n , i.e. the satellite sig-
nal is much weaker than the interfering signals and noise at
the antenna array, which happens to be the case for GNSS
signals. In the fifth expression we have used (33), (21) and
(10). For the following step we employ (35) and (14). The
last two steps result from (22) and (24).

From (45), we can obtainRS based on E
[

YkY
H
k

]

. If we
approximate the expectation in E

[

YkY
H
k

]

with the sample
correlation matrix givenK blocks:

E
[

YkY
H
k

]

≈
1

K

K
∑

k=1

YkY
H
k , (46)

this implies that we can find an estimate of the spatial cor-
relation matrix as follows

R̂S ≈
1

KN

K
∑

k=1

YkY
H
k − σ2

n1M , (47)

which is obtained without iterating.
In a similar fashion, we can show that

E
[

YH
kYk

]

= E
[(

γ∗
0c

∗
k(τ0)a

H(θ0) +BH
kA

H +NH
k

)

×
(

γ0 a(θ0)c
T
k(τ0) +ABk +Nk

)]

=E
[(

γ∗
0c

∗
k(τ0)a

H(θ0)+VΛ
1

2

T Z
H
kΛ

1

2

SU
H+NH

k

)

×
(

γ0 a(θ0)c
T
k(τ0) +UΛ

1

2

SZkΛ
1

2

T V
H +Nk

)]

= ‖a(θ0)‖
2
2 |γ0|

2 E
[

c∗k(τ0)c
T
k(τ0)

]

+VΛ
1

2

T E
[

ZH
kΛSZk

]

Λ
1

2

T V
H + E

[

NH
kNk

]

≈ VΛ
1

2

T E
[

ZH
kΛSZk

]

Λ
1

2

T V
H + E

[

NH
kNk

]

= VΛ
1

2

T

(

L
∑

ℓ=1

λS,ℓ E
[

z∗k,jz
T
k,j

]

)

Λ
1

2

T V
H

+Mσ2
n1N

= tr (ΛS)VΛTV
H +Mσ2

n1N

= tr (ΛS)RT +Mσ2
n1N (48)

which basically follows the same steps as the derivation
(45) by using (7), (32), (34), (37) and (28).

From (48), we obtainRT based on E
[

YH
kYk

]

, which
givenK blocks, can be approximated by the sample corre-
lation matrix :

E
[

YH
kYk

]

≈
1

K

K
∑

k=1

YH
kYk. (49)

Hence, an estimate of the temporal correlation matrix is
given by

R̂T ≈
1

tr (ΛS)

(

1

K

K
∑

k=1

YH
kYk −Mσ2

n1M

)

, (50)
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which is obtained without iterating and where we can ap-
proximate tr(ΛS) given the estimate of the spatial correla-
tion matrix (47)

tr (ΛS) ≈ tr
(

R̂S

)

.

SIMULATION RESULTS

In order to visualize the potential of mitigating the inter-
ference by taking into account the spatio-temporal correla-
tion matrix, we simulate themaximum likelihood estima-
tion (MLE) of the time delay (43). To this end, we consider
a GPS signal with C/A code described as follows

1022
∑

n=0

cn δ(t− nTc), (51)

wherecn for n = 0, · · · , 1022 is the chip sequence of a
given satellite consisting of±1. Furthermore,Tc is the du-
ration of a chip, which for a GPS signal isTc =

1×10−3 s
1023 =

978.5 ns, where 1023 is the number of chips in the chip se-
quence. Withp (t) as the pulse function, we have that the
satellite signalc(t) is

c(t) = p (t) ⋆

1022
∑

n=0

cn δ (t− nTc)

=
N−1
∑

n=0

cn p (t− nTc) , (52)

where⋆ denotes the convolution operation. As mentioned
before, the receive signal has been passed through an ideal
lowpass filter with bandwidthB. We assume the bandwidth
of the receive signal to beB = 1.023 MHz. In this case,
the pulse functionp (t) given in (52) for a finite bandwidth
of 1.023 MHz is given as [15]

p(t) =
1

πTc

(

Si

(

2π

(

t

Tc
+

1

2

))

− Si

(

2π

(

t

Tc
−

1

2

)))

,

(53)
where Si(•) is the sine integral. With the previous expres-
sions we are able to characterize the satellite signal and
hence, alsock(τ0) defined in (11). The1023 chips of a
GPS signal span1 ms, which we assume to be the duration
of one block. Thus, with the sampling periodTs =

1
2B with

B = 1.023 MHz we have that the receive signal is sampled
at twice the chip rate such that the number of samples per
block spanning1 ms isN = 2046.

As for the GNSS receiver, we consider an antenna array
with M = 2 antennas, upon which the GPS satellite signal
is impinging from the front-fire, i.e. with angle of arrival
θ0 = 0, as shown in Figure 1. The SNR of the signal is
SNR = −10 dB such that the amplitude of the channel
gainγ0 in (7) is |γ0| = 0.1. We assume the phase of the
channel gainγ0, i.e. arg(γ0), to be uniformly distributed in
the interval[0, 2π[.

GNSS array withM = 2 sensors

Satellite

Interferer 1 Interferer 2

θθ

Fig. 1 Simulation Setup

For the interference, we considerL = 2 interfering
Gaussian signals are impinging on the array from angles
θ1 andθ2, such that

θ1 = θ (54)

θ2 = −θ, (55)

as depicted in Figure 1. In addition, we assume the inter-
ference signals to have the same variance, i.e.σ2

1 = σ2
2 and

hence,
INR1 = INR2.

Furthermore, as mentioned in the description of the inter-
ference model, both interfering signals have the same tem-
poral correlations described by the correlation matrixRT.

We assume both interfering signals to occupy80% of the
signal bandwidth, i.e. the bandwidthB1 andB2 of inter-
fering signals isB1 = B2 = 0.8 · 1.023 MHz. In addi-
tion, the spectrum of the interfering signals is assumed to
be flat over this bandwidth. Based on this, we can deter-
mine the temporal correlation matrixRT. Given the pre-
vious assumptions, the autocorrelation functionr(t) of the
frequency-flat wideband interfering signal is [16]

r(t) = σ2
1 sinc(2B1t), (56)

where

sinc(x) =
sinπx

πx
.

Given (56), thei, j-th element of the temporal correlation
matrixRT (see (18)) fori, j = 1, . . . , N is determined by

RT,i,j = sinc(2B1|i− j|),

whereB1 was defined above.
As a figure of merit we consider theroot mean square

error (RMSE) of the time delay averaged overK = 20000
blocks and multiplied by the speed of lightc, in order to
characterize the positioning error in meters:

RMSE= c ·

√

√

√

√

1

K

K
∑

k=1

(τ̂0,k − τ0), (57)
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whereτ̂0,k represents the time delay ML estimate of thek-
th block. Without loss of generality, we assumeτ0 = 0.
We evaluate the performance of the delay estimation as a
function of the total interfering power. Recalling that we
have assumed the same variance for theL = 2 interferers,
the total interfering power is given by

INR = INR1 + INR2 = 2
σ1

σ2
n
.

where we used (5).
For the first simulation scenario, we compare the time

delay ML estimation (43) when we employ the correct spa-
tial and temporal correlation matricesRS andRT and the
ML estimation with known spatial correlation matrixRS

but under the assumption of temporally uncorrelated inter-
ference, i.e. the interference is assumed to be temporally
white

RT = 1N .

To this end, we plot in Figure 2, the RMSE as a function of
the INR for different values ofθ. We can observe that con-
sidering solely the spatial correlation matrix in presenceof
temporally correlated interference leads to suboptimal pa-
rameter estimation due to imperfect characterization of the
interference. For anglesθ → π

2 , the gain resulting from
employing the correct temporal correlation matrix for the
interference becomes less significant since for the consid-
ered scenario depicted in Figure 1, the interfering signals
are spatially orthogonal to the satellite signal forθ = π

2 ,
i.e., for instance, for the first interferer:

aH (θ0 = 0) · a
(

θ1 =
π

2

)

= 0, (58)

which follows from the steering vector (2) withM = 2
and e−jπ sin 0 = 1 and e−jπ sin π

2 = −1. Hence, for the
given scenario interfering signals impinging from angles
θ1,2 → π

2 do not influence the estimation performance as
can be observed in Figure 2, i.e. the RMSE is independent
of the power of the interfering signals. Forθ < π

2 , the
estimation becomes worse in general as the INR increases
due the increased interfering power. Nonetheless, even for
these cases employing the correct temporal correlation ma-
trix leads to a performance gain compared to the case when
the temporal correlations are ignored.

Now let us consider the case when we perform the ML
estimation with the correct temporal correlations for the in-
terference but assuming the interfering signals to be spa-
tially white, i.e. RS is assumed to be a weighted identity
matrix. The RMSE as a function of the INR resulting from
this setup is depicted in Figure 2 along with the ML estima-
tion with the correct spatio-temporal correlations. The mis-
matched spatial correlations lead to a performance degrada-
tion specially forθ → π

2 . This results from the fact that for
θ = π

2 , the interfering signals are impinging on the array
from both directions of the end-fire and hence, the signals
are spatially coherent and not spatially orthogonal as as-
sumed with a diagonal spatial correlation matrixRS.
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Fig. 2 RMSE vs. INR, Setup 1

Note that forθ = π
6 , the resulting RMSE for both se-

tups are equivalent. This is due to the fact that in this case
the assumption aboutRS being diagonal is actually correct
since the interfering signals are spatially orthogonal. For
θ = π

6 , we have thatA from (8) is

A =

[

1 1
e−jπ sin π

6 e−jπ sin−π

6

]

=

[

1 1
−j j

]

, (59)

sincesin±π
6 = ± 1

2 , such that the columns ofA are or-
thogonal and henceRS is a weighted identity matrix (see
(23)).
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Fig. 3 RMSE vs. INR, Setup 2
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For the sake of completeness, we compare the ML es-
timation with the correct spatial and temporal correlation
matrices of the interference with the ML estimation under
the assumption that the interfering signals are spatially and
temporally white, i.e. bothRS andRT are weighted iden-
tity matrices. The comparison is shown in Figure 4. As ex-
pected, the degradation due to the mismatched spatial and
temporal correlations can be observed for all curves.
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Fig. 4 RMSE vs. INR, Setup 3

Estimated Correlation Matrices

Let us now observe the performance of the ML estima-
tion with the correct spatial and temporal correlation matri-
ces with that of the ML estimation based on the estimated
spatial and temporal correlation. To this end, we consider
the estimation of the spatial correlation matrix and of the
temporal correlation matrix proposed and derived before,
i.e. using (47) and (50), respectively. In Figure 5 we depict
the RMSE as a function of the INR for the ML estimation
with correct and estimated correlation matrices. We can ob-
serve that the spatial and temporal correlation are estimated
well enough, such that there is a minimal performance loss
as compared to the case when the correct correlations ma-
trices are employed.

CONCLUSION

In this work we have analyzed interference on GNSS re-
ceive antenna arrays, which have a spatio-temporal corre-
lation matrix following a Kronecker structure. We have
proposed a non-iterative method for the estimation of the
spatial and temporal correlation matrices. Considering the
maximum likelihood parameter estimation of the time de-
lay, we have shown that taking into account solely one of
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Fig. 5 RMSE vs. INR, Estimated Correlation Matrices

the correlations (spatial or temporal), leads to suboptimal
parameter estimation.
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