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Abstract: This report investigates the optimal design of event-triggered estimation for first-
order linear stochastic systems. The problem is posed as a two-player team problem with a
partially nested information pattern. The two players are given by an estimator and an event-
trigger. The event-trigger has full state information and decides, whether the estimator shall
obtain the current state information by transmitting it through a resource constrained channel.
The objective is to find an optimal trade-off between the meansquared estimation error and the
expected transmission rate. The proposed iterative algorithm alternates between optimizing one
player while fixing the other player. It is shown that the solution of the algorithm converges to
a linear predictor and a symmetric threshold policy, if the densities of the initial state and the
noise variables are even and radially decreasing functions. This is achieved by considering the
iterative algorithm as a dynamical system and apply Lyapunov methods to show that it is globally
asymptotically stable. The effectiveness of the approach is illustrated on a numerical example. In
case of a multimodal distribution of the noise variables a significant performance improvement
can be achieved compared to a separate design that assumes a linear prediction and a symmetric
threshold policy.

1 INTRODUCTION

In contrast to periodic estimation, where measure-
ments are sampled within equidistant time-intervals,
an event-triggered estimator receives measurement up-
dates in an asynchronous fashion. Event-triggered
sampling is also referred to as adaptive sampling
in [1], Lebesgue sampling in [2] and dead-band con-
trol in [3], [4]. The event-trigger is a preprocess-
ing unit situated at the sensor which decides upon its
available information, whether to update the estima-
tor with current information. Event-triggered sam-
pling schemes for estimation are very promising in
the context of networked control systems, where es-
timator and plant are spatially distributed and com-

∗This is an extended version of the paper ’An Iterative Algo-
rithm for Optimal Event-Triggered Estimation’ that appears in the
proceedings of the ADHS 2012.

munication is a sparse resource. Examples for such
networked control systems are given by sensor net-
works, multi-robot systems and distributed power gen-
eration networks. The work in [2] and [1] showed that
event-triggered sampling outperforms periodic sam-
pling with respect to the state estimation error of a
first-order linear system in the presence of two dif-
ferent communication constraints. In [1], the com-
munication constraint is induced by limiting the num-
ber of transmissions during a finite interval, whereas
the work in [2] limits the average transmission rate.
Differing to these approaches, we extend the standard
minimum mean square estimator problem by an addi-
tional communication penalty to reflect the communi-
cation constraint in the optimization problem. A simi-
lar problem is also studied in [5] and [6].

Opposed to the aforementioned work which either
fixes the estimator, such as [1, 2, 5] or computes the
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estimator from the choice of the event-trigger, such
as [6], we aim at the joint optimal design of the es-
timator and the event-trigger. Therefore, we formu-
late a two-player team problem with a nested informa-
tion pattern, where the players are given by the event-
trigger and the estimator. The joint design is motivated
by the fact that the choice of the event-trigger may sig-
nificantly influence the form of the optimal estimator.

The contribution of this report is two-fold. First,
it develops an iterative method for the joint design
of event-trigger and estimator for first-order stochas-
tic systems with arbitrary distributions. The algorithm
iteratively alternates between optimizing one player
while fixing the other player. Similar iterative proce-
dures are shown to be very promising methods for cal-
culating optimal policies for team problems with non-
classical information patterns, as studied by [7] for the
Witsenhausen counterexample or by [8] for the joint
optimization of paging and registration policies. It
turns out that the proposed iterative method can yield a
remarkable decrease of the overall cost compared to a
design where the estimator is designed independently
of the event-trigger. In such independent design, the
optimal estimator takes the form of a linear predictor
that assumes that transmission instants are statistically
independent of the state, whereas the optimal event-
trigger is a even threshold function of the estimation
error. In the following, even and symmetric refer to
the same meaning.
Second, it is shown that the solution of the algorithm
converges to the independent design, when the densi-
ties of the initial state and the noise variables are sym-
metric and unimodal functions. This result coincides
with results obtained in [6], which uses majorization
theory and rearrangement inequalities to show that
there always exists a symmetric threshold policiy that
outperforms an arbitrary event-triggering law. In fact,
we show that symmetric threshold policies are opti-
mal by analyzing the asymptotic behavior of the pro-
posed iterative procedure.Therefore, our approach can
be viewed as an alternative line of proof to show that
symmetric policies are optimal under the aforemen-
tioned assumptions. On the other hand, it turns out
that symmetry of the densities is not sufficient to show
that the separate design is optimal. Numerical simu-
lations indicate significant improvements, when noise
densities are symmetric but multimodal. In fact, sim-
ulations indicate a substantial improvement of our ap-
proach compared to an independent design in case of
a bimodal noise distributions.

The remainder of this report is organized into four
sections. In section 2, we introduce the stochastic sys-
tem model and describe the problem setting. Section 3

contains the main results of this report and studies the
joint design of event-trigger and estimator. In sec-
tion 4, numerical simulations are conducted to validate
the proposed method.

Notation. The expectation operator is denoted
by Ef [·] and the conditional expectation is denoted
by Ef [·|·], where the underlying probability measure
Pf is parameterized by the policyf . The variableXk

denotes the sequence of variables[x0, . . . , xk] andX l
k

denotes the sequence[xk, . . . , xl]. The indicator func-
tion is denoted by1A(x) taking a value of1 if x ∈ A

and0 otherwise. The complement of a setA is denoted
by Ac. The maximum norm of a vectorx ∈ R

n is de-
noted by|x|∞. The convolution of two real-valued
functionf andg is denoted byf ∗ g.

2 PROBLEM FORMULATION

We consider the following stochastic scalar discrete-
time processP driven by noisewk

xk+1 = axk + wk, (1)

wherea ∈ R− {0}. The system noisewk takes val-
ues inR and is an i.i.d. (independent identically dis-
tributed) random variable described by the probability
density functionφw, which is zero-mean and has finite
variance. The initial state,x0 is statistically indepen-
dent ofwk and is described by density functionφx0 ,
which has a mean̄x0 and a finite variance. System pa-
rameters and statistics are known to the event-trigger
and estimator.

The system model is illustrated in Fig. 1. The pro-
cessP outputs the statexk. The event-triggerE de-
cides upon its available information, whether or not to
transmit the current state to the remote state estimator
S. We define the output of the event-trigger as

δk =

{

1 updatexk sent

0 otherwise

The channelN can be viewed as aδk-controlled era-
sure channel whose outputs are described by

zk =

{

xk δk = 1

∅ δk = 0
(2)

where∅ is the erasure symbol. As it will be useful for
subsequent analysis, we define the last update timeτk
as

τk = max{κ|δκ = 1, κ < k} (3)
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with τk = −1, if no transmissions have occurred prior
to k. The variableτk can be described by the follow-
ing δk-controlled difference equation

τk+1 =

{

k δk = 1

τk δk = 0
τ0 = −1. (4)

Admissible event-triggers are given by mappings of
their past history to

δk = fk(X
k), k = 0, . . . , N − 1.

The state estimatorS outputs the state estimatex̂k and
is given by mappingsgk defined by

x̂k = gk(Z
k), k = 0, . . . , N − 1.

The design objective is to jointly design the event-
trigger f = [f0, . . . , fN−1] and the estimatorg =
[g0, . . . , gN−1] that minimize costJ .

J = Ef,g

[

N−1
∑

k=0

|xk − x̂k|2 + λδk

]

. (5)

The per-stage cost ofJ is composed of the squared
estimation error|xk − x̂k|22 and a communication
penaltyλδk. The weightλ determines the amount of
penalizing transmissions over the channelN .

P S
N

E

zkxk x̂k

δk

Figure 1: System model of the networked control sys-
tem with plantP , event-triggerE , state estimatorS
and communication channelN .

3 JOINT DESIGN OF EVENT-
TRIGGER AND ESTIMATOR

3.1 Preliminaries

We begin with a characterization of the optimal esti-
mator.

Lemma 1. For any event-triggerf , the optimal state
estimatorg∗ is given by the least squares estimator

x̂k = g∗k(Z
k) = Ef [xk|Zk], k = 0, . . . , N − 1.

Proof. Fix an arbitrary event-triggerf . The commu-

nication penalty termEf

[

∑N−1
k=0 λδk

]

is then con-

stant and can be omitted from the optimization. In
the remaining estimation problem the mean squared

errorEf

[

∑N−1
k=0 |xk − x̂k|2

]

is to be minimized. The

optimal solution for this problem is given by the least
squares estimatorEf [xk|Zk], [9]. This completes the
proof.

In the following, we define the linear predictorx̂LP
k

by the following recursion

x̂LP
k+1 =

{

xk+1 δk = 1

ax̂LP
k δk = 0

(6)

with x̂LP
0 = x̄0.

Remark 1. The linear predictor can be regarded as
the optimal estimator, when having no information
about the choice of the event-triggerf and assuming
that transmission instances are statistically indepen-
dent of the state evolution. This also implies that the
linear predictor is optimal in the case, when transmis-
sion instances are selected in advance.

Similar to [6, 10], let us rewrite the optimization
problem by defining

ek = xk − ax̂LP
k−1, k = 1, . . . , N − 1

ande0 = w−1, where we definew−1 = x0 − x̄0. The
variableek defines our new state to be estimated and
follows the recursion

ek+1 = hk(ek, δk, wk) = (1− δk)aek + wk. (7)

Further, we definêek to be the least squares esti-
mateE[ek|Z̃k], wherez̃k is defined accordingly as

z̃k =

{

ek δk = 1

∅ δk = 0

The next lemma gives us further insights into the
structure of̂ek.

Lemma 2. Let the event-triggerf be fixed. Then, the
least squares estimate ofek is given by

êk =

{

ek δk = 1

αk(τk) δk = 0

whereτk is defined by Eq. (3) andαk(τk) is defined
by

αk(τk) =Ef

[

k−1
∑

l=τk

ak−l−1wl|δτk+1 = 0, . . . , δk = 0

]

.

(8)
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Proof. Clearly, we haveêk = ek for δk = 1,
asek ∈ Z̃k. For δk = 0, τk is a sufficient statistics
for êk. The mappingαk is determined by applying re-
cursively (7) witheτk+1 = wτk . This completes the
proof.

The functionα in Lemma 2 can be interpreted as a
bias term to improve the state estimate by incorporat-
ing additional informationδτk+1 = · · · = δk = 0 at
timek.

Rather than regardingα as a function ofk andτk,
we will interpretα as a vector inR

1
2N(N+1) by rein-

dexing its entries appropriately.

It is straightforward to see that the estimation er-
ror ek − êk andxk − x̂k are identical random vari-
ables for a fixed event-triggerf , asek corresponds to
a translatory coordinate transformation ofxk shifted
by −ax̂LP

k−1 which is known since the sequenceδk−1

is measurable with respect toZk. Therefore, our ini-
tial optimization problem with cost functionJ can be
rewritten as

min
f

Ef

[

N−1
∑

k=0

(1− δk)|ek − αk(τk)|2 + λδk

]

. (9)

It can be observed that the running cost reduces toλ

and is therefore independent of the currentαk in the
caseδk = 1. Because of the introduction of the state
ek, the event-triggerf is given by a mapping fromEk

to {0, 1}. Since there always exists a bijection from
Xk toEk given the variablesδ0, . . . , δk−1, this change
of variables does not put any restrictions on the further
analysis keeping in mind that any policy expressed in
Ek can also be written as a function inXk.

3.2 Iterative procedure

What prevents a further study of the optimization
problem (9) is the fact that the valueαk at τk depends
on the particular policyf chosen up to timek. There-
fore, methods like dynamic programming are not di-
rectly applicable to solve (9). In order to overcome this
burden, we relax optimization problem (9) by consid-
ering the variableαk as a new decision variable being
a function ofτk. Then, the optimization problem is
given by

min
f,α

J (10)

with

J(f, α) = Ef

[

N−1
∑

k=0

(1− δk)|ek − αk(τk)|2 + λδk

]

.

(11)

The optimization problem (10) enlarges the set of pos-
sible solutions compared to optimization problem (9),
because it omits the constraint forα given by (8). By
considering optimization problem (10), we are able
to specify the structure of the optimal event-trigger,
which is given by the following lemma.

Lemma 3. Let α be fixed. Then, for
all k ∈ {0, . . . , N − 1} the variables ek and τk
are a sufficient statistics for the optimal event-trigger
fk .

Proof. The evolution of the pair(ek, τk) can be re-
garded as aδk-controlled Markov process defined by
(4) and (7). The running cost ofJ at time k is a
function of the pair(ek, τk), input δk and noisewk.
By [9], this problem can be solved by dynamic pro-
gramming with(ek, τk) being the state, which is a suf-
ficient statistics of the optimal solutionfk. This com-
pletes the proof.

Lemma 3 implies that the optimal event-trigger is a
function of ek andτk. It can be observed that for a
fixed event-triggerf , the optimal mapα can be calcu-
lated by Eq. (8). On the other hand, for any fixed map
α, the optimal event-triggerf can be calculated by dy-
namic programming. We therefore define the running
cost and the Bellman operator as follows

cαk

k (ek, τk, δk) = (1− δk)|ek − αk(τk)|2 + λδk

T αk

k Jk+1(·) =
= min

δk∈{0,1}
cαk

k (·, δk) + E [Jk+1(ek+1, τk+1)|·, δk]

The value functionJk being a function of the aug-
mented state(ek, τk) is determined by recursive ap-
plication of the Bellman equation given by

Jk = T αi
k

k Jk+1

with JN ≡ 0, where the argument in the minimization
yields the optimal event-triggerf and we have

J(f, α) = Ef [J0(e0,−1)].

This observation motivates us to propose the follow-
ing iterative procedure sketched in Fig. 2, which alter-
nates between optimizingf while fixing policyα and
vice versa. Algorithm 1 describes the iterative proce-
dure. With slight abuse of notation, we declaredτk as
a second subscript instead of an argument ofαk.

As the costJ decreases or is at least kept con-
stant in each step of the iteration, the sequence
[(f0, α0), (f1, α1), . . .] produces a non-increasing
succession of costsJ .
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Algorithm 1 Iterative procedure to calculate(f, α)

Require: α0
k,τk

∈ R, k = 0, . . . , N − 1, τk =
−1, . . . , k − 1

1: i← 0

2: repeat
3: k = N , JN ≡ 0
4: repeat
5: k ← k − 1

6: Jk ← T αi
k

k Jk+1

7: f i
k(ek, τk) ∈ argminδk∈0,1 c

αi
k

k (ek, τk, δk)
+E [Jk+1(ek+1, τk+1)|ek, τk, δk]

8: until k = 0
9: αi+1

k,τk
← Efi

[

∑k−1
l=τk

ak−l−1wl|δkτk+1 = 0
]

10: i← i+ 1
11: until convergence

estimator S event-trigger E

least squares estimation

dynamic programming

Figure 2: Iterative scheme to calculate event-triggerE
and estimatorS.

In the following subsection, we are interested in the
convergence properties of the proposed iterative algo-
rithm for symmetric unimodal distributions.

3.3 Symmetric unimodal distributions

In the following, we consider the iterative procedure
described in previous subsection as a discrete-time dy-
namical system and considerα as the state. By using
Lyapunov stability theory we show thatα ≡ 0 is a
globally asymptotically stable equilibrium point, when
initial statee0 and the noise process{wk} has a sym-
metric unimodal distribution. The next lemma finds a
potential equilibrium point only by assuming symmet-
ric distributions.

Lemma 4. Let the initial statee0 and the noise pro-
cess{wk} have symmetric distributions. Thenα∗ ≡ 0
is a fixpoint of the Algorithm 1. The policy of the event-
trigger f∗ that corresponds toα∗ is an even mapping
of ek and independent ofτk for k = 0, . . . , N − 1.

Proof. Let us choose the mapα0 to be0 for all k and

all τ in the initialization of Algorithm 1. The cost
functionJ reduces then to

J(f, α0) = Ef

[

N−1
∑

k=0

(1− δk)|ek|2 + λδk

]

where ek evolves by recursion (7). Therefore, the
resulting optimalf0

k is only a function of ek for
all k = 0, . . . , N − 1. In the following, we first show
that the application of the Bellman operatorT 0

k pre-
serves symmetry of the value functionJk+1 for any
k. Given an even value functionJk+1, the conditional
expectationE [Jk+1(ek+1, τk+1)|·, δk] preserves sym-
metry for bothδk = 0 andδk = 1. Adding the cost
c0k(·, δk) also preserves symmetry, because the sum of
two even functions is again even. Taking the pointwise
minimum of two even functions yields an even func-
tion. Therefore, an even function remains even after
application of the Bellman operator. AsJN ≡ 0 is an
even function, it follows by induction that every value
functionJk is even fork ∈ {0, . . . , N − 1}. This im-
plies that thef0

k resulting in the first iteration step from
Algorithm 1 is an even mapping ofek, if α0 ≡ 0.
Next, we calculateα1 assumingf0

k being an even
function of ek for k ∈ {0, . . . , N − 1}. Let φek |τ be
defined as the density function of the conditional prob-
ability distribution ofek given τk andδk = 0, when
using event-triggerf0. The definition ofφek|τ yields
the following calculation ofα1

k,τ

α1
k,τ =

∫

e∈R

e · φek |τ (e)de

For k = 0, φek|τ is determined by truncating the den-
sity functionφe0 of the initial statee0 at all (e, τ),
wheref1

0 takes a value of1 and by normalizing the
resulting function, i.e.

φe0|τ (e) =
φe0 (e) · (1− f0

0 (e, τ))
∫

e∈R
φe0(e) · (1 − f0

0 (e, τ))de
. (12)

Sinceφe0 andf0
0 are even functions, we conclude that

φe0|τ is even and therefore we haveα1
0,−1 = 0. Along

the same lines, we can show thatφek|k−1 is even and
α1
k,k−1 = 0 for k ∈ {1, . . . , N − 1} by replacingφe0

with φw in (12) . For a constantτ , the conditional
density functionφek |τ evolves by the recursion

φek+1|τ (e) =

=
( 1
|a|φek |τ (

(·)
a
) ∗ φw)(e) · (1− f0

k (e, τ))
∫

e∈R
( 1
|a|φek|τ (

(·)
a
) ∗ φw)(e) · (1− f0

k (e, τ))de
.

It can be observed that this recursion preserves sym-
metry of the conditional density functionφek |τ , asf0

k

is an even function. Therefore, we have shown that
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α∗ ≡ 0 is a fixpoint of Algorithm 1, which completes
the proof.

In above lemma, the distributions need not to be uni-
modal, but only symmetry properties are required. A
natural question arising from Lemma 4 is whether the
fixpoint at0 is a stable and unique fixpoint. This ques-
tion is partly answered in the following Theorem by
adding the assumption that the distributions are uni-
modal.

Theorem 1. Let the initial statee0 and the noise pro-
cess{wk} have symmetric and unimodal distributions.
Then,α∗ ≡ 0 is a globally asymptotically stable fix-
point of Algorithm 1.

The proof can be found in the appendix.

As the iterative Algorithm 1 produces a sequence
of pairs(f i, αi) whose costs are non-increasing with
increasingi, we conclude that0 is the optimal choice
for α, when noise distributions are symmetric and uni-
modal according to Theorem 1. The optimal state es-
timator ofxk is then given by the linear predictor in
(6) and is therefore independent of the choice of the
event-triggerf . The distribution of the initial statex0

must be also symmetric and unimodal, but its meanx̄0

can be chosen arbitrarily. Hence, the symmetry axis of
the distribution ofx0 need not to be at zero. In order
to determine the optimalf∗, dynamic programming
must only be applied once withα ≡ 0. Therefore, the
joint design approach in the case of symmetric den-
sities can be considered as an independent design of
event-trigger and estimator.
This result is in accordance with [6] and constitutes
an alternative way by analyzing the asymptotic be-
havior of Algorithm 1 to prove that symmetric event-
triggering laws are optimal in the presence of symmet-
ric unimodal distributions. Moreover, the iterative al-
gorithm may be applied to arbitrary distributions. Al-
thoughα ≡ 0 is a fix point of the Algorithm 1 by
Lemma 4 assuming symmetric density functions, the
next section shows that an independent approach given
by α ≡ 0 can be outperformed by Algorithm 1 by al-
most50%. Hence, we can conclude that symmetry of
the densities is not sufficient to show that the indepen-
dent design is optimal. Therefore, additional assump-
tions are required to show that the independent design
is optimal. In the case of Theorem 1 such requirement
is given by the unimodality assumption of the density
functions.
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Figure 3: Various bimodal/unimodal density functions
with zero-mean and identical variance of1 composed
of two Gaussian kernels shifted by±µ.

4 NUMERICAL VALIDATION

This subsection intends to outline the benefits of the
proposed iterative algorithm by numerical examples.
Besides, it validates the obtained results for unimodal
noise distributions. We compare the iterative algo-
rithm with the optimal symmetric event-trigger having
a linear predictor, i.e. assumingα ≡ 0. Suppose the
process defined by (1) witha = 1, a communication
penaltyλ = 0.5 and the distribution of the initial state
and the system noise are identical and defined by the
density functionφw

φw(µ, σ) =
1

2
φN (µ, σ) +

1

2
φN (−µ, σ)

with

φN (µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

In the special case ofµ = 0, we retrieve the normal
distribution. In order to facilitate comparability be-
tween different distributions, we chooseµ ∈ [0, 1) and
set

σ =
√

1− µ2

that yields an identical variance of1 for all µ ∈ [0, 1).
In the limit µ → 1, the noise process degrades to a
Bernoulli process taking discrete values{−1, 1} with
probability 1

2 . Various density functions for different
µ are sketched in Fig. 3.

We observe that forµ < 0.8 the peaks of the bi-
modal density function are less distinctive. There-
fore, we can not expect that large gains of the itera-
tive procedure can be attained compared with the op-
timal symmetric solution forµ < 0.8. A performance
comparison of the iterative procedure and the optimal
symmetric event-trigger is drawn in Fig. 4 for a hori-
zonN = 10 and variousµ. The initialization for the



Event-Triggered Estimation of Linear Systems 7

10
−2

10
−1

10
0

2.5

3

3.5

4

4.5

5

 

 

symmetric
iterative

co
st

J

degree of unimodality 1− µ

Figure 4: Performance comparison for a horizonN =
10. The degree of unimodality1− µ (1 for zero-mean
Gaussian and0 for Bernoulli process with discrete pa-
rameters in{-1,1}) is drawn on a logarithmic scale.
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Figure 5: Event-trigger policyf (scaled by 0.007)
resulting from the iterative Algorithm 1 with initial
noise distributionφw, µ = 0.95, horizonN = 1
and initial choiceα0

0 = 0.1. The algorithm con-
verges toα0 = 0.95 and an asymmetric event-
triggerf(x0) = 1{[0.25,0.65]}c(x0).

iterative procedure is chosen to beα0 ≡ 0.1. As ex-
pected the costs are almost identical forµ ∈ [0, 0.8].
This also validates Theorem 1, sinceφw is unimodal
for sufficient small choice ofµ. For µ > 0.8 a
rapid performance improvement can be observed. In
the limit µ → 1, the costs are reduced by a fac-
tor of 45% by the iterative procedure compared with
the optimal symmetric event-trigger. This may seem
surprising, because the cost function as well as the
noise distribution are all even functions. Fig. 5 gives
an illustrative explanation of such significant perfor-
mance improvement forN = 1 andµ = 0.95. With
an initial valueα0

0 = 0.1, the iterative algorithm con-
verges toα0 = 0.95 and an asymmetric event-trigger
policy f(x0) = 1{[0.25,1.65]}c(x0), whereas the op-

timal symmetric event-trigger is given byf(x0) =
1{[−0.7,0.7]}c(x0). The event-trigger and estimator re-
sulting from the iterative procedure have therefore an
implicit agreement, if no state update is sent over the
resource-constrained channel. In that case, no trans-
mission indicates the estimator that the statex0 is sit-
uated at the right peak resulting in the estimateα0.
In contrast to that, the linear predictor defined in (6),
which is optimal for the symmetric event-trigger, is in-
dependent to the choice of the threshold of the sym-
metric event-trigger and the noise-distribution.

5 CONCLUSIONS

By considering the joint optimal design of state es-
timator and event-trigger as a two-player problem,
we were able to develop an efficient iterative algo-
rithm, which alternate between optimizing the estima-
tor while fixing the event-trigger and vice versa. The
iterative method shows special properties in the case
of unimodal and symmetric distributions of the uncer-
tainty. In this situation it is shown that the optimal
event-triggered estimator can be obtained by a sepa-
rate design and is given by a linear predictor and a
symmetric threshold policy. This result is along pre-
vious results and offers an alternative line of proof for
showing that such separate design is optimal in case of
symmetric unimodal distributions.

In the case of symmetric and bimodal distribu-
tions, the iterative procedure offers a systematic
method, which leads surprisingly to asymmetric event-
triggers and biased estimators that outperform sym-
metric threshold policies.

Similar properties of the iterative method are likely
to hold as well in the case of multidimensional sys-
tems and are a subject of current investigations. Fur-
ther research also investigates to extend the proposed
iterative procedure to a sensor network setting, where
various spatially distributed sensors shall find a com-
mon state estimate through exchanging information
through a common digital network.
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A Proof of Theorem 1

Proof. First, we define the following time-variant
transformations ofek andαk,τk by

yk =
1

ak
ek, k = 0, . . . , N − 1,

βk,τk =
1

ak
αk,τk , k = 0, . . . , N − 1,

τk = −1, . . . , k − 1.

By this transformation, the running cost and the Bell-
man operator are defined by

ĉ
βk

k (yk, τk, δk) = (1− δk)a
2k|yk − βk,τk |2 + λδk

T̂ βk

k Ĵk+1(·) = min
δk∈{0,1}

ĉ
βk

k (·, δk)+

+ E

[

Ĵk+1(yk+1, τk+1)|·, δk
]

The optimization problem (10) can then be restated by
replacingJ with Ĵ defined by

Ĵ(f, β) = Ef

[

N−1
∑

k=0

ĉ
βk

k (yk, τk, δk)

]

The event-triggerfk is a function ofyk andτk, where
yk evolves by

yk+1 = (1− δk)yk + vk, y0 = e0

with vk = 1
akwk and the evolution ofτk is given

by (4). It is easy to see that the distribution ofvk is
again unimodal and symmetric. In the following, we
adapt Algorithm 1 to the transformed system. We con-
siderβi as a vector inR

1
2N(N+1) that evolves by the

procedure defined by (13). By this view,βi is the state
of a non-linear time-invariant discrete-time system de-
scribed by

f i = argminf Ĵ(f, β
i)

βi+1
k,τ = Efi

[

k−1
∑

l=τ

vl|δτ+1 = 0, . . . , δk = 0

]

(13)

In order to analyze the asymptotic behavior with in-
creasingi, we introduce the following Lyapunov can-
didateV (βi) defined by

V (βi) = |βi|∞.

In order to show thatV (βi) is decreasing with respect
to i, we establish several auxiliary results. For nota-
tional convenience, letβi

∞ be defined as

βi
∞ = |βi|∞.

What we want to show first is that for every event-
triggerf i resulting from (13) for a givenβi, we have

f i
k(β

i
∞ +∆, τ) = 0 =⇒ f i

k(β
i
∞ −∆, τ) = 0

∀∆ ≥ 0, k = 0, . . . , N − 1, τ = −1, . . . , k − 1.

(14)

The validity of above implication is shown by induc-
tion starting withk = N−1. We fix aβi and apply dy-
namic programming to obtainf i. Because of̂JN ≡ 0,
the value function̂JN−1 is then given by

ĴN−1(y, τ) = min
δ∈{0,1}

ĉ
βi
N−1

N−1 (y, τ, δ)

Note that the running cost exhibits the symmetry prop-
erty

ĉ
βi
k

k (βi
k,τ +∆, τ, δ) = ĉ

βi
k

k (βi
k,τ −∆, τ, δ),

∀∆ ∈ R, δ ∈ {0, 1}
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with τ = −1, . . . , k−1 and the monotonicity property

0 ≤ ∆1 ≤ ∆2

=⇒ ĉ
βi
k

k (βi
k,τ +∆1, τ, δ) ≤ ĉ

βi
k

k (βi
k,τ +∆2, τ, δ)

for δ ∈ {0, 1} andτ = −1, . . . , k−1. Both properties
are preserved after taking the minimum overδ imply-
ing that they are also valid for̂JN−1. Therefore, we
obtain

ĴN−1(β
i
∞ +∆, τ) ≥ ĴN−1(β

i
∞ −∆, τ), ∀∆ ≥ 0

(15)

with τ = −1, . . . , N − 1. For∆ ≤ βi
∞ − βi

k,τ , in-
equality (15) is valid due to the monotonicity property
of ĴN−1. In case of∆ > βi

∞ − βi
k,τ , we have

ĴN−1(β
i
∞ −∆, τ)

= ĴN−1(β
i
∞ − βi

k,τ + βi
k,τ −∆, τ)

= ĴN−1(β
i
k,τ + (βi

k,τ − βi
∞ +∆, τ)

≤ ĴN−1(β
i
∞ +∆, τ).

The second equality is due to the symmetry property
and the inequality is due to the monotonicity property
as

βi
k,τ ≤ βi

k,τ + (βi
k,τ − βi

∞ +∆) ≤ βi
∞ +∆.

By knowing that the value function̂JN−1 = λ is con-
stant for all pairs(y, τ), whenδN−1 = 1, we have

f i
N−1(β

i
∞ −∆, τ) = 1

=⇒ λ = ĴN−1(β
i
∞ −∆, τ) ≤ ĴN−1(β

i
∞ +∆, τ)

=⇒ JN−1(β
i
∞ +∆, τ) = λ

=⇒ f i
N−1(β

i
∞ +∆, τ) = 1

Next, we show that by applying the Bellman operator
will preserve the inequality given by (15). Assume, we
have

Ĵk+1(β
i
∞ +∆, τ) ≥ Ĵk+1(β

i
∞ −∆, τ), ∀∆ ≥ 0

(16)

with τ = −1, . . . , k − 1. We want to show statement
(16) implies

Ĵk(β
i
∞ +∆, τ) ≥ Ĵk(β

i
∞ −∆, τ), ∀∆ ≥ 0 (17)

with τ = −1, . . . , k − 1. The Bellman equation is

Ĵk = T̂ βi
k

k Ĵk+1

For all pairs(y, τ), where the argument of the mini-

mization in T̂ βi
k

k yields δk = 1, Ĵk is constant. This

also implies that̂Jk takes its maximum for these pairs.
In the following, we are interested in outcomes forĴk
in case ofδk = 0. Along the same lines as for̂JN−1,

we obtain for the running cost̂cβ
i
k

k

ĉ
βi
k

k (βi
∞ +∆, τ, δ) ≥ ĉ

βi
k

k (βi
∞ −∆, τ, δ),

∀∆ ∈ R, δ ∈ {0, 1} (18)

with τ = −1, . . . , k − 1. We rewriteĴk+1 to

Ĵk+1 = ĴSYM
k+1 + ĴREM

k+1

with

ĴSYM
k+1 (y, τ) =

{

Ĵk+1(y, τ) y ≤ βi
∞

Ĵk+1(β
i
∞ + (βi

∞ − y), τ) y > βi
∞

(19)

ĴREM
k+1 (y, τ) = Jk+1(y, τ)− ĴSYM

k+1 (y, τ) (20)

By the assumption (16), we have

ĴREM
k+1 (y, τ)

{

= 0 y ≤ βi
∞

≥ 0 y > βi
∞

(21)

Taking the expectation of̂Jk+1 given δk, yk and
τk, gives either a constant function over(yk, τk) for
δk = 1 or is given by convolution with the density
function of vk for δk = 0 denoted byφ. By assump-
tion the density functionφ is symmetric and unimodal.
By linearity of the convolution operator, we follow

E

[

Ĵk+1|·, τk, δk = 1
]

= JSYM
k+1 (·, τk) ∗ φ+ JREM

k+1 (·, τk) ∗ φ (22)

For the first term of (22), we observe that symmetry is
preserved, i.e.,

(JSYM
k+1 (·, τk) ∗ φ)(βi

∞ +∆)

= (JSYM
k+1 (·, τk) ∗ φ)(βi

∞ −∆) (23)

for ∆ ∈ R. On the other hand due to (21) and

φ(y−(βi
∞+∆)) ≥ φ(y−(βi

∞−∆)),∆ ≥ 0, y ≥ βi
∞

we have for any∆ ≥ 0

(JREM
k+1 (·, τk) ∗ φ)(βi

∞ +∆) ≥
≥ (JREM

k+1 (·, τk) ∗ φ)(βi
∞ −∆). (24)

Summing up the terms and taking the minimum to ob-
tain Ĵk, we obtain statement (17) by using (18), (23)
and (24). By induction, statement (17) is valid for
all k = 0, . . . , N − 1. Along the same lines as for
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N − 1, we follow (14) from statement (17). Equiv-
alently to (14), it can be showed that

f i(−βi
∞ −∆, τ) = 0

=⇒ f i(−βi
∞ +∆, τ) = 0

∀∆ ≥ 0, k = 0, . . . , N − 1, τ = −1, . . . , k − 1.

Let φi
yk|τ

be defined as the density function of the
conditional probability distribution ofyk givenτk and
δk = 0, when using event-triggerf i. The definition of
φi
yk|τ

yields the following calculation ofβi+1
k,τ

βi+1
k,τ =

∫

y∈R

y · φi
yk|τ

(y)dy

By assuming an event-triggerf i that satisfies state-
ment (14), we show inductively that

φi
yk|τ

(βi
∞ +∆) ≤ φi

yk|τ
(βi

∞ −∆), ∀∆ ≥ 0,

k = 0, . . . , N − 1, τ = −1, . . . , k − 1.

(25)

For k = 0, φi
yk|τ

is calculated by truncating the den-
sity functionφy0 of the initial statey0 at all (y, τ),
wheref i

k takes a value of1 and by normalizing the
resulting function, i.e.

φi
y0|τ

(y) =
φy0(y) · (1− f i

0(y, τ))
∫

y∈R
φy0(y) · (1− f i

0(y, τ))dy
.

As φy0 is an even and unimodal function, we have

φi
y0|τ

(βi
∞ +∆) ≤ φi

y0|τ
(βi

∞ −∆),

∆ ≥ 0, f i
k(β

i
∞ +∆, τ) = 0.

For all (y, τ) with f i
k(β

i
∞ +∆, τ) = 1, we have

φi
y0|τ

(βi
∞ +∆) = 0,

which trivially validates inequality (25). Similarly
as fork = 0 andτ = −1, we can prove the validity
of (25) fork ∈ {1, N− 1} andτ = k− 1 by replacing
the density functionφy0 by the density functionφvk−1

of the noise variablevk−1. By assuming that inequal-
ity (25) is satisfied for time stepk, we prove that (25)
holds fork+1 for an arbitraryk ∈ {0, . . . , N−2} and
fixed τ ∈ {−1, . . . , k − 1}. For a fixedτ , the density
functionφi

yk|τ
(y) can be calculated by the recursion

φi
yk+1|τ

(y)=
(φi

yk|τ
∗ φvk)(y) · (1− f i

k(y, τ))
∫

y∈R
(φi

yk|τ
∗ φvk)(y) · (1−f i

k(y, τ))dy
.

(26)

As having already been observed forĴk+1, the convo-
lution of φi

yk|τ
with φvk preserves the inequality (25).

With the same arguments as fork = 0, we follow that

φi
yk|τ

(βi
∞ +∆) ≤ φi

yk|τ
(βi

∞ −∆),

∆ ≥ 0

implies

φi
yk+1|τ

(βi
∞ +∆) ≤ φi

yk+1|τ
(βi

∞ −∆),

∆ ≥ 0,

which concludes the induction. Inequality (25) im-
plies thatβi+1

k,τ ≤ βi
∞. Similarly, it can be showed

thatβi+1
k,τ ≥ −βi

∞. In fact, it is straight forward to see
that the inequalities are strict for allβi

∞ 6= 0 and there-
fore the Lyapunov candidateV decreases with increas-
ing i for all β 6= 0. Hence, the iterative procedure de-
fined in (13) converges to0 for any initial condition of
β. By transformingβ back into the initial state space
system, we can conclude the proof.


