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Abstract— Laplacian Trajectory editing has been proven II. APPROACH
to work well for motion imitation tasks where the shape . . .
of a given trajectory has to be maintained. Derived from A. Laplacian Trajectory Deformation

computer graphics the discrete Laplace-Beltrami operator is We assume a trajectory given the combination of
used to encode local trajectory properties. A least-squares th i di . — 3§ th
solution preserves the local trajectory properties during the a pa in m dimensions #f = or e re-

trajectory retargeting process while also considering a weighted mainder of this paper), described by the sampling
set of positional constraints. Focusing in this paper on various pointsP = [p1,p2,...,ps]’ € R"*3 and associated tem-

methods for imposing positional constraints it is investigated poral informationt;(p;). The trajectory is represented as an
how the retargeting quality can be improved for movement granhG — (v, £) with each vertexs; being associated with
imitation tasks in constrained environments. N . .
one sampling poinp; — v;,. The neighbor setV; of the
vertexv; is the set of all adjacent vertices. Accordingly

|. INTRODUCTION the edge set is defined &= {e;;},4,; € {0,..,n} with
Used and investigated for more than ten years in computer Ws if jeN;
. . .. . el — 1] ) (2] (1)
graphics, Laplacian mesh editing is nowadays a standard J 0 otherwise

method for deforming surface meshes in a user-friendly and

intuitive way [1], [2]. It has been shown in [3] that Laplagia andw;; = 1 as uniform weights.

editing can be also used to deform discrete trajectories in Instead of working in absolute Cartesian coordinates, the

a similar fashion which makes it well suited for motiondiscrete Laplace-Beltrami operatéris used for specifying

imitation problems a given trajectory has to be deformedhe local trajectory deformation [6]. For vertexit is defined

By encoding the local trajectory curvature using the digcre gs

Laplace-Beltrami operator, a translational invarianjeiceory 5 = Z Wij (p: — D), @)

description is obtained. During trajectory retargetirdg’- jen: _Z Wi

continuity can be maintained while sufficing positional €on JEN:

straints in a least-squares sense (determined by a wegghtiTihe topology of the graph is defined by the Laplacian matrix

factor w). matrix L € R"*™ with
So far only hard positional constraints are considered for

trajectories, i.e. fixing only few points of the trajectony t W L =,

defined positions with a large weighting factor On the L= 3 ’iu if jeN, 3)
other hand, [4] proposed a different weighting scheme in Y i

which all points of a surface mesh a fixed to their original 0 otherwise

position with a rather small weighting factar.
The contribution of this paper is the adaption of théVhen concatenating adl;-values (called.aplacian coordi-

method proposed in [4] to Laplacian trajectory editing. Inates) into a single vector a&\ = [4;,d-,...,d,], it can
is shown how the resulting soft deformation behavior cahe rewritten as
be used for collision avoidance with a resulting behavior LP = A. 4)

similar to the Elastic Strips framework [5]. In addition & i

combined with Gaussian Mixture Regression (GMR). Her8Y imposing a set o additional positional constraints in
the spatial variance from multiple demonstrations deteesii the formp; = c;, the system (4) can be solved fBr, using
a spatially varying weighting factor. This accelerates least squares

trajectory retargeting in a constrained environment as it <I_,> P = <A> (5)
makes an additional path search obsolete. p)""\C)’

with the definition ofP € R"*™ and C € R**3 as follows
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trajectory

B. Obstacle Avoidance @ obstacie

The method can be used to avoid dynamic obstacles Whp@\/\/\/\/\/\/\l M P ®
maintaining the original trajectory shape in a least-sgsiar ® ®

sense. The presented approach consists of three parts

« A repulsive force for obstacle avoidance

« An attracting force pulling the trajectory back to itsFig. 1. Obstacle avoidance of a sinusoidal trajectory inghesence of
original position multiple round obstacles

o The Laplacian framework maintaining the local trajec-

tory shape In the second experiment two rectangular areas are con-
Assume we are given a obsta€lenith random shape. Let; nected through a narrow tunnel, see Fig. 2. The RRT
be the shortest distance between a sampling peirdf the  algorithm is used to find sample trajectories between random
trajectory and the obstacl®. Then the obstacle exerts apositions in the right and left rectangular area. The sample

repulsive force on each poimt; according to trajectories are then normalized in the spatial domaingusin
d, 1 Dynamic Time Warping. A regressed trajectory with cor-
[Piz: Piy: Piz] = Pita HdiH TR (8)  responding spatial covariance is obtained through Gaussia

wi = B ! ! ) Mixture Regression. If the tunnel position changes frpfn

to p,, the displacement is propagated to all trajectory sam-
with constantsy, 5. Similar to potential fields the strength of pling points as

the repulsive force decreases with a facter-. The attrac- B ¢ °

tive force pulling the trajectory back is geé‘(lzribed usingrea [Pizs Py Pic] = Pi +P° = DY, (13)
sampling point’s original positiop? before deformation with w; according to Eg. 12. Similar to the previous example,
Y the first and last sampling point of the trajectory are set

[Pics Piyspiz] = P, 10) {5 fixed positions using a large-value (1e9). One can see

wi = 7, (11) how a collision-free path is be obtained for multiple tunnel

3r:Jositions without the need to rerun the RRa&lgorithm,

with constanty. By concatenating the matrices in Eq. 9,1 resulting in a considerable time saving.

and solving Eq. 5 forP, the desired behavior can be
achieved. The method shares some properties with the &Elast

= 8e-8 = w,
Strips framework. Still we think that our method is easiefo\ — - regeseed e AN
applicable to arbitrary-shaped trajectories.
C. Variance-Based Trajectory Deformation
4e-9

Given a motion imitation task, the spatially changing
variance between multiple demonstration trajectories can
be combined with Laplacian Trajectory Editing for quickFig. 2. Variance-based deformation. Left side: Sample trajis and
adaption to changed environmental constraints. A coveeian'697essed trajectory with spatially varying weightingtéac.;. Mid / right

. . . . side: Adaption to changed environment
matrix X; with corresponding volume, = /det(X;) is
given for each sampling poipt;. Then the reciprocal relation
5 IV. CONCLUSION
wi = (12) In this paper we propose two different adaptive weighting

. ! ) _schemes for Laplacian trajectory editing. Various, freglye

with congtant factop ensures that trajectory segmgnts Wlﬂ‘bccuring problems at trajectory retargeting are solvednge

while trajectory segments with large variance are deformeglternative/extension to existing approaches.
more.
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