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Abstract— Laplacian Trajectory editing has been proven
to work well for motion imitation tasks where the shape
of a given trajectory has to be maintained. Derived from
computer graphics the discrete Laplace-Beltrami operator is
used to encode local trajectory properties. A least-squares
solution preserves the local trajectory properties during the
trajectory retargeting process while also considering a weighted
set of positional constraints. Focusing in this paper on various
methods for imposing positional constraints it is investigated
how the retargeting quality can be improved for movement
imitation tasks in constrained environments.

I. I NTRODUCTION

Used and investigated for more than ten years in computer
graphics, Laplacian mesh editing is nowadays a standard
method for deforming surface meshes in a user-friendly and
intuitive way [1], [2]. It has been shown in [3] that Laplacian
editing can be also used to deform discrete trajectories in
a similar fashion which makes it well suited for motion
imitation problems a given trajectory has to be deformed.
By encoding the local trajectory curvature using the discrete
Laplace-Beltrami operator, a translational invariant trajectory
description is obtained. During trajectory retargeting,C1-
continuity can be maintained while sufficing positional con-
straints in a least-squares sense (determined by a weighting
factorω).

So far only hard positional constraints are considered for
trajectories, i.e. fixing only few points of the trajectory to
defined positions with a large weighting factorω. On the
other hand, [4] proposed a different weighting scheme in
which all points of a surface mesh a fixed to their original
position with a rather small weighting factorω.

The contribution of this paper is the adaption of the
method proposed in [4] to Laplacian trajectory editing. It
is shown how the resulting soft deformation behavior can
be used for collision avoidance with a resulting behavior
similar to the Elastic Strips framework [5]. In addition it is
combined with Gaussian Mixture Regression (GMR). Here
the spatial variance from multiple demonstrations determines
a spatially varying weighting factorω. This accelerates
trajectory retargeting in a constrained environment as it
makes an additional path search obsolete.

Thomas Nierhoff and Sandra Hirche are with the Institute of Automatic
Control Engineering (LSR), Faculty of Electrical Engineering, Technische
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II. A PPROACH

A. Laplacian Trajectory Deformation

We assume a trajectory given the combination of
a path in m dimensions (m = 3 for the re-
mainder of this paper), described by the sampling
pointsP = [p1,p2, . . . ,pn]

T ∈ R
n×3 and associated tem-

poral informationti(pi). The trajectory is represented as an
graphG = (V, E) with each vertexvi being associated with
one sampling pointpi → vi,. The neighbor setNi of the
vertex vi is the set of all adjacent verticesvj . Accordingly
the edge set is defined asE = {eij}, i, j ∈ {0, .., n} with

eij =

{

wij if j ∈ Ni,

0 otherwise,
(1)

andwij = 1 as uniform weights.
Instead of working in absolute Cartesian coordinates, the

discrete Laplace-Beltrami operatorδ is used for specifying
the local trajectory deformation [6]. For vertexvi it is defined
as

δi =
∑

j∈Ni

wij
∑

j∈Ni

wij

(pi − pj), (2)

The topology of the graph is defined by the Laplacian matrix
matrix L ∈ R

n×n with

Lij =























1 if i = j,

−
wij

∑

j∈Ni

wij

if j ∈ Ni,

0 otherwise.

(3)

When concatenating allδi-values (calledLaplacian coordi-
nates) into a single vector as∆ = [δ1, δ2, . . . , δn]

T , it can
be rewritten as

LP = ∆. (4)

By imposing a set ofp additional positional constraints in
the formpi = ci, the system (4) can be solved forPn using
least squares

(

L

P̄

)

Pn =

(

∆

C

)

, (5)

with the definition ofP̄ ∈ R
n×n andC ∈ R

n×3 as follows

P̄ij =

{

ωi if i = j andpi = ci,

0 otherwise,
(6)

Ci: = ωi [pix, piy, piz] , (7)

and the scalar weighting factorωi.



B. Obstacle Avoidance

The method can be used to avoid dynamic obstacles while
maintaining the original trajectory shape in a least-squares
sense. The presented approach consists of three parts

• A repulsive force for obstacle avoidance
• An attracting force pulling the trajectory back to its

original position
• The Laplacian framework maintaining the local trajec-

tory shape

Assume we are given a obstacleΩ with random shape. Letdi

be the shortest distance between a sampling pointpi of the
trajectory and the obstacleΩ. Then the obstacle exerts a
repulsive force on each pointpi according to

[pix, piy, piz] = pi + α
di

‖di‖

1

‖di‖2
, (8)

ωi = β, (9)

with constantsα, β. Similar to potential fields the strength of
the repulsive force decreases with a factor1‖di‖2 . The attrac-
tive force pulling the trajectory back is described using each
sampling point’s original positionpo

i before deformation

[pix, piy, piz] = po
i , (10)

ωi = γ, (11)

with constantγ. By concatenating the matrices in Eq. 9,13
and solving Eq. 5 forP̄, the desired behavior can be
achieved. The method shares some properties with the Elastic
Strips framework. Still we think that our method is easier
applicable to arbitrary-shaped trajectories.

C. Variance-Based Trajectory Deformation

Given a motion imitation task, the spatially changing
variance between multiple demonstration trajectories can
be combined with Laplacian Trajectory Editing for quick
adaption to changed environmental constraints. A covariance
matrix Σi with corresponding volumeoi =

√

det(Σi) is
given for each sampling pointpi. Then the reciprocal relation

ωi =
δ

oi
, (12)

with constant factorδ ensures that trajectory segments with
small variance keep their shape during the retargeting process
while trajectory segments with large variance are deformed
more.

III. E XPERIMENTS

Two experiments are conducted, one for obstacle avoid-
ance and another one for variance-based trajectory deforma-
tion.

In the first experiment, see Fig. 1, an initially sinusoidal
trajectory is deformed as more and more round obstacles are
added. The obstacle are avoided while the original trajectory
shape is maintained. To prevent drift, the first and last
sampling points are fixed using a largeω-value (1e9). The
constant factors have been set toα = 0.5, β = 0.05,
γ = 0.05.

trajectory

obstacle

Fig. 1. Obstacle avoidance of a sinusoidal trajectory in thepresence of
multiple round obstacles

In the second experiment two rectangular areas are con-
nected through a narrow tunnel, see Fig. 2. The RRT∗

algorithm is used to find sample trajectories between random
positions in the right and left rectangular area. The sample
trajectories are then normalized in the spatial domain using
Dynamic Time Warping. A regressed trajectory with cor-
responding spatial covariance is obtained through Gaussian
Mixture Regression. If the tunnel position changes frompo

t

to pt, the displacement is propagated to all trajectory sam-
pling points as

[pix, piy, piz] = pi + pt − po
t , (13)

with ωi according to Eq. 12. Similar to the previous example,
the first and last sampling point of the trajectory are set
to fixed positions using a largeω-value (1e9). One can see
how a collision-free path is be obtained for multiple tunnel
positions without the need to rerun the RRT∗ algorithm,
resulting in a considerable time saving.

sample traj.

regressed traj

4e-9

8e-8 = ωi 

Fig. 2. Variance-based deformation. Left side: Sample trajectories and
regressed trajectory with spatially varying weighting factor ωi. Mid / right
side: Adaption to changed environment

IV. CONCLUSION

In this paper we propose two different adaptive weighting
schemes for Laplacian trajectory editing. Various, frequently
occuring problems at trajectory retargeting are solved. Being
easy to implement and robust during usage it is a viable
alternative/extension to existing approaches.

REFERENCES

[1] M. Alexa, “Differential coordinates for local mesh morphing and
deformation,”The Visual Computer, vol. 19, no. 2, pp. 105–114, 2003.

[2] O. Sorkine and M. Alexa, “As-rigid-as-possible surfacemodeling,” in
EUROGRAPHICS, 2007, pp. 109–116.

[3] T. Nierhoff and S. Hirche, “Fast trajectory replanning using laplacian
mesh optimization,” inIEEE ICARCV, 2012.

[4] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Laplacian mesh
optimization,” in ACM SIGGRAPH, 2006, pp. 381–389.

[5] O. Brock and O. Khatib, “Elastic Strips: A Framework for Motion
Generation in Human Environments,”Int. J. Rob. Res., vol. 21, no. 12,
pp. 1031–1052, 2002.

[6] Y. Lipman, O. Sorkine, M. Alexa, D. Cohen-Or, D. Levin, C. Rössl,
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