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Zusammenfassung

Empirische Belastbarkeit ist eine allgegenwärtige Anforderung an die Forschung – auch

oder vor allem in den Lebenswissenschaften. In dieser Arbeit wird für vier typische The-

mengebiete gezeigt, wie statistische Methodik eingesetzt wird um diesem Ziel gerecht zu

werden. Augenmerk liegt auf verschiedenen Stufen der statistischen Modellierung und dem

Verweis auf Überschneidungen der eingesetzten Methodik zwischen den unterschiedlichen

thematischen Bereichen. Die Ergebnisse der statistischen Auswertungen werden anschaulich

präsentiert und in Bezug auf die inhaltliche Problemstellung interpretiert.

Im ersten Teil der Arbeit steht die Neuentwicklung eines Risikomodells für die Forst-

wissenschaften im Fokus. Ziel ist es die Sterblichkeit einzelner Bäume in Abhängigkeit

ihrer lokalen Konkurrenzsituation gegenüber anderen Bäumen vorherzusagen. Die Modell-

entwicklung beginnt mit einer Bestandsaufnahme der vorhandenen Information, die sich in

Form der Stichprobe und der Literatur zu diesem Thema ausdrückt, und dem Definieren des

genauen Einsatzszenarios des zu erstellenden Modells. Mithilfe von Ergebnissen der deskrip-

tiven Auswertung im Bezug auf die beobachtete Sterblichkeit und den am Baum gemesse-

nen Größen, leiten wir daraus die Konsequenzen für die statistische Modellbildung ab.

Eine geeignete Modellklasse wird vom zeitstetigen Coxmodell ausgehend unter Ausnutzung

der Gemeinsamkeit zum binären Regressionsmodell hergeleitet. Zur Sterblichkeitsvorher-

sage dient die Verallgemeinerung des logistischen Regressionsmodells zur Klasse der gener-

alisierten additiven gemischten Modelle, die dem Stichprobendesign gerecht wird und eine

flexible Kombination von Kovariableneffekten ermöglicht. Für die Variablenselektion inner-

halb dieser Klasse werden Maße zur Quantifizierung der Modellvorhersagegüte eingeführt

und in einem Kreuzvalidierungsschema ausgewertet. Eine abschließende Vereinfachung der

Parametrisierung des Modells erlaubt eine unkomplizierte Anwendung und Implementierung.

Die im zweiten Teil dieser Arbeit betrachteten Versuchsreihen der Pflanzenzucht wurden

zum Zwecke einer Assoziationsstudie durchgeführt, von der Rückschlüsse für die Züchtung

robuster Roggenarten gezogen werden sollen. Aus statistischer Sicht stellen die Versuche sehr

gute Ausgangsbedingungen bereit, da es sich um geplante Experimente handelt, die mit Hilfe

von Randomisierung und Blockbildung die Einflüsse von nicht beobachteten Bedingungen

quantifizierbar bzw. kontrollierbar machen. Ausgewertet werden die Beobachtungen mit-

tels eines gemischten linearen Modelles, das mehrere Ebenen des Verwandtschaftsgrades der

unterschiedlichen Arten zueinander berücksichtigt und den longitudinalen Aspekt der Ver-
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suchsreihen aufgreift. Die dafür eingesetzten Komponenten des Regressionsmodells werden

detailliert beschrieben. Zuletzt werden die genetischen Merkmale mit statistisch signifikan-

tem Zusammenhang zur Frosttoleranz präsentiert und eingeordnet.

Im Abschnitt aus dem Themengebiet der Phänologie wird untersucht wie sich die Blütezeit

verschiedener Arten im Laufe der letzten 30 Jahre geändert hat. Mit Techniken der Meta-

Analyse wird eine Vielzahl von lokal beobachteten Trends in ein statistisches Modell zusam-

mengeführt, und somit eine übergreifende Betrachtung ermöglicht. Bei der Herangehensweise

wird die unterschiedliche Unsicherheit die den einzelnen Trends anhaftet berücksichtigt und

untersucht inwiefern der geographische Standort der Messstationen die Ergebnisse beein-

flusst. Unter anderem ließ sich beobachten, dass bei Arten, die ihre Pollen mithilfe des Windes

zu anderen Pflanzen übertragen, der langjährige Trend hin zu einem früherem Blütebeginn

stärker ausgeprägt ist als bei Arten, die durch Insekten bestäubt werden. Nicht zuletzt sind

derartige Resultate für die Allergologie relevant. Ob sich insgesamt auf eine länger werdende

Pollensaison schließen lässt, kann von den Ergebnissen der Studie nur indirekt angedeutet

werden. Es werden jedoch Ansätze aufgezeigt, wie sich diese Fragestellung mit ähnlichen

Daten empirisch untersuchen lässt.

Der Aspekt der Modellvalidierung wird im medizinischen Abschnitt erneut aufgegrif-

fen. Bestehende Risikomodelle für Prostatakrebs werden auf ihren Nutzen hin bewertet.

Sie beruhen hauptsächlich auf dem prostataspezifischen Antigen und wurden entwickelt,

um Patienten und Ärzten eine Hilfestellung zu geben, wann der mit Risiken verbundene

Eingriff einer Biopsie gerechtfertigt ist. Neben bereits eingeführter Maße zur Modellbew-

ertung wird ein weitere Größe, welche die persönlichen Umstände des Patienten mit ein-

bezieht, zur Beurteilung des Risikomodells herangezogen. Die Validierung findet an zehn

externen Kohorten statt, und gibt an ob das Risiko von Betroffenen, bei denen die Biopsie

nachträglich tatsächlich einen Krebsbefund feststellen ließ, zuverlässig höher bewertet wird

als bei Männern ohne Prostatakrebsbefund. Wie auch das absolute Niveau der Risikovorher-

sage, das nur für einen Teil der untersuchten Personen gut vorhersehbar ist, fallen die Resul-

tate gemischt aus, und hängen unter anderem von der unterschiedlichen Prävalenz/Inzidenz

in den Kohorten und den studienspezifischen Abläufen ab.



Abstract

Empirical capacity is a ubiquitous claim for the research—even or especially in the life

sciences. In this work the use of statistical models to achieve this objective is presented in

four important areas of life science. The focus is on different stages of statistical modeling and

discussion of overlapping methodology in the diverse thematic areas. The results of statistical

analysis are presented vividly and interpreted in relation to the substantive problem.

The first part of this thesis focuses on the development of a risk model for the for-

est sciences aiming to predict the mortality of individual trees as a function of their local

competition from other trees. The model development starts with an inventory of existing

information, which is expressed in the form of the sample and literature on this topic, and

the definition of the exact deployment scenario of the model to be created. Together with

the results of descriptive analyses in relation to the observed mortality and measured tree

quantities the consequences for statistical modeling are derived. A suitable model meeting

the requirements is deduced from the continuous-time Cox model by exploiting the equiva-

lence to binary regression models when transitioning to the discrete case. For prediction of

mortality, the generalization of standard logistic regression models to the class of general-

ized additive mixed models is used allowing to map the sampling design and to include a

flexible combination of covariate effects. For purpose of variable selection within this class

metrics quantifying different aspects of the predictive quality of the model are presented and

evaluated in a cross-validation scheme. A parametrical simplification of the chosen model

ensures ease of use and implementation. The estimation of the proposed model is based

on over 14,000 individual observations in the experimental plots and a combination of four

competition indices.

The growing trials of plant breeding considered in this work were conducted for an associ-

ation study aiming to draw conclusions for breeding robust species of rye. From a statistical

point of view, these planned experiments are advantageous to quantify and control unob-

served conditions by means of randomization and blocking building. The trials are analyzed

using linear mixed models taking multiple levels of relationship between different varieties

of rye and longitudinal data structures into account. A detailed description of the individual

components of the regression models is made and the genetic characteristics with significant

association to frost tolerance are discussed.

The phenology section examines whether the flowering dates of different species have
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changed over the last 30 years. With techniques of meta-analysis, a variety of locally observed

trends is merged in a statistical model allowing for a powerful overarching assessment. In

this approach, the uncertainty that adheres to the individual trends is taken into account

and it is examined how the spatial variation has to be considered in the analysis of the

developments. Among other things, significant indications exist that for species relying on

the wind to carry their pollen to other plants, the long-term trend to flower earlier in the

year is more pronounced than for species pollinated by insects. Not least, such findings are

relevant for the field of allergology. Whether longer pollen seasons are to be expected in

the future may only be indirectly indicated by the results of the study. However, possible

modeling approaches on how to investigate this issue empirically on similar kinds of data

are given.

The focal point in the medical section is model validation. The usefulness of existing risk

models for prostate cancer is investigated; these models are mainly based on the prostate

specific antigen and designed to help patients and physicians to determine whether a biopsy

with its inherent risks is warranted. Besides established measures of model performance

another metric is introduced, which includes the personal circumstances of the patient in

the assessment of the risk model. The validation is implemented by means of ten external

cohorts, and indicates whether the risk of persons where the subsequently performed biopsy

actually detects cancer is predicted reliably higher than in men without prostate cancer

diagnosis. It is shown that the absolute level of risk predictions is calibrated only for a

part of the investigated persons and that the results vary depending on the cohort-specific

prevalence/incidence and study-specific procedures.
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Introduction

Empirical evidence forms the basis for inference in the life sciences. Accordingly, much

effort and cost are invested in performing trials, recording, collecting, and storing data.

Statistical methodology deals with finding optimal approaches in terms of planning, ascer-

tainment, and analysis. Therefore it is imperative to additionally involve the capabilities of

modern statistical methods to enhance subject matter understanding. The aim of this thesis

is to quantify the risk of certain threats in different fields of the life sciences in order to more

accurately predict the occurrence of these threats in the future. Therefore, risk models for

application in forestry, plant breeding, phenology, and oncology are developed and validated

using modern state-of-the-art statistical methodology.

One of the most basic statistical association models is linear regression and it is the fun-

dament for the analyses of the plant breeding experiments of Chapter 2 and the phenological

observations in Chapter 3. Through linear regression the impact of one or more exploratory

variables x on a metric quantity y can be statistically examined presuming the additive

relationship

y = β0 + β1 x1 + . . .+ βp xp.

Although called the linear model, nonlinear relationships can be accommodated by trans-

forming either the outcome or explanatory variables. As it is not realistic to assume a strictly

deterministic relationship between y and x and measurements do not have infinite accuracy,

the above equation is extended by a probabilistic term, here in an additive manner, leading

to a proposed model for a sample of n observations:

yi = β0 + β1i x1i + . . .+ βp xpi + εi = x′iβ + εi, i = 1, . . . , n.

For the distribution of ε an assumption is made, which should reflect the sample design

and accurately describe the distribution of the observed data, which can be checked in a

subsequent residual analysis. A standard choice is to assume independent and identically

distributed (iid) normal errors εi
iid∼ N(0, σ2). This implies that the data y are randomly

collected, are independent, and are normally distributed given x, with equal variance (ho-

mogeneity of variance). No distributional assumption is made for the parameter vector β

in this model. Alternative assumptions for the error term allow to formulate advanced ap-
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proaches, with t-distributed errors yielding robust regression for the mean, and asymmetric

Laplace distributed errors yielding quantile regression for quantiles of the distribution, in

particular the median.

Whenever possible and meaningful the design of an experiment or data collection should

provide a metric outcome, since continuous metric data provide richer information than

categorical or grouped data. Coarsening by grouping into classes, such as by dichotomizing

size into small/medium/large, results in a loss of information in likelihood-based inference.

However, truly categorical outcomes, such as mortality (alive versus dead) must be modeled

on the categorical scale. Relating a dichotomous variable such as mortality to covariates

can be achieved by a statistical model that effectively inserts a metric variable in between.

An unobservable (latent) variable is postulated as being the driving force behind mortality.

The latent variable exists on a continuum (such as severity of bad health) and when it

reaches a threshold, the outcome of mortality is experienced. This is in fact the statistical

definition of the commonly used logistic regression model for binary events. Specifically, the

observed variable y assumes either value 0 or 1, such as corresponding to alive versus dead,

respectively. It connects to a latent variable ỹ with threshold τ by the mechanism

y =

1 (dead) if ỹ > τ

0 (alive) if ỹ ≤ τ.

A probabilistic model is assumed for the latent variable conditional on observed covariates:

ỹi = β0 + β1i x1i + . . .+ βp xpi + εi, i = 1, . . . , n.

From this relationship, the probability of death for the ith individual, π, is

πi = P(yi = 1) = P(x′iβ + εi > τ) = 1− h(−x′iβ),

where h(.) is the cumulative density function assumed for ε. Specifying h(.) as the standard

logistic distribution

h(η) =
exp(η)

1 + exp(η)

results in the logistic regression model for y on x:

P(yi = 1|xi) =
exp(x′iβ)

1 + exp(x′iβ)
i = 1, . . . , n.

In contrast to linear regression for metric outcomes, there is no free variance parameter in

the logistic error distribution. Its fixed value is needed for unique estimation of β1, . . . , βp.

Otherwise only the ratio of two β coefficients would be unambiguous. Another restriction

is made by specifying τ = 0 to obtain an identifiable intercept β0. Loosely speaking, these
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restrictions pay tribute to the fact that the scale of ỹ is unknown and the sample of binary y

observations does not allow to extract information concerning dispersion in the underlying

vector of probabilities πi. Impacts which can be attributed to theses scale issues in comparison

to linear models are discussed in Mood (2010).

Logistic regression has become the most commonly used model for binary outcomes

and risk prediction in medical statistics (it is used in this context in Chapter 4). This

can be attributed to the fact that it provides meaningful interpretable effect estimates in

retrospective case control designs as well as in prospective cohort studies. A commonly

encountered example provides an illustration, which also introduces some basic metrics in

risk modeling. Of key interest in epidemiological studies is the quantification of the relative

risk (RR) of exposed individuals E (for example, smokers) compared to non-exposed Ē (non-

smokers) for developing a certain disease (lung cancer). This can be achieved by setting up

a cohort of healthy persons comprising both exposed and non-exposed individuals who are

followed over a time period of, say, 20 years. The data obtained from this kind of study

results in the following 2 by 2 table, where the letters a, b, c, d represent the observed counts:

Developed disease

Exposed D (yes) D̄ (no)

E (yes) a b

Ē (no) c d

The risk of the disease for exposed individuals, πE, is estimated by a/(a + b), and for non-

exposed individuals, πĒ, by c/(c + d). The relative risk of the disease associated with the

exposure thus is

RR(D) =
πE
πĒ
.

Another metric quantifying the impact of the exposure is the odds ratio (OR) (Szumilas,

2010). It begins with the odds (odds) in favor of an event, which is the ratio of the probability

that the event happens to the probability that the event does not happen:

odds(D|E) =
πE

1− πE
(odds in exposed),

odds(D|Ē) =
πĒ

1− πĒ
(odds in non-exposed),

OR(D) =
odds(D|E)

odds(D|Ē)
,

which is estimated by

ÔR(D) =
a · d
b · c

.

For a rare disease, when probabilities πE and πĒ to develop the disease are small for both
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exposed and non-exposed, respectively, the relative risk can be approximated by the odds

ratio, RR(D) ≈ OR(D). However, for rare diseases the prospective design of a cohort study

is not efficient. Hundreds of thousands of individuals must be followed for long periods

of time in order to capture sufficient numbers of diseased cases, incurring a prohibitive cost

burden. An alternative concept to circumvent this problem is to perform a case-control study

(Breslow et al., 1980). Here, individuals are not followed until outbreak of the disease, but

individuals suffering from the disease (cases) are selected from a population retrospectively,

such as through the scanning of hospital records. Suitable controls without the disease are

matched according to individual factors, such as being in similar age. The exposure status is

established afterwards. The case-control design is a leading competitor for modeling the rare

event of tree mortality in forests covered in Chapter 1. The limitation of the case-control

design is that it is not possible to infer the risk of disease as the counts of cases and controls

are artificially fixed. The advantage is that the odds ratio can still be used to approximate

the relative risk because odds ratios behave symmetrically in terms of switching disease and

exposure,

OR(E) =
odds(E|D)

odds(E|D̄)
=
odds(D|E)

odds(D|Ē)
= OR(D).

For the relative risk this is not valid in general: RR(D) 6= RR(E).

The parameters β1, . . . , βp of the logistic regression model parametrize the log odds ratio

with respect to a unit change in the according covariates x1, . . . , xp. Thus, logistic regression

can be used to estimate the odds ratio in the case-control design. If we set y = 1 for all

cases, y = 0 for all controls, x = 1 for all exposed individuals, x = 0 for the non-exposed,

and estimate the model

P(y = 1|x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
.

then the odds ratio of disease with respect to exposure is

P(y = 1|x = 1)

1−P(y = 1|x = 1)

/ P(y = 1|x = 0)

1−P(y = 1|x = 0)
= exp(β1).

One is able to retrieve useful effect estimates regardless of the base level of mortality. The

strength of using a model-based approach, such as logistic regression, over traditional epi-

demiological tabular methods, is the easy expandability to account for multiple risk factors

and confounders by including additional parameters. The ubiquitous use of logistic regression

is not confined to the medical context. It can be used whenever the objective is to quantify

the probability of occurrence of specific events or the presence of certain characteristics or

states. In forestry, it is the dominant model for the prediction of tree mortality (cf. Table

1.5). A peculiarity to be minded in this context is that the proportion of trees where mor-

tality was actually observed is very low (rare events). Consequences for the performance of

logistic regression are discussed in King and Zeng (2001).
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Alternatively, event data may be more finely modeled in terms of the time until the

event occurs. Time to event data are addressed by survival models. In practice, there is

often the situation that the time spans of observations are recorded only coarsely, leading

to discrete time survival models. Discrete survival time models may be approximated by

logistic regression models, as we will perform in our analyses of mortality of beech trees in

a German network that inspected trees only approximately every 5 years (Chapter 1).

If rich time-to-event data are available in metric form, Cox regression is a common choice,

since it accommodates censoring of observations, which occurs when individuals are known

to survive only up to a specific time point but not what happens afterwards, allows the

incorporation of covariates in terms of a linear predictor affecting a hazard ratio, and makes

no parametric assumptions on the baseline hazard (Cox, 1972). This model is not described

in more detail here since none of the outcomes in this thesis were of the continuous time-

to-event type, but issues and potential future directions would apply analogously as for the

other statistical models used here. Approaches towards survival models which make more

explicit use of the actually observed time spans than the Cox model, which only employs

the chronological order of the events, are dealt with in Kneib and Fahrmeir (2004) and

Carstensen (2005).

A central issue to all the statistical models that incorporate explanatory variables to

explain variation is how to incorporate random effects to account for residual heterogeneity

due to less tangible effects, such as by differences in geographic locations or by machine. The

term mixed models reflects the fact that the model comprises further random effects with

a distributional assumption in addition to fixed effects which are understood as unknown

but existent true (hence fixed) quantities (McCulloch and Searle, 2001). Mixed models have

made it into routine practice in virtually all fields of the life sciences including ecology (Zuur,

2009), medicine (Brown and Prescott, 2006), veterinary research (Duchateau et al., 1998),

agricultural sciences (Gbur et al., 2012), and animal breeding (Mrode and Thompson, 2005).

However, the application of mixed models is less motivated by the philosophy about inter-

preting quantities as random or fixed but more motivated by the pragmatism to flexibly

incorporate subjective understandings in the model. Furthermore, mixed models have their

frequentist counterpart in penalized estimation approaches. The connection of ridge regres-

sion with the normality assumption of random effects is the one example. The purposes of

random effects in mixed models range from accounting for the hierarchical structure of the

sample (trees organized in plots, measurements originating from phenological stations, block

building in growing trials), incorporating secondary information about the sample (related-

ness of genotypes, geographic coordinates), and achieving a data-driven selection of model

complexity (penalized splines, baseline mortality over time). The strength of generalized

mixed models is to allow rather any combinations of such building blocks in the systematic

part of the model independently from the outcome-specific distribution. By replacing a series

of repeated analyses (say over different trials) into a single analysis using random effects,
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multiple testing is more controllable, the power (effective sample size) of the experiment is

increased, and inference concerning global versus site-specific trends is permitted. For this

reason, mixed models are used in most of the applications in this thesis (Chapters 1–3).

Whatever the type of statistical model, external validation on a completely independent

data set is the proof of principle that the model can be used in practice. State-of-the art

approaches in the application and validation of statistical modeling for a variety of outcome

types and experimental settings are demonstrated in the remaining chapters of this thesis.

In Chapter 1 (Forestry) we examine the steps of model development, which involve de-

scriptive analyses, a literature review of similar studies, and the presentation of imposed

consequences. The final risk model is derived from a discrete approximation to the Cox

model and is refined to the class of generalized additive mixed models. The statistical tools

applied include nonparametric tests, function approximation using splines and the specifica-

tion of random effects reflecting spatial and temporal structures of dependency. Model selec-

tion is based on performance measures which were calculated in a cross validation scheme.

Accompanying graphs illustrate a way of communicating the results.

In Chapter 2 (Plant breeding), we present an association study with the objective of de-

ducting new breeding programs on robust kinds of rye. For this study growing trials on several

genotypes in three different platforms were designed and conducted employing techniques

of randomization and block-building. The results are related to the occurring variations of

genetic markers in the plant genome. These markers were selected in advance to cover re-

gions linked to frost tolerance as indicated by previous studies (candidate gene approach).

The statistical association model includes the genetic similarity of different genotypes ex-

plicitly and accounts for the particular sampling design. By application of this model several

genetic markers are identified, which are most promising across all three platforms in terms

of breeding purposes.

Chapter 3 (Phenology) covers a meta analysis on phenological data. The aim of the

analysis was to infer the developments in long-term trends for different species from the

records of flowering dates available in aggregated form in the COST (European Cooperation

in Science and Technology) network. In detail, we investigate potential evidence that flow-

ering dates of wind pollinated species have advanced more than insect pollinated plants and

whether the length of the flowering season within a calendar year has become longer in the

past decades, as pollen in the air are a major trigger for allergies. We demonstrate how to

treat observations which do not arise from a simple random sample and how to handle the

multiple testing problem arising when several hypotheses are examined on the same data.

Further, we show how a spatial correlation structure can be embedded in the model and use

bootstrap combined with spline methods for diagnostic purposes.

In Chapter 4 (Cancer) we assess the quality and benefit of model-based prostate cancer

predictions. Prostate cancer is one of the leading causes of cancer death in men in Western

Europe and the United States; more than 670,000 men are diagnosed with prostate cancer
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every year (European Randomized study of Screening for Prostate Cancer, 2013). Two ex-

isting prostate cancer risk calculators are validated using new external data not involved in

the preceding development stage. We introduce measures that evaluate the prediction per-

formance in terms of calibration and discrimination abilities. Further, we discuss whether

usage of these calculators can provide a clinical benefit for the considered validation cohorts.

Finally we conclude with a discussion on future research needed for the modeling of

outcomes of the type that have arisen in the four applications of this thesis.
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Chapter 1

Forestry

Parts of the following chapter will be published in “Predicting tree mortality for European

beech in southern Germany using spatially explicit competition indices” by A. Böck, J.

Dieler, P. Biber, H. Pretzsch, and D. P. Ankerst (accepted in Forest Science 2013). Figure

1.2 was provided by Jochen Dieler, Figure 1.3 by Peter Biber. Figures which are equivalent

to those of the article are indicated with “reproduced”, those which are similar but basing

on different data with “in style of”.

1.1 Introduction

Tree mortality prediction is an essential component of single tree-based forest growth

models, including the growth simulator SILVA (Pretzsch et al., 2002). The SILVA simulation

software was developed in 1989 and is since maintained by the Chair for Forest Growth and

Yield at the Technische Universität München (SILVA website, 2013). It allows the simulation

of forest growth for complex structured pure and mixed stands following an individualized

tree approach. A stand is seen as a system of single trees having different characteristics,

that mutually influence each other. Inter-tree relationships are derived from positions and

sizes of trees relative to each other, and used to calculate competition indices (CI), which

in turn enter the simulation model. The user can specify various scenarios for thinning con-

cepts and intensity up to a maximum simulation length of 145 years. The program updates

the forest profile at 5-year intervals. The results can be assessed in terms of timber produc-

tion, and economical and structural characteristics, which are useful for decision-making in

forest as well as landscape management, for educational purposes, and as leads to further

scientific enquiries. The general simulation procedure takes place in three steps: 1.) Set up

the management and site conditions, and, if needed, complete missing information via the

stand structure generator; 2.) Calculate the competition measures and apply the model for

mortality, thinning, and increment; 3.) Generate the various outputs.
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Our work was focused on developing a new statistical model for the mortality compo-

nent, highlighted in Figure 1.1. Toward that goal, we present the development process of a

Figure 1.1: Flowchart for the SILVA simulator. This study focuses on the mortality model
component, marked in red. Figure reproduced from Pretzsch et al. (2002), Figure 1.

mortality prediction model applied to approximately 6,000 beech trees. The procedures have

wider applicability to five-year mortality prediction for long term forest research plot, as well

as any interval prediction where relevant data are available across many scientific fields. We

describe the design of the survey, how the data are collected and outline the statistical chal-

lenges and needs in such modeling scenarios. These include the treatment of dependencies

between multiple observations on the same tree or plot and the implications of tree mortality

as a rare event. We provide an overview of the literature for predicting tree mortality and

motivate the chosen model, starting with the Cox proportional hazards model (Cox, 1972).

We then show how model selection was performed, including measures of model performance

and the validation schemes. We also provide full model details allowing others to use the

model for their own purposes, by implementing it in online calculators or in spreadsheet

calculators such as Excel, whenever a mortality risk prediction is required.
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1.2 Data and exploratory methods

1.2.1 Data source and mortality

Data were collected from beech trees taken from multiple plots at eight test sites in

Bavaria, Germany that were undergoing surveillance from 1985 until 2007 (Figure 1.2).

Individual trees were observed between one to four observation periods during these years,

with observation periods ranging from three to ten years (most five years). Individual tree-

periods where the tree experienced mortality through man-made thinning or natural disasters

such as storms were excluded. Generally, the terms mortality and mortality rate are used

interchangeably, denoting the number of deaths by a certain cause occurring in a given

population at risk during a specified time period (World Health Organization, 2013). As

the observed mortality rates were based on time periods of different lengths, they only have

limited interpretability. Therefore we also calculated standardized 5-year mortality rates.

The inclusion criteria resulted in 6,189 beech trees and 14,239 tree-periods from 29 plots.

The data are summarized in Table 1.1.
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Figure 1.2: Location of test sites in Bavaria, Germany. Figure reproduced from Böck et al.
(2013)

1.2.2 Variables and risk factors

We included only plots that had a minimal mortality of 1% for all observation periods.

Within the included plots, we included only individual tree-periods that had information on

all risk factors at the beginning of an observation period and mortality (yes versus no) at

the end of the same observation period. Results based on a more liberal inclusion of survey
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Number of Mortality in % per

Plot Test site trees periods dead trees period 5-year period

1 814 98 182 27 14.84 11.27
2 813 172 320 47 14.69 13.44
3 640 307 507 58 11.44 13.02
4 640 348 589 48 8.15 9.24
5 640 973 1,742 112 6.43 6.04
6 135 307 970 51 5.26 5.61
7 814 193 472 23 4.87 5.30
8 638 398 831 34 4.09 4.41
9 137 366 629 22 3.50 1.75

10 135 291 1,109 35 3.16 3.33
11 640 164 317 10 3.15 2.64
12 134 104 353 11 3.12 3.31
13 640 184 359 11 3.06 2.56
14 638 238 548 16 2.92 3.23
15 137 199 322 7 2.17 1.09
16 640 285 285 6 2.11 2.11
17 134 107 345 7 2.03 2.16
18 134 68 254 5 1.97 2.08
19 134 55 203 4 1.97 2.08
20 813 81 161 3 1.86 1.69
21 134 46 167 3 1.80 1.90
22 814 62 167 3 1.80 2.01
23 640 58 116 2 1.72 1.72
24 814 154 440 6 1.36 1.56
25 813 44 74 1 1.35 1.25
26 135 295 967 13 1.34 1.43
27 135 269 942 11 1.17 1.24
28 135 226 771 8 1.04 1.10
29 27 97 97 1 1.03 0.52

Overall 6,189 14,239 585 4.11 3.92

Table 1.1: Summary of beech trees included in the analysis. Test sites refer to Figure 1.2.

plots can be found in Böck et al. (2013).

Risk factors considered in the prediction models comprised measures of the size of in-

dividual trees, indices covering different aspects of competition, site quality information,

calendar year, and period length, Table 1.2 contains a detailed description. Tree size was

measured by the diameter at breast height (DBH ) and by Height , but as Height was only

measured for a sample of trees and estimated for the others, it was not preferred over DBH .

Both were treated as potential candidate variables for mortality prediction in the model

selection stage of analysis. The age of the trees has not been considered as a risk factor,

since often the age of trees is unknown and since the model must be applicable to both

even- and uneven-aged stands. However, age inevitably correlates with tree size. To quantify
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the competition of a tree, its size and location relative to other trees in the neighborhood

are used to construct competition indices (CI), which partly build upon one another. The

CIs are derived from local vertical profiles, as outlined in Figure 1.3, and sum over defined

upright ranges with overlapping regions, called integrals. CICUM60 measures the vertical

competition profile from top stand height down to 60% of the tree of interest’s height. Similar

to KKL, a simple geometric competition index (see Pretzsch et al., 2002), it is designed to

measure overall momentary competition and in our approach is split into two parts: CIIntra

is the component of CICUM60 attributable to trees that belong to the same species as the

tree of interest, so that it quantifies intraspecific competition, and CIConifer represents the

portion of CICUM60 which originates from conifer species.

In order to divide competition into the ecologically different aspects of overshading and

lateral constriction (Assmann, 1961; Pretzsch, 1992), the integral value at the tree’s top is

assigned to the measure CIOvershade originating from other crowns above the tree, which

cause overshading. The difference CILateral = CICUM60−CIOvershade is used as a measure

for lateral competition, where high values indicate competition not caused by overshading.

From a temporal point of view, all CIs mentioned above measure momentary competition,

Characteristic Definition Range of observations

PeriodOnset First year of survey period. [1985, 2000]
PeriodOffset Last year of survey period. [1989, 2007]
PeriodLength Length of the observation period in years. [3, 10]
DBH Diameter at breast height (1.3 m) in cm. [0.8, 90.9]
Height Tree height in m. [1.4, 43.6]
KKL Quantifies light competition by neighboring

trees.
[0.0, 90.9]

CIIntra Competition from trees of the same species
as the tree of interest.

[5.9, 517.6]

CIConifer Competition from conifer trees. [0.0, 204]
CIOvershade Extension of over-shading by other trees. [0.0, 505.9]
CILateral Lateral competition of a tree. [0.0, 436.9]
DBHdom Estimation of the DBH (in cm) a tree would

have at its current height if pre-dominant for
its whole life.

[1.34, 116.6]

RelDBHdom Ratio of DBHdom to DBH that measures
long-term competition.

[0.2, 1]

SiteIndex Plot- and species-wise site index, expressed
as stand height at age 40 (derived from stan-
dard yield tables).

[5.5, 22.5]

Table 1.2: Definitions of variables and risk factors used in the analysis. For all competition
indices, higher values indicate more competition; for SiteIndex , higher values indicate better
growth conditions.
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which can be strongly influenced by ad-hoc thinnings, for example. A different aspect is the

long term-competition, which expresses the typical competition a tree has undergone during

its life, and is meant to accumulate the competition from the past. To quantify the long-

term competition without knowing the entire history of a tree and its neighbors, a different

concept that compares actual tree size to a reference tree size is needed. If a given tree size is

Figure 1.3: Principle for determining vertical competition profiles. The space around a tree
of interest (shaded in gray) is stacked with horizontal planes spaced at distances 1/20th of
the tree of interest’s height. An upturned cone with an opening angle of 60 degrees is placed
with its tip in the tree’s footpoint. The intersection areas of the cone and the horizontal
planes form a series of circles that become larger with increasing distance from the forest
floor. Any neighbor tree that touches that cone is considered a competitor. Thus, the left
tree is not a competitor while the right tree is. The three-dimensional crown models of
Pretzsch (2001) are applied to measure the overlapped area (shown in dark gray) of each
competitor’s crown with the respective cone-intersection-circle (shown in light gray). The
relative proportions of the overlapped areas to the cone-intersection-circles are summed up
plane-wise, and then the profiles are stepwise integrated from their topmost point down to
the forest floor. The resulting integrals are multiplied by 1/20 (one step width relative to
the tree of interest’s height). The integral value obtained at 60% of the tree of interest’s
height is the competition index CICUM60 , a general measure of competition. CIIntra is the
component of CICUM60 that comes from trees that belong to the same species as the tree
of interest, whereas CIConifer is the component resulting from coniferous competitors, such
as Norway spruce and Scots pine. Figure reproduced from Böck et al. (2013)
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small compared to a reference tree size, the tree must have experienced strong competition in

the past and vice versa. As trees under competition suffer a reduction in diameter increment

more than in height increment, the DBHdom measure is used as a reference. This measure

is defined as the DBH a pre-dominant tree has at a given height and is estimated as follows.

From a subsample of the data the allometric relationship, DBHdom = 0.6553 ·Height1.327, is

estimated (assuming the units m for Height and cm for DHB) and used to estimate the DBH

a tree could have achieved at its current height under very low competition during its life

up until the present. Dividing the tree’s current DBH by the estimated DBHdom yields the

measure RelDBHdom. Low values of RelDBHdom indicate the tree has undergone stronger

long-term competition, while larger values near or even exceeding 1 indicate the tree has not

suffered much competition throughout its life. Finally, site quality (SiteIndex ) is expressed

through the expected mean stand height in m at age 40 years based on the yield table for

European beech by Schober (1967).

In addition to the tree-related characteristics, variables originating from the sampling

design were included in the analysis. The calendar years at the beginning and end of each

observation period are denoted as periodOnset and periodOffset , the time between those,

as periodLength. A description of all variables acting as candidates to be included in the

prediction model are summarized in Table 1.2.

To report mortality as a function of time we restructured the observations and calculated

the mortality rate on a calendar year basis. The mortality rate within a calendar year was

calculated by the ratio

Number of mortalities during calendar year

Number of observed trees at risk during the calendar year
,

where number of trees at risk are those that were alive and in the study at the beginning

of the calendar year. The exact year of mortality of a specific tree is not known within its

period of observation and was therefore distributed uniformly during the respective period.

For example, a tree observed as dead at the end of the survey period from 1995 to 1998,

contributes 1/3 to the numerator, and 1 to the denominator for each of the three years.

Finally, the annual mortality rates were translated to 5-year rates by multiplying by 5 (van

Belle and Fisher, 2004, chap. 15). We present the 5-year mortality for each year, along with

95% confidence intervals obtained from a normal approximation to the binomial distribution,

as well as the number of deaths and exposure time. The course of mortality over the years,

which is smoothed owing to the calculation method, is also displayed as graph.

1.2.3 Contrasting risk factors in mortality versus non-mortality

periods

In a primary stage towards the prediction model we evaluated each risk variable sepa-

rately. The object of investigation was whether and how values of the risk factors differed
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between tree-observation periods that resulted in mortality versus non-mortality. We pre-

ferred this by-period approach to an analysis at tree level, as the latter would require a

longitudinal analysis of the trees or a reduction of multiple observations of the same tree to

a single one. For this in turn, further assumptions are needed, it does not reflect the aspired

by-period prediction and moreover does not make use of the entire data set. Indeed, the sta-

tistical tests in the following paragraph rely on the assumption of independent observations

and we will discuss to what extent this assumption is justified in the model development

section.

By means of numerical statistical measures and tests we compared risk factors and obser-

vational characteristics between tree-observation periods with and without mortality using

means, standard deviations (SD), and ranges. As a measure of association between a con-

tinuous variable (risk factor) and a dichotomous variable (mortality) we report the area

underneath the receiver operating characteristic (ROC) curve (AUC)(Tom, 2006). Techni-

cally, the ROC curve is a graph of the false positive fraction (FPF) against the true positive

fraction (TPF) for all possible thresholds of a the risk factor. The FPF is the proportion of

alive subjects with a risk factor higher than the threshold, that means erroneously classi-

fied as dead and TPF is the proportion of dead subjects with a risk factor higher than the

threshold. Let x ∈ R be the risk factor, y ∈ {0; 1} the observed mortality being 1 for a dead

tree, 0 for a live tree, and cut the threshold, then the FPF and TPF are calculated as

FPFcut =

∑
I(xi > cut)I(yi = 0)∑

I(yi = 0)

and

TPFcut =

∑
I(xi > cut)I(yi = 1)∑

I(yi = 1)
,

respectively, where the sum includes all observations i = 1, . . . , n and the indicator func-

tion I() evaluates to 1 if the statement in its argument holds and 0 otherwise. The AUC

quantifies the ability of a risk factor to distinguish between mortality and non-mortality

periods. It equals the probability that for a randomly chosen pair of single tree observation

periods, where one observation period of the pair resulted in mortality and the other not,

the risk factor is higher for the period with mortality (if high values of the risk factor are

associated with mortality, lower otherwise). An AUC close to 100% indicates good discrim-

ination of the risk factor for mortality, while an AUC close to 50% indicates that the risk

factor exhibits no better discriminating ability between observation periods with mortality

versus non-mortality than flipping a coin. So, in its standard form AUC is reported as a

number between 0.5 and 1 and does not provide information about the direction in which a

risk factor acts, that is whether high values of the risk factor indicate mortality. We provide

this additional information when needed. As a rank-based measure the AUC is invariant to
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monotone transformations, which means it leads to the same conclusion whether or not a

monotone transformation is applied to the risk factor. It can be shown that the Wilcoxon
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Figure 1.4: Plot of kernel density estimates of the distributions of risk factors on the original
scale (left) and after applying a transformation to achieve a more compact and symmetric
shape (right). The black vertical lines indicate optimal separation thresholds given in Table
1.4.

test statistic is equivalent to the AUC, allowing interpretation of the result of the Wilcoxon

test as a test with null hypothesis that AUC=0.5. The null hypothesis of the two sample

Wilcoxon test is ”equal medians in both groups”, but also makes the implicit assumption

that the shapes of the distributions of the risk factors, and hence their variances, are the



1.2 Data and exploratory methods 19

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 50 100 150 200 250 300 350 400 450 500
CIIntra

D
en

si
ty

Status at 
end of period

alive
dead

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

2 4 6 8 10 12 14 16 18 20 22

CIIntra1 2

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140 160 180 200
CIConifer

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

CIConifer1 3

D
en

si
ty

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200 250 300 350 400 450 500
CIOvershade

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2 4 6 8 10 12 14 16 18 20 22

CIOvershade1 2

D
en

si
ty

Figure 1.4 continued.

same (Fahrmeir et al., 2003, p. 457). We compared the results to an alternative test relaxing

this assumption suggested in Brunner and Munzel (2000).

Besides the AUC, we report an optimal threshold based on the maximization of the

Youden index, TPF + FPF - 1 (Youden, 1950), which provides a specific cutoff, cutY ouden,

for distinguishing mortality versus non-mortality periods,

cutY ouden = arg max
cut

{TPFcut + FPFcut − 1}.

The Youden index assumes that the error made by assigning non-mortality to a period which
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Figure 1.4 continued.

actually ends in mortality is treated equally to the reverse error arising when mortality is

assigned to a period not ending in mortality. We provide the optimal threshold to enhance

the understanding of “what is high” and “what is low”, as the scales of the CIs hardly have

an intuitive meaning.

We show graphs of kernel-density estimators (Venables and Ripley, 1999, sec. 5.6) of

the continuous risk factors, which allow one to capture different aspects of the distributions

visually. Well separated distributions will correspond to high AUCs. They were estimated

separately for periods with and without observed mortality, the individual densities therefore

integrate to one. Due to this characteristic the frequency relation of the two groups to each
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other is not evident, but the overlaid densities allow the following interpretation. For a

specific measurement of a risk factor, say DBH = 20 (see Figure 1.4 top left for an example)

the overlaid densities imply that there was a higher proportion of live rather than dead

trees. However, this interpretation assumes that mortality and non-mortality periods are

equally likely a priori and one has to keep in mind that the marginal density estimates of

risk the factors are aggregated over all plots, years, and other factors that might influence

mortality. Graphs with little overlap of the mortality- and non-mortality curves indicate

good discrimination in terms of the range of the risk factors. Vertical black lines indicate the

optimal thresholds of separation based on the Youden index, cutY ouden.

Concerning the growth of a tree it is obvious that variables such as DBH and Height are

strongly connected with each other, as both variables quantify the abstract concept of tree

size. It is very likely that this connection can be seen in terms of empirical correlations in

the data set as well. Similarly, the way that CIs partly build upon one another likely leads

to strong inter-dependencies. We looked at rank correlations between pairs of risk factors,

which allowed us to empirically assess to what extent different CIs measure different aspects

of competition. Having the planned regression model for mortality in mind, where the risk

factors would act as independent variables, it was important to know which variables con-

tributed additional information not already present in others. Rank correlation as a measure

of association is limited by the fact that it only captures monotone relationships. Inspection

of scatter plots in addition to raw correlation values helps to overcome this shortcoming.

Non parametric loess smoothers (Cleveland et al., 1992) are overlaid in the graphs, which in-

dicate the shape of possible non-monotone dependence. Like for the AUC, rank correlations

are invariant against strictly monotone transformations, providing maximum generalizability

at this stage of model development.

In the descriptive methods presented so far we ignored the hierarchical structure of the

data. The statistical measures and graphs were calculated over all plots (stands), which

could either weaken or amplify the true effects of the risk factors. Assuming homogeneous

conditions across different plots we expect little variation on quantities such as the AUC,

correlations, and thresholds obtained within single plots compared to the aggregated calcu-

lation. We conducted a stratified analysis of the risk factors and compare results with the

aggregated analysis, allowing to investigate the potential impact of a hierarchical approach.

Plot specific rank correlations between risk factors, optimal thresholds, and AUCs are pre-

sented. We do not show the variables periodLength and periodOnset since they hardly vary

within a single plot, as well as the variable SiteIndex , which is a characteristic of the whole

plot and therefore cannot be explored at the plot level.

We present the results of the descriptive analysis in the following section, along with the

implications for the mortality model.
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Figure 1.5: Boxplot of rank correlations calculated for each pair of risk factors. The red
marks indicate the correlation coefficient aggregated over all plots.

1.3 Model development

1.3.1 Exploratory results and implications for modeling

In total 14,239 single tree observation periods comprising 6,189 beech trees from 29 plots

were used for analysis. Six single observations were removed as outliers since they were

clearly isolated, falling out of the range of the other observations, and could not be seen as

representative of the entire data set. One of the outliers had KKL = 120.13, and five outliers

had RelDBHdom values of 1.27, 1.33, 1.40, 1.44, and 2.11, respectively. At the end of 585

observation periods the tree was recorded as dead, resulting in an overall 5-year mortality
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rate of 3.9% (Table 1.3).

5-year mortality rates varied substantially between plots, with the highest at 13.44%

(Table 1.1). The lowest rate was observed in Plot 29 where each of the 97 trees contributed

a observation period of ten years (in sum 970 years of exposure time) and only one died,

resulting in a 5-year mortality rate of 0.52%. In Table 1.1 the plots are arranged decreasingly

by mortality per period which is not consistent with the order of the 5-year mortality.

The biggest difference is visible in Plot 9, having a mortality per period twice as high as

standardized to a 5-year period. The reason is because Plot 9 was surveyed strictly in ten

year intervals. The big divergence indicates that we need to consider the exposure time,

namely the length of the observation period, as part of the observed mortality rate instead

of as a risk factor, and use an approach which harmonizes the data. We addressed this issue

via an offset term in the mortality model.

Between 1986 and 2007 the mortality rate ranged between 3% and 5.5% except for the

years 1990 to 1994 where the rate dropped below 1% (Table 1.3, Figure 1.7). Due to the way

that data were collected and restructured to calculate yearly mortality rates, it is hard to

assess the actual distribution of yearly test statistics with null hypotheses of equal mortality

rates. Nevertheless, the pointwise confidence intervals visualized in Figure 1.7, which ignore

these issues, support the impression that the low mortality rates between 1990 and 1994

did not only occur by chance. The foresters could not give any explanations for the 4% dip

during these years; neither explanations of natural kind, such as a change in the weather nor

of technical kind, such as a change in recording. Thus we left these years in the analysis but

addressed the temporal heterogeneity by a random effect for calendar year.

For each of the observation periods included in the analysis, measurements of 13 potential

risk factors for mortality listed in Table 1.2 were available at the beginning of the observation
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5-year mortality (%) number exposure

rate lower upper of deaths time (years)

1986 4.45 2.64 7.31 15.75 1,768
1987 4.45 2.64 7.31 15.75 1,768
1988 3.62 2.14 5.96 15.75 2,177
1989 3.62 2.14 5.96 15.75 2,177
1990 0.10 0.00 1.38 0.40 1,977
1991 0.10 0.00 1.38 0.40 1,977
1992 0.48 0.11 1.66 2.51 2,634
1993 0.48 0.11 1.66 2.51 2,634
1994 0.48 0.11 1.66 2.51 2,634
1995 3.21 2.06 4.93 21.31 3,318
1996 3.21 2.11 4.82 23.91 3,724
1997 5.11 3.90 6.65 54.66 5,352
1998 5.25 4.04 6.78 57.56 5,485
1999 5.25 4.04 6.78 57.56 5,485
2000 5.36 4.11 6.94 56.29 5,256
2001 4.65 3.48 6.18 47.33 5,085
2002 4.65 3.48 6.18 47.33 5,085
2003 4.65 3.48 6.18 47.33 5,085
2004 4.65 3.48 6.18 47.33 5,085
2005 4.66 3.10 6.90 24.98 2,681
2006 4.28 2.46 7.24 14.04 1,639
2007 4.28 2.46 7.24 14.04 1,639

Overall 3.92 3.61 4.24 585.00 74,665

Table 1.3: 5-year mortality rates on annual basis with 95% confidence intervals (lower, upper).
Periods with observed mortality are distributed among the involved years, leading to non-
integer numbers of deaths.

period. Of these, nine were individual tree characteristics: DBH , Height , KKL, CIIntra, CI-

Conifer , CIOvershade, CILateral , and RelDBHdom. Table 1.4 contrasts the risk factors and

characteristics across periods associated with mortality versus non-mortality. There was a

statistically significant difference in risk factors between mortality and non-mortality obser-

vation periods for all of the nine individual tree characteristics (all AUC p-values < 0.003).

However, the p-values might be biased downwards because the independence assumption is

violated for multiple observations of the same tree. The Brunner-Munzel test created prati-

cally the same results (not shown). The average DBH of trees that experienced a mortality

at the end of an observation period was 7 ± 4.4 cm (mean ± standard deviation), less than

half of the average DBH of observation periods that did not result in mortality (16.3 ±
11.0 cm). This yielded high discriminatory power of DBH alone for the prediction of tree

mortality, with an overall AUC of 80.5% (Figure 1.8). Small values of DBH were associated

with mortality among all plots. Similarly, Height was also lower among mortality compared
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Figure 1.7: Estimated 5-year mortalities evolving over time, with 95% pointwise confidence
intervals (vertical lines). Horizontal line and gray-shaded area show mortality averaged over
all years with 95% confidence interval.
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Figure 1.8: Boxplots of AUCs of risk factors calculated in each plot separately. Red lines
indicate the AUCs calculated over all plots (cf. Table 1.4). AUCs to the left of the middle
line imply that low values of the risk factor are associated with mortality, on the right high
values are associated with mortality.

to non-mortality observation periods (10.6 ± 4.5 m versus 16.7 ± 6.9 m) but it had lower

discriminatory ability than DBH (76.5% versus 80.5%). DBHdom gave exactly the same

results in terms of AUC as Height , being a strictly monotone transformation of it. The sim-

ilarity of these three variables is also seen in the high correlation coefficients of 1.0 and 0.9,
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respectively (Figure 1.9).

Similarly, small values of the variables CILateral , RelDBHdom, and CIConifer were ob-

served more often in mortality observation periods. This behavior was not expected for the

long term CI RelDBHdom, which by its calculation method (Table 1.2) assigns large values

for trees who had experienced competition in the past. CIConifer alone had low discrim-

ination power (AUC = 53.6%). Accordingly, in half of the plots, mortality was associated

with high values, half with small values (Figure 1.8). Similarly for CIIntra (AUC = 64.9%),

in about 25% of the plots small values were related to mortality, in 75% high values. The

Figure 1.9: Empirical rank correlation between pairs of continuous risk factors. The coef-
ficients are given in the upper triangle, the lower triangle shows the scatter plots. Periods
resulting in mortality are colored in red, otherwise in blue. The black line shows a nonpara-
metric loess curve.
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two risk factors CIConifer and CIIntra alone were of limited use for predicting mortality, at

least in a monotone fashion. However, relaxing that restriction and accounting for other CI

in parallel, they might still contribute valuable information in a mortality model. KKL and

CIOvershade were the CIs with highest AUCs (81.1% and 80.8%, respectively) and acted in

the expected direction, with high values associated with smortality. The plot-specific vari-

able SiteIndex was lower among non-mortality compared to mortality periods (AUC 58.46%),

which indicated better growth conditions in non-mortality periods at a first glance, but the

validity of that on single tree-period is not given due to the plot-specific character of the

variable, resulting in the same constant value of SiteIndex for all tree periods within a plot

at all observed calendar years. Finally, there was no statistical difference in the length of

observation periods between those associated with mortality and non-mortality (Table 1.4),

though this observation does not affect the importance of periodLength in the definition of

mortality rates. We observed that risk factors with good overall discriminatory capabilities

are available and that they might be further enhanced when we account for the hierarchical

structure (plot-specific AUCs often better than overall AUC, Figure 1.8).

Figure 1.4 shows the empirical distributions of risk factors in mortality and non-mortality

periods. Besides the quantities of location (mean) and variability (SD) already provided in

Table 1.4, the skewness and potential multimodel shape can be assessed by this figure. The

distributions of Height and RelDBHdom were unimodal with slight skewness towards larger

trees. The majority of tree heights were near 12 m, but a smaller group of trees had larger

heights near 30 m. The distribution of DBH indicated slight bimodality within mortality

periods, with a minority fraction of larger trees. For CIIntra and CIOvershade most of

threes within non-mortality periods had small values. The majority of trees were observed

in periods without light competition from neighboring trees (KKL = 0), competition from

conifer trees (CIConifer = 0), or lateral competition (CILateral = 0). We will refer to these

accumulations on a single value (here zero) as point masses in the next section. In particular

the extreme skewness of CILateral and KKL suggested that transformations are needed to

zoom into areas of interest, figuratively speaking.

The single threshold obtained by maximization of the Youden index (shown by a vertical

line in Figure 1.4) illustrates where the density of the risk factor in non-mortality periods

was significantly shifted from the density in mortality periods. For risk factors where the

densities overlap extensively, we cannot achieve good separation with a single threshold, as

seen in the case of CIConifer . The thresholds calculated in each plot are given in Figure

1.6. As for the AUC, orientation of the thresholds, that is, whether values above or below

thresholds are associated with mortality are indicated. For DBH all 29 plots had the same

orientation, meaning that values below the threshold were higher associated with mortality.

The same applied for Height and DBHdom, whereas for KKL, all plots consistently showed

association of mortality with values above the threshold. Again, CIConifer behaves most

extreme, in eleven plots values higher than the threshold indicate mortality, and in 11 plots,
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values lower than the threshold. A threshold for the remaining 7 plots could not be calculated

as in these plots CIConifer was zero for all trees.

The empirical correlations, summarized in Figure 1.9, were strongly and statistically

significantly negative for the risk factor pairs DBH & KKL (-0.80), CIOvershade & DBHdom

(-0.75), Height & CIOvershade (-0.75), DBH & CIOvershade (-0.81), and KKL & CILateral

(-0.73). High correlations were observed for DBH & Height (0.90), DBH & DBHdom (0.90),

and KKL & CIOvershade (0.72). Height & DBHdom were in perfect rank correlation, being

a monotone transformation of each other. We found no relevant correlation of CIConifer &

CILateral (-0.04), RelDBHdom & CIIntra (-0.04), and KKL & CIConifer (0.04). Only the

relationship between CILateral and DBHdom (0.41) looked severely non-monotone according

to the loess smoother, but the variation was too large for inferring a meaningful functional

dependency (Figure 1.9). Comparison of correlation coefficients within single plots with

aggregated estimates painted a mixed picture. For strong correlations the overall estimates

were lower (in absolute value) except for the variables DBH and Height (or DBHdom), for

medium correlations the differences were bigger, but no general trend was obvious. The sign

of the correlation coefficient changed in 20 out of 36 pairs in at least one plot compared to

the aggregated coefficient.

In summary we list several implications to be considered in building a mortality model.

• Mortality is a rare event, present in only 4.11% of the observations in this data set.

• Mortality varies considerably over time.

• Mortality varies considerably between plots.

• Mortality is measured over different sized intervals and needs to be standardized.

• Risk factors differ in distribution between mortality and non-mortality periods.

• Multiple observation periods of the same tree are not necessarily independent.

• Multiple observations within one plot cannot be assumed to be independent, i.e. there

is spatial correlation.

• Risk factors have partly functional dependencies by definition and/or strong empirical

correlation between each other.

1.3.2 Literature review for individual tree mortality models

Before presenting our own individual tree mortality model we review modeling approaches

suggested and applied in the literature.

There have been various individual tree mortality models developed for many different

species of trees; Table 1.5 contains a list. All mortality models in the literature that we

have consulted included DBH or some measure of basal area, and logistic regression was by
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far the most commonly used statistical model. The initial mortality model in SILVA was

presented by Pretzsch et al. (2002) and was based on a subset of the same data as for our

application. They also used logistic regression, but instead of using all observation periods,

they selected an equal-sized series of observation periods from trees that had survived to

observation periods where trees had died, mimicking the efficient case control designs used

for rare diseases in medicine. Their mortality model indicated an increased risk of mortality

for trees with smaller DBH, with lower ratios of heights to DBH, with larger values of a site

index (estimated stand top height at age 50 years), and with larger ratios of estimated tree

basal area growth over the next 5 years to DBH. Our findings for DBH and SiteIndex in the

exploratory univariate analyses were significant in the same direction. However, the ratio

Height/DBH was found to act in the opposite direction in the univariate analysis (AUC =

78.4%, p-value < 0.001, not shown in previous tables).

Monserud and Sterba (1999) used logistic regression to develop individual tree mortality

models for the six major forest species of Austria, one being European beech, using a single

5-year remeasurement period of a permanent plot network of the Austrian National Forest

Inventory. In addition for use in an individual tree stand growth simulator, their aim was

to provide a general mortality model to replace outdated yield tables that were still being

used at the time. Their inventory recorded an overall 5-year mortality rate for European

beech of 4.3%, which is very close to what was observed in our study (4.1%), and they

elucidated the obstacles present for accurately modeling rare events. In order to make their

model generally applicable in Austria, where they argued that most stands failed to meet

the definition of even-aged, they intentionally excluded site index and age of individual trees

from consideration in their model, arguing that tree size is already an integrated response to

these factors. In their introduction they outlined that the most popular statistical method

for modeling individual tree mortality is logistic regression, but that Weibull and Gamma

regression have also been applied. Further they stated that in their data, the nonparametric

approaches recursive partitioning and neural networks did not lead to significant improve-

ment in the ability to predict mortality compared to classical statistical methods, but were

applied successfully elsewhere (Monserud and Sterba, 1999).

Using permanent plot data from a mountainous region in Switzerland, Wunder et al.

(2007) focused on prediction models for European beech that distinguished between growth-

dependent and growth-independent mortality. The growth-dependent models used as a risk

factor the relative basal area increment between two measurement periods divided by the

basal area at the second measurement period. Location site and DBH were included as

growth-independent risk factors. Their data showed that trees that died experienced lower

relative growths in the period before death than comparable time periods among trees that

survived. A spline fit for the relationship of relative growth to survival revealed a nonlinear

relationship. The impact of growth on survival was stronger among trees with smaller relative

growths than among trees with higher relative growths. Among the two sites in their study,
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trees with larger DBH had a higher chance of survival. Their prediction model obtained an

AUC of 89.6% using bootstrapping.

The above prediction models did not incorporate random effects to account for results

varying among plots. In their prediction models for northern hardwood stands, which in-

cluded American beech, in Quebec Canada, Fortin et al. (2008) stressed the importance of

accounting for risk differences among plots that could not be explained by measured indi-

vidual tree risk factors, such as soil and weather conditions, as well as for different intervals

of measurement to account for changing conditions. They used a binomial regression model

with complementary log-log link, that included a fixed offset term to account for variable

lengths of observation periods. In addition to significant contributions of the random effects,

they additionally found that tree vigor, DBH and basal area had an impact on survival,

with the effects of DBH and basal area nonlinear in nature. In their model, some common

distance-independent competition indices, including the sum of basal area for all trees with

DBH greater than the tree of interest, the relative position of the tree in the cumulative

basal area distribution, and the ratio between DBH and plot mean quadratic diameter, did

not have a significant impact on mortality.

In their modeling of tree mortality following selection in upstate New York for a multi-

tude of species, including American beech, Kiernan et al. (2009) contrasted ordinary logistic

regression with a Generalized Estimating Equation (GEE) approach that accounts for de-

pendencies between observation periods on the same tree. Both models found that mortality

increased with the ratio of basal area to DBH, with time of observation, and with number

of trees in the plot, and gave similar predictions. The GEE approach had slightly lower pre-

diction error, in particular for smaller trees with DBH less than 15 cm. By accounting for

the dependence between observation intervals rather than treating multiple observation pe-

riods from the same tree as independent, the standard errors of parameters estimated by the

GEE approach were larger, which the authors suggested to yield in more honest statistical

significance results.

Another regression model frequently applied to deal with observation periods of unequal

length is generalized logistic regression (Eid and Tuhus, 2001; Yao et al., 2001; Yang et al.,

2003; Rathbun et al., 2010) (Table 1.5). The standard logistic regression model does not

include a time component and relates the probability of death to the covariate vector x in

the form

P(y = 1) =
exβ

1 + exβ
=

1

1 + e−xβ
,

where y = 1 denotes mortality versus y = 0 non-mortality, and β is the parameter vector.

For the generalized logistic regression as proposed by Monserud (1976), the model is stated

for the probability of survival,

P(y = 0) = 1− 1

1 + e−xβ
,
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and extended by the parameter L,

P(y = 0) =

(
1− 1

1 + e−xβ

)L
.

L is the length of the observation period (for example in years) and by exponentiating

the probability of survival is ensured to be one for the next moment and to decrease with

increasing time L,

lim
L→0

P(y = 0) = 1, lim
L→∞

P(y = 0) = 0.

Incorporating the sampling design of the survey explicitly into the mortality model has

gained popularity during the last decade. The importance of considering multiple sources of

heterogeneity was successfully demonstrated in recent multilevel models (Rose et al., 2006).

We think there are at least two reasons for the trend towards more complex models. First,

the current data basis has become larger and more complex which allows the fitting of these

advanced models. Second, software and their interfaces have advanced, allowing more con-

venient calculation. Nevertheless, with increasing complexity of a model, the interpretation

of the results becomes more complex as well, and cannot be communicated as easily. Most

often standard theory for statistical testing does not apply and measures such as goodness

of fit have to be adapted.

1.3.3 From Cox to GAMM

In this section we describe the use of a generalized linear model (GLM) as a prediction

tool for tree mortality and its expansions, leading to a generalized additive mixed model

(GAMM). The regression model is motivated by assumptions with regard to the distribution

of the dependent variable, the outcome. In our case we assume that the individual mortality

of a tree is a random variable which depends, among other things, on the set of risk factors

available in this study. If the moment of death is not known for every tree in the study, like

in the present situation where most of the trees remain alive, mortality, or more precisely,

the mortality rate, needs two components to be well defined: a dichotomous indicator for

the status (dead/alive) and a component measuring the corresponding time. If the exact

time point of death for an individual tree is not known, it is said to be censored. Statistical

methods suitable for this type of data are referred to as survival/failure time analyses, with

the Cox model (Cox, 1972) being the most prominent. In its original form it relates the

hazard or instantaneous rate of mortality λ at any time t to covariates x,

λ(t) = λ0(t) exp(β′x)

and it requires survival times to be measured continuously over time. The baseline hazard,

λ0(t), describes the behavior of the risk over time at baseline levels of covariates and does

not have to be further specified. The individual covariate vector x and the parameters β act
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multiplicatively on the baseline hazard, resulting in the proportional hazard property. Ex-

tensions are available to allow for discrete or interval censored survival times and inclusion of

covariates varying in time (Kalbfleisch and Prentice, 2002). Both generalizations are required

for the data set at hand. Treating the time as discrete avoids having to deal explicitly with

computationally demanding interval censoring. Simulation studies showed similar results for

both approaches (Kneib, 2006). The discrete version of the Cox model is a binary regression

model with complementary log-log link, but the better known logit-link or others can be used

as well. All those discrete models converge to the continuous time Cox model (Kalbfleisch

and Prentice, 2002, p. 136). This relationship allows the use of standard GLM software after

some data augmentation. The observations have to be split at every unique period onset

or offset date (see Figure 1.10 for an illustration). Choosing the logit link, g(π) = log π
1−π ,

results in the logistic regression model for the discrete hazard rate λ,

πit = P(yit = 1 |xit) =
exp(ηit)

1 + exp(ηit)
≡ λ(t |xit), (1.1)

where yit is the status of tree i at the end of interval t, with covariates xit measured at the

beginning of each interval, which is the end of the previous interval. The linear predictor ηit

consists of two parts, a parameterization of the baseline hazard, which is the same for all

trees, and the covariate effects:

ηit = β0t + x′itβ.

That means the discrete baseline hazard is estimated by a distinct intercept variable for

each interval, as shown in Figure 1.10c. In other words this variable does the bookkeeping,

ensuring that at any time point the appropriate risk set (denominator) is used.

This approach is perfectly suitable when all observation periods are synchronized meaning

that trees were visited at time points common for all trees. For our observation scheme it is

an oversimplification and cannot be adopted directly. For an illustration of the difficulty of

asynchronous observation intervals, consider tree 3 in Figure 1.10 in year 1995. We need to

assign a value for y but only know that the tree died somewhen between 1992 and 1997. The

pooling of repeated observations discussed in Cupples et al. (1988) overcomes this problem

by assuming a constant baseline hazard over time. In doing so, the observations are used the

way they naturally arise in the survey: the information about beginning, end, and length of

the single periods is not further regarded. Technically, the parameters β0t are simplified to a

single coefficient β0, representing the constant hazard. The implicit assumption made by this

parsimonious parameterization is to consider the time at which information is recorded as not

relevant to mortality, the underlying risk is assumed to be the same in each interval. Further

one assumes that the mechanism by which the covariates effect the outcome is independent

of time, reflected by time-constant parameters β. Thus, the relationship between DBH and

mortality in the time period 1985 to 1990 is the same as that relationship between 2000
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Tree 1Tree 1Tree 1Tree 1

Tree 2Tree 2Tree 2Tree 2

Tree 3Tree 3Tree 3Tree 3

Tree 4Tree 4Tree 4Tree 4

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Calendar year

Status

●

●

alive

dead

(a) Visualization of four tree-period observations with their status (dead/alive) at the end of the
period. Vertical lines indicate where to split to achieve a data set suitable for binary regression.

Tree Onset Offset Status

1 1985 2000 alive
2 1990 1995 alive
3 1992 1997 dead
4 2000 2002 alive

(b) Organization of four ex-
ample trees before data aug-
mentation.

Interval
Tree number Onset Offset y

1 1 1985 1990 0
1 2 1990 1992 0
1 3 1992 1995 0
1 4 1995 1997 0
1 5 1997 2000 0
2 2 1990 1992 0
2 3 1992 1995 0
3 3 1992 1995 ?
3 4 1995 1997 1
4 5 2000 2002 0

(c) Organization after data
augmentation. Problem: Un-
known status of tree 3 in year
1995.

Figure 1.10: Data augmentation for the discrete time Cox model. Variable y to be used as
outcome in a binary regression model, whith y = 1 denoting mortality and y = 0 otherwise.

and 2002, say. A third assumption is that the current risk relies only on the information

of the previous interval. This Markov assumption states the long term history of a tree

to be unimportant for mortality prediction. Abbott (1985) and D’Agostino et al. (1990)

demonstrated the asymptotic equivalence of the grouped Cox proportional hazards survival

model to pooled logistic regression for short intervals.

The approach we chose follows the parsimonious approach of Cupples et al.’s (1988)

pooling method but integrates some modifications to relax the limiting assumptions. It

was not possible to estimate the baseline hazard on such a fine grid as postulated by the

discrete Cox model, but we wanted nonetheless to allow for a non constant baseline hazard
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over time. Instead of splitting the observations at every onset and offset date we used only

the individual onsets (variable periodOnset) to define the grouping structure to estimate

the baseline hazard. This involves a coarsening compared to the discrete Cox model and

the approach can therefore be interpreted as a sort of temporal smoothing. However, the

strict assumption of time-constant risk profiles is attenuated allowing the baseline hazard to

vary within the total observation time to pick up environmental changes in course. Further,

modeling periodOnset as a random effect has the advantage that it implies a correlation

between observations sharing the same onset year, quantifies the variability in time, and

allows an easier generalization of the results, while avoiding a reference category.

We included the length of the observation period as an offset term in the model which

additionally reduced the differences to the discrete Cox model. An offset term means to

include a covariate to the right hand side of the regression equation while the corresponding

parameter is not estimated but set a constant value (usually 1). Using the length of the

observation period as such an offset term mirrors the intuitive understanding that a risk

for mortality within a ten-year period should be twice as high as within a five-year period.

More precisely, within a logistic model the offset acts on the log-odds scale in contrast to

the log-scale in Poisson risk(-rate) regression where the offset approach is routinely applied.

The same arguments as in Abbott (1985) and D’Agostino et al. (1990) hold that for small

risks x, the logit function, f(x) = log(x/(1 − x)), and the logarithmic function are good

approximations of each other.

The analysis involved multiple observations of the same tree, which raises the question

how the dependency was treated. We argue that since pooled logistic regression with rare

events is asymptotically equivalent to grouped Cox regression, which handles this dependence

alternatively through the Cox regression likelihood, one does not need to additionally adjust

for it. However, we are aware of the fact that the pure dimension of the augmented dataset

does not necessarily correspond to the number of independent observations as needed for

asymptotic considerations of statistical testing or the calculation of Akaike’s Information

Criterions (AIC) and Bayesian Information Criterion (BIC) (Akaike, 1974; Schwarz, 1978).

The literature consistently reports that transformations of risk factors improved predic-

tion models. Fortin et al. (2008) used DBH and DBH2 in their models, Monserud and Sterba

(1999) found 1/DBH to suit best. However, there is no way to know which particular trans-

formation is most appropriate for each of our risk factors, because the functional form is

dependent on other risk factors in the model, and no previous model used the same set of

variables (and model structure) to ours. Trying only few combinations of common transfor-

mations on a single risk factor x, such as x2, x3, log(x),
√
x, exp(x) leads to a high number of

candidate models when applied simultaneously to a set of risk factors. Allowing terms like

x+ x2 even amplifies the problem.

Still, high-order polynomials act global on the whole domain of a risk factor and are

not suited to capture local characteristics of the data (Fahrmeir et al., 2007, p. 294). We
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chose spline functions in order to flexibly, and simultaneously model smooth functional re-

lationships for multiple covariates in a data driven way, which has been successfully applied

in many fields. Nevertheless we used transformations on the risk factors as a first step to

achieve symmetric and compact empirical distributions. That might not be absolutely nec-

essary, but in our opinion helped to stabilize the procedure and reduced the impact of the

knot locations of the spline. Three of the risk factors, KKL, CILateral , and CIConifer had

a disproportionately large number of zeros (point masses), these were removed for seeking

the optimal transform. The considered transformations were power transformations where

power could range from 0.01 to 1. The Kolmogorov-Smirnov (KS) test for normality was

used to find an optimal power transform with the transform corresponding to the smallest

value of the KS test statistic declared as optimal. The optimal power was rounded to the

next even fraction and the variable was transformed by this power for all further analyses,

including the spline construction. The resulting transformations along with their effect on

the shape of the empirical distributions are shown in Figure 1.4. The spline approach applied

to transformed risk factors x allows a more flexible modeling than a global polynomial. It

is intended to approximate the unknown functional relationship g(x) of a covariate to the

outcome y, by the spline s(x),

g(x) ≈ s(x).

The spline function s(x) is defined as follows: The domain of x is divided in intervals by

selecting a set of m knots. Within each interval the spline is parameterized as a polynomial

of degree l, pl(x),

pl(x) = γ0 + γ1x+ γ2x
2 + . . .+ γlx

l.

Further, to ensure global smoothness, s(x) must be l − 1 times continuously differentiable

not only within the intervals, but also at the connection points between the intervals. For

estimation within a regression framework a constructive representation, which fulfills these

requirements, is needed. Basis functions, B, are utilized to parameterize the spline function,

s(x) =
d∑
j=1

δjBj(x),

where d = m+l−1 linear combinations of basis functions are needed when a l-degree B-spline

basis (Eilers and Marx, 1996) with m knots is used. The basis functions are recursively

defined, following (Fahrmeir et al., 2007, p. 304 ff.),

B0
j (x) = I[κj ,κj+1)(x) =

1 κj ≤ x < κj+1,

0 otherwise,
j = 1, . . . , d− 1,

B1
j (x) =

x− κj
κj+1 − κj

I[κj ,κj+1)(x) +
κj+2 − x

κj+2 − κj+1

I[κj+1,κj+2)(x),
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Bl
j(x) =

x− κj
κj+l − κj

Bl−1
j (x) +

κj+l+1 − x
κj+l+1 − κj+1

Bl−1
j+1(x),

with κj being the knots/interval limits, and the range of j depending on the degree of the

polynomial within an interval and the number of knots used. We used a cubic (degree l = 3)

B-spline with 5 inner knots resulting in d = 5 + 3− 1 = 7 parameters δj to be estimated per

risk factor (thus Bj(x) ≡ B3
j (x), j = 1, . . . , 7). Additionally, we specified a normality prior

to the second-order differences of spline coefficients δj, leading to penalized splines. The

penalization reduces the sensitivity of the number of knots to the model fit and stabilizes

parameter estimation in areas with little information in the data. For risk factors with point

masses (KKL, CILateral, CIConifer), we added an extra term to the regression equation

allowing for a jump discontinuity at the point mass. The term is an indicator variable set to

one for values of the risk factor at the point mass and zero otherwise. Figure 1.11 illustrates

the concept in a simulated example.
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Figure 1.11: Illustration of a point mass effect on splines. 100 samples from an uniform

distribution on −π to π serve as covariates: xi
iid∼ U(−π, π). The samples yi are drawn

conditionally on the value of xi, with yi ∼ N(µ = sin(xi), σ = 0.3), i = 1, . . . , 100 (black

color). In addition, 20 points with xi = 0, i = 101, . . . , 120 were sampled from yi
iid∼ N(µ =

1, σ = 0.3), i = 101, . . . , 120 (red color). The ’true’ sinus curve of the expectation is shown
in red, two models including a spline were fitted on the 120 pairs of (yi, xi): the green curve
is the expectation without an additional point mass indicator in the regression formula, the
blue curve shows the expectation of the model with an indicator term I(xi = 0).

A regression model involving a sum of smooth functions of covariates is often called Addi-

tive Model (AM), according to Hastie and Tibshirani (1990), and accents the generalization

compared to a linear model. We therefore denote the model described above, with all its com-

ponents, as GAMM (Wood, 2006, chap. 6) but also GLMM (Generalized Linear Mixed Model)
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is appropriate as the spline representation is still linear in its coefficients.

1.3.4 Final model structure

In sum, the steps above resulted in a GAMM with multiple risk factors, relating the

probability of death π of an individual tree within the observation period to risk factors

measured at the beginning of the observation period, the calendar year, the tree’s plot and

the length of the observation period as follows:

log

(
πijk

1− πijk

)
= β0 + offsetijk + γi + γj + s1(DBH

3/20
ijk )+

s2(Height
2/3
ijk ) + s3(KKL

1/3
ijk ) + s4(CIIntra

1/2
ijk )

s5(CIConifer
1/3
ijk ) + s6(CIOvershade

1/2
ijk ) + s7(CILateral

1/3
ijk )+ (1.2)

s8(DBHdom
1/3
ijk ) + s9(RelDBHdom

2/3
ijk ) + s10(SiteIndexijk)+

β1I(KKLijk = 0) + β2I(CILateralijk = 0) + β3I(CIConiferijk = 0).

The single components are:

πijk: Probability of death for tree k from plot j at the end of period i

(πijk = P(yijk = 1 | covariates )).

β0: Global intercept of model.

offsetijk:
(
log
(
periodLength

5

))
ijk

.

γi: Random effect for periodOnset i, i =1985, 1987, 1989, 1991, 1994, 1995, 1996,

1997, 1999, 2000; with γi ∼ N(0, σperiodOnset).

γj: Random effect for plot j, j = 1, . . . , 29; with γj ∼ N(0, σplot).

s(x): Evaluation of spline function for covariate x; s(x) =
∑d

l=1 δlBl(x), where δl are

the coefficients of the penalized spline and Bl the spline basis functions. The

penalization of coefficients is expressed by a regularization prior, δl ∼ N(0, σs).

The splines were set up separately for each risk factor. We used a spline of degree

3 with 5 inner knots resulting in d = 5 + 3− 1 = 7 parameters δl to be estimated

per risk factor (Fahrmeir et al., 2007, p.303).

β1, β2, β3: Coefficients according to the point mass effects, where I(KKLijk = 0) is meant

to evaluate to 1 if KKLijk = 0, and 0 otherwise. Similarly for CILateral and

CIConifer .

The model expression above implies that all of the risk factors (Table 1.2) appeared in the

final model, but we used model selection to pare down the model to an optimal parsimonious

model that is more likely to be accurate on external validation. This process is described

next.
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1.3.5 Selection of risk factors

We followed the recommendations in Harrell et al. (1996) that no more than p = m/10

predictor degrees of freedom should be examined for fitting a model aiming for good predic-

tion, where degrees of freedom is understood as the number of coefficients in model fitting

in this context. In the case of a logistic regression model for mortality, or equivalently a

survival model, m is determined as the number of non-censored event times. In our data

that is the number of dead trees, m = 585, resulting in p ≈ 58 free parameters as the upper

limit to use in the prediction model. The model structure as stated in Model 1.2 involves 102

coefficients, but most of them are subject to restrictions due to normality assumptions (plot

and period effects) and penalization (smooth spline effects), leading to an effective number

considerably lower than that. However, we regarded Model 1.2 as the upper bound in terms

of complexity, and did not consider further effects such as interactions between risk factors.

For the actual selection of an optimal set of risk factors to include in the mortality

prediction model, we performed an internal cross-validation. The particular cross-validation

scheme reflected the hierarchical structure of the observations and the ultimate purpose

of the model, which would be to predict 5-year mortality for a tree in a new plot. For

median (or conditional) prediction the periodOnset and plot random effects would all be set

to zero (Skrondal and Rabe-Hesketh, 2009). We used k-fold cross validation with k = 29

to correspond to the 29 plots represented in the data. Each of the 29 plots served in turn

as a single test data set with the remaining 28 plots combined as a training set, resulting

in 29 internal cross-validations. For each training set, a set of candidate models were fit

and parameter estimates were used to predict the mortality for trees in the corresponding

validation set. To reduce the influence of multi-collinearity among the risk factors on stability

of the model selection process, the Spearman correlations among the transformed risk factors

(Figure 1.5 and 1.9) were assessed and models containing two risk factors with correlations

exceeding 0.75 in absolute value were dropped from further consideration.

Basically, we constructed the set of candidate models by building all subsets of smooth

terms (s1, . . . , s9) in Model 1.2, excluding those with pairs of high correlation as mentioned

above. Point mass effects were always included along with the according smoothed effect.

The global intercept, offset term, and the random effects for plot and periodOnset were

included in all of the candidate models at this stage. We investigated the performance of the

resulting 67 models and used the best ones as a basis for further investigation. For example,

if the functional form of a smooth effect looked linear, the term was replaced by a simple

linear term, and the modified model was again assessed by cross-validation. In stepwise

modifying, dropping and adding terms, we tried to further improve the performance and

where appropriate, simplify the model, basing all actions on cross-validation. At the end we

ran 142 models through this machinery and ultimately picked a final model among those
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performing best. We will describe the measures of model performance in the following section.

1.3.6 Measures of model performance

Assessment of the predictive abilities of candidate models was an essential part in model

development. Considering the purpose of the tree mortality model, we based all calculations

on the predicted values ŷ = π̂ (0 ≤ ŷ ≤ 1), corresponding to the predicted mortality from

the logistic regression model, and its relationship to the true outcome y ∈ {0; 1} in the

test data. Measures of model performance all deal with the distance of ŷ to y but highlight

different aspects of performance. Our focus was on discrimination, which measures how

strong the predictions differ in n observations with y = 1 and y = 0, and calibration, which

measures the agreement between observed outcomes and predictions from a frequentist point

of view. If we predict a 20% risk of mortality for a tree, we should observe approximately 20

of 100 trees with such a prediction to experience mortality. Quantities combining different

aspects are said to measure overall performance (Steyerberg et al., 2010). An extensive list of

performance measures, along with their calculation rule and interpretation can be found in

the Appendix. For model selection we focused on the AUC (discrimination), the calibration

slope (calibration), and for overall model performance on R2 and Brier score (Steyerberg,

2009, p. 257). The AUC for a covariate x, as described in Section 1.2.3, also applies for the

case where x is a predicted probability of mortality, instead of a risk factor. Thus, ŷ, such

as that arriving from a model fit to a training set of trees has same interpretation with the

difference that we assess the separation ability of the whole model, a combination of several

risk factors. The calibration slope (CS), is the estimated slope coefficient, β̂, of a logistic

regression model of true outcome y on the predicted risks ŷ,

log

(
P(y = 1)

1−P(y = 1)

)
= α + β log

(
ŷ

1− ŷ

)
,

CS ≡ β̂,

that is the model predictions ŷ are transformed and used as the regressor variable in the

logistic model. A calibration slope for a perfectly calibrated model is 1, while coefficients

lower than 1 indicate that the predictions are too extreme. Too extreme means that the

observed mortality is higher than predicted for low-risk trees and lower than predicted for

high-risk trees (Steyerberg et al., 2001). The R2 is based on the binomial likelihood, and can

be interpreted in analogy to a linear regression model, as the proportion of variance explained

by the model. For logistic regression, Nagelkerke (1991) standardized the binomial likelihood-

based R2
Lik with the theoretically maximal reachable R2, which depends on the proportion

of success (yi = 1) in the data set to ensure the value of 1 for a perfect fit, analogous to

linear regression. Log likelihoods of intercept-only and risk factor-based prediction models
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AUC (%) Brier score (%) R2 (%) Calibration slope

Model 1 with smooth terms1 84.41 3.87 18.95 0.694
Model 2 with parametric terms2 84.64 3.81 20.04 0.681
Model 3 with parametric terms3 85.04 3.80 20.67 0.689
1 including ŝ1(KKL2/3), ŝ4(CIIntra1/2), ŝ5(CIConifer2/3), ŝ6(CIOvershade1/2), β̂3(CIConifer = 0)
2 including b̂1KKL1/3, b̂2KKL2/3, b̂3CIOvershade, b̂4CIOvershade1/2, b̂5CIIntra

1/2, b̂6CIconifer
1/3

b̂7CIconifer
2/3, b̂8(CIConifer = 0)

3 including terms from Model 2 and b̂9RelDBHdom2/3, b̂10RelDBHdom4/3

Table 1.6: Performance in cross validation for three exemplary candidate models.

are given by

l0 =
∑
i

yi log ȳ + (yi − 1) log(1− ȳ),

lpred =
∑
i

yi log ŷi + (yi − 1) log(1− ŷi),

respectively, yielding

R2
Lik = 1− exp{(l0 − lpred)(2/n)},

R2
Nag =

R2
Lik

1− exp{l0(2/n))}
.

In our case of a logistic regression model, the Brier score reports the mean squared prediction

error, a measure routinely used to assess the goodness of fit in linear models,

Brier =
1

n

n∑
i=1

(yi − ŷi)2.

1.4 Mortality prediction model

1.4.1 Model equation

The cross-validation process produced a set of models having practically the same op-

timal performance, although these models were based on different risk factors. At the end

model choice was also based on subjective decisions, where we replaced smooth effect terms

by simpler parametric expressions to facilitate interpretation without sacrificing model per-

formance. As an example, Table 1.6 lists the performance measures for three models, with

smooth and strictly parametric terms. Model 3 is slightly better in all criteria, but we argue

that the more parsimonious Model 2 is more likely to reach the same high performance ap-

plied to external data. We fitted our chosen model to the entire data set, which led to the

effects shown in Table 1.7. Only the four competition indices KKL, CIOvershade, CIIntra,

and CIConifer appeared in the final model. These CIs are derived measures that utilize the
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geometric relationship of neighboring trees in addition to tree size. Together they outweighed

the crude predictor DBH . Multiple entries of the same predictor, such as KKL1/3 and KKL2/3,

reflect the optimal transformations of the predictor. We arrived at these polynomial terms

by visually assessing the smooth spline effects on the transformed risk factors. As the smooth

effects showed simple functional forms we were able to replace them by polynomial terms

without sacrificing performance in cross validation. To illustrate, we recap the stages to get

the final form for the risk factor KKL. The KS-test suggested the transformation KKL1/3 to

get a well shaped empirical distribution, without severe skewness. The smooth spline effect of

KKL1/3 looked quadratic in a model with good performance. Replacing the smooth effect by

a polynomial of degree 2, KKL1/3 + (KKL1/3)2, showed the same performance as the model

with the smooth term. In sum this can be expressed as KKL1/3 + KKL2/3 in the final model.

Risk of mortality increased slowly with increasing KKL, and flattened out for high values of

KKL past 27, where there were not many observations in the data set. Interpretation of the

effects of the three other predictors on risk can be more easily visualized in Figures 1.12, 1.13,

1.14, and 1.15, which show the combined effect of each predictor on risk after adjusting for

the effects of the other predictors on risk. Similar behavior of increasing risk for small values

turning into decreasing risk at some point was observed for CIOvershade and CIConifer ,

though the rates of increase were lower. In contrast, after adjusting for the other components

in the model, risk steadily decreased as CIIntra increased. Finally, variation due to calendar

year of the observation period (random effect standard deviation (SD)=1.72) was twice as

Log odds ratio (SD) Odds ratio (95% CI) p-value

Intercept -15.83 (1.52) 0.00 (0.00, 0.00) < 0.001
KKL

KKL1/3 2.78 (0.54) 16.11 (5.62, 46.19) 0.003

KKL2/3 -0.39 (0.12) 0.68 (0.54, 0.86) 0.098
CIOvershade

CIOvershade1/2 1.28 (0.16) 3.59 (2.61, 4.94) < 0.001
CIOvershade -0.03 (0.006) 0.97 (0.96, 0.98) < 0.001

CIIntra

CIIntra1/2 -0.21 (0.05) 0.81 (0.74, 0.89) < 0.001
CIConifer

CIConifer1/3 1.70 (0.53) 5.48 (1.94, 15.48) 0.004

CIConifer2/3 -0.36 (0.09) 0.70 (0.58, 0.83) < 0.001
I(CIConifer = 0) 0.56 (0.81) 1.75 (0.36, 8.63) 0.82

Random effects SD 95% CI

plot 0.69 (0.17, 2.81)
periodOnset 1.72 (0.18 16.7)

SD=Standard deviation; CI=confidence interval; I(X)=effect for X versus not X

Table 1.7: Estimates and significance results from the chosen prediction model.
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large as the variation due to plot (SD = 0.69) (Table 1.7). The large confidence intervals for

the standard deviations of the random effects indicate that these estimates are rather vague

and the intervals overlap widely.

To predict the mortality risk for a new tree during the next 5 years, we suggest to apply

Figure 1.12: Risk of mortality in the next 5 years (solid line) according to KKL (x-axis) with
pointwise 95% confidence intervals (shaded region). Values for the other risk factors were set
at their median values and random effects to zero. Figure in style of Böck et al. (2013)

Figure 1.13: Risk of mortality in the next 5 years (solid line) according to CIConifer (x-axis)
with pointwise 95% confidence intervals (shaded region). Values for the other risk factors
were set at their median values and random effects to zero. Figure in style of Böck et al.
(2013)
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Figure 1.14: Risk of mortality in the next 5 years (solid line) according to CIIntra (x-axis)
with pointwise 95% confidence intervals (shaded region). Values for the other risk factors
were set at their median values and random effects to zero. Figure in style of Böck et al.
(2013)

Figure 1.15: Risk of mortality in the next 5 years (solid line) according to CIOvershade
(x-axis) with pointwise 95% confidence intervals (shaded region). Values for the other risk
factors were set at their median values and random effects to zero. Figure in style of Böck
et al. (2013)

the following equation,

log
π̂

1− π̂
= − 15.83 + 2.78 KKL1/3 − 0.39 KKL2/3+

1.28 CIOvershade1/2 − 0.03 CIOvershade− 0.21 CIIntra1/2+ (1.3)

1.70 CIConifer1/3 − 0.36 CIConifer2/3 + 0.56 I(CIConifer = 0)

= η̂,
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AUC (%) Brier score (%) R2 (%) Calibration slope

Cross validation 84.64 3.81 20.04 0.681
Internal validation 88.93 3.35 31.62 1.048

Table 1.8: Contrasting performance according to different validation schemes. Cross vali-
dation: Leave-one-plot-out cross validation of final model. Internal validation: Final model
fitted on entire data (leading to Equation 1.3) is validated on the same data using all infor-
mation of the fitted model, including random effect estimates.

where I(CIConifer = 0) equals 1 if CIConifer has the value 0 and equals 0 otherwise, and

the result η̂ is transformed to the probability scale by π̂ = exp(η̂)/(1 + exp(η̂)).

1.4.2 Contrasting performance

Finally, we want to contrast the performance measures according to internal and cross

validation using a model with the same set of covariates. Table 1.8 lists the AUC, Brier

score, pseudo R2, and calibration slope. The cross validation results are based on the model

structure which led to the final model, that is, included terms were the covariates from

Equation1.3, the random effects for plot and period and the offset term. To recall, in that

leave-one-plot-out cross validation the coefficients differed from those in the aforementioned

equation in each of the models fitted on the 29 training datasets. The actual coefficients

we suggest for use to obtain risk predictions are those from the model fitted to the entire

dataset. For this we show the internal validation: Model fitting and model assessment were

based on the same data, all information were used to obtain prediction, including random

effects coefficients.

Internal validation clearly had the best performance, mainly because internal predictions

are always well-calibrated. As our approach of cross validation is somewhere in between of

internal and external validation, it is reasonable to expect an AUC around 80%, a fairly good

separation ability, for similar but new data. The calibration slope was below unity, which

indicates some overfitting. That means we are not able to quantify the mortality risk very

accurately on average. A general shrinkage of the coefficients might overcome this. On the

other hand we observed an calibration slope above unity for the per definition well-calibrated

internal predictions. This effect was induced by the random effects in the model, as fixed

effects only models show perfect calibration in terms of average measures such as calibration

slope or calibration in the large, which contrast mean predictions against mean outcomes

(a fixed effects only model would obtain a calibration slope equal to unity). The fact that

random effects with normality assumption are somewhat lower in magnitude than their fixed

effects counterparts would be, finally leads to an underrating of actually high risks and the

overestimation of small risks. In other words, the shrinkage effect, which is desirable to correct

for overfitting, is seen in an underfitting tendency in the internal prediction performance.

Measures of goodness-of-fit, which represent a distance between the observed outcomes and
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the predictions, showed a drop down of 12% (Brier score) and 35% (R2). We attribute this

discrepancy to the over-optimism of internal validation and the fact that, on principle, the

results of binomial regression models can hardly be generalized to different settings (Mood,

2010). However, the good separation ability seen on the AUC showed only a moderate decline

of 4.8%, giving occasion to believe that predictions on external data will also deliver valuable

information to identify trees which are particularly at risk.

1.5 Summary and outlook

The review of the literature combined with the results of this study show that a variety

of statistical methods have effectively been used for modeling the rare event of forest mortal-

ity. Forest mortality models are designed with specific objectives in mind, these objectives

determine the risk factors used in the model. In contrast to other models, mortality models

in this study were specifically designed to capitalize on the many geometrical and distance-

based competition indices that are calculated with detailed forest inventory data through the

SILVA simulator. As such, competition indices outweighed the effect of the crude predictor

DBH or other predictors of tree size. The mortality model presented here was developed for

European Beech, one of the largest of two species currently under observation as part of the

Bavarian forest network. A next step would be to move on to another common species, the

Douglas fir and to assess whether a similar risk profile for mortality holds.

In this study we focused on modeling the functional dependency of mortality on risk

factors, accounting for the peculiarities of the sampling design. A probabilistic model was

fitted using the maximum likelihood approach. McIntosh and Pepe (2002) show the optimal-

ity of such models in terms of AUC. However, it might be worth trying to directly optimize

measures of model performance which were used for now only for model assessment. This

would result in different loss functions than the one presently applied, the negative binomial

likelihood, and the discussion of proper scoring rules (Gneiting and Raftery, 2007).

Investigations concerning to relax the normality assumption of the random effects via

Dirichlet process priors (Kleinman and Ibrahim, 1998b; Wang, 2010) did not show enhance-

ments in terms of model performance. On the contrary, based on our examinations we found

the normality constraint to be rather helpful in rare-events logistic regression, having a stabi-

lizing effect. Further, the methods suggested in Pregibon (1981) and Landwehr et al. (1984)

for the detection of outliers were not expedient as they mainly sorted out the few trees where

mortality was observed. The computationally demanding model selection based on the cross

validation of a large set of candidate models was not contradictory to AIC/BIC procedures,

which could be obtained faster, but had two advantages: The dependency of the results on

the specification of the effective sample size (Zou and Normand, 2001) which is a quantity

needed in both criteria could be avoided. In our setting with longitudinal observations and

possibly multiple levels of random effects, it is somewhat unclear how to derive a suitable
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quantity of effective sample size. Further, both AIC and BIC provide no support on the de-

cision about which type of risk predictions from a random effects model (conditional versus

marginal) should be used.



Chapter 2

Plant breeding

This chapter emphasizes the statistical methods used in the article “Association analysis

of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-

controlled, and field phenotyping platforms” (Y. Li, A. Böck, G. Haseneyer, V. Korzun, P.

Wilde, C.-C. Schön, D. P. Ankerst, and E. Bauer, 2011b), while shortening the biological

background and subject matter considerations. For those we refer to the original article and

its supplementary material, which provide more details. Figures in the original article were

produced by Li and partly recreated on the underlying data by the author of this thesis to

match the style of this dissertation (referenced with “recreated”).

2.1 Introduction

Frost stress, one of the important abiotic stresses, not only limits the geographic dis-

tribution of crop production but also adversely affects crop development and yield through

cold-induced desiccation, cellular damage and inhibition of metabolic reactions (Gusta et al.,

1997; Chinnusamy et al., 2007). Thus, crop varieties with improved tolerance to frost are of

enormous value for countries with severe winters. Frost tolerance (FT) is one of the most

critical traits that determine winter survival of winter cereals (Saulescu and Braun, 2001).

Among small grain cereals, rye (Secale cereale L.) is the most frost tolerant species and thus

can be used as a cereal model for studying and improving FT (Fowler and Limin, 1987;

Hommo, 1994). After cold acclimation where plants are exposed to a period of low, but

non-freezing temperature, the most frost-tolerant rye cultivar can survive under severe frost

stress down to approximately −30 ◦C (Thomashow, 1999). Tests for evaluating FT can be

generally separated into direct and indirect approaches. For direct approaches, where plants

are exposed to both cold acclimation and freezing tests, plant survival rate, leaf damage,

regeneration of the plant crown, electrolyte leakage, and chlorophyll fluorescence are often

used as phenotypic endpoints (Saulescu and Braun, 2001). For indirect approaches, where

plants are only exposed to cold acclimation, the endpoints of water content (Fowler et al.,

1981), proline (Dorffling et al., 1990), and cold-induced proteins (Houde et al., 1992) are
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often used. The evaluation of FT can be conducted either naturally under field conditions

or artificially in growth chambers, with both methods associated with advantages and dis-

advantages. Under field conditions, plant damage during winter is not only affected by low

temperature stress per se, but also by the interaction of a range of factors such as snow

coverage, water supply, and wind. Therefore, measured phenotypes are the result of the full

range of factors affecting winter survival. Opportunities for assessing FT are highly depen-

dent upon temperature and weather conditions during the experiment. In contrast, frost

tests in growth chambers allow for a better control of environmental variation and are not

limited to one trial per year. However, they are limited in capacity and may not correlate

well with field performance. Therefore, it has been recommended to test FT under both

natural and controlled conditions whenever possible (Saulescu and Braun, 2001).

Identification of genes underlying traits of agronomic interest is pivotal for genome-based

breeding. Due to methodological advances in molecular biology, plant breeders can now select

varieties with favorable alleles through molecular markers, including single nucleotide poly-

morphisms (SNPs), identified in genes linked to desirable traits (Rafalski, 2002; Tester and

Langridge, 2010). Whole genome- and candidate gene-based association studies have identi-

fied large numbers of genomic regions and individual genes related to a range of traits (Harjes

et al., 2008; Malosetti et al., 2007; Thornsberry et al., 2001; Zhao et al., 2007). However, un-

derlying population structure and/or familial relatedness (kinship) between genotypes under

study have proven to be a big challenge, leading to false positive associations between molec-

ular markers and traits in plants due to the heavily admixed nature of plant populations

(Aranzana et al., 2005). In response, several advanced statistical approaches have been de-

veloped for genotype-phenotype association studies, including genomic control (Devlin and

Roeder, 1999), structured association (Pritchard et al., 2000), and linear mixed model-based

methodologies (Stich et al., 2008; Yu et al., 2006).

The main objective of this study was to identify SNP alleles and haplotypes conferring su-

perior FT through candidate gene-based association studies performed in three phenotyping

platforms: controlled, semi-controlled, and field.

2.2 Methods

2.2.1 Plant material and DNA extraction

Plant material was derived from four Eastern and one Middle European cross-pollinated

winter rye breeding populations: 44 plants from EKOAGRO (Poland), 68 plants from Petkus

(Germany), 33 plants from PR 2733 (Belarus), 41 plants from ROM103 (Poland), and 15

plants from SMH2502 (Poland). To determine the haplotype phase, a gamete capturing

process was performed by crossing between 15 and 68 plants of each source population to

the same self-fertile inbred line, Lo152. Each resulting heterozygous S0 plant represented

one gamete of the respective source population. S0 plants were selfed to obtain S1 families



2.2 Methods 51

and these were subsequently selfed to produce S1:2 families, which were used in phenotyping

experiments. For molecular analyses, genomic DNA of S0 plants was extracted from leaves

according to a procedure described previously in Rogowsky et al. (1991).

2.2.2 Phenotypic data assessment

Controlled platform In the controlled platform, experiments were performed in climate

chambers at −19 ◦C and −21 ◦C in 2008 and 2009, respectively. The trials were run at ARI

Martonvásár (MAR), Hungary, using established protocols (Vagujfalvi et al., 2003). Briefly,

seedlings were cold-acclimated in a six week hardening program with gradually decreasing

temperatures from 15 ◦C to −2 ◦C. After that, the plants were exposed to freezing temper-

atures within six days by decreasing the temperature from −2 ◦C to −19 ◦C or −21 ◦C and

then held at the lowest temperature for eight hours. After the freezing step, temperature was

gradually increased to 17 ◦C for regeneration. The ability of plants to re-grow was measured

after two weeks using a recovery score, which ranged on a scale from 0: completely dead, 1:

little sign of life, 2: intensive damage, 3: moderate damage, 4: small damage, to 5: no damage.

The light intensity was 260 µmol/m2s during the seedling growth and the hardening process,

whereas the freezing cycle was carried out in a dark environment. The experiment in 2008

contained 139 S1 families. The experiment in 2009 contained 201 S1:2 families, augmenting

the same 139 S1 families from the experiment in 2008 with an additional 62 S1:2 families. Five

plants of each S1 or S1:2 family were grown as one respective test unit with five replicates

per temperature and year. Due to the limited capacity of climate chambers, genotypes were

randomly assigned into three and four chambers in 2008 and 2009, respectively.

Semi-controlled platform In the semi-controlled platform, experiments during the

years 2008 and 2009 were performed with three replicates per year at Oberer Lindenhof

(OLI), Germany, using the same 139 S1 families and 201 S1:2 families. From each family a

test unit of 25 plants was grown outdoors in wooden boxes one meter above the ground in

a randomized complete block design (RCBD) (Montgomery, 2001, chap 4). The RCBD was

complete in the sense that the complete entity of genotypes was replicated three times. In

case of snowfall, plants were protected from snow coverage to avoid damage by snow molds.

Two weeks after a frost period of 2-4 weeks with average daily temperatures around or below

0 ◦C, usually frost at least during the night, and with minimum temperatures as indicated

in Additional File 1 of Li et al. (2011), % leaf damage was assessed among the 25 plants of

each family by recording the percentage of plant that had dry and yellow leaves,

Number of plants with at least one dry or yellow leaf

25
.

In order to keep the same sign/direction as with the measurements in the controlled and

field platforms, % leaf damage was replaced by % plants with undamaged leaves, calculated

as 100% - % leaf damage. Outcomes were recorded in January, February, and April of 2008
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for the 139 S1 families, and in February and March of 2009 for the 201 S1:2 families.

Field platform In the field platform, experiments were performed with the same 201

S1:2 families in five different environments in 2009: Kasan, Russia (KAS); Lipezk, Russia

(LIP1); Minsk, Belarus (MIN); Saskatoon, Canada, two different fields (SAS1 and SAS2);

and in one environment in 2010: Lipezk, Russia (LIP2). Depending on the environment, test

units comprised 50-100 plants. The outcome, % survival, was calculated as the number of

intact plants after winter divided by the total number of germinated plants before winter.

RCBDs with two replicates were used for the SAS1 and SAS2 environments, while all other

environments used the lattice design with three replicates each. In the lattice design the field

is divided into cells, characterized by row and column numbers to be incorporated into the

statistical analysis. The climate data of the semi-controlled and field platforms are provided

as supplementary material of Li et al. (2011).

2.2.3 Obtaining genetic components for association model

In order to correct for confounding effects in the association studies, population structure

and kinship were estimated. Therefore, from the DNA material of each genotype 37 simple

sequence repeat (SSR) markers were extracted, which were chosen based on their experi-

mental quality and map location as providing good coverage of the rye genome; details are

found in (Li et al., 2011). Primers and PCR conditions were described in detail by Khlestkina

et al. (2004) for rye microsatellite site (RMS) markers and by Hackauf and Wehling (2002)

for Secale cereale microsatellite (SCM) markers. Fragments were separated with an ABI

3130xl Genetic Analyzer (Applied Biosystems Inc., Foster City, CA, USA) and allele sizes

were assigned using the program GENEMAPPER (Applied Biosystems Inc., Foster City,

CA, USA).

Population structure Population structure was inferred from the 37 SSR markers

using the STRUCTURE software v2.2, which is based on a Bayesian model-based clustering

algorithm that incorporates admixture and allele correlation models to account for genetic

material exchange in populations resulting in shared ancestry (Pritchard et al., 2000). Prior

distributions were specified for the model parameters and inference was based on the poste-

rior distribution, which was explored via a Markov Chain Monte Carlo (MCMC) sampling

scheme. Essentially, the method assigned each individual to a predetermined number of

groups (k), characterized by a set of allele frequencies at each locus, assuming that the loci

are in Hardy-Weinberg equilibrium and linkage equilibrium. In other words, the clustering

aims to find population groupings that are in the least possible disequilibrium. For each

genotype gi, a vector qi of length k is estimated, providing probabilities (or membership

fractions) for each group Zj:

P(gi originates from Zj) = qi,j,
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with i = 1, . . . , 201, j = 1, . . . , k, and the restriction
k∑
j=1

qi,j = 1. The population structure

matrix QSTRUCTURE with dimension 201 × k contains the estimates for all genotypes used

in the association model with individual elements given by

QSTRUCTURE(i, j) = qi,j.

Ten runs for values of k ranging from two to eleven were performed using a burn-in period

of 50,000 MCMC samples followed by 50,000 MCMC iterations used for inference. Inference

for k is not possible in the same manner as for QSTRUCTURE because k is not part of the

MCMC sampling scheme. However, posterior probabilities of each k were approximated using

those ten runs, and the maximum posteriori k was determined. Details for that approximation

are found in the Appendix of Pritchard et al. (2000).

Kinship A kinship matrixK was estimated from the same SSR markers using the allele-

similarity method (Hayes and Goddard, 2008), which guarantees a positive semi-definite re-

lationship matrix among the 201 genotypes. This was stored to be used for the covariance

structure of the random genotype effects in the linear mixed model for the association analy-

sis. For a given locus, the similarity index Sxy between two genotypes x and y was 1 when they

had an identical number of repeats in the SSR marker and were 0 otherwise. Sxy was averaged

over the 37 loci, and transformed and standardized as S̃xy = (Sxy −Smin)/(1−Smin), where

Smin was the minimum Sxy over all genotypes. The entries of the kinship matrix K stored

the relationship indices S̃xy for every pair of genotypes. An example is given in Section 2.2.6.

2.2.4 SNP-FT association model

Twelve candidate genes – ScCbf2, ScCbf6, ScCbf9b, ScCbf11, ScCbf12, ScCbf14,

ScCbf15, ScDhn1, ScDhn3, ScDreb2, ScIce2, and ScV rn1 – were selected for analysis due

to their previously proven putative role in the FT network (Badawi et al., 2008; Campoli

et al., 2009; Choi et al., 1999; Francia et al., 2007; Galiba et al., 1995). Details on can-

didate gene sequencing, SNP and insertion-deletion (Indel) detection, haplotype structure

and linkage disequilibrium (LD) were described earlier (Li et al., 2011), except for ScDreb2,

which is described in Supplementary file 2 of (Li et al., 2011). Indels were treated as single

polymorphic sites, and, to be more convenient, polymorphic sites along the sequence in each

gene were numbered starting with “SNP1” and are referred to in the text as SNPs instead

of differentiating between SNPs and Indels.

SNP-FT associations in all platforms were performed using linear mixed models that

evaluated the effects of 170 SNPs with minor allele frequencies (MAF) > 5% individually,

adjusting for population structure, kinship and platform-specific effects. A one stage ap-

proach was chosen for analysis which directly models the phenotypic data as the response.
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The general form of the linear mixed model for the three platforms was

y = 1β0 + xSNPβSNP + QSTRUCTUREβSTRUCTURE +

XPLATFORMβPLATFORM + ZPLATFORMγPLATFORM + (2.1)

ZGENOTY PEγGENOTY PE + ε.

More precise descriptions are given below, where for better readability the subscripts were

dropped if the context allowed. (platform-specific details are regarded afterwards):

y Vector of platform-specific phenotypes with dimension n×1.

1β0 Design vector with solely 1 entries 1 (n×1) and scalar intercept coefficient β0.

xSNPβSNP

Design vector xSNP (n×1) for bi-allelic SNP containing entries in dummy-coding: 0

for the reference allele (Lo152), 1 for the non-reference allele. Accordingly, βSNP is a

scalar fixed effect when switching from reference allele to non-reference allele.

QSTRUCTUREβSTRUCTURE

Design matrix Q (n×(k−1)), containing the first (k−1) membership fractions, which

were obtained from the STRUCTURE software. The k-th fraction is not used, as it is a lin-

ear combination of the others due to the sum-to-one constraint. Fixed effect coefficients

vector β with dimension (k − 1)× 1.

XPLATFORMβPLATFORM

Platform specific design matrix X (n× p) for fixed effects vector β (p× 1).

ZPLATFORMγPLATFORM

Platform specific design matrix Z (n×m) for random effects vector γ (m× 1). Ran-

dom effects are assumed to follow a multivariate normal distribution, γPLATFORM ∼
N(0,D), with covariance matrix D.

ZGENOTY PEγGENOTY PE

Design matrix Z (n× l) for the random genotype effects and random effects vector γ

(l × 1). For the genotype effects the distributional assumption is

γ̃ ∼ N(0, σ2
gK),

where K is the kinship matrix and σ2
g is the genotypic variation to be estimated. The

peculiarity of γ̃ is its correlation structure given through the matrix K. The software

we used for model fitting only allowed some limited types of covariance matrices,

correlated random intercepts were not directly supported. That is, user input of a
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correlation matrix was not possible. However, uncorrelated random intercepts, which

were supported, are equivalent to the use of an identity matrix instead ofK. In order to

still account for kinship in the estimation of genotype effects the correlation structure

was shifted in the design matrix Z, which was constructed as follows: The incidence

matrix Z̃, which links each observation to its genotype effect, was post-multiplied by

the transpose of the Cholesky-root of K, denoted by KT/2. The Cholesky-root is well-

defined for symmetric, positive semi-definite matrices, a property which is guaranteed

using the allele-similarity method from Hayes and Goddard (2008). That is,

K = KT/2K1/2,

with K1/2 being the right Cholesky-root, which is an upper-triangular-matrix, and

KT/2 the transpose of it, which is a lower-triangular-matrix. From γ̃ ∼ N(0, σ2
gI), it

holds that

Zγ̃ ∼ N(0, σ2
gZIZ

′).

From Z = Z̃KT/2, it holds that

σ2
gZIZ

′ = σ2
gZ̃KZ̃

′
,

which is the desired variance for ZGENOTY PEγGENOTY PE:

V(ZGENOTY PEγGENOTY PE) = σ2
gZ̃KZ̃

′
.

Therefore ZGENOTY PE was set to Z̃KT/2 in the mixed model and γ ∼ N(0, σ2
gI).

ε Residual error ε (n × 1), assumed to comprise independent and identically distributed

random normal errors with mean zero and variance σ2: ε ∼ N(0, Iσ2).

2.2.5 Phenotypic variation

To test phenotypic variation between genotypes, the same platform-specific models as

described for the SNP-FT association analyses were fitted for each platform omitting the

SNP and population structure fixed effects. Within the controlled platform, separate models

were fitted for each combination of temperature and year; for the semi-controlled platform,

separate models were fitted for each month of each year; and for the field platform, sepa-

rate models were fitted for each geographic location—altogether 15 subgroups in all three

platforms. Within this grouping, mean outcomes per genotype were calculated. That is, the

replicates of each genotype were averaged and summarized in boxplots.

Genetic variation was reported as the variance component corresponding to the random

genotype effect in each model, with a p-value computed using the likelihood ratio test (LRT),
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Marker 1 Marker 2 Marker 3 Marker 4

Genotype 1 A A A A
Genotype 2 A B B B
Genotype 3 A C A B

Table 2.1: Example markers for kinship estimation.

a conservative estimate since the true asymptotic distribution of the LRT statistic is a

mixture of chi-square distributions (Fitzmaurice et al., 2004). This analysis aims to give an

overview of the measured variability in the trials and is therefore reported first in the results

section.

2.2.6 About the kinship matrix

The kinship matrix is supposed to express genetic similarity between different individuals

or genotypes. Regarding the kinship matrix as an empirical correlation matrix might be

misleading as it is not clear what the theoretical counterpart (the true underlying parameter)

is. However, in the mixed model it is used as a correlation or covariance matrix in the prior

distribution of the random genotype effects. The documentation of the kin() function in the

synbreed R-package (Wimmer et al., 2012) is a good starting point for further reading about

the different types of kinship estimation and their interpretation. The scale of the kinship

matrix, in terms of a scalar factor multiplied with the matrix K, is arbitrary for the fit of

the linear mixed model and also the inference is unaffected when the variance parameter

associated with K, σ2
g , is estimated (and not fixed). Clearly, quantities such as heritability,

h2 =
σ2
g

σ2
g+σ2 , highly depend on how the kinship matrix is derived. Balding (2013) shows recent

developments.

Below are some examples of how the entries of the kinship matrix K influence the

estimation in a linear mixed model. Suppose there are SSR markers from three homozygous

inbred lines at four loci, demonstrated in the following table: The simple matching coefficient

of Reif et al. (2005) in the standardized version of Hayes and Goddard (2008) is calculated

as

S̃xy = (Sxy − Smin)/(1− Smin),

for genotype x and genotype y, with Sxy the proportion of loci with identical alleles, and Smin

the minimum S between all genotypes. As Genotype 1 and Gentoype 3 have two identical

alleles out of four, their coefficient is 2/4. The minimum between all three genotypes is 1/4,

leading to a similarity coefficient between Genotype 1 and Genotype 3 of

S̃Genotpye 1,Genotype 3 = S̃13 =
2
4
− 1

4

1− 1
4

= 1/3.

The coefficients for all pairs of the three genotypes in this example are stored in the kinship
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matrix

K =

 1 0 1/3

0 1 1/3

1/3 1/3 1

 ,
where the rows and columns are ordered accordingly to Genotype 1, 2, and 3.

To illustrate how such a kind of correlation matrix affects the estimation of the random

effects γ, we consider the fixed artificial outcome vector y of six plants from three genotypes

and three different scenarios of kinship matrices. The data are coded as:

y Genotype

1 1

1 1

1 2

4 2

2 3

3 3

and Z =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


.

For the mixed model

y = 1β0 +Zγ + ε, γ ∼ N(0, σ2
gK), ε ∼ N(0, σ2I),

with given variance parameters σ2
g = σ2 = 1, the variance of y is

V(y) = I +ZKZ ′ = V .

The estimates of the fixed effect β0 and the random effects γ are

β̂0 = (1′V −11)−11′V −1︸ ︷︷ ︸
Hfix

y

and

γ̂ = KZ ′V −1︸ ︷︷ ︸
H

(y − 1β̂0)︸ ︷︷ ︸
ỹ

.

We present three matrices K, representing different grades of correlation between random
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effects of genotypes:

K1 =

 1 0 0

0 1 0

0 0 1

 (no correlation),

K2 =

 1 0.35 0.05

0.35 1 0.21

0.05 0.21 1

 (moderate correlation),

K3 =

 1 0.9 0.1

0.9 1 0.5

0.1 0.5 1

 (strong correlation).

No correlation (K1) Choosing K1 corresponds to assuming no correlation between

the random effects coefficients of the genotypes and, with no further covariates as in this

example, the intercept coefficient β̂0 equals the sample mean of y,

β̂0 =
6∑
i=1

yi = (1 + 1 + 1 + 4 + 2 + 3)/6 = 2,

assigning the same weight to all observations. The hat-matrix H gives information on how

the intercept-centered outcome values ỹ contribute to the estimation of the random effects

γ. With K1 we obtain

H1 =

 0.33 0.33 0 0 0 0

0 0 0.33 0.33 0 0

0 0 0 0 0.33 0.33

 ,
which means that γ̂1, the random effect for Genotype 1, is 0.33 · ỹ1 + 0.33 · ỹ2. Only the

two measurements of plants with Genotype 1 affect the estimation—it is independent of the

others. The shrinkage effect impinging on the coefficients is reflected in the row-wise sums,

which are all smaller than 1.

Moderate correlation (K2) With K2 we assume a correlation between the effect

of Genotype 1 and Genotype 2 of 0.35, between Genotype 1 and 3 of 0.05, and between

Genotype 2 and 3 of 0.21. The intercept β̂0 is now a weighted mean of y, with the weights

(0.17, 0.17, 0.14, 0.14, 0.18, 0.18) calculated from Hfix. The greatest weight (0.18) is assigned

to the two observations of Genotype 3, because this genotype contributes the greatest amount

of independent data relative to the others, implied by the assumption that its coefficient

has the lowest correlations with the others. In other words, β̂0 leans closer towards the

observations of Genotype 3 relative to the observations of Genotype 1 and Genotype 2. The
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(rounded) hat-matrix H for the random effects is

H2 =

 0.32 0.32 0.04 0.04 0.00 0.00

0.04 0.04 0.32 0.32 0.02 0.02

0.00 0.00 0.02 0.02 0.33 0.33

 ,
reflecting that observations from all genotypes are involved in the estimation of all three

random genotype effects. (The values 0.00 are not exactly zero, but occur due to rounding).

Strong correlation (K3) With K3 we specified a correlation matrix with a very high

correlation between Genotype 1 and Genotype 2 (0.9), together with a relatively low but

still considerable correlation between Genotype 1 and Genotype 3 (0.5). K3 is still positive-

definite, but the smallest of its three eigenvalues 2.07, 0.92, and 0.01 is barely larger than

zero. This circumstance can lead to negative entries of the hat-matrix for the random effects:

H3 =

 0.23 0.23 0.18 0.18 −0.04 −0.04

0.18 0.18 0.2 0.2 0.09 0.09

−0.04 −0.04 0.09 0.09 0.31 0.31

 .
Random effects estimates for Genotype 1 are pushed away from the observations of Geno-

type 3, relative to the intercept-centered observations ỹ (and vice-versa). As Genotype 2

is assumed to contribute the smallest amount of independent information reflected by the

highest row-sum in K3, it is assigned the lowest weight in the estimation of β0. The fixed

effects hat-matrix is

Hfix =
[

0.21 0.21 0.06 0.06 0.23 0.23
]
.

The non-zero entries in K2 and K3 result in β̂0 not longer being interpretable as overall

mean, not even in the considered balanced linear mixed model. However, the balance is still

present in a consideration given in Table 2.2, where the estimates of all three scenarios are

presented.

Scenario β̂0 γ̂1 γ̂2 γ̂3
¯̂γ = γ̂1+γ̂2+γ̂3

3
β̂0 + ¯̂γ

No correlation 2 -0.67 0.33 0.33 0 2

Moderate correlation 1.99 -0.60 0.27 0.36 0.01 2

Strong correlation 1.86 -0.23 -0.06 0.57 0.14 2

Table 2.2: Fixed effect estimates and random effect predictions according to the three sce-
narios of kinship matrices. Non-integers are rounded to two decimal places.
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2.2.7 Platform-specific model details

In this section we provide details of the association models, which differed in the three

platforms and were not covered in Section 2.2.4.

Controlled platform analyses The outcome vector y was a recovery score, which

contained observations of n = 3360 test units, and the platform specific effect, βPLATFORM

included the two years of measurement 2008 and 2009 and two temperatures, −19 ◦C and

−21 ◦C. A common platform-specific random effect controlling for the seven chambers across

the two years 2008 and 2009 was included in the model, γPLATFORM ∼ N(0, Iσ2
chamber), as

it provided a more parsimonious model with the same goodness-of-fit compared to a nested

random effect for chamber within year. No additional explicit generation adjustment for S1

versus S1:2 families was included in the statistical model, as these effects were confounded

with the fixed effect adjustment for year and the random chamber effects. In other words,

the generation effect was assumed implicitly adjusted for by other year effects in the model.

Within fixed effects coded by

Xcontrolled︸ ︷︷ ︸
n×2

= [x1,x2] , βcontrolled = (β1, β2),

where the individual elements of x1 were 0 or 1 indicating whether an observation belongs

to the year 2008 or 2009, and x2 for temperature equal to −21 ◦C versus −19 ◦C. For the

random chamber effect, the design matrix Zcontrolled (n × 7) mapped each observation to

one of the seven chambers (three in 2008 and four in 2009) and thus to the random effects

γcontrolled (7 × 1). According to the notation in Section 2.2.4, D was an identity matrix of

dimension seven.

Semi-controlled platform analyses The outcome vector y was % plants with un-

damaged leaves measured repeatedly over three months (January, February, and April) in

2008 and two months (February, March) in 2009. The platform-specific fixed effects vector,

βPLATFORM , included three terms: a year effect, an overall linear trend in time for the three

months in 2008 and two months in 2009, and an interaction of year and linear trend in time,

coded by

Xsemi︸ ︷︷ ︸
n×3

= [x1,x2,x3] , βsemi = (β1, β2, β3),

where elements of x1 were indicators for year 2009, the elements of x2 numeric representa-

tions of the month (0,1, or 2 for observations from 2008, and 0 or 1 for observations from

2009), and the elements of x3 were interactions of the years and months (1 for observations

from the second month (March) in 2009, and zero otherwise). This design permitted inter-

pretation of β1 as the change in % plants with undamaged leaves from 2008 to 2009, β2, the

change by month during 2008, and β2 + β3, the change by month during 2009.

The platform-specific random effects (vector γPLATFORM) consisted of three parts: 1.
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replication, which was modeled as a blocking-factor (three replications in each of the two

years, leading to six blocks). 2. a random intercept and 3. a random trend according to month

for each plant group (the set of 25 plants where the outcome was determined). In principle

we had 1,020 of these plant groups originating from the 139 S1 families in 2008 and 201

S1:2 families in 2009, with three replications leading to 3 × (139 + 201) = 1, 020 outcomes.

For the analysis only 200 families in 2009 could be used, leading to 1,017 plant groups. The

replication random effect was assumed independent from the random intercept and trend,

and for the latter two random effects a correlation coefficient was estimated. Combining

the 1,251 observations from 2008 and 1,206 from 2009 led to n = 1, 251 + 1, 206 = 2, 457

observations in sum, and the design matrix Zsemi and random effects γsemi were constructed

as follows:

Zsemi︸ ︷︷ ︸
n×2040

=

[
Z1
n×6

, Z2
n×1017

, Z3
n×1017

]
,

where Z1 was an incidence matrix mapping the outcomes to one of the six replications, Z2

was an incidence matrix mapping each observation to a plant group, and Z3 had the same

non-zero entries as Z2, but contained the numeric representation of the corresponding month

instead of an entry of 1 (same as x2 in the fixed effects design above). With γsemi we denote

the stacked vector of random effects,

γsemi
1×2040

= (γ1,γ2,γ3),

where γ1 was a vector with six elements (γ11, . . . , γ16) = {γ1i}i=1,...,6, and both γ2 and γ3

were vectors with 1,017 elements each. The 2× 1 vector (γ2j, γ3j) contained j-th element of

each γ2 and γ3, which allows to define the distributional assumption as

γ1i ∼ N(0, σ2
rep), i = 1, . . . , 6,

(γ2j, γ3j) ∼ N(0,D), j = 1, . . . , 1017,

where D is a 2 × 2 unstructured covariance matrix to be estimated. There were thus four

variance parameters to estimate.

Field platform analyses The outcome vector y was % survival and the platform-

specific fixed effect βPLATFORM included indicator variables for the six environments, five

environments in 2009 and one in 2010. In total n = 3, 216 outcomes could be considered in the

model. Platform-specific random effects included a block effect nested within environments

arising from the lattice design. That is, the fixed effects design matrix Xfield (n× 5) =

[x1,x2,x3,x4,x5] maps the observations to the environments (location in year), where Minsk

2009 is the reference category. From the lattice design there were 198 blocks (nested within

environments), modeled by a random intercept per block: Zfield (n× 198), with random

effects vector γfield, which was assumed to be normally distributed, with individual elements



62 Chapter 2. Plant breeding

γj ∼ N(0, σ2
block), independent for j = 1, . . . , 198.

2.2.8 Haplotype-FT association model and gene×gene interaction

In addition to the effect of single SNPs in the association models, the effects of haplotypes

were estimated as well. A haplotype bundles the information of several markers from adjacent

locations and allows a categorization. From a statistical perspective they are categorical

variables defined by the interaction of other categorical variables. For example, if there is

information on three SNPs available, with two levels each, there are 23 = 8 haplotype phases

possible, with usually not each of these phases actually observed.

Here, haplotype phase was determined by subtracting the common parent Lo152 al-

leles and haplotypes were defined within each candidate gene using DnaSP v5.10 (Rozas

et al., 2003). Haplotype-FT associations were performed using candidate gene haplotypes

with MAF > 5%. The same platform-specific statistical models controlling for population

structure, kinship, and platform-specific effects were used to test associations between hap-

lotypes of the respective candidate genes and FT. For these analyses βhap replaced βSNP as

a measure of the haplotype effect of the non-reference, compared to the reference haplotype

Lo152. First, significant differences between haplotypes of one gene were assessed using the

LRT. If the overall statistic was significant, individual haplotype effects were tested against

the reference haplotype Lo152 via t-tests. Based on haplotype information gene×gene inter-

actions (= haplotype×haplotype intercations) were assessed using the likelihood ratio test,

comparing the full model with main effects plus interaction to the reduced model with main

effects only.

2.2.9 Obtaining model-based results

Analyses of marker-FT associations were conducted using the lme4 package (Bates and

Mächler, 2010), implemented in R (R Core Team, 2012). The LRTs were performed as follows.

For a single term in the model (SNP or haplotype) and platform the available data were

determined, as missing values were different for every SNP and MAF-rule. Two mixed models

were fitted, a full model, which contained the marker effect of interest (xSNPβSNP , xhapβhap,

or xhap×hapβhap×hap), and a reduced model not containing that term. The reduced model to

test the gene×gene interaction was a model containing both genes in an additive way. The

test statistic was then calculated as D = 2 lfull−2 l0, where lfull and l0 were the log-likelihood

values of the full and reduced models, respectively. Under the null hypothesis of no effect

(or interaction), the test statistic asymptotically follows a χ2-distribution, D
a∼ χ2(df), with

the degrees of freedom df being the difference in numbers of parameters of the two models,

which comes down to a 1 in a SNP-test, for example. The p-values were reported as the

probability mass above the observed test statistic: p-value = P(X > D), with X ∼ χ2(df).

Significance of individual haplotype effects β̂ was assessed via the t-statistic performed at

the two-sided α = 0.05 level. The t-statistic was derived using the elements of the estimated



2.3 Results 63

variance-/covariance matrix available in the model output, t-value = β̂/V̂(β̂), and P-values

as p-value = 2 P(X > |t-value|), with X ∼ t(df). For the degrees of freedom we used

the number of observations minus the number of fixed effects in the model. A multiple

testing problem arises, which inflates the false positive rate of the study. A simple and

common way to handle this problem is the Bonferroni correction where the significance level

is divided by the number of tests. However, the Bonferroni correction is too conservative and

only suitable for independent tests, an assumption violated in this study due to a high LD

between some of the SNPs as previously shown (Li et al., 2011). Therefore, the less stringent

significance level of α = 0.05 was used in order to retain candidates for further validation

in upcoming experiments. The exact p-values are available in Supplementary file 3 of Li

et al. (2011) and can be adjusted for multiple testing. Empirical correlations between the

170 SNP-FT associations reported among the three phenotyping platforms were performed

using Pearson’s correlation, based on the t-values from the corresponding association tests.

The genetic variation explained by an individual SNP or haplotype was calculated as

100× ((σ̂2
g − σ̂2

gSNP )/σ̂2
g),

where σ̂2 are the estimates of the respective genetic variances, in the reduced model without

an individual SNP (σ2
g), and in the model including an individual SNP, σ2

gSNP ) (Mathews

et al., 2008). This ad-hoc measure can result in negative estimates since variance components

of genetic effects do not automatically decrease with more adjustment in a model. Negative

estimates were truncated to zero.

2.3 Results

2.3.1 Phenotypic data analyses

Phenotypic assessments of FT were carried out in 12 environments from three different

phenotyping platforms. Phenotypic data was analyzed separately in each environment (Fig-

ure 2.1). Genotypic variation for FT was significant at both temperatures for both years

in the controlled platform (p < 0.001). Recovery scores ranged from a median near 2.5

(between intensive and moderate damage) at −19 ◦C in 2008 to a median near 1.0 (little

sign of life) at −21 ◦C in 2009. As expected, recovery scores were higher at −19 ◦C than

at −21 ◦C in the same year but were lower in 2009 than in 2008, probably due to differ-

ent generations of rye material (S1 vs S1:2 families). The high variability at −2 ◦C in 2008

might have been induced by substantial variation between chambers (there was significant

variation due to chamber (p < 0.01)). In the semi-controlled platform, genotypic variation

for FT was significant during all months for both years (p < 0.01). Linear decreasing trends

were observed during each year, which was expected since that was longitudinal data and

thus the damaged portions of plants increased during the progression of winter. In the field
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Figure 2.1: Phenotypic variation in three phenotyping platforms: controlled platform (left),
semi-controlled platform (center), and field platform (right). The boxplots are based on the
average phenotypic values of replicates for each genotype. Boxes indicate the interquartile
range of the data, with a horizontal line representing the median and the vertical lines
beyond the boxes indicating the variability outside the upper and lower quartiles. Outliers
are indicated by circles. Figure recreated from Li et al. (2011).

platform, genotypic variation for FT was significant in four (LIP1, LIP2, SAS1, and SAS2) of

the six environments (p < 0.05). Compared to other environments, SAS1 and SAS2 showed

a better differentiation for FT among genotypes, ranging from 5% to 100% with a median

75% survival rate, and 0% to 95% with a median 20% survival rate, respectively. The large

difference of survival rates between SAS1 and SAS2 was probably due to different altitudes

and consequently varying severity of frost stress.

Phenotypic variation To test phenotypic variation between genotypes, the same

platform-specific models as described for the SNP-FT association analyses were fitted for

each platform omitting the SNP and population structure fixed effects. Within the con-

trolled platform, separate models were fitted for each temperature and year combination; for

the semi-controlled platform, separate models were fitted for each month of each year; and

for the field platform, separate models were fitted for each geographic location—altogether

15 subgroups in all three platforms. Within this grouping, mean outcomes per genotype

were calculated. That is, the replicates of each genotype were averaged and summarized in

boxplots.
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The genetic variation was reported as the variance component corresponding to the ran-

dom genotype effect in each model, with a p-value computed using LRT, a conservative

estimate since the true asymptotic distribution of the LRT is a mixture of chi-square distri-

butions (Fitzmaurice et al., 2004).

2.3.2 Population structure and kinship

Based on the analysis of population structure using SSR markers, k = 3 was the most

probable number of groups. Populations PR2733 (Belarus) and Petkus (Germany) formed

two distinct groups, while populations EKOAGRO, SMH2502, and ROM103 (all from Poland)

were admixed in the third group with shared membership fractions with population PR2733

(Figure 2.2). This could likely be attributed to seed exchange between the populations from

Belarus and Poland. The relatedness among the 201 genotypes estimated from the allele-

similarity kinship matrix ranged from 0.11 to 1.00 with a mean of 0.37. Compared to the

Eastern European populations, genotypes from Petkus showed a higher relatedness among

each other with a mean of 0.53.

PR2733 ROM103SMH2502EKOAGRO Petkus

1.0

0.8

0.6

0.4

0.2

0

Figure 2.2: Population structure based on genotyping data of 37 SSR markers. Each genotype
is represented by a thin vertical line, which is partitioned into k = 3 colored segments
that represent the genotype’s estimated membership fractions shown on the y-axis in k
clusters. Genotypes were sorted according to populations along the x-axis and information
on population origin is given. Figure reproduced from Li et al. (2011).

2.3.3 Association analyses

SNP-FT associations were performed using 170 SNPs from twelve candidate genes. In

the controlled platform, 69 statistically significant SNPs were identified among nine genes:

ScCbf2, ScCbf9b, ScCbf11, ScCbf12, ScCbf15, ScDhn1, ScDhn3, ScDreb2, and ScIce2

(all p < 0.05; Figure 2.3). In the semi-controlled platform, 22 statistically significant (p <

0.05) SNPs were identified among five genes: ScCbf2, ScCbf11, ScCbf12, ScCbf15, and
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Figure 2.3: Venn diagram of SNPs from candidate genes significantly (p < 0.05) associated
with frost tolerance in three phenotyping platforms. The first and second numbers in each
bracket are the number of significant SNPs and total number of SNPs in each candidate
gene. Figure reproduced from Li et al. (2011).

ScIce2. In the field platform, 29 statistically significant (p < 0.05) SNPs were identified

among six genes: ScCbf9b, ScCbf12, ScCbf15, ScDhn1, ScDreb2, and ScIce2. Eighty-four

SNPs from nine genes were significantly associated with FT in at least one of the three

platforms, and 33 SNPs from six genes were significantly associated with FT in at least

two of the three platforms. Across all three phenotyping platforms, two SNPs in ScCbf15

and one SNP in ScCbf12 were significantly associated with FT; all of these three SNPs are

non-synonymous, causing amino acid replacements. No SNP-FT associations were found for

SNPs in ScCbf6, ScCbf14, or ScV rn1. Full information on SNP-FT associations for all

platforms can be found in Supplementary file 3 of Li et al. (2011). Allelic effects (βSNP ) of

the 170 SNPs studied were relatively low, ranging from −0.43 to 0.32 for recovery scores

in the controlled platform, −2.17% to 2.44% for % plants with undamaged leaves in the

semi-controlled platform, and −3.66% to 4.30% for % survival in the field platform (Figure

2.4). 45.5% of all significant SNPs found in at least one platform had positive allelic effects,

indicating the non-reference allele conveyed superior FT to the reference allele. The largest

positive βSNP among the 170 SNPs in the field platform was observed for SNP 7 in ScIce2
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Figure 2.4: Distribution of allelic effects (βSNP ) from FT association models in controlled
(top), semi-controlled (middle), and field platforms (bottom). The significance threshold
(p < 0.05) for each platform is indicated by different colors. Figure recreated from Li et al.
(2011).

(βSNP = 4.30). This favorable allele was present predominantly in the PR2733 population

(55.2%), and occurred at much lower frequency in the other four populations (EKOAGRO:

4.7%, Petkus: 0%, ROM103: 7.1% and SMH2502: 6.7%). The proportion of genetic variation

explained by individual SNPs ranged from 0% to 27.9% with a median of 0.4% in the

controlled platform, from 0% to 25.6% with a median of 1.2% in the semi-controlled platform,
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and from 0% to 28.9% with a median of 2.0% in the field platform (Figure 2.5). These

distributions were highly concentrated near zero.
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Figure 2.5: Distributions of effect sizes of SNPs in three phenotyping platforms. Effect sizes
are displayed as genetic variation explained by individual SNPs. Figure recreated from Li
et al. (2011).

Empirical correlations of the SNP-FT association results, in terms of t values, between

the three phenotyping platforms were moderate to low. The highest correlation coefficient

was observed between the controlled and semi-controlled platform with r = 0.56, followed by

correlations between the controlled and field platform with r = 0.54, and the semi-controlled

and field platform with r = 0.18. When correlations were restricted to the significant SNPs,

slightly higher correlation coefficients were observed with r = 0.64 between the controlled and

semi-controlled platform, r = 0.66 between the controlled and field platform, and r = 0.34

between the semi-controlled and field platform.

Haplotype-FT associations were performed using 30 haplotypes (MAF > 5%) in eleven

candidate genes. Because only one haplotype in ScDhn1 had a MAF > 5%, ScDhn1 was

excluded from further analysis. Large numbers of rare haplotypes (MAF < 5%) were found in

ScCbf9b (N = 62) and ScCbf12 (N = 22), resulting in large numbers of missing genotypes

(87.9% and 61.3%) for the association analysis. Haplotypes 2, 3, and 4 in ScCbf2 were

significantly (p < 0.05) associated with FT in the controlled platform. For haplotypes 1 and

2 in ScCbf15 and haplotype 1 in ScIce2, significant associations (p < 0.05) were found across

two and three platforms, respectively (Table 2.3). Haplotype effects (βHap) were relatively

low and comparable to the allelic effects (βSNP ) ranging from −0.31 to 0.49 (recovery score),

−1.71% to 2.74% (% plants with undamaged leaves), and −3.32% to 3.47% (% survival) in

the controlled, semi-controlled and field platforms, respectively. The highest positive effect

on survival rate was observed for haplotype 1 of ScIce2 in the field platform, implicating
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this haplotype as the best candidate with superior FT. This favorable haplotype was present

mainly in the PR2733 population (35.7%), occurring in much lower frequencies in the other

four populations (0.0% in EKOAGRO, 0.0% in Petkus, 5.3% in ROM103, and 6.7% in

SMH2503). The proportion of genetic variation explained by the haplotypes ranged from 0%

to 25.7% with a median of 1.6% in the controlled platform, from 0% to 17.6% with a median

of 1.4% in the semi-controlled platform, and from 0% to 9.3% with a median of 4.8% in the

field platform.

Out of all possible gene×gene interactions tested on the basis of haplotypes, eleven, six,

and one were significantly (p < 0.05) associated with FT in the controlled, semi-controlled

and field platforms, respectively. ScCbf15×ScCbf6, ScCbf15×ScV rn1, ScDhn3×ScDreb2,

and ScDhn3×ScV rn1 were significantly associated with FT across two platforms, and none

was significantly associated with FT across all three platforms (Figure 2.6).

ScIce2

Controlled

Semi-controlled

Field

Level 1

Level 2

Level 3

ScCbf6

ScCbf15

ScVrn1

ScDhn3

ScDreb2 ScCbf14

ScCbf11ScCbf12

Level unknown

Figure 2.6: Significant (p < 0.05) gene×gene interactions for frost tolerance in three pheno-
typing platforms. Candidate genes are sorted into three levels according to the frost respon-
sive cascade (Yamaguchi-Shinozaki and Shinozaki, 2006). The level where ScV rn1 belongs
to is still unknown. Figure reproduced from Li et al. (2011).
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2.4 Discussion

FT is a complex trait with polygenic inheritance. While the genetic basis of FT has been

widely studied in cereals by bi-parental linkage mapping and expression profiling, exploitation

of the allelic and phenotypic variation of FT in rye by association studies has lagged behind

(Francia et al., 2007; Baga et al., 2007; Campoli et al., 2009). This study reports the first

candidate gene-based association study in rye examining the genetic basis of FT.

Statistically significant SNP-FT associations were identified in nine candidate genes hy-

pothesized to be involved in the frost responsive network among which the transcription

factor Ice2 is one of the key factors. Others are the Cbf gene family, the Dreb2 gene and

dehydrin gene family (Dhn). For a biological discussion of their role in the frost responsive

network and connections to findings in other studies, we refer to Li et al. (2011).

Effect sizes of markers, commonly expressed as percentage of the genetic variance ex-

plained by markers, are of primary interest in association studies since they are the main

factors that determine the effectiveness of subsequent marker assisted-selection processes.

Two hypotheses for the distribution of effect sizes in quantitative traits have been proposed:

Mather’s “infinitesimal” model and Robertson’s model (Mackay, 2001). The former assumes

an effectively infinitesimal number of loci with very small and nearly equal effect sizes; the

latter, an exponential trend of the distribution of effects, whereby a few loci have relatively

large effects and the rest only small effects. Findings in this study support the latter, with

distributions of SNP effect sizes (percentage of the genetic variance explained by individual

SNPs) highly concentrated near zero and few SNPs having large effects (maximum 28.8%

explained genetic variation). A similar distribution of haplotype effect sizes was observed.

A recent review summarizing association studies in 15 different plant species also impli-

cated Robertson’s model and further suggested that phenotypic traits, species, and types of

variants may impact distributions of effect sizes (Ingvarsson and Street, 2010).

Epistasis, generally defined as the interaction between genes, has been recognized for over

a century (Bateson, 1902), and recently it has been suggested that it should be explicitly

modeled in association studies in order to detect “missing heritabilities” (Phillips, 2008; Wu

et al., 2010). In this study, eleven, six, and one significant (p < 0.05) gene×gene interaction

effects were found in the controlled, semi-controlled and field platforms, respectively, suggest-

ing that epistasis may play a role in the frost responsive network. From the frost responsive

network, one might hypothesize that transcription factors interact with their downstream

target genes, for example, that ScIce2 interacts with the ScCbf gene family and the latter

interacts with COR genes, such as the dehydrin (Dhn) gene family. Indeed, significant inter-

actions were observed in ScIce2× ScCbf15, ScCbf14× ScDhn3, and ScDreb2× ScDhn3.

Some candidate genes in the same cascade level also interact with each other, such as mem-

bers of the ScCbf gene family, ScCbf6× ScCbf15 and ScCbf11× ScCbf14.

Similar interactions within the Cbf gene family were also observed in Arabidopsis where
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AtCbf2 was indicated as a negative regulator of AtCbf1 and AtCbf3 (Novillo et al., 2004). In

this study, ScV rn1 was not significantly associated with FT but had significant interaction

effects with six other candidate genes, underlining the important role of ScV rn1 in the

frost responsive network. It is worth to point out that the power of detecting gene×gene

interaction might be low due to the relatively small sample size.

Low to moderate empirical correlations of SNP-FT associations were observed across the

three platforms reflecting the complexity of FT and thus the need for different platforms in

order to more accurately characterize FT. There are at least two reasons possibly explaining

the relatively low to medium empirical correlations of SNP-FT associations: 1) the different

duration and intensity of freezing temperature and 2) the different levels of confounding

effects from environmental factors, other than frost stress, per se. In the controlled platform,

plants were cold-hardened and then exposed to freezing temperatures (−19 ◦C or −21 ◦C)

in a short period of six days using defined temperature profiles. Recovery score in the con-

trolled platform represents the most pure and controlled measurement of FT among the three

platforms, since the effect of environmental factors other than frost stress is minimized.

In the semi-controlled platform, plants were exposed to much longer freezing periods with

fluctuating temperatures and repeated frost-thaw processes. In addition, a more complex

situation occurred in this platform, requiring plants to cope with other variable climatic

factors such as changing photoperiod, natural light intensity, wind, and limited water supply.

Thus, the measurement % plants with undamaged leaves in the semi-controlled platform

reflects the combined effect of various environmental influences and stresses on the vitality of

leaf tissue but does not mirror survival of the crown tissue as an indicator for frost tolerance.

In the field platform, winter temperatures were generally lower than in the semi-controlled

platform due to the strong continental climate in Eastern Europe and Canada.

The measurement % survival in the field is further confounded by environmental effects,

such as snow-coverage, soil uniformity, topography, and other unmeasured factors. The dif-

ferent experimental platforms permit the identification of different sets of genes associated

with FT, which might impact the correlations of SNP-FT associations across platforms. It is

worth pointing out that the correlation between the controlled and semi-controlled platform

was higher than between the semi-controlled and field platform. One possible explanation

is that plant growth in boxes in both controlled and semi-controlled platforms results in

a rather similar environment where roots are more exposed to freezing than in the field.

Several studies have suggested that different genes might be induced under different frost

stress treatments. A large number of blueberry genes induced in growth chambers were not

induced under field conditions (Dhanaraj et al., 2007).

In rye, Campoli et al. (2009) drew the conclusion that expression patterns of different

members of the Cbf gene family were affected by different acclimation temperatures and

sampling times. Most prior studies on FT have been conducted in controlled environments.

However, the relatively low to medium correlation among platforms in this study suggest
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that future studies should consider various scenarios in order to obtain a more complete

picture of the genetic basis of FT in rye.
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Chapter 3

Phenology

This chapter emphasizes and extends the statistical methods used in the article “First

flowering of wind-pollinated species with the greatest phenological advances in Europe” (C.

Ziello, A. Böck, N. Estrella, D. P. Ankerst, and A. Menzel, 2012), while shortening the

biological background and subject matter interpretations. The author of this thesis was

second author and primary statistician of the forenamed article and performed all statistical

analyses.

3.1 Introduction

Phenology is the science of naturally recurring events in nature, such as leaf unfolding

and flowering of plants in spring, fruit ripening, as well as the arrival and departure of

migrating birds and the timing of animal breeding (Koch et al., 2009). It offers quantitative

evidence of climate change impacts on ecosystems, indicating an increasing advancement of

flowering phases in recent decades (Rosenzweig et al., 2007). A stronger tendency for winter

and spring phenological phases to advance, relative to summer phases, has been reported

in the literature (Lu et al., 2006; Menzel et al., 2006). Only few studies have assessed the

influence of plant traits on the response to global warming. A recent study in this direction

reported a greater temporal advancement among entomophilous (insect-pollinated) plants

compared to anemophilous (wind-pollinated) species (Fitter and Fitter, 2002).

Changes in the pollen season, particularly related to its timing, duration, and intensity,

are one of the most likely consequences of climate change (Huynen et al., 2003). A threat of

these changes to human health is the expected further increase of the worldwide burden of

pollen-related respiratory diseases (Beggs, 2004; D’Amato et al., 2007; D’Amato and Cecchi,

2008). Most research in this area has been addressed to observing and forecasting the phe-

nological behavior of single species characterized by a high allergenic effect, such as birch or

ragweed (Laaidi, 2001; Rasmussen, 2002; Rogers et al., 2006; Wayne et al., 2002). We expand

the research on climate change effects on phenology and present a statistical meta-analysis

based on a massive data set, permitting the quantification of differences in phenological tem-
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poral trends due to pollination mode and woodiness, as well as yearly patterns of trends.

Ultimately, this leads to the identification of groups which are more likely to show changes

in their phenology and, hence, more likely to increase harm to humans.

3.2 Data structure

The analyzed phenological data consist of flowering records based on an abundant data

set, which covers dates of diverse phenological phases, and comprises more than 35,000 series

of flowering in Central Europe (Menzel et al., 2006). Most of these data are available at the

COST (European COoperation in the field of Scientific and Technical research) database,

collected within the in the meantime concluded COST Action 725 (Koch et al., 2009). We

selected series with a length of more than 15 years between 1971 and 2000, which were

available in aggregated form as a linear regression of the flowering time (coded as day of

year, doy) on calendar year (cy) for each series. The common linear regression was assumed:

doy = β0 + β1 cy + ε,

with ε ∼ N(0, σ2), the Normal distribution with mean 0 and variance σ2. For our statistical

analysis, we used the estimates β̂1i, se(β̂1i), and doyi of the i = 1, . . . , 5971 selected series of

flowering:

β̂1i Estimated regression slope of the ith series, interpreted as the average trend or time

shift of flowering time in days per year for an increase of one calendar year.

se(β̂1i) Standard error of β̂1i, a measure of how precisely the average trend was captured by

the linear regression model.

doyi Average flowering time across all years of study in series i, which carries equiva-

lent information as the estimated intercept β̂0i, when used along with β̂1i, because

β̂0 = doy− β̂1 cy.

The 5,971 analyzed series were measured in 983 phenological stations spread over 13

countries in Europe (list of countries by decreasing number of stations: Germany, Switzer-

land, Russia, Austria, Czech Republic, Slovenia, Latvia, Norway, United Kingdom, Croatia,

Finland, Estonia, and Slovakia) (Figure 3.1). The spatial information about the phenological

stations was recorded as geographic latitude and longitude, and the altitude above sea level.

Phenological aspects The study contains records on 28 different species, all an-

giosperms. They are listed in Fig. 3.2 ordered by mean flowering dates. The disparity in the

number of anemophilous (wind-pollinated) and entomophilous (insect-pollinated) species (7

versus 21) results from the low percentage (≈ 10%) of wind-pollinated species among the

angiosperms. Note that all considered wind-pollinated species are allergenic, that is they
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Figure 3.1: Locations of the phenological stations. Background map from OpenStreetMap.

Figure 3.2: Flowering chronology of the studied species, according to pollination mode and
woodiness. Allergenic plants are underlined. Figure reproduced from Ziello et al. (2012).
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can cause a malfunction of the immune system, which leads to overproduction of antibodies.

Allergenicity is a characteristic also present among insect-pollinated species, but the pollen

of anemophilous plants is considerably higher in amount and aggressiveness, at least for an-

giosperms. This aspect allows consideration of wind-pollinated species as representatives of

allergenic species, so that the results of their monitoring can be used to reasonably estimate

the consequences of climate change on allergic human subjects.

The classification of allergenic plants follows the information available at the website of

the EAN (European Aeroallergen Network). Flowering phenophases available are first flower

opens and full flowering (50% of flowers open). Woodiness, which classifies plants in those

having a persistent woody stem or being a herb, is another trait linked to allergenicity. As

most sensitized subjects are allergic to grass pollen (i.e. pollen of non-woody plants) (Esch,

2004; Jaeger, 2008), these allergens together with the pollen of the plant genus Ambrosia

(McLauchlan et al., 2011; Ziska et al., 2011) are the most studied allergens in the literature.

Of similar importance is the allergenic effect of some tree species, such as birch (D’Amato

et al., 2007), whose pollen cause severe reactions in humans, particularly at northern latitudes

where it is predominant.

3.3 Statistical methods

3.3.1 Overview

In this section we provide an overview on the statistical methods used to analyze the

phenology data, with details in the next section. The influence of pollination mode and

woodiness on flowering trends (first flowering and full flowering) was assessed using weighted

linear mixed models, with weights chosen as the precision, i.e. the inverse of the variance

of the data regressions that were provided (Becker and Wu, 2007). Statistical significance

of results was assessed using 1,000 bootstrap samples (Efron and Tibshirani, 1994), and

goodness of fit was calculated by means of an R2 measure for mixed models based on the

likelihood (Xu, 2003). Bootstrap samples were also presented in graphs to reflect uncertainty.

Fixed effects considered were woodiness, pollination mode, and mean phenodate for each

series, which was also provided along with the estimated regression coefficient. A random

effect for stations was included, which implies correlation between observations from the

same station, and data from different stations were modelled independently. More advanced

spatial structures, such as the exponential correlation structure (Pinheiro and Bates, 2000,

p. 230) that uses the coordinate information of stations, were also considered, but did not

show any impact on the estimates of interest and were therefore rejected. Altitude above

sea level of stations was excluded as a fixed effect since it neither showed significance, nor

affected other estimates when included in the model, as similarly found in previous work

(Ziello et al., 2009).
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A series of model-based analyses was performed in duplicate for first flowering trends and

full flowering trends. In detail, the estimates β̂1 (subscript i suppressed) obtained from the

linear regressions of flowering time (first flowering and full flowering, respectively) for the

5,971 flowering series served as observations of the response variable “flowering trends” in unit

days per year (d/yr). First, univariate regressions of the effects of woodiness and pollination

on flowering trends were performed. Then, the linear effect of mean date (doyi) on trends was

assessed separately by pollination mode and woodiness, and by combinations of pollination

mode and woodiness in an overall model for both phenological phases. Finally, the linearity

constraint of the mean date effect was relaxed via a spline approach to evaluate the robustness

of the general conclusions drawn under assumption of a linear effect. Frayed ends of spline

curves arise mainly from arbitrary extrapolation of the spline when bootstrap samples do

not cover the whole time range, and should be used as natural limits for interpretation.

3.3.2 Details

Heterogeneity The outcome of interest, trend in flowering time, is not directly mea-

sured but results rather from an aggregation of observations by the pre-manufactured linear

regressions. We therefore conducted a meta-analysis, with procedures adjusted to the specific

situations. For example, comparison of the means of two groups with a t-test assumes that

observations within samples are identically distributed, which is not fulfilled by the flowering

trends. Every single trend, being an estimated coefficient, has its own variance and follows

asymptotically the large sample normal distribution: β̂1
a∼ N(β1, se(β̂1)2), with β̂1 the esti-

mator of the trend and se(.) its standard error. As outlined in Becker and Wu (2007), we

used weights defined by the squared standard error, 1/se(β̂1)2, in our calculations to account

for different variances of the trend estimators. In practice, a pooled t-test adjusted with

such defined weights can be performed in a linear regression framework with heteroscedastic

errors, and fitted by weighted least squares. For ease of notation, let y be the combined

vector of outcomes, x a 0/1 vector indicating the membership to the two samples, and w

the vector of weights. All three vectors are of same length n = n1 + n2, with n1 the number

of observations in sample 1 and n2 the number of observations in sample 2. The two-sample

pooled t-test for equal means in both groups,

H0 : µ1 = µ2 versus HA : µ1 6= µ2,

is identical to the test of

H0 : β1 = 0 versus HA : β1 6= 0,

in the linear regression model

yi = β0 + β1 xi + εi, εi ∼ N(0, σ2), i = 1, . . . , n.
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The coefficients vector β = (β0, β1) is estimated by

β̂ = (X ′X)−1X ′y, with X =


1 x1

...
...

1 xn

 ,
and the associated variance/covariance matrix by

V̂(β̂) = σ̂2(X ′X)−1, σ̂2 =
1

n− 2
(y −Xβ̂)′(y −Xβ̂).

In our analysis we used the weighted least square estimates of β, which account for het-

eroscedastic errors via weigths w:

β̂ = (X ′WX)−1X ′Wy,

with diagonal matrix W = diag(w), and variance/covariance matrix

V̂(β̂) = σ̂2(X ′WX)−1, σ̂2 =
1

n− 2
(y −Xβ̂)′W (y −Xβ̂).

The t-statistic for the test of equal means is then

t =
β̂1√

V̂(β̂)2,2

,

where V̂(β̂)2,2 denotes the second entry on the diagonal of V̂(β̂)

Spatial correlation We assessed the potential spatial correlation between observations

on nearby locations by means of a gaussian random field γ(s), with s ∈ R2 being the pair

of coordinates. The model was specified by the mean function µ(s) = E(γ(s)), variance

function τ 2(s) = V(γ(s)), and correlation function ρ(s, s′). Specifically, we assumed constant

mean µ(s) ≡ µ and constant variance τ 2(s) ≡ τ 2, and a correlation function ρ(s, s′) = ρ(h)

solely depending on the (great-circle) distance h of two locations. In contrast to the euclidean

distance, the great-circle distance accounts for the spherical shape of the earth. Pinheiro and

Bates (2000, p. 230) give an overview of spatial correlation structures; of these, we applied

the spherical correlation function ρ(h;φ) with distance h and range φ, which controls the

maximum distance of locations having a non-zero correlation. The model is written as

y(s) = x′β + γ(s) + ε(s),

with y(s) the estimated trends at location s, x′β the fixed effects, γ(s) the random field

defined above, and ε(s) the usual error term, ε(s) ∼ N(0, σ2) independent of γ(s). This
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model implies that the correlation between the observations y(s) and y(s′) is given by

Corr(y(s), y(s′)) = ρ(h;φ).

The same model can be expressed as a linear mixed model (see Fahrmeir et al., 2007, p. 327 ff),

y = Xβ +Zγ + ε,

with the following components:

y Vector of temporal flowering trends.

Xβ Fixed effect design matrix and effects, specifics provided later.

Z Design matrix for the random effects; an incidence matrix (entries of zero and one)

mapping each single observation to its phenological station.

R Correlation matrix derived from the correlation function ρ(h;φ) and the distance ma-

trix H , which contains the distance between every pair of phenological stations,

R[i, j] = ρ(H [i, j];φ),

with ρ(.) given by

ρ(h;φ) =

1− 3
2
|h/φ|+ 1

2
|h/φ|3 0 ≤ h ≤ φ,

0 h > φ.

γ Vector of multivariate normally distributed random station effects γ ∼ N(0, τ 2R).

ε Vector of independent but heteroscedastic errors,

ε ∼ N(0, σ2W−1),

where the weight matrix is specified as a diagonal matrix W = diag(w), with w the

inverse squared standard errors of the trend estimators. The strict diagonal structure

of W reflects the assumption of independent observations within a station given the

random station effect γ.

The impact of spatial correlation is to pull estimates of station effects towards their

neighbors, referred to as spatial smoothing. The amount of smoothing is controlled by the

variance parameter τ 2, estimated from the data during the model-fitting. For an illustration

of the involved matrices, we give an example on observations from four different stations in

Germany using a range parameter of φ = 50 (km):



82 Chapter 3. Phenology

Station Latitude Longitude y se(y)

1 51.7833 6.0167 -0.16196 0.28756

2 51.6333 6.1833 -0.04226 0.26424

3 51.0500 6.2333 -0.28621 0.27743

4 51.5833 6.2500 0.03426 0.29378

H =


0 20.27 82.91 27.48

20.27 0 64.95 7.23

82.91 64.95 0 59.31

27.48 7.23 59.31 0

 , R =


1 0.43 0 0.26

0.43 1 0 0.78

0 0 1 0

0.26 0.78 0 1

 ,

Z =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , W =


12.09 0 0 0

0 14.32 0 0

0 0 12.99 0

0 0 0 11.59

 .

The assumption of no spatial correlation between effects of different stations is expressed by

an identity matrix R. However, since this approach still induces correlation within obser-

vations of the same station due to the shared random effect, it is denoted as unstructured

spatial correlation.

Inference The aim of this study was to compare the temporal trends between the differ-

ent types of pollination and woodiness, as well as to asses how the trends differ with respect

to average flowering time in year, doy. As stated previously, we entered the categorical vari-

ables pollination (wind versus insect) and woodiness (woody versus non-woody) as factor

variables in the model matrix X. We estimated the different phenological phases (first flow-

ering and full flowering) in separate models, i.e. we applied the same model structure to the

two data subsets containing only first- and full flowering data, respectively. Subsequently, we

combined both phases in an overall model, using the complete dataset and an additional co-

variate, indicating the phenological phase. In an exploratory analysis we assessed the effects

of woodiness and pollination type in main effects models, while ignoring other effects. This

technically violates the principle of marginality (Nelder, 1977). We therefore used a more

complex model for inference, which simultaneously incorporated all variables. Initially, the

effect of average flowering time in year (variable doy) on the temporal trend was estimated



3.3 Statistical methods 83

linearly. More specifically, the generic form of Xβ contained the following terms,

Xβ =1β0 + βwoodyI(x1 = woody) + βwindI(x2 = wind)+

βwoody,windI(x1 = woody)I(x2 = wind)+

βdoydoy + βdoy,woodydoyI(x1 = woody)+

βdoy,winddoyI(x2 = wind)+

βdoy,woody,winddoyI(x1 = woody)I(x2 = wind),

where the indicator function I(x) of a vector is meant to act element-wise on x and returns

the evaluations as vector again. It evaluates to 1 if the x belongs to the specified category,

and to 0 otherwise. In other words this is a two-way interaction model. Again, we provide

an example:

Woodiness (x1) Pollination mode (x2) Average flowering time (doy)

woody wind 125.414

woody insect 113.414

non-woody wind 113.700

non-woody insect 114.034

results in the design matrix,

X =


1 1 1 1 125.414 125.414 125.414 125.414

1 1 0 0 113.414 113.414 0 0

1 0 1 0 113.700 0 125.414 0

1 0 0 0 114.034 0 0 0

 ,

and the associated vector of fixed effects,

β′ = (β0, βwoody, βwind, βwoody,wind, βdoy, βwoody,doy, βwind,doy, βdoy,woody,wind).

Later, to verify the linearity assumption, the constraint was relaxed, allowing a more flexible

relationship by means of a spline function. We applied polynomial splines on a B-spline basis,

as outlined in Section 1.3.3. We also assessed the effect of altitude above sea level using a

spline of that form.

Hypotheses tests Based on the coefficients β we formulated the hypotheses of interest.

The significance of the linear relationship between doy and flowering time for non-woody

& insect-pollinated plants (1), woody & insect-pollinated plants (2), non-woody & wind-

pollinated plants (3), and woody & wind-pollinated plants (4) can be assessed by tests of
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the hypotheses

H1 : βdoy = 0

H2 : βdoy + βwoody,doy = 0

H3 : βdoy + βwind,doy = 0

H4 : βdoy + βwoody,doy + βwind,doy + βdoy,woody,wind = 0,

which can be expressed as tests of linear combinations c′jβ , j = 1, . . . , 4 of the coefficient

vector with C = (c′1, . . . , c
′
4)′ specified as

C =


0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 1 0 1 1 1

 .

For mixed models with unbalanced designs, as present here, the exact distribution of Cβ̂

under the null hypotheses is unknown. Approximations can be held using t-distributions

(Pinheiro and Bates, 2000, p. 90), with the degrees of freedom to be specified. As an al-

ternative, we applied a nonparametric bootstrap to asses the statistical significance of the

hypothesis tests. We drew B = 1, 000 bootstrap samples of the dataset, and fitted the model

for each sample leading to estimates β̂(b), b = 1, . . . , B. We estimated V(c′jβ̂) by its em-

pirical counterpart, the sample variance of (c′jβ̂(1), . . . , c′jβ̂(B)), denoted as s2
B(c′jβ̂), for

j = 1, . . . , 4. p-values for the tests of the hypothesis

H0,j : c′jβ = 0 vs. HA,j : c′jβ 6= 0

are obtained as

p-value = 2 · (1− Φ(|zj|)),

with Φ(.) the standard normal distribution, and

zj =
c′jβ̂√
s2
B(c′jβ̂)

.

Multiple tests on the same data require an adjustment to in order to control the overall level

of false-positive findings. Therefore, we calculated the p-values based on quantiles of the

joint (asymptotic) multivariate normal distribution of the vector of test statistics zj (Bretz

et al., 2011, chap. 3). We applied the multiple comparison adjustment for 17 hypotheses

tests, which are based on parameter estimates of the overall model. We tested for equal

slope parameters of the covariate doy for different categories of pollination and woodiness
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and assessed whether the flowering trends y were the same between these categories. For the

latter comparison we set the average flowering date to doy = 100. Therefore, the results are

to be interpreted for plants which flower on average at the 100th day of the year.

Additionally, we visualized the uncertainty of the estimates by plotting all bootstrap

samples using transparent colors, simultaneously showing the data on the original scale along

with model-based predictions of the flowering trends. Predictions are limited to regions of the

covariate-space in the data that were involved in the particular estimation. We recommend

to limit interpretation to these areas and not to extrapolate. The pseudo R2 for linear mixed

models discussed by Xu (2003) is based on the maximized log-likelihood of the full model,

l(β̂), containing all covariates, and the maximized log-likelihood of the null model, l(β̂0),

including only an intercept coefficient as fixed effect, with the same random effects structure

in both models. It is calculated as

R2 = 1− exp

(
− 2

n
(l(β̂)− l(β̂0))

)
,

with n the number of observations, and can roughly be interpreted as the proportion of

variance explained by the considered fixed effects.

Computational aspects We performed all analyses and graphs within the R environ-

ment (R Core Team, 2012). An implementation for the calculation of great-circle distances

is readily available in the sp package (Bivand et al., 2008), returning distances in kilometers.

For mixed models with a simple random effects structure, such as uncorrelated random in-

tercepts, we used the lme4 package (Bates and Mächler, 2010) and and extensions thereof in

the gamm4 package, allowing for inclusion of splines (Wood, 2012). Models with structured

spatial correlations required specification of the design- and correlation matrices, which was

performed using mgcv (Wood, 2006) and regress (Clifford and McCullagh, 2012) packages.

For model-fitting the restricted log-likelihood was optimized and used for tests and parameter

estimates. Calculation of the pseudo R2 was done using maximum likelihood. Programs for

bootstrapping were taken from boot package (Canty and Ripley, 2010), for multiple testing

adjustment from the multcomp package (Hothorn et al., 2008).

3.4 Results

Model structure By using different values of the range parameter for the spherical cor-

relation function, φ = 50, 70, 100, 150 km, we observed no practical impact of the structured

spatial correlation on the fixed effects in the model. A random intercept for station specified

by an identity matrix R was kept in the model. Altitude above sea level did not affect other

estimated effects when included in the model and neither a linear relationship nor a spline

function for altitude was statistically significantly different from zero. These results confirm

findings by Ziello et al. (2009) observed in a related application.
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We present the statistical results in three stages. In the first exploratory stage, we report

an overview of the flowering dates, dealing with different variables of interest (pollination

mode, woodiness, and average flowering time during year) one at a time. The results are

model-based by using individual regression models to account for the spatial design and

the required weighting. The estimated effects can roughly be interpreted as averages over

variables not included, and are highly dependent on the balance of the groups and variables

in the dataset. We did not do any adjustment of the p-values at this stage. The results in

the second stage are based on a single, more complex model (overall model with interaction

terms included). The p-values in this stage were adjusted for the number of comparisons,

allowing to control the overall level of false positive findings. In the third stage we assessed

the implication of linearity using a non-linear model as a diagnostic tool. As in stage one we

report only raw p-values.

3.4.1 Exploratory results

Average trends for first and full flowering over all species and stations were throughout

significantly negative when assessed for wind-pollinated and insect-pollinated plants as well

as for woody and non-woody plants (Trend column in Table 3.1, p-values for trends equal

to zero all < 0.001, not shown in table). This indicates an earlier start of first and full

flowering phases, ranging between 0.489 days per year for wind-pollinated plants and 0.279

days per year for woody plants in the first flowering phase during the period 1971–2001. Full

flowering phases of both pollination modes advanced approximately 0.3 d/yr. First flower

opening phases of non-woody plants advanced 0.417 (± 0.003) d/yr compared to 0.279 (±
0.006) d/yr in woody plants. When comparing mean trends of first and full flowering for

all plant groups except woody, the first flowering trend is larger than the respective full

flowering one, leading to a longer flowering period, here defined as time between first and

full flowering. Comparing the strength of advancement, we observed significantly earlier first

Phenological phase Plant group Trend (d/yr) p-value

First flower opens wind-pollinated -0.489 ± 0.019
< 0.001

insect-pollinated -0.377 ± 0.003
non-woody -0.417 ± 0.003

< 0.001
woody -0.279 ± 0.006

Full flowering wind-pollinated -0.312 ± 0.009
0.11

insect-pollinated -0.337 ± 0.010
non-woody -0.317 ± 0.009

0.27
woody -0.332 ± 0.011

Table 3.1: Average temporal trends for first flower opening and full flowering phases, with
significance of differences for pollination mode and woodiness.

flowering for wind-pollinated versus insect-pollinated plants, and woody versus non-woody
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plants (p-value < 0.001). For full flowering there was no significant difference (p-value = 0.11

and 0.27, respectively; Table 3.1).

The linear effect of average flowering date (day of year) on these time trends is visualized

in Fig. 3.3.

Figure 3.3: Long term time trends of flowering in days per year plotted against mean flowering
date, by pollination types (top) and woodiness (bottom), each group in turn separately for
phenophase. Red lines indicate the fit from the weighted linear mixed model, with thick and
thin lines representing the averaged and single bootstrap samples, respectively, the latter
reflecting uncertainty. Significances (∗ ∗ ∗ for p < 0.001, ∗∗ for p < 0.01, ∗ for p < 0.05,
n.s. for not significant) of linear mean date effect are indicated, together with the model R2.
Figure reproduced from Ziello et al. (2012).

For first flower opening phases of wind-pollinated plants there was no statistically sig-

nificant relationship between trends and mean phenodates (p = 0.81). Full flowering phases

revealed instead the expected pattern, with greater advances in the first part of the year

(p < 0.001). Surprisingly, trends for insect-pollinated plants had the reverse association

with mean phenodates, with larger advances observed later in the year (p < 0.001). Woody

and non-woody species exhibited the same unexpected pattern, full flowering for non-woody

species being the only group with trends non-significantly dependent on mean phenodates

(p = 0.32).
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Null hypothesis Phenological phase Plant group Adjusted
p-value1

β = 0 First flowering
insect, non-woody 0.008

wind, woody 1.0
insect, woody < 0.001

β = 0 Full flowering
wind, non-woody < 0.001
insect, non-woody < 0.001

insect, woody < 0.001

βfirst = βfull
- insect, non-woody 0.006
- insect, woody 0.36

βwoody,wind = βnon−woody,insect
First flowering

- 1.0
βwoody = βnon−woody insect 0.14
βwind = βinsect woody 0.61

βwind = βinsect
Full flowering

non-woody < 0.001
βinsect,woody = βwind,non−woody - < 0.001
βwoody = βnon−woody insect 0.85

β denotes the slope for the linear dependence of the flowering trend on the average

flowering time in year of a flower.
1 Adjusted over the 17 multiple comparisons.

Table 3.2: Results of tests on slope parameters for the effect of phenological mean date on
trends.

3.4.2 Overall model

All trends were significantly dependent (adjusted p-values < 0.05) on the average flow-

ering dates except for the first flowering of wind-pollinated woody species (Table 3.2). The

strength of the dependence on mean flowering time did not differ from each other for the

first flowering phase. For the full flowering phase non-woody insect-pollinated plants ad-

vanced more with increasing average flowering date than their wind-pollinated counterpart

(directions in Figure 3.4, p-values in Table 3.2). For first flowering, at average flowering

date equal to day of year 100, woody plants showed a stronger advancement compared to

non-woody plants for insect-pollinated plants in the subgroup of insect-pollinated plants

(p < 0.001, Table 3.3). The insect-pollinated species consistently advanced more for flower-

ing times later in the year (negative slope) for both phases, only wind-pollinated non-woody

species showed the opposite pattern and advanced less (p = 0.001) for plants flowering later

in the year (positive slope). A comparison of the strength of advancement (slope coefficients)

between first flowering and full flowering was possible for insect-pollinated non-woody plants

and insect-pollinated woody plants. The latter did not show a difference between first and

full flowering (p = 0.36); non-woody did, they advanced more in full flowering (p = 0.006).

The results can be assessed most conveniently by Figure 3.4, which combines information



3.4 Results 89

Null hypothesis Plant group Adjusted
p-value1

E(ywoody,wind) = E(ynon−woody,insect) - < 0.001
E(ywoody) = E(ynon−woody) insect < 0.001
E(ywind) = E(yinsect) woody < 0.001
1 Adjusted over the 17 multiple comparisons.

Table 3.3: Results of tests on differences in the expected value of long term trends (y) between
plant groups in the first flowering phase, with an average flowering day of year = 100 (doy).

Figure 3.4: Long term time trends of flowering in days per year plotted against mean flowering
date according to woodiness and pollination. Lines show bootstrap estimates, which reflect
uncertainty. For sake of visibility, first flowering and full flowering are shown in separate
figures. Figure reproduced from Ziello et al. (2012).

about direction, absolute level, and significance of effects.

3.4.3 Diagnostics

Results of the regression with non-linear effects generally confirmed those for the linear

models, and are shown in Figure 3.5. For first flower opening, modelled curves of wind-

pollinated woody species showed that they exhibited more advances than for insect-pollinated

woody species, which did not vary with phenodates (p = 0.12): the non-significant influence

of phenological mean date on trends found in the previous analysis was hence not induced by

overly-restrictive linearity assumptions. For the two remaining groups, a significant advance-

ment of mean flowering dates was evidenced, where the size of advancement statistically

significantly depended on phenological mean dates (p < 0.05). For full flowering, wind-
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pollinated non-woody species exhibited less advancement, depending on the phenological

mean date (p < 0.001), than insect-pollinated woody and non-woody plants, whose trends

were in both cases depending on the phenological mean date as well (p < 0.001).

Figure 3.5: Long term time trends, modeled by flexible splines, of flowering in days per year
plotted against mean flowering date according to woodiness and pollination. Individual lines
show bootstrap estimates, which reflect uncertainty. Figure reproduced from Ziello et al.
(2012).

3.5 Discussion

Observed changes in flowering The present study confirmed earlier reports of ad-

vancing trends in flowering dates (Menzel et al., 2006; Rosenzweig et al., 2007), independent

of pollination mode and woodiness. However, from previous literature we expected a sea-

sonal pattern with stronger advances of early-occurring phases (Lu et al., 2006; Menzel et al.,

2006; Rosenzweig et al., 2007). We found this behavior only in the full flowering phases in

insect-pollinated non-woody species. Instead, for the majority of groups, our results did not

match the patterns previously reported, and indicated a decreasing advancement for species

flowering later in the year.

Since onset of flowering phases are advancing more than later occurring full flowering

phases, the flowering period of all the combined species is therefore lengthening. Such a pro-

longation of flowering has only rarely been inferred from phenological ground observations,

since typically only single phenophases such as the start of flowering are studied. In this sense,

the present study represents a step forward since first and full flowering dates of numerous
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species have been analyzed and a prolongation of this flowering period has been inferred,

which is of paramount importance for those allergic individuals that could likely experience

a prolongation of their main suffering period. Due to the substantial lack of phenological

data for the end of flowering, changes in the dates of this phase, which could directly assess

the lengthening of the complete flowering period, can only be hypothesized. However, studies

of direct pollen measurements have also reported longer pollen seasons (Rosenzweig et al.,

2007), confirming the occurrence of longer flowering periods.

Differentiation of trends by pollination mode Phases related to the onset of flow-

ering of wind-pollinated species exhibited the greatest advances, providing evidence that the

phenology of anemophilous species may be more strongly affected by climate change, even

if showing the weakest changes by year among the analyzed groups (Figure 3.4, Table 3.2).

Compared to insect-pollinated species, wind-pollinated ones exhibited a larger prolonga-

tion of the flowering period, as inferred from the stronger advance of first flower opening

phases compared to full flowering phases. It could hence also be inferred that the combined

flowering period of all the species analyzed lengthened more for wind-pollinated than for

insect-pollinated plants, which is a finding of high importance for pollen-associated allergic

diseases.

Several studies have reported on differences in phenology and ecology between pollination

modes (Bolmgren et al., 2003; Rabinowitz et al., 1981). In contrast to the findings of this

study, Fitter and Fitter (2002) reported that in a recent context of general and fast phenolog-

ical changes in Great Britain, insect-pollinated species were more likely to flower early than

wind-pollinated species. In addition to a different geographical area, this discrepancy could

be due to different criteria for the selection of phenological series: they used records longer

than 23 years in the periods 1954-2000, requiring at least 4 years in the decade 1991-2000. In

the current study, we selected series covering a shorter period (1971-2000) and were exhaus-

tive as at least 29 out of 30 years were analyzed. Hence, in this study the years 1991-2000 are

much more represented and results may better mirror the effects of the pronounced warming

of such a decade. We identify this in the magnitudes of changes: the median advances found

by Fitter and Fitter (2002) are three to six days for five decades, equivalent to a trend of −0.1

and −0.12 days per year (d/yr). In the present study, the mean trends are all stronger than

−0.3 d/yr, reaching almost −0.5 d/yr. Another difference to Fitter and Fitter (2002) is in

contrast to our findings. We found trends of insect-pollinated species to be stronger later in

the season, they reported that insect-pollinated species that flowered early were much more

sensitive to warming than those that flowered later. We return to this later in the discussion.

Hypothesized reasons for stronger flowering responses of wind-pollinated

species Wind-pollination is a functional trait that can be preferentially found in specific

geographical conditions, such as high altitudes and latitudes, in open vegetation structures

such as Savannah, in habitats presenting seasonal loss of leaves such as northern temperate

deciduous forests, or in island floras (Ackerman, 2000; Regal, 1982; Whitehead, 1969). Among



92 Chapter 3. Phenology

the widespread angiosperms (≈ 230,000 plant species), around 18% of families are abiotically

pollinated, and at least 10% of species are wind-pollinated (Ackerman, 2000; Friedman and

Barrett, 2009). All of the strongest allergenic species included in this study (e.g. birch,

grasses) belong to this group.

We observed a stronger advance in first flowering dates for wind-pollinated compared

to insect-pollinated species, and hypothesized that in addition to their pollination syn-

drome (a set of characteristics that co-occur among plants using the same pollination agent)

anemophilous angiosperms have inherited a more rapid adaptedness, in other words a major

plasticity. Angiosperms in general show higher evolutionary rates since their first evolution-

ary stages than gymnosperms, having probably originated in an environment that favored

rapid reproduction (Regal, 1982). Fertilization periods, temporal gaps between pollination

and consequent fertilization, are in fact known to be shorter in angiosperms than in gym-

nosperms (Williams, 2008). The key to the huge success of angiosperms may be due to this

rapidity, even if the reasons for their fast and wide-step radiation are still not completely un-

derstood. Within angiosperms, wind-pollinated species may have changed their pollination

mode as a reaction to unfavorable environmental conditions, enabling more capability for re-

sponding to the variability of climate. This aptitude would make anemophilous angiosperms

particularly sensitive to environmental changes, and thus a group of strong responders to

global warming.

This enhanced sensitivity to warming is made more credible due to the absence of limiting

factors, such as the availability of pollinators. Entomophilous plants could be less free to react

to temperature variations because their pollinator strategies would not match those changes.

Hence, they would be less likely to change their ecological internal clock.

The effect of woodiness and time of the year As Table 3.1 might suggest, the onset

of flowering of non-woody species advanced more than that of woody species for the first

flowering phase. This effect needs to be relativized when looking at the significance tests in

Table 3.2, where pollination mode is considered. In addition, for full flowering the pollination

mode makes a difference for the effect of woodiness. However, when considering the seasonal

variation, the predominant effect of pollination mode over the trait of woodiness is clear. In

fact, advancements for woody and non-woody insect-pollinated species were quite similar in

both flowering phases. In light of the results of this study, the dependence of the observed

first flowering trends on the season seems to be more complex than previously reported. For

entomophilous species the former finding of smaller advances of phases occurring early in the

year is in contrast with the current study (Fitter and Fitter, 2002). This difference in intra-

annual patterns of changes could be due to differences in number of locations monitored,

as for example, only one station from Great Britain was available and 983 in continental

Europe.
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3.6 Limitations and future directions

The current study was based on aggregated data as the observations on station level

were not available on a yearly basis. Additionally, the records on the long terms trends

were not complete for all the four flowering phases on some species-station combinations.

Both circumstances prohibited direct assessment of developments in the length of flowering

periods and consideration of interdependencies between dates flowering phases within a year.

Consider the mechanism of how the records were obtained for an individual plant or could

be obtained in the future, sketched in Figure 3.6.

Beginning
of flowering

First
flowering

End of
flowering

Full
flowering

Beginning
of year

T3T4

T2

T1

Figure 3.6: Phenological flowering phases with in-between-times T1, . . . , T4 regarded as ran-
dom variables. Time is counted in days.

Recording each of the flowering stages on a single plant or species bases yields a dataset

as shown in Figure 3.4. To assess a change in the length of the flowering season over the

years a univariate linear model with outcome variable

yi = t2i + t3i + t4i, i = 1, . . . , n,

can be used and extended to allow for non-linear effects of calender year, random effects
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Sojourn in flowering phase1 further covariates such as

Plant/species T1 = t1 T2 = t2 T3 = t3 T4 = t4 calendar year and location

i = 1 t11 t21 t31 t41 x1
...

...
...

...
...

...
i = n t1n t2n t3n t4n xn

1According to Figure 3.6 phases are: No flowering (beginning of year),

first flowering, beginning of flowering, full flowering, end of flowering.

Table 3.4: Observations of phenological phases on individual plant level.

for species, and spatial effects for station. A more sophisticated approach is the estimation

of a multivariate model, which explicitly accounts for (or models the) correlations between

observations of a plant within a calendar year. The vector-valued outcome variable,

yi = (t1i, t2i, t3i, t4i), i = 1, . . . , n,

is accordingly modeled as a function of the covariate vector xi, and again extensions for

random and spatial effects are possible (Timm, 2002, chap. 6).

However, the suggested models all assume normally distributed outcome variables T1, . . . , T4.

A natural alternative are time-to-event-models, motivated by the characteristic of time spans

to be non-negative. In detail, a multi-state model is appropriate, where the states (flowering

phases) occur progressively in time. The transitions between flowering phases are described

by hazard rates λ(t), a function of time t (see Section 1.3.3), and several ways to account for

the flowering history of a plant are possible. Completely ignoring the differences in flowering

phases and the flowering history leads to a common hazard rate for every kind of event

(phase). This results in a two-state survival model assuming all T1, . . . , T4 to be identically

distributed within a plant. In other words we expect the time to first flowering to be same

as the time between first flowering and beginning of flowering and so on. More realistic

seems a hazard rate which depends on the current state of plant and time. These models are

so-called Markovian if only depending on the current state and time without incorporating

previous states. Additional information, such as the sojourn time in the previous state or

the end of flowering in the previous year can be included as covariates. This implies some

rearrangement of the data set, outcome variables of earlier phases serve as covariates for the

current phase. Survival models extended for random effects so-called frailty models account

for heterogeneity between species or location (Hanagal, 2011, chap. 12).
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Prostate cancer

This chapter emphasizes the statistical methods used in the articles “Evaluating the

PCPT risk calculator in ten international biopsy cohorts: results from the prostate biopsy

collaborative group” (D.P. Ankerst, A. Boeck et al., 2012a) and “Evaluating the prostate

cancer prevention trial high grade prostate cancer risk calculator in 10 international biopsy

cohorts: results from the prostate biopsy collaborative group” (D.P. Ankerst, A. Boeck et al,

2012b). The author of this thesis was second author of the forenamed articles, responsible

for all statistical analyses and produced all figures and tables appearing in the articles and

this thesis.

4.1 Introduction

The Prostate Cancer Prevention Trial (PCPT) was a North American phase III random-

ized, double-blind, placebo-controlled study of the chemoprevention effects of finasteride

versus placebo on prostate cancer development. Study participation was limited to men

older than 54 years of age, who have a prostate-specific antigen (PSA) level less than or

equal to 3.0 ng/mL and have a normal digital rectal exam (DRE) result. They were annually

screened and referred to interim biopsy (six-core) whenever their PSA exceeded 4.0 ng/mL

or their DRE was abnormal. Follow-up time was seven years. At the end of this follow-up

time, all men were requested to undergo a prostate biopsy regardless of their current PSA

value and DRE result, or whether they had previously undergone a prostate biopsy that was

negative for prostate cancer. Data of 5,519 participants from the placebo arm of the PCPT

were used to develop a risk calculator for prostate cancer (PCPTRC) and a calculator for

predicting high-grade (Gleason grade ≥ 7) prostate cancer (PCPTHG). The PCPTRC and

PCPTHG were posted online on the websites of the Health Science Center in San Antonio,

a part of the University of Texas, in 2006. Since then it is used by patients and clinicians

worldwide as a counseling aid for the decision to undergo prostate biopsy.

In this work we present a study on the external validity of the PCPTRC (Ankerst et al.,

2012) and the PCPTHG (Ankerst et al., 2012) on multiple cohorts in order to identify
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potential populations where it may or may not be applicable. To that end, we highlight the

characteristics of the study populations used to build the calculators in comparison to those

used for the validation. Statistical measures which are suitable to quantify the performance

of the calculators as a prediction tool are discussed.
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4.2 Methods

4.2.1 PCPT data and risk models

All participants of the PCPT had a normal DRE and PSA level less than or equal to

3.0 ng/mL at the beginning of the trial. PSA and DRE tests were performed annually. If

any DRE result was abnormal or if a participant’s PSA value exceeded 4.0 ng/mL, they

were recommended to undergo a prostate biopsy. At the end of the seven years on study,

all participants who had not been diagnosed for prostate cancer were asked to undergo an

end-of-study prostate biopsy. Based on the placebo arm of the PCPT a subset of 5,519

individuals were used to build the PCPTRC and PCPTHG calculator. This subset included

all participants who underwent a prostate biopsy after any of the six annual visits or at

the seventh year visit, when an end-of-study biopsy was recommended. Further inclusion

criteria were a PSA test and DRE within one year of the biopsy as well as an additional

PSA measurement during the three years before the biopsy to compute PSA velocity. For

participants with multiple biopsies, the most recent study biopsy was used to assess the

effect of a prior negative biopsy on prostate cancer risk (Thompson et al., 2006).

Characteristics of the patients, which are relevant for the risk prediction models are: the

results of the prostate-specific antigen screening, the digital rectal examination, the age of

the participant, the prostate cancer history of the participant’s family, and if the participant

already underwent a biopsy. Descriptions and exact definitions of those characteristics are

given in Table 4.1. For purposes of prostate cancer risk modeling, the covariates in the fol-

lowing multivariable logistic regression models were coded as numerical values, also outlined

in Table 4.1. Model selection based on BIC and out-of-sample AUCs yielded the following

formulas to predict the risk of prostate cancer and high-grade prostate cancer, respectively:

Risk of prostate cancer, P(PCA),

PCA-score =− 1.7968 + 0.8488 · logPSA+ 0.2693 · FamHist+

0.9054 ·DRE − 0.4483 · PriorBiop,

P(PCA) =
1

1 + exp(−PCA-score)
. (4.1)

Risk of high-grade prostate cancer, P(HG),

HG-score =− 6.2461 + 1.2927 · logPSA+ 0.0306 · age+

1.0008 ·DRE + 0.9604 · AA− 0.3634 · PriorBiop,

P(HG) =
1

1 + exp(−HG-score)
. (4.2)
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Characteristic Definition Coding in model (variable
acronym)

Prostate cancer Status (yes/no) if the
biopsy of a participant led
to a cancer diagnosis.

Outcome variable in PCPTRC,
with 0 = no, 1 = yes (PCA).

Gleason Score Cancerous tissue from the
biopsy is examined under
the microscope to quantify
the aggressiveness of the
cancer. Ranges from 2 (low
aggressiveness) to 10 (high
aggressiveness).

Not directly used.

High-grade cancer Status (yes/no) if a high-
grade disease prostate can-
cer was detected, which was
defined as the presence of a
Gleason Score of 7 or higher.

Outcome variable in PCPTHG,
with 0 = no, 1 = yes (HG).

PSA level Prostate-specific antigen. Logarithm of PSA in ng/mL used
as metric covariate (logPSA).

Age Participant’s age at the
prostate biopsy.

Metric covariate (age).

DRE Status (yes/no) if there was
an abnormal result of digi-
tal rectal examination per-
formed during the year be-
fore the biopsy.

Indicator variable with no = 0,
yes = 1 (DRE ).

Family history Status (yes/no) if a partici-
pant’s relative of first degree
was diagnosed with prostate
cancer.

Indicator variable with no = 0,
yes = 1 (FamHist).

Prior biopsy Status (yes/no) if the par-
ticipant already underwent
a biopsy, which in this case
must have been negative
due to inclusion criteria of
the study.

Indicator variable with no = 0,
yes = 1 (PriorBiop).

Race Classification of the par-
ticipant’s race in African-
American and not African-
American.

Indicator variable with not
African-American = 0, African-
American = 1 (AA).

Table 4.1: Definitions of variables and risk factors used for risk prediction of prostate cancer
or high-grade prostate cancer.
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4.2.2 Validation cohorts

Data were included from ten European and US cohorts belonging to the Prostate Biopsy

Collaborative Group (PBCG), where criteria for biopsy referral and sampling schemes are

summarized in (Vickers et al., 2010). These included five screening cohorts from the European

Randomized Study of screening for Prostate Cancer (ERSPC), three additional screening

cohorts, San Antonio Biomarkers Of Risk of prostate cancer study (SABOR), Texas, US,

ProtecT, United Kingdom, and Tyrol, Austria, and two US clinical cohorts, from Cleveland

Clinic, Ohio, and Durham VA, North Carolina. All cohorts except for ERSPC Goeteborg

and Rotterdam Rounds 1 included some patients who had been previously screened. All

biopsies after a positive biopsy for prostate cancer were excluded from the analysis.

Validation of both risk calculators (PCPTRC and PCPTHG) are based on these cohorts.

Due to the differing set of predictor variables for the calculators as well as the occurrence of

missing values, the data which was used for validation do not match exactly. The validation

results are presented separately for each calculator. Clinical characteristics of each cohort

were summarized in terms of median and range (age and PSA) and by numbers (percent) in

each category (DRE, family history, race, prior biopsy, prostate cancer, and Gleason grade)

for the PCPTRC validation. For the PCPTHG validation clinical characteristics were sum-

marized similarly in terms of descriptive statistics, including median, ranges and percentages.

An iterative multiple imputation procedure was used to impute missing values of any of the

risk factors when the percentage of missing data for a risk factor in a cohort was less than

100% (Janssen et al., 2010). For details on the procedure we refer to van Buuren (2007).

The number of iterations was set to 20, and PCPTRC/PCPTHG risks were gauged as the

average of five imputations of the missing risk factor. For cohorts where the race or DRE was

not recorded for any participants, single imputation of “not of African origin” or “negative

DRE”, respectively, was implemented.

For each biopsy in the data set, the PCPTRC (or PCPTHG) risk of a positive biopsy

(or high-grade cancer) was computed, requiring PSA, DRE, family history, and prior biopsy

(or PSA, DRE, prior biopsy, and race), given by the formulas 4.1 and 4.2.

4.2.3 Validation measures

Several validation measures were calculated to assess the performance of the risk pre-

diction and were displayed in graphs. In what follows we use the notation corresponding to

previous chapters, that is,

ŷi for a single risk prediction of person i and

ŷ for a vector of predictions for several persons,

which range in the interval (0; 1) resulting from the formulas for P(PCA) and P(HG). With

yi ∈ {0; 1} and y, respectively, we denote the true cancer (PCA) or high-grade (HG) status
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of a person.

ROC and AUC Discrimination was calculated via receiver operating characteristic

curves (ROC). Areas underneath the ROC curve (AUC) were calculated for predicted risks

and compared to those with PSA alone for each cohort. As already previously described in

Section 1.2.3, the AUC is applicable to assess the discrimination ability of both a metric

covariate, like PSA, and of risk predictions ŷ. For the interpretation we refer to the afore-

mentioned section, where also calculation formulas are given. The rank-based Wilcoxon test

was used to infer the differences in AUCs of the ŷ and PSA values in terms of statistical

significance.

Hosmer-Lemeshow test As a measure of calibration, the Hosmer-Lemeshow (HL)

goodness-of-fit test was used (Hosmer and Lemeshow, 2000, p. 147). A risk prediction model

shows good calibration if there is a strong similarity between observed outcomes y and

predicted risks ŷ, which is described in more detail in Section 1.3.6. The test statistic of the

HL-test sums the squared differences of predictions and true outcomes over G = 10 groups.

The pair of vectors (ŷ,y) is gathered in groups by deciles of the predicted risks ŷ, that is,

the 10% smallest ŷi define a group, the next largest 10% define the second group, and so on.

This results in nearly equally-sized groups with n/10 pairs of (ŷi, yi), where n is the total

sample size. With ng we denote the particular sample size in group g, g = 1, . . . , 10. The

χ2-type test statistic is thus

HL =
G∑
g=1

(
Og − ng ¯̂yg

)2

ng ¯̂yg(1− ¯̂yg)
,

with Og being the sum of observed cancers in group g,

Og =

ng∑
i=1

yi,

and ¯̂yg being the average prediction risk in group g,

¯̂yg =
1

ng

ng∑
i=1

ŷi.

Applied on data from an external validation, under the null-hypothesis HL asymptotically

follows a χ2-distribution with nine degrees of freedom:

H0 : No difference between observed outcome and model-predicted risk,

HA : Observed outcome differs from prediction, and

HL
a∼ χ2(df = 9).

Thus, for this test a p-value of p < 0.05 indicates a poor agreement between predicted
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PCPTRC/PCPTHG risks and actual observed risk. However, it must be brought to attention

that the null hypothesis is of good calibration, which will result in low power to detect

miscalibration for small sample sizes, and we would only reject the null hypothesis if it was

very severe. Furthermore, even in a situation with a quite perfectly calibrated model, we

would reject the null hypothesis in a sufficiently large study (Steyerberg, 2009, p. 274 ff).

Calibration plot A visualization of the HL test and its decile-based categorization is

the calibration plot. In the graph, the ten average predicted risks ¯̂yg are laid out against the

actual observed risks ȳg = Og/ng of these categories. For an easier visual assessment, the

occurring points are connected by lines in order of the predicted risks (x-axis). Vertical lines

indicate Bonferroni adjusted 95% confidence intervals (CI) of the observed risks, based on

their standard errors,

se(ȳg) =

√
ȳg(1− ȳg)

ng
),

CIg = ȳg ± 2.08 se(ȳg).

The factor 2.08 in the above formula reflects the Bonferroni adjustment over G = 10 decile

groups to reach an overall confidence level of 95% (α = 0.05), and is the (1− α/2
10

) = 0.9975-

quantile of the standard normal distribution needed for a two-sided CI. Good calibration is

indicated when the line chart is close to the graph of an identity function, which corresponds

to a 45 ◦ line if both axis scales are isometric. The identity function graphs are drawn as ledger

lines. At least the confidence intervals should overlap that line for acceptable calibration.

Additionally, good discrimination of the model is indicated when the line chart is spread

out over the range of the x-axis, that is the risk predictions ŷi cover the whole interval of

possible values between 0 and 1.

For the PCPTHG a modified version of the calibration plot is shown, although it has the

same interpretation. It was not based on a hard grouping of the data by deciles, but using a

smoothing technique to soften the dependency on the arbitrarily chosen number of G = 10

groups. Steyerberg (2009) suggested the loess smoother as described in Cleveland et al.

(1992), but practically identical results were achieved using a smoothing-spline approach a

binomial GLM (see Section 1.3.3), with the advantage that 95% pointwise CIs were readily

available. In short, the observed outcomes y are modeled as a non-linear function of the

predicted risks ŷ. Opposite to the decile-based calibration plot, the distribution, or spread,

of the predicted risks cannot be assessed immediately; a rug plot displaying the shape of the

distribution, similar to a histogram, is overlaid at the bottom of the graph to overcome this.

Net benefit The clinical net benefit (Vickers and Elkin, 2006; Rousson and Zumbrunn,

2011) aims to account for the consequences of a decision suggested by the prediction model.

Usually, decision-theoretic approaches attach utilities U to every possible option and seek for

optimal decision rules. However, for a concrete application some knowledge outside the data

at hand have to be present, which allow these utilities to be quantified. The idea of providing
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clinical net benefit makes a compromise between both: It does not require any additional

information, but leaves it to the end-user to provide the missing piece of information based

on his particular circumstances. Imagine the situation where a decision has to be made if a

patient undergoes a treatment or not, where the true, but unknown, probability for disease is

denoted with p, and each of the four possible scenarios has attached its utility (U1, . . . , U4),

as sketched in the Figure 4.1:

Patient receives

treatment

p 1− p

diseased

U1

not

diseased

U2

no

treatment

p 1− p

diseased

U3

not

diseased

U4

Figure 4.1: Decision tree on clinical net benefit.

In their definition of net benefit, Vickers and Elkin (2006) focus on the left arm of the

tree, the treatment arm. The rationale is to treat an individual only if the expected utility

in the disease case is bigger than the expected utility in the non-diseased case,

pU1 > (1− p)U2 .

With fixed utilities, this depends only on the probability p, where pt is the threshold proba-

bility when both expected utilities are equal,

pt U1
!

= (1− pt)U2

⇒ pt =
U2

U1 + U2

.

This signifies, that the decision is based on the utilities attached to a true postive (U1) and

a false positive (U2) result, which is transformed to a probability threshold pt. Thus, setting
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U1 = 1, which is just a standardization of the utilities, we can express U2 as a function of pt,

pt
U1=1
=

U2

1 + U2

⇒ U2 =
pt

1− pt
.

The net benefit for a prediction model is defined as the sum of all benefits minus the sum of

all costs. A benefit arises when a diseased person is treated, and is quantified with U1 = 1.

Costs arise when a non-diseased person is treated and is quantified with U2 = pt
1−pt . The

expected net benefit as a function of pt (and therefore of U1 and U2) thus is

E (netben(pt)) = p · 1︸︷︷︸
benefit

− (1− p) ·
(

pt
1− pt

)
︸ ︷︷ ︸

costs

.

Replacing the unknown p by its empirical counterpart, the fraction of true positives, leads

to the estimated net benefit

netben(pt) =
true positve count

n
− false positive count

n

(
pt

1− pt

)
,

where n is the number of all observations in the validation set. In the notation used through-

out this thesis, with ŷi as a individual risk prediction and yi as a true outcome, the formula

for the net benefit is

netbenmodel(pt) =
1

n

n∑
i=1

I(ŷi > pt)I(yi = 1)− 1

n

n∑
i=1

I(ŷi > pt)I(yi = 0)

(
pt

1− pt

)
. (4.3)

Besides the model-based strategy, the net benefit is calculated for two additional decision

strategies, which are rather extreme. They consist of not treating anyone and treating every-

one, regardless of their individual threshold probability. The net benefit for treating nobody

is constant zero,

netbentreat none(pt) = 0, (4.4)

while for treating everyone it is

netbentreat all(pt) =
1

n

n∑
i=1

I(yi = 1)︸ ︷︷ ︸
prevalence

− 1

n

n∑
i=1

I(yi = 0)︸ ︷︷ ︸
1− prevalence

(
pt

1− pt

)
, (4.5)

which is a decreasing function of pt, ranging from prevalence down to negative infinity. Fi-

nally, the net benefit graphs of the three functions 4.3, 4.4, and 4.5, are shown for a reasonable
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range of threshold probabilities, which reflect the different individual circumstances of an

individual.

In the context of this validation study, “treatment” corresponds to the decision whether a

person undergoes a prostate biopsy. The graph shows for which areas of personal probability

thresholds pt the prediction model is useful for the patients, or in other words, shows where

the benefit is higher compared to the other two strategies. The threshold serves a proxy how

the patient weighs the harms of a unnecessary biopsy compared to a delayed diagnosis of

prostate cancer. The scale of the net benefit has the following interpretation: A prediction

model with a net benefit of 0.12 (at a specific pt) is equivalent to a strategy that identifies

12 cancers in 100 patients with no unnecessary biopsies (Vickers, 2008).

4.3 Results

As mentioned above, patients within the cohorts used for the evaluation of the overall

cancer calculator and the high-grade cancer calculator differed slightly due to the different set

of missing values in the predictor variables. The tables and graphs are presented separately

for each of the evaluations.

4.3.1 Cohort characteristics

Among the PBCG cohorts used to evaluate the PCPTRC, age was fairly consistent with

a median in the early sixties (Table 4.2). Median PSA values ranged from 3.4 ng/ml in the

SABOR cohort to 5.2 ng/ml in the Durham VA cohort, and rates of abnormal DRE, from

a low of 10% in the Goeteborg Rounds 2–6 and Tyrol cohorts to a high of 31% in the Tarn

cohort. Family history of prostate cancer was only reported in half of the cohorts and those

reported all fell at or below 11% except for SABOR at 29%. This was an artifact of selection

bias for the SABOR cohort since its protocol included a family history substudy that offered

biopsies to men with PSA less than 4.0 ng/ml and a positive family history. African origin was

not reported in the European cohorts but could be presumed to be negligible. The Durham

VA cohort provided a contrast, with 45% of the individuals being of African origin. This

cohort also had the highest cancer rate of 47% exceeding all nine other cohorts where the

rates ranged from 26 to 39%. The Distribution of biopsy Gleason grades indicated a majority

of low-grade cancers (Gleason 6 or less) in the ERSPC and SABOR screening cohorts, but

only approximately half or less low-grade cancers were observed in the Tarn section of the

ERSPC and the more clinical cohorts, Cleveland Clinic and Durham VA cohorts.

High-grade prostate cancer rates ranged from 4% in Goeteberg Rounds 2–6 to 22% in the

Durham VA cohort, which was characterized by the highest percentage of men with African

origin (45%), one of the risk factors included in the PCPTHG (Table 4.3).
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4.3.2 Evaluating the prostate cancer risk calculator

Table 4.4 gives the external validation report for the PCPTRC in terms of discrimination,

calibration, and clinical net benefit. AUCs of the PCPTRC ranged from a low of 56.2% in the

Goeteborg Rounds 2–6 cohort to a high of 72.0% in the Goeteborg Round 1 cohort. While the

AUC of the PCPTRC exceeded the AUC of PSA in all cohorts, it failed to be statistically

significantly greater in 4 of the 10 cohorts: Rotterdam Rounds 2–3, Tarn, SABOR, and

ProtecT, all screening rather than clinical cohorts.

Cohort (n) Discrimination
AUC PCPTRC (%)
(P-value for com-
parison to the
AUC of PSA)

Calibration
Risk range
where PCPTRC
primarily over-
predicts
Goodness-of-fit
P-value

Net benefit
Range of PCPTRC
risks of positive
biopsy showing im-
proved net benefit
over the rules of
biopsying everyone
or no one (%)

ERSPC Goeteborg Round 1
(n=740)

72.0 (< 0.0001) Entire range
P < 0.0001

None

ERSPC Goeteborg Rounds
2–6 (n=1,241)

56.2 (< 0.0001) Entire range
P < 0.0001

None

ERSPC Rotterdam Round 1
(n=2,895)

70.0 (< 0.0001) Entire range
P < 0.0001

None

ERSPC Rotterdam Rounds
2–3 (n=1,494)

61.0 (0.15) Entire range
P < 0.0001

None

ERSPC Tarn
(n=298)

66.7 (0.07) No overpredic-
tion P < 0.0001

27–35

SABOR, US
(n=392)

65.4 (0.20) No overpredic-
tion P = 0.24

15–45

Cleveland Clinic, US
(n=3,286)

58.8 (< 0.0001) 50% and higher
P < 0.0001

35–45

ProtecT, UK
(n=7,324)

63.9 (0.14) 50% and lower
P < 0.0001

30-85

Tyrol, Austria
(n=5,644)

66.7 (< 0.0001) Entire range
P < 0.0001

18–41

Durham VA, US
(n=2,419)

71.5 (< 0.0001) No overpredic-
tion P = 0.0008

25–100

Table 4.4: Discrimination, calibration, and net benefit metrics of risk predictions obtained
form the PCPTRC.

Calibration plots of Figure 4.2 indicate that the PCPTRC overestimated the risk of

prostate cancer for men of low, medium and high risks for all of the ERSPC cohorts except

for the Tarn section, where 95% confidence intervals of the observed risks overlapped with

predicted PCPTRC risks. The latter, however, could be attributed to the small sample size of

the Tarn section (n = 298), which results in wider confidence bands and a greater chance of

overlapping. For similar reasons, the PCPTRC appeared calibrated for the SABOR cohort (n
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= 392). The PCPTRC also overpredicted in risk ranges of practical relevance (below 50%)

for the large Cleveland Clinic, ProtecT and Tyrol cohorts (Table 4.4). However, for the

Durham cohort (n = 2,419), which had the highest cancer prevalence (47%), the PCPTRC

was calibrated across all risk areas. The Hosmer-Lemeshow test rejected goodness-of-fit for

all cohorts except for the SABOR cohort, but this test has the undesirable quality of being

more likely to reject the null hypothesis of goodness of fit as the sample size increases so is

not as objective a benchmark for calibration as the calibration plots.
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Figure 4.2: Calibration plots for the PCPTRC showing average PCPTRC risks for men
grouped by their PCPTRC risk value (x-axis) compared to the actual percentage of diagnosed
prostate cancer in these groups (y-axis). Perfect calibration would fall on the black diagonal
line where predicted risks equal observed rates of prostate cancer. Figure reproduced from
Ankerst et al. (2012).
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The last column of Table 4.4 shows the range of risk thresholds for which the PCPTRC

had higher clinical net benefit than the alternative strategies of biopsying all or none of the

men. A risk threshold is the minimum risk at which a patient and clinician would opt for

biopsy and varies between individuals due to personal preference. One reasonable threshold

is 20%, suggesting that it would be worth conducting no more than five biopsies to find one

cancer; a reasonable range of thresholds might be 15–30%. There was limited (ERSPC Tarn,

Cleveland Clinic, ProtecT) to no clinical benefit at all (other four ERSPC cohorts) to using

the PCPTRC to determine a subgroup of men to be biopsied compared to biopsying all of

those meeting cohort-specific criteria for biopsy. For the remaining three cohorts, SABOR,

Tyrol, and Austria, clinical benefit was observed at reasonable risk ranges: 15–45%, 18–41%,

and 25–100%, respectively (Table 4.4).
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4.3.3 Evaluating the High Grade prostate cancer risk calculator

Across the 25,512 biopsies from the ten cohorts combined, the AUC of the PCPTHG

was 74.6 %, a modest three percentage points increase over the AUC for PSA (71.5 %,

p < 0.0001). Use of PCPTHG risk thresholds of 5, 10 and 20 % as definitions of a positive

test for referral to biopsy would have resulted in 84.4, 41.7, and 15.0 %, respectively, of

all high-grade negative biopsies testing positive (percent unnecessary biopsies), and 4.7, 24.0

and 51.5 % missed high-grade prostate cancer cases, respectively. According to the individual

cohorts, these statistics are shown in Table 4.3.

Evaluation of the PCPTHG for ten- and higher-core biopsy schemes–compar-

ison with six-core The last six cohorts of Table 4.3 and Figures 4.3 and 4.4 implemented

ten- and higher-core schemes. The median AUC of the PCPTHG for high-grade disease

detection in the ten- and higher-core cohorts was 73.5 % (range 63.9 % - 76.7 %). Both

the median and range were lower than those for the four ERSPC cohorts that had six-core

biopsy schemes (median 78.1 %; range 72.0 % - 87.6 %). In two of the six ten- and higher-

core cohorts, the PCPTHG did not reach statistically significant improvement in direct

comparison to PSA for high-grade cancer discrimination (p-values > 0.05); in all four six-

core cohorts, the PCPTHG performed statistically significantly better than PSA (p value <

0.05) (Table 4.3). Of all cohorts included in the analysis, only the 10-core Cleveland Clinic

cohort showed clear evidence of underprediction, and this was restricted to risk ranges of less

than 15 % (Figure 4.3). The PCPTHG primarily overpredicted high-grade prostate cancer

in all six-core ERSPC screening studies. Clinical net benefit was not lower for the six higher-

core biopsy scheme cohorts compared with the six-core biopsy cohorts; in fact, it was often

higher (Figure 4.4). In three of the four six-core ESRPSC screening cohorts, there was no

clinical benefit to using the PCPTHG across all risk thresholds.

Comparison of the PCPTHG in healthy/screening versus clinically referred

populations Restricting attention to cohorts with ten- and higher-core biopsy schemes, the

four screening cohorts had PCPTHG AUCs of 76.7 % (Tarn), 69.5 % (SABOR), 75.4 %

(ProtecT) and 73.2 % (Tyrol), respectively, which overlapped with the AUCs observed in

the clinical cohorts, 63.9 % (Cleveland Clinic) and 73.9 % (Durham VA, USA). Of note is

the large 10-point difference between the Cleveland Clinic and Durham VA AUCs (Table

4.3). There were no obvious differences between calibrations or in clinical net benefits in the

higher-core screening cohorts compared with the higher-core clinical cohorts (Figs. 4.3, 4.4).

Comparison of the PCPTHG of US versus European populations Restricting

attention to cohorts with ten- and higher-core biopsy schemes, this comparison involves the

three US cohorts – SABOR (AUC = 69.5 %), Cleveland Clinic (63.9 %) and Durham VA

(73.9 %)–versus the three European cohorts–Tarn (76.7 %), ProtecT (75.4 %) and Tyrol

(73.2 %) (Table 4.3). The range of AUCs for the European cohorts is in fact shifted higher

than that for the US cohorts. The sample size of Tarn cohort is too low to make inference
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concerning calibration. For low levels of high-grade risk (<10 %) the PCPTHG appears

as good or better calibrated in the two remaining European higher-core cohorts (ProtecT

and Tyrol) compared with the US cohorts (Figure 4.3). The higher-core European screening

cohorts, Tarn, ProtecT and Tyrol, show comparable clinical net benefit to the US higher-

core cohorts, with the exception of the US Cleveland Clinic cohort, where the PCPTHG had

Figure 4.3: Calibration plots for the PCPTHG showing average PCPTHG risks for men
grouped by their PCPTHG risk value (x-axis) compared with the actual percentage with a
diagnose of high-grade prostate cancer (y-axis). Shaded areas represent approximate 95 %
confidence intervals. Perfect calibration would fall on the diagonal line where predicted risks
equal observed rates of high-grade prostate cancer, and adequate calibration is indicated
where shaded regions overlap the diagonal lines. Vertical bars at the bottom are scaled
histograms depicting relative frequencies of participants obtaining specified PCPTHG risks.
Figure reproduced from Ankerst et al. (2012).
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lower clinical net benefit (Figure 4.4).

4.4 Discussion

Since its publication in 2006 and being posted online for external validation, several single

institutions or study reports of successful or failed validation of the PCPTRC have appeared,

leading to confusion as to whether the tool can be recommended in practice (Cavadas et al.,

2010; Eyre et al., 2009; Hernandez et al., 2009; Nguyen et al., 2010; Oliveira et al., 2011;

Parekh et al., 2006; van den Bergh et al., 2008). By examining the spectrum of answers ob-

Figure 4.4: Net benefit curves for the PCPTHG (solid black line) versus the rules of biopsying
all men (dashed line) and no men (dotted horizontal line at 0). A risk tool has clinical
net benefit for a specific risk threshold (x-axis) used for referral to biopsy when its net
benefit curve is higher than the curves corresponding to biopsying all men or no men. Figure
reproduced from Ankerst et al. (2012).
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tained in a wide variety of cohorts using three complementary validation metrics, this report

illuminates the inherent variability of results of external validation by cohort and chosen

metric. This variation is not unique to the PCPTRC, but would rather extend to valida-

tion studies of all risk-prediction tools and the rapidly increasing numbers of investigations

of new markers for enhancing prostate cancer, including the urine/blood markers PCA3,

AMACR, MMP-2, and GSTP1/RASSF1A methylation status (Ankerst et al., 2008; Prior

et al., 2010). Indeed, these results are a convincing demonstration that properties such as

“calibration [are] best seen not as a property of a prediction model, but of a joint property

of a model and the particular cohort to which it is applied” (Vickers and Cronin, 2010).

The AUC appears to be the most ubiquitous criterion implemented for validation in uro-

logic research, but even in the absence of a calculator, the AUC for PSA itself evaluated

across the ten cohorts of this study varied from no utility at all (AUC = 50.9%, Goete-

borg Rounds 2–6) to fairly decent performance (AUC = 67.0%, Goeteborg Round 1) (data

provided by Kattan). The AUC suffers an additional disadvantage because it is influenced

by the selection of patients for inclusion based on PSA: Including only patients with PSA

exceeding 3.0 ng/ml downwardly influences the AUC compared to an AUC based on a sam-

ple without such a restriction. The PCPTRC amounts to a weighted average of PSA along

with the dichotomous (yes versus no) risk factors of DRE, family history and prior biopsy,

and therefore its AUC typically tracks the one of PSA in the same cohort. Accordingly,

the AUC of the PCPTRC was also lowest in Goeteborg Rounds 2–6 (AUC = 56.2%) and

highest in Goeteborg Round 1 (AUC = 72.0%). In these two cohorts along with four others,

the AUC of the PCPTRC was statistically significantly higher than that of PSA. As noted

by Kattan (2011), the key for unbiased inference of markers or calculators is head-to-head

comparisons within cohorts and not across cohorts, as it is hard to control for unmeasurable

cohort differences.

Calibration plots confirmed an earlier PBCG observation that for most cohorts, the

PCPTRC tends to give prostate cancer risk predictions that are too high, overestimating

actual risks both in the PSA <4.0 ng/ml range, the range on which the PCPTRC was

largely developed, and grossly overestimating outside this range (Vickers et al., 2010). The

calibration plots revealed that the PCPTRC was better calibrated for cohorts with larger

prevalences of cancer, in particular the Durham VA clinical cohort. A limitation of all results

is that single imputation had to be performed for missing risk factors in several cohorts, and

this would affect calibration. For example, family history was not recorded in five of the ten

cohorts, therefore for these cohorts, the optimal value “no family history” was used for all

participants. Unfortunately even with the assumption of ”no family history” the PCPTRC

still overestimated the risk and would have been worse if the actual values of family history

were available. Additionally, because the lowest PCPTRC risks observed in many of the

cohorts fell near 30%, the current study provides no assessment of calibration of PCPTRC

for lower risks that might be of greatest interest for decision-making concerning a biopsy.
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Clinical net benefit is a more recently proposed validation metric that seeks to quantify

the net benefit to a patient for using a particular decision rule to opt for a prostate biopsy,

specifically, by choosing a threshold risk and deciding to undergo biopsy only if risk predicted

by the decision rule exceeds this value. For each possible threshold, the net benefit of using

the PCPTRC along with this threshold for referral to biopsy is assessed relative to just the

rule of referring everyone in the cohort for biopsy. However, this application of the net benefit

requires the underlying risk predictions to be well calibrated, which is property that is not

naturally given in external predictions. The five ERSPC cohorts had per protocol referral

of men for biopsy for PSA exceeding 3.0 ng/ml (4.0 ng/ml in some sections at some years),

and there was no observed benefit to using the PCPTRC for these men with primarily high

risks to begin with. In contrast, net benefit of using the PCPTRC at thresholds 15–45%

was observed in the SABOR cohort, a cohort with lower PSA values, and most similar in

nature to the PCPT cohort as described above. Among the remaining cohorts, there was

only limited net benefit at limited ranges of PCTPRC thresholds.

In sum, this study has shown that the PCPTRC may not be universally applicable, that

in the population of men with elevated PSA (above 3.0 ng/ml) who would most seriously

consider prostate biopsy; the PCTPRC may overestimate the risk of finding prostate cancer.

This result could be due to that the PCPTRC was fit on a different population of men,

primarily healthy men with PSA less than 3.0 ng/ml. The accuracy of the PCPTRC on such

a healthy population of men is not ruled out by the current validation study, since no cohorts

of this type were included.

The evaluation of the PCPTHG did not show decreased performance for contemporary

cohorts that use a higher number of cores compared to cohorts that had implemented six-

core biopsy schemes (used in the PCPT), in cohorts comprising clinical patients rather than

healthy patients undergoing screening, or in European versus US cohorts. Two primary

advantages of the PCPTHG are that it requires only easily obtainable patient parameters

that are part of a routine clinical exam (not including prostate volume) and that it is

available on the internet. On some populations and judged by some criteria, the PCPTHG

was no better than other screening methodologies; for example, in SABOR and ProtecT, the

AUC of the PCPTHG did not differ statistically significantly from PSA (Table 4.3). These

two cohorts implemented contemporary ten- and higher-core biopsy schemes. Extended core

sampling has been shown to increase both prostate cancer and high-grade disease detection

(Takenaka et al., 2006; O’Connell et al., 2004; Eskicorapci et al., 2004). Nevertheless, on

no population and according to no scale, was the PCPTHG worse than simpler screening

measures such as PSA, and this combined with the PCPTHG’s simplicity and availability

implies that it can be implemented as a complementary aid to the physician and patient

in their decision to go forward or not with prostate biopsy, without the expectation that it

could cause harm to the patient.

There are several limitations to the current study on risk calculation of high grade
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prostate cancer. The primary limitation is that comparison of cohorts that evolved under

different protocols as a means of assessing whether specific factors, such as 6- versus higher-

core biopsy schemes, affects performance characteristics of a risk tool is no substitution for

a single protocol analysis where individual factors, such as actual number of biopsy cores

taken, are recorded for each patient. Cohorts were classified according to the primary number

of cores used. Nevertheless, given this limitation, we believe a multiple external validation

of a risk tool gives a more balanced assessment of the operating characteristics of a risk tool

than a single evaluation study and can be more informative as to when and where the risk

tool works in practice.

Another limitation is that all men underwent prostate biopsy and thus had one or more

risk factors for prostate cancer. It was not possible to account for subtle differences in biopsy

technique that might have had significant impact on high-grade cancer detection rates, such

as choice of specific location to obtain cores independent of the number of cores. Furthermore,

a central pathology review was not achievable, so it is possible that variation in aggressiveness

in declaring biopsy specimens to have high-grade cancer might have occurred. The PCPTHG

was designed to predict high-grade disease defined as Gleason score of seven and higher, but

contemporary risk prediction typically focuses on clinically significant cancer, which may not

include a Gleason score of seven. The information on ethnicity needed for the race covariate,

a key risk factor in the PCPTHG, was entirely missing for 6 of the cohorts. Since these

cohorts were all European, it could be assumed that their African origin proportion was

negligible. DRE was not recorded for the ProtecT cohort and so assumed to be normal for

all participants in that cohort. This can alternatively be considered a bonus evaluation of

the robustness of the online PCPTHG, since it now allows use without DRE performed and

then defaults to normal. This feature followed a prior study on SABOR that revealed DRE

to be highly unstable, reverting to normal the year after an abnormal result in nearly 75 %

of incidences (Ankerst et al., 2009).

There are currently many online nomograms and risk calculators available for prostate

cancer, and it can be confusing figuring which calculator is optimal (Vickers and Cronin,

2010). Though novel biomarkers, such as %freePSA, and additional parameters, such as

prostate volume, could improve upon existing calculators, the cost of including a more-

difficult-to-obtain risk factor has to be weighed against a more widely applicable risk calcu-

lator. The rate of complications from prostate biopsy ranges from 2 to 4 %, and individual

patients and doctors will vary in their assessment of how high a risk of high-grade disease

needs to be to prompt them to biopsy (Thompson and Ankerst, 2012). Therefore, we rec-

ommend that PCPTHG risks in the range of 5-20 % be used depending on how much the

individual weights the harm of a missed high-grade cancer to the harm of an unnecessary

biopsy.

Findings of this study have implications for other risk-prediction tools beyond the PCP-

TRC and PCPTHG. It is typical in urologic research to declare definitive success or failure
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of a tool based on a single validation measure evaluated on data from a single institution.

However, if validation is a function of both the model and the cohort being studied, there are

two consequences. First, those proposing models must explore the properties of the model

in different cohorts, and investigate the aspects of a cohort that affect model performance.

Second, clinicians should be cautious in using a model unless it has been shown to provide

added value, such as benefit, in a very similar population to the one in which it is being used

clinically.
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In this thesis, we presented the development and implementation of statistical models

in four different fields of recent research within the life sciences. The underlying data struc-

tures included the monitoring of tree stands over several decades, strictly planned growing

trials of rye, aggregated flowering trends from huge databases, and patient data from sev-

eral international clinical cohorts. Although the study aims varied, the flexible framework

of regression analysis could be employed as appropriate concept for most of the demands.

Still the common linear regression model is the workhorse of applied statistics and basis

for generalizations in all fields of research, with a long list of applications described in the

literature.

The generalizations we presented and need for future work include the use of random

effects structures (Chapters 1–3), multivariate analysis of correlated outcomes, and a move

towards integrated modeling of external information and outcome (Chapters 2–4), and splines

for flexible modeling of covariate effects (Chapters 1, 3).

Models for random effects In this thesis random effects were mainly used to account

for dependence within the outcomes originating from hierarchical structures or shared char-

acteristics. While the random spatial effects in the phenology application were motivated by

geographical locations, the random genotype effects in the rye study reflected the genetic

similarity of plants to each other. Both approaches define a measure of distance between two

sample units with larger distance inducing declining correlations. Consequently, the same

thoughts given on the kinship matrix also apply to the spatial aspects of the flowering dates:

In both cases sample units closer in terms of the distance measure provide less independent

information than distant ones for inference on flowering trends and SNPs, respectively, based

on the fixed effects of the model. For all of the above applications the distribution of random

effects was assumed to be normal. The estimation of the parameters of a normal distribution

is known to be sensitive to outliers, which could in turn also lead to biased estimates of the

fixed effects in the model. A robustification to that end is the use of t-distributions (Lange

et al., 1989). They have a higher mass on their tails compared to the normal distribution

allowing the estimate of the central tendency to be less influenced by single extreme obser-

vations. With the extension to skew-t distributions it is further possible to catch existing

skewness in the distribution of random effects (Ho and Lin, 2010). If the assumptions on

the random effects density p(.) should allow characteristics such as multimodality or non-
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standard skewness, mixture distributions offer a sustainable way. The density of a mixture

distribution m(.) is a convex combination of K densities fk(.)

m(x;θ) =
K∑
k=1

wk fk(x;θk),
K∑
k=1

wk = 1,

where θ is the parameter vector of the mixture distribution comprising the parameters θk

of each mixture component and the non-negative weights wk: θ = (θk, wk, . . . ,θK , wK).

However, the estimation now also includes the number K of mixture components in addition

to the parameters in θ, which is much more demanding than estimation of a fixed number

parameters in the first place. This kind of model belongs to the class of variable dimension

models (Marin and Robert, 2007, p. 170). Standard optimization routines such as gradient

methods often fail on the non-trivial likelihood surface and need problem specific extensions.

From a Bayesian perspective, reversible jump Markov chain techniques (Green, 1995) allow

to infer the number of components simultaneously with the other parameters. Ideally, the use

of mixture models reveals interpretable clusters in the data. Although parametric, mixture

models can be seen as a step towards nonparametric density estimation (in our case for the

random effects) making very little assumptions on the shape of underlying distribution.

In a strictly nonparametric Bayesian approach p(.) is assumed to be a random unknown

quantity and a prior is needed over the infinite space of density or distribution functions.

Such random probability measures can be specified using Dirichlet processes (DP )(Ferguson,

1973). To obtain priors for continuous densities extensions to Dirichlet process mixtures

(DPM) (Antoniak, 1974) can be used (we refer to the references for a formal definition; here,

only a sketch is given). The distribution of the random effects vector bi for the ith out of N

groups is characterized hierarchically as

bi|θi
∗∼ f(bi|θi) (∗distibuted not identically but independently, i.e. exchangeable),

θi|G
iid∼ G, i = 1, . . . , N,

G ∼ DP (α,G0),

with θi the parameter vector of an arbitrary continuous density and G a random probability

measure defined through a DP with concentration parameter α and base measure G0, which

is also a distribution on the desired support of bi. Due to the cluster property of the involved

DP (MacEachern, 1994) the N θis are partitioned into k sets of clusters, with 0 < k ≤ N .

Since these random effects are defined for a group of observations, a single cluster comprises

of one or more of those groups. All observations in a cluster share an identical value of θi

but the random effects bi within a cluster are different because of the continuity of f(.). In

summary, this concept enables a very accurate prediction of the random effects, that is close

to the data, and clusters can still be identified by the parameters θi. Applications of DPM as
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priors for random effects within generalized linear mixed models can be found in Kleinman

and Ibrahim (1998a), an implementation in R is provided by Jara et al. (2011).

Multivariate analysis of correlated outcome It is common to refer to a multivari-

ate (or multiple) outcome when for a single sample unit more than one random feature is

observed. A simple example is the collection of the height and weight of 100 individuals lead-

ing to a bivariate outcome for each of the 100 individuals. Also the monitoring of the same

outcome over multiple time points leads to multivariate outcomes, such as the longitudinal

observations of the percentage of damaged leaves in the growing trials (Section 2.2.1).

In principle, multivariate analyses are to be preferred over separate univariate analyses

since it carries several advantages: the correlation between the different outcomes is ex-

plicitly modeled and can be inferred, hypotheses of interest can be globally tested, that

is the aggregation of separate results is circumvented, and multiple testing which requires

adjustment can be avoided. Furthermore, an efficiency gain may be expected in the situation

of missing values and a more realistic assessment of the overall impact with respect to the

study aim is possible (McCulloch, 2008).

Whenever the multiple outcomes are commensurate, that is all outcomes share the same

scale, multivariate extensions of univariate GLMs can be applied. For m normally distributed

outcomes the multivariate linear model (MLM) is given by

Y
n×m

= X
n×p

B
p×m

+ E
n×m

,

where Y is matrix with n oberservations (rows) on m outcomes (columns), X is the design

matrix derived from the predictor variables, B the matrix of coefficients, and E the matrix

of errors. In standard cases, the observations on different sample units are assumed to be

independent and a potential non-zero covariance is specified between the m outcomes within

a sample: ε′i
iid∼ Nm(0,Σ), with ε′i the ith row of E and Nm(0,Σ) the m-dimensional normal

distribution with mean vector zero and covariance matrix Σ. There are m variance and

m(m− 1)/2 covariance parameters in Σ in this setup. However, a model definition equal to

the above equation can be obtained by specifying a formally univariate model. Therefore,

the rows of the matrices Y and B are stacked into vectors y and β, and the design matrix

X is inflated to dimension n ·m×m · p (see Izenman, 2008, p.162).
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The model equation is then

y
nm×1

= jXj
nm×mp

β
mp×1

+ jεj
nm×1

,

where ε is normally distributed with mean vector zero and a block-diagonal covariance matrix

Cov(ε) =


Σ

m×m
0 · · · 0

0 Σ
m×m

· · · 0

...
. . .

...

0 · · · 0 Σ
m×m

 .

This point on the equivalence is made for three reasons; a) the term “multivariate” cannot

be directly tied to the pure dimension of the statistical model but rather to the underlying

assumptions in the structure of the error term; b) the MLM is not bound to this rectangle

scheme. Not all entries in Y and X must be available, i.e. it is not mandatory to have

observations of all m outcomes on all n units to specify a multivariate model; the stacking

is still possible, and the regressors x need not to be equal for each of the outcomes; c)

a connection to mixed models is made, exemplary for a the random intercept model. For

the latter, more restrictive assumptions on the outcome variables/error terms are made:

Conditional on the regressors, the same variation in all m types of outcomes is assumed,

i.e. homoscedastic errors, and in addition the correlation between the outcomes is assumed

to be positive and constant between all m(m− 1)/2 pairs of outcomes. These are plausible

considerations for a model on repeated measures in longitudinal studies. Technically, the

covariance matrix Σ is therefore parametrized with two parameters, a variance σ2 on the

diagonal and a common covariance ρσ2 on the off-diagonals (ρ ≥ 0). Thus, when i indicates

the observation and j the outcome it holds that

Cov(yij, yi′j′) = σ2 for all i = i′ and j = j′ (= V(yij)),

Cov(yij, yi′j′) = ρσ2 for all i = i′ and j 6= j′,

Cov(yij, yi′j′) = 0 for all i 6= i′.

This however is equivalent to the marginal distribution of y in a linear mixed model with

random intercept

yij = x′ij β + γi + εij, i = 1, . . . , n, j = 1, . . . , ni,

εij
iid∼ N(0, σ̃2),

γi
iid∼ N(0, σ2

γ), γi, εij independent,

where V(yij) = σ̃2 + σ2
γ corresponds to σ2 from the MLM and the covariance σ2

γ of obser-

vations sharing a random effect corresponds to ρσ2. Note that this restricted MLM and the
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random intercept model are only equivalent in their marginal presentation. The conditional

specification of the random intercept model is more explicit. It makes specific additive as-

sumptions on the composition of the variance. As a consequence marginal inference in both

models is expected to provide similar but not identical results.

In conclusion, the mixed models extensively used throughout this thesis already represent

forms of multivariate and simultaneous inference. Further directions towards this goal of

analysis of the sojourn in flowering stages in the phenology chapter are indicated in Section

3.6. The situation of the growing trials of Chapter 2 is somewhat different and discussed in

the following paragraphs.

For the situation of multiple commensurate outcomes obtained on the same sample unit

the considerations of the previous section apply. However, the growing trials of Chapter

2 were run in three independent platforms (controlled, semi-controlled, open field) with

different outcomes (mean recovery score, % leaf damage, % survival). The analysis was

conducted in separate models with platform specific adjustments and in a second step the

results on SNP effects were bundled over the platforms using their p-values (Figure 2.3).

Understanding the genotypes as central entity with multiple outcomes nested in platforms,

trials, locations, years, blocks etc. one could construct a huge common multivariate model for

all observations at hand. In a first attempt on could build a model with interaction terms of

a platform indicator being created and the terms present in the three individual models. All

these interactions are needed as the outcomes—although all metric—are on different scales

and effect sizes (i.e. both fixed and random effects coefficients) depend on that scale. With

that overall model at hand it would be possible to formally test composite null hypotheses

such as “SNP1 has a positive effect on frost tolerance” by

H0 : βSNP1, platform i ≤ 0 ∀ i = 1, 2, 3, vs.

HA : βSNP1, platform i > 0 for at least one i,

within one single model. The conclusion however would coincide with those obtained by

separate models. Technically, this is due to the independence (zero covariance) of the ob-

servations between different platforms. The observations are uncoupled by the interaction

terms and the per-platform variances. Hence, the formal unified analysis as sketched above

does not provide advantages over separate analyses. To overcome this problem arising with

non-commensurate outcomes one would need to make more restrictive assumptions with re-

spect to the scales involved or the cross-outcome direction of the effects (omitting interaction

terms), or less restrictive assumptions with respect to the assumed dependence for elimina-

tion of structural zeros in the covariance matrix. One approach towards that end exists in

extending the random intercept model from above, which is presented conceptually here and

is described in more detail in McCulloch (2008).

For ease of notation only two non-commensurate outcomes y1, y2 are considered, but ideas
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apply for multiple outcomes as well. Again, non-commensurate outcomes denote variables

measured on different scales including count data, binary data, or as in case of the grow-

ing trials metric outcomes on different ranges. Both outcomes must measure an underlying

quantity such as frost tolerance in the same direction, say, y1 on metric scale, y2 on binary

scale. They can be sampled under completely different circumstances, but their individual

observations can be classified coherently (such as by genotype). The class membership is

indicated by a random intercept γi in a conditional model for both outcomes

log

(
P(y1ij|γi)

1−P(y1ij|γi)

)
= x′1ij β1 + γi, (logistic regression for y1),

y2ij|γi = x′2ij β2 + λ γi + ε1ij, (linear regression for y2),

γi
iid∼ G (distribution G to be specified),

where x1ij and x2ij are outcome-specific covariate vectors and ε1ij
iid∼ N(0, σ2). Due to the

shared random effect γi the observation of the same class i are marginally correlated across

outcomes. The difference in scale is taken into account by the parameter λ, which, however,

assumes the random effects to act in the same direction in all settings (outcomes). McCul-

loch (2008) discusses consequences with distributions where the variance is a functional of

the mean such as Bernoulli distributions used with binary data. Since the outcomes of the

growing trials presented in this thesis are on metric scale this would not be an issue. To ac-

count also for the dependence between genotypes induced by the kinship the iid-assumption

of γi must be relaxed by specifying a suitable multivariate prior G for the vector γ com-

prising all single random genotype effects γi. In these models with shared random effect

across outcomes, the hypothesis of interest specified above could be tested simultaneously

for all platforms in a model based way. An alternative approach focusing on the marginal

distribution is suggested in Roy et al. (2003). Models for multivariate outcomes on different

scales using copulas are described in Joe (1997).

Flexible modeling of covariate effects Revealing the true functional form of the

association between outcome and covariates is a fundamental objective in statistical models.

Probably too ambitious, at least good approximations which fulfill the specific purpose of

the model are needed. The standard configuration of linear effects is a plausible choice when

a rather rough quantification of direction and strength of a suspected global trend is desired.

However, in situations where the association is more complex the linear approximation cannot

detect small scale deviations and can lead to biased estimates. Regression models can be

straightforwardly generalized by adding transforms of covariates to the predictor and allowing

interaction effects. The problem of variable selection rapidly becomes cumbersome when

several covariates are involved. The use of penalized splines as described in Section 1.3.3

is suitable to flexible model smooth relationships and is also able to capture small scale

effects if the knot-setup is chosen accordingly. The concept of penalization helps to prevent
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overfitting due to wiggly function profiles.

In turn, the stochastic correspondent of the penalization approach fits perfectly in the

concept of random effects models whose merits have been broadly discussed. The underlying

constructive formulation of splines via basis functions can be extended in more dimensions

for the estimation of interaction surfaces and spatial effects. The equivalence of Kriging

and the use of radial basis functions should be noted here (Dubrule, 1984). Being linear in

their coefficients spline approximations can be represented as linear models allowing the use

of established numerical routines and also subject matter considerations on the functional

shape such as monotonicity can be embedded in the design matrices of the regression model

(Wood, 1994).

Even though statistical models can provide good approximations to unknown dependency

structures the final decision cannot be objective but rests with the researcher. Not least

because often a set of candidate models performs equally well. We experienced that in real

world examples the profitably complexity is relatively low compared to what is offered from

more theoretical research activities. Although simpler models are known to generalize better

on external data and in new situations it is challenging to set definitive limits of complexity

before an analysis. In particular, the analysis of designed experiments, which are less subject

to undesired ambient conditions, can demonstrate the limits of predictability of complex

(biological) systems—or provide fresh impetus.
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List of performance measures

This appendix provides an overview of measures useful for assessing model performance.

The list contains both visual and numerical approaches. The notation used is ŷ for the vector

of predictions/risks from a model, and y for the true status (0 or 1). The main goal is to

quantify the relationship between observed outcomes y and the corresponding estimation ŷ.

Some of the measures require a cut-off value or grouping of ŷ, which will be denoted by cut

(Tom, 2006).

relevant/concordant/discordant pairs The following terms describe the agreement of

observation-prediction pairs: ((yi, ŷi), (yj, ŷj)) (Tutz, 2000, p. 111ff).

N denotes the number of relevant pairs with different outcomes,

N =
∑
i,j

I(yi 6= yj)

= 2

(∑
i

I(yi = 1)
∑
i

I(yi = 0)

)
.

Nc the number of concordant pairs,

Nc =
∑
i,j

(I(yi < yj)I(ŷi < ŷj)) +
∑
i,j

(I(yi > yj)I(ŷi ≥ ŷj)),

and Nd the number of discordant pairs,

Nd =
∑
i,j

I(yi < yj)I(ŷi > ŷj) +
∑
i,j

I(yi > yj)I(ŷi < ŷj).

Kendall’s τ

τ =
Nc −Nd

n(n− 1)/2
.

Goodman and Kruskal’s γ

γ =
Nc −Nd

Nc +Nc

.
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Somer’s D

D =
Nc −Nd

N
.

TPF True Positive Fraction, also called recall. Based on cut the ŷ are classified as 0 or 1

(alive or dead, control or case). TPF is the fraction of all y = 1 which had a ŷ higher

than cut

TPFcut =

∑
I(ŷi > cut)I(yi = 1)∑

I(yi = 1)
.

FPF False Positive Fraction. Based on cut the ŷ are classified as 0 or 1 (alive or dead,

control or case). FPF is the fraction of all y = 0 which had a ŷ higher than cut,

FPFcut =

∑
I(ŷi > cut)I(yi = 0)∑

I(yi = 0)
.

Sensitivity same as TPF, also called the true positive rate.

Specificity same as 1− FPF , also called the true negative rate.

PPV Positive Predictive Value is the fraction of true positives to all positives (either true

or false):

PPVcut =

∑
I(ŷi > cut)I(yi = 1)∑

I(ŷi > cut)
.

NPV Negative Predictive Value:

NPVcut =

∑
I(ŷi < cut)I(yi = 0)∑

I(ŷi < cut)
.

F-measure Harmonic mean of PPV and TPF:

F = 2 · TPF ·NPV
TPF + TPF

.

ROC The Receiver Operating Characteristic (ROC) curve shows the graph of TPFcut

(y-axis) and FPFcut (x-axis) for all possible cut.

AUC Area Under the ROC-curve. Measures the discrimination power of ŷ independent of

a specific cut. A useless predictor has an AUC of 0.5, a perfect one an AUC of 1.

Besides other possibilities the AUC can be calculated as the number of concordant

pairs divided by the number of relevant pairs (Agresti, 2007, p.159):

AUC =
Nc

N
.
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Pseudo R2 (Veall and Zimmermann, 1996). For logistic regression, Nagelkerke (1991) stan-

dardized the binomial likelihood-based R2
Lik with the theoretically maximal reachable

R2, which depends on the proportion of success (yi = 1) in the data set to ensure the

value of 1 for a perfect fit, analogous to linear regression. Log likelihoods of intercept-

only and risk factor-based prediction models are given by

l0 =
∑
i

(yi log ȳ + (yi − 1) log(1− ȳ)) ,

lpred =
∑
i

(yi log ŷi + (yi − 1) log(1− ŷi)) ,

respectively, yielding

R2
Lik = 1− exp{(l0 − lpred)(2/n)},

and Nagelkerke’s R2
Nag

R2
Nag =

R2
Lik

1− exp{l0(2/n))}
.

Correlation Pearson correlation rPearson between ŷ and y,

rPearson(ŷ,y) =

∑
(ŷi − ¯̂y)(yi − ȳ)√∑

(ŷi − ¯̂y)2
√∑

(yi − ȳ)2
,

is analogous to linear regression’s multiple correlation coefficient R. Its absolute value

has limited interpretation, nevertheless, rPearson is useful for comparing different pre-

dictions for the same outcome (Agresti, 2007, p.144).

Spearman correlation is a nonparametric alternative, which measures how good an

arbitrary monotone function can capture the relationship between the two variables.

The values ŷi and yi are replaced by their ranks rg(ŷi) and rg(yi) and the Pearson

correlation is calculated,

rSpearman(ŷ,y) = rPearson(rg(ŷ), rg(y)).

Ties are assigned the average of the ranks associated with the tied observations (van

Belle and Fisher, 2004, p. 327).

Wilcoxon statistic W The Wilcoxon rank-sum test and the Mann-Whitney-U test refer

to equivalent tests, in the literature the term Wilcoxon-Mann-Whitney test is also

used (Bergmann et al., 2000). The test statistic is based on the sum of ranks, rg(ŷ),

for either yi = 1 or yi = 0 observations, with the ranks derived from the entire ŷ vector.

Let n0 be the number of ŷi = 0, and n1 the number of yi = 1, (it holds n0 + n1 = n),
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then

W =
n∑
i=1

rg(ŷi)I(yi = 0)− n0(n0 + 1)

2
,

or

W =
n∑
i=1

rg(ŷi)I(yi = 1)− n1(n1 + 1)

2
,

which will be different in general, but lead to the same conclusions when used for

statistical testing. W is equivalent to the AUC (Hanley and McNeil, 1982),

AUC =
W

n0n1

.

Again, ties are assigned the average of the ranks associated with the tied observations.

Hosmer-Lemeshow The Hosmer-Lemeshow-Test (Lemeshow and Hosmer Jr, 1982; Hos-

mer and Lemeshow, 1980, 2000, p.147) groups the observations by deciles (if G = 10)

of risks (ŷ) and calculates a χ2 measure.

HL =
G∑
g=1

(
Og − ng ¯̂yg

)2

ng ¯̂yg(1− ¯̂yg)
,

with Og being the sum of observed yi = 1 in group g,

Og =

ng∑
i=1

yi,

and ¯̂yg is the average prediction risk in group g,

¯̂yg =
1

ng

ng∑
i=1

ŷi.

H0 : No difference between observed outcome and model-predicted risk,

HA : Observed outcome differs from prediction,

HL
a∼ χ2(df = G− 1) when applied to an external validation dataset and

HL
a∼ χ2(df = G− 2) for internal validation.

Brier Score or mean predicted squared error:

Brier =
1

n

∑
i

(yi − ŷi)2.
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A perfect prediction has a score of 0. The score of a non-informative model depends

on the proportion of sucesses (yi = 1) in the data set. As with Nagelkerke’s R2 it can

be scaled with its maximum Briermax for a given proportion,

Briersc = 1− Brier

Briermax
,

with

Briermax = ¯̂y(1− ¯̂y)2 + (1− ¯̂y)¯̂y2 = ¯̂y (1− ¯̂y),

and ¯̂y being the arithmetic mean of ŷ (Steyerberg, 2009, p.257). Briersc ranges between

zero and one. In opposite to R2
Nag the scaling depends on the predictions ŷ and not only

on the actual outcome y. This limits the use of the scaled version to assess different

models on external data.

Deviance residuals depend on assumed distribution. (McCullagh and Nelder, 1989, p.34,

p.39). For Bernoulli distributions, deviance residuals are given by

rDi = sign(yi − ŷi)

√
2

(
yi log

(
yi
ŷi

)
+ (1− yi) log

(
1− yi
1− ŷi

))
.

An overall measure of goodness-of-fit is the sum of squared deviance residuals
∑

(rDi)
2.

Pearson residuals also depend on the assumed distribution of y. They standardize the

difference between yi and ŷi by its standard deviation. In case of assuming a Bernoulli

distribution they are given by

rPi =
yi − ŷi√
ŷi(1− ŷi)

.

As overall measure of goodness-of-fit the squared sum is used:
∑
rP 2

i . Further stan-

dardized Pearson residuals exist, which use the leverage of observations and claim to

have unit variance (Hosmer and Lemeshow, 2000, p.173).

Discrimination slope denotes the absolute difference in average predictions between suc-

cesses and failures (Steyerberg, 2009, p.264),

|¯̂yy=0 − ¯̂yy=1|,

or in more computational notation,∣∣∣∣∣ 1

n0

n∑
i=1

ŷiI(yi = 0)− 1

n1

n∑
i=1

ŷiI(yi = 1)

∣∣∣∣∣ ,
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where n0 is the number of yi = 0 and n1 the number of yi = 1. Better models have a

larger discrimination slope.

t-statistic (for discrimination) Similar to the discrimination slope the test statistic of

the two sample t-test can be used to assess separation ability. The two samples are

formed on the outcome variable yi = 0 versus yi = 1. Again, larger values of the test

statistic imply better predictions.

Calibration-in-the-large compares the average predictions and the average outcome:

ȳ − ¯̂y,

with ¯̂y = 1
n

∑
ŷi. Larger deviations from zero imply worse predictions, with nega-

tive sign corresponding to over-prediction (too high risks) and positive sign to under-

prediction.

t-statistic (for calibration) Similar to calibration-in-the-large the test statistic of the

paired t-test can be utilized, to assess the differences between predictions and out-

come,

t =
ȳD

sd(yD)
,

with yD being the vector of differences y − ŷ, ȳD its arithmetic mean and sd() the

empirical standard deviation.

Calibration slope CS is the estimated slope coefficient, β̂, in a logistic regression model

of true outcomes yi on the predicted risks ŷi, i=1, . . . , n,

log

(
P (yi = 1)

1− P (yi = 1)

)
= α + β log

(
ŷi

1− ŷi

)
,

CS ≡ β̂,

that is, the model predictions ŷi are transformed and used as the regressor variable

in the logistic model. A calibration slope for a perfectly calibrated model is 1, while

coefficients lower than 1 indicate that the predictions are too extreme. Too extreme

means that the observed mortality is higher than predicted for low-risk observations

and lower than predicted for high-risk observations (Steyerberg et al., 2001). The cali-

bration slope is also linked to discrimination, higher slopes imply better discrimination

(Steyerberg, 2009, p.264).
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