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Abstract—In many applications only the low frequency com-
ponents of a signal can be measured due to the lowpass behavior
of many physical systems. Nevertheless, if additional information
on the structure of the signal is known, it might still be possible to
reconstruct the signal from its low-frequency content. This paper
studies signals in shift-invariant spaces with multiple generators
and derives necessary conditions on the bandwith of the lowpass
filter as well as sufficient conditions on the generators such that
signal recovery is possible. If the signal can not be recovered from
its low frequency components, an appropriate pre-processing of
the signal is proposed which improves the reconstruction ability.
In particular, it is shown that modulating the signal with one or
more mixing functions prior to lowpass filtering can ensure the
recovery of the signal in many cases.

I. INTRODUCTION

Lowpass filters are prevalent in biological, physical and

engineering systems such that in many scenarios, we do not

have access to the entire frequency content of a signal we

wish to process, but only to its low frequencies. In this paper,

we study in detail under what conditions a signal x can be

recovered from its low-frequency content. Clearly if we have

no prior knowledge on the original signal, and we are given

a lowpassed version of it, then we cannot recover the missing

frequency content. However, if some knowledge on the signal

structure is available then it may be possible to interpolate it

from the given data. Our focus here is on signals that lie in

shift-invariant (SI) spaces, generated by multiple generators

[1]–[3]. For these signals, we derive a necessary condition on

the cutoff frequency of the low pass filter (LPF) and sufficient

conditions on the generators such that x can be recovered

from its lowpassed version. If these recovery conditions are

satisfied, a concrete method to reconstruct x from its lowpass

frequency content is provided.

As expected, there are scenarios in which recovery is not

possible. For these cases, we investigate whether we can

improve our ability to determine the signal by appropriate

pre-processing. In particular, we consider the situation where

the signal x is modulated by multiplying it with a periodic

mixing function prior to lowpass filtering. We then derive

conditions on the mixing function to ensure perfect recovery.

As we show, a larger class of signals can be recovered this

way. Moreover, by applying a bank of mixing functions, the

necessary cutoff frequency in each channel can be reduced.

Finally, we briefly discuss how the results we developed can

be applied to sampling sparse signals in SI spaces at rates

x(t) � ��
ω−Ωc

2
Ωc
2

� y(t)

Fig. 1. Lowpass filtering of x(t) with bandwidth Ωc = 2π/Tc.

lower than Nyquist. These ideas rely on the recently developed

framework for analog compressed sensing [4]–[7]. In our

setting, they translate to reducing the LPF bandwidth, or the

number of modulators.

Because of the limited space we will not give proofs of the

presented results, but we refer to [8] for detailed proofs and

for some more concrete examples.

II. PROBLEM FORMULATION

As usual, CN , L2, and �2 denote the N -dimensional Eu-

clidean space, the space of square integrable function on

the real line, and the space of square summable sequences,

respectively. All these spaces are Hilbert spaces with the usual

inner products. Throughout the paper

x̂(ω) =
∫
R
x(t) e−iωt dt , ω ∈ R ,

denotes the Fourier transform of a function x ∈ L2, and for

any T ∈ R, the translation operator ST : L2 → L2 is defined

by (STx)(t) = x(t− a).
We consider the problem of recovering a signal x ∈ L2

from its low-frequency content. Specifically, suppose that x is

filtered by a LPF with cut-off frequency Ωc/2, as in Fig. 1:

y(t) = (PΩc
x)(t) =

1

2π

∫ Ωc/2

−Ωc/2

x̂(ω) eiωt dω .

We are going to study the following two questions:

1) What signals x can be recovered from the LPF output y?

2) Can we perform preprocessing of x prior to filtering to

ensure that x can be recovered from y?

It is well known that if x is bandlimited to [−Ωc/2,Ωc/2], then

it can be recovered from y. However, we assume here that x
lies in a general SI subspace of L2, and so it is not necessarily

bandlimited. More precisely, let φ = {φ1, . . . , φN} be a given

set of functions in L2 and let T ∈ R be a real number. Then

the shift-invariant space generated by φ is defined as [1]–[3]

ST (φ) = span
{
SkTφn : k ∈ Z ; n = 1, . . . , N

}
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and where the functions φn are referred to as the generators
of ST (φ). Thus, every function x ∈ ST (φ) can be written as

x(t) =
N∑

n=1

∑
k∈Z

an[k](S
k
Tφn)(t) , t ∈ R, (1)

with certain coefficient sequences an = {an[k]}k∈Z for every

n = 1, . . . , N . The number RI = N/T associated with ST (φ)
is usually be called the rate of innovation [9]. To guarantee a

unique and stable representation of every signal in ST (φ) in

terms of the coefficient sequences an, the generators φ and the

shift parameter T are typically chosen such that the sequence

φ := {SkTφn}n=1,...,N
k∈Z

forms a Riesz basis for ST (φ). This is

the case if there exist constants 0 < Aφ ≤ Bφ < ∞ (the so

called frame bounds) such that

Aφ ‖a‖2�2 ≤
∥∥∥∥∥

N∑
n=1

∑
k∈Z

an[k] S
k
Tφn

∥∥∥∥∥
2

L2

≤ Bφ ‖a‖2�2 , (2)

for every sequence a = {an[k]}n=1,...,N
k∈Z

in �2. Condition (2)

implies that for every x ∈ ST (φ), the coefficient sequences

an are in �2, and conversely that every x ∈ ST (φ) is uniquely

determined by some sequences an ∈ �2. In particular, (2)

guarantees that the coefficient sequences an can be recovered

from x ∈ ST (φ) by means of a linear bounded operator.

Condition (2) can be reformulated. To this end, we associate

with every sequence in L2 of the form φ := {SkTφn}n=1,...,N
k∈Z

the matrix Φ(ω) with N columns and infinity many rows

whose entry in the kth row and nth column is

[Φ(ω)]k,n = φ̂(n)(ω + kΩ) , ω ∈ [−Ω/2,Ω/2] (3)

and where Ω := 2π/T . Moreover, the N ×N matrix

Gφ(ω) :=
1
T Φ(ω)∗ Φ(ω)

is called the Grammian associated with the sequence φ.

Therewith, we can reformulate the condition for φ to be a

Riesz basis. Namely [2], φ is a Riesz basis with frame bounds

Aφ, Bφ if and only if

Aφ IN � Gφ(ω) � Bφ IN , a.e. ω ∈ [−Ω/2,Ω/2] . (4)

Examples of SI spaces include multiband signals [10] and

spline functions [11], [12]. Expansions of the type (1) are

also encountered in communication systems, when the analog

signal is produced by pulse amplitude modulation.

III. RECOVERY CONDITIONS

The first question we address is whether we can recover

x ∈ ST (φ) of the form (1) from the output y = PΩcx of a LPF

with bandwidth Ωc, assuming that the generators φ satisfy (4).

To recover x ∈ ST (φ) it is sufficient to recover the sequences

an = {an[k]}k∈Z because the generators φn are assumed to

be known. Since PΩc
ST = STPΩc

and because both operators

are bounded, the output of the LPF can be written as

y(t) = (PΩcx)(t) =

N∑
n=1

∑
k∈Z

an[k] (S
k
Tψn)(t)

where ψn := PΩc
φn denotes the lowpass filtered generator φn.

This shows that y ∈ ST (ψ) lies in the SI space spanned by the

functions ψ = {ψ1, . . . , ψN}. Consequently, the coefficient

sequences an, n = 1, . . . , N can be recovered from y if

ψ = {SkTψn}k,n forms a Riesz basis for ST (ψ), i.e. if

the corresponding Grammian Gψ(ω) satisfies (4) for some

0 < Aψ ≤ Bψ < ∞. Whether this is true depends on the

bandwidth Ωc of the LPF and on the generators φ. Next we

give a necessary condition on the LPF bandwidth Ωc such that

signal recovery is possible.

Proposition 1: Let ST (φ) be a SI space generated by N
functions φ = {φ1, . . . , φN} and set Ω := 2π/T . Then every
x ∈ ST (φ) can be recovered from y = PΩc

x only if the LPF
bandwith is larger or equal than then the rate of innovation
of ST (φ), i.e. only if

Ωc ≥ NΩ = N 2π
T = 2π RI . (5)

The above condition on the bandwidth Ωc of the LPF is not

sufficient, in general. However, if Ωc satisfies (5), sufficient

conditions on the generators φ can be derived such that the

lowpass filtered generators ψ generate a Riesz basis for ST (ψ),
i.e. such that x can be recovered from y.

Proposition 2: Let φ = {φ1, . . . , φN} be the generators of
ST (φ) and let Ωc be the bandwidth of the LPF. Denote by L
the smallest integer such that (Ωc/Ω− 1)/2 ≤ L, and define
the (2L+ 1)×N matrix ΦL(ω) by

[ΦL(ω)]k,n = φ̂n(ω + kΩ) , k = −L, . . . , L . (6)

Then every x ∈ ST (φ) can be recovered from y = PΩc
x if

there exists a constant α > 0 such that

GL(ω) :=
1
T Φ∗

L(ω)ΦL(ω) 	 αIN (7)

for almost all ω ∈ [−Ω/2,Ω/2].
When Ωc → ∞ (i.e. L → ∞) the matrix GL(ω) reduces to

Gφ(ω) which by definition satisfies (4). However, since for

the calculation of the entries of GL(ω) we are only summing

over a partial set of the integers, we are no longer guaranteed

that GL(ω) satisfies the lower bound of (4).

IV. SIGNAL RECOVERY

We now describe a simple method to reconstruct the desired

signal x from its low frequency components. Throughout

this section, it is assumed that the necessary and sufficient

conditions of Prop. 1 and 2, respectively, are satisfied.

Taking the Fourier transform of (1), we see that every x ∈
ST (φ) can be expressed in the Fourier domain as

x̂(ω) =
∑N

n=1 ân(e
iωT ) φ̂n(ω) = φ̂(ω)T â(eiωT ) (8)

where ân(e
iωT ) =

∑
k∈Z

an[k] e
−iωkT is the Ω-periodic

discrete time Fourier transform of the sequence {an[k]}k∈Z,

and where â(eiωT ) denotes the length N vector whose nth

element is equal to ân(e
iωT ) and φ̂(ω) denotes the vector

whose nth element is equal to φ̂n(ω). The output y = PΩc
x

of the LPF is bandlimited to ω ∈ [−Ωc/2,Ωc/2] so that

ŷ(ω) = φ̂(ω)T â(eiωT ) , ω ∈ [−Ωc/2,Ωc/2]. (9)
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Fig. 2. Pre-processing with a bank of M mixing functions.

For every ω ∈ [−Ωc/2,Ωc/2], (9) describes an equation for

the N unknowns ân(e
iωT ). However, we need at least N

equations to recover the length-N vector â(eiωT ). According

to Prop. 1 the bandwidth of the LPF has to be at least

Ωc ≥ NΩ. Therefore we can form more equations from

the given data by noting that â is Ω-periodic, while φ̂, and

consequently ŷ, are generally not. Specifically, we have that

â(ei[ω+kΩ]T ) = â(eiωT ) for every ω ∈ [−Ω/2,Ω/2] and all

k ∈ Z. Consequently, by evaluating ŷ and φ̂ at frequencies

−Ωc/2 ≤ ωk ≤ Ωc/2, we can use (9) to generate more

equations. To this end, let L be defined as in Prop. 2. We

then generate the equations

ŷk(ω) := ŷ(ω − kΩ) =
∑N

n=1 φ̂n(ω − kΩ) ân(ω − kΩ)

for k = −L, . . . , 0, . . . , L and for ω ∈ [−Ω/2,Ω/2]. All these

observations are in the passband regime of the LPF. This set

of 2L+ 1 equations may be written as

ŷ(ω) = ΦL(ω) â(e
iωT ) , ω ∈ [−Ω/2,Ω/2], (10)

where ŷ(ω) = [ŷ−L(ω), . . . , 0, . . . , ŷL(ω)]
T is a length 2L+1

vector containing all the different observations ŷk of the output

ŷ, and ΦL(ω) is the (2L+ 1)×N matrix given by (6).

If the matrix ΦL(ω) satisfies the sufficient conditions of

Prop. 2 then the unknown vector â(eiωT ) can be recovered

from (10) by solving the linear set of equations for all ω ∈
[−Ω/2,Ω/2]. In particular, there exists a left inverse ΦL(ω)

−1

of ΦL(ω) such that â(eiωT ) = ΦL(ω)
−1 ŷ(ω). Finally, the

desired sequences {an[k]}k∈Z are the Fourier coefficients of

the Ω periodic functions ân.

V. PREPROCESSING OF THE SIGNAL

If the conditions of Prop. 2 are satisfied then every signal

x ∈ ST (φ) can be recovered from y = PΩc
x. Otherwise an

interesting question is whether we can pre-process x before

lowpass filtering (u = Mx) in order to ensure its recovery

from the LPF output y = PΩcu = PΩc Mx. In particular we

consider pre-processing of x by multiplying it with a set of

T -periodic mixing functions pm as shown as in Fig. 2:

ym(t) = (Mmx) = pm(t)x(t) , m = 1, . . . ,M .

A. Single Channel (M = 1)

We begin with the case where the bank of mixers in Fig. 2

consist of only a single mixing function p and a single output

y. Since p is assumed to be T -periodic, it can be written as

p(t) =
∑

k∈Z
bk e

i2πkt/T (11)

with the Fourier coefficients

bk =
1

T

∫ T/2

−T/2

p(t) e−i2πkt/Tdt , k ∈ Z . (12)

The output y = PΩc(p x) of the LPF is then given in the

frequency domain by

ŷ(ω) =
∑

k∈Z
bk x̂(ω − kΩ), ω ∈ [−Ωc/2,Ωc/2]. (13)

Using (8) and the fact that ân(e
iωT ) is Ω-periodic, equation

(13) can be rewritten as

ŷ(ω) =
∑N

n=1 ân(e
iωT )

∑
k∈Z

bk φ̂n(ω − kΩ) (14)

with ω ∈ [−Ωc/2,Ωc/2]. Defining

γ̂n(ω) :=
∑

k∈Z
bk φ̂n(ω − kΩ), n = 1, . . . , N (15)

and denoting by γ̂ the vector whose nth element is γ̂n, we

express (14) as

ŷ(ω) = γ̂(ω)T â(eiωT ), ω ∈ [−Ωc/2,Ωc/2]. (16)

This equation is similar to (9) with γ̂ replacing φ̂. Therefore,

as in the case without pre-processing, we can create 2L
additional equations (where L is defined as in Prop. 2) by

evaluating ŷ(ω) at frequencies ω+kΩ. This yields the system

of equations

ŷ(ω) = ΓL(ω) â(e
iωT ) , ω ∈ [−Ω/2,Ω/2] (17)

with ŷ and â are defined as in (10) and the (2L + 1) × N
matrix ΓL(ω) is given by

[ΓL(ω)]k,n = γ̂n(ω + kΩ) , k = −L, . . . , 0, . . . , L .

So due to the mixing of the signal, the coefficient matrix

ΦL(ω) in (10) is changed to ΓL(ω) in (17). This new

coefficient matrix is constructed out of the "new generators"

{γn}Nn=1 in exactly the same way as ΦL(ω) is constructed

from the original generators {φn}Nn=1. Consequently, â can

be recovered from the given measurements as long as ΓL(ω)
has full column rank for all ω ∈ [−Ω/2,Ω/2], and it is not

hard to see (cf. [8]) that to this end the LPF bandwidth has to

satisfy again the necessary condition Ωc ≥ NΩ of Prop. 1.

However, we now want to show that the sufficient conditions

of Prop. 2 are easier to satisfy for ΓL(ω) than for the original

matrix ΦL(ω) given in (6). To this end, we write ΓL(ω) as

ΓL(ω) = BL Φ(ω), (18)

where Φ(ω) is the matrix (3) with N columns and infinite

rows. The matrix BL with 2L+ 1 rows and infinite columns

contains the Fourier coefficients {bk}k∈Z of the mixing se-

quence (11). Its entry in the nth row and mth column is

[BL]n,m = bm−n , n = −L, . . . , 0, . . . , L ; m ∈ Z . (19)

Representation (18) follows immediately from the relation

γ̂n(ω − �Ω) =
∑

k∈Z
bk−�φ̂n(ω − kΩ) for the entries of the
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matrix ΓL(ω). Due to the similarity with the case without

preprocessing, it is clear that recovery from the LPF output

y will be possible if ΓL(ω) satisfies a condition like (7),

i.e. the question is whether we can choose the sequence

{bk}k∈Z ∈ �2, and consequently the mixing function p, so that

the matrix Γ∗
L(ω)ΓL(ω) = Φ∗(ω)B∗

LBLΦ(ω) is invertible

for all ω ∈ [−Ω/2,Ω/2]. If we choose p(t) ≡ 1 then b0 = 1
and bk = 0 for all k �= 0. Consequently BLΦ(ω) is comprised

of the central 2L+1 rows of Φ(ω), so that ΓL(ω) = ΦL(ω).
However, by allowing for general sequences {bk}k∈Z, we have

more freedom in choosing BL such that BL Φ(ω) may have

full column-rank, even if ΦL(ω) does not.

B. Multiple Channels

In the single channel case, it was still necessary that the

cutoff frequency Ωc of the LPF is at least N times larger than

the bandwidth of the signal â in order to be able to recover the

signal. Using several channels can reduce the cutoff frequency

Ωc of the filter in each channel, from which the original signal

x is still recoverable. Suppose now that we have M ≥ N
preprocessing channels, each of which uses a different mixing

sequence, as in Fig. 2. Since M ≥ N , we expect to be able to

reduce the cutoff in each channel. We therefore consider the

case in which Ωc = Ω. The output ym = PΩc
(pm x) of the

mth channel in the frequency domain is then equal to

ŷm(ω) = γ̂m(ω)T â(eiωT ), ω ∈ [−Ω/2,Ω/2]

where γ̂m(ω) is the length N vector with nth element

[γ̂m(ω)]n = γ̂m,n(ω) :=
∑
k∈Z

b
(m)
k φ̂i(ω + kΩ) ,

and where {b(m)
k }k∈Z are the Fourier coefficients associated

with the mth sequence pm. Defining by ŷ(ω) the length M
vector with mth element ŷm(ω), we conclude that

ŷ(ω) = ΓM (ω) â(eiωT ), ω ∈ [−Ω/2,Ω/2]

where ΓM (ω) is the M×N matrix with entries [ΓM (ω)]m,n =
γ̂m,n(ω). Now, all we need is to choose the M sequences

{b(m)
k }k∈Z ∈ �2 such that ΓM (ω) has full column rank. More

specifically, as before we can write

ΓM (ω) = BM Φ(ω), (20)

where BM is a matrix with M rows whose mth row is given

by the sequence {b(m)
k }k∈Z, i.e.

[BM ]m,k = b
(m)
k , m = 1, . . . ,M ; k ∈ Z .

By our assumption Φ(ω) has full column rank and so it

remains to choose BM such that ΓM (ω) is invertible for every

ω ∈ [−Ω/2,Ω/2].
Note that compared with the previous section, where only

one mixing sequence was applied, the problem of finding an

appropriate matrix BM becomes simpler: In the former case

BL has to have the special (diagonal) form (19), whereas the

entries of BM can be chosen almost arbitrarily.

VI. APPLICATIONS AND EXAMPLES

A special choice of periodic functions that are easy to

implement in practice are binary sequences. These mixing

functions were studied in [13] in the context of sparse multi-

band sampling. More specifically, pm, m = 1, . . . ,M are

chosen to attain the values ±1 over intervals of length T/P
where P is a given integer. Formally,

pm(t) = α(m)
n , nT

P ≤ t < (n+ 1)TP , n = 0, . . . , P − 1
(21)

with α
(m)
n ∈ {+1,−1}. In this case the Fourier coefficients

(12) of the mth sequence pm become

b
(m)
k =

1

T

P−1∑
n=0

α(m)
n e−i 2πP nk

∫ T/P

0

e−i 2πT ktdt .

Setting ω0 := 2π/P and evaluating the integral gives

b
(m)
0 =

1

P
α̂
(m)
0 and b

(m)
k =

1− e−iω0k

i 2πk
α̂
(m)
k , k �= 0

where {α̂(m)
k }k∈Z denotes the P -periodic discrete Fourier

transform (DFT) of the sequence {α(m)
n }P−1

n=0 . With these

mixing sequences, the matrix BM can be written as

BM = QF∗W, (22)

where Q is a matrix with P columns and M rows, whose mth

row is given by the sequence {α̂(m)
n }P−1

n=0 , F is the P × P
Fourier matrix, and W is a matrix with P rows and infinitely

many columns consisting of block diagonal matrices of size

P × P whose diagonal values are given by the sequence

{wk}k∈Z defined by w0 = 1/P and wk = 1−e−iω0k

i 2πk for

k �= 0. Applying these binary mixing sequences, the problem

is now to find a finite M × P matrix Q with values in

{+1,−1} such that QF∗WΦ(ω) has full column rank for

every ω ∈ [−Ω/2,Ω/2]. The next example shows how to

select Q in the case of bandlimited generators.

EXAMPLE 1 (BANDLIMITED GENERATORS): We consider

the case where each generator φn is bandlimited to the interval

[−K Ω/2,K Ω/2] for some K ∈ N, and with N = 2K + 1
generators. In this case, Φ(ω) = ΦK(ω) is essentially an

N ×N matrix (all other entries are zero) which is invertible

for every ω ∈ [−Ω/2,Ω/2] according to assumption (4).

We now apply M = N different mixing sequences

{pm}Mm=1 having the special structure (21), and we choose

P = N . According to (20) and (22) the matrix ΓM (ω) then

becomes

ΓM (ω) = QF∗ WΦ(ω), (23)

where QF∗ and WΦ(ω) are matrices of size N × N . The

matrix WΦ(ω) may be considered as the product of the

invertible N × N matrix Φ(ω) = ΦK(ω) with an N × N
diagonal matrix consisting of the central diagonal matrix of

W, i.e.

WΦ(ω) = diag(w0, . . . , wN−1)ΦK(ω).
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Since this diagonal matrix is invertible also WΦK(ω) is

invertible for every ω ∈ [−Ω/2,Ω/2]. Therefore, using the fact

that the Fourier matrix F is invertible, ΓM (ω) is invertible for

each ω ∈ [−Ω/2,Ω/2] if the values {α(m)
n }Pn=1 of the mixing

sequences pm are chosen such that Q is invertible. This can

be achieved by choosing Q as a Hadamard matrix of order

N . It is known that Hadamard matrices exists at least for all

orders up to 667 [14].

In the previous example, ΦK(ω) was an N ×N invertible

matrix for all ω ∈ [−Ω/2,Ω/2]. According to Prop. 2 a

recovery of the signal x without preprocessing is therefore

possible if the bandwidth Ωc of the LPF is larger than NΩ.

However, the previous example shows that preprocessing of

x by applying binary sequences in M = N channels allows

recovery of the signal already from its signal components in

the frequency range [−Ω/2,Ω/2].
For simplicity we assumed throughout that the LPF band-

width Ωc is equal to the signal bandwidth Ω and that the

number of channels M is at least equal to the number of

generators N . However, if M < N , recovery of the signal

may still be possible if the bandwidth of the LPF is increased.

VII. CONNECTION WITH SPARSE ANALOG SIGNALS

In this section we want to discuss the incorporation of

sparsity into our approach. To this end, we follow [5] to

describe sparsity of analog signals in SI spaces. Specifically,

we assume that only K out of the N generators φn are active,

so that at most K of the sequences {an[k]}k∈Z are nonzero.

In [5], it was shown how such signals can be sampled

and reconstructed from samples at a low rate of 2K/T . The

samples are obtained by pre-processing the signal x with a set

of 2K sampling filters, whose outputs are uniformly sampled

at a rate of 1/T . Without the sparsity assumption, at least N
sampling filters are needed where generally N is much larger

than K. In contrast to this setup, here we are constrained to

sample at the output of a LPF with given bandwidth. Thus,

we no longer have the freedom to choose the sampling filters

as we wish. Nonetheless, by exploiting the sparsity of the

signal we expect to be able to reduce the bandwidth needed

to recover x(t) of the form (1), or in turn, to reduce the number

of branches needed when using a bank of modulators.

We have seen that the ability to recover x depends on the left

invertibility of the matrix ΦL(ω) (or ΓL(ω)). With appropriate

definitions, our problem becomes that of recovering â(eiωT )
from the linear set of equations (10) (with ΓL(ω) replacing

ΦL(ω) when preprocessing is used). Our definition of analog

sparsity implies that at most K of the Fourier transforms

ân(ω) have non-zero energy. Therefore, the infinite set of

vectors {â(eiωT ) , ω ∈ [−Ω/2,Ω/2]} share a joint sparsity

pattern with at most K rows that are not zero. This in turn

allows us to recover {â(eiωT ), ω ∈ [−Ω/2,Ω/2]} from fewer

measurements. Under appropriate conditions, it is sufficient

that ŷ(ω) has length 2K, which in general is much smaller

than N . Thus, fewer measurements are needed with respect

to the full model (1). The reduction in the number of mea-

surements corresponds to choosing a smaller bandwidth of the

LPF, or reducing the number of modulators.

In order to recover the sequences in practice, we rely on

the separation idea advocated in [4]: we first determine the

support set, namely the active generators. This can be done

by solving a finite dimensional optimization problem under

the condition that ΦL(ω) (or ΓL(ω)) are fixed in frequency

up to a possible frequency-dependent normalization sequence.

Recovery is then obtained by applying results regarding infi-

nite measurement vector (IMV) models [4]. When ΦL(ω) does

not satisfy this constraint, we can still convert the problem

to a finite dimensional optimization problem as long as the

sequences {an[k]} are rich [6]. This implies that every finite

set of vectors share the same frequency support. We refer to

[4]–[6] for more details on the recovery of space signals.

The main point we want to stress is that the ideas developed

in this paper can also be used to treat the recovery of sparse SI

signals from their lowpass content. The difference is that we

can relax the requirement for invertibility of ΦL(ω),ΓL(ω).
Instead, it is sufficient that these matrices satisfy the known

conditions from the compressed sensing literature. This in

turn allows in general reduction of the LPF bandwidth, or

the number of modulators, in comparison with the non-sparse

scenario.

REFERENCES

[1] C. de Boor, R. DeVore, and A. Ron, “The structure of finitely generated
shift-invariant spaces in L2(Rd),” J. Funct. Anal., vol. 119, no. 1, pp.
37–78, 1994.

[2] J. S. Geronimo, D. P. Hardin, and P. R. Massopust, “Fractal functions
and wavelet expansions based on several scaling functions,” J. Approx.
Theory, vol. 78, no. 3, pp. 373–401, 1994.

[3] O. Christensen and Y. C. Eldar, “Generalized shift-invariant systems
and frames for subspaces,” J. Fourier Anal. Appl., vol. 11, no. 3, pp.
299–313, Jun. 2005.

[4] M. Mishali and Y. C. Eldar, “Reduce and Boost: Recovering Arbitrary
Sets of Jointly Sparse Vectors,” IEEE Trans. Signal Process., vol. 56,
no. 10, pp. 4692–4702, Oct. 2008.

[5] Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant
spaces,” IEEE Trans. Signal Process., vol. 57, no. 8, pp. 2986–2997,
Aug. 2009.

[6] ——, “Uncertainty Relations for Shift-Invariant Analog Signals,” IEEE
Trans. Inf. Theory, vol. 55, no. 12, pp. 5742–5757, Dec. 2009.

[7] K. Gedalyahu and Y. C. Eldar, “Time-Delay Estimation From Low-
Rate Samples: A Union of Subspaces Approach,” IEEE Trans. Signal
Process., vol. 58, no. 6, pp. 3017–3031, Jun. 2010.

[8] Y. C. Eldar and V. Pohl, “Recovering Signals from Lowpass Data,” IEEE
Trans. Signal Process., vol. 58, no. 5, pp. 2636–2646, May 2010.

[9] M. Vetterli, P. Marziliano, and T. Blu, “Sampling Signals With Finite
Rate of Innovation,” IEEE Trans. Signal Process., vol. 50, no. 6, pp.
1417–1428, Jun. 2002.

[10] M. Mishali and Y. C. Eldar, “Blind Multiband Signal Reconstruction:
Compressed Sensing for Analog Signals,” vol. 57, no. 3, pp. 993–1009,
Mar. 2009.

[11] I. J. Schoenberg, Cardinal Spline Interpolation. Philadelphia, PA:
SIAM, 1973.

[12] Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling: Nonlin-
earities, smoothness and sparsity,” IEEE Signal Process. Mag., vol. 26,
no. 3, pp. 48–68, May 2009.

[13] M. Mishali and Y. C. Eldar, “From Theory to Practice: Sub-Nyquist
Sampling of Sparse Wideband Analog Signals,” IEEE J. Sel. Topics
Signal Process., vol. 4, no. 2, pp. 375–391, Apr. 2010.

[14] H. Kharaghani and B. Tayfeh-Rezaie, “A Hadamard matrix of order
428,” J. Combin. Des., vol. 13, no. 6, pp. 435–440, Nov. 2005.

257


