

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Produktentwicklung

Solving Engineering Design Problems through a

Combination of Generative Grammars and Simulations

Amir Hooshmand Shabanabadi

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Ir. Daniel Rixen

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Udo Lindemann

2. Prof. Matthew Ira Campbell, PhD / Oregon State

University, Corvallis, OR, USA

Die Dissertation wurde am 16.01.2014 bei der Technischen Universität München

eingereicht und durch die Fakultät für Maschinenwesen

am 20.03.2014 angenommen.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;

detaillierte bibliografische Daten sind im Internet über

http://dnb.d-nb.de abrufbar.

ISBN 978-3-8439-1573-1

© Verlag Dr. Hut, München 2014

 Sternstr. 18, 80538 München

Tel.: 089/66060798

www.dr.hut-verlag.de

Die Informationen in diesem Buch wurden mit großer Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig

ausgeschlossen werden. Verlag, Autoren und ggf. Übersetzer übernehmen keine juristische Verantwortung oder

irgendeine Haftung für eventuell verbliebene fehlerhafte Angaben und deren Folgen.

Alle Rechte, auch die des auszugsweisen Nachdrucks, der Vervielfältigung und Verbreitung in besonderen Verfahren wie

fotomechanischer Nachdruck, Fotokopie, Mikrokopie, elektronische Datenaufzeichnung einschließlich Speicherung und

Übertragung auf weitere Datenträger sowie Übersetzung in andere Sprachen, behält sich der Autor vor.

1. Auflage 2014

ABSTRACT

In this thesis a framework is proposed which considers the use and the applicable different

knowledge levels at various abstractions within an automated design process. For an effective

utilization of available design information and knowledge, the computational synthesis

process is divided into three main phases: search, optimization and modification. The

generative graph grammar for representing design knowledge is used but some aspects are

applicable to other representations as well. The generality and flexibility of the proposed

mechanism is demonstrated by automating the synthesis of three engineering design problems

in two domains. For all cases the graph grammar interpreter, GraphSynth, is used to carry out

graph transformations, which define different topologies for a problem. The proposed method

combines generative design synthesis methods with conventional simulation models, leading

to a significant reduction in the numerical operations in all three design problems.

The first engineering design case is topology and shape optimization of fluid channels. By

utilizing a multiple representation approach, there is no need for a large grid of variables to

represent the topology, which causes significant computational savings and allows the

simulation model to be independent. After evaluating and optimizing the generated graphs,

they are transformed into meaningful 3D shapes to be simulated in a CFD solver. The second

design problem is structural layout optimization. Through applying the proposed framework,

a design technique is produced to achieve optimal topologies and shapes for cable trusses

considering various constraints such as stress, displacement, stability. Furthermore,

manufacturing issues and material imperfections and limitations can be considered in the

synthesis. The last design problem is to produce large irregular tensegrity structures. Unlike

most of the form-finding methods, the approach does not require the description of the

connectivity of the tensegrity structures to define the shape of the tensegrities. It uses graphs

to represent the tensegrity structures, which allows a very fast generation of stable tensegrity

solutions for a given design problem.

The effectiveness of the proposed method in all of the cases is checked by solving and

comparing a variety of available test problems found in the literature. Furthermore by solving

complex large scale three dimensional problems, the robustness of the method is tested. The

results show that the approach not only creates the existing solutions for available test

problems, it creates new structures that have never been seen before. The contribution

achieved in this work provides a mechanism for designers to utilize design information and

knowledge at all abstraction levels. Besides applying and testing the framework in other

domains and design cases, future work may include the improvement of search strategies,

which are used for exploring the design space to achieve faster results in larger design spaces.

ACKNOWLEDGEMENTS

This work was written during my tenure as both a scientific research assistant at the Institute

of Product Development at the Technische Universität München (TUM) from November

2010 until January 2014 and as an exchange researcher at the Automated Design Lab at the

University of Texas at Austin from September 2012 to July 2013.

I am greatly thankful for the mentorship provided by Prof. Matthew Campbell. Without his

intense support of my research and confidence in my abilities to manifest my ideas, this thesis

would not have been possible. His abundant insights and willingness to share knowledge

helped me a lot in writing this doctoral thesis in a much shorter time than originally planned.

Many thanks to Prof. Kristina Shea for her supervision during the first 17 months of my

research. Our research meetings were invaluable for increasing my insight in the field of

CDS.

I would like to heartily thank Prof. Dr.-Ing. Udo Lindemann for the wonderful support of my

work and for offering me a very productive and pleasant working environment at the Institute

of Product Development.

I would also like to thank my sponsor institute “Institute for Advanced Study, Technische

Universität München (IAS)”. And many thanks to the IAS staff especially Ms. Stefanie

Hofmann for her support and helpfulness.

Special thanks to all my colleagues at the Institute of Product Development. I learned so much

through the opportunities you provided.

Most importantly, this work would have not been possible without the continuous

understanding, love and support from my wife Nina Polous, who always encouraged me in

my work and offered patience and comprehension in stressful times.

Garching, January 2014 Amir Hooshmand

The following publications are part of the work presented in this thesis:

Hooshmand, A., & Campbell, M. I., (2014). Layout Synthesis of Fluid Channels Using
Generative Graph Grammars. AIEDAM, Computational Design Synthesis Special Issue,
Vol. 28, No.3, 2014.

Hooshmand, A., & Campbell, M. I., (2013). Topology Optimization of Fluid Channels Uing
Generative Graph Grammars. In 39th Design Automation Conference,. ASME.

Hooshmand, A., Schlaich, M., Belaus, L., & Campbell, M. I., (2013). CDS Platform - a
Platform for Multi-Physics Computational Design Synthesis. In U. Lindemann, S.
Venkataraman, Y. Kim, S. Lee, P. Papalambros, & W. Chen (Eds.), 19th International
Conference on Engineering Design (ICED13), Design for Harmonies, Vol.9: Design
Methods and Tools (pp. 099–108). Seoul, Korea: Design Society.

Hooshmand, A., Campbell, M. I., & Shea, K., (2012). Steps in Transforming Shapes
Generated With Generative Design Into Simulation Models. In Volume 3: 38th Design
Automation Conference, Parts A and B (p. 883-892). ASME.

Hooshmand, A., & Campbell, M. I., Truss Layout Optimization using Generative Design
Synthesis Approach. Computers & Structures. (under review)

Hooshmand, A., & Campbell, M. I., Tensegrity Form-Finding Using Generative Design
Synthesis Approach. International Journal of Solids and Structures. (under review)

CONTENTS

1. Introduction 1

1.1 Three Phases of the Synthesis Process 2

1.2 Applicability of Knowledge Levels 3

1.3 Capturing Design Information and knowledge 5

1.3.1 Design information and knowledge 5

1.3.2 Capturing information and knowledge 6

1.3.3 Generative grammars 7

1.3.4 Graph grammars 7

1.4 Conclusions 8

2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge 9

2.1 Introduction 9

2.2 Topology optimization 11

2.3 Approach 11

2.3.1 Topology generation 12

2.3.2 Transformation 22

2.3.3 CFD Evaluation 22

2.4 Results and Discussions 23

2.4.1 Benchmark Examples 23

2.4.2 Layout design of a flow distributor 26

2.4.3 Complex channel layouts 30

2.5 Conclusions 31

3. Truss Layout Optimization using Generative Design Synthesis Approach 33

3.1 Introduction 33

3.2 Load flow path principal 35

3.3 Approach 36

3.3.1 Analysis of the structures 37

3.3.2 Shape and topology synthesis 39

3.3.3 Transformation 50

II Contents

3.4 Results and Discussions 51

3.4.1 Changing the building material of the structure 51

3.4.2 Changing the direction and position of the load 52

3.4.3 Topological benchmarking of the results 53

3.4.4 Three dimensional problems 56

3.4.5 Exploring an arbitrary ground structure 57

3.5 Conclusions 59

4. Tensegrity Form-Finding Using Generative Design Synthesis Approach 61

4.1 Introduction 61

4.2 Approach 62

4.2.1 Grammar Rules 63

4.2.2 Search 67

4.2.3 Optimization 68

4.2.4 Transformation 68

4.3 Results and Discussions 69

4.4 Conclusions 72

5. Computational Design Synthesis (CDS) Platform 73

5.1 Introduction 73

5.2 Open Sourcing 74

5.3 CDS Platform 74

5.3.1 A module / programming based platform 75

5.3.2 System Architecture 75

5.3.3 Integrated tools 77

5.4 Applications 79

5.4.1 Shape synthesis for axisymmetric problems 79

5.4.2 Fluid channel synthesis 80

5.4.3 Lightweight design of a triangle 81

5.5 Conclusions 82

6. Conclusions 83

7. References 85

1. Introduction

The significant amount of computing power and memory of today’s computers has enabled

the development of new methods and algorithms for diverse areas of application. However,

the amount of design automation in different fields varies drastically. Computer aided tools

for designing integrated circuits covers the whole design process from synthesis to simulation,

analysis, and optimization (Whitney, 1996). In mechanical engineering, Computer Aided

Design (CAD) technologies are used mainly for analysis and representational purposes

(Celani, 2002). These tools mainly concentrate on analysis and optimization of specific details

of a proposed solution (Alber and Rudolph, 2004). They do not typically cover synthesis and

leave the most critical part of the conceptual design, i.e. finding a solution, to human

designers (Hoisl and Shea, 2011; Schotborgh et al., 2006). Design synthesis is an area of

research, which is focused on developing methods and tools, to support the generation of

solutions at the early phases of the design (Chakrabarti et al., 2011). One of the main

problems of automated design synthesis is utilizing design knowledge and information during

the synthesis process. In most of the developed synthesis methods in the literature, through an

interactive visual approach for generating solutions, the user can easily prevent the creation of

invalid designs, whereas it is not in an automatic process possible (among others see (Hoisl

and Shea, 2011)). The problem lays in the incapability to capture and use design information

and knowledge for guiding the process in the automatic generation not in the lack of

information. Because in the interactive generation process, the designer uses information in

the design to make the design decisions for creating the solutions, whereas the computer does

not have access to such information for making decisions. Hence, developing adequate

approaches to cope with the design information and knowledge of an evolving artifact is of

vital importance.

In this thesis we propose a framework for capturing and using design knowledge in the

synthesis processes using generative graph grammars. This framework has two parts. First,

the design process is divided into three main phase; search, optimization and modification.

Each phase may have multiple sub phases with different levels of abstraction. The reason for

this division is that a design solution evolves during the design process, which means the

abstraction level of the design changes progressively. Therefore for an efficient and effective

utilization of design information and knowledge during the synthesis process, different

mechanisms in different phases of the design are required to guide the design decision-

making. In general in the search phase, the topology of the solutions is defined, whereas in the

optimization phase the shape of the design solutions is determined. In the final modification

phase the detailed-design is accomplished. The second part of the framework is providing a

base for using appropriate type of information and knowledge in search, optimization and

modification phases of the design. This base determines the applicability of available design

information and knowledge in each phase.

By solving three engineering design problems in two different domains; fluid mechanics and

structural mechanics, the proposed framework is validated. The design decision-making

process is made more efficient by an appropriate leveraging of design information and

2 1. Introduction

knowledge. The design problems are extensively discussed in chapters 2, 3 and 4. The results

show that dividing the synthesis process in three phases and utilizing design information and

knowledge in these phases – however with different degrees of utilization – not only is a

guarantee to generate many alternative valid and optimum solutions, it eliminates the

generation of invalid design candidates. These invalid solutions normally constitute a big part

of the design space in automatic synthesis approaches due to inappropriate design decision-

makings.

After this introductory section, in sections 1 the division of the design process in three phases

is discussed. Section 2 introduces different levels of knowledge and their utilization in the

synthesis process. In section 3, capturing design information and knowledge in a

representation is discussed. And section 4 concludes the first chapter.

1.1 Three Phases of the Synthesis Process

Design is the process of transforming information from one state to another (Hubka et al.,

1988; Ognjanovic, 1999) and a decision to transform existing information to a new state is

based on available information and knowledge (Hicks et al., 2002). Therefore a key issue in

developing new intelligent design automation approaches and tools is handling the evolving

information of the design process. To cope with this changing information and knowledge the

design process is divided into three phases based on different abstraction levels of the design

knowledge: search for concept generation, optimization for concept selection, and

modification of design details (figure 1). Search is the first step of the design process, which

is used to explore the design space in the most abstract level of the design. As illustrated in

figure 1, this step may also be divided into multiple abstraction levels called sub-levels. In the

search phase of the design, the valid solutions for the desired design problem are generated.

For instance for a structural design problem, the valid solutions are different truss structure

configurations with different components, which can hold the load without violating any

criterion. The number of solutions depends normally upon various initial requirements and the

boundary conditions of the problem. After exploring the design space and generating all

feasible candidates in the search phase, the optimization phase begins.

Indeed, the search phase is responsible to explore the topological variation of the designs and

the optimization phase defines the best shape for each candidate. The optimization phase may

contain a sophisticated algorithm for shape and size optimization using an adequate

evaluation method or a simple evaluation approach to sort the generated solutions in the

search phase based on a performance criterion. For instance after defining the topology of a

truss structure, the shape of the truss (spatial position of the joints) or the thickness of the

components can be optimized using finite element methods or just simply evaluated based on

a criterion such as maximum displacement at the load point. So, based on the results of this

step, best candidates are selected for the final phase. The third step of the framework is the

modification phase, in which secondary details are added to the design such as adding a

chamfer. The effect of this step on the design is not as important as the first and second

phases.

 1.2 Applicability of Knowledge Levels 3

Search Optimization Modification

Sub-Level

Sub-Level Optimization

Sub-Level

Sub-Level

Sub-Level

(a) (b) (c)

All feasible
candidates

Best
candidates

Final candidates

Figure 1-1: Three Phases of the synthesis.

The approach presented in this section, considers the abstraction level of the design

decreasing progressively during three phases and corresponding sub-phases. However it is of

vital importance to use appropriate knowledge to generate the solutions at each abstraction

level to avoid many unnecessary detailed analyses and optimization of the concepts.

Furthermore, early feasibility assessment and evaluation of abstract solutions is essential for

restricting the search space to best concepts, which consequently can reduce the design time

and the number of design analyses (Netten and Vingerhoeds, 1997). Without suitable

restriction of the design space – through meaningful generation and consequent evaluation of

the solutions – considerable additional effort is required to generate many invalid or poor

performance solutions.

However, due to imprecise and incomplete design requirements and constraints at the early

stages it is difficult to capture the design knowledge in order to generate valid solutions.

Further, evaluating the generated solutions with available analysis tools and methods is not

possible, because the input to most of these tools should be a fully defined design. The

behavior of solutions cannot be predicted and reliably evaluated at the early abstraction levels,

because strong component interactions – which are not mainly defined yet – complicates the

design decision-making (Netten and Vingerhoeds, 1997). For instance in a spatial frame

structure, the stresses and strains in a component mainly depend on other components and

also the overall structure. Therefore to support these essential decision-making processes at

the search phase a design information and knowledge should be used, which is flexible and

are not depending upon many such specifications. In the next section the requirements for

capturing and using design information and knowledge in various abstraction levels are

defined.

1.2 Applicability of Knowledge Levels

The decision-making process of conceptual design is very complex, because at different

abstraction levels – based on the level of specifications – different inference processes are

4 1. Introduction

required. These decision-making processes are based on available information and

knowledge. But we should search for both available and applicable design information and

knowledge at various abstraction levels. Hicks et al. (2002) define four levels for design

knowledge with different applicability scopes (figure 2). As shown in figure 2, the highest

levels of knowledge are general and generic knowledge, which are applicable to unfamiliar

situations, whereas the specific knowledge is restricted to familiar situations and case

knowledge is applicable only in specific situations. The vertical arrows in the figure 2

illustrate the applicability field of each level of knowledge. Indeed there is a correspondence

between the abstraction level of the design problem and the familiarity situation of the

problem. The more abstract a design, the more unfamiliar the situation, and the more detailed

an artifact the more known (familiar) are the specifications.

Figure 1-2: Knowledge levels and states of applicability (Hicks et al., 2002)

Figure 3 combines the proposed mechanism in the previous section with the Hicks et al.

(2002) knowledge levels. It shows that in the search phase, which is the most abstract design

level, because the solutions are not yet formed and the situation is unfamiliar, only generic

and general knowledge are applicable. In the second phase, as the topology is defined and the

design is concretized to a higher degree and the situation is familiar, specific knowledge is

also applicable. And finally in the third phase of the design, all levels of knowledge are

applicable.

Using generic or general levels knowledge at the early stages of design may be an essential

solution for incomplete design knowledge. Because these abstract levels of knowledge are

normally simple facts, which means their capturing and representation is easy. As an example,

we consider the Newton’s third law of motion. This law says; the same force that a body

exerts on a second body will be exerted back upon it through the second body but in the

opposite direction. Capturing and representing this law is very simple and for using it in an

automatic approach, no quantitative value is required. This law can be used in unfamiliar

situations and applied in unfamiliar domains; therefore it is a general type of knowledge. For

instance it can be applied in the field of structural mechanics, fluid mechanics or in designing

 1.3 Capturing Design Information and knowledge 5

electro magnetics artifacts, because in all these domains we are handling forces. Through

three case studies in chapters 2, 3 and 4, this formal approach for using design information

and knowledge is further discussed and it is shown how knowledge about the design

knowledge can increase the efficiency of the design synthesis process.

Search Optimization

General Principles

Modification

Sub-Level

Sub-Level Optimization

Sub-Level

Sub-Level

Sub-Level

(a) (b) (c)

All feasible
candidates

Best
candidates

Generic Knowledge

Specific Knowledge

Cases

Final candidates

Figure 1-3: Using design information and knowledge in various abstraction levels.

1.3 Capturing Design Information and knowledge

To have a better understanding of mechanisms and procedures for capturing and using the

design information and knowledge, formal definitions for information and knowledge are first

discussed here.

1.3.1 Design information and knowledge

Data, information and knowledge terms have been defined in different fields of research and

are reviewed within the context of engineering design by Court (Court, 1995). Based on his

work and other researchers such as Marsh (Marsh, 1997), Hicks et al., (2002) conclude that

knowledge has two aspects, knowledge processes and knowledge elements; “the knowledge

process is the procedure(s) utilized by the individual to infer the knowledge element from

information, other knowledge elements or a combination of each”. Representing the

knowledge processes in a formalism is in general a complicated task, because they are mainly

considered as within-person activities (Hicks et al., 2002). Whereas, knowledge element

representation is much easier, because the knowledge elements are in fact taken as

6 1. Introduction

information (Boston, 1998). In engineering sciences the knowledge processes are considered

as scientific practices or procedures (Ehrlenspiel, 1997). Hicks et al. (2002), define

information elements as the totality of one or some data elements and one or more context

descriptors, where “the context descriptor(s) clarify the meaning of the data element, and are

themselves one or a combination of data elements”, for instance mass of an object, or

acceleration of an object. Some researcher classify information to different categories such as

formal and informal or structured and unstructured, but in this study (due to the computerized

nature of the information) the author considers information as formal and structured. To

further clarify the subject the following simple example is given. Newton’s second law of

motion says that, the sum of all forces on any object is equal to the mass of that object

multiplied by its acceleration). In this example m (mass) and a (acceleration) are

two knowledge elements (information) and their multiplication is the knowledge process to

create another knowledge element F (force).

1.3.2 Capturing information and knowledge

Capturing design information and knowledge generally means generating a representation for

them. “Design is most appropriately characterized as a construction of representations”

(Visser, 2006). A representation scheme is used to store, organize, process, and access

information and knowledge elements. Furthermore it is used to capture the relationships

between information and knowledge elements and provide a structure, through which later

reasoning and reuse of information and knowledge will be possible. Indeed representation

schemes catch the fundamental characteristics of a problem domain in their structure and

make it available for a problem-solving procedure (Luger, 2008). Luger (2008) argues that

two main criteria for a knowledge representation scheme are its expressiveness and

efficiency, which may contradict in different cases. Although efficiency is an important

criterion, its increase must not limit “the representation’s ability to capture essential problem-

solving knowledge". There are three main categories for the knowledge representation

systems: Rule-based, Model-based, and Case-based knowledge representation schemes

(Chakrabarti et al., 2011; Helms, 2013). This thesis uses the first scheme but some aspects are

applicable to these other representations as well.

Rule-based knowledge representation methods capture the design knowledge in IF-THEN

rules. In a procedural way these rules transform an initial state to an altered situation.

Continuous application of the rules transforms the initial design into a wide range of new

designs. The expert knowledge is often encoded in the rules as heuristics for solving the

problem. Chakrabarti et al. (2011) have also reviewed the advances in using these

representation schemes in computational design synthesis research in the last decade. In this

study a graph grammar approach – which is a rule based representation method – is used to

represent the design knowledge, therefore other representation schemes are not further

discussed.

 1.3 Capturing Design Information and knowledge 7

1.3.3 Generative grammars

Rules are conditional statements, which consist of a condition and a consequence. The early

expert systems used rules to formalize knowledge; such as MYCIN for diagnosing bacterial

infections (Shortliffe et al., 1975) and DENDRAL for analyzing mass spectrographic data

(Lindsay et al., 1993). Production systems are also a more specific kind of rule-based

representation systems, which consists of a set of rules, in which the expert knowledge for

problem-solving is encoded, a memory, which contains the current state of the data structure

and can be represented as a string, a shape or a graph, and an inference engine to control the

rule execution (Helms, 2013; Luger, 2008). To execute the action of a rule, its conditions

must match the contents of the current state, which consequently changes the state of the

memory. The execution is continued until there are no more rule conditions matched with the

memory. One of the most important characteristics of the rules is that they “are a natural and

intuitive way for representing heuristic knowledge” (Dym and Levitt, 1991) which is

important in domains such as engineering design that rely on heuristics for solving their

problems. As the rules are principally conditional sentences which are used in natural

languages, human experts finds it easier to formulate their problem solving knowledge in

rule-based formulations (Beierle and Kern-Isberner, 2008). However, grasping the reasoning

logic for solving problems, which are complex and the rules are intertwined, can be very hard

for human users (Rude, 1998). Therefore knowledge extraction and formulation from experts

into rules can be a very tedious task. Grammars capture large design spaces in a single

formalism, and hence can increase the design freedom (Alber and Rudolph, 2004). Generative

grammars in general and graph grammars specifically have been used in many different

domains to capture the design knowledge of complex engineering design rules (Antonsson

and Cagan, 2001; Chakrabarti et al., 2011). They have been used in diverse areas such as

general routing problems (Drumheller, 2002), network flow and structural topology

optimization (Shea and Cagan, 1999).

1.3.4 Graph grammars

A graph grammar is a formal method to represent elements and their relationships in the

design space (Cagan, 2001). Like natural languages, graph grammars are based on a

vocabulary and a set of grammatical rules. By choosing a graph grammar for representing the

design knowledge; the representation is fixed to graphs and the vocabulary elements are

defined as nodes and edges. The initial design for a graph grammar is a seed graph, which is

defined based on initial design requirements. Starting from this initial graph, grammars

generate alternative design solutions based on a set of pre-defined rules (Chase, 2002). To

define the grammar rules, rule validity conditions are typically encoded in the left-hand side

(LHS) of a rule and rule modifications (changes in case of the rule recognition) are

represented in right-hand side (RHS) of a rule as two graphs. Recognizing a rule, means that

the graph in the LHS of a rule can be matched to a sub-graph in the working graph and its

application means that this sub-graph is replaced with the graph in the RHS of the rule. After

applying the rule a new graph is generated. For graphs, a graph grammar interpreter is

required to apply a set of transformative operations on a seed graph. For this study,

GraphSynth is used to accomplish graph transformations. GraphSynth is a unique research

8 1. Introduction

software for creating, editing, displaying, and manipulating generative grammars. This

framework stores graphs, rules and rulesets under XML file format. It allows for the

automatic search of creative, optimal or targeted solutions. GraphSynth is an open source

framework built on Microsoft Visual Studio .NET. Additionally, it is able to perform various

graph transformations such as the double-pushout method and free-arc embedding; these two

together cover nearly all types of required graph transformations (Kurtoglu et al., 2010). One

of the most important characteristics of the GraphSynth is its extensibility; through additional

compiled on-the-fly functions nearly any capability can be added to the rules and rulesets.

1.4 Conclusions

In order to effectively utilize design information and knowledge, the design process is divided

into three main phase: search, optimization and modification. Each phase may have multiple

abstraction levels. To support the essential decision-making processes at each phase, the

requirements for capturing and using design information and knowledge in various

abstraction levels are defined. An adequate framework for capturing and using design

knowledge is discussed based on various classes of knowledge levels proposed by Hicks et al.

(2002). These include: general knowledge which is the most abstract level of knowledge,

generic knowledge, specific knowledge, and case knowledge, which is the most concrete level

of knowledge. These classifications are necessary to generate a framework that defines the

applicability limits for each knowledge level. The work identifies that for more abstract levels

(search phase) of design, higher level knowledge, such as general or generic knowledge are

required and applicable. And for the optimization and modification phases other knowledge

levels are applicable too. Following these formal definitions, the work introduces various

knowledge representation schemes especially rule-based knowledge representation

approaches. In chapter 2, 3 and 4 the proposed strategy in this introduction chapter is applied

for three engineering design problems. The results of these design problems show, how the

application of the proposed approach reduces the design space to a manageable size, in which

only valid solutions are generated.

Ongoing research based on the proposed approach should focus on improving the search

strategies for exploring the design space. Implementation of this step is important in order to

achieve faster results in larger design spaces. Another important field of research is automatic

capturing of generic and general levels of knowledge in the grammar rules and creating a data

base of these captured rules. This will help designers to understand the real design problem at

all abstraction levels easier. The framework is flexible enough and independent of the

problem domain and type, therefore the approach can be used for other domains and other

design problems.

2. A Novel Optimization Method of Fluid Channels Using
Domain Knowledge

The aim of this chapter is to show the abilities of generative design systems, in achieving

topology and shape optimization of fluid channels. By utilizing a multiple representation

approach, there is no need for a large grid of variables to represent the topology, which causes

significant computational savings and allows the simulation model to be independent. After

evaluating and optimizing the generated graphs, they are transformed into meaningful 3D

shapes to be simulated in a CFD solver. The effectiveness of the proposed method is checked

by solving and comparing a variety of available test problems found in the literature.

Furthermore by solving complex large scale problems (3-Dimensional), the robustness and

effectiveness of the method is tested.

Keywords: Computational Design Synthesis, Design Automation, Graph Grammar,

Computational Fluid Dynamics, Optimization.

2.1 Introduction

One of the most popular computational design synthesis approaches in engineering design

involves shape and topology optimization methods, which is based on using finite element

methods (FEM) for the analysis, and various gradient-based optimization techniques

(Bendsøe and Sigmund, 2003). Topology optimization is a mathematical approach that

models a fixed number of decision variables (cells or grids), and optimizes its objective

function (e.g. part stiffness) for a given set of boundary conditions and loads. Numerical

optimization methods have shown their efficiency in aiding the synthesis of engineering

artifacts by generating many novel solutions (Bendsøe and Sigmund, 2003). Using topology

optimization methods in solving channel fluid layouts has received a large amount of

attention in recent years and various parameterizations have been suggested to solve Stokes

(Guest and Prévost, 2006a) as well as Navier–Stokes problems (Evgrafov, 2006) with

different Reynolds numbers (Duan et al., 2008; Gersborg-Hansen et al., 2005; Olesen et al.,

2006; Zhou and Li, 2008). However, even very recent results by different scientists in the

field (Challis and Guest, 2009; Jang et al., 2010; Liu et al., 2010) show that problems are

mainly limited in complexity (number and direction of inlets and outlets), flow equation, and

number of fluid types (if combination of fluids is not allowed). They are mainly 2D problems

and the time to complete the process is exceptionally high, especially for solving complex 3D

problems. Considering these limitations and the fact that demanding industrial problems are

more complex, reveals a gap in capabilities and computational power of current methods.

These limitations are mainly due to limited representation power. The synthesis process and

design rules are dependent and integrated into the simulation model; the simulation model is

often fixed for a given set of loads and boundary conditions. The simulation model is based

on time-consuming numerical approaches such as matrix inversion and many iterations are

required, which leads to slow convergence.

10 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

The aim of this chapter is to introduce a new perspective and show the abilities of generative

design systems, such as graph grammars, in achieving design synthesis and optimization of

fluid channels. The novelty of the proposed method is in its combination of generative design

synthesis methods with conventional simulation models, leading to a significant reduction in

the numerical costs. This method uses a graph grammar interpreter to generate different

topological solutions for the fluid channel problem. Through exhaustive search of the design

space all valid candidates are generated and evaluated. Based on the evaluation results, the

candidates are sorted. Two optimization algorithms are then used to optimize all (or the top n

based on computation limits) candidates of the sorted list. These optimization algorithms

change the radius of fluid channels and the position of intermediate junctures, to minimize

head loss. The candidates are again stored in a second list based on the new objective function

values. Finally they are transformed into meaningful 3D shapes to be simulated in an

adequate CFD solver. The nodes and arcs of the generated graph represent Constructive Solid

Geometry (CSG) shapes.

The graph grammars rules work with graph elements to generate a new topological state, as a

result the search and generation process is very fast. However, it is vitally important to embed

enough information in the graph grammar rules in order to create precise 3D shapes. To

increase the computational effectiveness of the generation process, the design process is

carried out in different steps. To enter each step, the candidate solution must meet specific

requirements such as maximum allowed compression of the fluid; otherwise it is filtered out.

After passing the requirements of three such filters, which evaluate the validity of candidates

in different stages of the synthesis process, information is added to the candidate solution.

By utilizing a multiple representation approach for the topology optimization of channels, our

algorithm avoids many problems associated with other approaches in setting up the fluid

equations. There is no need for a parameterization scheme because representing the topology

is independent of the simulation model. It causes significant computational savings, because

the CFD analyses and remeshing at each iteration is no longer required, which is a prohibitive

in previous efforts (Zhou and Li, 2008). By using multiple representations in our method,

dimension (e.g. 2 or 3) has almost no effect on the computation efforts in finding flow

channel topologies which show the numerical efficiency of the proposed approach.

Furthermore the need for postprocessing of the results is eliminated and a more accurate

control over designing of solution topologies is provided. However after finding candidate

design solutions, the transformation and CFD analysis of 3D results are computationally more

costly. As the representation and simulation models are fully separated from each other, one

can use the same rules for problems with completely different boundary conditions, fluid

types, fluid directions and loads.

The proposed method produces results in agreement with previously solved power dissipation

minimization problems for Stokes flow (Borrvall and Petersson, 2003; Challis and Guest,

2009; Guest and Prévost, 2006b; Liu et al., 2010). The effectiveness of the proposed method

is checked not only by solving a variety of available test problems and comparing them with

those found in the literature, the results of different complex problems with arbitrary flow

directions in inlets and outlets shows the capabilities of the method in solving very complex

large scale 3D problems. This chapter is organized as follows. Section 2 describes a

 2.2 Topology optimization 11

background about topology optimization methods, generative design synthesis systems and

our graph grammar approach. Section 3 provides details of the proposed approach in this

chapter. Section 4 presents results and discusses the implications of results; the focus of this

section is to present significant benefits of proposed methodology over previously used

approaches. And finally, Section 5 concludes the study and suggests further research projects

to extend the presented work.

2.2 Topology optimization

For more than two decades, engineering designers have used shape and topology optimization

methods for a wide range of structural design problems. These optimization methods are now

being used successfully by other areas such as electro-magnetics, MEMS and fluids as well

(Bendsøe and Sigmund, 2003; Eschenauer and Olhoff, 2001). Borrvall and Petersson (2003)

were the first to use topology optimization for solving Stokes flow fluid problems.

Optimization of fluid channels is an essential topic in designing microfluidic devices

(Andreasen et al., 2009; Vangelooven et al., 2010). It has application in diverse areas such as

designing pipe bends for minimum head loss, diffusers, valves, interior air flow of vehicles,

and engine intake ports. The goal is mainly to find an optimal topology for the fluid

subdomains along with an optimal shape of channels that minimizes the power dissipated by

the fluid (Liu et al., 2010). In order to use Stokes equations, as opposed to the full Navier-

Stokes equations, the fluid flow is mainly assumed to be incompressible, steady, and slow.

Topology optimization has been applied to solve Stokes flow problems on large scales (Aage

et al., 2007), to design maximum permeability of material microstructures (Guest and Prévost,

2007), and in optimizing multifunctional materials; microstructures with maximum stiffness

and fluid permeability (Guest and Prévost, 2006b). Details of using different approaches such

as the level-set method or material distribution to increase the computational efficiency and

the chance to find the global minimum can be found in the recent contribution of Challis and

Guest (Challis and Guest, 2009). They describe methods which can avoid convergence of the

algorithm to local minima (Aage et al., 2007; Borrvall and Petersson, 2003; Guest and

Prévost, 2006b) and aim to overcome limitations of other models such as (Zhou and Li, 2008)

with costly computational power for remeshing the whole domain. The chronological

progress of results in the literature reveals significant improvements concerning minimizing

required time and computation power, achieving global minima, smoothing the boundaries

and using various Reynolds values for the flow.

2.3 Approach

The overall approach to the shape and topology optimization of fluid channels using

generative graph grammars is depicted in the Fig. 1. The whole process can be divided into

three phases; topology generation, transformation, and CFD evaluation. The topology

generation phase also consists of three steps; search, optimization and detailed shape design.

The separation of the topology generation from the evaluation phase enables the creation of

topologies without considering the constitutive fluid equation or other issues related to the

fluid representation. The topology generation phase uses the graph grammar interpreter to

apply graph transformations and generating topologies. Three control parameters are used in

12 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

the detailed shape design phase to define the final shape of the channel layout. The first

control parameter is used to give a rough shape to the path of a channel in the layout. The

second and third parameters are used to define the curvature at inlets and outlets respectively.

For different problems, with different boundary conditions and fluid types, some experiments

are required to tune these control parameters. In the transformation phase the generated

topologies, which are represented as graphs are converted to 3D shapes. Finally in the

evaluation phase OpenFOAM CFD solver (OpenCFD Ltd (ESI Group), 2013) and

snappyHexMesh preprocessor are used to evaluate the 3D shapes regarding fluid dynamic

criteria to select the top candidates. In the following sub-sections all three phases of the

design are described in detail.

Topology Generation

S
e

a
rc

h
O

p
ti

m
iz

a
ti

o
n

D
e

ta
il

e
d

 S
h

a
p

e
 D

e
si

g
n

Transformation

CFD Evaluation

Topology creation:
· Add intermediate nodes
· Connect inlet to outlet

Is the topology valid ?

Defining channels’ radiuses

Is the fluid more than allowed
compressed / decompressed?

Calculating initial objective
value of the candidates

Best X% of all
feasible Candidates

Best Y% of all
optimized candidates

Rough define of the overall
curvature in the path
(Control Parameter I)

Smoothing the topology in
joints of channels

(Control Parameters II & III)

Adjusting size of pipes at
joints

Final smoothing of the whole
channeling

Optimization I & II

Transform graphs into 3D
shapes

Is the 3D shape valid ?

Best candidates
represented in Graph

Generate the Mesh

CFD analysis in the solver

Best Z% of all
evaluated candidates

RS 1

RS 2

RS 3

RS 4

RS 4

RS 5 RS 5

RS 6

RS 6

RS 7

RS 8

RS 9

Figure 2-1: Approach for shape and topology optimization of fluid channels

2.3.1 Topology generation

The graph grammar interpreter receives a seed graph as input and delivers all valid topologies

that can be generated for that graph. The generation (graph transformation) is carried out

through twenty rules which are distributed into nine rulesets. A ruleset is a set of rules that

transforms the design from one level of maturity to the next level. Rulesets are used as a

means to compartmentalize different phases of the generation process. The first ruleset is

responsible for generating all possible candidates – both valid and invalid – and expands the

 2.3 Approach 13

tree of the solution space to its maximum breadth (Fig. 2). Rulesets 2 to 9 change the shape

(spatial position of graph elements and size of channels) of a candidate from a rough topology

to a final solution. Depending upon the size of a candidate (number of channels), the number

of rule applications on a candidate in each ruleset varies between one and many hundreds.

Rulesets 3, 4 and 5 are assigned to calculate optimum size of channels and spatial position of

channel bifurcations. While rulesets 6 to 9 use the three control parameters to give adequate

curvature to channels. As can be seen in the Fig. 2, all invalid candidate designs are

eliminated periodically to prevent time wasted in subsequent stages. In order to accomplish

this, three trigger rules are used to check the completeness and validity of a design before

transitioning to the next ruleset. All duplicate designs are also detected and filtered out in the

ruleset 5. The whole approach is developed in such a way that incremental information, which

is required in the next step, is added to the design. For instance in the topology generation

phase, the topology is represented with graph elements node and arc, therefore the

transformation operations are done much faster than if using 3D shapes.

…
..

RS 1: generating all candidates

RS 2: filtering invalid topologies

RS 3: defining the radius of channel’s /
all candidates survive

R2 4: calculating initial objective values /
filtering candidates with invalid radiuses

RS 5: optimization I and II /
eliminating similar topologies

…
.. RS 6 to 9: detailed shape design /

All candidates survive

…
..

…
..

Figure 2-2: Tree search for creating fluid channels

In Fig. 3 all twenty grammar rules with a short description of each are illustrated. The rules

are created in a general way, so that for different types of fluid channel problems the same

rules can be used. The only change which is required, if the simulation model (such as fluid

type) is different, is adjusting the control parameters. The left picture in the Rule column is

the left hand side of a rule (LHS) and the right picture is the RHS of the rule. The graph

grammar interpreter converts that part of the seed graph which is matched to the LHS into the

graph segment depicted in the RHS. Three rulesets (3, 4 and 8) change attributes of graph

elements (for example add the radius to a channel section); therefore their LHS and RHS are

14 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

not depicted. Figures 1 to 3 represent the approach from three different angles with different

levels of detail.

Figure 2-3: Grammar rules

Seed graph

A seed graph defines the scope and boundary conditions of the problem to be solved. In this

case, it consists of some arcs and nodes which are labeled as inlet or outlet with different

directions in 3D and different radii. Inlet 1 in Fig. 3 is represented by arc a0, which connects

two nodes and its radius is 25. Fig. 3 illustrates a sample seed graph with three inlets and three

outlets. The green (lighter) arrows in the shapes are the inlets and the red (darker) arrows are

the outlets. The radius of the inlets and outlets can also be uniquely defined. The goal of

grammar rules is to transform this seed graph to a graph that represents a meaningful channel

layout.

Figure 2-4: A seed graph with three inlets and outlets

Ruleset Description Ruleset Description

1 Skeleton
Creates the skeleton of the node

polygons
11 Attribute

Ini tia l ca lculating the secodn objective

function

2
Connect inlet to outlet

(Maximum arcs to / from are l imited)
12 Trigger rule 3

Is the fluid compression or decompression

more than allowed?

3
Insert intermediate inlet for two inlets

(Maximum number is l imited)
13 Optimization I Optimize the s ize of channels

4
Insert intermediate outlet for two

outlets (Maximum number is l imited)
14 Optimization II

Define pos i tion of intermediate inlets

or outlets based on flow directions

5 Trigger rule 1 Minimum requirements are met? 15
Define direction of flow in intermediate

inlets or outlets

2 6 Trigger rule 2
Is the topology valid ? (e.g. Inlets without

outgoing or outlets without incoming arcs)
6 16

Roughly defines the curvature of each

channel between an inlet and outlet

7 Attribute
Calculate the radius of channels and

adds i t as an attribute to the arcs
17 Fine smoothing of the topology at inlets

8 Attribute
Calculate radius of joints of flow and

the va lue as an attribute to the nodes
18

Fine smoothing of the topology at

outlets

9 Attribute
Ini tia l i zing the s ize of complex

channels
8 19 Attribute

Adjust s ize of the channels at joints and

adds i t as an attribute to the arcs

10 Attribute
Ini tia l ca lculating the fi rs t objective

function
9 20 Final smoothing of the whole channels

5

7

Rule

4

4

3

Rule

1

 2.3 Approach 15

Search

As illustrated in Fig. 1 the first step of the topology generation phase is an exhaustive depth

first search (DFS) algorithm that creates all valid topological candidates for a given problem

using the first four rulesets. The first four rules of the ruleset 1 are responsible for generating

a topology. Aside from the depicted rule conditions in Fig. 3 (like connecting inlet to outlet,

inserting intermediate inlet or outlet), many other additional functions are compiled into the

rules to define detailed matching conditions as well as rule action. For instance, for rule 2,

two functions aid in the recognition process; the first one prevents adding arcs that intersect

other existing arcs in the design space and the second constraint function considers the

maximum allowed spatial distance between an inlet and outlet. It prevents connecting inlets

and outlets that are very far from each other in case of multiple connection possibilities. Rules

3 and 4 add an intermediate node for two inlets or outlets. For applying these rules, the

distance between the inlets or the outlets and the direction flows at the inlets or outlets are

considered. Rule 1 is used when facing channel layout problems with one or two inlet and

many outlets or vice versa. It uses the position of inlets and outlets – as vertices of a simple

convex or concave polygon – and creates the topological straight skeleton of the polygon. The

Computational Geometry Algorithms Library (CGAL, 2013) has been used to find the

straight skeletons. Aichholzer et al., (1996) introduced the concept of using the straight

skeletons to represent simple polygons. Geometric skeletons like Medial Axis and the straight

skeleton have been used in many applications such as Contour interpolation (Barequet et al.,

2004), automatic shape synthesis and path planning (Eftekharian and Ilieş, 2012). The reason

for this investigation is that – like rules 3 and 4 in our approach – it introduces intermediate

juncture points between original ports to find the shortest possible spanning network. Fig. 5

shows a seed graph with one inlet and two outlets (a) and the topology which has been

suggested through applying the first rule (b). This topology can also be reached by applying

rules 3 and 2 respectively. Indeed, rules 2 to 4 can also generate results that rule 1 suggests.

But rule 1 – especially when facing channel layouts with only one inlet or only one outlet –

can give a near optimum channel topology through its single rule application.

Figure 2-5: Using straight skeleton to find the channel layout

Rule 5 is called if the design has reached some degree of completeness. It is used to transition

from using ruleset 1 into 2 after some degree of maturity is reached in the graph. It guarantees

the creation of all valid candidates. For instance, without rule 5, Fig. 5 (b) won’t be

considered as a valid solution for the problem illustrated in Fig. 5 (a). Because there are still

(a) (b)

16 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

two rules which can be applied on the solution (connecting the inlet to either of the outlets

through rule 2).

After a candidate transitions out of the first ruleset, the second ruleset checks the topological

validity: 1) are all inlets have at least one outgoing arc? 2) do all outlets have at least one

incoming arc? 3) and are intermediate inlets and outlets connected adequately to other graph

segments? Many candidates are filtered out at this stage, which prevents many unnecessary

simulations of invalid designs. Fig. 6 shows two candidates. Considering only topological

criteria, the candidate at left is invalid and the right one is valid.

Figure 2-6: Two candidate topologies

As can be seen in Fig. 6 (b), the valid candidate has six arcs (channels). These arcs connect

the inlets to the outlets but they are still not fully specified as they lack 3D dimensional

information. The next step of the design process (ruleset 3) is to define the initial sizes of the

channels. The size of a channel can be very tricky; in some cases knowing the inlet and outlet

radius is enough to define the start and end radius of a channel like the arc that connects inlet

1 to outlet 1 in Fig. 6 (in Fig. 4 arcs are numbered).

Ruleset 4 is the final step in the search process. Rule 9 checks if all channels are initialized or

not. In very complicated channel problems the rules 7 and 8 in ruleset 3 might not be able to

calculate the size of channels, therefore rule 9 initializes them. Rules 10 and 11 are created to

evaluate the candidates initially. They are evaluated based on the total length of the channels,

amount of changes in the flow direction, and changes in the start and end radii of channels.

These will be discussed in detail in the next sub section. Based on these initial evaluations, all

candidates are sorted in a list to be further processed in the next step. This ruleset contains

also the last important filter (trigger rule) for the validity check of candidates. It compares

start and end radii (sizes) of channels. If the ratio is more or less than a desired one, the

candidate will be rejected.

 2.3 Approach 17

Figure 2-7: A candidate topology

For complicated fluid layout problems, in which many channel branches are joining together

in a juncture, more complex computations and even an optimization algorithm is required to

define the start and end size of channels. This is also carried out in the rule 13 of the ruleset 5.

The objective function for the optimization is simply minimum difference between the start

and end radii of each channel which does not require any CFD analysis; therefore the

optimum channel sizing can be found very quickly. Another significant challenge in the

developed approach is considering the direction of flow for each node. Direction affects the

position of intermediate nodes. Therefore an optimization algorithm is developed (as a result

of applying rule 14 of the ruleset 5) to find the optimum position of intermediate nodes. These

two rules are not real grammar rules because they have no LHS matching; however they are

implemented in the fifth ruleset to prevent unnecessary export and import operations. In the

next sub section both optimizations are explained in detail.

Optimization

After storing all results of the exhaustive search in a sorted list, the best n candidates will be

further optimized in the second step of the topology generation phase. Due to the smoothness

and unimodality of the design spaces as well as the use of efficient optimization algorithms,

we have been able to accommodate optimizing all candidates. More complex problems

(problems with more than six ports) may require limiting them. However it is possible to set n

to 500 without taking a prohibitive amount of time. For both optimizations, the Fletcher-

Reeves gradient algorithm is used.

The primary goal of these optimizations is to minimize total head loss of the layout and – if

required – prevent compression/decompression or velocity changes of fluid in channels. Head

losses in closed channels and pipes include mostly three types of losses; head loss due to a)

decelerating or accelerating of flow (Yamaguchi, 2008), b) friction between fluid and channel

wall (friction loss), and c) pipe entrances, transition points, exits, and valves (minor losses)

(Fay, 1994). The task of the first optimization is to reduce the first type of head loss, while

reducing the friction losses and minor structural losses is assigned to the second optimization.

According to (Yamaguchi, 2008), the first type of the head loss between two segments of a

channel is proportional to the changes in the cross sectional area of those segments. However,

decelerating flow causes more head loss than accelerating flow. The first objective function is

the total difference between: a) start and end area of each channel divided by its length, and b)

18 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

incoming and outgoing channel areas to an intermediate joint. This affects also the

compression or decompression of fluids in compressible fluids or the amount of velocity

changes in non-compressible fluids (considering the principle of mass conservation). This

optimization routine (rule 13) optimizes the size of channels in complicated layout problems

where many channels intersect at a juncture. The objective is to minimize compression or

decompression of the fluid (in compressible fluids) or large changes in the velocity of the

fluid so as to decrease the pressure loss of the channel. The cross-sectional area of all

incoming channels to a joint should be also similar to the area of all outgoing channels. For

instance, in Fig. 6, the connecting channel of intermediate joint between inlets 2 and 3 to the

intermediate joint between outlets 2 and 3 must have a start and an end radius of 25. The

channel that connects inlet 1 to outlet 1 causes compression (head loss) of the fluid and thus

increases in the velocity, because the start radius of the channel is 25 whereas its end radius is

20. Unless compression or decompression or velocity changes are desired, we will heed the

heuristic to minimize the difference between the start and end radiuses.

There are various formulations for calculating the head loss due to friction. Darcy-Weisbach

flow equation is one of the most useful head loss equations for closed flow conduits (Fay,

1994). It is proportional to the length of the channel (L), inverse of the diameter (D), density

of the fluid () and the square of the average velocity (V) of the fluid in the channel (Eq. 1).

 (1)

Minor losses may also result from fittings that disturb the normal flow of the fluid in the

channel. There are two basic methods to calculate the head loss due to changes in the flow

direction: a) “equivalent length”, and b) “K factor”. Both of them are based on empirical test

values for elbows, tees, valves and other various fittings. But there is a simple principle

behind the results: the more the changes in the direction of the flow, the more the head loss.

Indeed the fluid tries to move always in the same direction due to its momentum; hence by

changing the direction of the channel, the flow will be pressed to the outer edge of the

curvature, which causes more friction and consequently more head loss. Thus, the second

objective function is the total: a) length of all channels in a graph, and b) the angle between

incoming and outgoing flows in each joint. The higher these values, the more head loss of a

layout. This optimization within rule 14 optimizes the position of the intermediate nodes,

which were added initially by rules 1, 3 and 4.

Eq. 2 describes the first objective function. X1 (first radius of a channel segment) and X2

(second radius of a channel segment) are the variables of the function.

) ∑

)

 ∑ (∑

 ∑

)

 (2)

)

)

)

 2.3 Approach 19

)

Eq. 3 describes the second objective function. X1, X2 and X3 (spatial position of the

intersection points) are the variables of the function.

) ∑)

 ∑ ∑

)

 (3)

)

)

)

)

)

Through these two objective functions all parameters that affect the head loss of a layout,

such as channel diameter, channel length, and position of joints are optimized. The velocity of

the fluid is optimized indirectly through diameter (considering the principle of mass

conservation). The velocity has also been considered in the second optimization through a

weighting factor. If the initial velocity is too high, the weighting factor of the flow direction

(third type of head loss) is increased to prevent sharp angles between incoming and outgoing

flows. If the velocity is too slow, the length of the channels will be more important in defining

the objective function. Other parameters such as Darcy friction factor, density, and gravity are

not considered in these objective functions. This makes both optimizations independent from

any fluid type.

Fig. 8 shows the effect of direction of flow at inlets and outlets on the position of intermediate

nodes (objective function weighting factors are remained constant). Fig. 9 shows a candidate

which has been suggested with the skeleton rule (a) and the result after the second

optimization is shown in Fig. 9(b) (weighting factor of the third type of head loss due to slow

velocity is very small). In this case the result is similar to the Steiner tree problem. The

Steiner tree is the shortest tree that spans a given set of ports (Hwang et al., 1992). When the

angle between flows is not considered at all, a Steiner tree should be the expected result from

the optimization.

20 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

Figure 2-8: Effect of flow direction upon optimization ii results

Figure 2-9: Not considering the flow direction gives the Steiner tree

After optimizing all candidates; the results are stored on a new list sorted by the first and

second objective function values. A weighting factor is used to sum the objective values.

Finally, rule 15 – last rule of the ruleset 5 – calculates the direction of flow at intermediate

nodes, which is necessary for the next step; detailed shape design. This direction is calculated

based on the direction of all incoming and outgoing flows to a juncture.

Detailed shape design

In the last step of the topology generation process, the shapes of the candidates are designed

in detail. Rulesets 6, 7 and 9 are used to apply the shape changes. Ruleset 6 defines the overall

curvature of a channel. Fig. 10 shows two designs with different overall curvature.

Figure 2-10: Defining the overall curvature

(a) (b)

 2.3 Approach 21

Rulesets 7 and 9 perform the final smoothing of the channels. Fig. 11 shows two channels

which has been transformed through these two rulesets. These three rulesets (6, 7 and 9) use

three control parameters. The first parameter defines the main curvature of the channels in

ruleset 6. In Fig. 10, the effect of changing this parameter upon the curvature of the channel is

shown. The minimum value for this parameter is zero which means no curvature. The second

and third parameters are used in the ruleset 7 to define the curvature at inlets and outlets (Fig.

11). They are used to define the sharpness of the changes in the flow path at inlets and outlets.

Defining the control parameters is depending upon many factors such as fluid type, fluid

equation, and temperature. The designer should consider these factors when setting up the

synthesis process for designing a new channel layout problem.

Figure 2-11: Smoothing the channel path

Rules 15 to 18 and 20 convert a simple topology like Fig. 6 to one like Fig. 12. This

transformation has two aims; minimizing the head loss through adequate curving of the

passageway and gradual changing of the channel radius. To each channel segment (arc) two

start and end radii are assigned. The sum total of all these small differences of arcs in a

channel is equal to the difference between start and end radius of that specific channel.

Figure 2-12: A candidate design after smoothing the shape

Finally ruleset 8 facilitates the connection of channels with a specific radius to intersections

and joints which normally have different radii. This rule changes the radius of a channel

segment, which connects to a joint, to the radius of the joint. For instance, if two channels in

the Fig. 12 which join together have a radius of 20mm, the joint’s start radius should be

around 28mm (considering the principle of mass conservation). Therefore those channel

22 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

segments which connect the channels to the joint should have a start radius of 20mm and end

radius of 28mm.

2.3.2 Transformation

After creating all possible topologies in the first phase, they are transformed to three

dimensional shapes through a converter which uses the Parasolid geometric kernel (Siemens

PLM Software Inc., 2013). The transformer converts nodes into spheres, and arcs into cones

or cylinders. If the start and end radii of a channel is different, a cone is used for the

transformation, and otherwise a cylinder is used. To increase the smoothness of the shapes, it

is possible to reduce the minimum length of arcs in order to prevent sharp angles at joints and

in different nodes. The shapes are saved as an STL file. Fig. 13 shows the candidate topology

of Fig. 4 which has been converted to a 3D shape. For this specific design, the conversion

took less than half a second. The converter saves all boundary conditions (inlet and outlet

cross sections and the body of channels) separately. Fig. 13 has three inlets, three outlets and

the addition of the body makes seven STL files. This separation of files is merely to facilitate

translating the boundary conditions and the design for generating the finite element mesh and

evaluating in a CFD solver. The inlet and outlet arcs (green and red arrows) are also

converted to 3D shapes. These cylindrical boundary conditions stabilize the flow turbulence

at the inlets.

Figure 2-13: A converted topology into 3D shape

2.3.3 CFD Evaluation

For evaluating the performance of candidates, CFD simulation is accomplished. The last step

of the design synthesis process is computationally the most expensive; however minimum

number of candidates remains in this step. Through this simulation, the candidates with

minimum head loss at outlets or any other desired criterion are recognized. For CFD

simulation, OpenFOAM software is used. OpenFOAM is an open source CFD software that

can be used for solving a variety of problems in engineering from complex fluid flows

involving chemical reactions, turbulence and heat transfer, to solid dynamics and

electromagnetics (OpenCFD Ltd (ESI Group), 2013). OpenFOAM includes tools for meshing

– notably SnappyHexMesh – a parallelized mesher for complex CAD geometries.

SnappyHexMesh generates 3D hexahedra meshes from a triangulated surface geometry in

 2.4 Results and Discussions 23

STL format. In addition, it implicates more specific features, such as moving meshes, sliding

grid, two-phase flow (Lagrange, VOF, Euler-Euler) and fluid-structure interaction (OpenCFD

Ltd (ESI Group), 2013). OpenFOAM includes over 80 solver applications that simulate

specific problems in engineering mechanics and over 170 utility applications that perform

pre- and post-processing tasks, e.g. meshing, and data visualization (OpenCFD Ltd (ESI

Group), 2013). After evaluating all candidates with the OpenFOAM solver, the best

candidates will be selected as final solutions. The feedback from the user of this last step of

the design is also necessary to tune the control parameters and also the weighting factors of

the objective functions. Automating this step of the approach is still under development.

2.4 Results and Discussions

In this section, a few benchmark examples, which have been solved by other researchers, are

discussed. This gives an insight upon the similarities and differences between the methods.

The second part of this section is devoted to exploring the approach through some more

sophisticated examples.

2.4.1 Benchmark Examples

There are three typical benchmark problems in the field of topology optimization of fluid

channels which have been discussed by other scientists. Borrvall and Petersson, (2003)

defined these problems in using topology optimization methods for channel layout design in

2003. Guest and Prevost (Guest and Prévost, 2006a), Challis and Guest, (2009), and Jang et

al., (2010) are others who resolved all or some of these benchmark examples. Figure 14

represents these three test problems (Borrvall and Petersson, 2003).

Figure 2-14: Design domain for the pipe bend example (a), design domain for the double pipe example (b),

and design domain with a force term (c) (Borrvall and Petersson, 2003)

In Fig. 14 (b), the size of the design domain is variable. The design objective of these

problems is to minimize the dissipated power in the fluid, subject to a fluid volume constraint

(Borrvall and Petersson, 2003). Minimizing this objective reduces drag or pressure drop,

which is vital in applications that require minimum head loss, such as bio-fluid mechanics,

microfluidics and many other industrial processes. Time is an important secondary objective

for these benchmark examples. Challis and Guest, (2009) give the precise time required for

solving the examples with different approaches such as material distribution and level set

method.

24 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

Achieved results of Borrvall and Petersson (2003) (Figures 7, 11 and 13 of the study) have

been approved by other scientists (Challis and Guest, 2009; Guest and Prévost, 2006a; Jang et

al., 2010), however with slightly different optimal objective values but significant changes in

the required computational power and time. The registered time by Challis and Guest (2009)

who have used a level set topology optimization method, is considered for comparison with

results achieved with the developed method in this study. With a single core of a 2.0 GHz

dual core AMD Opteron processor, 5 minutes is required for a two-dimensional pipe bend

problem on a 100×100 element mesh and 44 minutes for a 200×200 element mesh (Challis

and Guest, 2009). The results of the double pipe example for δ=1 on a 144×144 element mesh

and for δ=1.5 on a 216×144 element mesh are 14 and 29 minutes respectively (Challis and

Guest, 2009). These values increase dramatically when facing 3D problems. Fig. 10 of Challis

and Guest (2009) shows the optimized 3D pipe bend on a mesh with 50×50×20 elements,

which requires 3.35 hours. This shows that for real problems which are better modeled in 3D,

the time is an important issue.

Due to significant differences between the developed multi-representations approach in this

study and the aforementioned topology optimization methods, results of each representation

are separately discussed. Fig. 15 shows all three representations of the developed approach for

the first test problem: graph representation (a), 3D shape (b), and simulation model (c). For

better visualization of the graph, the minimum length of an arc is increased; by increasing the

number of arcs (decreasing minimum arc size) the path could be smoother. In the following

paragraphs, the reasons behind all three representations are discussed.

Figure 2-15: Three representations of a problem

The first representation (the graph) is used to create, edit, display, and manipulate the shape

and topology of channels as described in detail in section 3. In this first level of

(a) (b)

(c)

 2.4 Results and Discussions 25

representation, no trace of simulation model parameters such as fluid equation, Reynolds

number, compressibility or non-compressibility, are used. However the designer could use the

same rules with alternate control parameters so that optimal graphs would be created for

different fluids and boundary conditions. Recall that changing the topology and shape of the

channels can be accomplished in a fraction of a second.

Fig. 16 shows a resulting graph representation for each of the benchmark examples. These

solutions have the same topology as those represented in (Borrvall and Petersson, 2003;

Challis and Guest, 2009; Guest and Prévost, 2006a; Jang et al., 2010). For the double pipe

example (Fig. 14 b), a few other topologies are suggested with this approach; the candidates

with inferior performances are filtered out after optimizations I and II.

Figure 2-16: Topological representation of benchmark examples

The second representation is a 3D shape representation of the graph, where nodes have x, y,

and z coordinates. It contains more information than the graph, but still not enough for the

evaluation. Its second important task is to be used in other downstream applications without

any postprocessing, which is normally required for grid based or level set topology

optimization methods.

The third representation includes information about the fluid model, boundary conditions,

loads, and the mesh. This information is used to evaluate the quality of generated topologies.

A closer study of the benchmark examples reveals that, they have no or very little topological

complexity. For instance, in case of first and third examples (Fig. 14a and b), there is only one

topological variant, so the generation is done in very little time and the evaluation is also very

fast (less than a minute). In case of the double pipe; there are less than ten different valid

topologies possible. The first stage of the design (topology generation) requires less than a

second to create the candidates. The transformation requires about three seconds and the

evaluation phase requires about 60 seconds for meshing and evaluating each candidate. Again

26 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

the most time-consuming part of the design is the evaluation. This shows that for small and

middle size layout problems with moderate number of candidates (less than 1000) the

topology optimization task is reduced to a straightforward single evaluation.

A single core of a virtual machine, installed on a computer with an Intel(R) Xeon(R)

processor, is assigned to solve the benchmark examples. As the only 3D solution of these

benchmark examples in the literature is for the pipe bend problem, it has been chosen for the

comparison. However, the second and third examples can be compared like the first example.

The creation of the topology in Fig. 15 and its conversion to a 3D shape needs less than 0.2

second. The evaluation was more time consuming as it required about 30 seconds for

generating a Tetrahedron mesh with 27726 elements and evaluating it in OpenFOAM solver.

Altogether 30.2 seconds time was required to reach the solution shown in Fig. 15. It is not

adequate to compare this time with 3.35 hours for a 3D pipe bend in Fig. 10 of Challis and

Guest (Challis and Guest, 2009), because to set the control parameters some trial and error are

required. However, if one wants to optimize the three parameters, as only 30 seconds for each

evaluation is required, the optimum shape could be obtained fairly quickly. The developed

approach is able to handle very large scale 3D problems with arbitrary flow directions, high

Reynolds number and different fluid types in the same layout design.

2.4.2 Layout design of a flow distributor

Fig. 17 shows the seed graph of a simple flow distributor with one inlet and five outlets.

Distributors are used when uniform distribution of fluid is required (Liu and Li, 2013). This

requires a similar head loss of the flow at all outlets, and not necessarily aimed at minimizing

total head loss.

Figure 2-17: Seed graph of a channel problem with one inlet and five outlets

 2.4 Results and Discussions 27

Figure 2-18: A distributor with the same head loss at each outlet

Fig. 18 shows such a design for a distributor with eight outlets. This design is created through

eight rule applications: a modified version of rule 4 has been applied seven times and rule 1

has been called just once. The modified version of the rule 4 not only adds an intermediate

node between two outlets, it adds a second node further behind (considering the flow

direction) of the first intermediate node. Its aim is to stabilize the flow before reaching the

juncture point to minimize unequal distribution of the fluid to outlets.

For this example, the aim is minimizing head loss; therefore the flow might be slightly

different at different outlets. As illustrated in Fig. 1 the first step of the design synthesis is to

search the design space for all valid candidates and store them in a sorted list. The search

algorithm completed in 102 seconds in a search of the entire design space while found 1223

valid solutions. Fig. 19 shows six different candidates within the top 4% of all candidates

based on initial evaluation. Although the shapes of all these candidates are different, many of

them have the same topology. For instance candidates (a), (c) and (f) of Fig. 19 have exactly

the same topology however with different shapes. The only way to find the similar topologies

is after optimization II. This optimization changes the shape of the candidates and moves the

position of the intermediate nodes to reach minimum head loss. At this stage the duplicates

can be removed from the list of candidates.

28 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

Figure 2-19: Six random candidates between the best 4% of all 1223 candidates

After storing all valid candidates in a sorted list, they must be optimized to find out candidates

with best performance (defined as minimum head loss). The required time for both

optimizations depends upon the number of arcs and intermediate nodes in the graph; it varies

from a fraction of a second in most cases to a maximum of a few seconds. However it is not

necessary to evaluate all candidates; often the best candidate is among the top candidates

which has been initially evaluated and sorted in ruleset 4 (rules 10 and 11). Because rules 3

and 4 consider direction in their applications, therefore generated candidates are not very far

from their optimized version. In Fig. 20 (a) the best candidate with the best objective function

values is depicted. It is indeed the optimized result of (a), (c) and (f) in Fig. 19. It supports the

idea regarding the appearance of the best candidate among top candidates listed in the search

phase.

Up to this stage the topology of the candidates is fixed and the shape is fairly well-defined. In

the third stage of the topology generation phase, the detailed shape design of candidates is

accomplished. This stage is to further smooth the flow passage at joints in order to reduce the

head loss due to sharp angle changes in the flow. This stage is not necessary for all

(a) (b)

(c) (d)

(e) (f)

 2.4 Results and Discussions 29

applications because it creates very curvy design shapes. Although these shapes have less

head loss, their production might be very tedious especially in large scale problems. For

instance, a fuel cell distributor might not require such detailed shape but micro fluidic

structures might be very sensitive to such shape refinements. Fig. 20 (b) shows the refined

design of the best candidate.

Figure 2-20: The best candidate after optimization ii (a), and detailed shape design (b)

Although the graphs are shown in 2D (x, y) they contain three dimensional data and all graph

transformations are applied upon three dimensions (the graph visualization software,

GraphSynth, only shows flat views of the graphs). For 3D visualization, these graphs are

transformed into shapes via the Parasolid Kernel. Fig. 21 shows a flow distributor with outlets

at different z positions. The graph of the Fig. 21 is different from that of Fig. 20 (b) because

of the z position of the nodes.

Figure 2-21: A 3D flow distributor

Essentially, the best design candidate is found during the first two steps of the topology

generation phase. During these steps no CFD evaluation is performed to find the head loss of

the channel designs, but three simple heuristics are used to reduce the head loss: length of

channels, changes in the direction of flow, and changes in the radius of channels. The best

candidate is one with the shortest total path length, with the minimum changes in the direction

of flow, and with the minimum changes of the channel radii. Indeed after transforming the

best or few best designs into 3D shape, they might be close to optimal even without CFD

evaluation. Such a simplification depends on whether the control parameters and weighting

factors of objective functions are adequately assigned.

Fig. 22 shows the pressure profile of the best candidate at the central slice (for better

visualization), which has been calculated in a CFD solver and visualized in the Salome

(a) (b)

30 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

postprocessor (Open CASCADE, 2013). For the simulation, the flow is considered as a single

phase steady state flow without turbulence. The density of the flow is the same as water (1000

kg/m
3
) but with a very high viscosity (1 Pa.s). The gravity is not considered and the initial

velocity at the inlet is 1 m/s. As can be seen in Fig. 22 the critical point of the design is at the

base of the fork and the pressure at the middle outlet is higher than all others. The pressure for

all other outlets is similar, but not the same because the objective function was to minimize

the overall head loss.

Figure 2-22: CFD evaluation results of the best candidate in figure 20

By changing such material properties and boundary conditions (e.g. speed), the control

parameters and objective function weighting factors must be changed accordingly. For

example, if the speed is too high all three control parameters must be increased to increase the

curvature at inlets, outlets and the body of the channel. The weighting factor of the second

part of the second optimization, which considered the angle between incoming and outgoing

flow directions in a joint, must be increased. Because the sharper an angle and the faster the

flow, the higher the head loss.

2.4.3 Complex channel layouts

In the previous section, to examine the design synthesis process a flow distributor layout

problem with one inlet and five outlets was discussed. The approach is able to generate valid

solutions for any kind of boundary condition with any number of inlets and outlets with

arbitrary postures and directions. It is able to handle channel problems with very complex

flow directions. Fig. 23 shows a candidate for a layout problem with two inlets and two

outlets. As can be seen the flow directions are very unconventional, but the approach is able

to smooth the shape of the channel very well.

 2.5 Conclusions 31

Figure 2-23: Seed (a), a candidate topology (b), graph representation (c), and 3d shape (d) of a layout

problem with two inlets and two outlets

2.5 Conclusions

A new approach for shape and topology optimization of fluid channels using generative

design methods is presented. This multiple representation approach uses graphs to represent

both the topology and the shape of channel layouts. This allows a very fast generation of

topological solutions for a given design problem. Based on results of two optimization

functions, the best solutions are stored in a list for further detailed shape design. To evaluate

solutions with a CFD solver, the graphs are converted to 3D shapes via Parasolid. These

shapes can be used directly in downstream applications with no additional postprocessing.

The simulation model is fully separated; therefore it is possible to solve problems such as that

have compressible fluids with high Reynolds number and arbitrary flow directions at inlets

and outlets. Large scale problems, problems with more than one fluid type, for which the

mixing is to be avoided, are also solvable. The dual objective function allows designers to

reach desired compression, decompression, and velocity of flow at each outlet while

simultaneously minimizing the head loss. The rules may be flexible enough and independent

of the simulation model that the approach might be used to create channels for other domains

such as heat transfer to transfer maximum heat from sources to coolers.

The ongoing research of this study is on automating the CFD analysis into the search loop of

the design synthesis approach. Implementation of this step is necessary to have an automated

tuning of the control parameters of the control parameters. Using B-Splines and loft function

instead of CSG primitives to convert graphs into 3D shapes is another possible research area,

which would yield smoother channels. It also makes possible the creation of channels with

non-circular cross sections. Another important field of research that can increase the

(a) (b)

(c)
(d)

32 2. A Novel Optimization Method of Fluid Channels Using Domain Knowledge

generality of the approach is handle obstacles in the seed graph. The reason for this

investigation is that obstacles are an undeniable part of the real world design problems. An

interesting field of research might be to use the output results of the approach as input for

conventional topology optimization methods. Due to a good initial design, convergence can

be faster and many problems might be solved that are hitherto not solvable.

3. Truss Layout Optimization using Generative Design
Synthesis Approach

The aim of this chapter is to demonstrate the abilities of generative design systems in

achieving structural layout optimization. The combination of generative design synthesis

methods with conventional simulation models produces a design technique to achieve optimal

topologies and shapes for cable trusses considering various constraints such as stress,

displacement, stability. Furthermore, manufacturing issues and material imperfections and

limitations can be considered in the synthesis. The effectiveness and robustness of the

proposed method is checked by solving a variety of available test problems found in the

literature. The results show that the approach not only creates the existing solutions for the

test problems, it creates new structures that have never been seen before.

Keywords: Topology Optimization, Design Automation, Graph Grammar, Truss.

3.1 Introduction

One of the most popular computational design synthesis approaches in engineering design

involves topology optimization methods, which is based on using finite element methods

(FEM) for the analysis, and various gradient-based optimization techniques (Bendsøe and

Sigmund, 2003). Topology optimization is a mathematical approach that models a given fixed

number of decision variables (cells or grids), and optimizes its objective function (material

layout) for a given set of boundary conditions and loads. These optimization methods are now

being used successfully in areas such as electro-magnetics, MEMS and fluids as well

(Bendsøe and Sigmund, 2003; Eschenauer and Olhoff, 2001). For more than two decades,

engineering designers have used topology optimization methods for a wide range of structural

design problems. The objective of structural optimization is to improve the performance of

the structure components in terms of material efficiency in transferring applied loads.

Therefore, the performance criterion is usually the weight or cost of the structure subject to

geometrical constraints and various performance-based constraints such as stress,

displacement, mean compliance, frequency and buckling load.

Truss and space frames are widely used structures, because they are simple and inexpensive

to build and can be used in many engineering applications. Literature shows much research

based on classical topology optimization methods for the optimal design of truss structures

(Dorn et al., 1964; Kirsch, 1989; Luh and Lin, 2011). Typical truss topology optimization

approaches discretize the design space with a nodal mesh of a large ground structure, in which

every node is connected to almost every other node in the domain. The ground structure

concept has been first initiated by Dorn et al. (1964). This dense set of potential structural

members along with applied loads and boundary conditions are assumed known. The

optimization is used to determine the material distribution of cross-sectional areas of the

connections. By removing inefficient members with slender areas below a certain threshold

the connectivity of the system is changed and the structure is updated (Achtziger et al., 1992;

Bendsøe and Sigmund, 2003; Bendsøe et al., 1994; Kirsch, 1990). Truss topology

34 3. Truss Layout Optimization using Generative Design Synthesis Approach

optimization is a combination of three optimization problems; size, topology and shape. The

objective of size optimization is to find the optimal cross-sectional area of structural elements.

Topology optimization aims to find the optimum existence and connectivity of the nodes. And

shape optimization is concerned with finding the optimum nodal coordinates. For each

optimization it is assumed that the variables of the other two optimizations are fixed.

Numerical challenges associated with the formulation of underlying governing mechanics

(e.g. local and global instability) are often an important obstacle in topology optimization

methods (Jalalpour et al., 2011). However, the matter becomes more acute when considering

uncertainties associated with the structural stiffness such as geometry and material property

imperfections. Consequently most of the researches in this area are focused mainly on

deterministic problems with a limited consideration of uncertainty (Bendsøe et al., 1994; Díaz

and Bendsøe, 1992; Lógó, 2007; Lógó et al., 2009; Yonekura and Kanno, 2010). The main

strategy to consider these uncertainties in the formulations has been adding randomness

(uncertainty) to the spatial position of the nodes (Asadpoure et al., 2011; Calafiore and

Dabbene, 2008; Guest and Igusa, 2008; Sandgren and Cameron, 2002) or equivalent random

forces at nodes (Jalalpour et al., 2011; Tyas et al., 2006). Jalalpour et al. (2011) aim to be the

first who propose a method that is capable of handling both nodal location uncertainties and

first order global buckling effects. In their proposed method, random forces at nodal points

represent the potential global buckling in imperfect structures. Although considering

uncertainty in the spatial location of the nodes creates (theoretically) more stable results, they

are less practical structural solutions to be built. Indeed, since 1960, various optimization

methods for the layout design of structures have been developed and many papers and books

on the mathematical aspects of the structural optimization have been published. These

contributions are mainly concerned with theoretical aspects rather than practical applications

and engineering aspects (Liang, 2005). This shows a clear gap between the development of

structural layout optimization theory and its practical applications in industry (Cohn and

Dinovitzer, 1994; Liang, 2005). The main reasons behind this gap are the mathematical

complexity of structural optimization methods (Liang, 2005), and the fact that structural

optimization techniques are developed primarily for saving materials and not for automating

the engineering design process (Liang, 2001). The work presented in this chapter introduces

an efficient design tool for mechanical and civil engineering researchers. It is a clear and easy

to understand concept and the methodology is an attempt to reduce the existing gap between

academic methods for structural layout optimization and practical applications.

This chapter presents the theory and application of a generative design synthesis method for

topology, shape and sizing design of structures. The method incorporates the load flow

principal, simulation and optimization methods through generative design synthesis approach

into a modern structural layout optimization theory. Furthermore, unlike other conventional

methods, the types of bars and cables that are allowed to be used as components of the

structure are defined at the beginning of the synthesis. There is no need to post-process the

results, because manufacturing issues and limitations can be considered in the synthesis. This

method uses a graph grammar interpreter to generate different topological solutions for a

structural problem. Through exhaustive search of the design space all valid topologies for a

given problem are generated and sorted based on the complexity of the solutions. An

optimization algorithm is then used to optimize all (or the top n) topologies. This optimization

 3.2 Load flow path principal 35

algorithm changes the spatial positions of the joints, to minimize a desired objective such as

stress, displacement, or overall load flow. Finally the best candidates are transformed into

meaningful 3D shapes. The nodes and arcs of the generated graph represent Constructive

Solid Geometry (CSG) shapes. The graph grammars rules work with graph elements to

generate a new topological state, as a result the search and generation process is very fast.

However, it is vitally important to embed enough information in the graph grammar rules in

order to create meaningful structures. To increase the computational effectiveness of the

generation process, the design process is carried out in distinct steps. To enter each step, the

candidate solution must meet specific requirements.

One of the major limitations, which topology optimization methods in conceptual design are

facing, is limited representation power; the synthesis process and design rules are dependent

and integrated into the simulation model, the simulation model is often fixed for a given set of

loads and boundary conditions. By utilizing a multiple representation approach for the

topology optimization of structures, our algorithm avoids many problems associated with

other approaches in setting up the mechanical behavior equations. There is no need for a

parameterization scheme because representing the topology is independent of the simulation

model. It causes significant computational savings, because the FE analyses and remeshing at

each iteration is no longer required. By using multiple representations in our method,

dimension (e.g. 2D or 3D) has almost no effect on the computation efforts in finding structure

topologies. Furthermore, as the representation and simulation models are fully separated from

each other, one can use the same rules for problems with completely different boundary

conditions, loads and structural component types.

The proposed method not only produces results in agreement with previously solved

problems, it creates new structures that have never been seen before. The effectiveness of the

proposed method is checked by solving a variety of available test problems and comparing

them with those found in the literature. This chapter is organized as follows. Section 2

describes a background about generative design synthesis systems and load flow principal.

Section 3 provides details of the proposed approach in this chapter. Section 4 presents results

and discusses the implications of results; the focus of this section is to present significant

benefits of proposed methodology over previously used approaches. And finally, Section 5

concludes the study and suggests further research projects to extend the presented work.

3.2 Load flow path principal

Load flow path is a way in which load paths through a structure or mechanism from an input

point (point of application) to the output point (support or fixed point). The term load path has

been first defined by (Kelly and Elsley, 1995), although various authors (Hart-Smith, 1995;

Kermode, 1964; Osgood, 1970) have used this term –however– in a descriptive sense. A

fundamental fact in design process of structures is ensuring an appropriate path for loads and

forces to flow in the structure from application input point(s) to the fixed or reaction output

point(s). Although this has been always implicitly considered, there is a direct relation

between load flow and the deformation behavior of the structure. Hence an insight obtained

from load flow path can greatly enhance the design process (Kelly and Elsley, 1995; Skakoon,

2008). Load paths are relatively easy to define in simple structures such as trusses which carry

36 3. Truss Layout Optimization using Generative Design Synthesis Approach

only axial loads. The concept of load path has been used in topology optimization methods to

reach feasible solutions (Harasaki and Arora, 2002, 2001; Hoshino et al., 2003). The main

limitation of these techniques is the mathematical formulation of load paths which is based on

finite element analysis of previous design step (Marhadi and Venkataraman, 2009). In this

chapter the knowledge obtained from load flow path principal bases a new design

methodology for structural topology optimization. This methodology has three main rules;

· forces tend to flow in paths with least resistance; here, resistance is the amount of

change in the direction of the load flow path,

· changes in the direction of the load flow requires an extra transmitter member to

impose the change,

· and finally the more parallel the structural components are with the direction of the

applied load at a particular joint, the more their utilization. For instance if at a joint,

the applied load is exactly at the same direction as a specific member, the utilization of

that member is maximum, because no other force components are created.

A grammar-based approach for truss topology generation and optimization has been first

proposed by (Reddy and Cagan, 1995). Shea further developed the approach for the synthesis

of truss structures using finite element simulation and stochastic search methods called “shape

annealing” (Shea and Cagan, 1999, 1998; Shea, 1997; Shea et al., 1997). eifForm is the

software tool which has been developed based on this approach (Shea et al., 2005). Shape

annealing rules are simple random rules (Cagan, 2001) but our main aim in this chapter is to

systematically calculate the load paths based on the rules and generate various topologies that

can meet the requirements for the desired force path. This will help us to add only those

components which increase the overall performance of the structure. Therefore, stresses and

strain energy will be uniformly distributed throughout the topology.

3.3 Approach

The overall approach to the structure synthesis using generative graph grammars is depicted

in the Fig. 1. The whole process can be divided into two phases; shape and topology

synthesis, and transformation. The synthesis phase consists of two steps; search and

optimization. In the search phase, all valid topologies are generated in six consecutive steps

and in the optimization phase the parameters of the topology are optimized. Based on the

objective function values, an optimum candidate is selected. The synthesis phase uses the

graph grammar interpreter to apply graph transformations and generating topologies.

 3.3 Approach 37

Shape and Topology Synthesis

S
e

a
rc

h
O

p
ti

m
iz

a
ti

o
n

T
ra

n
sf

o
rm

a
ti

o
n

Defining the rough load flow
path

Defining secondary load
directions

Connecting load joints to a
fix or another joint

All feasible CandidatesShape Optimization

Best Candidates

RS 1

RS 2

RS 3

RS 4

RS 5

RS 7

Smoothing the load flow
paths

Smoothing secondary load
paths

Finiding intersection of paths

RS 6

Transform graphs into
 3D shapes

Figure 3-1: Structure synthesis approach

In the transformation phase the generated topologies, which are represented as graphs are

converted to three dimensional (3D) shapes. This step is not necessary for the synthesis of

structures and is used just to visualize the final results as 3D shapes. In the following sub-

sections all phases of the design are described in detail.

3.3.1 Analysis of the structures

This section briefly describes how the necessary structural evaluations are carried out. The

approach is initially developed for cable truss synthesis, but it can be used without any

modification for synthesis of truss structures. The only difference between cable truss and

truss structures is in the individual components that constitute the structures; trusses constitute

of tension-compression bars, whereas cable truss structures consist of tension wire ropes and

compression bars.

Structure elements

A cable truss structure is a mechanical system composed of tension wire ropes and

compression bars, which are connected together through frictionless hinges (nodes), and is

38 3. Truss Layout Optimization using Generative Design Synthesis Approach

loaded only at nodes. Consequently the axial displacement in any individual component (wire

rope or bar) is linear and consequently the internal forces, strains and stresses are constant for

each component in the structure. In this work the simulation does not consider the weight of

the components. But since the simulation and topology generation are separate from each

other, the simulation algorithm can be changed.

Fig. 2 shows the shape of the bars and the construction type of the wire ropes that have been

used in this study.

Figure 3-2: cylindrical bar (a), and wire rope (b) used for this study

Size, shape, material characteristics and construction type of the elements (bars and ropes)

can be easily changed at the onset of this approach. In the results section of this chapter, the

effect of changing elements features is investigated. It is also possible to define a set of

options for the structure elements, and leave the decision for choosing adequate element types

and sizes for each segment to the optimization. In the optimization section (3.2.4) and also the

first two sub-sections of the results the steel rope is fixed to a 1×7(1+6) construction type and

the bar diameter to 24 millimeters because in these sections our aim is to investigate the

capabilities of the shape optimization algorithm. So we have intentionally created conditions

to challenge the shape optimization rather than the topology generation.

Evaluation

An example of a system with two elements (two bars or one bar and one rope) is shown in

Fig. 3. In this example nodes N1 and N3 have unknown forces with known displacements

equal to zero, whereas node N2 has an unknown displacement and a known force P.

Considering the space dimension of the problem as 2D, this structure, although very simple is

not solvable through Newton's laws of motion. Because the number of the equilibrium

equations (a vector sum of the two forces and a sum of the moments about an arbitrary point)

is less than number of the unknowns (four unknown reactions at N1 and N3 nodes). Therefore

the structure is classified as statically indeterminate. To solve statically indeterminate

systems, the deformations must be considered.

 3.3 Approach 39

Figure 3-3: A two element structure (a), equilibrium at all three nodes (b)

As the static equilibrium equations are insufficient to determine the internal forces and

reactions of the statically indeterminate systems, it is necessary to develop an analysis scheme

that can be used for evaluating both determinate and indeterminate structures. This requires

developing of the relevant equilibrium, kinematic, and constitutive relations for general

structures and then combining these expressions to produce a set of equilibrium equations.

The procedure of solving structures can be found in most classical Structural Mechanics

books (Armenàkas, 1988). Unlike trusses with tension-compression bars, components used in

this approach consists of tension ropes and compression bars. This requires recalculating the

stiffness matrix of the structure after defining the tension elements and finally the

displacement and force matrixes. This scheme has been programmed in C# and can be used

for both two and three dimensional problems independent from structure’s degree of freedom.

3.3.2 Shape and topology synthesis

Seed graph

A seed graph defines the scope and boundary conditions of the problem to be solved. In this

case, it consists of some arcs and nodes which are labeled as fixed (n0 and n1) or loaded (n2)

with different spatial positions. Fig. 4 illustrates a sample seed graph with two fix points and

one load in two dimensions (x, y). The vertical distance between the fix points is 576mm and

the horizontal distance between fix points and the load is 960mm. The load is 100N in -Y

direction. The goal of grammar rules is to transform this seed graph to a graph that represents

a meaningful structure for supporting the load.

Figure 3-4: A seed graph with one load point and two fixed points

40 3. Truss Layout Optimization using Generative Design Synthesis Approach

Topology generation

The graph grammar interpreter, which is used for structural synthesis, starts with a seed

graph, which represents the bounds of a specific problem. The generation (graph

transformation) is carried out through 27 rules which are distributed into seven rulesets (RS).

A ruleset is a set of rules that transforms the design from one level of maturity to the next

level. Rulesets are used as a means to compartmentalize different phases of the generation

process. There are two types of rulesets used in this approach: generative rulesets and

transformative rulesets. Generative rulesets define the design space of all possible valid

candidates (RS1, RS2 and RS4). These rulesets define the topology of the candidates.

Transformative rulesets change the state of generated solutions. They transform a candidate

without changing its topology (RS3, RS5, RS6 and RS7). The branching factor of the

transformative rulesets is one whereas the branching factor of the generative rulesets is more

than one.

Figure 3-5: Grammar rules

In Fig. 5 all 27 grammar rules with a short description of each are illustrated. The rules are

created in a general way, so that for different types of problems the same rules can be used.

The left picture in the Rule column is the left hand side of a rule (LHS) and the right picture is

the RHS of the rule. The graph grammar interpreter converts that part of the seed graph which

is matched to the LHS into the graph segment depicted in the RHS. Three trigger rules (4, 9

and 14), two optimization rules (3 and 27), and one evaluation rule (26) does not change the

graph elements, therefore their LHS and RHS are not depicted. They are referred to as rules to

coordinate their execution among the other rules. Fig. 6 shows the tree structure of the

synthesis process. Figures 1, 5 and 6 represent the approach from three different viewpoints

Ruleset Type Description Ruleset Type Description

1 Connect loads to fixes 15
Smooth the path between a load

and a fix point

2 Connect loads to load 16
Smooth the path between a load

and a joint point

3 Optimization I Main load flow path optimization 17
Smooth the path between a joint

and a fix point

4 Trigger rule 1 Trigger rule 1 18
Smooth the path between a joint

and a joint point

5
Insert intermediate joint between

a load and a fix point
19 Remove arbitrary arcs

6
Insert intermediate joint between

a load and a joint point
20

Merge Nodes that are very near

to each other

7
Insert intermediate joint between

a joint and a fix point
21

Merge nodes that are located on

other arcs

8
Insert intermediate joint between

a joint and a joint point
22 Merge adjacent arcs

9 Trigger rule 2 Trigger rule 2 23 Merge triangle connections

10 Remove arbitrary arcs 24 Add intersecting joints

11 Define direction of load at joints 25 Remove arbitrary nodes

12 Connect joint to fixes 26 Simulation
Initial evaluation of the final

results

13 connect joints to joints 27 Optimization II Shape Optimization

14 Trigger rule 3 Trigger rule 3

RuleRule

1

G
e
n
e
ra
to
r

G
e
n
e
ra
to
r

2

4

G
e
n
e
ra
to
r

5

A
u
to
m
at
ic

A
u
to
m
at
ic

6

A
u
to
m
at
ic

7

A
u
to
m
at
ic

3

 3.3 Approach 41

with different levels of detail. As can be seen in Fig. 6, rulesets 1, 2 and 4 increase the number

of candidates and other rulesets just transform the existing candidates.

The whole approach is developed in such a way that incremental information, which is

required in the next step, is added to the design. Aside from the depicted rule conditions in

Fig. 5 (like connecting loads to supports), many other additional functions are compiled into

the rules to define detailed matching conditions as well as rule actions. For instance, for rule

24, one function aids in the recognition process to find the exact position of the intersection

and one function helps in inserting a node at that calculated spatial position. In the following

three sub-sections, all seven rulesets including 27 rules are explained in detail.

RS 1: Defining the rough load flow path

RS 2: Add intermediate joints

RS 3: Defining direction of loads at joints

RS 4: Connecting joints

RS 5: Smoothing load paths

RS 6: Finiding intersection of paths

RS 7: Shape optimization

Figure 3-6: Tree structure of the synthesis process

3.3.2.1.1 Ruleset 1

The task of the first ruleset (RS1) is to create the main path between load point(s) and the

fixed (support) points. In the case of the seed graph in Fig. 4 with only one load and two fix

points, just one candidate is generated. If the suggested design in Fig. 7 with one compression

bar and one tension rope meets the objective requirements and does not violate different

constraints such as buckling, then the ruleset is done. However in this specific example, due

to using a very slender bar (24 mm diameter), the compression bar buckles. Because the types

of components and their materials are fixed, one should change the path of the load in a way

that causes a reduction in the flow amount. This is carried out through an optimization

algorithm, which tries to find the optimum direction for the load carrier vectors (Fig. 7).

42 3. Truss Layout Optimization using Generative Design Synthesis Approach

Figure 3-7: Connecting the load points to the fix points

It is clear that the optimum load carrier vectors should be in the same direction as the load

vectors, because the net load to be carried will be the same as the load itself. Based on this

fact, the load carrier vectors in Fig. 8 should be in the same direction as the load, but the

optimization’s result in the Fig 8 shows a different direction. This is due to the fact that

changes in the direction of the load flow require an extra transmitter member to impose the

change, and the more changes in the direction, the more lateral load flow. So in the dilemma

of minimizing the main load flow and the changes in the direction of load path, a mediating

direction is found through the optimization. In the section 3.2.4, the optimization function is

described.

Figure 3-8: Defining the direction of main load flows

3.3.2.1.2 Ruleset 2

Based on the load flow direction from the RS1, four rules in this ruleset break the structure

elements into smaller ones and one trigger rule is used to exit the rule set. The segmentation

of the load paths depends upon the minimum allowed size for structure elements. In this study

minimum size of each segment is 225 mm; therefore each path can be divided maximum into

four segments. This minimum segmentation size is different from the minimum element size

constraint of the shape optimization algorithm. The segmentation size limit indirectly limits

the maximum number of the structure elements. It allows the rules of the ruleset 2 to be

applied only on arcs with the minimum length of 450 mm. As illustrated in Fig. 6, this is a

generative ruleset for exploring the design space; the single output candidate of the ruleset 1

is populated into sixteen candidates with different number of segments for each load path.

 3.3 Approach 43

Fig. 9 shows one of the candidates with one segmentation at each path, which means two new

joints are created.

Figure 3-9: Dividing load path segments to smaller pieces

3.3.2.1.3 Ruleset 3

The newly added joints require extra transmitter members to impose the changes in the

direction of the load flow. This relatively small ruleset defines the optimum direction of the

force to be imposed at the joint. This is calculated based on the direction of both path

segments connected to the joint. Fig. 10 shows the effect of this ruleset upon the candidate

from the last ruleset. By applying four rules (each rule two times), the two directing arcs at

the load point are removed, because they are no longer required and two directing arcs are

added to the joints. If the number of segments and consequently the number of joints

increases, the number of rule applications also will increase.

Figure 3-10: Defining the direction of load at intermediate joints

3.3.2.1.4 Ruleset 4

Ruleset 4 is the final generative ruleset. Its rules are designed to connect the joints to other

joints or fixed points. This ruleset adds more variety to the design space and increases the

number of the candidates from 16 to 35. At this stage the topology of the candidates is fixed

and the remaining exploration is of parametric variation within these 35 topologies.

44 3. Truss Layout Optimization using Generative Design Synthesis Approach

Figure 3-11: Connecting intermediate joints to other joints or fix points

3.3.2.1.5 Ruleset 5

The functionality of this ruleset is similar to the ruleset 2, with the segmentation of the paths

applied on the secondary load paths and not the primary ones. This segmentation is necessary

to find the intersection place of the load paths. In more complicated candidates the effect of

this ruleset is more evident.

Figure 3-12: Smoothing intermediate load paths

3.3.2.1.6 Ruleset 6

Finally ruleset 6, which is the final ruleset of the search process, prepares the generated

solution candidates for the shape optimization. It finds intersections in the load paths and adds

new joints at those places. Rules of this ruleset also remove all unnecessary segmentations of

the secondary load paths. Most of the rules in this ruleset are not used for the example in Fig.

13, but in more complicated design solutions, in which changes in the direction of the load

flow are more, they are used. In the results section some of these examples are shown.

 3.3 Approach 45

Figure 3-13: Post-processing the solutions

Fig. 14 shows the generation process of a design solution with a finer segmentation. The

effect of previous rulesets is illustrated with more clarity in this figure.

Figure 3-14: The process to generate candidate 32

Search

A breadth first search algorithm has been used to search the design space for all valid

candidates. As discussed before, rulesets 1, 2 and 4 explore the design space and rulesets 3, 5,

6 and 7 transform the candidate solutions (Fig. 6). As it is possible to generate the same

candidate through different sequence of rule applications, two mechanisms have been

considered to prevent duplicate designs. The first mechanism is preventing confluent rules

from being applied (confluent rules do not invalidate one another, see Heckel et al., 2002).

The second mechanism is a duplicate check. This algorithm –after generating all candidates–

compares them with each other and removes those which are repeated.

46 3. Truss Layout Optimization using Generative Design Synthesis Approach

Fig. 15 illustrates six candidates among the 35 generated solutions. The entire approach

requires less than 10 seconds to generate all 35 candidates. The top candidates in Fig. 15 are

the simplest to generate with less than 20 rule applications. The solutions with more elements

in the Fig. 15 require up to 100 rule applications. At this stage, all generated candidates are

stored in a sorted list based on their complexity. The complexity criterion in this context is

number of structural elements. It is assumed that the more number of elements the more its

construction costs. The approach searches for the simplest structures that can meet all

constraints such as stability, buckling and other spatial constraints, with the best performance

(i.e. objective value). Therefore the candidates in the sorted list are fed one by one to the final

ruleset for shape optimization. The soonest a candidate meets all requirements, the process is

terminated and a final solution is chosen. However it is also possible to continue the

optimization for all solutions.

Figure 3-15: Six random candidates between 34 feasible candidates, generated in less than 10 seconds

 3.3 Approach 47

Optimization

After storing all results of the exhaustive search in a sorted list, the candidates will be further

optimized in the second step of the topology generation phase. Due to the smoothness and

unimodality of the design spaces as well as the use of efficient optimization algorithms, most

of the candidates can be optimized within a few seconds. Based on the idea of the load path

principal, which considers forces like fluid flow, an optimum structure is one that minimizes

the amount of force at all elements by best distributing the force between the elements.

Therefore, the objective function of the optimization is a root-mean square (1):

) √∑
 (1)

where x is the spatial position of the joints, N is the number of structure segments in the

layout, and R is the amount of load that flows in each segment. The objective function of the

rule 3 is equation 1 plus changes in the direction of load paths, which has been discussed in

the sub-section “ruleset 1”.

3.3.2.1.7 Algorithm

For both optimizations (rule 3 and rule 27), the Fletcher-Reeves gradient algorithm is used.

These optimizations can be used to minimize the overall load flow of the layout (equation 1),

displacement, stress, or any other desired objective. Both optimizations are continuous,

because we have only one type of compression bar and one type of tension cable rope to

create the structure. Consequently there is no size optimization required for this example. In

cases where there are different types of elements (bars and cables) with different material or

different sizes, one could use rules to capture this discrete decision making. However, the

second optimization (rule 27) could be also a mixed discrete and continuous optimization.

This allows us to build a structure with different element types to maximize the performance

of the structure.

3.3.2.1.8 Constraints and boundary conditions

Due to the separation of the topology generation from the shape and size optimizations, it is

possible to easily include additional constraints and boundary conditions in the optimization.

However unlike other conventional structural optimization methods (Luh and Lin, 2011;

Noilublao and Bureerat, 2011), this separation of the synthesis process does not affect the

quality of the results, because the search algorithm is responsible for exploring the whole

design space and generating all valid solutions not the optimization. Therefore, the following

constraints have been used in this study; 1) stress, 2) displacement, 3) buckling force, 4) outer

spatial boundaries to limit the design space, 5) minimum structure element length, and 6)

maximum structure element length (this constraint is – aside from the buckling constraint –

due to manufacturing restrictions or esthetic aspects).

It is also possible to define other spatial constraints such as specific regions to be avoided like

holes or other construction requirements. There is no constraint for possible material or

manufacturing imperfections considered in this study. Unlike other conventional methods,

which add uncertainty in the position of the nodes or use artificial nodal loads (Asadpoure et

al., 2011; Jalalpour et al., 2011) to consider imperfections, these issues could be considered in

48 3. Truss Layout Optimization using Generative Design Synthesis Approach

the simulation algorithm, or with a high safety factor for stress, displacement and buckling

constraints.

In the next sub section, various examples demonstrate the robust results of the optimization

and approach.

3.3.2.1.9 Optimization results

Analyzing the candidate in Fig. 7 shows that the amount of load in the compression bar is

equal and opposite the amount of load in the tension rope (174.00N). With the prescribed

components of this study (cylindrical 24mm diameter bars) and considering the length of the

segment, this structure is failing due to buckling; the maximum allowed buckling force for

this element was calculated 33.61N. The objective value for this structure layout (equation 1)

is 250.61N.

Fig. 16 shows the optimized shape of the structure layout which was discussed throughout the

section 3.2. The overall load (equation 1) objective value is 224.43N. The maximum load in

the structure is 106.96N in a tension rope and -91.28N in a compression bar. The reason of

this difference lies in the buckling constraint. For this example and the following ones in the

approach section, the displacement is not considered as a constraint, but it is determined

through the analysis. The displacement at the loaded point is (13.10, -50.58) millimeters in x

and y directions. This seems large, because the selected rope is very thin (just 2mm diameter)

but it has a very high breaking load (2540N). This selection was deliberately done to

challenge the optimization process.

Figure 3-16: Optimized structure (min. overall load flow objective)

Fig. 17 shows an optimized structure with 15 joints and 32 components. The optimization

took about 65 seconds and the best objective function was 265.51N. This value is less than the

value obtained for the Fig. 16. However the distribution of the load is much better and the

shape of the structure has more symmetry. Consequently, the buckling constraint was almost

inactive. The maximum tension value is 78.05N and maximum compression is 77.97N. The

amount of displacement shows significant improvement; (15.90, -31.35) millimeter in x and y

directions respectively.

 3.3 Approach 49

Figure 3-17: Optimized structure with finer segmentations (min. overall load flow objective)

Fig. 18 has the same layout as Fig. 17. The only difference is in the fact that no design space

limitation is considered for the structure, therefore the structure extends out of the initially

considered design box, which shows significant improvements in the objective value and also

displacement at the loaded point. The objective value of the structure in the Fig. 18 is

210.58N, and displacements (6.83, -25.99) millimeter. In this structure, we can see also that

cables are maximum 60.11N under tension and bars are maximum -62.53N under

compression. This shows the very good distribution of the load in the structure, which results

in a very good objective function value.

Figure 3-18: Freeing the spatial constraints of the design space (min. overall load flow objective)

Again Fig. 19 shows a structure layout that is topologically similar to the ones in Fig. 17 and

18. The reason a different shape is obtained for the structure is that the objective function is

now minimum displacement. The shape illustrated in the Fig. 19 gives us the minimum

displacement for the layout which is (2.55, -23.04) millimeter. This is the lowest value among

all 35 candidate solutions; if a displacement less than this is desired, there are two options.

The type and size of the used components could be changed, a finer approximation of the load

path could be allowed. This can be achieved by reducing the minimum length of the

segmentation which is 225 millimeter and consequently creating more segments in the main

load path. For this optimization, tension cables with maximum 47.46N load and compression

bars with maximum 70.17N load are used. This shows clearly that the problem of the

displacement comes from the very thin wire ropes.

50 3. Truss Layout Optimization using Generative Design Synthesis Approach

Figure 3-19: Changing the objective function (min. displacement at loaded point)

Finally Fig. 20 shows the optimal designs for the same problem as in Fig. 16, with the lower

fixed point bearing only forces in the x-direction. Considering the layout total load flow as the

objective function, a displacement of (9.46, -65.70) millimeters in x and y directions and an

objective value of 229.73N is obtained. Whereas by considering the displacement as our

objective function the displacement reduces slightly to (9.28, -62.53) millimeters and the load

flow increases to 258.26N. The displacement is not significantly reduced in comparison with

the previous result. It is interesting to note that the optimized candidates have higher tensile

loads than compression loads due to the buckling constraint. This is also reflected in the Fig.

16, in which ropes are under more tension than bars under compression. In this example also

ropes are under maximum 127.23N (Fig. 20a) and 116.67N (Fig. 20b) tension and the bars are

compressed only with maximum 70.70N and 99.72N forces.

Figure 3-20: Freeing fixed point n1 from load in the y direction; min. overall load flow (a), min.

displacement (b)

It is possible to play to excess with different parameters of the optimization, but the main

point of this methodology is in the way that we approach the topology generation (through

load flow principal) and its formulation and representation in grammar rules. Finally the use

of a tree search algorithm to explore the design space appears to be novel. In the results

section the abilities of the approach is explored through various examples.

3.3.3 Transformation

After automated synthesis of the topologies, they can be transformed into three dimensional

shapes through a converter which uses the Parasolid geometric kernel (Siemens PLM

(a) (b)

 3.4 Results and Discussions 51

Software Inc., 2013). The transformer converts nodes in the graph into spheres, and arcs into

cylinders. The shapes are saved as STL files. Fig. 21 shows the candidate topology of Fig. 18

converted to a 3D shape. For this specific design, the conversion took less than 2 seconds. As

discussed before, this transformation is only for 3D visualization of the results, which is

necessary when synthesizing problems in 3D space.

Figure 3-21: A converted topology into 3d shape

3.4 Results and Discussions

In this section the abilities of the developed approach in generating meaningful topologies

with optimum shapes and sizes is shown through various examples and benchmark problems.

Some examples focus more on showing the capabilities of the optimization, whereas most of

them focus on the topology generation phase.

Throughout the entire approach section, a cylindrical cross section bar with 24 millimeters

diameter and a steel rope (see section 3.1.1) have been used. As discussed in the previous

sections, it is possible to use different type of elements in constructing the structure such as

rectangular cross section bars, hollow cylindrical cross section bars, triangular cross section

bars with different characteristics or ropes with different dimensions and different

construction types. In the next sub-section, the diameter of the bar is changed from 24

millimeters to 40 millimeters to show the effect of changing components on the shape of the

structure. In all sub-sections from 4.3 to 4.5 the construction type of the rope components is

also changed to (6×7(1+6)+1×7(1+6)). Furthermore, the objective function will be for all of

the examples the total load flow (formula 1), unless it is explicitly mentioned.

3.4.1 Changing the building material of the structure

Fig. 22 illustrates the effect of changing the chosen components of the structure on the shape

of the structure. In this example only the size of the bars is changed from 24 mm to 40 mm.

When using the total load objective function, Fig. 22a is the result and in the case of using the

displacement as the objective value, Fig. 22b is the outcome. The overall load flow,

displacement and maximum tensions and compressions for both cases are as follows

respectively:

52 3. Truss Layout Optimization using Generative Design Synthesis Approach

· 208.38N overall load flow, (8.94, -50.19) millimeter displacement, maximum

tension 100.32N, and maximum compression 98.78N

· 231.30N overall load flow, (7.99, -39.73) millimeter displacement, maximum

tension 95.14N, and maximum compression 116.55N

Fig. 22a and b show that the buckling effect is not prominent and results of Fig. 22b shows

that the main reason of the displacement is the stretch in the wire ropes, because in this case

the components have higher compression load than tensile loads.

Figure 3-22: Changing bar diameter from 24mm to 40mm. objectives are min. load flow (a), min

displacement (b)

3.4.2 Changing the direction and position of the load

The effect of changing the direction of the applied load is shown in the Fig. 23. All of the

components in the left picture are under tension and in the right picture are under

compression, but the shape of the structure remains the same; the objective is minimizing the

load. In both cases, the total load is 95.15N but the displacement of the structure under

tension is (13.74, -0.44) mm in x and y directions, whereas these values are significantly

smaller in the structure under compression; (-0.42, 0.01) mm.

Figure 3-23: The effect of changing the direction of the load on the structure layout

In Fig. 24 the location of the load is moved to the right bottom of the design space. In these

shapes, the flow of the load to the shapes is clearly illustrated. Without increasing the size of

the bars, it is not possible to prevent buckling and create the desired shapes with these

topologies; this will be elaborated more in the next sub-section. For these two examples and

(a) (b)

 3.4 Results and Discussions 53

all other following examples in the result section, the construction type of ropes is

(6×7(1+6)+1×7(1+6)) and the diameter of bars is increased to 40 mm.

Figure 3-24: The effect of changing the location of the load on the structure layout

3.4.3 Topological benchmarking of the results

The aim of this sub section is to compare the results of the approach with diverse benchmark

examples in the continuous structural optimization literature. The comparisons are initially

based on the topology, and then the shapes of the results. The first benchmark example is the

cantilever beam with different lengths and with loads at different positions and the second

example is the Michell structure. These are the most used benchmark examples in the

literature (Bendsøe and Sigmund, 2003; Bulman et al., 2001; Eschenauer and Olhoff, 2001;

Liang, 2005; Luo et al., 2009; Rong and Liang, 2008; Wang and Wang, 2004; Wang et al.,

2007; Yulin and Xiaoming, 2004).

The most famous benchmark example that can be found in the field is illustrated in Fig. 25.

These two results have been among the 35 candidates which were created for the problem in

the approach section. The shape of the left structure in Fig. 25 is slightly different from that of

Fig. 16, because in this example the buckling constraint is no longer active, due to using

thicker bars.

Figure 3-25: Short cantilever beams

Fig. 26 shows other diverse topologies for a problem in which the load and fix points are

farther from one another, this is especially accentuated on the problem on the right. The

approach solves problems with different sizes, dimensions, and loads and support numbers in

the same way following the load flow principal. Therefore, the created topologies and to a

54 3. Truss Layout Optimization using Generative Design Synthesis Approach

very good extend the shapes are nearly the same as those found in the literature. However the

shape is very dependent upon the objective function and active constraints.

Figure 3-26: Long cantilever beams

The second most famous problem in the literature is the Michell structure. Various solutions

have been suggested for this benchmark example that can be seen in the Fig. 27. These results

are in accordance with those found in the literature both in terms of topology and shape. This

example requires more time to be solved with the presented approach, due to the bigger

change in the load flow direction. In the previous examples, the load changes maximum 90

degrees, but in this example the load changes 180 degrees.

By setting the minimum size of the path segments to 225 mm, only two candidates are

generated in less than one second, one of which is illustrated in the Fig. 27 (a). By reducing

the minimum size of the segments to 125 mm, in order to achieve a finer approximation of the

load paths, number of candidates increases to 53 solutions in 19 seconds. Three of the 53

samples are shown in Fig. 27a, b and c. And finally, by reducing the minimum size to 100

mm, we were able to generate more than 500 candidates in 10 minutes (see a sampling in Fig.

28). It is important to note that the results from finer segmentations always include the results

of the longer segmentations.

 3.4 Results and Discussions 55

Figure 3-27: Four solutions similar to the literature results for the Michell structure problem

Regardless of the minimum segmentation size, the set of solutions (prior to optimization) can

be sorted on these criteria; 1) number of components in each candidate, 2) initial evaluation of

the candidates, and 3) symmetry of the candidates (if appropriate). Therefore candidates with

lower costs (number of components), better evaluation results and probably better symmetry

come to the top of the list for the final optimization. However the optimization and analysis

are quick enough and – even problems with about 30 variables (15 nodes in 2D) – can be

solved within few minutes. In general the optimization results show that the total load flow in

the Fig. 27 is slightly less than those in the Fig. 28, whereas the displacement of the structures

in the Fig. 27 is more than the structures in the Fig. 28. If – aside from the stability,

robustness and security of the structure – aesthetical aspects are of importance, the structures

in Fig. 28 may be preferred over those in the Fig. 27. Indeed, the approach through covering

of the design space, generates many sophisticated designs, this gives the designer a very wide

range of possible options. A visual presentation, like that shown in this chapter might prove a

useful output in allowing the designers to see the tradeoffs in the results.

(a) (b)

(c) (d)

56 3. Truss Layout Optimization using Generative Design Synthesis Approach

Figure 3-28: Four solutions for the Michell structure problem

3.4.4 Three dimensional problems

As discussed in the background and approach sections, the concept of load flow path is not

limited to 2D problems or 3D problems. Therefore the developed methodology is able to

solve 3D structural problems with almost no change in the rules. However following

differences in the nature of the problems exists; three dimensional nodes have three spatial

variables, consequently the optimization time increases 50%. For visualizing the graphs an

extra conversion is required. The conversion may take up to 10 seconds for big size

structures. And rule 24 should be modified, because finding the intersection of elements in 2D

differs from 3D.

Fig. 29 and 30 show three structures for three different problems. As can be seen the

placement of loads and fixed points is different in all three problems, which affects the

optimum topology and shape of the structure. In Fig. 30 the distance of the load from the fix

points is 50% more than the structures in the Fig. 29.

 3.4 Results and Discussions 57

Figure 3-29: Short cantilever beams in 3d

The number of generated topologies for the examples in the Fig. 29 is almost 100% more than

the similar 2D problem which has been discussed in the approach section (69 topologies with

minimum segmentation 225 mm). Consequently the time has been increased to two minutes.

This time is much more than the 10 seconds required for the 2D problem, because the tree-

search algorithm requires more time to search a larger design space and find feasible

solutions. An interesting characteristic of the truss in Fig. 30 is the joining of three wire ropes

at two joints. Using cables in building trusses allows for flexible and foldable structures that

act as rigid structures when fully deployed. Furthermore they are lightweight and very

material efficient.

Figure 3-30: Long cantilever beams in 3d

3.4.5 Exploring an arbitrary ground structure

In this sub-section it is shown how the proposed method explores the design space in a more

general manner than a fixed ground structure. The efficiency of the approach for structures

with more than one load and many optional support points is demonstrated through the

example shown in Fig. 31. The arrows at the top of the Fig. 31 represent three masses (which

are 100N, 200N and 100N respectively) and the five arrows at the bottom of the Fig. 31 are

58 3. Truss Layout Optimization using Generative Design Synthesis Approach

the optional support points. The objective is to design a truss structure with minimum total

load to sustain these masses.

Figure 3-31: Seed graph representation of a problem with three masses and five support options

Recall that other approaches to truss topology optimization typically discretize the design

space with a nodal mesh as a ground structure, in which every node is connected to almost

every other node in the domain and the members have identical cross-sectional area. Fig. 32

shows two typical ground structures for the defined problem in the Fig. 31. In the left picture

of the Fig. 32 all loads are connected to each other and to all optional supports, whereas in the

right picture a grid of nodes is the ground structure. The proposed approach in this study has

the directness of the first ground structure and at the same time has the flexibilities of the

second ground structure approach.

Figure 3-32: Two common ground structures for the problem defined in fig. 31

As discussed, the approach searches the design space and finds all possible ways to flow the

load from the applied load points to the supports. This concept is the same for any number of

load or support points. Fig. 33 shows two candidate topologies, which satisfy the minimum

requirements for a stable load flow. The left structure is minimally stable as removing any

component can cause instability in the structure. The approach begins with the shape and size

optimization of the simplest feasible designs (e.g. Fig. 33), as soon as a design is found that

meets all requirements and does not violate the constraints, the synthesis process can be

terminated. However, if the manufacturing cost of the structure is not the only objective of the

automated synthesis process, the optimization of the solutions can be continued to find an

appropriate solution.

 3.5 Conclusions 59

Figure 3-33: Two topological candidates

Fig. 34 shows the optimized shapes of the candidates in the Fig. 33. The right structure shows

clearly that the approach is not limited to the fixed ground structure suggested in Fig. 32. It

combines the directness of the first type of the ground structures with the wide covering of the

second type of the ground structure to find the optimum size, shape and topology of the

structures.

Figure 3-34: Optimized candidates in Fig. 33

3.5 Conclusions

A new approach for shape, size and topology optimization of cable truss structures using a

generative design method is presented. This approach uses graphs to represent both the

topology and the shape of structure layouts. This allows a very fast generation of topological

solutions for a given design problem. After exhaustive search of the design space, the

solutions are stored in a list for further detailed shape design and optimization. To visualize

the solutions, the graphs are converted to 3D shapes via Parasolid. These shapes can be used

to extract the construction drawings. The simulation model is fully separated; therefore it

should be fairly easy to augment the approach to solve problems such as those with seismic

loads, uncertainty in materials and construction with any number of loads and supports.

Dividing the synthesis process into shape and topology phases does not affect the quality of

the results, because the tree-search algorithm is responsible for exploring the whole design

space and generating all valid solutions, while the optimization is responsible for the shape

and size optimization of each topology.

Ongoing research in this study is focused on improving the analysis to include the effect of

the weight of the components. Implementation of this step is important in order to have a

60 3. Truss Layout Optimization using Generative Design Synthesis Approach

better shape and size optimizations. The rules may be flexible enough and independent of the

simulation model that the approach might be used for other domains such as compliant

mechanisms design. Because the performance of a compliant mechanism is the ability to

transfer loads from one or more applied points to one or more desired points. Another

important field of research that can increase the generality of the approach is handle obstacles

in the problem specifications. The reason for this investigation is that obstacles are an

undeniable part of the real world design problems. An interesting field of research might be to

use the output results of the approach as input for conventional continuous topology

optimization methods. Due to good initial designs, convergence can be faster and many

problems might be solved that are hitherto not solvable.

4. Tensegrity Form-Finding Using Generative Design
Synthesis Approach

The aim of this research is to produce large irregular tensegrity structures using a generative

design synthesis approach. Unlike most of the form-finding methods, the approach does not

require the description of the connectivity of the tensegrity structures to define the shape of

the tensegrities. It uses graphs to represent the tensegrity structures, which allows a very fast

generation of stable tensegrity solutions for a given design problem. The graphs are used to

define different configurations for a given design problem. After generating the graphs, they

are transformed into meaningful 3D shapes. The effectiveness and robustness of the proposed

method is checked by solving a variety of test problems.

Keywords: Tensegrity Structures, Form-Finding, Topology Generation, Graph Grammar.

4.1 Introduction

Tensegrities are self-supporting structures, which consist of a set of disjoint struts (rigid

elements), which are connected by pre-stressed tensile strings. These structures maintain their

shapes and equilibrium due to a stress imposed by compression of struts and tension in the

cables (Wang, 1998), therefore the structures return to their stable configuration when

subjected to a perturbation. The self-equilibrium characteristic of tensegrity structures along

with their lightweight, fold- and deploy-ability, makes them attractive for architectural and

engineering projects such as robotics and other spatial applications (Chan et al., 2004; Paul et

al., 2006). However, form-finding process – determining shapes and self-stress states of

structure elements – is not a trivial task. Different researchers have proposed different type of

methods for finding the form of tensegrities such as; the force density method (Estrada et al.,

2006; Masic et al., 2005; Schek, 1974; Vassart and Motro, 1999; Zhang and Ohsaki, 2006),

the dynamic relaxation method (Barnes, 1999; Motro et al., 1987) and the marching procedure

(Micheletti and Williams, 2007). Zhang et al. (2006) used a refined dynamic relaxation

method for form-finding of non-regular tensegrity systems. Shea et al., (2002) used stochastic

search for developing intelligent tensegrity structures. Rieffel et al. (2009) introduced an

evolutionary algorithm to produce large tensegrity structures. Tran and Lee (2010) proposed a

numerical method for initial self-stress design of tensegrity grid structures. Most recently

(Koohestani, 2013) has formulated the form-finding of tensegrity structures as two

unconstrained minimization problems with eigenvalues of modified force density matrixes as

their objective functions. And Zhang et al. (2014) has proposed a form-finding method based

on the structural stiffness matrix using various algorithms such as stochastic selecting

algorithm, the restricted step algorithm, and the line search algorithm. Comprehensive review

of methods proposed for form-finding (Tibert and Pellegrino, 2003), static analysis (Juan and

Mirats Tur, 2008), and dynamic analysis (Mirats Tur and Juan, 2009) of tensegrity structures

can be found in the literature.

In most of the existing methods a description of the connectivity of the tensegrity structures

(topology) is required to define the shape and member forces and to determine the self-

62 4. Tensegrity Form-Finding Using Generative Design Synthesis Approach

equilibrated structural configuration. Some researchers – through joining smaller tensegrities

together – could generate large regular tensegrity towers (Masic and Skelton, 2004;

Nishimura and Murakami, 2001). However, to discover novel structural forms and shapes –

considering aesthetic and mechanical properties – and to explore the entire search space of

large scale problems – with irregular and unsymmetrical geometries – new robust methods are

required. The form-finding problem can be divided into two parts: determining the

connectivity of struts and tensile elements, and specifying the spatial property and geometry

of the structure elements. This work covers both aspects of the form-finding, however the

main focus lies in the first step of the form-finding; generating large, irregular topologies.

In this approach, graphs are used to represent the tensegrity structures. Although we are not

the first to use graphs as a means of representing tensegrity structures (Guzman and Orden,

2004; Motro, 2003; Rieffel et al., 2009), the incorporation of a graph grammar approach with

conventional search algorithms creates a novel framework to explore large scale irregular

tensegrities. The vertexes of the graph represent endpoint of struts and edges represent the

struts and tensile cables. To discriminate between the edges, the struts are labeled as “bar”

and tensile strings as “cable”. In this approach, the desired design space is first created

through a set of highly connected nodes. A search algorithm uses grammar rules to explore

the design space and generate all valid (statistically stable) solutions. After removing the

intersections and unnecessary connections between struts, the results are transformed into

three-dimensional (3D) shapes for visualization. The efficiency of the proposed approach is

checked through producing large irregular tensegrity structures. This chapter is organized as

follows. Section 2 describes a background about generative design synthesis systems. Section

3 provides details of the proposed approach in this chapter. Section 4 presents results and

discusses the implications of results. And finally, Section 5 concludes the study and suggests

further research projects to extend the presented work.

4.2 Approach

The overall approach to the tensegrity synthesis using generative graph grammars is depicted

in Fig. 1. The synthesis phase consists of two steps; search and optimization. In the search

phase (Fig. 1a), all valid topologies are generated in three consecutive steps and in the

optimization phase (Fig. 1b) the dimensions and coordinates of the topology are optimized.

Furthermore, based on the objective function values, one or more optimal candidates are

selected. In the transformation phase (Fig. 1c) the generated topologies, which are represented

as graphs are converted to 3D shapes. This step is not necessary for the synthesis of structures

and is only used to visualize the final results as 3D shapes. In the following sub-sections all

phases of the design are described in detail.

 4.2 Approach 63

Search Optimization Transformation

Creating the topologies

Removing unnecessary
cables of the structure

Shape Optimization

RS 1

RS 2

RS 3

Detecting intersection of the
structure elements

Transform graphs into
 3D shapes

Final visual selection

(a) (b) (c)

All feasible
candidates

Best
candidates

Figure 4-1: Structure synthesis approach

4.2.1 Grammar Rules

The graph grammar interpreter, which is used for the synthesis, starts with a seed graph,

which represents the bounds of a specific problem. The generation (graph transformation) is

carried out through six rules which are distributed into three rulesets (RS). A ruleset is a set of

rules that transforms the design from one level of maturity to the next level. Rulesets are used

as a means to compartmentalize different phases of the generation process. In Table 1 all

grammar rules with a short description of each are illustrated. The rules are created in a

general way, so that for different types of problems the same rules can be used. The left

picture in the Rule column is the left hand side of a rule (LHS) and the right picture is the

RHS of the rule. The graph grammar interpreter converts that part of the seed graph which is

matched to the LHS into the graph segment depicted in the RHS. The trigger rule (rule 4)

does not change the graph elements; therefore its LHS and RHS are not depicted. In the

following three sub-sections, all rulesets including their rules are explained in detail.

Aside from the depicted rule conditions in Table 1 many other additional functions are

compiled into the rules to define detailed matching conditions as well as rule action. For

instance, for rule 6, one function aids in the recognition process to find the exact position of

the intersections and one function helps to remove the intersections by changing the position

of the nodes.

64 4. Tensegrity Form-Finding Using Generative Design Synthesis Approach

Table 1. Grammar rules

A seed graph defines the scope and boundary conditions of the problem to be solved. In this

case, our seed graph is empty, which means infinite possibilities. Because for any tensegrity

type such as a T3 (a tensegrity with three struts), an infinite number of tensegrity positions

exists, in which the tensegrity remains in a stable configuration. Stable tensegrity position

configurations are the position of both sides of all struts in a tensegrity. Therefore, as can be

seen in Table 1 the initial step is to reduce the design space from a space with infinite

possibilities to a relatively limited field of possibilities. This is done through discretizing the

design space into limited number of highly connected nodes through rule 1. The connectivity

of the nodes is based on the minimum and maximum allowed size for the structure elements;

it is a complete graph until two nodes are too close or too far apart. Fig. 2 illustrates a seed

graph discretized into eighteen nodes in 2D and 3D views. The nodes are 250 millimeters

apart in x- and y-directions and 550 millimeters in z-direction. The goal of other grammar

rules is to transform this graph to a graph that represents a meaningful tensegrity structure.

Figure 4-2: A seed graph with three eighteen nodes

Fig. 3 shows another spherical graph (design space). The radious of the sphere is 800 mm and

both polar angle θ (theta), and azimuthal angle φ between the nodes are PI/8, which means the

design space has 98 nodes. Maximum allowed distance for connecting the nodes is 700 mm

and there is no minimum. One of the most important aspects of this research is that the exact

RS Description RS Description

1
Create the design

space
1 4 Trigger rule 1 Trigger rule 1

2

Connect joints to

joints and update

the design space

2 5

Remove cables that

are not necessary

for the stability of

the structure

3

Detect stable

tensegrities, which

meet the required

criteria

3 6 Detect intersections

Rule Rule

1

 4.2 Approach 65

spatial shape and boundaries of the design space, in which the tensegrities should be

generated, are defined at the beginning of the synthesis process.

Figure 4-3: A spherical seed graph

After creating the design space, rule 2 is active. This rule can choose any arc in the design

space for the first rule application. As soon as an arc is selected, this rule adds a “bar” lable to

it, which means the arc will represent a strut afterwards. Furthermore, it removes all arcs that

have an angle more than 90 degree with this strut (Fig. 4). It also adds a “cable” lable to all

other remaining arcs connected to both sides of the strut. This lable changes the representation

of the arcs to cable. For the next rule applications, rule 2 selects only those arcs, which deos

not represent struts or cables and are connected to a cable from both sides. After finding the

first stable T3 tensegrity structure, rule 2 selects only those arcs – to rerepresent as struts –

which create a stable tensegrity configuration. Adding these limitations to the rule 2 in

different stages makes the design space smaller but not the number of valid solutions. This

rule is applied as many times as the desired type of the tensegrity is created. For example to

create a T10 structure, ten times the rule should be called.

Figure 4-4: Effect of rule 2 on the design space.

After reaching the desired type of the tensegrity, rule 3 removes all unused nodes and arcs in

the design space (Fig. 6). But this rule is called only if the created solution is stable. The

criteria for checking the stability of the solutions are; a) each side of a strut should have at

least 3 tensile strings and b) the angle between string and strut vectors. If the strut and string

vectors are projected to xy, yz and zx planes (Fig. 5), on each plane we must have at least one

string vector (𝛼) with an angle more than and one string vector (𝛽) with an angle less than the

strut vector (𝛾). Maximum one of the strig angles is allowed to be equal to the strut angle.

66 4. Tensegrity Form-Finding Using Generative Design Synthesis Approach

Figure 4-5: Angle between struts and strings

After applying the rule 3, rule 4 is recognised and allows the design to go to the next ruleset.

Rule 4 filters out those candidate solutions, in which the stablity is not approved.

Figure 4-6: Effect of rule 3 on the design space after creating a T3

In ruleset 2, all unnecessary tensile strings for the stability of the solution are removed from

the design space. Fig. 7 shows a T4 tensegrity with extra tensile elements, which has been

removed in Fig. 8. This rule considers the minimum number of the cables and also stability of

the structure for removing the tensile strings.

Figure 4-7: A generated T4 tensegrity with extra tensile strings

In this study we consider only the stability criteria to remove extra tensile strings. However,

considering other criteria (structural analysis) helps to remove those tensile strings that are

less utilized, which leads to a more stable and efficient designs.

 4.2 Approach 67

Figure 4-8: Removing unnecessary strings for the stability of the structure

After removing all extra strings from the structure, rule 6 detects elements of the structure that

are intersecting each other. To remove intersections the end postion of the struts should be

moved to another stable position configuration (Fig. 9). This final step of intersection removal

is not implemented yet.

Figure 4-9: Detecting and removing intersection of the structure elements

4.2.2 Search

A depth first search algorithm has been used to search the design space for all valid

candidates. Fig. 10 shows how the design space is explored through the tree-search algorithm.

Indeed after creating the design space (rule 1), rulesets 1 and 2 expand the tree to its

maximum size and generate automatically all possible topologies for the desired tensegrity

problem. Ruleset 3 does not increase the number of solutions and just transform them to a

modified state (intersection removal). In the final step of the tree-search, the shape of the

solutions is optimized. In this step – like RS 3 – the existing candidates are just transformed

to their final shape. The optimization is referred here, to coordinate its execution among the

rules.

68 4. Tensegrity Form-Finding Using Generative Design Synthesis Approach

RS 1: Creating the design space

RS 1: Creating the possible topologies

RS 2: Removing unnecessary cables

RS 3: Detecting and solving intersections

Step 4: Shape optimization

Infinite Possibilities

Figure 4-10: Tree structure of creating structures

As it is possible to generate the same candidate through different sequence of rule

applications, two mechanisms have been considered to prevent duplicate designs. The first

mechanism is preventing confluent rules from being applied. The second mechanism is

duplicate check. This algorithm compares the intermediate solutions with each other and

removes those which are repeated. For instance it is possible to generate a T3 tensegrity with

three struts s1, s2 and s3 in six different ways (based on the order that the struts are added).

Although for generating small size tensegrities (up to T10 tensegrities), duplicates are not a

menace for the tree-search algorithm, for solving large scale tensegrity problems they may

drastically reduce the performance of the tree-search algorithm.

4.2.3 Optimization

The final step (step 4) is responsible for optimizing the shape of the tensegrity considering

mechanical properties such as stress and buckling. This process consists of a non-linear

gradient-based optimization known as “Fletcher-Reeves” algorithm (Nocedal and Wright,

2006). It can be used for defining the material and size characteristics of the strings and struts

and also the most suitable position configuration of the structure elements. The objective may

be the stability or any other desired criterion. Ongoing research of this study is developing

this optimization algorithm along with the incorporating new analysis in the synthesis

process.

4.2.4 Transformation

After automated syntheses of the topologies, they can be transformed into three dimensional

shapes through the aid of a computational geometry package such as the Parasolid geometric

kernel (Siemens PLM Software Inc., 2013). The transformation converts nodes in the graph

into spheres, and arcs into cylinders. In this study the radius of all struts is fixed to 15 mm and

the cables to 5 mmm. The shapes are saved as STL files. As discussed before, this

transformation is only for 3D visualization of the results.

 4.3 Results and Discussions 69

4.3 Results and Discussions

As discussed in the previous section the first step of the synthesis is creating a field, in which

the tensegrities should be generated. This field may have a shape such as a cube or sphere, or

any irregular form. The nodes can be randomly distributed throughout the design field or have

a regular order such as those in Fig. 2 and 3. The approach to connect the nodes is that every

node connects to every other node unless the minimum and maximum allowed length is

violated. The more the number of nodes which are used to discretize the design space and the

more these nodes are connected together, then the more the number of tensegrity structure

topologies that can be generated. For instance for a design space with length, height and depth

of 900, 900 and 500 millimeters respectively, which is discretized through 18 nodes (Fig. 2),

more than 600 T3 structures are created through the application of the grammar rules. This set

of 600 candidate solutions can be created in just under 7 minutes (using a desktop computer

with an Intel(R) Xeon(R) processor). The struts and cables are allowed to have a length

between 200 and 900 millimeters. This high number of possibilities is normal because the

constraints are very loose; by applying more restrictions such as decreasing the size range of

the elements the number of possibilities reduces drastically. Increasing the order of the

tensegrity structure that should be generated in the same design space, reduces the number of

options too. If instead of a T3 tensegrity, a T6 is desired, the number of options reduces to

less than 50 solutions, one of which is depicted in Fig. 11.

Figure 4-11: A T6 tensegrity created from a design space discretized into 18 nodes (2d and 3d views)

It is suggested to use at least four times as much node to discretize a design space as the type

of a tensegrity. For instance for a T3 tensegrity, the design space is better to discretized into

minimum 12 nodes. Because, using fewer nodes may eliminate many possible novel designs

in view of the aesthetic and mechanical properties. For instance, Fig. 12 shows a T6 tensegrity

structure, which has been generated in a design space with 32 nodes. This solution cannot be

generated in the previous design space discretized into 18 nodes. Furthermore, the T6

structures generated in the former design space have more intersections than those in the later

one. The unnecessary cables in both figures 11 and 12 are not removed to show that a solution

created in ruleset 1, is indeed a set of tensegrity solutions with the same strut configurations

but different configurations of the tensile strings. Depending upon other criteria, such as

possible external loads, different set of tensile elements may be required.

70 4. Tensegrity Form-Finding Using Generative Design Synthesis Approach

Figure 4-12: A T6 tensegrity created from a design space discretised into 32 nodes

Fig. 13 shows a T12 cylindrical tensegrity which has been created in a cylindrical design

space, discretized into 24 nodes. The maximum number of struts that can be generated in a

design space discretized into 24 nodes is twelve (e.g. a T12 tensegrity). This example is well

known in the literature (Li et al., 2010; Zhang et al., 2014) but in most of these examples the

initial topology (the description of the connectivity of the tensegrity structures) should be

defined before finding the form.

Figure 4-13: A T12 tensegrity created in a cylindrical design space

Fig. 14 shows a T34 tensegrity tower which has been created with the approach. The whole

height of the tensegrity is 540 centimeters. This result was achieved after 30 seconds from

starting the synthesis process. As we use a depth first search algorithm to explore the design

space, the valid results are saved in as soon as they are created even before finishing the tree-

search process. The whole process may take more than one hour, but the first results are

normally achieved in the first few minutes.

 4.3 Results and Discussions 71

Figure 4-14: A T34 tower created from a cubic design space with 72 nodes

The same synthesis process is carried out with the same rules for a large scale irregular

problem. The only difference is in the time that is required to generate the solutions. For

instance, Fig. 15 shows a T30 tensegrity which has been generated from the spherical design

space, illustrated in Fig. 3. This structure along with many other solutions was created in less

than 10 minutes from starting the synthesis process. Although there may exists hundreds of

stable T30 tensegrity solutions in the aforementioned spherical field, exploring the whole

design space was not the aim of this example.

Figure 4-15: A T30 tensegrity created from a spherical design space

Fig. 16 shows the lower part of Fig. 15 which consists of eleven struts (a T11 Tensegrity).

This example shows the flexibility and stability of the approach in coping with different

design spaces. Interestingly enough, Fig. 15 is not only statistically stable; it shows a novel

tensegrity structure, which has not ever been seen in the literature. This shows the abilities of

the approach in generating many novel solutions for any type of design space.

72 4. Tensegrity Form-Finding Using Generative Design Synthesis Approach

Figure 4-16: Detailed view of the base of fig. 15

4.4 Conclusions

A new approach for form-finding of tensegrity structures using generative design methods is

presented. This approach uses graphs to represent both the topology and the shape of

structural layouts. It allows a very fast generation of topological solutions for a given design

problem. A depth first search algorithm is used to explore the design space. The solutions are

stored in a list for further detailed shape design and optimization. To visualize the 3D

solutions, the graphs are converted to 3D shapes via Parasolid. The design space can have any

shape and size and it is possible to solve large scale irregular problems with any number of

struts and cables.

Ongoing research in this study is focused on developing the shape and size optimization

algorithm. Developing the optimization process along with new static and dynamic analysis

methods will help to not only automatically synthesis topologically valid solutions, but also

creating solutions which are optimized considering mechanical properties. Automating the

intersection removal algorithm in ruleset 3 prevents filtering them out, because in the current

implementation, based on the number of intersections the candidates are stored in a sorted list.

And finally developing more appropriate search algorithms to explore the large design spaces

can help in reaching many novel solutions in less time. The reason for this investigation is

that in very large design spaces, the efficiency of the tree-search algorithm plays an important

role. This investigation should focus on developing mechanisms – such as duplicate check

mechanisms – which further reduce the solution space. For instance a third duplicate check

mechanism might be used to remove not only those duplicate designs which have exactly the

same position configurations in the absolute coordinate system, it should be able to detect

those duplicates which their elements relative positions are similar.

5. Computational Design Synthesis (CDS) Platform

An important obstacle in the development of computational synthesis tools in engineering

design is the difficulty in integrating the generation process with efficient simulation packages

for evaluating candidates in a search process. The premise of this study is to develop and

implement a platform to facilitate generative design systems in achieving more flexible design

synthesis automation and optimization. This enables the designers to explore the abilities of

generative design systems rather than coping with complexities of automatically integrating

these analyses in the design process. The platform has been developed mainly based on open

source software (OSS) to be offered to the Computational Design Synthesis (CDS)

community for further development, use and investigation. Its modularity and programming

based implementation provides a foundation for other researchers to build on and to achieve

the next generation of CAD tools substantially faster.

Keywords: Computational Design Synthesis, Design Automation, Open Source Software,

Multi-physics Simulation, Finite Element Methods, Shape Grammar, Graph Grammar

5.1 Introduction

In engineering design, complex analyses (such as FE, CFD and thermal analysis) are required

for accurately predicting the engineering behavior of generated designs. Automatically

integrating these analyses is a known challenge for engineers and designers. Aside from the

inherent difficulties and the large amount of time typically required for embedding external

software packages in the automated synthesis process, doing this in a generic yet robust way

is even more complex. Thus, an important obstacle in the development of computational

synthesis tools in engineering design is the difficulty in integrating simulation packages with

the generation process (Bolognini et al., 2007).

Many scientists have tried to link shape grammars with a simulation model to evaluate the

performance of the designs and guide the search process. Shea and Cagan have used FEM

analysis to evaluate the performance of generated trusses and frames and guide the generation

process (Shea and Cagan, 1998). Starling and Shea have used the behavioral modeling

language “Modelica” to evaluate camera winding mechanism designs generated by the

parallel grammar (Starling and Shea, 2005). Bolognini et al. has coupled COMSOL multi-

physics analysis with a synthesis method to generate MEMS (Bolognini et al., 2007).

However, all these examples are not general and have been developed only for one specific

application, because coupling a simulation model robustly with design generation even for

only one application is a complex task. Indeed the novelty of the presented platform lies in its

generality.

The premise of this platform is to facilitate generative design systems, such as shape and

graph grammars, in achieving more flexible design synthesis automation and optimization.

This enables the scientist to explore the abilities of generative design systems rather than

coping with complexities of automatically integrating these analyses in the design process.

The CDS Platform uses several open source software, such as Salome (Open CASCADE,

74 5. Computational Design Synthesis (CDS) Platform

2013), Code Aster (R&D, 2013), Open Foam (OpenCFD Ltd (ESI Group), 2013), FreeCAD

(Riegel et al., 2013), SnappyHexMesh (OpenCFD Ltd (ESI Group), 2013) to perform a

variety of multi-physics simulations. Unlike previous implementations, using open source

software (OSS) in developing the platform enables us to offer the platform to the

Computational Design Synthesis (CDS) community for further development, use and

investigation. Its module and programming based implementation provides a powerful base

for researchers to build their work on and help to reach the next generation of CAD tools

faster.

This chapter is organized as follows. The second section presents relevant open sourcing

issues and its uses in product development. The third section presents the developed platform

for the field of Computational Design Synthesis. In this section the system architecture and

main applications are discussed. The fourth section is devoted to simulation friendly design

synthesis. In this section, smooth integration of simulation with generative design through

adequate development of design rules and design spaces is discussed. In the fifth section

various application domains are illustrated and future outlooks are presented. Finally, the last

section contains conclusions and discussions.

5.2 Open Sourcing

The appearance of open sourcing began in the 1960s, after the computer manufacturers

decided to separate hardware and software, which provided the opportunity to develop

software independently from the hardware (Hertel et al., 2003; Khanjani and Sulaiman, 2011).

The academic community, led by the University of California at Berkeley, defined a Unix-

based Berkeley Software Distribution (BSD) that eventually lead to the Open Source

Initiative (OSI; 1998). The OSI defined open source as code that: is distributed freely, can be

modified freely, and is accessible to a large number of developers through the Internet.

According to Deshpande & Riehle (2008), the growth in open source doubles almost every

year in term of the projects and the number of lines of code. There are several open source

software properties that have advantages when used for product development (Ruffin and

Ebert, 2004). Open source projects have a longer lifespan, heed standardized interfaces and

are easier to integrate with other software tools.

5.3 CDS Platform

To address the challenges in design synthesis and robust coupling with simulation methods, a

new platform has been developed to increase the role of computers in generating alternative

designs and exploring solution spaces for engineering problems. It introduces an approach

that combines shape and graph grammars with conventional simulation and analysis methods

to provide guidance in design engineering according to evaluated engineering criteria. The

major characteristic of the presented platform that distinguishes it from all other

implementations is its generality. To achieve this generality and flexibility, a programming

and module-based approach has been adopted in developing the platform.

 5.3 CDS Platform 75

5.3.1 A module / programming based platform

Due to the complexity and the wide range of possible applications it is not feasible to develop

a software that can include all possible simulation scenarios. Instead, the CDS Platform takes

the approach that enables the users to develop the corresponding synthesis processes on their

own. This is supported in the form of a programming framework in Python. This means it

provides an interface so the user can implement the design synthesis process. By this

approach multiple forms of control flow are supported and various ways of creating macros

are provided, for example in form of functions or object-orientation.

5.3.2 System Architecture

The platform architecture is inspired on the general synthesis cycle illustrated in Fig. 1. For

every stage of the process, one must define the corresponding modules. Additionally, some

functionality is necessary to convert the output data of each step to fit the requirements of the

next step. Modules have access to any information created or available in other stages,

because the information is stored central in text format.

Figure 5-1: General synthesis process, modified from (Cagan et al., 2005)

The components of a CDS framework are presented in Fig. 2. For each step there are usually

multiple modules that can provide the required functionality, so the platform is not limited to

single tools or processes. In the following subsections, each of the seven module-types is

briefly described.

76 5. Computational Design Synthesis (CDS) Platform

Figure 5-2: Components of a CDS framework modified from (Helms et al., 2009)

For multi-physics simulation, the platform integrates Code-Aster (R&D, 2013) for Finite

Element analysis (FE) and OpenFOAM (OpenCFD Ltd (ESI Group), 2013) for

Computational Fluid Dynamic (CFD) and thermal analysis (as part of the evaluation module).

The necessary converters and preprocessors needed for these tools (Salome and

snappyHexMesh) are integrated in the platform as well. By combining these sets of different

preprocessors and solvers, multi-physics analysis of candidate solutions is possible. Many

different criteria were considered for choosing these sets of solvers and preprocessors. The

main criterion that has a direct effect on the synthesis process was the quality of results. Aside

from thousands of tests, which have been carried on through developers of the software, a

brief search in the literature revealed that many researchers in different disciplines have used

these tools to accomplish their scientific research such as (Silva and Lage, 2011) and (Lou et

al., 2010). The second important reason for selecting these tools was their open-source nature

that facilitated the integration with the developed CDS Platform. Open access to the source

code was of vital importance for developing a generic CDS Platform that unlike other

implementations in this field is not restricted to any type of simulation or design. Due to a free

licensing access to these analysis tools, the developed CDS Platform can be offered to the

CDS community for further development, use and investigation.

The performance evaluation itself is realized by gathering information from the whole

synthesis process (mainly from simulation) and combining it into a single objective value by

the means of an aggregating function that does a weighted addition of all collected data

(Wang et al., 2008).

The synthesis control is mainly a task of the user due to the nature of a programming

framework. But the platform provides an easy access to a lot of generation approaches like

optimization, search trees and knowledge-based processing. As the user influences the control

flow, he can easily integrate additional approaches like Genetic Algorithm (GA).

As a simple grammar interpreter, the CDS Platform can access a shape grammar interpreter

that is introduced by Hoisl and Shea (2011). For the representation the FreeCAD file format

is used in this case. To support more sophisticated designs and grammars, the platform will be

 5.3 CDS Platform 77

integrated GraphSynth as a graph grammar interpreter developed by Campbell (2013). It has

been used by researchers such as Kurtoglu et al. (2010) and Rai et al. (2011). As the results

are represented in graphs, they must be transformed into shapes. This task is carried out

through integrating commercial or open-source CAD kernels (e.g. Parasolid, ACIS or

OpenCasCade).

5.3.3 Integrated tools

Multi-physics simulation tools

Code-Aster is an Open Source software package for finite element analysis and numerical

simulation of structural mechanics and Civil and Structural Engineering. It has been

developed by a French company (EDF) as an “in-house” software (R&D, 2013). Code-Aster

was released as free software under terms of the GNU GPL in 2001. Code-Aster is mainly a

solver for mechanics, based on the theory of the finite elements (FE). This tool covers a large

range of applications: 3D thermal analysis and mechanical analysis in statics and dynamics,

for machines, pressure vessels and civil engineering structures. Beyond the standard

functionalities of the software for solid mechanics, Code-Aster compiles specific research in

various fields: fatigue, fracture, contact stresses, geo-materials, porous media, and multi-

physics coupling. The Salome Platform can be best coupled with the Code-Aster solver to

effectively preprocess the geometries. Salome is an open source software platform which has

been started in 2001 and distributed with the GNU LGPL license. It provides a generic pre-

and post-processing tool for numerical solvers. 3D solid shapes are transformed into

tetrahedron or hexahedron meshes in the mesh module to be prepared for finite elements

analysis. Post-processing module of the Salome allows importing and analyzing calculation

results generated by CAE solvers (Open CASCADE, 2013).

OpenFOAM is an open source CFD software that has been developed by the OpenFOAM

Team at SGI Corp. OpenFOAM can be used for solving different problems in areas of

engineering and science from complex fluid flows involving chemical reactions, turbulence

and heat transfer, to solid dynamics and electromagnetics (OpenCFD Ltd (ESI Group), 2013).

The latest application of OpenFOAM also includes stress analysis, large strain analysis and

magneto-hydrodynamic flows (Karac, 2003). It has a large user base across both commercial

and academic organizations. OpenFOAM includes tools for meshing, notably

snappyHexMesh, a parallelized mesher for complex CAD geometries, and for pre- and post-

processing. SnappyHexMesh generates 3D hexahedra meshes from a triangulated surface

geometry in STL format (Ribes and Caremoli, 2007).

Synthesis control tools

In the generation process defined by a grammar a decision must be made among options

which include a location within the candidate (e.g. a subshape or subgraph) and a rule that

modifies that location. Two main mechanisms have been developed to guide the generation in

a systematic way:

78 5. Computational Design Synthesis (CDS) Platform

· Tree-search: the state of the current generation process (including all existing

candidates) is stored in a tree structure. To apply the next rule (including choosing a

candidate shape and a rule) one of the tree search algorithms such as depth-first or

breadth-first is used.

· Iterative mechanism: only two solutions are saved, the current solution and the best

solution, and the space can be traversed randomly or by following gradients. To date,

simulated annealing algorithm has been developed for guiding the process.

These two mechanisms have positive and negative aspects that should be discussed

extensively. For instance, the tree search mechanism increases the chance to reach the best

solution but it is time consuming. An iterative mechanism like simulated annealing algorithm

does not search the whole design space, but its efficiency to find optimally directed solutions

(in designing frames and trusses) has been shown by Shea (Shea and Cagan, 1998). Assessing

different aspects of guidance mechanisms (tree-search and guided mechanisms) and

comparing their results is not covered in the scope of this study and requires further

investigation. SciPy is another open source optimization toolbox which has been integrated in

the platform to be used in the guidance process (SciPy Developers, 2013).

Grammar interpreters

A 3D shape grammar interpreter developed by Hoisl and Shea (2011) has been fully

integrated in the platform and the integration of a Graph Grammar Interpreter (GraphSynth)

developed by Campbell (2013) is under development. The grammar interpreters are used for

describing solution spaces and generating design alternatives. They allow both interactive and

automatic generation of alternatives.

The main criteria to select the 3D shape grammar interpreter are as follows: support of 3D

shapes, parametric shape grammars, transformations, shape types, definition/manipulation of

rules, user friendly interface, and the capability to both execute shape rules automatically as

well as interactively. These criteria have been discussed by Hoisl and Shea (2011). The shape

grammar interpreter has been developed within the FreeCAD environment. FreeCAD is an

open source software distributed under GNU GPL and LGPL license that supports parametric

3D building of volumetric models (Riegel et al., 2013). The software supports several

import/export document formats. To make drawing in FreeCAD convenient, scripting in

Python is added to the software that allows users to create and modify geometries effectively.

GraphSynth is a unique research software for creating, editing, displaying, and manipulating

generative grammars. This framework stores graphs, rules and rulesets in an XML file format.

This allows automatic search for creative, optimal or targeted solutions. Additionally, it is

able to perform various graph transformations such as the double-pushout method and free-

arc embedding; these two together cover nearly all types of required graph transformations

(Campbell, 2013). One of the most important characteristics of the GraphSynth is its

expandability; through additional C# functions (compiled on-the-fly by GraphSynth) any

capability can be added to the rules and rulesets.

 5.4 Applications 79

Data exchange

The data flow in the platform is highly dependent on the use case or synthesis process because

the user is mainly responsible for the control flow. But there is a common pattern in data flow

that is in use while communicating with the integrated tools (for each module). The general

approach to communicate with any of the integrated tools is to export a file, which is used as

input to the subsequent module. As next, the application is called by its command line

interface to generate the necessary output. This output needs to be parsed (usually by the

means of regular expressions) so it can be passed backed to the platform. This pattern is

generic, platform and language agnostic, but it has its drawbacks primarily in maintainability,

because the input and output specifications of the integrated tools could change in newer

versions and it is harder to debug it than a software using a programming interface.

Nevertheless it is the only option, as most of the tools do not provide an API in Python.

5.4 Applications

Applicability of the platform is directly dependent to the grammar interpreter abilities to

generate new design solutions. The grammar interpreter defines not only the type of the

problem which can be solved but the richness and quality of the solutions connected to it. In

the following sub-sections, the applications are discussed that have been built using CDS

Platform.

5.4.1 Shape synthesis for axisymmetric problems

The first grammar interpreter that was integrated in the platform was a shape grammar

interpreter, developed by (Hoisl and Shea, 2011). They have illustrated various design

problems for their 3D shape grammar interpreter including cooling fins grammar and wheel

rims grammar. Through integrating the grammar interpreter in the platform, both of these

problems are solvable with the platform and have been extensively discussed by the author in

(Hooshmand et al., 2012). In Fig. 3, different components, which have been used in the CDS

Platform for wheel rim synthesis, are illustrated. Although the generated design solutions with

the shape grammar interpreter are novel concerning topological aspects, due to the nature of

the interpreter –which relies only upon primitive shapes such as boxes and cones for the

representation–, the results are not industrially applicable or valuable. However, the generated

results by the shape grammar interpreter point to the future possibilities in the field of CDS.

Specially, through using the platform in the future projects, the researchers will not have to

struggle with integrating complex simulation models in their implementations. While

currently limited in terms of the types of shapes that can be defined, future improvements in

shape grammars would lead to more complex shapes.

80 5. Computational Design Synthesis (CDS) Platform

Figure 5-3: CDS Platform components for wheel rim synthesis

5.4.2 Fluid channel synthesis

Optimization of fluid channels is an essential topic in designing microfluidic devices

(Andreasen et al., 2009; Vangelooven et al., 2010). The goal is mainly to find an optimal

topology for the fluid subdomains along with an optimal shape of channels (Liu et al., 2010).

Borrvall and Petersson (2003) used for the first time topology optimization for solving fluid

problems in stokes flow. Since then, many scientists have used various grid-based topology

optimization methods to solve fluid layout problems. One of the major limitations, which

topology optimization methods in conceptual design are facing, is limited representation

power; the synthesis process and design rules are dependent and integrated into the simulation

model, the simulation model is often fixed for a given set of loads and boundary conditions

(Hooshmand et al., 2012). The process of solving a layout problem, even for simple 2D is

very time consuming. The topic of shape and topology optimization of fluid channels with

graph grammars approach has been extensively explored in chapter 2.

Through combining the generative abilities of GraphSynth with the CDS Platform, we are

overcoming the limitations of current methods. GraphSynth creates the topology design and

OpenFOAM evaluates the candidates. Fig. 4 shows the CDS Platform components for solving

fluid channel layout synthesis. As can be seen the components are almost fully different from

those illustrated in the Fig. 3 for solving wheel rim synthesis, which shows the flexibility of

the CDS Platform.

 5.4 Applications 81

Figure 5-4: CDS Platform components for solving fluid channel layout synthesis

Fig. 5 shows the CDS Platform components for solving space frames and tensegrities

synthesis. Similar to Fig. 3 and 4, the components of the platform are partly changing but the

main frame remains the same. In chapters 3 and 4 the synthesis results of this CDS

configuration for solving trusses and tensegrities are discussed. However in chapter 4, there is

no structural analysis carried out.

Figure 5-5: CDS Platform components for solving frame structure synthesis

5.4.3 Lightweight design of a triangle

Another interesting field of application that the platform can be used is parametric

optimization of designs. For solving this problem, no grammar interpreter is required since all

solutions have the same topology. The platform is able to cope with complicated designs with

numerous parameters. The aim of this case study is to find the optimum lightweight design for

a triangle with four parameters to be optimized (P1, P2, P3 and ϴ). Unlike the previous two

applications, a variety of recent commercial CAD packages are able to cope with this kind of

82 5. Computational Design Synthesis (CDS) Platform

problem. In this study the Code-Aster FE solver, Salome Preprocessor and a simulated

annealing algorithm have been used.

Figure 5-6: Forces, BCNs, and parameters, and best design after 990 iterations with Simulated Annealing

Fig. 6 shows the boundary conditions and forces which are applied to the geometry and also

four parameters which should be optimized (P1 to P3 and theta). The objective function for

this case study is minimizing weight and stress of the triangle; objectives have different

weighting factors. For meshing the geometry an automatic tetrahedralization algorithm with

mesh size 5 is used. A linear statistic solver of Code-Aster is used to analyze designs after

each optimization iteration. Fig. 6 shows the best design after 990 iterations.

5.5 Conclusions

The Computational Design Synthesis (CDS) Platform has been developed to increase the role

of computers in generating alternative designs and exploring solution spaces for engineering

problems. It introduces an approach that combines generative design methods such as shape

and graph grammars with conventional simulation and analysis methods to provide guidance

in design process according to evaluated engineering criteria. The major characteristic of the

presented platform that distinguishes it from all other implementations is its generality. To

reach this generality and flexibility, a programming and module-based approach is used to

develop the platform. The CDS Platform combines different optimization and grammatical

algorithms with conventional simulation and analysis methods. The premise of this

combination is to create an approach to synthesizing optimal shapes considering criteria

requiring multi-physics analysis, which is required for calculating the engineering behavior of

generated designs. The platform can be used in a very wide range of simulations and analyses

like acoustics, finite element, computational fluid dynamic, and heat transfer and a

combination of these analyses to solve complicated multi-physics problems. This has been

achieved by integrating two preprocessors and solvers in the generation process; the Salome

preprocessor and the Code-Aster solver for FE analysis and the snappyHexMesh preprocessor

and the OpenFOAM solver for CFD and thermal analysis. Automatically integrating these

analyses in the design process is a known challenge for engineers and designers. Unlike many

commercial software, its object-oriented and module based implementation provide a unique

possibility for designers to integrate any simulation module of the platform in their design

processes in a few simple steps. The platform works like a high level API and prevents the

direct interaction of designers with many complexities of the simulation and optimization

packages. Its open source character gives the researchers the ability to extend, modify and

customize the platform to their needs.

6. Conclusions

A new approach for solving engineering design problems using generative design methods is

presented. The work introduces an approach for using design information and knowledge

based on various classes of knowledge levels. These include: general knowledge as the most

abstract level of knowledge, generic knowledge, specific knowledge, and case knowledge as

the most concrete level of knowledge. In order to effectively utilize design information and

knowledge, the design process is divided into three main phase: search, optimization and

modification. For more abstract levels of design, which happens in the search phase, higher

level knowledge is required and applicable, but in latter phases more knowledge levels are

applicable. In chapters 2, 3 and 4 three design problems, which have been solved based on the

proposed approach, are presented. In all design cases graphs are used to represent both the

topology and the shape of structure layouts. This allows a very fast generation of topological

solutions for a given design problem.

In chapter 2, the approach for shape and topology optimization of fluid channels is presented.

Based on results of two optimization functions, the best solutions are stored in a list for

further detailed shape design. The simulation model is fully separated; therefore it is possible

to solve problems such as that have compressible fluids with high Reynolds number and

arbitrary flow directions at inlets and outlets. Large scale problems, problems with more than

one fluid type, for which the mixing is to be avoided, are also solvable. An interesting field of

research in this area might be to use the output results of the approach as input for

conventional topology optimization methods. Due to a good initial design, convergence can

be faster and many problems might be solved that are hitherto not solvable.

Chapter 3 introduces the approach for shape, size and topology optimization of cable truss

structures. A tree-search algorithm is responsible for exploring the whole design space and

generating all valid solutions, while the optimization is responsible for the shape and size

optimization of each topology. In this problem, the simulation model is fully separated;

therefore it should be fairly easy to augment the approach to solve problems such as those

with seismic loads, uncertainty in materials and construction with any number of loads and

supports. An interesting investigation may be using the approach for other domains such as

compliant mechanisms design. Like previous design problem, using the output results of the

approach as input for conventional topology optimization methods can be considered.

 The third design problem, which is form-finding of tensegrity structures, is presented in

chapter 4. A depth first search algorithm is used to explore the design space. To visualize the

3D solutions, the graphs are converted to 3D shapes via Parasolid. The design space can have

any shape and size and it is possible to solve large scale irregular problems with any number

of struts and cables. An important extension for this work may be developing a shape and size

optimization algorithm. Developing the optimization process along with new static and

dynamic analysis methods will help to not only automatically synthesis topologically valid

solutions, but also creating solutions which are optimized considering mechanical properties.

84 6. Conclusions

Finally in chapter 5, the Computational Design Synthesis (CDS) Platform which has been

developed to increase the role of computers in generating alternative designs and exploring

solution spaces for engineering problems is discussed. It introduces an approach that

combines generative design methods such as shape and graph grammars with conventional

simulation and analysis methods to provide guidance in design process according to evaluated

engineering criteria. The major characteristic of the presented platform that distinguishes it

from all other implementations is its generality. To reach this generality and flexibility, a

programming and module-based approach is used to develop the platform. The platform can

be used in a very wide range of simulations and analyses like acoustics, finite element,

computational fluid dynamic, and heat transfer and a combination of these analyses to solve

complicated multi-physics problems. Besides increasing the software maturity, future work

may include the integration of graph grammars interpreter GraphSynth in the platform.

The results of the engineering design cases show the generality and flexibility of the proposed

framework. Besides aforementioned future works, improving the search strategies for

exploring the design spaces is very important to achieve faster results in larger design spaces.

Another important field of research is automatic capturing of generic and general levels of

knowledge in the grammar rules and creating a data base of these captured rules. This will

help designers to understand the real design problem at all abstraction levels easier. The

framework is flexible enough and independent of the problem domain and type, therefore the

approach can be used for other domains and other design problems.

7. References

Aage, N., Poulsen, T.H., Gersborg-Hansen, A., Sigmund, O., 2007. Topology optimization of

large scale stokes flow problems. Struct. Multidiscip. Optim. 35, 175–180.

Achtziger, W., Bendsøe, M.P., Ben-Tal, A., Zowe, J., 1992. Equivalent displacement based

formulations for maximum strength truss topology design. IMPACT Comput. Sci. Eng.

4, 315–345.

Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B., 1996. A novel type of skeleton for

polygons. J. Univers. Comput. Sci. 1, 752–761.

Alber, R., Rudolph, S., 2004. On a grammar-based design language that supports automated

design generation and creativity, in: Borg, J., Farrugia, P., Camilleri, K. (Eds.),

Knowledge Intensive Design Technology. Springer, pp. 19–35.

Andreasen, C.S., Gersborg, A.R., Sigmund, O., 2009. Topology optimization of microfluidic

mixers. Int. J. Numer. Methods Fluids 61, 498–513.

Antonsson, E.K., Cagan, J., 2001. Formal engineering design synthesis.

Armenàkas, A., 1988. Classical structural analysis: a modern approach. McGraw-Hill Press,

New York, USA.

Asadpoure, A., Tootkaboni, M., Guest, J.K., 2011. Robust topology optimization of structures

with uncertainties in stiffness – Application to truss structures. Comput. Struct. 89,

1131–1141.

Barequet, G., Goodrich, M.T., Levi-Steiner, A., Steiner, D., 2004. Contour interpolation by

straight skeletons. Graph. Models 66, 245–260.

Barnes, M.R., 1999. Form Finding and Analysis of Tension Structures by Dynamic

Relaxation. Int. J. Sp. Struct. 14, 89–104.

Beierle, C., Kern-Isberner, G., 2008. Methoden wissensbasierter Systeme, Springer.

Vieweg+Teubner Verlag, Wiesbaden, Germany.

Bendsøe, M.P., Ben-Tal, A., Zowe, J., 1994. Optimization methods for truss geometry and

topology design. Struct. Optim. 7, 141–159.

Bendsøe, M.P., Sigmund, O., 2003. Topology Optimization, Vasa. Springer Berlin

Heidelberg, Berlin, Heidelberg.

Bolognini, F., Seshia, A.A., Shea, K., 2007. Exploring The Application Of A Multidomain

Simulation-Based Computational Synthesis Method In Mems Design. Int. Conf. Eng.

Des. ICED’07.

86 7. References

Borrvall, T., Petersson, J., 2003. Topology optimization of fluids in Stokes flow. Int. J.

Numer. Methods Fluids 41, 77–107.

Boston, O., 1998. Technical liaisons in engineering design: understanding by modelling.

University of Bath, UK.

Bulman, S., Sienz, J., Hinton, E., 2001. Comparisons between algorithms for structural

topology optimization using a series of benchmark studies. Comput. Struct. 79, 1203–

1218.

Cagan, J., 2001. Engineering Shape Grammars: Where We Have Been and Where We are

Going, in: Antonsson, E.K., Cagan, J. (Eds.), Formal Engineering Design Synthesis.

Cambridge University Press, New York, pp. 65–92.

Cagan, J., Campbell, M.I., Finger, S., Tomiyama, T., 2005. A Framework for Computational

Design Synthesis: Model and Applications. J. Comput. Inf. Sci. Eng. Vol. 5, 11.

Calafiore, G.C., Dabbene, F., 2008. Optimization under uncertainty with applications to

design of truss structures. Struct. Multidiscip. Optim. 35, 189–200.

Campbell, M.I., 2013. GraphSynth [WWW Document]. URL www.graphsynth.com (accessed

12.1.13).

Celani, M., 2002. Beyond analysis and representation in CAD: a new computational approach

to design education. Massachusetts Institute of Technology.

CGAL, 2013. CGAL, Computational Geometry Algorithms Library [WWW Document].

URL www.cgal.org (accessed 12.1.13).

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N.V., Wood, K.L.,

2011. Computer-Based Design Synthesis Research: An Overview. J. Comput. Inf. Sci.

Eng. 11, 021003.

Challis, V.J., Guest, J.K., 2009. Level set topology optimization of fluids in Stokes flow

1284–1308.

Chan, W.L., Arbelaez, D., Bossens, F., Skelton, R.E., 2004. Active vibration control of a

three-stage tensegrity structure, in: Wang, K.-W. (Ed.), SPIE 5386, Smart Structures and

Materials 2004. pp. 340–346.

Chase, S.C., 2002. A model for user interaction in grammar-based design systems. Autom.

Constr. 11, 161–172.

Cohn, M.Z., Dinovitzer, a. S., 1994. Application of Structural Optimization. J. Struct. Eng.

120, 617–650.

Court, A.W., 1995. Modelling and classification of information for engineering design. Proc.

1995 Des. Eng. …. University of Bath, UK.

 7. References 87

Deshpande, A., Riehle, D., 2008. The total growth of open source, in: Russo, B., Damiani, E.,

Hissam, S., Lundell, B., Succi, G. (Eds.), Open Source Development, Communities and

Quality - IFIP, Volume 275. Springer US, pp. 197–209.

Díaz, A.R., Bendsøe, M.P., 1992. Shape optimization of structures for multiple loading

conditions using a homogenization method. Struct. Optim. 4, 17–22.

Dorn, W.S., Gomory, R.E., Greenberg, H.J., 1964. Automatic design of optimal structures. J.

Mec. 3, 25–52.

Drumheller, M., 2002. Constraint-Based Design of Optimal Transport Elements. J. Comput.

Inf. Sci. Eng. 2, 302.

Duan, X.-B., Ma, Y.-C., Zhang, R., 2008. Shape-topology optimization for Navier–Stokes

problem using variational level set method. J. Comput. Appl. Math. 222, 487–499.

Dym, C.L., Levitt, R.E., 1991. Knowledge-Based Systems in Engineering, Lecture Notes in

Computer Science, vol. 5178. McGraw-Hill Press, New York, NY, USA.

Eftekharian, A. a., Ilieş, H.T., 2012. Medial zones: Formulation and applications. Comput.

Des. 44, 413–423.

Ehrlenspiel, K., 1997. Knowledge explosion and its consequences, in: Riitahuhta, A. (Ed.),

International Conference on Engineering Design, ICED97. Tampere, Finland, pp. 477–

484.

Eschenauer, H.A., Olhoff, N., 2001. Topology optimization of continuum structures: A

review. Appl. Mech. Rev. 54, 331.

Estrada, G.G., Bungartz, H., Mohrdieck, C., 2006. Numerical form-finding of tensegrity

structures. Int. J. Solids Struct. 43, 6855–6868.

Evgrafov, A., 2006. Topology optimization of slightly compressible fluids. ZAMM 86, 46–

62.

Fay, J.A., 1994. Introduction to fluid mechanics. MIT Press, Cambridge, MA, USA.

Gersborg-Hansen, A., Sigmund, O., Haber, R., 2005. Topology optimization of channel flow

problems. Struct. Multidiscip. Optim. 30, 181–192.

Guest, J.K., Igusa, T., 2008. Structural optimization under uncertain loads and nodal

locations. Comput. Methods Appl. Mech. Eng. 198, 116–124.

Guest, J.K., Prévost, J.H., 2006a. Topology optimization of creeping fluid flows using a

Darcy–Stokes finite element. Int. J. Numer. Methods Eng. 66, 461–484.

88 7. References

Guest, J.K., Prévost, J.H., 2006b. Optimizing multifunctional materials: Design of

microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43,

7028–7047.

Guest, J.K., Prévost, J.H., 2007. Design of maximum permeability material structures.

Comput. Methods Appl. Mech. Eng. 196, 1006–1017.

Guzman, M. De, Orden, D., 2004. From graphs to tensegrity structures: geometric and

symbolic approaches. arXiv Prepr. math/0404334.

Harasaki, H., Arora, J.S., 2001. New concepts of transferred and potential transferred forces

in structures. Comput. Methods Appl. Mech. Eng. 191, 385–406.

Harasaki, H., Arora, J.S., 2002. Topology design based on transferred and potential

transferred forces. Struct. Multidiscip. Optim. 23, 372–381.

Hart-Smith, L.J., 1995. An engineer’s viewpoint on design and analysis of aircraft structural

joints. Arch. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 1989-1996 (vols 203-210)

209, 105–129.

Heckel, R., Küster, J., Taentzer, G., 2002. Confluence of typed attributed graph

transformation systems. Graph Transform. 2505, 161–176.

Helms, B., 2013. Object-Oriented Graph Grammars for Computational Design Synthesis.

Technische Universität München.

Helms, B., Shea, K., Hoisl, F., 2009. A Framework for Computational Design Synthesis

Based on Graph-Grammars and Function-Behavior-Structure, in: ASME 2009

International Design Engineering Technical Conferences & Computers and Information

in Engineering Conference. San Diego, USA.

Hertel, G., Niedner, S., Herrmann, S., 2003. Motivation of software developers in Open

Source projects: an Internet-based survey of contributors to the Linux kernel. Res. Policy

32, 1159–1177.

Hicks, B., Culley, S., Allen, R., Mullineux, G., 2002. A framework for the requirements of

capturing, storing and reusing information and knowledge in engineering design. Int. J.

Inf. Manage. 22, 263–280.

Hoisl, F., Shea, K., 2011. An Interactive, Visual Approach to Developing and Applying

Parametric Three-Dimensional Spatial Grammars. Artif. Intell. Eng. Des. Anal. Manuf.

25, 333–356.

Hooshmand, A., Campbell, M.I., 2013. Topology Optimization of Fluid Channels Using

Generative Graph Grammars, in: 39th Design Automation Conference,. ASME.

Hooshmand, A., Campbell, M.I., 2014. Layout Synthesis of Fluid Channels Using Generative

Graph Grammars. AI EDAM 28.

 7. References 89

Hooshmand, A., Campbell, M.I., Shea, K., 2012. Steps in Transforming Shapes Generated

With Generative Design Into Simulation Models, in: Volume 3: 38th Design Automation

Conference, Parts A and B. ASME, pp. 883–892.

Hooshmand, A., Schlaich, M., Belaus, L., Campbell, M.I., 2013. CDS Platform - a Platform

for Multi-Physics Computational Design Synthesis, in: Lindemann, U., Venkataraman,

S., Kim, Y., Lee, S., Papalambros, P., Chen, W. (Eds.), 19th International Conference on

Engineering Design (ICED13), Design for Harmonies, Vol.9: Design Methods and

Tools. Design Society, Seoul, Korea, pp. 099–108.

Hoshino, H., Sakuraib, T., Takahashic, K., 2003. Vibration reduction in the cabins of heavy-

duty trucks using the theory of load transfer paths. JSAE Rev. 24, 165–171.

Hubka, V., Andreasen, M., Eder, W., Hills, P., 1988. Practical studies in systematic design.

Butterworths, London and Boston.

Hwang, F., Richards, D., Winter, P., 1992. The Steiner tree problem. North-Holland.

Jalalpour, M., Igusa, T., Guest, J.K., 2011. Optimal design of trusses with geometric

imperfections: Accounting for global instability. Int. J. Solids Struct. 48, 3011–3019.

Jang, G., Panganiban, H., Chung, T.J., 2010. P1-nonconforming quadrilateral finite element

for topology optimization 685–707.

Juan, S.H., Mirats Tur, J.M., 2008. Tensegrity frameworks: Static analysis review. Mech.

Mach. Theory 43, 859–881.

Karac, A., 2003. Drop impact of fluid-filled polyethylene containers. Imperial College

London.

Kelly, D., Elsley, M., 1995. A procedure for determining load paths in elastic continua. Eng.

Comput. 12, 415–424.

Kermode, A.C., 1964. Aeroplane Structure, 2nd Editio. ed. Pitman Publishing.

Khanjani, A., Sulaiman, R., 2011. The aspects of choosing open source versus closed source,

in: 2011 IEEE Symposium on Computers & Informatics. IEEE, pp. 646–649.

Kirsch, U., 1989. Optimal topologies of truss structures. Comput. Methods Appl. Mech. Eng.

72, 15–28.

Kirsch, U., 1990. On the relationship between optimum structural topologies and geometries.

Struct. Optim. 2, 39–45.

Koohestani, K., 2013. A computational framework for the form-finding and design of

tensegrity structures. Mech. Res. Commun. 54, 41–49.

90 7. References

Kurtoglu, T., Swantner, A., Campbell, M.I., 2010. Automating the conceptual design process:

“From black box to component selection”. Artif. Intell. Eng. Des. Anal. Manuf. 24, 49.

Li, Y., Feng, X.-Q., Cao, Y.-P., Gao, H., 2010. A Monte Carlo form-finding method for large

scale regular and irregular tensegrity structures. Int. J. Solids Struct. 47, 1888–1898.

Liang, Q., 2001. Performance-based optimization method for structural topology and shape

design. Victoria University of Technology, Australia.

Liang, Q., 2005. Performance-based Optimization of Structures: Theory and applications.

Taylor & Francis Ltd, London and New York.

Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., Lederberg, J., 1993. DENDRAL: A case

study of the first expert system for scientific hypothesis formation. Artif. Intell. 61, 209–

261.

Liu, H., Li, P., 2013. Maintaining equal operating conditions for all cells in a fuel cell stack

using an external flow distributor. Int. J. Hydrogen Energy 38, 3757–3766.

Liu, Z., Gao, Q., Zhang, P., Xuan, M., Wu, Y., 2010. Topology optimization of fluid channels

with flow rate equality constraints. Struct. Multidiscip. Optim. 44, 31–37.

Lógó, J., 2007. New Type of Optimality Criteria Method in Case of Probabilistic Loading

Conditions #. Mech. Based Des. Struct. Mach. 35, 147–162.

Lógó, J., Ghaemi, M., Rad, M.M., 2009. Optimal Topologies in Case of Probabilistic

Loading: The Influence of Load Correlation. Mech. Based Des. Struct. Mach. 37, 327–

348.

Lou, R., Pernot, J.-P., Mikchevitch, A., Véron, P., 2010. Merging enriched Finite Element

triangle meshes for fast prototyping of alternate solutions in the context of industrial

maintenance. Comput. Des. 42, 670–681.

Luger, G.F., 2008. Artificial intelligence: Structures and strategies for complex problem

solving, 6th ed. Addison-Wesley, Harlow, England.

Luh, G.-C., Lin, C.-Y., 2011. Optimal design of truss-structures using particle swarm

optimization. Comput. Struct. 89, 2221–2232.

Luo, Z., Tong, L., Kang, Z., 2009. A level set method for structural shape and topology

optimization using radial basis functions. Comput. Struct. 87, 425–434.

Marhadi, K., Venkataraman, S., 2009. Comparison of Quantitative and Qualitative

Information Provided by Different Structural Load Path Definitions. Int. J. Simul.

Multidiscip. Des. Optim. 3, 384–400.

Marsh, R., 1997. The capture and utilisation of experience in engineering design. University

of Cambridge.

 7. References 91

Masic, M., Skelton, R.E., 2004. Open-loop control of class-2 tensegrity towers, in: Smith,

R.C. (Ed.), Smart …. pp. 298–308.

Masic, M., Skelton, R.E., Gill, P.E., 2005. Algebraic tensegrity form-finding. Int. J. Solids

Struct. 42, 4833–4858.

Micheletti, A., Williams, W., 2007. A marching procedure for form-finding for tensegrity

structures. J. Mech. Mater. Struct. 2, 857–882.

Mirats Tur, J.M., Juan, S.H., 2009. Tensegrity frameworks: Dynamic analysis review and

open problems. Mech. Mach. Theory 44, 1–18.

Motro, R., 2003. Tensegrity: structural systems for the future. Elsevier Science Publishers

B.V.

Motro, R., Najari, S., Jouanna, P., 1987. Static and dynamic analysis of tensegrity systems.

Shell Spat. Struct. Comput. Asp. 26, 270–279.

Netten, B., Vingerhoeds, R., 1997. EADOCS: Conceptual design in three phases—An

application to fibre reinforced composite panels. Eng. Appl. Artif. Intell. 10, 129–138.

Nishimura, Y., Murakami, H., 2001. Initial shape-finding and modal analyses of cyclic

frustum tensegrity modules. Comput. Methods Appl. Mech. Eng. 190, 5795–5818.

Nocedal, J., Wright, S., 2006. Numerical Optimization, 2nd ed. Springer-Verlag, New York

Berlin Heidelberg.

Noilublao, N., Bureerat, S., 2011. Simultaneous topology, shape and sizing optimisation of a

three-dimensional slender truss tower using multiobjective evolutionary algorithms.

Comput. Struct. 89, 2531–2538.

Ognjanovic, M., 1999. Creativity in design incited by knowledge modelling, in: International

Conference on Engineering Design. Munich, Germany, pp. 1925–1928.

Olesen, L.H., Okkels, F., Bruus, H., 2006. A high-level programming-language

implementation of topology optimization applied to steady-state Navier-Stokes flow. Int.

J. Numer. Methods Eng. 65, 975–1001.

Open CASCADE, 2013. Salome Platform [WWW Document]. URL www.salome-

platform.org (accessed 12.1.13).

OpenCFD Ltd (ESI Group), 2013. OpenFoam [WWW Document]. URL www.openfoam.com

(accessed 12.1.13).

Osgood, C.C., 1970. Fatigue Design. Wiley-Interscience.

Paul, C., Valero-Cuevas, F.J., Lipson, H., 2006. Design and control of tensegrity robots for

locomotion. IEEE Trans. Robot. 22, 944–957.

92 7. References

R&D, E., 2013. Code-Aster [WWW Document]. URL www.code-aster.org (accessed

12.1.13).

Rai, R., Kilaru, P., Vallepalli, R., Campbell, M.I., 2011. A Novel Search Algorithm for

Interactive Automated Conceptual Design Generator (ACDG), in: Volume 5: 37th

Design Automation Conference, Parts A and B. ASME, pp. 987–996.

Reddy, G., Cagan, J., 1995. An Improved Shape Annealing Algorithm For Truss Topology

Generation. J. Mech. Des. 117, 315.

Ribes, A., Caremoli, C., 2007. Salome platform component model for numerical simulation,

in: 31st Annual International Computer Software and Applications Conference - Vol. 2 -

(COMPSAC 2007). IEEE, pp. 553–564.

Rieffel, J., Valero-Cuevas, F., Lipson, H., 2009. Automated discovery and optimization of

large irregular tensegrity structures. Comput. Struct. 87, 368–379.

Riegel, J., Mayer, W., van Havre, Y., 2013. FreeCAD [WWW Document]. URL

www.freecadweb.org (accessed 12.1.13).

Rong, J.H., Liang, Q.Q., 2008. A level set method for topology optimization of continuum

structures with bounded design domains. Comput. Methods Appl. Mech. Eng. 197,

1447–1465.

Rude, S., 1998. Wissensbasiertes Konstruieren. Shaker Verlag, Aachen, Germany.

Ruffin, M., Ebert, C., 2004. Using open source software in product development: a primer.

IEEE Softw. 21, 82–86.

Sandgren, E., Cameron, T.M., 2002. Robust design optimization of structures through

consideration of variation. Comput. Struct. 80, 1605–1613.

Schek, H., 1974. The force density method for form finding and computation of general

networks. Comput. Methods Appl. Mech. Eng. 3, 115–134.

Schotborgh, W.O., Tragter, H., Kokkeler, F.G.M., van Houten, F.J.A.M., 2006. A Bottom-Up

Approach For Automated Synthesis Support In The Engineering Design Process

Prototypes, in: Marjanovic, D. (Ed.), DESIGN 2006, the 9th International Design

Conference. Dubrovnik - Croatia, pp. 349–356.

SciPy Developers, 2013. Scipy [WWW Document]. URL www.scipy.org (accessed 12.1.13).

Shea, K., 1997. Essays of discrete structures: purposeful design of grammatical structures by

directed stochastic search. Carnegie Mellon University.

Shea, K., Aish, R., Gourtovaia, M., 2005. Towards integrated performance-driven generative

design tools. Autom. Constr. 14, 253–264.

 7. References 93

Shea, K., Cagan, J., 1998. Topology Design of Truss Structures by Shape Annealing. Proc.

DETC98 1998 ASME Des. Eng. Tech. Conf.

Shea, K., Cagan, J., 1999. The Design of Novel Roof Trusses with Shape Annealing:

Assessing the Ability of a Computational Method in Aiding Structural Designers with

Varying Design Intent. Des. Stud. 20, 3–23.

Shea, K., Cagan, J., Fenves, S.J., 1997. A Shape Annealing Approach to Optimal Truss

Design with Dynamic Grouping of Members. ASME J. Mech. Des. 119, 388–394.

Shea, K., Fest, E., Smith, I.F.C., 2002. Developing intelligent tensegrity structures with

stochastic search. Adv. Eng. Informatics 16, 21–40.

Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen, S.N., 1975.

Computer-based consultations in clinical therapeutics: Explanation and rule acquisition

capabilities of the MYCIN system. Comput. Biomed. Res. 8, 303–320.

Siemens PLM Software Inc., 2013. Parasolid [WWW Document]. URL

http://www.plm.automation.siemens.com/en_us/products/open/parasolid/index.shtml

(accessed 12.1.13).

Silva, L.F.L.R., Lage, P.L.C., 2011. Development and implementation of a polydispersed

multiphase flow model in OpenFOAM. Comput. Chem. Eng. 35, 2653–2666.

Skakoon, J.G., 2008. The Elements of Mechanical Design. ASME, Three Park Avenue New

York, NY 10016-5990.

Starling, A.C., Shea, K., 2005. A Parallel Grammar for Simulation-Driven Mechanical Design

Synthesis. Proc. Des. Autom. Conf. DETC05 ASME Des. Eng. Tech. Conf.

Tibert, A., Pellegrino, S., 2003. Review of Form-Finding Methods for Tensegrity Structures.

Int. J. Sp. Struct. 18, 209–223.

Tran, H.C., Lee, J., 2010. Initial self-stress design of tensegrity grid structures. Comput.

Struct. 88, 558–566.

Tyas, a., Gilbert, M., Pritchard, T., 2006. Practical plastic layout optimization of trusses

incorporating stability considerations. Comput. Struct. 84, 115–126.

Vangelooven, J., De Malsche, W., Op De Beeck, J., Eghbali, H., Gardeniers, H., Desmet, G.,

2010. Design and evaluation of flow distributors for microfabricated pillar array

columns. Lab Chip 10, 349–56.

Vassart, N., Motro, R., 1999. Multiparametered formfinding method: application to tensegrity

systems. Int. J. Sp. Struct. 14, 147–154.

Visser, W., 2006. Designing as Construction of Representations: A Dynamic Viewpoint in

Cognitive Design Research. Human-Computer Interact. 21, 103–152.

94 7. References

Wang, B.-B., 1998. Cable-strut systems: part I — tensegrity. J. Constr. Steel Res. 45, 281–

289.

Wang, M.Y., Wang, X., 2004. “Color” level sets: a multi-phase method for structural

topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193,

469–496.

Wang, S.Y., Lim, K.M., Khoo, B.C., Wang, M.Y., 2007. An extended level set method for

shape and topology optimization. J. Comput. Phys. 221, 395–421.

Wang, X.-J., Zhang, C.-Y., Gao, L., Li, P.-G., 2008. A Survey and Future Trend of Study on

Multi-Objective Scheduling, in: 2008 Fourth International Conference on Natural

Computation. IEEE, pp. 382–391.

Whitney, D.E., 1996. Why mechanical design cannot be like VLSI design. Res. Eng. Des. 8,

125–138.

Yamaguchi, H., 2008. Engineering Fluid Mechanics. Springer Netherlands, Dordrecht, The

Netherlands.

Yonekura, K., Kanno, Y., 2010. Global optimization of robust truss topology via mixed

integer semidefinite programming. Optim. Eng. 11, 355–379.

Yulin, M., Xiaoming, W., 2004. A level set method for structural topology optimization and

its applications. Adv. Eng. Softw. 35, 415–441.

Zhang, J., Ohsaki, M., 2006. Adaptive force density method for form-finding problem of

tensegrity structures. Int. J. Solids Struct. 43, 5658–5673.

Zhang, L., Maurin, B., Motro, R., 2006. Form-Finding of Nonregular Tensegrity Systems. J.

Struct. Eng. 132, 1435–1440.

Zhang, L.-Y., Li, Y., Cao, Y.-P., Feng, X.-Q., 2014. Stiffness matrix based form-finding

method of tensegrity structures. Eng. Struct. 58, 36–48.

Zhou, S., Li, Q., 2008. A variational level set method for the topology optimization of steady-

state Navier–Stokes flow. J. Comput. Phys. 227, 10178–10195.

