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ABSTRACT 

In this thesis a framework is proposed which considers the use and the applicable different 

knowledge levels at various abstractions within an automated design process. For an effective 

utilization of available design information and knowledge, the computational synthesis 

process is divided into three main phases: search, optimization and modification. The 

generative graph grammar for representing design knowledge is used but some aspects are 

applicable to other representations as well. The generality and flexibility of the proposed 

mechanism is demonstrated by automating the synthesis of three engineering design problems 

in two domains. For all cases the graph grammar interpreter, GraphSynth, is used to carry out 

graph transformations, which define different topologies for a problem. The proposed method 

combines generative design synthesis methods with conventional simulation models, leading 

to a significant reduction in the numerical operations in all three design problems.  

The first engineering design case is topology and shape optimization of fluid channels. By 

utilizing a multiple representation approach, there is no need for a large grid of variables to 

represent the topology, which causes significant computational savings and allows the 

simulation model to be independent. After evaluating and optimizing the generated graphs, 

they are transformed into meaningful 3D shapes to be simulated in a CFD solver. The second 

design problem is structural layout optimization. Through applying the proposed framework, 

a design technique is produced to achieve optimal topologies and shapes for cable trusses 

considering various constraints such as stress, displacement, stability. Furthermore, 

manufacturing issues and material imperfections and limitations can be considered in the 

synthesis. The last design problem is to produce large irregular tensegrity structures. Unlike 

most of the form-finding methods, the approach does not require the description of the 

connectivity of the tensegrity structures to define the shape of the tensegrities. It uses graphs 

to represent the tensegrity structures, which allows a very fast generation of stable tensegrity 

solutions for a given design problem.  

The effectiveness of the proposed method in all of the cases is checked by solving and 

comparing a variety of available test problems found in the literature. Furthermore by solving 

complex large scale three dimensional problems, the robustness of the method is tested. The 

results show that the approach not only creates the existing solutions for available test 

problems, it creates new structures that have never been seen before. The contribution 

achieved in this work provides a mechanism for designers to utilize design information and 

knowledge at all abstraction levels. Besides applying and testing the framework in other 

domains and design cases, future work may include the improvement of search strategies, 

which are used for exploring the design space to achieve faster results in larger design spaces. 
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1. Introduction 

The significant amount of computing power and memory of today’s computers has enabled 

the development of new methods and algorithms for diverse areas of application. However, 

the amount of design automation in different fields varies drastically. Computer aided tools 

for designing integrated circuits covers the whole design process from synthesis to simulation, 

analysis, and optimization (Whitney, 1996). In mechanical engineering, Computer Aided 

Design (CAD) technologies are used mainly for analysis and representational purposes 

(Celani, 2002). These tools mainly concentrate on analysis and optimization of specific details 

of a proposed solution (Alber and Rudolph, 2004). They do not typically cover synthesis and 

leave the most critical part of the conceptual design, i.e. finding a solution, to human 

designers (Hoisl and Shea, 2011; Schotborgh et al., 2006). Design synthesis is an area of 

research, which is focused on developing methods and tools, to support the generation of 

solutions at the early phases of the design (Chakrabarti et al., 2011). One of the main 

problems of automated design synthesis is utilizing design knowledge and information during 

the synthesis process. In most of the developed synthesis methods in the literature, through an 

interactive visual approach for generating solutions, the user can easily prevent the creation of 

invalid designs, whereas it is not in an automatic process possible (among others see (Hoisl 

and Shea, 2011)). The problem lays in the incapability to capture and use design information 

and knowledge for guiding the process in the automatic generation not in the lack of 

information. Because in the interactive generation process, the designer uses information in 

the design to make the design decisions for creating the solutions, whereas the computer does 

not have access to such information for making decisions. Hence, developing adequate 

approaches to cope with the design information and knowledge of an evolving artifact is of 

vital importance.  

In this thesis we propose a framework for capturing and using design knowledge in the 

synthesis processes using generative graph grammars. This framework has two parts. First, 

the design process is divided into three main phase; search, optimization and modification. 

Each phase may have multiple sub phases with different levels of abstraction. The reason for 

this division is that a design solution evolves during the design process, which means the 

abstraction level of the design changes progressively. Therefore for an efficient and effective 

utilization of design information and knowledge during the synthesis process, different 

mechanisms in different phases of the design are required to guide the design decision-

making. In general in the search phase, the topology of the solutions is defined, whereas in the 

optimization phase the shape of the design solutions is determined. In the final modification 

phase the detailed-design is accomplished. The second part of the framework is providing a 

base for using appropriate type of information and knowledge in search, optimization and 

modification phases of the design. This base determines the applicability of available design 

information and knowledge in each phase.  

By solving three engineering design problems in two different domains; fluid mechanics and 

structural mechanics, the proposed framework is validated. The design decision-making 

process is made more efficient by an appropriate leveraging of design information and 
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knowledge. The design problems are extensively discussed in chapters 2, 3 and 4. The results 

show that dividing the synthesis process in three phases and utilizing design information and 

knowledge in these phases – however with different degrees of utilization – not only is a 

guarantee to generate many alternative valid and optimum solutions, it eliminates the 

generation of invalid design candidates. These invalid solutions normally constitute a big part 

of the design space in automatic synthesis approaches due to inappropriate design decision-

makings.  

After this introductory section, in sections 1 the division of the design process in three phases 

is discussed. Section 2 introduces different levels of knowledge and their utilization in the 

synthesis process. In section 3, capturing design information and knowledge in a 

representation is discussed. And section 4 concludes the first chapter. 

1.1 Three Phases of the Synthesis Process 

Design is the process of transforming information from one state to another (Hubka et al., 

1988; Ognjanovic, 1999) and a decision to transform existing information to a new state is 

based on available information and knowledge (Hicks et al., 2002). Therefore a key issue in 

developing new intelligent design automation approaches and tools is handling the evolving 

information of the design process. To cope with this changing information and knowledge the 

design process is divided into three phases based on different abstraction levels of the design 

knowledge: search for concept generation, optimization for concept selection, and 

modification of design details (figure 1). Search is the first step of the design process, which 

is used to explore the design space in the most abstract level of the design. As illustrated in 

figure 1, this step may also be divided into multiple abstraction levels called sub-levels. In the 

search phase of the design, the valid solutions for the desired design problem are generated. 

For instance for a structural design problem, the valid solutions are different truss structure 

configurations with different components, which can hold the load without violating any 

criterion. The number of solutions depends normally upon various initial requirements and the 

boundary conditions of the problem. After exploring the design space and generating all 

feasible candidates in the search phase, the optimization phase begins. 

Indeed, the search phase is responsible to explore the topological variation of the designs and 

the optimization phase defines the best shape for each candidate. The optimization phase may 

contain a sophisticated algorithm for shape and size optimization using an adequate 

evaluation method or a simple evaluation approach to sort the generated solutions in the 

search phase based on a performance criterion. For instance after defining the topology of a 

truss structure, the shape of the truss (spatial position of the joints) or the thickness of the 

components can be optimized using finite element methods or just simply evaluated based on 

a criterion such as maximum displacement at the load point. So, based on the results of this 

step, best candidates are selected for the final phase. The third step of the framework is the 

modification phase, in which secondary details are added to the design such as adding a 

chamfer. The effect of this step on the design is not as important as the first and second 

phases.  
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Figure  1-1: Three Phases of the synthesis. 

The approach presented in this section, considers the abstraction level of the design 

decreasing progressively during three phases and corresponding sub-phases. However it is of 

vital importance to use appropriate knowledge to generate the solutions at each abstraction 

level to avoid many unnecessary detailed analyses and optimization of the concepts. 

Furthermore, early feasibility assessment and evaluation of abstract solutions is essential for 

restricting the search space to best concepts, which consequently can reduce the design time 

and the number of design analyses (Netten and Vingerhoeds, 1997). Without suitable 

restriction of the design space – through meaningful generation and consequent evaluation of 

the solutions – considerable additional effort is required to generate many invalid or poor 

performance solutions.  

However, due to imprecise and incomplete design requirements and constraints at the early 

stages it is difficult to capture the design knowledge in order to generate valid solutions. 

Further, evaluating the generated solutions with available analysis tools and methods is not 

possible, because the input to most of these tools should be a fully defined design. The 

behavior of solutions cannot be predicted and reliably evaluated at the early abstraction levels, 

because strong component interactions – which are not mainly defined yet – complicates the 

design decision-making (Netten and Vingerhoeds, 1997). For instance in a spatial frame 

structure, the stresses and strains in a component mainly depend on other components and 

also the overall structure. Therefore to support these essential decision-making processes at 

the search phase a design information and knowledge should be used, which is flexible and 

are not depending upon many such specifications. In the next section the requirements for 

capturing and using design information and knowledge in various abstraction levels are 

defined. 

1.2 Applicability of Knowledge Levels 

The decision-making process of conceptual design is very complex, because at different 

abstraction levels – based on the level of specifications – different inference processes are 
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required. These decision-making processes are based on available information and 

knowledge. But we should search for both available and applicable design information and 

knowledge at various abstraction levels. Hicks et al. (2002) define four levels for design 

knowledge with different applicability scopes (figure 2). As shown in figure 2, the highest 

levels of knowledge are general and generic knowledge, which are applicable to unfamiliar 

situations, whereas the specific knowledge is restricted to familiar situations and case 

knowledge is applicable only in specific situations. The vertical arrows in the figure 2 

illustrate the applicability field of each level of knowledge. Indeed there is a correspondence 

between the abstraction level of the design problem and the familiarity situation of the 

problem. The more abstract a design, the more unfamiliar the situation, and the more detailed 

an artifact the more known (familiar) are the specifications.  

 

Figure  1-2: Knowledge levels and states of applicability (Hicks et al., 2002) 

Figure 3 combines the proposed mechanism in the previous section with the Hicks et al. 

(2002) knowledge levels. It shows that in the search phase, which is the most abstract design 

level, because the solutions are not yet formed and the situation is unfamiliar, only generic 

and general knowledge are applicable. In the second phase, as the topology is defined and the 

design is concretized to a higher degree and the situation is familiar, specific knowledge is 

also applicable. And finally in the third phase of the design, all levels of knowledge are 

applicable.  

Using generic or general levels knowledge at the early stages of design may be an essential 

solution for incomplete design knowledge. Because these abstract levels of knowledge are 

normally simple facts, which means their capturing and representation is easy. As an example, 

we consider the Newton’s third law of motion. This law says; the same force that a body 

exerts on a second body will be exerted back upon it through the second body but in the 

opposite direction. Capturing and representing this law is very simple and for using it in an 

automatic approach, no quantitative value is required. This law can be used in unfamiliar 

situations and applied in unfamiliar domains; therefore it is a general type of knowledge. For 

instance it can be applied in the field of structural mechanics, fluid mechanics or in designing 
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electro magnetics artifacts, because in all these domains we are handling forces. Through 

three case studies in chapters 2, 3 and 4, this formal approach for using design information 

and knowledge is further discussed and it is shown how knowledge about the design 

knowledge can increase the efficiency of the design synthesis process. 

Search Optimization
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Modification
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Sub-Level Optimization

Sub-Level

Sub-Level 

Sub-Level

(a) (b) (c)

All feasible 
candidates

Best 
candidates

Generic Knowledge

Specific Knowledge
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Figure  1-3: Using design information and knowledge in various abstraction levels. 

1.3 Capturing Design Information and knowledge 

To have a better understanding of mechanisms and procedures for capturing and using the 

design information and knowledge, formal definitions for information and knowledge are first 

discussed here. 

1.3.1 Design information and knowledge 

Data, information and knowledge terms have been defined in different fields of research and 

are reviewed within the context of engineering design by Court (Court, 1995). Based on his 

work and other researchers such as Marsh (Marsh, 1997), Hicks et al., (2002) conclude that 

knowledge has two aspects, knowledge processes and knowledge elements; “the knowledge 

process is the procedure(s) utilized by the individual to infer the knowledge element from 

information, other knowledge elements or a combination of each”. Representing the 

knowledge processes in a formalism is in general a complicated task, because they are mainly 

considered as within-person activities (Hicks et al., 2002). Whereas, knowledge element 

representation is much easier, because the knowledge elements are in fact taken as 
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information (Boston, 1998). In engineering sciences the knowledge processes are considered 

as scientific practices or procedures (Ehrlenspiel, 1997). Hicks et al. (2002), define 

information elements as the totality of one or some data elements and one or more context 

descriptors, where “the context descriptor(s) clarify the meaning of the data element, and are 

themselves one or a combination of data elements”, for instance mass of an object, or 

acceleration of an object. Some researcher classify information to different categories such as 

formal and informal or structured and unstructured, but in this study (due to the computerized 

nature of the information) the author considers information as formal and structured. To 

further clarify the subject the following simple example is given. Newton’s second law of 

motion says that, the sum of all forces on any object is equal to the mass of that object 

multiplied by its acceleration      ). In this example m (mass) and a (acceleration) are 

two knowledge elements (information) and their multiplication is the knowledge process to 

create another knowledge element F (force). 

1.3.2 Capturing information and knowledge 

Capturing design information and knowledge generally means generating a representation for 

them. “Design is most appropriately characterized as a construction of representations” 

(Visser, 2006). A representation scheme is used to store, organize, process, and access 

information and knowledge elements. Furthermore it is used to capture the relationships 

between information and knowledge elements and provide a structure, through which later 

reasoning and reuse of information and knowledge will be possible. Indeed representation 

schemes catch the fundamental characteristics of a problem domain in their structure and 

make it available for a problem-solving procedure (Luger, 2008). Luger (2008) argues that 

two main criteria for a knowledge representation scheme are its expressiveness and 

efficiency, which may contradict in different cases. Although efficiency is an important 

criterion, its increase must not limit “the representation’s ability to capture essential problem-

solving knowledge". There are three main categories for the knowledge representation 

systems: Rule-based, Model-based, and Case-based knowledge representation schemes 

(Chakrabarti et al., 2011; Helms, 2013). This thesis uses the first scheme but some aspects are 

applicable to these other representations as well.  

Rule-based knowledge representation methods capture the design knowledge in IF-THEN 

rules. In a procedural way these rules transform an initial state to an altered situation. 

Continuous application of the rules transforms the initial design into a wide range of new 

designs. The expert knowledge is often encoded in the rules as heuristics for solving the 

problem. Chakrabarti et al. (2011) have also reviewed the advances in using these 

representation schemes in computational design synthesis research in the last decade. In this 

study a graph grammar approach – which is a rule based representation method – is used to 

represent the design knowledge, therefore other representation schemes are not further 

discussed.  
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1.3.3 Generative grammars 

Rules are conditional statements, which consist of a condition and a consequence. The early 

expert systems used rules to formalize knowledge; such as MYCIN for diagnosing bacterial 

infections (Shortliffe et al., 1975) and DENDRAL for analyzing mass spectrographic data  

(Lindsay et al., 1993). Production systems are also a more specific kind of rule-based 

representation systems, which consists of a set of rules, in which the expert knowledge for 

problem-solving is encoded, a memory, which contains the current state of the data structure 

and can be represented as a string, a shape or a graph, and an inference engine to control the 

rule execution (Helms, 2013; Luger, 2008). To execute the action of a rule, its conditions 

must match the contents of the current state, which consequently changes the state of the 

memory. The execution is continued until there are no more rule conditions matched with the 

memory. One of the most important characteristics of the rules is that they “are a natural and 

intuitive way for representing heuristic knowledge” (Dym and Levitt, 1991) which is 

important in domains such as engineering design that rely on heuristics for solving their 

problems. As the rules are principally conditional sentences which are used in natural 

languages, human experts finds it easier to formulate their problem solving knowledge in 

rule-based formulations (Beierle and Kern-Isberner, 2008). However, grasping the reasoning 

logic for solving problems, which are complex and the rules are intertwined, can be very hard 

for human users (Rude, 1998). Therefore knowledge extraction and formulation from experts 

into rules can be a very tedious task. Grammars capture large design spaces in a single 

formalism, and hence can increase the design freedom (Alber and Rudolph, 2004). Generative 

grammars in general and graph grammars specifically have been used in many different 

domains to capture the design knowledge of complex engineering design rules (Antonsson 

and Cagan, 2001; Chakrabarti et al., 2011). They have been used in diverse areas such as 

general routing problems (Drumheller, 2002), network flow and structural topology 

optimization (Shea and Cagan, 1999). 

1.3.4 Graph grammars 

A graph grammar is a formal method to represent elements and their relationships in the 

design space (Cagan, 2001). Like natural languages, graph grammars are based on a 

vocabulary and a set of grammatical rules. By choosing a graph grammar for representing the 

design knowledge; the representation is fixed to graphs and the vocabulary elements are 

defined as nodes and edges. The initial design for a graph grammar is a seed graph, which is 

defined based on initial design requirements. Starting from this initial graph, grammars 

generate alternative design solutions based on a set of pre-defined rules (Chase, 2002). To 

define the grammar rules, rule validity conditions are typically encoded in the left-hand side 

(LHS) of a rule and rule modifications (changes in case of the rule recognition) are 

represented in right-hand side (RHS) of a rule as two graphs. Recognizing a rule, means that 

the graph in the LHS of a rule can be matched to a sub-graph in the working graph and its 

application means that this sub-graph is replaced with the graph in the RHS of the rule. After 

applying the rule a new graph is generated. For graphs, a graph grammar interpreter is 

required to apply a set of transformative operations on a seed graph. For this study, 

GraphSynth is used to accomplish graph transformations. GraphSynth is a unique research 
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software for creating, editing, displaying, and manipulating generative grammars. This 

framework stores graphs, rules and rulesets under XML file format. It allows for the 

automatic search of creative, optimal or targeted solutions. GraphSynth is an open source 

framework built on Microsoft Visual Studio .NET. Additionally, it is able to perform various 

graph transformations such as the double-pushout method and free-arc embedding; these two 

together cover nearly all types of required graph transformations (Kurtoglu et al., 2010). One 

of the most important characteristics of the GraphSynth is its extensibility; through additional 

compiled on-the-fly functions nearly any capability can be added to the rules and rulesets. 

1.4 Conclusions 

In order to effectively utilize design information and knowledge, the design process is divided 

into three main phase: search, optimization and modification. Each phase may have multiple 

abstraction levels. To support the essential decision-making processes at each phase, the 

requirements for capturing and using design information and knowledge in various 

abstraction levels are defined. An adequate framework for capturing and using design 

knowledge is discussed based on various classes of knowledge levels proposed by Hicks et al. 

(2002). These include: general knowledge which is the most abstract level of knowledge, 

generic knowledge, specific knowledge, and case knowledge, which is the most concrete level 

of knowledge. These classifications are necessary to generate a framework that defines the 

applicability limits for each knowledge level. The work identifies that for more abstract levels 

(search phase) of design, higher level knowledge, such as general or generic knowledge are 

required and applicable. And for the optimization and modification phases other knowledge 

levels are applicable too. Following these formal definitions, the work introduces various 

knowledge representation schemes especially rule-based knowledge representation 

approaches. In chapter 2, 3 and 4 the proposed strategy in this introduction chapter is applied 

for three engineering design problems. The results of these design problems show, how the 

application of the proposed approach reduces the design space to a manageable size, in which 

only valid solutions are generated. 

Ongoing research based on the proposed approach should focus on improving the search 

strategies for exploring the design space. Implementation of this step is important in order to 

achieve faster results in larger design spaces. Another important field of research is automatic 

capturing of generic and general levels of knowledge in the grammar rules and creating a data 

base of these captured rules. This will help designers to understand the real design problem at 

all abstraction levels easier. The framework is flexible enough and independent of the 

problem domain and type, therefore the approach can be used for other domains and other 

design problems. 

 

 

 



 

2. A Novel Optimization Method of Fluid Channels Using 
Domain Knowledge 

The aim of this chapter is to show the abilities of generative design systems, in achieving 

topology and shape optimization of fluid channels. By utilizing a multiple representation 

approach, there is no need for a large grid of variables to represent the topology, which causes 

significant computational savings and allows the simulation model to be independent. After 

evaluating and optimizing the generated graphs, they are transformed into meaningful 3D 

shapes to be simulated in a CFD solver. The effectiveness of the proposed method is checked 

by solving and comparing a variety of available test problems found in the literature. 

Furthermore by solving complex large scale problems (3-Dimensional), the robustness and 

effectiveness of the method is tested. 

Keywords: Computational Design Synthesis, Design Automation, Graph Grammar, 

Computational Fluid Dynamics, Optimization. 

2.1 Introduction 

One of the most popular computational design synthesis approaches in engineering design 

involves shape and topology optimization methods, which is based on using finite element 

methods (FEM) for the analysis, and various gradient-based optimization techniques 

(Bendsøe and Sigmund, 2003). Topology optimization is a mathematical approach that 

models a fixed number of decision variables (cells or grids), and optimizes its objective 

function (e.g. part stiffness) for a given set of boundary conditions and loads. Numerical 

optimization methods have shown their efficiency in aiding the synthesis of engineering 

artifacts by generating many novel solutions (Bendsøe and Sigmund, 2003). Using topology 

optimization methods in solving channel fluid layouts has received a large amount of 

attention in recent years and various parameterizations have been suggested to solve Stokes 

(Guest and Prévost, 2006a) as well as Navier–Stokes problems (Evgrafov, 2006) with 

different Reynolds numbers (Duan et al., 2008; Gersborg-Hansen et al., 2005; Olesen et al., 

2006; Zhou and Li, 2008). However, even very recent results by different scientists in the 

field (Challis and Guest, 2009; Jang et al., 2010; Liu et al., 2010) show that problems are 

mainly limited in complexity (number and direction of inlets and outlets), flow equation, and 

number of fluid types (if combination of fluids is not allowed). They are mainly 2D problems 

and the time to complete the process is exceptionally high, especially for solving complex 3D 

problems. Considering these limitations and the fact that demanding industrial problems are 

more complex, reveals a gap in capabilities and computational power of current methods. 

These limitations are mainly due to limited representation power. The synthesis process and 

design rules are dependent and integrated into the simulation model; the simulation model is 

often fixed for a given set of loads and boundary conditions. The simulation model is based 

on time-consuming numerical approaches such as matrix inversion and many iterations are 

required, which leads to slow convergence.  
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The aim of this chapter is to introduce a new perspective and show the abilities of generative 

design systems, such as graph grammars, in achieving design synthesis and optimization of 

fluid channels. The novelty of the proposed method is in its combination of generative design 

synthesis methods with conventional simulation models, leading to a significant reduction in 

the numerical costs. This method uses a graph grammar interpreter to generate different 

topological solutions for the fluid channel problem. Through exhaustive search of the design 

space all valid candidates are generated and evaluated. Based on the evaluation results, the 

candidates are sorted. Two optimization algorithms are then used to optimize all (or the top n 

based on computation limits) candidates of the sorted list. These optimization algorithms 

change the radius of fluid channels and the position of intermediate junctures, to minimize 

head loss. The candidates are again stored in a second list based on the new objective function 

values. Finally they are transformed into meaningful 3D shapes to be simulated in an 

adequate CFD solver. The nodes and arcs of the generated graph represent Constructive Solid 

Geometry (CSG) shapes.  

The graph grammars rules work with graph elements to generate a new topological state, as a 

result the search and generation process is very fast. However, it is vitally important to embed 

enough information in the graph grammar rules in order to create precise 3D shapes. To 

increase the computational effectiveness of the generation process, the design process is 

carried out in different steps. To enter each step, the candidate solution must meet specific 

requirements such as maximum allowed compression of the fluid; otherwise it is filtered out. 

After passing the requirements of three such filters, which evaluate the validity of candidates 

in different stages of the synthesis process, information is added to the candidate solution.  

By utilizing a multiple representation approach for the topology optimization of channels, our 

algorithm avoids many problems associated with other approaches in setting up the fluid 

equations. There is no need for a parameterization scheme because representing the topology 

is independent of the simulation model. It causes significant computational savings, because 

the CFD analyses and remeshing at each iteration is no longer required, which is a prohibitive 

in previous efforts (Zhou and Li, 2008). By using multiple representations in our method, 

dimension (e.g. 2 or 3) has almost no effect on the computation efforts in finding flow 

channel topologies which show the numerical efficiency of the proposed approach. 

Furthermore the need for postprocessing of the results is eliminated and a more accurate 

control over designing of solution topologies is provided. However after finding candidate 

design solutions, the transformation and CFD analysis of 3D results are computationally more 

costly. As the representation and simulation models are fully separated from each other, one 

can use the same rules for problems with completely different boundary conditions, fluid 

types, fluid directions and loads.  

The proposed method produces results in agreement with previously solved power dissipation 

minimization problems for Stokes flow (Borrvall and Petersson, 2003; Challis and Guest, 

2009; Guest and Prévost, 2006b; Liu et al., 2010). The effectiveness of the proposed method 

is checked not only by solving a variety of available test problems and comparing them with 

those found in the literature, the results of different complex problems with arbitrary flow 

directions in inlets and outlets shows the capabilities of the method in solving very complex 

large scale 3D problems. This chapter is organized as follows. Section 2 describes a 
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background about topology optimization methods, generative design synthesis systems and 

our graph grammar approach. Section 3 provides details of the proposed approach in this 

chapter. Section 4 presents results and discusses the implications of results; the focus of this 

section is to present significant benefits of proposed methodology over previously used 

approaches. And finally, Section 5 concludes the study and suggests further research projects 

to extend the presented work. 

2.2 Topology optimization 

For more than two decades, engineering designers have used shape and topology optimization 

methods for a wide range of structural design problems. These optimization methods are now 

being used successfully by other areas such as electro-magnetics, MEMS and fluids as well 

(Bendsøe and Sigmund, 2003; Eschenauer and Olhoff, 2001). Borrvall and Petersson (2003) 

were the first to use topology optimization for solving Stokes flow fluid problems. 

Optimization of fluid channels is an essential topic in designing microfluidic devices 

(Andreasen et al., 2009; Vangelooven et al., 2010). It has application in diverse areas such as 

designing pipe bends for minimum head loss, diffusers, valves, interior air flow of vehicles, 

and engine intake ports. The goal is mainly to find an optimal topology for the fluid 

subdomains along with an optimal shape of channels that minimizes the power dissipated by 

the fluid (Liu et al., 2010). In order to use Stokes equations, as opposed to the full Navier-

Stokes equations, the fluid flow is mainly assumed to be incompressible, steady, and slow. 

Topology optimization has been applied to solve Stokes flow problems on large scales (Aage 

et al., 2007), to design maximum permeability of material microstructures (Guest and Prévost, 

2007), and in optimizing multifunctional materials; microstructures with maximum stiffness 

and fluid permeability (Guest and Prévost, 2006b). Details of using different approaches such 

as the level-set method or material distribution to increase the computational efficiency and 

the chance to find the global minimum can be found in the recent contribution of Challis and 

Guest (Challis and Guest, 2009). They describe methods which can avoid convergence of the 

algorithm to local minima (Aage et al., 2007; Borrvall and Petersson, 2003; Guest and 

Prévost, 2006b) and aim to overcome limitations of other models such as (Zhou and Li, 2008) 

with costly computational power for remeshing the whole domain. The chronological 

progress of results in the literature reveals significant improvements concerning minimizing 

required time and computation power, achieving global minima, smoothing the boundaries 

and using various Reynolds values for the flow. 

2.3 Approach 

The overall approach to the shape and topology optimization of fluid channels using 

generative graph grammars is depicted in the Fig. 1. The whole process can be divided into 

three phases; topology generation, transformation, and CFD evaluation. The topology 

generation phase also consists of three steps; search, optimization and detailed shape design. 

The separation of the topology generation from the evaluation phase enables the creation of 

topologies without considering the constitutive fluid equation or other issues related to the 

fluid representation. The topology generation phase uses the graph grammar interpreter to 

apply graph transformations and generating topologies. Three control parameters are used in 
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the detailed shape design phase to define the final shape of the channel layout. The first 

control parameter is used to give a rough shape to the path of a channel in the layout. The 

second and third parameters are used to define the curvature at inlets and outlets respectively. 

For different problems, with different boundary conditions and fluid types, some experiments 

are required to tune these control parameters. In the transformation phase the generated 

topologies, which are represented as graphs are converted to 3D shapes. Finally in the 

evaluation phase OpenFOAM CFD solver (OpenCFD Ltd (ESI Group), 2013) and 

snappyHexMesh preprocessor are used to evaluate the 3D shapes regarding fluid dynamic 

criteria to select the top candidates. In the following sub-sections all three phases of the 

design are described in detail. 

Topology Generation
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Best candidates 
represented in Graph

Generate the Mesh
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Best Z% of all 
evaluated candidates

RS 1

RS 2

RS 3

RS 4

RS 4

RS 5 RS 5

RS 6

RS 6

RS 7

RS 8

RS 9

 

Figure  2-1: Approach for shape and topology optimization of fluid channels 

2.3.1 Topology generation 

The graph grammar interpreter receives a seed graph as input and delivers all valid topologies 

that can be generated for that graph. The generation (graph transformation) is carried out 

through twenty rules which are distributed into nine rulesets. A ruleset is a set of rules that 

transforms the design from one level of maturity to the next level. Rulesets are used as a 

means to compartmentalize different phases of the generation process. The first ruleset is 

responsible for generating all possible candidates – both valid and invalid – and expands the 
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tree of the solution space to its maximum breadth (Fig. 2). Rulesets 2 to 9 change the shape 

(spatial position of graph elements and size of channels) of a candidate from a rough topology 

to a final solution. Depending upon the size of a candidate (number of channels), the number 

of rule applications on a candidate in each ruleset varies between one and many hundreds. 

Rulesets 3, 4 and 5 are assigned to calculate optimum size of channels and spatial position of 

channel bifurcations. While rulesets 6 to 9 use the three control parameters to give adequate 

curvature to channels. As can be seen in the Fig. 2, all invalid candidate designs are 

eliminated periodically to prevent time wasted in subsequent stages. In order to accomplish 

this, three trigger rules are used to check the completeness and validity of a design before 

transitioning to the next ruleset. All duplicate designs are also detected and filtered out in the 

ruleset 5. The whole approach is developed in such a way that incremental information, which 

is required in the next step, is added to the design. For instance in the topology generation 

phase, the topology is represented with graph elements node and arc, therefore the 

transformation operations are done much faster than if using 3D shapes.  

…
..

RS 1: generating all candidates

RS 2: filtering invalid topologies

RS 3: defining the radius of channel’s / 
all candidates survive 

R2 4: calculating initial objective values / 
filtering candidates with invalid radiuses

RS 5: optimization I and II / 
eliminating similar topologies

…
.. RS 6 to 9: detailed shape design / 

All candidates survive

…
..

…
..

 

Figure  2-2: Tree search for creating fluid channels 

In Fig. 3 all twenty grammar rules with a short description of each are illustrated. The rules 

are created in a general way, so that for different types of fluid channel problems the same 

rules can be used. The only change which is required, if the simulation model (such as fluid 

type) is different, is adjusting the control parameters. The left picture in the Rule column is 

the left hand side of a rule (LHS) and the right picture is the RHS of the rule. The graph 

grammar interpreter converts that part of the seed graph which is matched to the LHS into the 

graph segment depicted in the RHS. Three rulesets (3, 4 and 8) change attributes of graph 

elements (for example add the radius to a channel section); therefore their LHS and RHS are 
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not depicted. Figures 1 to 3 represent the approach from three different angles with different 

levels of detail. 

 

Figure  2-3: Grammar rules 

Seed graph 

A seed graph defines the scope and boundary conditions of the problem to be solved. In this 

case, it consists of some arcs and nodes which are labeled as inlet or outlet with different 

directions in 3D and different radii. Inlet 1 in Fig. 3 is represented by arc a0, which connects 

two nodes and its radius is 25. Fig. 3 illustrates a sample seed graph with three inlets and three 

outlets. The green (lighter) arrows in the shapes are the inlets and the red (darker) arrows are 

the outlets. The radius of the inlets and outlets can also be uniquely defined. The goal of 

grammar rules is to transform this seed graph to a graph that represents a meaningful channel 

layout. 

 

Figure  2-4: A seed graph with three inlets and outlets 

Ruleset Description Ruleset Description

1 Skeleton
Creates  the skeleton of the node 

polygons
11 Attribute

Ini tia l  ca lculating the secodn objective 

function

2
Connect inlet to outlet

(Maximum arcs  to / from are l imited)
12 Trigger rule 3

Is the fluid compression or decompression 

more than allowed?

3
Insert intermediate inlet for two inlets  

(Maximum number is  l imited)
13 Optimization I Optimize the s ize of channels

4
Insert intermediate outlet for two 

outlets  (Maximum number is  l imited)
14 Optimization II

Define pos i tion of  intermediate inlets  

or outlets  based on flow directions

5 Trigger rule 1 Minimum requirements are met? 15
Define direction of flow in intermediate 

inlets  or outlets

2 6 Trigger rule 2
Is the topology valid ? (e.g. Inlets without 

outgoing or outlets without incoming arcs)
6 16

Roughly defines  the curvature of each 

channel  between an inlet and outlet

7 Attribute
Calculate the radius  of channels  and 

adds  i t as  an attribute to the arcs
17 Fine smoothing of the topology at inlets

8 Attribute
Calculate radius  of joints  of flow and 

the va lue as  an attribute to the nodes
18

Fine smoothing of the topology at 

outlets

9 Attribute
Ini tia l i zing the s ize of complex 

channels
8 19 Attribute

Adjust s ize of the channels  at joints  and 

adds  i t as  an attribute to the arcs

10 Attribute
Ini tia l  ca lculating the fi rs t objective 

function
9 20 Final  smoothing of the whole channels

5

7

Rule

4

4

3

Rule

1
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Search 

As illustrated in Fig. 1 the first step of the topology generation phase is an exhaustive depth 

first search (DFS) algorithm that creates all valid topological candidates for a given problem 

using the first four rulesets. The first four rules of the ruleset 1 are responsible for generating 

a topology. Aside from the depicted rule conditions in Fig. 3 (like connecting inlet to outlet, 

inserting intermediate inlet or outlet), many other additional functions are compiled into the 

rules to define detailed matching conditions as well as rule action. For instance, for rule 2, 

two functions aid in the recognition process; the first one prevents adding arcs that intersect 

other existing arcs in the design space and the second constraint function considers the 

maximum allowed spatial distance between an inlet and outlet. It prevents connecting inlets 

and outlets that are very far from each other in case of multiple connection possibilities. Rules 

3 and 4 add an intermediate node for two inlets or outlets. For applying these rules, the 

distance between the inlets or the outlets and the direction flows at the inlets or outlets are 

considered. Rule 1 is used when facing channel layout problems with one or two inlet and 

many outlets or vice versa. It uses the position of inlets and outlets – as vertices of a simple 

convex or concave polygon – and creates the topological straight skeleton of the polygon. The 

Computational Geometry Algorithms Library (CGAL, 2013) has been used to find the 

straight skeletons. Aichholzer et al., (1996) introduced the concept of using the straight 

skeletons to represent simple polygons. Geometric skeletons like Medial Axis and the straight 

skeleton have been used in many applications such as Contour interpolation (Barequet et al., 

2004), automatic shape synthesis and path planning (Eftekharian and Ilieş, 2012). The reason 

for this investigation is that – like rules 3 and 4 in our approach – it introduces intermediate 

juncture points between original ports to find the shortest possible spanning network. Fig. 5 

shows a seed graph with one inlet and two outlets (a) and the topology which has been 

suggested through applying the first rule (b). This topology can also be reached by applying 

rules 3 and 2 respectively. Indeed, rules 2 to 4 can also generate results that rule 1 suggests. 

But rule 1 – especially when facing channel layouts with only one inlet or only one outlet – 

can give a near optimum channel topology through its single rule application.  

 

Figure  2-5: Using straight skeleton to find the channel layout 

Rule 5 is called if the design has reached some degree of completeness. It is used to transition 

from using ruleset 1 into 2 after some degree of maturity is reached in the graph. It guarantees 

the creation of all valid candidates. For instance, without rule 5, Fig. 5 (b) won’t be 

considered as a valid solution for the problem illustrated in Fig. 5 (a). Because there are still 

(a) (b) 
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two rules which can be applied on the solution (connecting the inlet to either of the outlets 

through rule 2).  

After a candidate transitions out of the first ruleset, the second ruleset checks the topological 

validity: 1) are all inlets have at least one outgoing arc? 2) do all outlets have at least one 

incoming arc? 3) and are intermediate inlets and outlets connected adequately to other graph 

segments? Many candidates are filtered out at this stage, which prevents many unnecessary 

simulations of invalid designs. Fig. 6 shows two candidates. Considering only topological 

criteria, the candidate at left is invalid and the right one is valid. 

 

Figure  2-6: Two candidate topologies 

As can be seen in Fig. 6 (b), the valid candidate has six arcs (channels). These arcs connect 

the inlets to the outlets but they are still not fully specified as they lack 3D dimensional 

information. The next step of the design process (ruleset 3) is to define the initial sizes of the 

channels. The size of a channel can be very tricky; in some cases knowing the inlet and outlet 

radius is enough to define the start and end radius of a channel like the arc that connects inlet 

1 to outlet 1 in Fig. 6 (in Fig. 4 arcs are numbered). 

Ruleset 4 is the final step in the search process. Rule 9 checks if all channels are initialized or 

not. In very complicated channel problems the rules 7 and 8 in ruleset 3 might not be able to 

calculate the size of channels, therefore rule 9 initializes them. Rules 10 and 11 are created to 

evaluate the candidates initially. They are evaluated based on the total length of the channels, 

amount of changes in the flow direction, and changes in the start and end radii of channels. 

These will be discussed in detail in the next sub section. Based on these initial evaluations, all 

candidates are sorted in a list to be further processed in the next step. This ruleset contains 

also the last important filter (trigger rule) for the validity check of candidates. It compares 

start and end radii (sizes) of channels. If the ratio is more or less than a desired one, the 

candidate will be rejected. 
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Figure  2-7: A candidate topology 

For complicated fluid layout problems, in which many channel branches are joining together 

in a juncture, more complex computations and even an optimization algorithm is required to 

define the start and end size of channels. This is also carried out in the rule 13 of the ruleset 5. 

The objective function for the optimization is simply minimum difference between the start 

and end radii of each channel which does not require any CFD analysis; therefore the 

optimum channel sizing can be found very quickly. Another significant challenge in the 

developed approach is considering the direction of flow for each node. Direction affects the 

position of intermediate nodes. Therefore an optimization algorithm is developed (as a result 

of applying rule 14 of the ruleset 5) to find the optimum position of intermediate nodes. These 

two rules are not real grammar rules because they have no LHS matching; however they are 

implemented in the fifth ruleset to prevent unnecessary export and import operations. In the 

next sub section both optimizations are explained in detail. 

Optimization 

After storing all results of the exhaustive search in a sorted list, the best n candidates will be 

further optimized in the second step of the topology generation phase. Due to the smoothness 

and unimodality of the design spaces as well as the use of efficient optimization algorithms, 

we have been able to accommodate optimizing all candidates. More complex problems 

(problems with more than six ports) may require limiting them. However it is possible to set n 

to 500 without taking a prohibitive amount of time. For both optimizations, the Fletcher-

Reeves gradient algorithm is used.  

The primary goal of these optimizations is to minimize total head loss of the layout and – if 

required – prevent compression/decompression or velocity changes of fluid in channels. Head 

losses in closed channels and pipes include mostly three types of losses; head loss due to a) 

decelerating or accelerating of flow (Yamaguchi, 2008), b) friction between fluid and channel 

wall (friction loss), and c) pipe entrances, transition points, exits, and valves (minor losses) 

(Fay, 1994). The task of the first optimization is to reduce the first type of head loss, while 

reducing the friction losses and minor structural losses is assigned to the second optimization.  

According to (Yamaguchi, 2008), the first type of the head loss between two segments of a 

channel is proportional to the changes in the cross sectional area of those segments. However, 

decelerating flow causes more head loss than accelerating flow. The first objective function is 

the total difference between: a) start and end area of each channel divided by its length, and b) 
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incoming and outgoing channel areas to an intermediate joint. This affects also the 

compression or decompression of fluids in compressible fluids or the amount of velocity 

changes in non-compressible fluids (considering the principle of mass conservation). This 

optimization routine (rule 13) optimizes the size of channels in complicated layout problems 

where many channels intersect at a juncture. The objective is to minimize compression or 

decompression of the fluid (in compressible fluids) or large changes in the velocity of the 

fluid so as to decrease the pressure loss of the channel. The cross-sectional area of all 

incoming channels to a joint should be also similar to the area of all outgoing channels. For 

instance, in Fig. 6, the connecting channel of intermediate joint between inlets 2 and 3 to the 

intermediate joint between outlets 2 and 3 must have a start and an end radius of 25. The 

channel that connects inlet 1 to outlet 1 causes compression (head loss) of the fluid and thus 

increases in the velocity, because the start radius of the channel is 25 whereas its end radius is 

20. Unless compression or decompression or velocity changes are desired, we will heed the 

heuristic to minimize the difference between the start and end radiuses. 

There are various formulations for calculating the head loss due to friction. Darcy-Weisbach 

flow equation is one of the most useful head loss equations for closed flow conduits (Fay, 

1994). It is proportional to the length of the channel (L), inverse of the diameter (D), density 

of the fluid (  ) and the square of the average velocity (V) of the fluid in the channel (Eq. 1).  
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Minor losses may also result from fittings that disturb the normal flow of the fluid in the 

channel. There are two basic methods to calculate the head loss due to changes in the flow 

direction: a) “equivalent length”, and b) “K factor”. Both of them are based on empirical test 
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behind the results: the more the changes in the direction of the flow, the more the head loss. 
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incoming and outgoing flows in each joint. The higher these values, the more head loss of a 

layout. This optimization within rule 14 optimizes the position of the intermediate nodes, 

which were added initially by rules 1, 3 and 4.  

Eq. 2 describes the first objective function. X1 (first radius of a channel segment) and X2 

(second radius of a channel segment) are the variables of the function. 
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Eq. 3 describes the second objective function. X1, X2 and X3 (spatial position of the 

intersection points) are the variables of the function. 
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Through these two objective functions all parameters that affect the head loss of a layout, 

such as channel diameter, channel length, and position of joints are optimized. The velocity of 

the fluid is optimized indirectly through diameter (considering the principle of mass 

conservation). The velocity has also been considered in the second optimization through a 

weighting factor. If the initial velocity is too high, the weighting factor of the flow direction 

(third type of head loss) is increased to prevent sharp angles between incoming and outgoing 

flows. If the velocity is too slow, the length of the channels will be more important in defining 

the objective function. Other parameters such as Darcy friction factor, density, and gravity are 

not considered in these objective functions. This makes both optimizations independent from 

any fluid type. 

Fig. 8 shows the effect of direction of flow at inlets and outlets on the position of intermediate 

nodes (objective function weighting factors are remained constant). Fig. 9 shows a candidate 

which has been suggested with the skeleton rule (a) and the result after the second 

optimization is shown in Fig. 9(b) (weighting factor of the third type of head loss due to slow 

velocity is very small). In this case the result is similar to the Steiner tree problem. The 

Steiner tree is the shortest tree that spans a given set of ports (Hwang et al., 1992). When the 

angle between flows is not considered at all, a Steiner tree should be the expected result from 

the optimization.  
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Figure  2-8: Effect of flow direction upon optimization ii results 

 

Figure  2-9: Not considering the flow direction gives the Steiner tree 

After optimizing all candidates; the results are stored on a new list sorted by the first and 

second objective function values. A weighting factor is used to sum the objective values. 

Finally, rule 15 – last rule of the ruleset 5 – calculates the direction of flow at intermediate 

nodes, which is necessary for the next step; detailed shape design. This direction is calculated 

based on the direction of all incoming and outgoing flows to a juncture.  

Detailed shape design 

In the last step of the topology generation process, the shapes of the candidates are designed 

in detail. Rulesets 6, 7 and 9 are used to apply the shape changes. Ruleset 6 defines the overall 

curvature of a channel. Fig. 10 shows two designs with different overall curvature.  

 

Figure  2-10: Defining the overall curvature 

(a) (b) 
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Rulesets 7 and 9 perform the final smoothing of the channels. Fig. 11 shows two channels 

which has been transformed through these two rulesets. These three rulesets (6, 7 and 9) use 

three control parameters. The first parameter defines the main curvature of the channels in 

ruleset 6. In Fig. 10, the effect of changing this parameter upon the curvature of the channel is 

shown. The minimum value for this parameter is zero which means no curvature. The second 

and third parameters are used in the ruleset 7 to define the curvature at inlets and outlets (Fig. 

11). They are used to define the sharpness of the changes in the flow path at inlets and outlets. 

Defining the control parameters is depending upon many factors such as fluid type, fluid 

equation, and temperature. The designer should consider these factors when setting up the 

synthesis process for designing a new channel layout problem. 

 

Figure  2-11: Smoothing the channel path 

Rules 15 to 18 and 20 convert a simple topology like Fig. 6 to one like Fig. 12. This 

transformation has two aims; minimizing the head loss through adequate curving of the 

passageway and gradual changing of the channel radius. To each channel segment (arc) two 

start and end radii are assigned. The sum total of all these small differences of arcs in a 

channel is equal to the difference between start and end radius of that specific channel.  

 

Figure  2-12: A candidate design after smoothing the shape 

Finally ruleset 8 facilitates the connection of channels with a specific radius to intersections 

and joints which normally have different radii. This rule changes the radius of a channel 

segment, which connects to a joint, to the radius of the joint. For instance, if two channels in 

the Fig. 12 which join together have a radius of 20mm, the joint’s start radius should be 

around 28mm (considering the principle of mass conservation). Therefore those channel 
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segments which connect the channels to the joint should have a start radius of 20mm and end 

radius of 28mm. 

2.3.2 Transformation 

After creating all possible topologies in the first phase, they are transformed to three 

dimensional shapes through a converter which uses the Parasolid geometric kernel (Siemens 

PLM Software Inc., 2013). The transformer converts nodes into spheres, and arcs into cones 

or cylinders. If the start and end radii of a channel is different, a cone is used for the 

transformation, and otherwise a cylinder is used. To increase the smoothness of the shapes, it 

is possible to reduce the minimum length of arcs in order to prevent sharp angles at joints and 

in different nodes. The shapes are saved as an STL file. Fig. 13 shows the candidate topology 

of Fig. 4 which has been converted to a 3D shape. For this specific design, the conversion 

took less than half a second. The converter saves all boundary conditions (inlet and outlet 

cross sections and the body of channels) separately. Fig. 13 has three inlets, three outlets and 

the addition of the body makes seven STL files. This separation of files is merely to facilitate 

translating the boundary conditions and the design for generating the finite element mesh and 

evaluating in a CFD solver. The inlet and outlet arcs (green and red arrows) are also 

converted to 3D shapes. These cylindrical boundary conditions stabilize the flow turbulence 

at the inlets.  

 

Figure  2-13: A converted topology into 3D shape 

2.3.3 CFD Evaluation 

For evaluating the performance of candidates, CFD simulation is accomplished. The last step 

of the design synthesis process is computationally the most expensive; however minimum 

number of candidates remains in this step. Through this simulation, the candidates with 

minimum head loss at outlets or any other desired criterion are recognized. For CFD 

simulation, OpenFOAM software is used. OpenFOAM is an open source CFD software that 

can be used for solving a variety of problems in engineering from complex fluid flows 

involving chemical reactions, turbulence and heat transfer, to solid dynamics and 

electromagnetics (OpenCFD Ltd (ESI Group), 2013). OpenFOAM includes tools for meshing 

– notably SnappyHexMesh – a parallelized mesher for complex CAD geometries. 

SnappyHexMesh generates 3D hexahedra meshes from a triangulated surface geometry in 



 2.4 Results and Discussions 23 

STL format. In addition, it implicates more specific features, such as moving meshes, sliding 

grid, two-phase flow (Lagrange, VOF, Euler-Euler) and fluid-structure interaction (OpenCFD 

Ltd (ESI Group), 2013). OpenFOAM includes over 80 solver applications that simulate 

specific problems in engineering mechanics and over 170 utility applications that perform 

pre- and post-processing tasks, e.g. meshing, and data visualization (OpenCFD Ltd (ESI 

Group), 2013). After evaluating all candidates with the OpenFOAM solver, the best 

candidates will be selected as final solutions. The feedback from the user of this last step of 

the design is also necessary to tune the control parameters and also the weighting factors of 

the objective functions. Automating this step of the approach is still under development. 

2.4 Results and Discussions 

In this section, a few benchmark examples, which have been solved by other researchers, are 

discussed. This gives an insight upon the similarities and differences between the methods. 

The second part of this section is devoted to exploring the approach through some more 

sophisticated examples. 

2.4.1 Benchmark Examples 

There are three typical benchmark problems in the field of topology optimization of fluid 

channels which have been discussed by other scientists. Borrvall and Petersson, (2003) 

defined these problems in using topology optimization methods for channel layout design in 

2003. Guest and Prevost (Guest and Prévost, 2006a), Challis and Guest, (2009), and Jang et 

al., (2010) are others who resolved all or some of these benchmark examples. Figure 14 

represents these three test problems (Borrvall and Petersson, 2003).  

             

Figure  2-14: Design domain for the pipe bend example (a), design domain for the double pipe example (b), 

and design domain with a force term (c) (Borrvall and Petersson, 2003) 

In Fig. 14 (b), the size of the design domain is variable. The design objective of these 

problems is to minimize the dissipated power in the fluid, subject to a fluid volume constraint 

(Borrvall and Petersson, 2003). Minimizing this objective reduces drag or pressure drop, 

which is vital in applications that require minimum head loss, such as bio-fluid mechanics, 

microfluidics and many other industrial processes. Time is an important secondary objective 

for these benchmark examples. Challis and Guest, (2009) give the precise time required for 

solving the examples with different approaches such as material distribution and level set 

method. 
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Achieved results of Borrvall and Petersson (2003) (Figures 7, 11 and 13 of the study) have 

been approved by other scientists (Challis and Guest, 2009; Guest and Prévost, 2006a; Jang et 

al., 2010), however with slightly different optimal objective values but significant changes in 

the required computational power and time. The registered time by Challis and Guest (2009) 

who have used a level set topology optimization method, is considered for comparison with 

results achieved with the developed method in this study. With a single core of a 2.0 GHz 

dual core AMD Opteron processor, 5 minutes is required for a two-dimensional pipe bend 

problem on a 100×100 element mesh and 44 minutes for a 200×200 element mesh (Challis 

and Guest, 2009). The results of the double pipe example for δ=1 on a 144×144 element mesh 

and for δ=1.5 on a 216×144 element mesh are 14 and 29 minutes respectively (Challis and 

Guest, 2009). These values increase dramatically when facing 3D problems. Fig. 10 of Challis 

and Guest (2009) shows the optimized 3D pipe bend on a mesh with 50×50×20 elements, 

which requires 3.35 hours. This shows that for real problems which are better modeled in 3D, 

the time is an important issue. 

Due to significant differences between the developed multi-representations approach in this 

study and the aforementioned topology optimization methods, results of each representation 

are separately discussed. Fig. 15 shows all three representations of the developed approach for 

the first test problem: graph representation (a), 3D shape (b), and simulation model (c). For 

better visualization of the graph, the minimum length of an arc is increased; by increasing the 

number of arcs (decreasing minimum arc size) the path could be smoother. In the following 

paragraphs, the reasons behind all three representations are discussed. 

                         

 

Figure  2-15: Three representations of a problem 

The first representation (the graph) is used to create, edit, display, and manipulate the shape 

and topology of channels as described in detail in section 3. In this first level of 

(a) (b) 

(c) 
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representation, no trace of simulation model parameters such as fluid equation, Reynolds 

number, compressibility or non-compressibility, are used. However the designer could use the 

same rules with alternate control parameters so that optimal graphs would be created for 

different fluids and boundary conditions. Recall that changing the topology and shape of the 

channels can be accomplished in a fraction of a second.  

Fig. 16 shows a resulting graph representation for each of the benchmark examples. These 

solutions have the same topology as those represented in (Borrvall and Petersson, 2003; 

Challis and Guest, 2009; Guest and Prévost, 2006a; Jang et al., 2010). For the double pipe 

example (Fig. 14 b), a few other topologies are suggested with this approach; the candidates 

with inferior performances are filtered out after optimizations I and II. 

 
Figure  2-16: Topological representation of benchmark examples 

The second representation is a 3D shape representation of the graph, where nodes have x, y, 

and z coordinates. It contains more information than the graph, but still not enough for the 

evaluation. Its second important task is to be used in other downstream applications without 

any postprocessing, which is normally required for grid based or level set topology 

optimization methods.  

The third representation includes information about the fluid model, boundary conditions, 

loads, and the mesh. This information is used to evaluate the quality of generated topologies. 

A closer study of the benchmark examples reveals that, they have no or very little topological 

complexity. For instance, in case of first and third examples (Fig. 14a and b), there is only one 

topological variant, so the generation is done in very little time and the evaluation is also very 

fast (less than a minute). In case of the double pipe; there are less than ten different valid 

topologies possible. The first stage of the design (topology generation) requires less than a 

second to create the candidates. The transformation requires about three seconds and the 

evaluation phase requires about 60 seconds for meshing and evaluating each candidate. Again 
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the most time-consuming part of the design is the evaluation. This shows that for small and 

middle size layout problems with moderate number of candidates (less than 1000) the 

topology optimization task is reduced to a straightforward single evaluation.  

A single core of a virtual machine, installed on a computer with an Intel(R) Xeon(R) 

processor, is assigned to solve the benchmark examples. As the only 3D solution of these 

benchmark examples in the literature is for the pipe bend problem, it has been chosen for the 

comparison. However, the second and third examples can be compared like the first example. 

The creation of the topology in Fig. 15 and its conversion to a 3D shape needs less than 0.2 

second. The evaluation was more time consuming as it required about 30 seconds for 

generating a Tetrahedron mesh with 27726 elements and evaluating it in OpenFOAM solver. 

Altogether 30.2 seconds time was required to reach the solution shown in Fig. 15. It is not 

adequate to compare this time with 3.35 hours for a 3D pipe bend in Fig. 10 of Challis and 

Guest (Challis and Guest, 2009), because to set the control parameters some trial and error are 

required. However, if one wants to optimize the three parameters, as only 30 seconds for each 

evaluation is required, the optimum shape could be obtained fairly quickly. The developed 

approach is able to handle very large scale 3D problems with arbitrary flow directions, high 

Reynolds number and different fluid types in the same layout design. 

2.4.2 Layout design of a flow distributor 

Fig. 17 shows the seed graph of a simple flow distributor with one inlet and five outlets. 

Distributors are used when uniform distribution of fluid is required (Liu and Li, 2013). This 

requires a similar head loss of the flow at all outlets, and not necessarily aimed at minimizing 

total head loss.  

 

Figure  2-17: Seed graph of a channel problem with one inlet and five outlets  
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Figure  2-18: A distributor with the same head loss at each outlet 

Fig. 18 shows such a design for a distributor with eight outlets. This design is created through 

eight rule applications: a modified version of rule 4 has been applied seven times and rule 1 

has been called just once. The modified version of the rule 4 not only adds an intermediate 

node between two outlets, it adds a second node further behind (considering the flow 

direction) of the first intermediate node. Its aim is to stabilize the flow before reaching the 

juncture point to minimize unequal distribution of the fluid to outlets. 

For this example, the aim is minimizing head loss; therefore the flow might be slightly 

different at different outlets. As illustrated in Fig. 1 the first step of the design synthesis is to 

search the design space for all valid candidates and store them in a sorted list. The search 

algorithm completed in 102 seconds in a search of the entire design space while found 1223 

valid solutions. Fig. 19 shows six different candidates within the top 4% of all candidates 

based on initial evaluation. Although the shapes of all these candidates are different, many of 

them have the same topology. For instance candidates (a), (c) and (f) of Fig. 19 have exactly 

the same topology however with different shapes. The only way to find the similar topologies 

is after optimization II. This optimization changes the shape of the candidates and moves the 

position of the intermediate nodes to reach minimum head loss.  At this stage the duplicates 

can be removed from the list of candidates.  
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Figure  2-19: Six random candidates between the best 4% of all 1223 candidates 

After storing all valid candidates in a sorted list, they must be optimized to find out candidates 

with best performance (defined as minimum head loss). The required time for both 

optimizations depends upon the number of arcs and intermediate nodes in the graph; it varies 

from a fraction of a second in most cases to a maximum of a few seconds. However it is not 

necessary to evaluate all candidates; often the best candidate is among the top candidates 

which has been initially evaluated and sorted in ruleset 4 (rules 10 and 11). Because rules 3 

and 4 consider direction in their applications, therefore generated candidates are not very far 

from their optimized version. In Fig. 20 (a) the best candidate with the best objective function 

values is depicted. It is indeed the optimized result of (a), (c) and (f) in Fig. 19. It supports the 

idea regarding the appearance of the best candidate among top candidates listed in the search 

phase. 

Up to this stage the topology of the candidates is fixed and the shape is fairly well-defined. In 

the third stage of the topology generation phase, the detailed shape design of candidates is 

accomplished. This stage is to further smooth the flow passage at joints in order to reduce the 

head loss due to sharp angle changes in the flow. This stage is not necessary for all 

(a) (b) 

(c) (d) 

(e) (f) 
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applications because it creates very curvy design shapes. Although these shapes have less 

head loss, their production might be very tedious especially in large scale problems. For 

instance, a fuel cell distributor might not require such detailed shape but micro fluidic 

structures might be very sensitive to such shape refinements. Fig. 20 (b) shows the refined 

design of the best candidate. 

 

Figure  2-20: The best candidate after optimization ii (a), and detailed shape design (b) 

Although the graphs are shown in 2D (x, y) they contain three dimensional data and all graph 

transformations are applied upon three dimensions (the graph visualization software, 

GraphSynth, only shows flat views of the graphs). For 3D visualization, these graphs are 

transformed into shapes via the Parasolid Kernel. Fig. 21 shows a flow distributor with outlets 

at different z positions. The graph of the Fig. 21 is different from that of Fig. 20 (b) because 

of the z position of the nodes.  

 

Figure  2-21: A 3D flow distributor 

Essentially, the best design candidate is found during the first two steps of the topology 

generation phase. During these steps no CFD evaluation is performed to find the head loss of 

the channel designs, but three simple heuristics are used to reduce the head loss: length of 

channels, changes in the direction of flow, and changes in the radius of channels. The best 

candidate is one with the shortest total path length, with the minimum changes in the direction 

of flow, and with the minimum changes of the channel radii. Indeed after transforming the 

best or few best designs into 3D shape, they might be close to optimal even without CFD 

evaluation.  Such a simplification depends on whether the control parameters and weighting 

factors of objective functions are adequately assigned.  

Fig. 22 shows the pressure profile of the best candidate at the central slice (for better 

visualization), which has been calculated in a CFD solver and visualized in the Salome 

(a) (b) 
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postprocessor (Open CASCADE, 2013). For the simulation, the flow is considered as a single 

phase steady state flow without turbulence. The density of the flow is the same as water (1000 

kg/m
3
) but with a very high viscosity (1 Pa.s). The gravity is not considered and the initial 

velocity at the inlet is 1 m/s. As can be seen in Fig. 22 the critical point of the design is at the 

base of the fork and the pressure at the middle outlet is higher than all others. The pressure for 

all other outlets is similar, but not the same because the objective function was to minimize 

the overall head loss.  

 

Figure  2-22: CFD evaluation results of the best candidate in figure 20 

By changing such material properties and boundary conditions (e.g. speed), the control 

parameters and objective function weighting factors must be changed accordingly. For 

example, if the speed is too high all three control parameters must be increased to increase the 

curvature at inlets, outlets and the body of the channel. The weighting factor of the second 

part of the second optimization, which considered the angle between incoming and outgoing 

flow directions in a joint, must be increased. Because the sharper an angle and the faster the 

flow, the higher the head loss. 

2.4.3 Complex channel layouts 

In the previous section, to examine the design synthesis process a flow distributor layout 

problem with one inlet and five outlets was discussed. The approach is able to generate valid 

solutions for any kind of boundary condition with any number of inlets and outlets with 

arbitrary postures and directions. It is able to handle channel problems with very complex 

flow directions. Fig. 23 shows a candidate for a layout problem with two inlets and two 

outlets. As can be seen the flow directions are very unconventional, but the approach is able 

to smooth the shape of the channel very well.  
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Figure  2-23: Seed (a), a candidate topology (b), graph representation (c), and 3d shape (d) of a layout 

problem with two inlets and two outlets 

2.5 Conclusions 

A new approach for shape and topology optimization of fluid channels using generative 

design methods is presented. This multiple representation approach uses graphs to represent 

both the topology and the shape of channel layouts. This allows a very fast generation of 

topological solutions for a given design problem. Based on results of two optimization 

functions, the best solutions are stored in a list for further detailed shape design. To evaluate 

solutions with a CFD solver, the graphs are converted to 3D shapes via Parasolid. These 

shapes can be used directly in downstream applications with no additional postprocessing. 

The simulation model is fully separated; therefore it is possible to solve problems such as that 

have compressible fluids with high Reynolds number and arbitrary flow directions at inlets 

and outlets. Large scale problems, problems with more than one fluid type, for which the 

mixing is to be avoided, are also solvable. The dual objective function allows designers to 

reach desired compression, decompression, and velocity of flow at each outlet while 

simultaneously minimizing the head loss. The rules may be flexible enough and independent 

of the simulation model that the approach might be used to create channels for other domains 

such as heat transfer to transfer maximum heat from sources to coolers.  

The ongoing research of this study is on automating the CFD analysis into the search loop of 

the design synthesis approach. Implementation of this step is necessary to have an automated 

tuning of the control parameters of the control parameters. Using B-Splines and loft function 

instead of CSG primitives to convert graphs into 3D shapes is another possible research area, 

which would yield smoother channels. It also makes possible the creation of channels with 

non-circular cross sections. Another important field of research that can increase the 

(a) (b) 

(c) 
(d) 
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generality of the approach is handle obstacles in the seed graph. The reason for this 

investigation is that obstacles are an undeniable part of the real world design problems. An 

interesting field of research might be to use the output results of the approach as input for 

conventional topology optimization methods. Due to a good initial design, convergence can 

be faster and many problems might be solved that are hitherto not solvable.  

 

 



 

3. Truss Layout Optimization using Generative Design 
Synthesis Approach 

The aim of this chapter is to demonstrate the abilities of generative design systems in 

achieving structural layout optimization. The combination of generative design synthesis 

methods with conventional simulation models produces a design technique to achieve optimal 

topologies and shapes for cable trusses considering various constraints such as stress, 

displacement, stability. Furthermore, manufacturing issues and material imperfections and 

limitations can be considered in the synthesis. The effectiveness and robustness of the 

proposed method is checked by solving a variety of available test problems found in the 

literature. The results show that the approach not only creates the existing solutions for the 

test problems, it creates new structures that have never been seen before. 

Keywords: Topology Optimization, Design Automation, Graph Grammar, Truss. 

3.1 Introduction 

One of the most popular computational design synthesis approaches in engineering design 

involves topology optimization methods, which is based on using finite element methods 

(FEM) for the analysis, and various gradient-based optimization techniques (Bendsøe and 

Sigmund, 2003). Topology optimization is a mathematical approach that models a given fixed 

number of decision variables (cells or grids), and optimizes its objective function (material 

layout) for a given set of boundary conditions and loads. These optimization methods are now 

being used successfully in areas such as electro-magnetics, MEMS and fluids as well 

(Bendsøe and Sigmund, 2003; Eschenauer and Olhoff, 2001). For more than two decades, 

engineering designers have used topology optimization methods for a wide range of structural 

design problems. The objective of structural optimization is to improve the performance of 

the structure components in terms of material efficiency in transferring applied loads. 

Therefore, the performance criterion is usually the weight or cost of the structure subject to 

geometrical constraints and various performance-based constraints such as stress, 

displacement, mean compliance, frequency and buckling load.  

Truss and space frames are widely used structures, because they are simple and inexpensive 

to build and can be used in many engineering applications. Literature shows much research 

based on classical topology optimization methods for the optimal design of truss structures 

(Dorn et al., 1964; Kirsch, 1989; Luh and Lin, 2011). Typical truss topology optimization 

approaches discretize the design space with a nodal mesh of a large ground structure, in which 

every node is connected to almost every other node in the domain. The ground structure 

concept has been first initiated by Dorn et al. (1964). This dense set of potential structural 

members along with applied loads and boundary conditions are assumed known. The 

optimization is used to determine the material distribution of cross-sectional areas of the 

connections. By removing inefficient members with slender areas below a certain threshold 

the connectivity of the system is changed and the structure is updated (Achtziger et al., 1992; 

Bendsøe and Sigmund, 2003; Bendsøe et al., 1994; Kirsch, 1990). Truss topology 
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optimization is a combination of three optimization problems; size, topology and shape. The 

objective of size optimization is to find the optimal cross-sectional area of structural elements. 

Topology optimization aims to find the optimum existence and connectivity of the nodes. And 

shape optimization is concerned with finding the optimum nodal coordinates. For each 

optimization it is assumed that the variables of the other two optimizations are fixed.  

Numerical challenges associated with the formulation of underlying governing mechanics 

(e.g. local and global instability) are often an important obstacle in topology optimization 

methods (Jalalpour et al., 2011). However, the matter becomes more acute when considering 

uncertainties associated with the structural stiffness such as geometry and material property 

imperfections. Consequently most of the researches in this area are focused mainly on 

deterministic problems with a limited consideration of uncertainty (Bendsøe et al., 1994; Díaz 

and Bendsøe, 1992; Lógó, 2007; Lógó et al., 2009; Yonekura and Kanno, 2010). The main 

strategy to consider these uncertainties in the formulations has been adding randomness 

(uncertainty) to the spatial position of the nodes (Asadpoure et al., 2011; Calafiore and 

Dabbene, 2008; Guest and Igusa, 2008; Sandgren and Cameron, 2002) or equivalent random 

forces at nodes (Jalalpour et al., 2011; Tyas et al., 2006). Jalalpour et al. (2011) aim to be the 

first who propose a method that is capable of handling both nodal location uncertainties and 

first order global buckling effects. In their proposed method, random forces at nodal points 

represent the potential global buckling in imperfect structures. Although considering 

uncertainty in the spatial location of the nodes creates (theoretically) more stable results, they 

are less practical structural solutions to be built. Indeed, since 1960, various optimization 

methods for the layout design of structures have been developed and many papers and books 

on the mathematical aspects of the structural optimization have been published. These 

contributions are mainly concerned with theoretical aspects rather than practical applications 

and engineering aspects (Liang, 2005). This shows a clear gap between the development of 

structural layout optimization theory and its practical applications in industry (Cohn and 

Dinovitzer, 1994; Liang, 2005). The main reasons behind this gap are the mathematical 

complexity of structural optimization methods (Liang, 2005), and the fact that structural 

optimization techniques are developed primarily for saving materials and not for automating 

the engineering design process (Liang, 2001). The work presented in this chapter introduces 

an efficient design tool for mechanical and civil engineering researchers. It is a clear and easy 

to understand concept and the methodology is an attempt to reduce the existing gap between 

academic methods for structural layout optimization and practical applications. 

This chapter presents the theory and application of a generative design synthesis method for 

topology, shape and sizing design of structures. The method incorporates the load flow 

principal, simulation and optimization methods through generative design synthesis approach 

into a modern structural layout optimization theory. Furthermore, unlike other conventional 

methods, the types of bars and cables that are allowed to be used as components of the 

structure are defined at the beginning of the synthesis. There is no need to post-process the 

results, because manufacturing issues and limitations can be considered in the synthesis. This 

method uses a graph grammar interpreter to generate different topological solutions for a 

structural problem. Through exhaustive search of the design space all valid topologies for a 

given problem are generated and sorted based on the complexity of the solutions. An 

optimization algorithm is then used to optimize all (or the top n) topologies. This optimization 
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algorithm changes the spatial positions of the joints, to minimize a desired objective such as 

stress, displacement, or overall load flow. Finally the best candidates are transformed into 

meaningful 3D shapes. The nodes and arcs of the generated graph represent Constructive 

Solid Geometry (CSG) shapes. The graph grammars rules work with graph elements to 

generate a new topological state, as a result the search and generation process is very fast. 

However, it is vitally important to embed enough information in the graph grammar rules in 

order to create meaningful structures. To increase the computational effectiveness of the 

generation process, the design process is carried out in distinct steps. To enter each step, the 

candidate solution must meet specific requirements.  

One of the major limitations, which topology optimization methods in conceptual design are 

facing, is limited representation power; the synthesis process and design rules are dependent 

and integrated into the simulation model, the simulation model is often fixed for a given set of 

loads and boundary conditions. By utilizing a multiple representation approach for the 

topology optimization of structures, our algorithm avoids many problems associated with 

other approaches in setting up the mechanical behavior equations. There is no need for a 

parameterization scheme because representing the topology is independent of the simulation 

model. It causes significant computational savings, because the FE analyses and remeshing at 

each iteration is no longer required. By using multiple representations in our method, 

dimension (e.g. 2D or 3D) has almost no effect on the computation efforts in finding structure 

topologies. Furthermore, as the representation and simulation models are fully separated from 

each other, one can use the same rules for problems with completely different boundary 

conditions, loads and structural component types.  

The proposed method not only produces results in agreement with previously solved 

problems, it creates new structures that have never been seen before. The effectiveness of the 

proposed method is checked by solving a variety of available test problems and comparing 

them with those found in the literature. This chapter is organized as follows. Section 2 

describes a background about generative design synthesis systems and load flow principal. 

Section 3 provides details of the proposed approach in this chapter. Section 4 presents results 

and discusses the implications of results; the focus of this section is to present significant 

benefits of proposed methodology over previously used approaches. And finally, Section 5 

concludes the study and suggests further research projects to extend the presented work. 

3.2 Load flow path principal 

Load flow path is a way in which load paths through a structure or mechanism from an input 

point (point of application) to the output point (support or fixed point). The term load path has 

been first defined by (Kelly and Elsley, 1995), although various authors (Hart-Smith, 1995; 

Kermode, 1964; Osgood, 1970) have used this term –however– in a descriptive sense. A 

fundamental fact in design process of structures is ensuring an appropriate path for loads and 

forces to flow in the structure from application input point(s) to the fixed or reaction output 

point(s). Although this has been always implicitly considered, there is a direct relation 

between load flow and the deformation behavior of the structure. Hence an insight obtained 

from load flow path can greatly enhance the design process (Kelly and Elsley, 1995; Skakoon, 

2008). Load paths are relatively easy to define in simple structures such as trusses which carry 
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only axial loads. The concept of load path has been used in topology optimization methods to 

reach feasible solutions (Harasaki and Arora, 2002, 2001; Hoshino et al., 2003). The main 

limitation of these techniques is the mathematical formulation of load paths which is based on 

finite element analysis of previous design step (Marhadi and Venkataraman, 2009). In this 

chapter the knowledge obtained from load flow path principal bases a new design 

methodology for structural topology optimization. This methodology has three main rules;  

· forces tend to flow in paths with least resistance; here, resistance is the amount of 

change in the direction of the load flow path, 

· changes in the direction of the load flow requires an extra transmitter member to 

impose the change,  

· and finally the more parallel the structural components are with the direction of the 

applied load at a particular joint, the more their utilization. For instance if at a joint, 

the applied load is exactly at the same direction as a specific member, the utilization of 

that member is maximum, because no other force components are created.  

A grammar-based approach for truss topology generation and optimization has been first 

proposed by (Reddy and Cagan, 1995). Shea further developed the approach for the synthesis 

of truss structures using finite element simulation and stochastic search methods called “shape 

annealing” (Shea and Cagan, 1999, 1998; Shea, 1997; Shea et al., 1997). eifForm is the 

software tool which has been developed based on this approach (Shea et al., 2005). Shape 

annealing rules are simple random rules (Cagan, 2001) but our main aim in this chapter is to 

systematically calculate the load paths based on the rules and generate various topologies that 

can meet the requirements for the desired force path. This will help us to add only those 

components which increase the overall performance of the structure. Therefore, stresses and 

strain energy will be uniformly distributed throughout the topology. 

3.3 Approach 

The overall approach to the structure synthesis using generative graph grammars is depicted 

in the Fig. 1. The whole process can be divided into two phases; shape and topology 

synthesis, and transformation. The synthesis phase consists of two steps; search and 

optimization. In the search phase, all valid topologies are generated in six consecutive steps 

and in the optimization phase the parameters of the topology are optimized. Based on the 

objective function values, an optimum candidate is selected. The synthesis phase uses the 

graph grammar interpreter to apply graph transformations and generating topologies.  
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Figure  3-1: Structure synthesis approach 

In the transformation phase the generated topologies, which are represented as graphs are 

converted to three dimensional (3D) shapes. This step is not necessary for the synthesis of 

structures and is used just to visualize the final results as 3D shapes. In the following sub-

sections all phases of the design are described in detail. 

3.3.1 Analysis of the structures 

This section briefly describes how the necessary structural evaluations are carried out. The 

approach is initially developed for cable truss synthesis, but it can be used without any 

modification for synthesis of truss structures. The only difference between cable truss and 

truss structures is in the individual components that constitute the structures; trusses constitute 

of tension-compression bars, whereas cable truss structures consist of tension wire ropes and 

compression bars. 

Structure elements 

A cable truss structure is a mechanical system composed of tension wire ropes and 

compression bars, which are connected together through frictionless hinges (nodes), and is 
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loaded only at nodes. Consequently the axial displacement in any individual component (wire 

rope or bar) is linear and consequently the internal forces, strains and stresses are constant for 

each component in the structure. In this work the simulation does not consider the weight of 

the components. But since the simulation and topology generation are separate from each 

other, the simulation algorithm can be changed.  

Fig. 2 shows the shape of the bars and the construction type of the wire ropes that have been 

used in this study.  

                             

Figure  3-2: cylindrical bar (a), and wire rope (b) used for this study 

Size, shape, material characteristics and construction type of the elements (bars and ropes) 

can be easily changed at the onset of this approach. In the results section of this chapter, the 

effect of changing elements features is investigated. It is also possible to define a set of 

options for the structure elements, and leave the decision for choosing adequate element types 

and sizes for each segment to the optimization. In the optimization section (3.2.4) and also the 

first two sub-sections of the results the steel rope is fixed to a 1×7(1+6) construction type and 

the bar diameter to 24 millimeters because in these sections our aim is to investigate the 

capabilities of the shape optimization algorithm. So we have intentionally created conditions 

to challenge the shape optimization rather than the topology generation. 

Evaluation 

An example of a system with two elements (two bars or one bar and one rope) is shown in 

Fig. 3. In this example nodes N1 and N3 have unknown forces with known displacements 

equal to zero, whereas node N2 has an unknown displacement and a known force P. 

Considering the space dimension of the problem as 2D, this structure, although very simple is 

not solvable through Newton's laws of motion. Because the number of the equilibrium 

equations (a vector sum of the two forces and a sum of the moments about an arbitrary point) 

is less than number of the unknowns (four unknown reactions at N1 and N3 nodes). Therefore 

the structure is classified as statically indeterminate. To solve statically indeterminate 

systems, the deformations must be considered.  
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Figure  3-3: A two element structure (a), equilibrium at all three nodes (b) 

As the static equilibrium equations are insufficient to determine the internal forces and 

reactions of the statically indeterminate systems, it is necessary to develop an analysis scheme 

that can be used for evaluating both determinate and indeterminate structures. This requires 

developing of the relevant equilibrium, kinematic, and constitutive relations for general 

structures and then combining these expressions to produce a set of equilibrium equations. 

The procedure of solving structures can be found in most classical Structural Mechanics 

books (Armenàkas, 1988). Unlike trusses with tension-compression bars, components used in 

this approach consists of tension ropes and compression bars. This requires recalculating the 

stiffness matrix of the structure after defining the tension elements and finally the 

displacement and force matrixes. This scheme has been programmed in C# and can be used 

for both two and three dimensional problems independent from structure’s degree of freedom.  

3.3.2 Shape and topology synthesis 

Seed graph 

A seed graph defines the scope and boundary conditions of the problem to be solved. In this 

case, it consists of some arcs and nodes which are labeled as fixed (n0 and n1) or loaded (n2) 

with different spatial positions. Fig. 4 illustrates a sample seed graph with two fix points and 

one load in two dimensions (x, y). The vertical distance between the fix points is 576mm and 

the horizontal distance between fix points and the load is 960mm. The load is 100N in -Y 

direction. The goal of grammar rules is to transform this seed graph to a graph that represents 

a meaningful structure for supporting the load.  

 

Figure  3-4: A seed graph with one load point and two fixed points 
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Topology generation 

The graph grammar interpreter, which is used for structural synthesis, starts with a seed 

graph, which represents the bounds of a specific problem. The generation (graph 

transformation) is carried out through 27 rules which are distributed into seven rulesets (RS). 

A ruleset is a set of rules that transforms the design from one level of maturity to the next 

level. Rulesets are used as a means to compartmentalize different phases of the generation 

process. There are two types of rulesets used in this approach: generative rulesets and 

transformative rulesets. Generative rulesets define the design space of all possible valid 

candidates (RS1, RS2 and RS4). These rulesets define the topology of the candidates. 

Transformative rulesets change the state of generated solutions. They transform a candidate 

without changing its topology (RS3, RS5, RS6 and RS7). The branching factor of the 

transformative rulesets is one whereas the branching factor of the generative rulesets is more 

than one.  

 

Figure  3-5: Grammar rules 

In Fig. 5 all 27 grammar rules with a short description of each are illustrated. The rules are 

created in a general way, so that for different types of problems the same rules can be used. 

The left picture in the Rule column is the left hand side of a rule (LHS) and the right picture is 

the RHS of the rule. The graph grammar interpreter converts that part of the seed graph which 

is matched to the LHS into the graph segment depicted in the RHS. Three trigger rules (4, 9 

and 14), two optimization rules (3 and 27), and one evaluation rule (26) does not change the 

graph elements, therefore their LHS and RHS are not depicted. They are referred to as rules to 

coordinate their execution among the other rules. Fig. 6 shows the tree structure of the 

synthesis process. Figures 1, 5 and 6 represent the approach from three different viewpoints 

Ruleset Type Description Ruleset Type Description

1 Connect loads to fixes 15
Smooth the path between a load 

and a fix point

2 Connect loads to load 16
Smooth the path between a load 

and a joint point

3 Optimization I Main load flow path optimization 17
Smooth the path between a joint 

and a fix point

4 Trigger rule 1 Trigger rule 1 18
Smooth the path between a joint 

and a joint point

5
Insert intermediate joint between 

a load and a fix point
19 Remove arbitrary arcs

6
Insert intermediate joint between 

a load and a joint point
20

Merge Nodes that are very near 

to each other

7
Insert intermediate joint between 

a joint and a fix point
21

Merge nodes that are located on 

other arcs

8
Insert intermediate joint between 

a joint and a joint point
22 Merge adjacent arcs

9 Trigger rule 2 Trigger rule 2 23 Merge triangle connections

10 Remove arbitrary arcs 24 Add intersecting joints

11 Define direction of load at joints 25 Remove arbitrary nodes

12 Connect joint to fixes 26 Simulation
Initial evaluation of the final 

results

13 connect joints to joints 27 Optimization II Shape Optimization

14 Trigger rule 3 Trigger rule 3
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with different levels of detail. As can be seen in Fig. 6, rulesets 1, 2 and 4 increase the number 

of candidates and other rulesets just transform the existing candidates.  

The whole approach is developed in such a way that incremental information, which is 

required in the next step, is added to the design. Aside from the depicted rule conditions in 

Fig. 5 (like connecting loads to supports), many other additional functions are compiled into 

the rules to define detailed matching conditions as well as rule actions. For instance, for rule 

24, one function aids in the recognition process to find the exact position of the intersection 

and one function helps in inserting a node at that calculated spatial position. In the following 

three sub-sections, all seven rulesets including 27 rules are explained in detail. 

RS 1: Defining the rough load flow path

RS 2: Add intermediate joints

RS 3: Defining direction of loads at joints

RS 4: Connecting joints

RS 5: Smoothing load paths

RS 6: Finiding intersection of paths 

RS 7: Shape optimization

 

Figure  3-6: Tree structure of the synthesis process 

3.3.2.1.1 Ruleset 1 

The task of the first ruleset (RS1) is to create the main path between load point(s) and the 

fixed (support) points. In the case of the seed graph in Fig. 4 with only one load and two fix 

points, just one candidate is generated. If the suggested design in Fig. 7 with one compression 

bar and one tension rope meets the objective requirements and does not violate different 

constraints such as buckling, then the ruleset is done. However in this specific example, due 

to using a very slender bar (24 mm diameter), the compression bar buckles. Because the types 

of components and their materials are fixed, one should change the path of the load in a way 

that causes a reduction in the flow amount. This is carried out through an optimization 

algorithm, which tries to find the optimum direction for the load carrier vectors (Fig. 7).  
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Figure  3-7: Connecting the load points to the fix points 

It is clear that the optimum load carrier vectors should be in the same direction as the load 

vectors, because the net load to be carried will be the same as the load itself. Based on this 

fact, the load carrier vectors in Fig. 8 should be in the same direction as the load, but the 

optimization’s result in the Fig 8 shows a different direction. This is due to the fact that 

changes in the direction of the load flow require an extra transmitter member to impose the 

change, and the more changes in the direction, the more lateral load flow. So in the dilemma 

of minimizing the main load flow and the changes in the direction of load path, a mediating 

direction is found through the optimization. In the section 3.2.4, the optimization function is 

described.  

 

Figure  3-8: Defining the direction of main load flows 

3.3.2.1.2 Ruleset 2 

Based on the load flow direction from the RS1, four rules in this ruleset break the structure 

elements into smaller ones and one trigger rule is used to exit the rule set. The segmentation 

of the load paths depends upon the minimum allowed size for structure elements. In this study 

minimum size of each segment is 225 mm; therefore each path can be divided maximum into 

four segments. This minimum segmentation size is different from the minimum element size 

constraint of the shape optimization algorithm. The segmentation size limit indirectly limits 

the maximum number of the structure elements. It allows the rules of the ruleset 2 to be 

applied only on arcs with the minimum length of 450 mm. As illustrated in Fig. 6, this is a 

generative ruleset for exploring the design space; the single output candidate of the ruleset 1 

is populated into sixteen candidates with different number of segments for each load path. 
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Fig. 9 shows one of the candidates with one segmentation at each path, which means two new 

joints are created.  

 

 

Figure  3-9: Dividing load path segments to smaller pieces 

3.3.2.1.3 Ruleset 3 

The newly added joints require extra transmitter members to impose the changes in the 

direction of the load flow. This relatively small ruleset defines the optimum direction of the 

force to be imposed at the joint. This is calculated based on the direction of both path 

segments connected to the joint. Fig. 10 shows the effect of this ruleset upon the candidate 

from the last ruleset. By applying four rules (each rule two times), the two directing arcs at 

the load point are removed, because they are no longer required and two directing arcs are 

added to the joints. If the number of segments and consequently the number of joints 

increases, the number of rule applications also will increase.  

 

Figure  3-10: Defining the direction of load at intermediate joints 

3.3.2.1.4 Ruleset 4 

Ruleset 4 is the final generative ruleset. Its rules are designed to connect the joints to other 

joints or fixed points. This ruleset adds more variety to the design space and increases the 

number of the candidates from 16 to 35. At this stage the topology of the candidates is fixed 

and the remaining exploration is of parametric variation within these 35 topologies. 
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Figure  3-11: Connecting intermediate joints to other joints or fix points 

3.3.2.1.5 Ruleset 5 

The functionality of this ruleset is similar to the ruleset 2, with the segmentation of the paths 

applied on the secondary load paths and not the primary ones. This segmentation is necessary 

to find the intersection place of the load paths. In more complicated candidates the effect of 

this ruleset is more evident.  

 

Figure  3-12: Smoothing intermediate load paths 

3.3.2.1.6 Ruleset 6 

Finally ruleset 6, which is the final ruleset of the search process, prepares the generated 

solution candidates for the shape optimization. It finds intersections in the load paths and adds 

new joints at those places. Rules of this ruleset also remove all unnecessary segmentations of 

the secondary load paths. Most of the rules in this ruleset are not used for the example in Fig. 

13, but in more complicated design solutions, in which changes in the direction of the load 

flow are more, they are used. In the results section some of these examples are shown.  
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Figure  3-13: Post-processing the solutions  

Fig. 14 shows the generation process of a design solution with a finer segmentation. The 

effect of previous rulesets is illustrated with more clarity in this figure.  

 

Figure  3-14: The process to generate candidate 32 

Search 

A breadth first search algorithm has been used to search the design space for all valid 

candidates. As discussed before, rulesets 1, 2 and 4 explore the design space and rulesets 3, 5, 

6 and 7 transform the candidate solutions (Fig. 6). As it is possible to generate the same 

candidate through different sequence of rule applications, two mechanisms have been 

considered to prevent duplicate designs. The first mechanism is preventing confluent rules 

from being applied (confluent rules do not invalidate one another, see Heckel et al., 2002). 

The second mechanism is a duplicate check. This algorithm –after generating all candidates– 

compares them with each other and removes those which are repeated. 
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Fig. 15 illustrates six candidates among the 35 generated solutions. The entire approach 

requires less than 10 seconds to generate all 35 candidates. The top candidates in Fig. 15 are 

the simplest to generate with less than 20 rule applications. The solutions with more elements 

in the Fig. 15 require up to 100 rule applications. At this stage, all generated candidates are 

stored in a sorted list based on their complexity. The complexity criterion in this context is 

number of structural elements. It is assumed that the more number of elements the more its 

construction costs. The approach searches for the simplest structures that can meet all 

constraints such as stability, buckling and other spatial constraints, with the best performance 

(i.e. objective value). Therefore the candidates in the sorted list are fed one by one to the final 

ruleset for shape optimization. The soonest a candidate meets all requirements, the process is 

terminated and a final solution is chosen. However it is also possible to continue the 

optimization for all solutions. 

   

 

Figure  3-15: Six random candidates between 34 feasible candidates, generated in less than 10 seconds 
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Optimization 

After storing all results of the exhaustive search in a sorted list, the candidates will be further 

optimized in the second step of the topology generation phase. Due to the smoothness and 

unimodality of the design spaces as well as the use of efficient optimization algorithms, most 

of the candidates can be optimized within a few seconds. Based on the idea of the load path 

principal, which considers forces like fluid flow, an optimum structure is one that minimizes 

the amount of force at all elements by best distributing the force between the elements. 

Therefore, the objective function of the optimization is a root-mean square (1): 

   )  √∑    
            (1) 

where x is the spatial position of the joints, N is the number of structure segments in the 

layout, and R is the amount of load that flows in each segment. The objective function of the 

rule 3 is equation 1 plus changes in the direction of load paths, which has been discussed in 

the sub-section “ruleset 1”. 

3.3.2.1.7 Algorithm 

For both optimizations (rule 3 and rule 27), the Fletcher-Reeves gradient algorithm is used. 

These optimizations can be used to minimize the overall load flow of the layout (equation 1), 

displacement, stress, or any other desired objective. Both optimizations are continuous, 

because we have only one type of compression bar and one type of tension cable rope to 

create the structure. Consequently there is no size optimization required for this example. In 

cases where there are different types of elements (bars and cables) with different material or 

different sizes, one could use rules to capture this discrete decision making. However, the 

second optimization (rule 27) could be also a mixed discrete and continuous optimization. 

This allows us to build a structure with different element types to maximize the performance 

of the structure.  

3.3.2.1.8 Constraints and boundary conditions 

Due to the separation of the topology generation from the shape and size optimizations, it is 

possible to easily include additional constraints and boundary conditions in the optimization. 

However unlike other conventional structural optimization methods (Luh and Lin, 2011; 

Noilublao and Bureerat, 2011), this separation of the synthesis process does not affect the 

quality of the results, because the search algorithm is responsible for exploring the whole 

design space and generating all valid solutions not the optimization. Therefore, the following 

constraints have been used in this study; 1) stress, 2) displacement, 3) buckling force, 4) outer 

spatial boundaries to limit the design space, 5) minimum structure element length, and 6) 

maximum structure element length (this constraint is – aside from the buckling constraint – 

due to manufacturing restrictions or esthetic aspects).  

It is also possible to define other spatial constraints such as specific regions to be avoided like 

holes or other construction requirements. There is no constraint for possible material or 

manufacturing imperfections considered in this study. Unlike other conventional methods, 

which add uncertainty in the position of the nodes or use artificial nodal loads (Asadpoure et 

al., 2011; Jalalpour et al., 2011) to consider imperfections, these issues could be considered in 
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the simulation algorithm, or with a high safety factor for stress, displacement and buckling 

constraints.  

In the next sub section, various examples demonstrate the robust results of the optimization 

and approach. 

3.3.2.1.9 Optimization results 

Analyzing the candidate in Fig. 7 shows that the amount of load in the compression bar is 

equal and opposite the amount of load in the tension rope (174.00N). With the prescribed 

components of this study (cylindrical 24mm diameter bars) and considering the length of the 

segment, this structure is failing due to buckling; the maximum allowed buckling force for 

this element was calculated 33.61N. The objective value for this structure layout (equation 1) 

is 250.61N.   

Fig. 16 shows the optimized shape of the structure layout which was discussed throughout the 

section 3.2. The overall load (equation 1) objective value is 224.43N. The maximum load in 

the structure is 106.96N in a tension rope and -91.28N in a compression bar. The reason of 

this difference lies in the buckling constraint. For this example and the following ones in the 

approach section, the displacement is not considered as a constraint, but it is determined 

through the analysis. The displacement at the loaded point is (13.10, -50.58) millimeters in x 

and y directions. This seems large, because the selected rope is very thin (just 2mm diameter) 

but it has a very high breaking load (2540N). This selection was deliberately done to 

challenge the optimization process.  

 

Figure  3-16: Optimized structure (min. overall load flow objective) 

Fig. 17 shows an optimized structure with 15 joints and 32 components. The optimization 

took about 65 seconds and the best objective function was 265.51N. This value is less than the 

value obtained for the Fig. 16. However the distribution of the load is much better and the 

shape of the structure has more symmetry. Consequently, the buckling constraint was almost 

inactive. The maximum tension value is 78.05N and maximum compression is 77.97N. The 

amount of displacement shows significant improvement; (15.90, -31.35) millimeter in x and y 

directions respectively. 
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Figure  3-17: Optimized structure with finer segmentations (min. overall load flow objective) 

Fig. 18 has the same layout as Fig. 17. The only difference is in the fact that no design space 

limitation is considered for the structure, therefore the structure extends out of the initially 

considered design box, which shows significant improvements in the objective value and also 

displacement at the loaded point. The objective value of the structure in the Fig. 18 is 

210.58N, and displacements (6.83, -25.99) millimeter. In this structure, we can see also that 

cables are maximum 60.11N under tension and bars are maximum -62.53N under 

compression. This shows the very good distribution of the load in the structure, which results 

in a very good objective function value.  

 

Figure  3-18: Freeing the spatial constraints of the design space (min. overall load flow objective) 

Again Fig. 19 shows a structure layout that is topologically similar to the ones in Fig. 17 and 

18. The reason a different shape is obtained for the structure is that the objective function is 

now minimum displacement. The shape illustrated in the Fig. 19 gives us the minimum 

displacement for the layout which is (2.55, -23.04) millimeter. This is the lowest value among 

all 35 candidate solutions; if a displacement less than this is desired, there are two options. 

The type and size of the used components could be changed, a finer approximation of the load 

path could be allowed. This can be achieved by reducing the minimum length of the 

segmentation which is 225 millimeter and consequently creating more segments in the main 

load path. For this optimization, tension cables with maximum 47.46N load and compression 

bars with maximum 70.17N load are used. This shows clearly that the problem of the 

displacement comes from the very thin wire ropes.  
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Figure  3-19: Changing the objective function (min. displacement at loaded point) 

Finally Fig. 20 shows the optimal designs for the same problem as in Fig. 16, with the lower 

fixed point bearing only forces in the x-direction. Considering the layout total load flow as the 

objective function, a displacement of (9.46, -65.70) millimeters in x and y directions and an 

objective value of 229.73N is obtained. Whereas by considering the displacement as our 

objective function the displacement reduces slightly to (9.28, -62.53) millimeters and the load 

flow increases to 258.26N. The displacement is not significantly reduced in comparison with 

the previous result. It is interesting to note that the optimized candidates have higher tensile 

loads than compression loads due to the buckling constraint. This is also reflected in the Fig. 

16, in which ropes are under more tension than bars under compression. In this example also 

ropes are under maximum 127.23N (Fig. 20a) and 116.67N (Fig. 20b) tension and the bars are 

compressed only with maximum 70.70N and 99.72N forces. 

 

Figure  3-20: Freeing fixed point n1 from load in the y direction; min. overall load flow (a), min. 

displacement (b) 

It is possible to play to excess with different parameters of the optimization, but the main 

point of this methodology is in the way that we approach the topology generation (through 

load flow principal) and its formulation and representation in grammar rules. Finally the use 

of a tree search algorithm to explore the design space appears to be novel. In the results 

section the abilities of the approach is explored through various examples.  

3.3.3 Transformation 

After automated synthesis of the topologies, they can be transformed into three dimensional 

shapes through a converter which uses the Parasolid geometric kernel (Siemens PLM 

(a) (b) 
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Software Inc., 2013). The transformer converts nodes in the graph into spheres, and arcs into 

cylinders. The shapes are saved as STL files. Fig. 21 shows the candidate topology of Fig. 18 

converted to a 3D shape. For this specific design, the conversion took less than 2 seconds. As 

discussed before, this transformation is only for 3D visualization of the results, which is 

necessary when synthesizing problems in 3D space.  

 

Figure  3-21: A converted topology into 3d shape 

3.4 Results and Discussions 

In this section the abilities of the developed approach in generating meaningful topologies 

with optimum shapes and sizes is shown through various examples and benchmark problems. 

Some examples focus more on showing the capabilities of the optimization, whereas most of 

them focus on the topology generation phase. 

Throughout the entire approach section, a cylindrical cross section bar with 24 millimeters 

diameter and a steel rope (see section 3.1.1) have been used. As discussed in the previous 

sections, it is possible to use different type of elements in constructing the structure such as 

rectangular cross section bars, hollow cylindrical cross section bars, triangular cross section 

bars with different characteristics or ropes with different dimensions and different 

construction types. In the next sub-section, the diameter of the bar is changed from 24 

millimeters to 40 millimeters to show the effect of changing components on the shape of the 

structure. In all sub-sections from 4.3 to 4.5 the construction type of the rope components is 

also changed to (6×7(1+6)+1×7(1+6)). Furthermore, the objective function will be for all of 

the examples the total load flow (formula 1), unless it is explicitly mentioned.  

3.4.1 Changing the building material of the structure 

Fig. 22 illustrates the effect of changing the chosen components of the structure on the shape 

of the structure. In this example only the size of the bars is changed from 24 mm to 40 mm. 

When using the total load objective function, Fig. 22a is the result and in the case of using the 

displacement as the objective value, Fig. 22b is the outcome. The overall load flow, 

displacement and maximum tensions and compressions for both cases are as follows 

respectively: 
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· 208.38N overall load flow, (8.94, -50.19) millimeter displacement, maximum 

tension 100.32N, and maximum compression 98.78N  

· 231.30N overall load flow, (7.99, -39.73) millimeter displacement, maximum 

tension 95.14N, and maximum compression 116.55N  

Fig. 22a and b show that the buckling effect is not prominent and results of Fig. 22b shows 

that the main reason of the displacement is the stretch in the wire ropes, because in this case 

the components have higher compression load than tensile loads. 

 

Figure  3-22: Changing bar diameter from 24mm to 40mm. objectives are min. load flow (a), min 

displacement (b) 

3.4.2 Changing the direction and position of the load 

The effect of changing the direction of the applied load is shown in the Fig. 23. All of the 

components in the left picture are under tension and in the right picture are under 

compression, but the shape of the structure remains the same; the objective is minimizing the 

load. In both cases, the total load is 95.15N but the displacement of the structure under 

tension is (13.74, -0.44) mm in x and y directions, whereas these values are significantly 

smaller in the structure under compression; (-0.42, 0.01) mm. 

 

Figure  3-23: The effect of changing the direction of the load on the structure layout 

In Fig. 24 the location of the load is moved to the right bottom of the design space. In these 

shapes, the flow of the load to the shapes is clearly illustrated. Without increasing the size of 

the bars, it is not possible to prevent buckling and create the desired shapes with these 

topologies; this will be elaborated more in the next sub-section. For these two examples and 

(a) (b) 
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all other following examples in the result section, the construction type of ropes is 

(6×7(1+6)+1×7(1+6)) and the diameter of bars is increased to 40 mm.  

 

Figure  3-24: The effect of changing the location of the load on the structure layout 

3.4.3 Topological benchmarking of the results 

The aim of this sub section is to compare the results of the approach with diverse benchmark 

examples in the continuous structural optimization literature. The comparisons are initially 

based on the topology, and then the shapes of the results. The first benchmark example is the 

cantilever beam with different lengths and with loads at different positions and the second 

example is the Michell structure. These are the most used benchmark examples in the 

literature (Bendsøe and Sigmund, 2003; Bulman et al., 2001; Eschenauer and Olhoff, 2001; 

Liang, 2005; Luo et al., 2009; Rong and Liang, 2008; Wang and Wang, 2004; Wang et al., 

2007; Yulin and Xiaoming, 2004). 

The most famous benchmark example that can be found in the field is illustrated in Fig. 25. 

These two results have been among the 35 candidates which were created for the problem in 

the approach section. The shape of the left structure in Fig. 25 is slightly different from that of 

Fig. 16, because in this example the buckling constraint is no longer active, due to using 

thicker bars. 

 

Figure  3-25: Short cantilever beams 

Fig. 26 shows other diverse topologies for a problem in which the load and fix points are 

farther from one another, this is especially accentuated on the problem on the right. The 

approach solves problems with different sizes, dimensions, and loads and support numbers in 

the same way following the load flow principal. Therefore, the created topologies and to a 
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very good extend the shapes are nearly the same as those found in the literature. However the 

shape is very dependent upon the objective function and active constraints.  

 

Figure  3-26: Long cantilever beams 

The second most famous problem in the literature is the Michell structure. Various solutions 

have been suggested for this benchmark example that can be seen in the Fig. 27. These results 

are in accordance with those found in the literature both in terms of topology and shape. This 

example requires more time to be solved with the presented approach, due to the bigger 

change in the load flow direction. In the previous examples, the load changes maximum 90 

degrees, but in this example the load changes 180 degrees.  

By setting the minimum size of the path segments to 225 mm, only two candidates are 

generated in less than one second, one of which is illustrated in the Fig. 27 (a). By reducing 

the minimum size of the segments to 125 mm, in order to achieve a finer approximation of the 

load paths, number of candidates increases to 53 solutions in 19 seconds. Three of the 53 

samples are shown in Fig. 27a, b and c. And finally, by reducing the minimum size to 100 

mm, we were able to generate more than 500 candidates in 10 minutes (see a sampling in Fig. 

28). It is important to note that the results from finer segmentations always include the results 

of the longer segmentations. 
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Figure  3-27: Four solutions similar to the literature results for the Michell structure problem 

Regardless of the minimum segmentation size, the set of solutions (prior to optimization) can 

be sorted on these criteria; 1) number of components in each candidate, 2) initial evaluation of 

the candidates, and 3) symmetry of the candidates (if appropriate). Therefore candidates with 

lower costs (number of components), better evaluation results and probably better symmetry 

come to the top of the list for the final optimization. However the optimization and analysis 

are quick enough and – even problems with about 30 variables (15 nodes in 2D) – can be 

solved within few minutes. In general the optimization results show that the total load flow in 

the Fig. 27 is slightly less than those in the Fig. 28, whereas the displacement of the structures 

in the Fig. 27 is more than the structures in the Fig. 28. If – aside from the stability, 

robustness and security of the structure – aesthetical aspects are of importance, the structures 

in Fig. 28 may be preferred over those in the Fig. 27. Indeed, the approach through covering 

of the design space, generates many sophisticated designs, this gives the designer a very wide 

range of possible options. A visual presentation, like that shown in this chapter might prove a 

useful output in allowing the designers to see the tradeoffs in the results.   

(a) (b) 

(c) (d) 
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Figure  3-28: Four solutions for the Michell structure problem 

3.4.4 Three dimensional problems 

As discussed in the background and approach sections, the concept of load flow path is not 

limited to 2D problems or 3D problems. Therefore the developed methodology is able to 

solve 3D structural problems with almost no change in the rules. However following 

differences in the nature of the problems exists; three dimensional nodes have three spatial 

variables, consequently the optimization time increases 50%. For visualizing the graphs an 

extra conversion is required. The conversion may take up to 10 seconds for big size 

structures. And rule 24 should be modified, because finding the intersection of elements in 2D 

differs from 3D.  

Fig. 29 and 30 show three structures for three different problems. As can be seen the 

placement of loads and fixed points is different in all three problems, which affects the 

optimum topology and shape of the structure. In Fig. 30 the distance of the load from the fix 

points is 50% more than the structures in the Fig. 29.  
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Figure  3-29: Short cantilever beams in 3d 

The number of generated topologies for the examples in the Fig. 29 is almost 100% more than 

the similar 2D problem which has been discussed in the approach section (69 topologies with 

minimum segmentation 225 mm). Consequently the time has been increased to two minutes. 

This time is much more than the 10 seconds required for the 2D problem, because the tree-

search algorithm requires more time to search a larger design space and find feasible 

solutions. An interesting characteristic of the truss in Fig. 30 is the joining of three wire ropes 

at two joints. Using cables in building trusses allows for flexible and foldable structures that 

act as rigid structures when fully deployed. Furthermore they are lightweight and very 

material efficient. 

 

Figure  3-30: Long cantilever beams in 3d 

3.4.5 Exploring an arbitrary ground structure 

In this sub-section it is shown how the proposed method explores the design space in a more 

general manner than a fixed ground structure. The efficiency of the approach for structures 

with more than one load and many optional support points is demonstrated through the 

example shown in Fig. 31. The arrows at the top of the Fig. 31 represent three masses (which 

are 100N, 200N and 100N respectively) and the five arrows at the bottom of the Fig. 31 are 
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the optional support points. The objective is to design a truss structure with minimum total 

load to sustain these masses.  

  
Figure  3-31: Seed graph representation of a problem with three masses and five support options 

Recall that other approaches to truss topology optimization typically discretize the design 

space with a nodal mesh as a ground structure, in which every node is connected to almost 

every other node in the domain and the members have identical cross-sectional area. Fig. 32 

shows two typical ground structures for the defined problem in the Fig. 31. In the left picture 

of the Fig. 32 all loads are connected to each other and to all optional supports, whereas in the 

right picture a grid of nodes is the ground structure. The proposed approach in this study has 

the directness of the first ground structure and at the same time has the flexibilities of the 

second ground structure approach.  

   
Figure  3-32: Two common ground structures for the problem defined in fig. 31 

As discussed, the approach searches the design space and finds all possible ways to flow the 

load from the applied load points to the supports. This concept is the same for any number of 

load or support points.  Fig. 33 shows two candidate topologies, which satisfy the minimum 

requirements for a stable load flow. The left structure is minimally stable as removing any 

component can cause instability in the structure. The approach begins with the shape and size 

optimization of the simplest feasible designs (e.g. Fig. 33), as soon as a design is found that 

meets all requirements and does not violate the constraints, the synthesis process can be 

terminated. However, if the manufacturing cost of the structure is not the only objective of the 

automated synthesis process, the optimization of the solutions can be continued to find an 

appropriate solution. 
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Figure  3-33: Two topological candidates 

Fig. 34 shows the optimized shapes of the candidates in the Fig. 33. The right structure shows 

clearly that the approach is not limited to the fixed ground structure suggested in Fig. 32. It 

combines the directness of the first type of the ground structures with the wide covering of the 

second type of the ground structure to find the optimum size, shape and topology of the 

structures.  

   
Figure  3-34: Optimized candidates in Fig. 33 

3.5 Conclusions 

A new approach for shape, size and topology optimization of cable truss structures using a 

generative design method is presented. This approach uses graphs to represent both the 

topology and the shape of structure layouts. This allows a very fast generation of topological 

solutions for a given design problem. After exhaustive search of the design space, the 

solutions are stored in a list for further detailed shape design and optimization. To visualize 

the solutions, the graphs are converted to 3D shapes via Parasolid. These shapes can be used 

to extract the construction drawings. The simulation model is fully separated; therefore it 

should be fairly easy to augment the approach to solve problems such as those with seismic 

loads, uncertainty in materials and construction with any number of loads and supports. 

Dividing the synthesis process into shape and topology phases does not affect the quality of 

the results, because the tree-search algorithm is responsible for exploring the whole design 

space and generating all valid solutions, while the optimization is responsible for the shape 

and size optimization of each topology. 

Ongoing research in this study is focused on improving the analysis to include the effect of 

the weight of the components. Implementation of this step is important in order to have a 
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better shape and size optimizations. The rules may be flexible enough and independent of the 

simulation model that the approach might be used for other domains such as compliant 

mechanisms design. Because the performance of a compliant mechanism is the ability to 

transfer loads from one or more applied points to one or more desired points. Another 

important field of research that can increase the generality of the approach is handle obstacles 

in the problem specifications. The reason for this investigation is that obstacles are an 

undeniable part of the real world design problems. An interesting field of research might be to 

use the output results of the approach as input for conventional continuous topology 

optimization methods. Due to good initial designs, convergence can be faster and many 

problems might be solved that are hitherto not solvable. 

 

 

 



 

4. Tensegrity Form-Finding Using Generative Design 
Synthesis Approach 

The aim of this research is to produce large irregular tensegrity structures using a generative 

design synthesis approach. Unlike most of the form-finding methods, the approach does not 

require the description of the connectivity of the tensegrity structures to define the shape of 

the tensegrities. It uses graphs to represent the tensegrity structures, which allows a very fast 

generation of stable tensegrity solutions for a given design problem. The graphs are used to 

define different configurations for a given design problem. After generating the graphs, they 

are transformed into meaningful 3D shapes. The effectiveness and robustness of the proposed 

method is checked by solving a variety of test problems. 

Keywords: Tensegrity Structures, Form-Finding, Topology Generation, Graph Grammar. 

4.1 Introduction 

Tensegrities are self-supporting structures, which consist of a set of disjoint struts (rigid 

elements), which are connected by pre-stressed tensile strings. These structures maintain their 

shapes and equilibrium due to a stress imposed by compression of struts and tension in the 

cables (Wang, 1998), therefore the structures return to their stable configuration when 

subjected to a perturbation. The self-equilibrium characteristic of tensegrity structures along 

with their lightweight, fold- and deploy-ability, makes them attractive for architectural and 

engineering projects such as robotics and other spatial applications (Chan et al., 2004; Paul et 

al., 2006). However, form-finding process – determining shapes and self-stress states of 

structure elements – is not a trivial task. Different researchers have proposed different type of 

methods for finding the form of tensegrities such as; the force density method (Estrada et al., 

2006; Masic et al., 2005; Schek, 1974; Vassart and Motro, 1999; Zhang and Ohsaki, 2006), 

the dynamic relaxation method (Barnes, 1999; Motro et al., 1987) and the marching procedure 

(Micheletti and Williams, 2007). Zhang et al. (2006) used a refined dynamic relaxation 

method for form-finding of non-regular tensegrity systems. Shea et al., (2002) used stochastic 

search for developing intelligent tensegrity structures. Rieffel et al. (2009) introduced an 

evolutionary algorithm to produce large tensegrity structures. Tran and Lee (2010) proposed a 

numerical method for initial self-stress design of tensegrity grid structures. Most recently 

(Koohestani, 2013) has formulated the form-finding of tensegrity structures as two 

unconstrained minimization problems with eigenvalues of modified force density matrixes as 

their objective functions. And Zhang et al. (2014) has proposed a form-finding method based 

on the structural stiffness matrix using various algorithms such as stochastic selecting 

algorithm, the restricted step algorithm, and the line search algorithm. Comprehensive review 

of methods proposed for form-finding (Tibert and Pellegrino, 2003), static analysis (Juan and 

Mirats Tur, 2008), and dynamic analysis (Mirats Tur and Juan, 2009) of tensegrity structures 

can be found in the literature. 

In most of the existing methods a description of the connectivity of the tensegrity structures 

(topology) is required to define the shape and member forces and to determine the self-
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equilibrated structural configuration. Some researchers – through joining smaller tensegrities 

together – could generate large regular tensegrity towers (Masic and Skelton, 2004; 

Nishimura and Murakami, 2001). However, to discover novel structural forms and shapes – 

considering aesthetic and mechanical properties – and to explore the entire search space of 

large scale problems – with irregular and unsymmetrical geometries – new robust methods are 

required. The form-finding problem can be divided into two parts: determining the 

connectivity of struts and tensile elements, and specifying the spatial property and geometry 

of the structure elements. This work covers both aspects of the form-finding, however the 

main focus lies in the first step of the form-finding; generating large, irregular topologies.  

In this approach, graphs are used to represent the tensegrity structures. Although we are not 

the first to use graphs as a means of representing tensegrity structures (Guzman and Orden, 

2004; Motro, 2003; Rieffel et al., 2009), the incorporation of a graph grammar approach with 

conventional search algorithms creates a novel framework to explore large scale irregular 

tensegrities. The vertexes of the graph represent endpoint of struts and edges represent the 

struts and tensile cables. To discriminate between the edges, the struts are labeled as “bar” 

and tensile strings as “cable”. In this approach, the desired design space is first created 

through a set of highly connected nodes. A search algorithm uses grammar rules to explore 

the design space and generate all valid (statistically stable) solutions. After removing the 

intersections and unnecessary connections between struts, the results are transformed into 

three-dimensional (3D) shapes for visualization. The efficiency of the proposed approach is 

checked through producing large irregular tensegrity structures. This chapter is organized as 

follows. Section 2 describes a background about generative design synthesis systems. Section 

3 provides details of the proposed approach in this chapter. Section 4 presents results and 

discusses the implications of results. And finally, Section 5 concludes the study and suggests 

further research projects to extend the presented work. 

4.2 Approach 

The overall approach to the tensegrity synthesis using generative graph grammars is depicted 

in Fig. 1. The synthesis phase consists of two steps; search and optimization. In the search 

phase (Fig. 1a), all valid topologies are generated in three consecutive steps and in the 

optimization phase (Fig. 1b) the dimensions and coordinates of the topology are optimized. 

Furthermore, based on the objective function values, one or more optimal candidates are 

selected. In the transformation phase (Fig. 1c) the generated topologies, which are represented 

as graphs are converted to 3D shapes. This step is not necessary for the synthesis of structures 

and is only used to visualize the final results as 3D shapes. In the following sub-sections all 

phases of the design are described in detail. 
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Figure  4-1: Structure synthesis approach 

4.2.1 Grammar Rules 

The graph grammar interpreter, which is used for the synthesis, starts with a seed graph, 

which represents the bounds of a specific problem. The generation (graph transformation) is 

carried out through six rules which are distributed into three rulesets (RS). A ruleset is a set of 

rules that transforms the design from one level of maturity to the next level. Rulesets are used 

as a means to compartmentalize different phases of the generation process. In Table 1 all 

grammar rules with a short description of each are illustrated. The rules are created in a 

general way, so that for different types of problems the same rules can be used. The left 

picture in the Rule column is the left hand side of a rule (LHS) and the right picture is the 

RHS of the rule. The graph grammar interpreter converts that part of the seed graph which is 

matched to the LHS into the graph segment depicted in the RHS. The trigger rule (rule 4) 

does not change the graph elements; therefore its LHS and RHS are not depicted. In the 

following three sub-sections, all rulesets including their rules are explained in detail. 

Aside from the depicted rule conditions in Table 1 many other additional functions are 

compiled into the rules to define detailed matching conditions as well as rule action. For 

instance, for rule 6, one function aids in the recognition process to find the exact position of 

the intersections and one function helps to remove the intersections by changing the position 

of the nodes.  
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Table 1. Grammar rules 

 

A seed graph defines the scope and boundary conditions of the problem to be solved. In this 

case, our seed graph is empty, which means infinite possibilities. Because for any tensegrity 

type such as a T3 (a tensegrity with three struts), an infinite number of tensegrity positions 

exists, in which the tensegrity remains in a stable configuration. Stable tensegrity position 

configurations are the position of both sides of all struts in a tensegrity. Therefore, as can be 

seen in Table 1 the initial step is to reduce the design space from a space with infinite 

possibilities to a relatively limited field of possibilities. This is done through discretizing the 

design space into limited number of highly connected nodes through rule 1. The connectivity 

of the nodes is based on the minimum and maximum allowed size for the structure elements; 

it is a complete graph until two nodes are too close or too far apart. Fig. 2 illustrates a seed 

graph discretized into eighteen nodes in 2D and 3D views. The nodes are 250 millimeters 

apart in x- and y-directions and 550 millimeters in z-direction. The goal of other grammar 

rules is to transform this graph to a graph that represents a meaningful tensegrity structure. 

 

 

Figure  4-2: A seed graph with three eighteen nodes 

Fig. 3 shows another spherical graph (design space). The radious of the sphere is 800 mm and 

both polar angle θ (theta), and azimuthal angle φ between the nodes are PI/8, which means the 

design space has 98 nodes. Maximum allowed distance for connecting the nodes is 700 mm 

and there is no minimum. One of the most important aspects of this research is that the exact 

RS Description RS Description

1
Create the design 
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1 4 Trigger rule 1 Trigger rule 1
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joints and update 
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3
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Rule Rule
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spatial shape and boundaries of the design space, in which the tensegrities should be 

generated, are defined at the beginning of the synthesis process. 

 

Figure  4-3: A spherical seed graph 

After creating the design space, rule 2 is active. This rule can choose any arc in the design 

space for the first rule application. As soon as an arc is selected, this rule adds a “bar” lable to 

it, which means the arc will represent a strut afterwards. Furthermore, it removes all arcs that 

have an angle more than 90 degree with this strut (Fig. 4). It also adds a “cable” lable to all 

other remaining arcs connected to both sides of the strut. This lable changes the representation 

of the arcs to cable. For the next rule applications, rule 2 selects only those arcs, which deos 

not represent struts or cables and are connected to a cable from both sides. After finding the 

first stable T3 tensegrity structure, rule 2 selects only those arcs – to rerepresent as struts – 

which create a stable tensegrity configuration. Adding these limitations to the rule 2 in 

different stages makes the design space smaller but not the number of valid solutions. This 

rule is applied as many times as the desired type of the tensegrity is created. For example to 

create a T10 structure, ten times the rule should be called. 

 

Figure  4-4: Effect of rule 2 on the design space. 

After reaching the desired type of the tensegrity, rule 3 removes all unused nodes and arcs in 

the design space (Fig. 6). But this rule is called only if the created solution is stable. The 

criteria for checking the stability of the solutions are; a) each side of a strut should have at 

least 3 tensile strings and b) the angle between string and strut vectors. If the strut and string 

vectors are projected to xy, yz and zx planes (Fig. 5), on each plane we must have at least one 

string vector (𝛼) with an angle more than and one string vector (𝛽) with an angle less than the 

strut vector (𝛾). Maximum one of the strig angles is allowed to be equal to the strut angle.  
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Figure  4-5: Angle between struts and strings 

After applying the rule 3, rule 4 is recognised and allows the design to go to the next ruleset. 

Rule 4 filters out those candidate solutions, in which the stablity is not approved.  

 

Figure  4-6: Effect of rule 3 on the design space after creating a T3 

In ruleset 2, all unnecessary tensile strings for the stability of the solution are removed from 

the design space. Fig. 7 shows a T4 tensegrity with extra tensile elements, which has been 

removed in Fig. 8. This rule considers the minimum number of the cables and also stability of 

the structure for removing the tensile strings.  

 

  

Figure  4-7: A generated T4 tensegrity with extra tensile strings 

In this study we consider only the stability criteria to remove extra tensile strings. However, 

considering other criteria (structural analysis) helps to remove those tensile strings that are 

less utilized, which leads to a more stable and efficient designs.  
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Figure  4-8: Removing unnecessary strings for the stability of the structure 

After removing all extra strings from the structure, rule 6 detects elements of the structure that 

are intersecting each other. To remove intersections the end postion of the struts should be 

moved to another stable position configuration (Fig. 9). This final step of intersection removal 

is not implemented yet.  

  

Figure  4-9: Detecting and removing intersection of the structure elements 

4.2.2 Search 

A depth first search algorithm has been used to search the design space for all valid 

candidates. Fig. 10 shows how the design space is explored through the tree-search algorithm. 

Indeed after creating the design space (rule 1), rulesets 1 and 2 expand the tree to its 

maximum size and generate automatically all possible topologies for the desired tensegrity 

problem. Ruleset 3 does not increase the number of solutions and just transform them to a 

modified state (intersection removal). In the final step of the tree-search, the shape of the 

solutions is optimized. In this step – like RS 3 – the existing candidates are just transformed 

to their final shape. The optimization is referred here, to coordinate its execution among the 

rules.  



68  4. Tensegrity Form-Finding Using Generative Design Synthesis Approach 

RS 1: Creating the design space

RS 1: Creating the possible topologies

RS 2: Removing unnecessary cables

RS 3: Detecting and solving intersections

Step 4: Shape optimization

Infinite Possibilities

 

Figure  4-10: Tree structure of creating structures 

As it is possible to generate the same candidate through different sequence of rule 

applications, two mechanisms have been considered to prevent duplicate designs. The first 

mechanism is preventing confluent rules from being applied. The second mechanism is 

duplicate check. This algorithm compares the intermediate solutions with each other and 

removes those which are repeated. For instance it is possible to generate a T3 tensegrity with 

three struts s1, s2 and s3 in six different ways (based on the order that the struts are added). 

Although for generating small size tensegrities (up to T10 tensegrities), duplicates are not a 

menace for the tree-search algorithm, for solving large scale tensegrity problems they may 

drastically reduce the performance of the tree-search algorithm.  

4.2.3 Optimization 

The final step (step 4) is responsible for optimizing the shape of the tensegrity considering 

mechanical properties such as stress and buckling. This process consists of a non-linear 

gradient-based optimization known as “Fletcher-Reeves” algorithm (Nocedal and Wright, 

2006). It can be used for defining the material and size characteristics of the strings and struts 

and also the most suitable position configuration of the structure elements. The objective may 

be the stability or any other desired criterion. Ongoing research of this study is developing 

this optimization algorithm along with the incorporating new analysis in the synthesis 

process. 

4.2.4 Transformation 

After automated syntheses of the topologies, they can be transformed into three dimensional 

shapes through the aid of a computational geometry package such as the Parasolid geometric 

kernel (Siemens PLM Software Inc., 2013). The transformation converts nodes in the graph 

into spheres, and arcs into cylinders. In this study the radius of all struts is fixed to 15 mm and 

the cables to 5 mmm. The shapes are saved as STL files. As discussed before, this 

transformation is only for 3D visualization of the results. 
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4.3 Results and Discussions 

As discussed in the previous section the first step of the synthesis is creating a field, in which 

the tensegrities should be generated. This field may have a shape such as a cube or sphere, or 

any irregular form. The nodes can be randomly distributed throughout the design field or have 

a regular order such as those in Fig. 2 and 3. The approach to connect the nodes is that every 

node connects to every other node unless the minimum and maximum allowed length is 

violated. The more the number of nodes which are used to discretize the design space and the 

more these nodes are connected together, then the more the number of tensegrity structure 

topologies that can be generated. For instance for a design space with length, height and depth 

of 900, 900 and 500 millimeters respectively, which is discretized through 18 nodes (Fig. 2), 

more than 600 T3 structures are created through the application of the grammar rules. This set 

of 600 candidate solutions can be created in just under 7 minutes (using a desktop computer 

with an Intel(R) Xeon(R) processor). The struts and cables are allowed to have a length 

between 200 and 900 millimeters. This high number of possibilities is normal because the 

constraints are very loose; by applying more restrictions such as decreasing the size range of 

the elements the number of possibilities reduces drastically. Increasing the order of the 

tensegrity structure that should be generated in the same design space, reduces the number of 

options too. If instead of a T3 tensegrity, a T6 is desired, the number of options reduces to 

less than 50 solutions, one of which is depicted in Fig. 11.  

  

Figure  4-11: A T6 tensegrity created from a design space discretized into 18 nodes (2d and 3d views) 

It is suggested to use at least four times as much node to discretize a design space as the type 

of a tensegrity. For instance for a T3 tensegrity, the design space is better to discretized into 

minimum 12 nodes. Because, using fewer nodes may eliminate many possible novel designs 

in view of the aesthetic and mechanical properties. For instance, Fig. 12 shows a T6 tensegrity 

structure, which has been generated in a design space with 32 nodes. This solution cannot be 

generated in the previous design space discretized into 18 nodes. Furthermore, the T6 

structures generated in the former design space have more intersections than those in the later 

one. The unnecessary cables in both figures 11 and 12 are not removed to show that a solution 

created in ruleset 1, is indeed a set of tensegrity solutions with the same strut configurations 

but different configurations of the tensile strings. Depending upon other criteria, such as 

possible external loads, different set of tensile elements may be required.  
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Figure  4-12: A T6 tensegrity created from a design space discretised into 32 nodes 

Fig. 13 shows a T12 cylindrical tensegrity which has been created in a cylindrical design 

space, discretized into 24 nodes. The maximum number of struts that can be generated in a 

design space discretized into 24 nodes is twelve (e.g. a T12 tensegrity). This example is well 

known in the literature (Li et al., 2010; Zhang et al., 2014) but in most of these examples the 

initial topology (the description of the connectivity of the tensegrity structures) should be 

defined before finding the form. 

  

Figure  4-13: A T12 tensegrity created in a cylindrical design space 

Fig. 14 shows a T34 tensegrity tower which has been created with the approach. The whole 

height of the tensegrity is 540 centimeters. This result was achieved after 30 seconds from 

starting the synthesis process. As we use a depth first search algorithm to explore the design 

space, the valid results are saved in as soon as they are created even before finishing the tree-

search process. The whole process may take more than one hour, but the first results are 

normally achieved in the first few minutes.  
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Figure  4-14: A T34 tower created from a cubic design space with 72 nodes 

The same synthesis process is carried out with the same rules for a large scale irregular 

problem. The only difference is in the time that is required to generate the solutions. For 

instance, Fig. 15 shows a T30 tensegrity which has been generated from the spherical design 

space, illustrated in Fig. 3. This structure along with many other solutions was created in less 

than 10 minutes from starting the synthesis process. Although there may exists hundreds of 

stable T30 tensegrity solutions in the aforementioned spherical field, exploring the whole 

design space was not the aim of this example.  

  

Figure  4-15: A T30 tensegrity created from a spherical design space 

Fig. 16 shows the lower part of Fig. 15 which consists of eleven struts (a T11 Tensegrity). 

This example shows the flexibility and stability of the approach in coping with different 

design spaces. Interestingly enough, Fig. 15 is not only statistically stable; it shows a novel 

tensegrity structure, which has not ever been seen in the literature. This shows the abilities of 

the approach in generating many novel solutions for any type of design space. 
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Figure  4-16: Detailed view of the base of fig. 15 

4.4 Conclusions 

A new approach for form-finding of tensegrity structures using generative design methods is 

presented. This approach uses graphs to represent both the topology and the shape of 

structural layouts. It allows a very fast generation of topological solutions for a given design 

problem. A depth first search algorithm is used to explore the design space. The solutions are 

stored in a list for further detailed shape design and optimization. To visualize the 3D 

solutions, the graphs are converted to 3D shapes via Parasolid. The design space can have any 

shape and size and it is possible to solve large scale irregular problems with any number of 

struts and cables.  

Ongoing research in this study is focused on developing the shape and size optimization 

algorithm. Developing the optimization process along with new static and dynamic analysis 

methods will help to not only automatically synthesis topologically valid solutions, but also 

creating solutions which are optimized considering mechanical properties. Automating the 

intersection removal algorithm in ruleset 3 prevents filtering them out, because in the current 

implementation, based on the number of intersections the candidates are stored in a sorted list. 

And finally developing more appropriate search algorithms to explore the large design spaces 

can help in reaching many novel solutions in less time. The reason for this investigation is 

that in very large design spaces, the efficiency of the tree-search algorithm plays an important 

role. This investigation should focus on developing mechanisms – such as duplicate check 

mechanisms – which further reduce the solution space. For instance a third duplicate check 

mechanism might be used to remove not only those duplicate designs which have exactly the 

same position configurations in the absolute coordinate system, it should be able to detect 

those duplicates which their elements relative positions are similar. 

 

 



 

5. Computational Design Synthesis (CDS) Platform 

An important obstacle in the development of computational synthesis tools in engineering 

design is the difficulty in integrating the generation process with efficient simulation packages 

for evaluating candidates in a search process. The premise of this study is to develop and 

implement a platform to facilitate generative design systems in achieving more flexible design 

synthesis automation and optimization. This enables the designers to explore the abilities of 

generative design systems rather than coping with complexities of automatically integrating 

these analyses in the design process. The platform has been developed mainly based on open 

source software (OSS) to be offered to the Computational Design Synthesis (CDS) 

community for further development, use and investigation. Its modularity and programming 

based implementation provides a foundation for other researchers to build on and to achieve 

the next generation of CAD tools substantially faster.  

Keywords: Computational Design Synthesis, Design Automation, Open Source Software, 

Multi-physics Simulation, Finite Element Methods, Shape Grammar, Graph Grammar 

5.1 Introduction 

In engineering design, complex analyses (such as FE, CFD and thermal analysis) are required 

for accurately predicting the engineering behavior of generated designs. Automatically 

integrating these analyses is a known challenge for engineers and designers. Aside from the 

inherent difficulties and the large amount of time typically required for embedding external 

software packages in the automated synthesis process, doing this in a generic yet robust way 

is even more complex. Thus, an important obstacle in the development of computational 

synthesis tools in engineering design is the difficulty in integrating simulation packages with 

the generation process (Bolognini et al., 2007).  

Many scientists have tried to link shape grammars with a simulation model to evaluate the 

performance of the designs and guide the search process. Shea and Cagan have used FEM 

analysis to evaluate the performance of generated trusses and frames and guide the generation 

process (Shea and Cagan, 1998). Starling and Shea have used the behavioral modeling 

language “Modelica” to evaluate camera winding mechanism designs generated by the 

parallel grammar (Starling and Shea, 2005). Bolognini et al. has coupled COMSOL multi-

physics analysis with a synthesis method to generate MEMS (Bolognini et al., 2007). 

However, all these examples are not general and have been developed only for one specific 

application, because coupling a simulation model robustly with design generation even for 

only one application is a complex task. Indeed the novelty of the presented platform lies in its 

generality. 

The premise of this platform is to facilitate generative design systems, such as shape and 

graph grammars, in achieving more flexible design synthesis automation and optimization. 

This enables the scientist to explore the abilities of generative design systems rather than 

coping with complexities of automatically integrating these analyses in the design process. 

The CDS Platform uses several open source software, such as Salome (Open CASCADE, 
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2013), Code Aster (R&D, 2013), Open Foam (OpenCFD Ltd (ESI Group), 2013), FreeCAD 

(Riegel et al., 2013), SnappyHexMesh (OpenCFD Ltd (ESI Group), 2013) to perform a 

variety of multi-physics simulations. Unlike previous implementations, using open source 

software (OSS) in developing the platform enables us to offer the platform to the 

Computational Design Synthesis (CDS) community for further development, use and 

investigation. Its module and programming based implementation provides a powerful base 

for researchers to build their work on and help to reach the next generation of CAD tools 

faster. 

This chapter is organized as follows. The second section presents relevant open sourcing 

issues and its uses in product development. The third section presents the developed platform 

for the field of Computational Design Synthesis. In this section the system architecture and 

main applications are discussed. The fourth section is devoted to simulation friendly design 

synthesis. In this section, smooth integration of simulation with generative design through 

adequate development of design rules and design spaces is discussed. In the fifth section 

various application domains are illustrated and future outlooks are presented. Finally, the last 

section contains conclusions and discussions. 

5.2 Open Sourcing 

The appearance of open sourcing began in the 1960s, after the computer manufacturers 

decided to separate hardware and software, which provided the opportunity to develop 

software independently from the hardware (Hertel et al., 2003; Khanjani and Sulaiman, 2011). 

The academic community, led by the University of California at Berkeley, defined a Unix-

based Berkeley Software Distribution (BSD)  that eventually lead to the Open Source 

Initiative (OSI; 1998). The OSI defined open source as code that: is distributed freely, can be 

modified freely, and is accessible to a large number of developers through the Internet. 

According to Deshpande & Riehle (2008), the growth in open source doubles almost every 

year in term of the projects and the number of lines of code. There are several open source 

software properties that have advantages when used for product development (Ruffin and 

Ebert, 2004). Open source projects have a longer lifespan, heed standardized interfaces and 

are easier to integrate with other software tools. 

5.3 CDS Platform 

To address the challenges in design synthesis and robust coupling with simulation methods, a 

new platform has been developed to increase the role of computers in generating alternative 

designs and exploring solution spaces for engineering problems. It introduces an approach 

that combines shape and graph grammars with conventional simulation and analysis methods 

to provide guidance in design engineering according to evaluated engineering criteria. The 

major characteristic of the presented platform that distinguishes it from all other 

implementations is its generality. To achieve this generality and flexibility, a programming 

and module-based approach has been adopted in developing the platform. 
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5.3.1 A module / programming based platform 

Due to the complexity and the wide range of possible applications it is not feasible to develop 

a software that can include all possible simulation scenarios. Instead, the CDS Platform takes 

the approach that enables the users to develop the corresponding synthesis processes on their 

own. This is supported in the form of a programming framework in Python. This means it 

provides an interface so the user can implement the design synthesis process. By this 

approach multiple forms of control flow are supported and various ways of creating macros 

are provided, for example in form of functions or object-orientation. 

5.3.2 System Architecture 

The platform architecture is inspired on the general synthesis cycle illustrated in Fig. 1. For 

every stage of the process, one must define the corresponding modules. Additionally, some 

functionality is necessary to convert the output data of each step to fit the requirements of the 

next step. Modules have access to any information created or available in other stages, 

because the information is stored central in text format. 

 

Figure  5-1: General synthesis process, modified from (Cagan et al., 2005) 

The components of a CDS framework are presented in Fig. 2. For each step there are usually 

multiple modules that can provide the required functionality, so the platform is not limited to 

single tools or processes. In the following subsections, each of the seven module-types is 

briefly described. 
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Figure  5-2: Components of a CDS framework modified from (Helms et al., 2009) 

For multi-physics simulation, the platform integrates Code-Aster (R&D, 2013) for Finite 

Element analysis (FE) and OpenFOAM (OpenCFD Ltd (ESI Group), 2013) for 

Computational Fluid Dynamic (CFD) and thermal analysis (as part of the evaluation module). 

The necessary converters and preprocessors needed for these tools (Salome and 

snappyHexMesh) are integrated in the platform as well. By combining these sets of different 

preprocessors and solvers, multi-physics analysis of candidate solutions is possible. Many 

different criteria were considered for choosing these sets of solvers and preprocessors. The 

main criterion that has a direct effect on the synthesis process was the quality of results. Aside 

from thousands of tests, which have been carried on through developers of the software, a 

brief search in the literature revealed that many researchers in different disciplines have used 

these tools to accomplish their scientific research such as (Silva and Lage, 2011) and (Lou et 

al., 2010). The second important reason for selecting these tools was their open-source nature 

that facilitated the integration with the developed CDS Platform. Open access to the source 

code was of vital importance for developing a generic CDS Platform that unlike other 

implementations in this field is not restricted to any type of simulation or design. Due to a free 

licensing access to these analysis tools, the developed CDS Platform can be offered to the 

CDS community for further development, use and investigation.  

The performance evaluation itself is realized by gathering information from the whole 

synthesis process (mainly from simulation) and combining it into a single objective value by 

the means of an aggregating function that does a weighted addition of all collected data 

(Wang et al., 2008).  

The synthesis control is mainly a task of the user due to the nature of a programming 

framework. But the platform provides an easy access to a lot of generation approaches like 

optimization, search trees and knowledge-based processing. As the user influences the control 

flow, he can easily integrate additional approaches like Genetic Algorithm (GA). 

As a simple grammar interpreter, the CDS Platform can access a shape grammar interpreter 

that is introduced by Hoisl and Shea (2011). For the representation the FreeCAD file format 

is used in this case. To support more sophisticated designs and grammars, the platform will be 
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integrated GraphSynth as a graph grammar interpreter developed by Campbell (2013). It has 

been used by researchers such as Kurtoglu et al. (2010) and Rai et al. (2011). As the results 

are represented in graphs, they must be transformed into shapes. This task is carried out 

through integrating commercial or open-source CAD kernels (e.g. Parasolid, ACIS or 

OpenCasCade). 

5.3.3 Integrated tools 

Multi-physics simulation tools 

Code-Aster is an Open Source software package for finite element analysis and numerical 

simulation of structural mechanics and Civil and Structural Engineering. It has been 

developed by a French company (EDF) as an “in-house” software (R&D, 2013). Code-Aster 

was released as free software under terms of the GNU GPL in 2001. Code-Aster is mainly a 

solver for mechanics, based on the theory of the finite elements (FE). This tool covers a large 

range of applications: 3D thermal analysis and mechanical analysis in statics and dynamics, 

for machines, pressure vessels and civil engineering structures. Beyond the standard 

functionalities of the software for solid mechanics, Code-Aster compiles specific research in 

various fields: fatigue, fracture, contact stresses, geo-materials, porous media, and multi-

physics coupling. The Salome Platform can be best coupled with the Code-Aster solver to 

effectively preprocess the geometries. Salome is an open source software platform which has 

been started in 2001 and distributed with the GNU LGPL license. It provides a generic pre- 

and post-processing tool for numerical solvers. 3D solid shapes are transformed into 

tetrahedron or hexahedron meshes in the mesh module to be prepared for finite elements 

analysis. Post-processing module of the Salome allows importing and analyzing calculation 

results generated by CAE solvers (Open CASCADE, 2013). 

OpenFOAM is an open source CFD software that has been developed by the OpenFOAM 

Team at SGI Corp. OpenFOAM can be used for solving different problems in areas of 

engineering and science from complex fluid flows involving chemical reactions, turbulence 

and heat transfer, to solid dynamics and electromagnetics (OpenCFD Ltd (ESI Group), 2013). 

The latest application of OpenFOAM also includes stress analysis, large strain analysis and 

magneto-hydrodynamic flows (Karac, 2003). It has a large user base across both commercial 

and academic organizations. OpenFOAM includes tools for meshing, notably 

snappyHexMesh, a parallelized mesher for complex CAD geometries, and for pre- and post-

processing. SnappyHexMesh generates 3D hexahedra meshes from a triangulated surface 

geometry in STL format (Ribes and Caremoli, 2007). 

Synthesis control tools 

In the generation process defined by a grammar a decision must be made among options 

which include a location within the candidate (e.g. a subshape or subgraph) and a rule that 

modifies that location. Two main mechanisms have been developed to guide the generation in 

a systematic way: 
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· Tree-search: the state of the current generation process (including all existing 

candidates) is stored in a tree structure. To apply the next rule (including choosing a 

candidate shape and a rule) one of the tree search algorithms such as depth-first or 

breadth-first is used. 

· Iterative mechanism: only two solutions are saved, the current solution and the best 

solution, and the space can be traversed randomly or by following gradients. To date, 

simulated annealing algorithm has been developed for guiding the process. 

These two mechanisms have positive and negative aspects that should be discussed 

extensively. For instance, the tree search mechanism increases the chance to reach the best 

solution but it is time consuming. An iterative mechanism like simulated annealing algorithm 

does not search the whole design space, but its efficiency to find optimally directed solutions 

(in designing frames and trusses) has been shown by Shea (Shea and Cagan, 1998). Assessing 

different aspects of guidance mechanisms (tree-search and guided mechanisms) and 

comparing their results is not covered in the scope of this study and requires further 

investigation. SciPy is another open source optimization toolbox which has been integrated in 

the platform to be used in the guidance process (SciPy Developers, 2013). 

Grammar interpreters 

A 3D shape grammar interpreter developed by Hoisl and Shea (2011) has been fully 

integrated in the platform and the integration of a Graph Grammar Interpreter (GraphSynth) 

developed by Campbell (2013) is under development. The grammar interpreters are used for 

describing solution spaces and generating design alternatives. They allow both interactive and 

automatic generation of alternatives.  

The main criteria to select the 3D shape grammar interpreter are as follows: support of 3D 

shapes, parametric shape grammars, transformations, shape types, definition/manipulation of 

rules, user friendly interface, and the capability to both execute shape rules automatically as 

well as interactively. These criteria have been discussed by Hoisl and Shea (2011). The shape 

grammar interpreter has been developed within the FreeCAD environment. FreeCAD is an 

open source software distributed under GNU GPL and LGPL license that supports parametric 

3D building of volumetric models (Riegel et al., 2013). The software supports several 

import/export document formats. To make drawing in FreeCAD convenient, scripting in 

Python is added to the software that allows users to create and modify geometries effectively.  

GraphSynth is a unique research software for creating, editing, displaying, and manipulating 

generative grammars. This framework stores graphs, rules and rulesets in an XML file format. 

This allows automatic search for creative, optimal or targeted solutions. Additionally, it is 

able to perform various graph transformations such as the double-pushout method and free-

arc embedding; these two together cover nearly all types of required graph transformations 

(Campbell, 2013). One of the most important characteristics of the GraphSynth is its 

expandability; through additional C# functions (compiled on-the-fly by GraphSynth) any 

capability can be added to the rules and rulesets. 
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Data exchange 

The data flow in the platform is highly dependent on the use case or synthesis process because 

the user is mainly responsible for the control flow. But there is a common pattern in data flow 

that is in use while communicating with the integrated tools (for each module). The general 

approach to communicate with any of the integrated tools is to export a file, which is used as 

input to the subsequent module. As next, the application is called by its command line 

interface to generate the necessary output. This output needs to be parsed (usually by the 

means of regular expressions) so it can be passed backed to the platform. This pattern is 

generic, platform and language agnostic, but it has its drawbacks primarily in maintainability, 

because the input and output specifications of the integrated tools could change in newer 

versions and it is harder to debug it than a software using a programming interface. 

Nevertheless it is the only option, as most of the tools do not provide an API in Python. 

5.4 Applications 

Applicability of the platform is directly dependent to the grammar interpreter abilities to 

generate new design solutions. The grammar interpreter defines not only the type of the 

problem which can be solved but the richness and quality of the solutions connected to it. In 

the following sub-sections, the applications are discussed that have been built using CDS 

Platform. 

5.4.1 Shape synthesis for axisymmetric problems 

The first grammar interpreter that was integrated in the platform was a shape grammar 

interpreter, developed by (Hoisl and Shea, 2011). They have illustrated various design 

problems for their 3D shape grammar interpreter including cooling fins grammar and wheel 

rims grammar. Through integrating the grammar interpreter in the platform, both of these 

problems are solvable with the platform and have been extensively discussed by the author in 

(Hooshmand et al., 2012). In Fig. 3, different components, which have been used in the CDS 

Platform for wheel rim synthesis, are illustrated. Although the generated design solutions with 

the shape grammar interpreter are novel concerning topological aspects, due to the nature of 

the interpreter –which relies only upon primitive shapes such as boxes and cones for the 

representation–, the results are not industrially applicable or valuable. However, the generated 

results by the shape grammar interpreter point to the future possibilities in the field of CDS. 

Specially, through using the platform in the future projects, the researchers will not have to 

struggle with integrating complex simulation models in their implementations. While 

currently limited in terms of the types of shapes that can be defined, future improvements in 

shape grammars would lead to more complex shapes.  
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Figure  5-3: CDS Platform components for wheel rim synthesis 

5.4.2 Fluid channel synthesis 

Optimization of fluid channels is an essential topic in designing microfluidic devices 

(Andreasen et al., 2009; Vangelooven et al., 2010). The goal is mainly to find an optimal 

topology for the fluid subdomains along with an optimal shape of channels (Liu et al., 2010). 

Borrvall and Petersson (2003) used for the first time topology optimization for solving fluid 

problems in stokes flow. Since then, many scientists have used various grid-based topology 

optimization methods to solve fluid layout problems. One of the major limitations, which 

topology optimization methods in conceptual design are facing, is limited representation 

power; the synthesis process and design rules are dependent and integrated into the simulation 

model, the simulation model is often fixed for a given set of loads and boundary conditions 

(Hooshmand et al., 2012). The process of solving a layout problem, even for simple 2D is 

very time consuming. The topic of shape and topology optimization of fluid channels with 

graph grammars approach has been extensively explored in chapter 2. 

Through combining the generative abilities of GraphSynth with the CDS Platform, we are 

overcoming the limitations of current methods. GraphSynth creates the topology design and 

OpenFOAM evaluates the candidates. Fig. 4 shows the CDS Platform components for solving 

fluid channel layout synthesis. As can be seen the components are almost fully different from 

those illustrated in the Fig. 3 for solving wheel rim synthesis, which shows the flexibility of 

the CDS Platform. 
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Figure  5-4: CDS Platform components for solving fluid channel layout synthesis 

Fig. 5 shows the CDS Platform components for solving space frames and tensegrities 

synthesis. Similar to Fig. 3 and 4, the components of the platform are partly changing but the 

main frame remains the same. In chapters 3 and 4 the synthesis results of this CDS 

configuration for solving trusses and tensegrities are discussed. However in chapter 4, there is 

no structural analysis carried out. 

      

Figure  5-5: CDS Platform components for solving frame structure synthesis 

5.4.3 Lightweight design of a triangle 

Another interesting field of application that the platform can be used is parametric 

optimization of designs. For solving this problem, no grammar interpreter is required since all 

solutions have the same topology. The platform is able to cope with complicated designs with 

numerous parameters. The aim of this case study is to find the optimum lightweight design for 

a triangle with four parameters to be optimized (P1, P2, P3 and ϴ). Unlike the previous two 

applications, a variety of recent commercial CAD packages are able to cope with this kind of 
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problem. In this study the Code-Aster FE solver, Salome Preprocessor and a simulated 

annealing algorithm have been used. 

 

Figure  5-6: Forces, BCNs, and parameters, and best design after 990 iterations with Simulated Annealing 

Fig. 6 shows the boundary conditions and forces which are applied to the geometry and also 

four parameters which should be optimized (P1 to P3 and theta). The objective function for 

this case study is minimizing weight and stress of the triangle; objectives have different 

weighting factors. For meshing the geometry an automatic tetrahedralization algorithm with 

mesh size 5 is used. A linear statistic solver of Code-Aster is used to analyze designs after 

each optimization iteration. Fig. 6 shows the best design after 990 iterations. 

5.5 Conclusions 

The Computational Design Synthesis (CDS) Platform has been developed to increase the role 

of computers in generating alternative designs and exploring solution spaces for engineering 

problems. It introduces an approach that combines generative design methods such as shape 

and graph grammars with conventional simulation and analysis methods to provide guidance 

in design process according to evaluated engineering criteria. The major characteristic of the 

presented platform that distinguishes it from all other implementations is its generality. To 

reach this generality and flexibility, a programming and module-based approach is used to 

develop the platform. The CDS Platform combines different optimization and grammatical 

algorithms with conventional simulation and analysis methods. The premise of this 

combination is to create an approach to synthesizing optimal shapes considering criteria 

requiring multi-physics analysis, which is required for calculating the engineering behavior of 

generated designs. The platform can be used in a very wide range of simulations and analyses 

like acoustics, finite element, computational fluid dynamic, and heat transfer and a 

combination of these analyses to solve complicated multi-physics problems. This has been 

achieved by integrating two preprocessors and solvers in the generation process; the Salome 

preprocessor and the Code-Aster solver for FE analysis and the snappyHexMesh preprocessor 

and the OpenFOAM solver for CFD and thermal analysis. Automatically integrating these 

analyses in the design process is a known challenge for engineers and designers. Unlike many 

commercial software, its object-oriented and module based implementation provide a unique 

possibility for designers to integrate any simulation module of the platform in their design 

processes in a few simple steps. The platform works like a high level API and prevents the 

direct interaction of designers with many complexities of the simulation and optimization 

packages. Its open source character gives the researchers the ability to extend, modify and 

customize the platform to their needs. 



 

6. Conclusions  

A new approach for solving engineering design problems using generative design methods is 

presented. The work introduces an approach for using design information and knowledge 

based on various classes of knowledge levels. These include: general knowledge as the most 

abstract level of knowledge, generic knowledge, specific knowledge, and case knowledge as 

the most concrete level of knowledge. In order to effectively utilize design information and 

knowledge, the design process is divided into three main phase: search, optimization and 

modification. For more abstract levels of design, which happens in the search phase, higher 

level knowledge is required and applicable, but in latter phases more knowledge levels are 

applicable. In chapters 2, 3 and 4 three design problems, which have been solved based on the 

proposed approach, are presented. In all design cases graphs are used to represent both the 

topology and the shape of structure layouts. This allows a very fast generation of topological 

solutions for a given design problem. 

In chapter 2, the approach for shape and topology optimization of fluid channels is presented. 

Based on results of two optimization functions, the best solutions are stored in a list for 

further detailed shape design. The simulation model is fully separated; therefore it is possible 

to solve problems such as that have compressible fluids with high Reynolds number and 

arbitrary flow directions at inlets and outlets. Large scale problems, problems with more than 

one fluid type, for which the mixing is to be avoided, are also solvable. An interesting field of 

research in this area might be to use the output results of the approach as input for 

conventional topology optimization methods. Due to a good initial design, convergence can 

be faster and many problems might be solved that are hitherto not solvable. 

Chapter 3 introduces the approach for shape, size and topology optimization of cable truss 

structures. A tree-search algorithm is responsible for exploring the whole design space and 

generating all valid solutions, while the optimization is responsible for the shape and size 

optimization of each topology. In this problem, the simulation model is fully separated; 

therefore it should be fairly easy to augment the approach to solve problems such as those 

with seismic loads, uncertainty in materials and construction with any number of loads and 

supports. An interesting investigation may be using the approach for other domains such as 

compliant mechanisms design. Like previous design problem, using the output results of the 

approach as input for conventional topology optimization methods can be considered. 

 The third design problem, which is form-finding of tensegrity structures, is presented in 

chapter 4. A depth first search algorithm is used to explore the design space. To visualize the 

3D solutions, the graphs are converted to 3D shapes via Parasolid. The design space can have 

any shape and size and it is possible to solve large scale irregular problems with any number 

of struts and cables. An important extension for this work may be developing a shape and size 

optimization algorithm. Developing the optimization process along with new static and 

dynamic analysis methods will help to not only automatically synthesis topologically valid 

solutions, but also creating solutions which are optimized considering mechanical properties. 
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Finally in chapter 5, the Computational Design Synthesis (CDS) Platform which has been 

developed to increase the role of computers in generating alternative designs and exploring 

solution spaces for engineering problems is discussed. It introduces an approach that 

combines generative design methods such as shape and graph grammars with conventional 

simulation and analysis methods to provide guidance in design process according to evaluated 

engineering criteria. The major characteristic of the presented platform that distinguishes it 

from all other implementations is its generality. To reach this generality and flexibility, a 

programming and module-based approach is used to develop the platform. The platform can 

be used in a very wide range of simulations and analyses like acoustics, finite element, 

computational fluid dynamic, and heat transfer and a combination of these analyses to solve 

complicated multi-physics problems. Besides increasing the software maturity, future work 

may include the integration of graph grammars interpreter GraphSynth in the platform. 

The results of the engineering design cases show the generality and flexibility of the proposed 

framework. Besides aforementioned future works, improving the search strategies for 

exploring the design spaces is very important to achieve faster results in larger design spaces. 

Another important field of research is automatic capturing of generic and general levels of 

knowledge in the grammar rules and creating a data base of these captured rules. This will 

help designers to understand the real design problem at all abstraction levels easier. The 

framework is flexible enough and independent of the problem domain and type, therefore the 

approach can be used for other domains and other design problems. 
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