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Various Views on the Trapdoor Channel and an

Upper Bound on its Capacity

Tobias Lutz

Abstract

Two novel views are presented on the trapdoor channel,, Bysieriving the underlying iterated function system
(IFS), it is shown that the trapdoor channel with input blaf lengthn can be regarded as theh element of a
sequence of shapes approximating a fractal. Second, anthigds presented that fully characterizes the trapdoor
channel and resembles the recursion of generating all gatimos of a given string. Subsequently, the problem of
maximizing an-letter mutual information is considered. It is shown tHalbg, (2) ~ 0.6610 bits per use is an
upper bound on the capacity of the trapdoor channel. Thiguppund, which is the tightest upper bound known,
proves that feedback increases the capacity.

Index Terms

Trapdoor channel, Lagrange multipliers, convex optimdrgtiterated function systems, fractals, channels with
memory, recursions, permutations.

I. INTRODUCTION

The trapdoor channel was introduced by David Blackwell i61L@1] and is used by Robert Ash both as a book
cover and as an introductory example for channels with mgrjr The mapping of channel inputs to channel
outputs can be described as follows. Consider a box thaatent ball that is labeled, € {0,1}, where the
index 0 refers to time0. Both the sender and the receiver know the initial ball. inetislot1, the sender places
a new ball labeled:; € {0,1} in the box. In the same time slot, the receiver chooses onbdetwo ballss
or x; at random while the other ball remains in the box. The chosghib interpreted as channel outpyt at
time ¢ = 1 while the remaining ball becomes the channel stateThe same procedure is applied in every future
channel use. In time sla&, for instance, the sender places a new balk {0, 1} in the box and the corresponding
channel outpuys, is eitherzs or s;. The transmission process is visualized in Eig. 4. Fig.] 4tews the trapdoor
channel at timg when the sender places ball in the box. In the same time slot, the receiver chooses ratydom
ball s;—; as channel output. Consequently, the upcoming channelstaecomese, (see Fig[4(h)). At time + 1
the sender places a new ball,; in the box and the receiver drawg,; from s; and .. Table[] depicts the

probability of an outputy; given an inputr; and states; ;.
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(a) The trapdoor channel at time
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(b) The trapdoor channel at time+ 1.

Fig. 1. Attimet the sender places a new ball in the box. The corresponding channel outputis s;—1 and the next state; becomesr;.

Despite the simplicity of the trapdoor channel, the deidvaif its capacity seems challenging and is still an
open problem. One feature that makes the problem cumbertsothat the distribution of the output symbols may
depend on events happening arbitrarily far back in the pasesach ball has a positive probability to remain in
the channel over any finite number of channel uses. Insteathafmizing I (X;Y’) one rather has to consider the

multi-letter mutual information, i.elimsup,, , . I(X™;Y™).

TABLE |

TRANSITION PROBABILITIES OF THE TRAPDOOR CHANNEL

Tt ‘ 5t-1 ‘ Pyt = 0lzt, s¢—1) ‘ Pyt = 1z, s¢-1)

0 0 1 0
0 1 0.5 0.5
1 0 0.5 0.5
1 1 0 1

Let P, 5, denote the matrix of conditional probabilities of outpuggences of length given input sequences of
lengthn where the initial state equalg. The following ordering of the entries d?,,, is assumed. Row indices
represent input sequences and column indices represgnit@giquences. To be more precise, the e[ﬂMSOL’j
is the conditional probability of the binary output sequemorresponding to the integgr— 1 given the binary
input sequence corresponding the the intaget, 1 < 4,5 < 2". For instance, if. = 3 then {P3‘S°}5,3 denotes the
conditional probability that the channel inputzo2x3 = 100 will be mapped to the channel outpyty.ys = 010.

It was shown in[[3] that the conditional probability matiscE, ,, satisfy the recursion laws
Pyjo 0
P10 = 1)

1 1
2P 380 ]
_1 1
_Pnl _PnO
Pn+1\1 = 2 | 2 | 5 (2)
0 P |
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where the initial matrices are given i, = Py; = [1]. A quick inspection ofP,, and P, reveals that the
inputs 00 and 11 are mapped to disjoint outputs. Hence, a rateé) &f bits per use (b/u) is achievable from the
sender to the receiver. It was shown lin [4] tai b/u is indeed the zero-error capacity of the trapdoor chlanne

Permuter et al.[[5] considered the trapdoor channel underattditional assumption of having a unit delay
feedback link available from the receiver to the sender. Séder is able to determine the state of the channel in
each time slot. They established that the capacity of thedbar channel with feedback is equal to the logarithm
of the golden ratio. One can already deduce from this quathtét the achievability scheme involves a constrained
coding scheme in which certain sub-blocks are forbidden.

In this paper, we propose two different views on the trapdowannel. Based on the underlying stochastic
matrices [(l) and[{2), the trapdoor channel can be descrikethetrically as a fractal or algorithmically as a
recursive procedure. We then consider the problem of maxagithen-letter mutual information of the trapdoor
channel for anyn € N. We relax the problem by permitting distributions that am probability distributions.
The resulting optimization problem is convex but the feles#et is larger than the probability simplex. Using the
method of Lagrange multipliers via a theorem presented]iny2 show that% log, (%) ~ 0.6610 b/u is an upper
bound on the capacity of the trapdoor channel. Specifictiily,same absolute maximufilog, (5) ~ 0.6610 b/u
results for all trapdoor channels which process input tdawkeven lengte. And the sequence of absolute maxima
corresponding to trapdoor channels which process inputsldfiengths converges le})log2 (%) b/u from below as
the block length increases. Unfortunately, the absoluteimme of our relaxed optimization are attained outside the
probability simplex, otherwise we would have establisheg ¢apacity. Nevertheles§,10g2 (g) ~ 0.6610 b/u is,
to the best of our knowledge, the tightest capacity upperedeer, this bound is less than the feedback capacity
of the trapdoor channel.

The organization of this paper is as follows. Secfidn Il iiptets the trapdoor channel as a fractal and derives
the underlying iterated function system (IFS). Secliohidttoduces a recursive algorithm which fully charactesize
the trapdoor channel. Comments on the permuting natureedfréipdoor channel are provided. Secfioh IV presents
a solution to the optimization problem outlined above andvée various recursions. The paper concludes with
SectiorV.

A. Notation

The symbolN, andN refer to the natural numbers with and withdéytrespectively. The canonical basis vectors
of R? are denoted by,, ¢, ande.. They are assumed to be row vectors. Théold composition of a function,
say®, is denoted a$°". The input corresponding to thgh row of P, ,, is denoted as}'. The input corresponding
to theith row of P,,, is denoted as}'. Further,/,, denotes the" x 2" identity matrix, I,, is @ 2™ x 2" matrix
whose secondary diagonal entries are all equalwdile the remaining entries are all equaltpand1,, denotes a
column vector of lengtR™ consisting only of ones. The vectdf is the transpose df,,. For the sake of readability
we useexp,(-) instead of2(). If the logarithmlog,(-) or the exponential functionxp,(-) is applied to a vector

or a matrix, we mean thdbg,(-) or exp,(-) of each element of the vector or matrix is taken. Finally, sienbol

February 7, 2014 DRAFT



o refers to the Hadarmard product, i.e., the entrywise prodfionvo matrices.

Il. THE TRAPDOORCHANNEL AND FRACTAL GEOMETRY
A. Prerequisites

We briefly introduce the idea dferated function systermend fractals For a comprehensive introduction to the
subject, see for instanck![6]. In a nutshell, a fractal is anggtric pattern which exhibits self-similarity at every
scale. A systematic way for generating a fractal starts &itomplete metric spadg\/, d). The space to which
the fractal belongs is, however, ndf but the space of non-empty compact subsets\of denoted asH(M).

A suitable choice for a metric foH (M) is the Hausdorff distancgq(A, B) := max{d(A, B),d(B, A)} where
d(A, B) := maxzcamingepd(z,y), A,B € H(M) and analogously for(B, A). It is then guaranteed that
(H(M), hq) is a complete metric space and that every contraction mzﬂ)mn M — M on (M,d) becomes a
contraction mapping : H(M) — H(M) on (H(M), hy) defined byp(A) = {p(z) : © € A} for all A € H(M).

The following definition and theorem provides a method foneyating fractals.

Definition 1.1. [6] Chapter 3.7] Ahyperbolic iterated function system (IF8pnsists of a complete metric space
(M, d) together with a finite set of contraction mappings : M — M, with respective contractivity factors
sp for n = 1,2,...,N. The notation for the IFS i{M;¢,n = 1,2,...,N} and its contractivity factor is
s=max{s,:n=1,2,...,N}.

The fixed point of a hyperbolic IFS, also called thttractor or self-similar setof the IFS, is a (deterministic)
fractal and results from iterating the IFS with respect tg ahe #H(M). This is the content of the following

theorem.

Theorem 11.2. [6] Chapter 3.7] Let{M;p,n = 1,2,..., N} be an iterated function system with contractivity
factor s. Then the transformatio® : H(M) — H(M) defined by

N
o(4) = | ¢a(4) ®)

for all A € H(M), is a contraction mapping on the complete metric spg&él! ), hq) with contractivity factors.

Its unique fixed pointA* € H(M), obeys
N
A7 =3(A%) = | wa(4"),
n=1
and is given byA* = limy,_,, ®°*(A) for any A € H(M).

Many well-known fractals, e.g., thikoch snowflakethe Cantor set the Mandelbrot setetc., can be generated

using Definitior 1.1 and TheoremTIl.2. Indeed, a segmentefMandelbrot set is shown on the cover of the book

ILet (M, d) be a metric space. Recall that a mapping M — M is acontractionif there exists & < s < 1 such thatd (¢(x), ¢(y)) <
s-d(z,y) for all z,y € M.
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by Cover and Thomas [7]. Another famous representative Sikepinski triangle is introduced in the following

example. We will later see that this fractal is related to tia@door channel.

Example 11.3. (Sierpinski triangle)Consider the IFS

{[0,1]2;s01(w,y) = (ITH%) s p2(2,y) = (g%) sps(x,y) = (g%)} 4)

The affine transformationg,,, n = 1,2,3, scale anyA € H([0,1]?) by a factor of0.5. Additionally,p; and ¢
introduce translations by.5 into the z- and y-direction, respectively. The Sierpinski triangle is apgmated
arbitrarily close by iterating®(A) for any A € H([0, 1]?). Fig.[2 shows the result after performing five iterations
of (4). The initial shapel in Fig.[2(a] is a triangle with corner pointd, 0), (1,0), (0,1) and in Fig[2(b) a triangle

with corner points(0, 0), (1,1),(1,0). As one performs more iterations, both sets converge toahesetd*.

B. The Trapdoor Channel as a Fractal

In this section, we derive a hyperbolic IFS for the trapdoearmel. Instead of working witl®,,, we take a

[so

geometric approach, i.eE,,, will be mapped to the unit cub@, 1]3 Cc R3.

Definition Il.4. Let M denote the se{PMSO :n € Ny, s9 =0, 1} of trapdoor channel matrices. The function

p™ : M — [0,1]° represents eacl?,,, as a shape irf0, 1]*> according to
Pn\so = (:v,y, [Pn\so}ij) , forall1<4,j<2" ®)
where(i —1)- 27" <z <¢-27"andl —j- 27" <y<1l—(j—-1)-27™.

Each entry[ P, | ; of Py, is identified with a square of side length™, which has a distance dPos, |,

i, ,J

to the zy-plane. The alignment of the square corresponding{}mm] ~ with respect to the other squares in

,J
p(")(Pn|SO) is in accordance to the alignment [)‘PH‘SOL ; with respect to the other entries &%, ,,. Fig.[3 depicts
the representations'!) (P; o) and p™(P;;) of

—
o

Py = ) Py =
2

= ol

[N
[eo R SIS

The following proposition express@s™ V) (P, 1j9) andp™ V) (P, 1) recursively in terms op(™ (P,0) and
P (Papn).

Lemma I1.5. The representations" V) (P, o) and p"*V) (P, 1);) of P10 and P,,;q); satisfy the recursion

laws

P (Pyap) = = - {P(") (Pajo) + €z, P (2 Papo) + €y, p™) (Pnll)} ©)

N = N =

p(’ﬂ-l-l) (Pn+l|1) = : {p(n) (2 . Pn‘l) + €x, p(n) (Pn|1) + €y, p(n) (PTIIO) +e; + ey} ) (7)

for all n € Ny.
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(a) The initial shape is a triangle with corner poitits 0), (1, 0), (0, 1).
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(b) The initial shape is a triangle with corner poirfts 0), (1, 1), (1, 0).

Fig. 2. Sierpinski triangle after four iterations of the enlgling IFS with two different initial shapes.

Proof: Recursions[{|6) and{(7) are a consequence of the structulead matrices[{ll) and{2), respectively. We
just outline the derivation of {6). The first term on the rigilaind side of[{(6) represents the lower right cornefdf (1),

i.e., those entries of, |y with row and column indiceg" < i, j, < 27+l Observe that each entl{)PnHij

is equal to3 [Pyo] where2" < i,j,< 2"*+1. Hence, scaling the three dimensions6) (P,,) by a

§i—2n j—2n
factor of% and shifting f[he result bg into the z-direction yields a representation of the lower right coroi()
according to Definitiof_IL4.

Similarly, the second term of(6) represents the upper lefner of (1), i.e., entries of, 1o which correspond
to row and column indice$ < i, j, < 2". To be more precise, each entf#,, 1|0 ., Is equal to [Pojo] ;; Where

1 <i,j,< 2™ Hence, scaling the- and y-coordinates ofp(™) (Pn|0) by a factor of% and shifting the resulting
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(a) Color map ofp™ (Pyo)
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X

(b) Color map ofp(*) (Py ;)

Fig. 3. Color map of the(!) (P1)0) andp(l)(Pm). Each of the four squares corresponds to one of the conditimobabilities0, 0.5 and 1.

figure by% into they-direction yields a representation of the upper left cofgg of (1) according to Definition I114.
Finally, the last term of{{6) represents the lower left corok(d), i.e., entries ofP, ), with row and column
indices2" < i < 2", 1 < j < 2", respectively. By[{l1), each entfy’, 0] ., 1s equal tog [Pn|1]i_2nyj for the
same index pait, j. Hence, scaling all coordinates pf") (Pn|1) by a factor of% yields a representation of the
lower left corner of [(Il) according to Definitidn1].4. [ |
Recursions[{6) and17) will be used below to obtain an iterdibmction system for the trapdoor channel. Recall
from Theoreni ILR that an iterated function system is ifitied with a single shape. Therefore, it is desirable that
the right hand side of{6) just depends By, and the right hand side dfl(7) just d?,;. The following proposition

introduces an affine transformation, which tug® (P,) into p(™ (P,;) and vice versa.
Lemma I1.6. Let7 :[0,1]*> — [0,1]® be defined as(z,y,2) = (—z+1,—y + 1,2). Then

o) (Pups) = 706 (Papo) ®)
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for all n € Np.

Proof: Equation [[9) follows from[{B) by noting that o = = id. It remains to prove[{8), which we do by
induction. Observe that the affine transformationorresponds to a counter-clockwise rotation through 1&pede
about thez-axis and a translation by one into theandy-direction. Using this property18) is readily verified fno
Fig.[3 forn = 1. Now assume that the assertion holds for same 1. A direct computation of o p(*+1 (Pn+1‘0)
using the right hand side dfl(6) and the induction hypoth@eand [9) shows thato p" 1) (P, 1) is equivalent
to the right hand side of{7). [ ]

We can now state the final recursion law. A combination of Leafiii and Lemm&lIL, i.e., replacing™ (Pn‘l)
in @) with (@) andp(™ (Poj0) in (@) with (@), and using[{5) yields the following theorem.

Theorem I1.7. The representations™ ) (P, 1j0) andp™*V (P,;1)1) of P,110 and P, 11 With initial matrices

Pojo = Py = 1 satisfy the following recursion laws

. +1 y [Pl +1
p( ) (Pn+1|0) = {¢1($1y72) = (‘T 2 a%a 2 = ,¢2($,y72) = (ga yT7 [Pn()]id‘) )

da(2,y,2) = (—‘”2 5 ! 20] )} (10)
Pl
P (Pasan) = {wl(%yaz) - (w-gl% [Pnlﬂi,j> Ja(2,y,2) = (g ‘y;rl‘a | |21LJ> :
Pl
Ys(z,y,2) = <—§+1,—g+1,%> } (12)

where(i—1)- 27" <z <i-27"andl —j- 27" <y<l—(j—-1)-27"for1 <i,j<2m.

Remark 11.8. The restrictions ofp1, ¢2, ¢35 andy, 12, 13 to thez- and y-dimensions are contraction mappings.
They compose two hyperbolic IFS with a unique attractor eddhreover, [ID) and [{11) are initialized with
Pojo = 1 and Py, = 1, respectively. Hencéjm,, . P (Pn|50), so € {0,1}, can be approximated arbitrarily
close by iterating[(1I0) and_(11), respectively, (accordiogheoreni IL.R) for any initial shapd € ([0, 1]?) such
that the restriction of4 to the z-dimension equal$. Both IFS follow directly from[{10) and_(11) and read

{[07 1]37¢1 = (xT—Hagag) 1¢2 = (g7yTHaZ> 1¢3 = <_x;17_yT_17§) } (12)

o (xz+1ly (T y+1 z - T Y z
{[051]37’¢)1 - (Tvia'?;) 7¢2 - <§7T7§> 7U)3 - (_§+17_§+17§) } (13)

There is also a relation to the Sierpinski triangle. Obsetlat ¢1, ¢, and v, 1, respectively, restricted to the

zy-plane are equal tapy, 2 in ().

February 7, 2014 DRAFT



1
| |
osf 1
| |
0.7
0.6
> 05 L [}

0.4
0.3
0.2
0.1

0 . B

0 0.2 0.4 0.6 0.8 1

(a) The z-dimension is visualized by means of gray colors. The gray
scale is the one used in Fd 3

091

08

0.7F

06

> 05

04

0.3f

0.2f

01

(b) Restriction of Fig. (a) to the- and y-dimensions. (c) A more accurate approximation of the fractal where th@ [E2) is

restricted to ther- and y-dimensions.

Fig. 4. The result of running iterations (Fig. (a), (b)) and1 iterations (Fig. (c)) of the IF§(12). The initial shagehas been chosen to be
{(#,9,2) € 0,13 : 2 =1},

IIl. ALGORITHMIC VIEW OF THE TRAPDOOR CHANNEL
A. Remarks on the Permutation Nature

The trapdoor channel has been called a permuting channetf@re the output is a permutation of the input [5].
We point out that in general not all possible permutationghefinput are feasible and that not every output is a
permutation of the input. The reason that not all permutatire feasible is that the channel actions are causal, i.e.,
an input symbol at time: cannot become a channel output at a time instance smallenth@onsider, for instance,

a vector101 which, when applied to a trapdoor channel with initial stateannot give rise to an outpuit 0. Next,
not every output is a permutation of the input because at &@inetime instance the initial state might become

an output symbol and, therefore, the resulting output secpienight not be compatible with a permutation of the
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10

input. For illustration purposes, consider again the mresiexample, i.e., a vectdnl and initial state0. Two of

the feasible outputs arf@l0 and001 which are not permutations afi0.

B. The Algorithm

The following recursive procedur@ENERATEOUTPUTS computes the set of feasible output sequences and their

likelihoods given an input sequence and an initial state.

procedure GENERATEOUTPUTH(in, out, state, prob)
if in =0 then
set « {out,prob}
else ifin[0] = state then
out < out + in|0]
set + GENERATEOUTPUTS(in.substr (1), out, state, prob)
else
out < out + in|0]
set + GENERATEOUTPUTS(in.substr(1), out, state, 0.5 - prob)
out[out.length() — 1] + state > in[0] is removed from the end ofut
set +— GENERATEOUTPUTHin.substr(1), out,in[0], 0.5 - prob)
end if
return set

end procedure

The four variablesn, out, state andprob have the following meaningn denotes the part of the input string that
has not been processed yet} indicates the part of one particular output string that leentgenerated so fartate
refers to the current channel stapepb denotes the likelihood afut. The procedure is initialized with the complete
input string and the initial state of the channels is initially empty while prob equalsl. The firstif statement
checks the simple case of the recursion, i.e., whether the string has been processed completely. If yes, then the
corresponding outputut and its likelihoodprob is stored and returned iet. Otherwise, we distinguish whether the
next input symboin[0] is equal to the current state. If yes, then the next outpestdie value ofn[0] (or of state
but both are equal), i.equt + out + in[0], with probability 1 and the procedureENERATEOUTPUTS is applied
recursively to the unprocessed part of the input string, oein.substr(1), the substring oin with indices greater
than0. Clearly, state andprob do not change and, therefore, are passed unmodified to thesiexcall. In the other
case, i.e., whemnn[0] is not equal to the current state, the next output symbol hdille a probability of).5 to be
eitherin|0] or state. If in[0] becomes the channel output, the following state remainsahee. Then the remaining
input stringin.substr(1) is processed by the recursive catNERATEOUTPUTin.substr (1), out, state, 0.5-prob).
However, if state becomes the channel output, then the following state willzj@] and the remaining input string

is processed bEENERATEOUTPUTS(in.substr(1), out,in[0],0.5 - prob). Note that a recursive implementation of
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the algorithm is needed since it works for inputs of any langthich is not the case if only iterative control
structures are used.

The outlined procedure gives a complete characterizaticgheotrapdoor channel. Generating outputs and their
corresponding likelihoods for a particular input sequentght be instrumental for designing codes. Finally, the
design of the algorithm resembles a recursion for generatihpermutations of a string (see, e.d., [8, ch. 8.3]).
This gives an algorithmic justification for why some outpetisences are permutations of the underlying input

sequence.

IV. A LAGRANGE MULTIPLIER APPROACH TO THETRAPDOORCHANNEL
A. Problem Formulation
In this section, we derive an upper bound on the capacity ®fttiapdoor channel. Specifically, for anyc N,

we find a solution to the optimization problem

. 1
maximize —I(X";Y"|so)
n

- QZ 2219 [Pt ; ;108 =7 Pl (14)
"M== T Y k=1 Pk [PnISo]k,j

-

subjectto  » pi=1 (15)
=1
2’7l

> [Pajsy]y; >0 foralll<j<2m (16)
k=1

We do not have to distinguish betwedwwer capacityand upper capacity]9, Chapter 4.6] since it does not

matter whether the optimization is with respect to initatst) or 1 due to symmetry reasons. Constraini] (16)
guarantees that the argument of the logarithm does not beceguative. The feasible set, defined by (15) (16),
is convex. It includes the set of probability mass functiomst might be larger. To see this note thatl(16) is

a weighted sum of alp; where each WeightPMSO] is nonnegative. Clearly[{15) and_{16) are satisfied by

probability distributions. However, there might exist ;ﬂibutions" which involve negative values and sum up to
one but still satisfy[{16). Moreover, the objective funatio—'7 (X™;Y"|so) is concave on the set of probability
distributions, which follows by using the same argumeng 8how that mutual information is concave on the set
of input probability distributions. Consequently, the iogzation problem is convex and every solution maximizes
n~ I (X™;Y"|sq). In the following, the maximum value is denoted @§. Taking the limit of the sequence
(C,Tl)nGN asn grows, one obtains either the capacity of the trapdoor odlamnan upper bound on the capacity,

depending on whether the limit is attained inside or outsigeset of probability distributions, respectively.

B. Using a Result from the Literature

The reason for considering_(16) and not the more naturalt@nss p, > 0 for all k is that a closed form

solution can be obtained by applying the method.afrange multiplierdo (I4) and[(Ib). In particular, setting the
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partial derivatives of
on

I(X" Y"s0) + A pi (17)
i=1

with respect to each of the equal to zero results in a closed form solution of the comsileptimization problem.
This was done in [2, Theorem 3.3.3] for general discrete mglass channels which are square and non singular.

Note thatP,,, is square and non singular (see LemimallV.2 (b)). Moreoverasgaime that the channg),,, is

Iso
memoryless by repeatedly using it over a large number oftibfmeks of lengthe. This has the consequence tiigt
might be an upper bound on the capacity of a trapdoor chahatig constrained to input blocks of length The
reason is that some input blocks might drive the chaifgl, into the opposite state @1, i.e., the upcoming input
block would see the channél,, a1 (whoseC is equal toC] of P, s, by symmetry). However, by assuming
that the channel does not change over time, the sender akvaygs the channel state before a new block is
transmitted. Hence! might be an upper bound (even though it is attained on thefgatobability distributions).
Nevertheless, this issue can be ignored ifoes to infinity because in the asymptotic regime the chafipgl is
used only once. But we are interested in the asymptotic regimce the limit of the sequencﬁé’fl)neN is also its
supremum (see Theordm 1V.7).

In summary, we can apply[2, Theorem 3.3.3] which yields

on

1og2 Zepr <— Z [Pn_‘SOL H(Y"| X" = xf)) , (18)

attained at
 =2"Chd;, i=1,2,...,9" (19)

whered; equals

i [Piio}j,kexpz‘( i [P,Z‘SOL (Y"IX"=w?)>- (20)

j=1 =1
Clearly, [pl, . 7p2n} is a probability distribution only if/; > 0. Observe that the Lagrangidn{17) does not involve
the constraint[{16). However, the proof of [2, Theorem 3.3t®ws thatZillpk [ n|30] - equals

exp (A Z { w} HY"|X" = x;) — 1) (21)

for all 1 < 5 < 2™, Hence,[(Ib) is satisfied.

We remark that[{118) in matrix notation reads
1
C’Z = - log, [15 €Xpqy (Pn_é0 (Pn|30 o logy Pn‘s[)) 1n)} . (22)

In the remainder, we will evaluatg (22).
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C. Useful Recursions

To evaluate[(22), we derive recursions fer(P,s, o log, P,s,) 1, and P;Islo (Pajso ©1085 Pojsy) 1n. The two

expressions are formally defined next. Based on these fensrsve find exact numerical expressions for] (22) in

TheorenIV.T below.
Definition IV.1. (a) Theconditional entropy vectoh,, |, of P, s,, so € {0,1}, is defined as
T
hnjsy = [H(Y"|X" =z¢) ... HY"X"= :c;%)} (23)
= — (Pn‘s[) o logy Pn|50) 1, (24)

wheren € Ny.

(b) Theweighted conditional entropy vectar,,, of P, so € {0, 1}, is defined as

e )

n|so

wn\so = n|so (25)

= P_l (Pn\SQ © 10g2 Pn\SU) 1n (26)

n|so

wheren € Ny.

We remark thath,,,, andw, |, are column vectors wit" entries. The following two lemmas provide tools

that we need for the proof of Lemma1V.4 and LemmalV.5.

Lemma IV.2. (a) The trapdoor channel matrice,,, ;o and Py, 421, n € Ny, satisfy the following recursions:

Py 0 0 0
1 1
ip, . 1p, 0 0
Paniao = |2 2nl1 ’ 2nf0 1 (27)
1Ponn 7Pon0 5P2np0 0
L 0 %P2n|1 %PQn\l %PQn\O_
%P2n|1 %P2n|0 %PZMO 0
0 l‘P2n|1 lPQn\l lPZn\O
Popyop = 2 411 411 (28)
0 0 3P0t 3P om0
0 0 0 Pup

(b) Let My := Pg}l‘opzn\lpﬁo and M, := Pij'ngnmPQ;l‘l. The inverses oPs,, 29 and Py, /1, n € Ny, satisfy

the following recursions:

Pl 0 0 0
—M, op; 1 0 0
e N ®
0 _P2n|0 2P2n\0 0
2MoPoui Pyly  —3My  —2M, 4P}
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4Pt —oM,  —3M, 21\41P2n|0P_1

2n|1 2n|1
-1 -1
p-1 _ 0 2P2n|1 _P2n|1 0 (30)
2n+42[1 1 :
0 0 2P2n‘1 — M,
-1
0 0 0 Pzn‘1

Proof: (a): SubstitutingP,,, ;5 _1j0 and Py, 4o_1j1 INt0 P, 409 and P, o1, Where the four matrices are
expressed as iml(1) and (2), yields1(27) and (28).

(b): Two versions of the matrix inversion lemma are|[10]
- - —1 - -

A 0 A1 0
= (31)
C D -D-ltcA-t D!
- - -1 - —
A B A™! —A'BD!
— . (32)
0 D 0 D1
Divide (27) and[(ZB) into four blocks of equal size. A twofdagplication of [31) and (32), first t@%,, 4, and
Py, 121 @nd, subsequently, to each of the blocksfsf, 20 and P, o)1 yields [29) and[(30). [ ]

A transformation relating?, o with P, Pn_‘é with Pn_ﬁ hpjo With hy, 1 andw, g With wy,|; is derived next.

Lemma IV.3. Let P, and P,,; be trapdoor channel matrices, € Ny. Then we have the following identities.

(@)

Py = L, Pyol, (33)
Py = L, Py I (34)

(b)
Pl =1P 51, (35)
Pro=InPyi . (36)

(©)
Bt = Inhnjo (37)
Bnjo = Inhin1- (38)

(d)
Wpi1 = fnwnm (39)
Wplo = fnwn“. (40)

(e) The row sums oPn‘Ié and Pn“} are 1.
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Proof: (a): The proof is by induction. For = 0, the identitiesPy; = IoPyjolo and Pyjg = Io Py 1o clearly
hold. Now suppose thaf (83) arld {34) are true ifs replaced by — 1. Then we have

- - 0 I, P,_ 0 0 I,
InPn|OIn = |~ ' 1o ~ ' (41)
L n—1 0 %Pn71|1 %Pn71|0 In—l 0
B L, 1Py yjolno1 AL Pyiplna
L 0 ~n—anfl\Ojn—l
1 1
_ 5P 3Pa-1p0 (42)
0 P,
= In—11 (43)

where [41) and{43) are due to the recursive expresdibns@LZy while [42) follows from the induction hypothesis.
It remains to showi(34). BUE(B4) is a direct consequencesjitst proven equation and using the idenfity,, = I,,.
(b): Follows immediately from (a) and the identifyI,, = I,,.

(c): Equation[(3F7) follows from

Aot = — (Pyj1 0logy Poj1) 1
- [(fnpnmin) o log, (fnpn‘ofn)} 1, (44)
= —1I,, (Pyjo o logy Pjo) Inly (45)
= Iy

where [(44) follows by replacing,;; with (33). Observe that the left and right multiplication 8%, with I,
merely yields a new ordering of the elementsmﬁOH Since it does not matter whether the Hadamard product and
the elementwise logarithm is applied before or after sgrtime elements of the underlying matrix, i.e., before or
after multiplying with I»,,, (@3) is true.

Equation [3B) follows from[{37) and the identify, I, = I,,.
(d): Equation[(3B) follows from

_ -1
Wnl1 = _Pn|1h'n\1

= —LP, 5o (46)

= InWn)o,

where [46) follows by replacing’,;; andh,,; with (33) and [(3F), respectively, and using the identity,, = I,,.
Equation [[(4D) follows from[{39) and the identify, I, = I,,.

(e): A standard way to compuﬂé&é is by Gauss-Jordan elimination, i.e., a sequence of elemnerw operations

2To be more precis€,P,0ls,; is placed at positiof2™ +1 —4,2" + 1 — j) for all 1 < 4,5 < 2™,
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applied to the augmented matr{m

n

0 ]n} such that[[n P71_|é:| eventually results. Clearlyl, o and I,, are
stochastic matrices, i.e., all row sums are equal to ones,Tatueach stage of performing the elementary row
operations, the row sum of the left matrix equals the row stithe right matrix. In partlcularP ! has the same
row sum asl,,. |

We can now state the recursive laws for twenditional entropy vectoand theweighted conditional entropy

vector.

Lemma IV.4. For n > 1, hy, 9o Satisfies the recursion

hanjo
$hanjo + %fmhzn\o + 1oy
3 honjo + 3 Tanhonjo + 312
Lhonio + 2 hanhonp + 312,

hanyo)0 = (47)

The initial value forn = 0 is given byhgo = 0.

We remark that in order to refer to théh subvector,l < i < 4, of the conditional entropy vector we use the

superscripti). For instanceh'?, . refers t03 honjo + 212nhono + L2n.

2n+2|0
Proof: The initial valueh,|, can be directly computed usirfg, = 1 in (24). In order to show (47), we replace
Py y0)0 in 24) with (27) from Lemma IV.P (a) and compute each of tharfentries in[(4l7) separately. Clearly,

we havehV

420 = (Pgn‘o o logy Pzn‘o) 12, Which by definition equal#,,,o. The three remaining terms can be

written as follows
1 1 1 1
héi)”‘o [—§P2n1 o logy (§P2n1> - §P2n\0 o logy <§P2no>] lan

1 1/~ ~ ~ ~ 1 1

= _PQn\l -3 (IQnP2n|OI2n) © 1Og2 (I2np2n|012n) + _P2n|0 - _PQH\O © 10g2 P2n|0 lan (48)
2 2 2 2

1= 1
= lop — 51211 (PQn\O © 10g2 P2n|0) lon + §h2n|0 (49)

1 1=
§h2n|0 + 512nh2n|0 + 12

1 1 1 1 1
Pznu o logy <_P2n1> - —Pzn\o o logy (‘Pzno) - _P2n|0 o logy (§P2no)] lan

Izn (Panjo 0108y Payo) 1on + hzn\o (51)

1
= |:§P2n1 . (I2np2n|OI2n) © 1Og2 (I2np2n|OI2n) + P2n|0 - P2n|0 © 10g2 P2n0j| lop (50)
31,
2
3 3

Zh2n|0 + Iznhzn\o +3 12n

1 1 1 1 1 1
2n+2‘0 [ §P2n\1 o logy <_P2n1> - —Pzn\l o logy <_P2n1) - _P2n|0 o logy (—Pzno)] lan

P2n\1 . IQnPQn\OIZn) © 10g2 (IQnPQn\OI%L) + P2n|0 - _P2n|0 © 10g2 P2n0j| lop (52)
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3 3= 1 3=
= 51271 - ZIQ" (P2pjo ©10gy Papjo) lan + Zh2n|0 - ZIQn (Panjo ©l0gy Papjo) l2n (53)
1

3.
—Zh 2 Tonhonio + 1an
1 2n|0+42 anjo T 12

where [48),[(5D) and (52), respectively, follow from expimgdhe logarithms in the previous equation and replacing
the channel matrices corresponding to initial state onb {@8). The first term in[(49)[[(31) anH (53), respectively,
follows from the multiplication of the weighted matricés,,; and P,,; with 1,,. The second term iri (49)._(b1)
and [53), respectively, follows by using the fact that it slet matter whether the Hadamard product and the
elementwise logarithm is applied before or after sorting élements of the underlying matrix, i.e., before or after

multiplying with I,,. [ ]
Lemma IV.5. (a) Forn > 1, wy,|o satisfies the recursion

Wan—2/0
Wap_2j0 — 2 lan—2
Wanjo = (54)
Wap_2j0 — 2 lan—2
Wan—2/0
with initial value wgo = 0.

(b) For n > 1, way, 110 satisfies the recursion

Wan—10

Iop—1wan_1)0
Wan+1j0 = (55)
Wan—1j0 — 2" lap—1

_I~2n71w2n—1|0 =2 lap1
. . . T
with initial value w;)y = {o _2} .

We remark that in order to refer to thith subvector]l < i < 4, of the weighted conditional entropy vector we
use the superscrift). For instancewéi)lo refers tows, 210 — 2 - 12n—2.
Proof: (a): We first show by induction thdi (b4) holds. The case 0 can be verified using Definitidn TM.1 (b)
with Pyjg = PO_‘(} = 1. Now assume thaf’(b4) holds for some In order to show[{34) fon + 1, we evaluate

Wan+2)0 Using [26) and replzalcing’;nlﬂl0 and hg,, 420 With (29) and [(4V). Then we have

-1 3 (1)
_P2n|0h2n+2\0
—1 -1 (1) ()
P2n|0 (P2n|1P2n|oh2n+2\o - 2h2n+2|0)
Wan+2/0 = 1 (2) (3) (56)
P2n|0 (h2n+2\0 - 2h2n+2\0)
-1 3 (1) (2 (3) -1 3(4)
Mo (_2P2nllp2n|oh2n+2\o + 3h2n+2\0 + 2h2n+2\0) - 4P2n|0h2n+2\0
Recall from LemmalVi thahgz)wm = hanjo. Hence, by definition, the first entry df (56) is equaldg, .
The second entry of (56) is derived as follows. Repladiﬁgm andhgi)ﬂlo with the corresponding expressions

February 7, 2014 DRAFT



18

from (41), we obtain
Wéi)_i_g‘o P2:11|0 (PQn\1P2n|0h2n\O h2n|0 - i?nhQn\O -2 12n) . (57)

In order to simplify [5Y), observe that
- f2nw2n\o + wapjo =0 (58)

sincews,, o is a palindromic vector by hypothesis. A further manipaatof (58), namely usind (25). (86) and the

relation Is,, Io, = I, yields

Pz_nl\o ~hanjo — 2n|112n hanjo =0 (59)
which implies
P2n|1P2n|0h2n|O — Iy, - hapjo = 0. (60)

Using [60), the definition ofuy, |, and Lemmd 1V.B (e), i.e., thaP, ! is a stochastic matrix, il (57) we ob-

2|0
tain w;i)JrQlO = wgn‘o -2 12n
The third entry of[(5B) is derived as follows. After replat_lyhl%ﬁ‘0 and h2n+2‘0 in (58) with the corresponding

expressions fron(47), it can be directly seen tbé@ o0 = Wanjo — 2+ 1on.
Regarding the fourth entry ifi_(56), we begin with the firsntén parentheses, i.e.,

— 2Psy1 Pyt RY o+ 3p 4 op®

2n]0""2n+2|0 2n+42(0 2n+42(0
=2 (P2nllp2n1|0hgz)+2|o hgi)+2|0) (héi)w\o hé?:1)+2|0) (61)
= — 3P0 (wanjo — 2+ 125) - (62)
Equation [[6R) holds since the first and the second parergtuq€1) are equal td72n|0w§i)+2‘0 and Pgn‘owéi)_’_mo,

respectively, which follows from_(36) by inspection. Moveo, w? andw’®

ori4-2(0 are equal tava, o — 2 - 12,

2n+2|0
as we just have shown. Hence, usdﬁ](62)ut§ﬁl +2[0 and replacmgh%ﬁlo with the corresponding expression

from (41) andM, with its definition from Lemma&IVR (b), we obtain

éi)JrQ‘O = PQ_nm (_3P2n|1 (w2n|0 -2 1277,) - h2n\0 - 3f2nh2n|0 —6- 12n)
= 3P2:l‘0 (—Pzn\lwznm - fznhzn\o) + 6P, n|0 (Panjilon — lon) — P{;‘thn\o (63)
2n|0h2n\0

= Wan|0-

Observe that the first parentheses[in] (63), which is equaheoldft hand side of (80), evaluates @o Also the

second parentheses [n[63) evaluated Bince P,|; is a stochastic matrix.
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(b): Recall the recursions

b, 0
A T (64)
_§P2n+1|1 §P2n+1|0
I Pt 0
P;an'O = B 2n+1[0 » B ) (65)
_P2n+1\op2n+1\1pzn+1|o 2P2n+1\0

The first22"*! entries, i.e., the first half, af,, 5, are equal toPQ;fH'O (Pan+t1)0 ©1085 Pani1)0) 12n+1, Which
in turn is equal tows,1jo. This follows from a straightforward computation using Défon [V.I(b) together
with (©4) and [6b). Hence, under consideration[ofl (54), weeha

Wan|o
Wan+1j0 = " . (66)
Wanlo — 212,

Equivalently,w,,_1|o is equal to the firse*"~! entries ofws,,o. Then we have

Wan—1/0

(67)

Wanlo = | -
Iop—1 - won_1)0

In order to derive the second entry &f{67) observe that théiplication of w,,, 1|y with Ipn_q turns Wap—1/0
upside down (i.e., the last entry aof;,, ;o becomes the first entry, the second last entry becomes thadec
entry and so on). Applying this multiplication to,,, 1|9, which is written in the form of[{86), and using the fact
thatw,, 9|0 is @ palindromic vector, we see that,_; “wap—1)0 IS equal to the las?™~1! entries, i.e., second half,
of the vector[(54). By replacing,,, in (€8) with (67), we obtain[(35). The initial value, = [0 _2}T follows
directly by evaluating[(34) for. = 1 and taking the first two entries. [ ]

Remark IV.6. The recursions derived in Lemrha IV.4 dnd 1V.5 are with respednitial state sy = 0. They can
be easily converted to recursions with respect to initiatst, = 1 by using [3V) and[(39) from Lemrha1V.3.

D. Proof of the Main Result

By evaluating[(IB) based on Lemra1V.5, we find exact solgtitinthe optimization probleni (1L4)-(116).

Theorem IV.7. Consider the convex optimization problem](14)[id] (16). Theotute maximum for input blocks of

even lengtl2n is

1 5
Cl, = 5 log, <§> (68)
for all n € N. For input blocks of odd lengtBn — 1, the absolute maximum is
1 5 5
T - he -1 2
Cony = om—1 [1032 <4> + (n—1) -log, (2)] ) (69)

wheren € N.

Proof: Without loss of generality, the initial state is assumedeaasb= 0. Recall [22), which for input blocks
of length2n + k reads as

1
C;Hk =Tk 1085 125+ €xDa (W2n-t400)] (70)

February 7, 2014 DRAFT



20

wheren € No, k = 1,2. Forn = 0, a straightforward computation shows tiét = log, () andC} = 3 log, (3).

Now assume thaf (68) and (69) hold for someln particular, suppose

5 n
1571 €XPy (w2n\0) = (5) (71)
and .
5 (5\""
12Tn—1 €XPg (wzn—l\o) = 1 <§> . (72)

Replacingws,, 20 @ndws,,11)9 With the recursions derived in Lemrba V.5, we obtain
13,42 XDy (wont2)0) = 13, [2expy (wanjo) + 2expy (wopjo — 2+ 122) ]
= (2+2-27%) 13, expy (w2n)0)
and
13,41 €xPy (wont1)0) = 13,_1 [2expy (wan—1)0) + 2expy (wop—1j0 — 2 - 125)]
=(2+2-27%)13,_  exp, (wan_1p0) -

Hence, using[{40) and the induction hypothege$ (71) land {Wehave

1 _
Conio = 5o logy [(2+2-272) 13, exp, (wanpo)]
e (2
T 2%2135
and
1 _
C2Tn+1 = m log, [(2 +2-2 2) 1§n71 €XPo (w2n—1\0)]

—#10 é—i—n lo §
T o1 |82 \1 g2\3 )|

Remark 1V.8. Observe thatim,,_, c;m = %1og2 (%) where convergence is from below. Hence, we have

1 5
r_1 5
max On = 5 1082 (2)

Unfortunately, the distributions corresponding [fo](68)l d69) involve negative “probabilities” — otherwise the

capacity of the trapdoor channel would have been estallidhe state this as a formal remark.

Remark 1V.9. Condition [20) does not hold for alt = 1,...,2", which can be seen as follows. For a trapdoor

channelP,,, we have
T
_ —1
{d’“Lgkgzn B (P"\O) exXPy (wn) (73)

Applying [31) toP, o, which is written in the form of_{1), and taking the transpoteen applying[(31) to the
right bottom block of this matrix and taking the transpose& @0 on eventually shows that the second last row of
T
(Pn]é) equals
[O . O 27171 _27171} .
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Moreover, using Lemmia1V.5, it follows that the second ta &ry and the last entry in,, equals—2 and 0,
respectively. Inserting the gathered quantities irid (Yiglds

doyn_1=-3-2"3<0, neN.

V. CONCLUSIONS

We have presented two different views on the trapdoor cHahe fractal view was motivated by the wish to
find an explicit expression for the trapdoor channel — a featthich would greatly simplify the capacity problem.
Furthermore, the various views motivate using tools frofeofields, e.g., fractal geometry.

Subsequently, we have focused on the convex optimizatiobl@m [14) to[(IB) where the feasible set is larger
than the probability simplex. An absolute maximum of théetter mutual information was established for ang N
by using the method of Lagrange multipliers. The same absohaximums log, (3) ~ 0.6610 b/u results for
all evenn and the sequence of absolute maxima corresponding to oat lagths converges from below to
%logQ (%) b/u as the block length increases. Unfortunately, all alisahaxima are attained outside the probability
simplex. Hence, instead of establishing the capacity ofrdygdoor channel, we have shown only tléang (g) b/u
is an upper bound on the capacity. This upper bound is, to bedieour knowledge, the tightest known bound.
Notably, this upper bound is strictly smaller than the feskbcapacity[[5]. Moreover, the result gives an indirect

justification that the capacity of the trapdoor channel taiaéd on the boundary of the probability simplex.
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