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Abstract

This paper presents a unified hierarchical multi-object
tracking scheme. The problem of simultaneously tracking
multiple objects is cast as a global MAP problem which
aims at maximizing the probability of trajectories given the
observations in each frame. Directly solving this problem
is infeasible, due to computational considerations and the
difficulty of reliably estimate necessary transition probabil-
ities. Without breaking the MAP formulation, we propose
a three stage hierarchical tracking framework which makes
solving the MAP feasible. In addition, using a hierarchi-
cal framework allows for modeling inter-object occlusions.
Occlusion handling thus smoothly and implicitly integrates
into the proposed framework without any explicit occlusion
reasoning. Finally, we evaluate the proposed method on
the publicly available PETS 2009 tracking data and show
improvements over the current state of the art for most se-
quences.

1. Introduction
Simultaneously tracking multiple objects in video data

is still a difficult and only partially solved problem in com-
puter vision. Tracking single objects is conceptionally sim-
pler. Here, the object can be detected in each frame and
the trajectory arises, simply by connecting the detections
over time. However, in the case of multiple objects, a major
problems becomes the association of detections to trajecto-
ries. To overcome this problem, on the one hand the identity
of the object can be established (i.e. by color, shape fea-
tures) and on the other hand constraints on smooth motion
and continuity can be applied.

A second major issue in multi object tracking are mutual
occlusions. While object motion may in general be con-
sidered independent, the visual effect of multiple objects is
by far not independent. Thus, objects occluding each other
strongly influence their mutual visual appearance up to the
case that one object is completely occluded by the other.

In our approach we simultaneously address both issues

in a unified hierarchical framework. First, we formulate
our tracking algorithm as a maximum a posteriori problem,
which is commonly done in global tracking approaches. In
order to make the MAP approach tractable, a multitude of
independence assumptions have to be made. While some
of these assumptions are reasonable, others are not valid in
practice. Most notable, using a Markov chain in the defi-
nition of the transition probabilities would require all infor-
mation of an object (appearance, motion, etc.) to be present
in a single frame. However, both motion and appearance
can hardly be captured in just a single frame.

To overcome these limitations, we still keep the MAP
formulation and process the data in three hierarchical
stages. This allows multiple frames to be aggregated at
lower hierarchical levels. Thus, reliable motion and appear-
ance information can be captured, which improves associa-
tion at the higher levels.

2. Related Work
Target tracking has been studied extensively. Local

tracking approaches using for example the Kalman Filter
[16] have high precision and localization accuracy, but fail
in multi object scenarios where association of detections
and trajectories becomes a major issue. In order to cope
with multiple objects, trajectories can be optimized one by
one, e.g. using Dynamic programming [4, 9, 10]. This,
however, largely ignores mutual influence of the trajec-
tories. Multi-Hypothesis Tracking (MHT) [14] and Joint
Probabilistic Data Association Filters (JPDAF)[7] over-
come this problem by jointly optimizing trajectories, but
these methods suffer from the combinatorial hypotheses
space. Another class of recent and very successful ap-
proaches define the tracking as a global optimization over
the complete sequence [17][13][8]. Here, a global poste-
rior probability is formulated and maximized. While these
methods are conceptionally solid and fast algorithms ex-
ist (e.g Hungarian Algorithm [11]), in order to make the
method tractable many independence assumptions (as out-
lined in the introduction) have to be made, which is limiting
in practice.
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Figure 1: (a) detection responses in the input frame with
one false positive and two misses due to occlusion, (b) final
tracking result.
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Figure 2: Schematic of the hierarchical tracking framework

3. Unified Tracking Framework

The outline of our tracking approach is depicted in
Figure 2. We follow the successful tracking-by-detection
paradigm. Thus, in a first step, objects of interest are de-
tected with an off-the-shelf object detector (we use [5]). In a
preprocessing step, detection responses are pruned accord-
ing to geometric constraints and prior knowledge. Using the
known camera calibration, many false positives (i.e. trees in
the background) can be removed.

For the actual tracking algorithm we use a consistent
three stage architecture which builds on a unified MAP for-
mulation, but uses different parameter settings at each stage:

First, at the low level stage, track fragments are gener-
ated by conservatively linking detection responses that are
very likely to belong to the same track. Second, at the
middle level stage, the obtained track fragments are asso-
ciated into longer tracks by formulating the tracking task
as a MAP problem which is solved by the Hungarian algo-
rithm. Finally, at the high level stage, the resulting tracks
from the previous stage are refined and grouped into long-
range tracks by simply adapting the MAP parameters. After
tracking, the obtained data is interpolated leading to the fi-
nal tracking result.

3.1. Maximum A Posteriori Formulation

First, we will describe the basic underlying maximum
a posteriori (MAP) problem regarding the task of tracking
multiple objects in a video sequence.

As presented in [17], we assume a set of object observa-
tions being detection responses from the detector. This set
X contains various information for each detection i, so that

X = {xi} with xi = (xi, si, ti), where xi is the position, si
is the size and ti is the time index of the object in the video
sequence.

The main aim is to find appropriate trajectories based on
these object observations. Hereby, a trajectory hypothesis
Tk can be described as a list of observations so that Tk =
{xk1 , xk2 , . . . , xklk

} with xki ∈ X , whereas an association
hypothesis T is defined as a set of all trajectory hypotheses
leading to T = {Tk}.

The overall tracking goal leads to the objective to maxi-
mize the posteriori probability of T given the set X of ob-
ject observations, so we can formulate:

T ∗ = argmax
T

P (T |X ) (1)

= argmax
T

P (X|T )P (T ) (2)

= argmax
T

∏
i

P (xi|T )P (T ) (3)

For the last conversion of the equation, we assume that the
likelihood probabilities are conditionally independent given
the hypothesis T .

Assuming that trajectories do not overlap (Tk ∩ Tl =
∅,∀k 6= l) and that the motion of trajectories are indepen-
dent of each other, the prior P (T ) can be further factorized:

T ∗ = argmax
T

∏
i

P (xi|T )
∏
Tk∈T

P (Tk) (4)

The prior of each trajectory P (Tk) in (4) is modeled with
a Markov chain:

P (Tk) =P ({xk0 , xk1 , . . . , xklk
})

=Pentr(xk0
)Plink(xk1

|xk0
)Plink(xk2

|xk1
)

. . . Plink(xklk
|xklk−1

)Pexit(xklk
)

(5)

Using a Markov chain implies that all information is cap-
tured at a given point in time and following nodes only de-
pend on the previous and not all other nodes. While this is a
frequently made assumption, we feel that it is fundamen-
tally flawed, because in practice, insufficient information
can be captured in a single frame. The resulting probabil-
ities Pentr, Pexit and Plink(xki+1 |xki) are essential for the
tracking algorithm and are specified in the Section 3.2.

The second factor in (4), P (xi|T ), is the likelihood func-
tion of observation xi:

P (xi|T ) =

{
Ptp if ∃ Tk ∈ T , xi ∈ Tk
Pfp otherwise

(6)

with Ptp being the true positive and Pfp being false positive
probability. The probabilities Ptp = 1 − Pfp, and Ptn =
1−Pfn (used in Equation (14)) depend on the score output
s of the object detector (i.e. a high detector score leads to to
high Ptp). The relations Ptp ← s and Ptn ← s are learned
on annotated ground truth.
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Figure 3: Illustration of the entrance/exit area E and the
occlusion region R.

3.2. MAP Parameters

As shown above, there are several parameters in the
above framework, which need to have meaningful values.
Most important are enter and exit probabilities (Pentr and
Pexit), as well as the transition probability Plink.

Enter and Exit Probabilities We assume that tracks can
only start and end at the edge region E (as depicted in Fig-
ure 3). Except for the first (last) frame, where tracks can
also start (end) independently of the position. We set the
enter and exit probabilities near the edge higher than in the
center.

In order to estimate these enter and exit probabilities, we
assume them to be generally the same (Pentr = Pexit). We
can now show that these parameters are related to the mini-
mal required track length l.

Consider the probability Pa as the likelihood that a group
of l linked detections is surely a real track as well as the
probability Pb as the likelihood that this group only consists
of false alarms. Then we get, with Equation (5) and (6):

Pa = Pentr

∏
k

(PlinkPtp)Pexit (7)

Pb =
∏
k

Pfp = P l
fp (8)

With Plink = 1 we can write:

Pa = P 2
entrP

l
tp (9)

The MAP formulation in (4) decides for a trajectory, if
Pa > Pb, that is if the observation probability is higher than
assuming pure false positives. Therefore, when we set the
two equal, we get:

Pa = Pb

P 2
entrP

l
tp = P l

fp

Pexit = Pentr =
(Pfp

Ptp

)l/2 (10)

The last equation shows that the enter and exit probabil-
ities will affect the minimal length of the obtained tracks.

Vice versa, by choosing a certain minimal track length l,
we can calculated Pentr and Pexit.

Transition Probability The transition probabilities Plink

are described by the similarity of the linked detection re-
sponses. We formulate three independent aspects of simi-
larity: Appearance, frame skip and motion similarity. Thus,
we formulate the transition probability as follows:

Plink(xj |xi) = P (aj |ai)P (∆t)P (vj |vi) (11)

Appearance Model The appearance term P (aj |ai) is
based on RGB histograms aj and ai. The similarity in
appearance is defined based on the Bhattacharyya distance
Aij =

∑n
i=1

√
(
∑
ai ·

∑
aj):

P (aj |ai) =
N (Aij ;As, σ

2
s)

N (Aij ;As, σ2
s) +N (Aij ;Ad, σ2

d)
(12)

with N (x;As, σ
2
s) and N (x;Ad, σ

2
d) being the normal

distributions of Aij between the same object and different
objects respectively. The parameters (As, σs, Ad, σd) are
learned from annotated ground truth.

Frame Skip The term P (∆t) models the frame skip. This
allows us to handle miss detections. In addition, this term
is used to model occlusions caused by known stationary ob-
jects (e.g. the light pole in PETS2009) as well as by dynam-
ically moving objects.

Since the tracklets can also be linked over non-
consecutive frames which leads to a certain frame gap ∆t,
with F being the set of skipped frames, we model this as a
time gap component. It is defined by an exponential model
as follows:

P (∆t) =
∏
t∈F

P (t) (13)

and P (t) =

{
Ptn if x′i ∈ R
Pfn otherwise

(14)

Here, R is the occlusion region which is defined accord-
ing to static and dynamic objects in the scene.

Motion Model The third term of the transition probability
considers the motion similarity of two tracklets. Let vj and
vi be the normalized movement vectors calculated as the
mean of the frame wise movement of detection responses
within the tracklets. Then we get:

P (vj |vi) = 1− 1

2
‖vj − vi‖1 (15)

In consequence, this term measures the similarity of the
track movement assuming a person is not likely to change
its direction abruptly.
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Figure 4: Exemplary illustration of the hierarchical track-
ing strategy. Stage 1: build small tracklets and direct links
based on spatial overlap; Stage 2: use frame skip (here set
to 1) to handle small occlusions and misses; Stage 3: handle
longtime occlusions

4. Hierarchical Tracking Strategy

For our multi-target tracking algorithm we pursue a hi-
erarchical bottom-up strategy. During the whole tracking
progress the underlying MAP framework stays consistent,
solely the parameter settings are adjusted stepwise.

We divide the tracking task into different stages result-
ing into iteratively growing tracks that will finally lead to
a set of target trajectories. Hereby, each tracking estimate
achieved by a stage is used as starting point of the following
stage. An exemplary illustration of our stage wise tracking
progress is depicted in Figure 4.

4.1. Stage 1: Tracklet Generation

In the first stage, we conservatively group a set of de-
tections out of consecutive frames that fulfill the following
three conditions: (1) there is exactly one detection per frame
in a set, (2) every detection is connected with exactly one
adjacent window, (3) the distance in appearance passes a
certain threshold.

These conditions can be cast into the MAP formulation,
i.e. Pentr = Pexit = 1 and Plink = 1, if detections have
significant overlap to exactly one predecessor and exactly
one successor, otherwise Plink = 0. To optimize this MAP
formulation, simple heuristics can be used, rather than using
complex optimization techniques.

4.2. Stage 2: Mid-Range

The input to the second stage are the tracklets generated
in the first stage. Therefore, each observation xk now con-
sists of multiple detections from multiple adjacent frames.
Thus, multiple detections (which would be treated indepen-
dently without hierarchy) can be jointly analyzed.

Entrance and Exit Probability For the minimal length
of a track, we choose a weak prior and set l = 12. This
will fully describe the probabilities Penter and Pexit (using

(10)). By choosing this minimal length, single (false) de-
tections will be ignored and the tracklet size will be in the
mid-range. For the region of entrance and exit, xk ∈ E (see
Figure 3), we set l = 2 (also for stage 3) in order to allow
shorter tracks at these regions. If this distinction of cases is
not made, tracks will not end or start in the entrance area
leading to errors (like identity switches between persons).

Transition Probability Regarding the transition proba-
bility Plink, we have to adapt the equation, since the length
of the input tracklets are not long enough to reliably esti-
mate a movement vector. Thus, we ignore the movement
term (P (vj |vi) = 1) and use the given information, namely
appearance and frame skip, leading to:

Plink,stage2(xj |xi) = P (aj |ai)P (∆t) (16)

with P (aj |ai) describing the histogram distances and
P (∆t) being defined by a fixed occlusion region R as de-
scribed in 3.2.

Frame Skip To be able to cope with missed detections
and occlusions, we now allow all tracklets to be linked to
other tracklets from non-consecutive frames. Unlike in the
first stage, the transitions can now skip a certain number of
frames ∆t ≤ ∆tmax by up to ∆tmax frames.

4.3. Stage 3: Long-Range

Subsequently, the obtained tracking result is used to cre-
ate a new hierarchical stage. Here the tracklets are built
based on the ID that the tracking process in the previous
stage has calculated.

Entrance and Exit Probability Since we now refine
the tracklets and search for longer trajectories, we use a
stronger prior regarding the probabilities Penter and Pexit.
Hence, we set the minimal length for a track much higher.
By choosing an increased length, we force the tracker to
build up tracklets that will be in the long-range.

Transition Probability As the input tracklets lie now in
the mid-range length, we can use the information of the
movements in addition. Hence, we use the full Equation
(11):

Plink,stage3(xj |xi) = P (aj |ai)P (∆t)P (vj |vi) (17)

Occluded Region In the third stage, we treat all obtained
tracklets (from the second stage) as ’static’ objects and
therefore as possible occluders. Thus, we add the space
which a tracklet requires to the occlusion area R. This
has an influence on the frame skip term P (∆t) in Equa-
tion (14). Now, a frame skip between two tracklets becomes
more likely, if other (already found) objects are the reason
for the occlusion.



Frame Skip In order to handle long time occlusions, we
allow much higher frame skips and set ∆tmax to about 70.
By doing so, occlusions that are present over various frames
can be solved.

4.4. Optimization and Post-Processing

In all three stages we defined a MAP problem. In the first
stage, where the structure is very simple, the solution can be
achieved with heuristics. In stage two and three, we use the
Hungarian Algorithm [11] to solve the MAP problem.

After all three stages, the obtained tracking result is in-
terpolated in two ways: On the one hand, all gaps within a
track are linearly interpolated (these gaps can occur if frame
skips are allowed), on the other hand the tracks are extended
at the beginning and ending point in case some detections
were lost at the start and end of a trajectory. Finally, the
output is smoothed using a moving average filter of span 15
pixels for position and span 20 pixels for height/width.

5. Results and Evaluation
We apply our hierarchical association framework to the

multiple pedestrian tracking problem. In this section, we
will present our results using various datasets and compare
our algorithm with other state-of-the-art systems.

5.1. Performance Metrics for Multiple Object
Tracking

We use the widespread measures introduced in [15]
called Multiple Object Tracking Accuracy (MOTA) and
Multiple Object Tracking Precision (MOTP), that became
the recent de facto standard. Additionally, we apply fur-
ther metrics that are presented in [12]. These are Identity
Switches (IDS), Track Fragments (FM), Mostly Tracked
(MT), Partly Tracked (PT) and Mostly Lost (ML), Preci-
sion and Recall. A summary and short description of the
used measures is given in Table 1.

The conception of these tracking metrics allows the judg-
ment of precision, the capacity for tracking an object con-
sistently over time, as well as various configuration errors
made by the tracker, e.g. false positives, misses or mis-
matches.

5.2. Datasets

The evaluation of the proposed algorithm is carried
out on various video sequences from publicly available
datasets.

We use two sequences from the PETS 2009 benchmark
dataset [6] for our experiments. For both sequences, the
dataset provides views from multiple camera angles, how-
ever, we only use one camera (View 1). The first sequence
(S2L1, 795 frames total) shows an outdoor scene with nu-
merous pedestrians which occlude each other various times.

Table 1: Evaluation metrics (according to [12] and [15])

Name Definition
MOTA Multiple Object Tracking Accuracy: It combines all error

types and is normalized with the total No. of targets. The
higher the better.

MOTP Multiple Object Tracking Precision: The normalized dis-
tance between the objects and tracker hypotheses. The
higher the better.

IDS ID Switches: Number of times that a tracked trajectory
switches its matched ground truth identity. The smaller the
better.

FM Fragments: Number of times that a ground truth trajectory
is interrupted. The smaller the better.

MT Mostly tracked: Percentage of ground truth trajectories that
are tracked for more than 80% in length. The higher the
better.

ML Mostly lost: Percentage of ground truth trajectories that are
tracked for less than 20% in length. The smaller the better.

PT Partially tracked: 100% - MT - ML.
Recall correctly matched objects / total ground truth objects
Precision correctly matched objects / total output objects

The second sequence (S2L2, 436 frames total) shows a
denser crowd, making tracking significantly more challeng-
ing.

In addition, we use the dataset presented in [1], called
’TUD-Stadtmitte’. It consists of 170 frames and depicts
a busy pedestrian zone in a city center. Here, the camera
has a very low view point. Generally, the occlusions in this
scene are more difficult to handle since a person standing
in the foreground can occlude multiple individuals standing
behind it for a longer period in time.

5.3. Operational Settings

The most critical stage of our multi stage tracking sys-
tem is the second one. Here, the two main components are
the control of the outcoming track length and the creation
of links that are non-consecutive allowing frame skips. For
each component, there is a parameter that influences the
tracking efficiency. Both of these parameters will be evalu-
ated in the following.

Frame Skip Regarding the non-consecutive linking, the
maximum number of allowed frame skips ∆tmax (in stage
2) is a crucial factor for performance. In order to demon-
strate the effect of the parameter ∆tmax on the tracking re-
sult, we show in Figure 5 the system performance in depen-
dence of the frame skip ∆tmax (on PETS 2009 S2L1).

As can be seen, there is a very high increase in accuracy
at the beginning, since here the tracking system can over-
come missing detection either from misses owing to errors
of the detector in use or from short inter-object occlusions.

As the frame skip is increased further, the accuracy in-
creases as well (the long time occlusion can now be solved
properly) until it reaches a certain saturation at roughly
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Figure 5: Influence of maximally allowed frame skip
∆tmax on MOTA, MOTP, IDS and FM. (PETS 2009 S2L1)
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Figure 6: Influence of the minimal track length l on MOTA,
MOTP, IDS and FM. (PETS 2009 S2L1).

∆tmax = 10. Hence, as a default and for our other ex-
periments, we set ∆tmax = 12.

Minimal Track Length The second main component of
the second stage is the minimal tracklet length l.

To show the influence of this parameter, we plot (in Fig-
ure 6) MOTA, MOTP, the numbers of ID switches and frag-
mentations in relation to the chosen minimal track length
(on PETS 2009 S2L1).

When increasing the minimal track length, fragmenta-
tions are significantly decreased and MOTA is significantly
increased, while MOTP and ID switches stay almost con-
stant. This is, because for small minimal track length l, only
those detections will be connected, which are very likely to
belong together, leading to high number of fragmentation.
With increased l, longer tracks are encouraged, so bad de-
tections, misses and occlusions can be overcome. With l
being in the range of 15 to 25, the number of fragmenta-
tions stays nearly the same and an optimum is found.

If l is increased further, fragmentation and misses in-
crease. If l is set too high, fragmentation will increase again,
since then the tracker seeks very long tracks and thus, track-
lets that are not likely to belong together are combined.

5.4. Overall Results

Table 2 presents quantitative results of our approach on
all datasets. We show results of stage 2 (a) and stage 3 (b)

Figure 7: Tracking results on PETS 2009 S2L1

including interpolation, but without smoothing. The final
output (c) also includes smoothing. As expected, we see
a distinguishable performance gain of the third stage over
the second stage. Since the track length increases, conse-
quently, the number of fragments decreases. In most cases,
the number of ID switches stays the same, because in the
third stage, tracklets are only merged (which cannot solve
false IDs from the previous stage). Smoothing the final tra-
jectories gives additional performance gain: Tracking Preci-
sion (MOTP) is increased, while fragments and ID switches
are decreased. This is due to the fact that ground truth tra-
jectories have also been smoothed. Thus, smoothing makes
our output more similar to the ground truth.

On scenarios with a medium dense crowd (like PETS-
S2L1 and S3MF1), our approach yields tracking results
with a significantly high accuracy and a very small rate of
fragmentations.

In comparison to the work in [2][3] our tracking sys-
tem achieves slightly better results in sequences with sparse
or medium density. Contrastingly, our approach leads to
moderately smaller accuracy in scenes showing high den-
sity crowds.

6. Conclusion and Outlook

We presented a structured method for multi object track-
ing. The problem was first defined as a typical maximum a
posteriori problem, which was made tractable by several in-
dependence assumptions. The (somewhat flawed) Markov
assumption was also used in our approach, however, using
a hierarchical processing, the downside of this assumption
(i.e. track fragments and id switches) could be overcome.
We showed the relation of enter and exit probabilities to the
expected trajectory length. This new parameter, together
with the maximal allowable frame skip were the major pa-
rameters in our hierarchical formulation. We evaluate both
parameters over a substantial range and reason for the opti-
mal operating point. In the evaluation, it can be seen that our
approach achieves state of the art results. In many scenarios
the hierarchical approach leads to a performance increase.
Especially the number of track fragments and the number
of ID switches could be decreased significantly.



Sequence Method MOTA [%] MOTP [%] MT [%] PT [%] ML [%] FM IDS Rec. [%] Prec. [%]

PETS
S2L1

[2] 88.3 75.7 86.96 4.35 8.70 - - - -
[3] 81.4 76.1 82.61 17.39 0 21 15 - -
(a) 95.02 72.33 95.65 4.35 0 15 10 97.35 98.64
(b) 96.54 72.05 100 0 0 13 10 98.47 98.66
(c) 97.83 75.30 100 0 0 8 8 99.00 99.14

PETS
S3MF1

[2] 96.3 84.1 100 0 0 - - - -
(a) 98.62 72.42 100 0 0 0 0 100 98.19
(b) 98.62 72.42 100 0 0 0 0 100 98.19
(c) 99.21 77.65 100 0 0 0 0 100 99.14

TUD
Stadtmitte

[2] 68.6 64.0 55.56 0 44.44 - - - -
[3] 60.5 65.8 66.7 33.3 0 4 7 - -
(a) 61.58 64.59 60 40 0 29 19 81.15 83.11
(b) 65.76 64.59 80 20 0 26 19 88.99 81.62
(c) 72.37 72.02 90 0 10 10 8 92.76 83.52

PETS
S2L2

[2] 60.2 60.5 33.33 56 10.67 - - - -
(a) 51.09 58.01 31.58 50 18.42 128 159 60.73 89.94
(b) 51.98 57.50 34.21 47.37 18.42 135 164 62.00 89.76
(c) 57.14 56.36 39.47 42.11 18.42 59 67 63.83 92.14

Table 2: Quantitative results of our tracking system for each dataset used. For each sequence we report results of our approach
after the second stage (a), results after third stage (b) and results after final smoothing (c). Results are compared to “Global
Occlusion Reasoning” [2] and “Continuous Energy Minimization”[3].
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