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Summary 

Genome-wide association studies (GWAS) revealed a plethora of risk loci associated with a 

diverse range of diseases and traits. However, identification and mechanistic elucidation of 

the disease-causing variants within association loci remains a major challenge in medical 

genetics. Divergence in gene expression due to cis-regulatory variation is central to disease 

susceptibility. In this thesis, I developed a computational methodology, called Phylogenetic 

Module Complexity Analysis (PMCA), to identify the specific cis-regulatory functional 

variants as a prerequisite to elucidate their mechanisms in disease. In general, PMCA exploits 

phylogenetic conservation in terms of a complexity assessment of co-occurring transcription 

factor binding sites (TFBS) within cis-regulatory modules (CRMs) regardless of cross-species 

conservation of the complete sequence, to effectively identify cis-regulatory variants within 

GWAS-associated disease risk loci. I draw on the PMCA methodology to study type 2 

diabetes (T2D) susceptibility loci where the specific underlying causal variants are poorly 

characterized and the diverse sets of mechanisms by which they may increase disease risk 

have not been elucidated. Systematic integrative analysis of the total set of established T2D 

risk loci, by PMCA, could reveal an unexpected clustering of distinct homeobox TFBS at 

T2D risk SNP positions. In-depth analysis at the PPARG diabetes risk locus unveiled a novel 

activity of the PRRX1 homeobox transcription factor as a repressor of PPARG2 expression 

and showed its dysregulation in primary human adipose cells from rs4684847 risk allele 

carriers, resulting from SNP-mediated increase of PRRX1 binding affinity. Pursuing the 

computational inferences further revealed that PRRX1, via enhanced binding at the rs4684847 

C risk allele perturbs glyceroneogenesis thereby provoking dysregulation in FFA turnover, 

lipid metabolism and systemic insulin sensitivity. Overall, identification of the cis-regulatory 

variant rs4684847 at the PPARG locus, by PMCA, enabled linking the molecular upstream 
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factor PRRX1 to aberrant downstream mechanisms of impaired lipid handling and insulin 

sensitivity, explaining the GWAS association with T2D. Apart from using the PMCA 

methodology for T2D risk loci, I could also utilize parts of the methodology for the analaysis 

of sequence variants within the adiponectin level-associated adiponectin promoter region and 

for the analysis of cross-species conserved TFBS within the BOB.1/OBF.1 promoter pointing 

to its general usability for the identification of both, regulatory genomic regions and cis-

regulatory sequence variants. Together, these results of this thesis demonstrate that cross-

species conservation analysis at the level of co-occurring TFBS provides a valuable 

contribution to the translation of genetic association signals to disease-related molecular 

mechanisms. 
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Zusammenfassung 

Genomweite Assoziationsstudien (GWAS) haben eine Vielzahl von genomischen Regionen 

mit verschiedensten phenotypischen Merkmalen und Erkrankungen assoziiert. Die 

Identifizierung von genetischen Varianten, die eine Erkrankung hervorrufen, und die 

Aufklärung der zugrundeliegenden Mechanismen ist jedoch nach wie vor eine schwierige 

Herausforderung im Feld der medizinisch ausgerichteten Genetik.  Die Suszeptibilität von 

Erkrankungen wird vornehmlich durch Variabilität der Genexpression bestimmt. In dieser 

Arbeit habe ich eine bioinformatische Methode namens „Phylogenetic Module Complexity 

Analysis“ (PMCA) entwickelt, mit dem Ziel cis-regulatorische genetische Varianten  zu 

identifizieren und damit die Grundlage zu schaffen, deren erkrankungsrelevante 

Mechanismen aufzuklären. PMCA macht sich dabei, anders als die herkömmliche 

Beurteilung von rein Sequenz-basierter Konserviertheitsanalyse, die phylogenetische 

Konservierung von gemeinsam auftretenden Transkriptionsfaktor Bindungststellen (TFBS) in 

regulatorischen Elementen des Genoms zu Nutze und schätzt deren Komplexität ein, um cis-

regulatorische Varianten in GWAS-assoziierten Regionen effizient zu lokalisieren. Die 

entwickelte PMCA Methode wurde zur Analyse von genomweit assoziierten Typ 2 Diabetes 

(T2D) Risikoregionen, deren spezifische kausale Varianten und zugrundeliegenden 

Mechansimen weitestgehend unbekannt sind, herangezogen. Die systematische integrative 

PMCA Analyse aller etablierten T2D Riskoregionen konnte eine überraschende signifikante 

Überrepresentierung von bestimmten Homeobox TFBS exakt an Position von T2D 

Risikovarianten aufdecken. Eine eingehende Analyse des T2D-assoziierten PPARG Lokus 

bestätigte eine Rolle des Homeobox Transkriptionsfaktors PRRX1 als neuer Repressor von 

PPARG2 und darüber hinaus dessen veränderte Bindungsaffinität zu dem rs4684847 Allel in 

primären humanen Präadipozyten. Die bioinformatischen Rückschlüsse zeigten 
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darüberhinaus, dass PRRX1 durch erhöhtes Binden an das rs4684847 Risko Allel (C Allel) 

die Glyceroneogenese in Präadipozyten beeinträchtigt und somit zu einer Störung des freien 

Fettsäurehaushalts, des Lipidmetabolismus und der systemischen Insulinsensitivität führt. 

Somit konnte die PMCA-basierte Identifizierung der cis-regulatorischen Variante rs4684847 

im PPARG Lokus den Link zwischen dem Faktor PRRX1 und dem T2D zugrundeliegenden 

Mechanismus herstellen. Abgesehen von der PMCA-basierten Analyse von T2D-relevanten 

Suszeptibilitätsloki konnte ich Teile des bioinformatischen Ansatzes zum Einen für die 

Analyse von Sequenzvarianten innerhalb der mit Adiponektinspiegeln assozierten 

Adiponektin Promoterregion anwenden und zum Anderen evolutionär konservierte TFBS 

innerhalb des BOB.1/OBF.1 Promotors lokalisieren und somit die generelle Nutzbarkeit von 

PMCA für die Identifizierung von regulatorischen Regionen und cis-regulatorischen 

Varianten validieren. Die Ergebnisse dieser Arbeit demonstrieren in ihrer Gesamtheit, dass 

die Analyse von konservierten Mustern gemeinsam auftretender TFBS einen wertvollen 

Beitrag zur Translation von genetischen Assoziationssignalen in molekulare Erkrankungs-

Mechansimen leisten kann. 
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1 Introduction 

1.1  Complex traits genetics and complex trait 

mapping in humans  

During the last decade, human disease genetics has experienced a revolution. Since the first 

draft of the human genome sequence – the blueprint of life - was released to the public by two 

independent groups (Lander et al., 2001; Venter, 2001), the genome-wide study of heritable 

and somatic human variability became reality, covering a wide spectrum of diseases and 

traits. However, the big promise that within the genome we would find the blueprints for 

human function and dysfunction, i.e. disease, is yet to be fulfilled. One of the main challenges 

in the post-genomic era is to translate the wealth of genomic data into understanding the 

genetic basis of human disease. 

In 1859, Charles Darwin recognized that natural selection requires variation in traits that is 

passed along to offspring. Genetic variation describes naturally occurring genetic differences 

among individuals of the same species. It is estimated that any individual genome harbors 

approximately 3 million variants which translates into a variation at every 1,000 nucleotides 

(ENCODE Project Consortium, 2012). The most common form of genetic variation between 

individuals is called single nucleotide polymorphisms (SNPs). Other types of variation 

include insertions and deletions (indels), copy number variants (CNVs), microsatellites and 

structural variations. The term SNP was initially referred to as a nucleotide polymorphism 

above a 5% frequency threshold in the population, and is currently referred to as a position 

different to the human reference sequence (Human Genome Sequencing Consortium, 2004), 

regardless of the frequency in the population.  
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Generally, genetic disorders are categorized into monogenic Mendelian diseases and complex 

disorders. Mendelian diseases, in which variation in a single gene is both necessary and 

sufficient to cause disease, run predictably and consistently in families. Common complex 

diseases in contrast afflict most of the population and have a multifactorial, polygenic 

background. Although it seems paradoxical that deleterious alleles reach relatively high 

frequencies in a population, those disease causal common alleles persist due to evolutionary 

forces such as random drift or natural selection (McClellan and King, 2010). Examples 

include late onset of diseases without effects on reproductive fitness over longer periods (e.g. 

Alzheimer´s disease), pleiotropic effects of variants that result in balancing selection (Wagner 

and Zhang, 2011), geographic-specific variation, and diseases resulting from recent changes 

in living conditions such as obesity, heart disease and diabetes. The analysis of common 

complex disorders is particularly challenging because they do not follow simple Mendelian 

inheritance patterns and are additionally characterized by multiple gene-gene interactions 

(multiple loci interact to increase disease susceptibility), gene-environment interactions, 

allelic heterogeneity (different alleles at the same locus increase disease susceptibility), locus 

heterogeneity (mutations at different loci increase disease susceptibility), incomplete 

penetrance (not all individuals inheriting the disease-predisposing allele manifest the 

phenotype) and pleiotropy (a genetic variant influences more than one phenotype).  

For rare monogenic traits, family-based linkage studies and positional cloning have been 

spectacularly successful for ‘Mendelian’ disorders in annotating functional consequences 

because genetic risk factors are highly penetrant. Two well-known examples are the CFTR 

gene in cystic fibrosis (Riordan et al., 1989) and the HTT gene in Huntington´s disease 

(Gusella et al., 1983). In contrast to Mendelian disorders, extensive linkage analysis and 

positional cloning in the 1990s failed to identify the genes underlying specific common 

diseases, owing to the lack of strong linkage signals for a single gene locus (Risch and 
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Merikangas, 1996). This is reasonable because common diseases result from the complex 

interplay of environmental factors and many different individual low relative risk 

susceptibility genetic variants, where each variants explains only a small proportion of the 

total population risk (Cardon and Abecasis, 2003). The penetrance (effect size) of individual 

common causal variants is therefore too small to allow detection via cosegregation within 

pedigrees. To overcome the fundamental barrier of polygenicity in common disease and trait 

mapping, Risch and Merikangas, 1996 showed in a landmark theoretical paper that a large-

scale population-based association mapping involving one million variants in the genome and 

a sample of unrelated individuals could be more powerful than performing family-based 

linkage analysis with a few hundred markers. However, it has become clear that the 

introduction of the genome-wide study of disease- and trait-related genomic loci would 

require a paradigm shift which was realized by several parallel critical advances:  

1. Comprehensive catalogue of human genetic variation 

During the last decade, rapid progress in genome-wide genotyping and sequencing by 

the HapMap Project (Lander et al., 2001; http://hapmap.ncbi.nlm.nih.gov/) and the 

1000 Genomes Project (1000 Genomes Project Consortium, 2012; 

http://www.1000genomes.org/) has allowed for mapping of human genetic variation 

within and between populations. The result was a comprehensive catalogue of 

common (minor allele frequency (MAF) > 5%), lower-frequency (0.5-5%) and very 

rare/low-frequency (< 0.5%) genetic variation, including 38 million SNPs, 1.4 million 

bi-allelic short indels, and 14,000 larger deletions, and a number of structural variants 

(The International HapMap Consortium, 2005; 2007; 1000 Genomes Project 

Consortium, 2010, 2012). The total number of common mapped SNPs identified to 

date exceeds 10 million most of which  likely  have  no  functional  significance  and  

persist  by  chance  in  the absence  of  selective  pressure.   
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2. Haplotype structure of the human genome 

Association studies typically use phenotypes measured in collections of unrelated 

individuals and dense marker (tagSNP) information to detect statistically significant 

correlations between a marker genotype and the analyzed trait. This principle relies on 

linkage disequilibrium (LD) which is defined as the nonrandom association between 

alleles at different loci, based on the fact that nearby SNPs tend to be strongly 

correlated with each other across individuals. When a new mutation arises on a genetic 

background, it is in complete association with all of the variants present on that 

chromosome. Over time these associations are broken down by homologous 

recombination (Hartl and Clark, 2007). Generally, loci that are physically close 

together, which therefore are rarely affected by recombination events, exhibit stronger 

LD than loci that are farther apart on a chromosome (Hill and Robertson, 1968). 

Common genetic variations are therefore tightly correlated in structures called 

haplotypes that have not been broken up by meiotic recombination events and are 

separated by recombination hotspots that occur every 100-200 kb (Reich et al., 2002) 

and that are inherited together through generations (Paigen and Petkov, 2010). The 

haplotype structure of the human genome, reflecting recent expansion from a small 

founding population (Hartl and Clark, 2007), was investigated by the International 

HapMap project, which was launched in 2002. The outcome was a limited set of 

SNPs, around 500,000, that could cover ~90% of the common genetic variation in the 

population.  

3. High-throughput genotyping technologies  

Taking advantage of the identified correlation structure of the human genome, 

genome-wide genotyping of SNP marker panels became possible with the introduction 
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of microarrays (Gunderson et al., 2005). Those high-throughput technologies enabled 

the unbiased detection of statistically genome-wide significant differences in genotype 

frequencies between thousands of unrelated individuals who have the analyzed 

phenotype and the general population. In a case-control genome-wide association 

study, large population-based sample collections of unrelated individuals are 

genotyped typically for a set of 100,000-2,000,000 markers to detect common variants 

associated with complex disease and diverse molecular phenotypes. Their application 

has facilitated detection of even modest risk alleles, with odds ratios of less than 1.1. 

The theoretical concept for the systematic unbiased study of common genetic variants was 

therefore realized in 2006 – with the introduction of genome-wide association studies 

(GWAS) - an important turning point for human genetics studies.  

 

1.2  The GWAS revolution and its challenges  

In the last seven years, GWAS yielded a plethora of loci associated with diverse traits, such as 

body height and body mass index (BMI, kg/m2), as well as with the entire spectrum of 

complex diseases, including neurological disorders, inflammatory diseases, different types of 

cancer, cardiovascular diseases, and metabolic disorders (Burton et al., 2007a; Burton et al., 

2007b; Hakonarson et al., 2007; Rioux et al., 2007; Scott et al., 2007; Zeggini et al., 2007; 

Eeles et al., 2008; Zeggini et al., 2008). One of the major advances of the GWAS approach – 

in contrast to candidate gene studies which depend on prior knowledge of the trait - is that it 

permits an unbiased scan of the human genome which facilitates the identification of novel 

trait- and disease-related loci without requiring any a priori knowledge. However, despite the 

introduction of those novel genomic technologies and analytical strategies, signals emerging 
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from GWAS have rarely been traced to causal variants and even more rarely to the elucidation 

of disease-related mechanisms.  

One of the confounding factors arising from those association studies is linkage 

disequilibrium (Figure 1). Complex trait mapping by GWAS is based on the premise that a 

causal variant is located on a haplotype, and therefore a marker allele in LD with the causal 

variant should be associated only by proxy with the trait of interest. This means that once a 

variant association to a phenotype is discovered, the probability of any given associated tag 

variant being causal is miniscule. In fact, when the authors of The 1000 Genomes Project 

evaluated GWAS hits in Europeans, they found that each signal is, on average, in high LD 

with 56 variants (51.5 SNPs and 4.5 indels) (1000 Genomes Project Consortium, 2012). 

GWAS signals are therefore simply markers for large genomic regions in LD that contain 

many genes, in which the phenotypically causal variants are hidden (Hindorff LA; The 

ENCODE Project Consortium, 2012). In that scenario, regions of strong LD can be large, and 

tag SNPs associated with a phenotype have been found to be in perfect LD with potential 

causal SNPs several hundred kilobases away.  

While GWAS have identified disease-associated genomic regions, they have hardly been able 

to find the specific causal sequence variants and the underlying disease mechanisms. The 

identification of causal variants has been largely hampered by the fact that large majority of 

disease-associated variants map in non-coding regions of the genome (93% of disease-

associated variants are non-coding, Maurano et al., 2013), where it remains a major challenge 

to predict and assay a variant’s phenotypic impact (see Section 1.4 `The Role of Non-coding 

Variation in Human Traits and Diseases`). Initial approaches for pinpointing the few 

phenotypically causal variants among the many variants present in the genome have been 

largely limited to predicting the effects of protein-coding sequence changes (often called “the 
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low hanging fruits”) based on constraint-, biochemical- and structural-based prediction tools 

such as PolyPhen-2 (Ng and Henikoff, 2003; Adzhubei et al., 2010; Ward and Kellis, 2012).  

 

Figure 1: The resolution of results from GWAS and whole genome sequencing studies is 
mainly limited by the linkage disequilibrium (LD) structure of the human genome. Particular 
alleles, indicated as coloured circles, at neighboring loci tend to be co-inherited even though 
recombination limits the extent of the region of association over time. The disease-causing 
mutation is indicated by a red star. GWAS tag SNP markers that are physically close tend to 
remain associated with the ancestral mutation. 

 

Overall, the recent genotyping and sequencing technologies have identified a great number of 

disease- and trait-associated genomic loci as an important step towards understanding disease 

genetics, but we now face the challenge of identifying the causal variants and a mechanistic 

understanding for how these variants contribute to disease. 

A  recent  Nature  Genetics  editorial  on  post-GWAS  analyses  began  to  put  this  problem  

into  sharper focus and suggested that there should be a more significant investment in 

functional characterization of risk loci (On beyond GWAS, 2010). In his ‘2011 vision for the 

future of genomics research’ E. Green from the Human Genome Research Institute at the NIH 

projected that the current development of genomics will propel personalized medicine 

approaches (Green and Guyer, 2011). This ‘path towards an era of genomic medicine’ 
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strongly depends on establishing ‘novel strategies for identifying non-coding variants that 

influence disease’ (page 207). In this thesis, I aimed to develop a systematic means for 

identifying the specific functional variants within elusive tag SNP-containing LD blocks that 

have been associated with disease via GWAS. A common complex disease, type 2 diabetes 

(T2D) was analyzed as proof-of-concept. 

 

1.3  The genetic architecture of type 2 diabetes 

The global epidemic of type 2 diabetes (T2D) is a major thread of 21st century and is a leading 

cause of morbidity and death worldwide, contributing to development of chronic 

complications such as coronary heart disease, stroke, vascular diseases, renal failure and 

amputation (Shaw et al., 2010). In 2011, 366 million people suffer from diabetes and the 

prevalence is expected to rise dramatically worldwide to 552 million by 2030 

(http://idf.org/diabetesatlas/5e/the-global-burden). The global health care expenditures on 

T2D are expected to increase from 338 billion dollars in 2010 to 440 billion dollars in 2030 

(Zhang et al., 2010).  Mechanistically, T2D arises from impairment in the ability of fat, 

muscle, and liver to respond to insulin, i.e., insulin resistance, followed by a failure of the 

pancreatic ȕ-cell to secrete adequate insulin in response to glucose, thereby leading to 

hyperglycemia (Kahn, 1994). T2D is a genetically heterogeneous disease, and is thought to 

result from the complex interaction of environmental factors acting on a susceptible genetic 

background. The heritable component of T2D is obvious from the familial clustering of T2D 

(40% versus 6% in first-degree relatives of T2D patients versus general population), the 

higher concordance rate of T2D in monozygotic compared to dizygotic twins, and the high 

T2D prevalence in specific ethnic groups, e.g., Pima Indians and Mexican Americans (Doria 
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et al., 2008). The genetics component of T2D risk (heritability) is generally estimated to 

account for 0.49 (Lander and Schork, 1994). Until 2007, the search for T2D genetic factors 

was rather unsuccessful with 3 gene loci identified by linkage analysis and candidate gene 

approaches (PPARG, TCF7L2, KCNJ11). Over the past years, the introduction of GWAS and 

full-sequencing studies boosted the exploration of T2D genetics. Since 2007, GWAS have 

reproducibly identified a plethora of metabolic risk loci, including 65 susceptibility loci 

robustly associated with risk of T2D (Prokopenko et al., 2009; Bonnefond et al., 2010; Dupuis 

et al., 2010; Voight et al., 2010) (Figure 2). Those genotyping efforts have unequivocally 

shown that the majority of T2D affecting loci map to non-coding regions in the human 

genome (Hindorff et al., 2009). The affected genes and transcript isoforms responsible for 

mediating the effect mostly remain unknown. This gap relies on the fact that moving from the 

dearth of candidate variants located in those associated regions to the etiological T2D 

underlying genetic mutation has rarely been achieved, except for the TCF7L2 (Gaulton et al., 

2010) and WFS1 (Stitzel et al., 2010) loci. Yet, pinpointing diabetes-causal variants, the genes 

that they affect and the regulatory mechanisms that might converge on T2D loci is a 

prerequisite to understanding the biological mechanisms underlying T2D pathogenesis, and to 

eventually develop prognostic and diagnostic means and targeted pharmaceutical 

interventions.  
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Figure 2: The Genetic Architecture of type 2 diabetes. All GWAS associations with p-
value � 5.0 × 10-8, published in the GWAS catalogue (http://www.genome.gov/gwastudies) 
up to the end of October 2013 (indicated as coloured circles). Genomic loci associated with 
type 2 diabetes are highlighted in orange. 

 

 

1.4  The role of non-coding variation in human traits 

and diseases 

Changes in patterns of gene expression are widely believed to underlie many of the 

phenotypic differences within and between species. Gene expression is the process by which 

information from a gene is used in the synthesis of a functional gene product, i.e. proteins or 

functional RNA molecules such as ribosomal RNA (rRNA), transfer RNA (tRNA) or small 

nuclear RNA (snRNA). This flow of genetic information happens one way as described by 
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Francis Crick in his early Central Dogma of molecular biology referring to the transfer of 

genetic information from DNA to RNA to proteins (CRICK, 1970). Gene expression in 

eukaryotes is regulated at different levels including transcription, RNA splicing, translation, 

and post-translational modification of a protein. Transcriptional regulation is achieved 

through combinatorial interactions between regulatory elements and a variety of factors that 

modulate the recruitment and activity of RNA polymerase (Figure 4). Briefly, these 

transcriptional regulators include (1) transcription factors, which bind specific DNA 

sequences within proximal promoter elements or enhancer regulatory regions; and (2) 

chromatin remodellers, which affect the chromatin structure through conformational changes 

or by covalently modifying histone tails, such as polymerases, helicases, topoisomerases, 

kinases, chaperones, proteasomes, acetyltransferases, deacetylases and methyltransferases. (3) 

The preinitiation complex, which binds at the core promoter and recruit RNA polymerase II 

(Pol II). Overall, gene expression is tightly controlled by gene regulatory regions, so called 

cis-regulatory modules (CRM), comprising clusters of transcription factor binding sites that 

govern the recruitment of chromatin modifiers and cofactors (see Section 1.5 “Importance of 

Computational Approaches for Cis-regulatory Variant Discovery” for detailed description of 

the role of TF binding in CRM for gene regulation). In that scenario regulatory elements 

involve (1) promoters: short stretches of DNA sequence, typically within 200bp of the 

transcriptional start site (TSS) of a gene, which are composed of the core promoter and nearby 

proximal regulatory elements; (2) enhancers: long-distance transcriptional regulatory 

elements, which control gene expression in a highly spatial and temporal manner (Visel et al., 

2009). (3) silencers: binding sites for transcription factor that reduce transcription by 

competitively binding at an activator binding site, blocking the binding of a transcription 

factor, or recruiting chromatin-modifying factors; (4) Insulators: DNA stretches (typically 

0.5-3kb) that prevent inappropriate gene regulation by precluding enhancer – promoter 
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interactions and spreading of repressive chromatin; (5) Locus Control Regions: multiple cis-

regulatory elements cooperatively acting on clusters of genes, thereby detrmining the context-

dependent gene expression.  

 

The question thus arises: why is non-coding variation so important for evolution, species 

development, cell differentiation processes and eventually complex phenotypes? Emile 

Zuckerkandl, one of the pioneers of molecular evolutionary biology, proposed in 1964 that 

phenotypes could change by altering the timing or rate of protein synthesis (Zuckerkandl and 

Pauling, 1965) (Figure 3). It is obvious that despite the phenotypic diversity of species, the 

DNA sequence diversity is surprisingly limited. Mary-Claire King and Allan Wilson 

underscored this paradox by comparing the chimpanzee and human genome and the challenge 

“to explain how species which have such substantially similar genes can differ so 

substantially in anatomy…” (King and Wilson, 1975). From this landmark paper came the 

idea that changes in gene regulation, not differences in protein sequences, drives phenotypic 

divergence in morphology and are responsible for adaptive evolution within and between 

species (King and Wilson, 1975; Bamshad et al., 2002; Hamblin et al., 2002; Tishkoff et al., 

2007). A number of examples in humans have been described that underscore the role of 

regulatory variation as an important component for evolutionary change (Bamshad et al., 

2002; Hamblin et al., 2002; Bersaglieri et al., 2004; Tishkoff et al., 2007). One of the first and 

well known examples was the lactase persistence phenotype in European populations; 

Ennattah and colleagues mapped a distal enterocyte-specific cis-regulatory variant upstream 

to LCT, a gene encoding the lactase enzyme in the small intestine (Enattah et al., 2002).  
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Figure 3:  Letter from Linus Pauling to Emile Zuckerkandl. September 12, 1964. 
In his letter to Zuckerkandl, Pauling details the logical and mathematical foundation 
underlying his thinking on evolution and molecular disease (adapted from 
http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/blood/corr/corr465.7-lp-
zuckerkandl-19640912-02-large.html). 

�

Regarding complex disease genetics, GWAS have shown that 93% of strongly disease- or 

trait-associated variants emerging from GWAS localize within the non-genic region of the 

genome and may affect gene expression rather than changing protein structure (Maurano et 

al., 2013). Indeed, the variability of gene expression is highly heritable (Dixon et al., 2007; 

Stranger et al., 2007), and common trait-associated loci in non-coding regions are highly 

enriched for expression quantitative trait loci (eQTLs) (Nicolae et al., 2010; Nica et al., 2011), 

suggesting that many common disease variants act by altering transcript levels. Very recently, 

the large-scale ENCODE project revealed that regulatory variants are pervasive throughout 

the genome – with 3.85 million and 1.01 million variants overlapping DNase hypersensitive 

sites (DHS) peaks and DHS footprints, respectively (The ENCODE Project Consortium, 

2012). More importantly, disease- and trait-associated variants were shown to be highly 
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enriched within regulatory DNA marked by DHS peaks, DHS footprints and ChIP-Seq peaks 

(Maurano et al., 2012a; Schaub et al., 2012; The ENCODE Project Consortium, 2012), 

strongly indicating that variants modulating gene regulation are major contributors to 

common disease susceptibility among individuals and their functional understanding is thus 

critical to interpret GWAS and sequencing data. In this thesis, I thus concentrated on the 

integration of functional and genomic data to elucidate non-coding variants that may 

mechanistically mediate genetic predisposition to a disease.  

 

1.5  Importance of computational approaches for cis-

regulatory variant discovery 

G. Cooper and J. Shendure provided a state of the art review on ‘approaches to estimate the 

deleteriousness of single nucleotide variants’, pointing out both the power and limitations of 

current experimental and computational approaches (Cooper and Shendure, 2011). They 

emphasized the imperative of the ‘precise delineation of causal variants’ located in the non-

coding genome as the ‘fundamental goal of human genetics’. Recent chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) (Park, 2009) and 

DNase hypersensitivity analysis (DNase-seq) that map histone modification marks (Boyle et 

al., 2008), as well as data on accessible chromatin regions, have been used to prioritize 

candidate functional cis-regulatory variants out of a much larger number of candidate variants 

in GWAS-inferred LD blocks (Dimas et al., 2009; Gaulton et al., 2010; Ernst et al., 2011; 

Nica et al., 2011; Ward and Kellis, 2011; Maurano et al., 2012b; The ENCODE Project 

Consortium, 2012). However, experimental approaches based on harnessing functional 

genomics data have the disadvantage that they require access to appropriate disease-/trait-
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relevant human tissue, or to tissue from a particular developmental time stage (which 

frequently is impossible), and they are further hampered by the spatial, temporal, 

environmental and epigenetic complexity of gene regulation (Dimas et al., 2009; Nica et al., 

2011). Given that it is not possible to assay all candidate variants in all tissue types under all 

physiological relevant conditions means that potential causal SNPs will likely be missed. 

These constraints imply a great need for bioinformatics approaches that could reliably assess 

the regulatory role of specific non-coding variants, while still rather elusive, would be highly 

desirable.  

So far, phylogenetic conservation at the sequence level has been a common denominator in 

the search for regulatory regions in the non-coding parts of the genome (Pennacchio et al., 

2006; Visel et al., 2009; Lindblad-Toh et al., 2011). This is based on the reasonable 

hypothesis that evolutionary conservation is a strong indicator of molecular functionality 

(Pennacchio et al., 2006; Visel et al., 2009; Lindblad-Toh et al., 2011). Under the assumption 

that deleterious mutations within genomic regions with sequence-specific functionality will be 

removed by purifying selection as opposed to sequences without functionality that will accept 

mutations at an underlying neutral rate, conservation of sequences that share common 

ancestry could indicate coding and functional non-coding regions within the genome. 

Therefore, considering that evolution may be regarded as the ultimate mutagenesis 

experiment, comparative sequence analysis has been proposed to infer deleteriousness of a 

genomic mutation (Cooper and Shendure, 2011). In disease genetics, several computational 

approaches that use evolutionary conservation have therefore been proposed to predict coding 

(Adzhubei et al., 2010) and non-coding candidate variants for follow-up (e.g., SiPhy ʌ 

conservation algorithm Lindblad-Toh et al., 2011 and Genomic Evolutionary Rate Profiling 

GERP, Cooper et al., 2005). Yet, those algorithms based on pure sequence alignment have 

been only successful in identifying deleterious protein-altering variants from exome studies 



 

31 
�
�

and many software tools estimating the functional impact of a specific amino acid substitution 

in a protein are now publically available. Until very recently, it was widely thought that 

sequencing more and more vertebrate genomes for comparative analysis, might eventually 

serve to identify phenotypically causal non-coding mutations. However, although sequences 

that are critical for organism development, reproduction and survival reveal strong selective 

constraint (Nobrega et al., 2003; Visel et al., 2009), genome-wide comparative studies have 

indicated that the fraction of bases under selection corresponds to a minimum of the 

functional genome: “many functional elements are seemingly unconstrained across 

mammalian evolution” (The ENCODE Project Consortium, 2012). Indeed, the majority of 

transcribed and regulatory elements in the genome differ between closely related species 

(Dermitzakis and Clark, 2002; Kasowski et al., 2010) and between individuals within the 

same population (Stranger et al., 2007), making their evolutionary constraint-driven detection 

particularly challenging. Data suggest that the majority of binding sites for specific 

transcription factors (TF) is not constrained between species, reflecting the lineage-specific 

use of regulatory elements (Dermitzakis and Clark, 2002; The ENCODE Project Consortium, 

2007; Blow et al., 2010; Schmidt et al., 2010; The ENCODE Project Consortium, 2012). 

Indeed, inter- and cross-species differences in gene expression are often driven by changes in 

transcription factor binding sites (TFBS) (Kasowski et al., 2010) and their rapid evolutionary 

turnover results in many regulatory regions that are functionally conserved but have little 

evidence of conservation at sequence level (Ludwig et al., 2000; Pennacchio et al., 2006; 

Sosinsky et al., 2007; The ENCODE Project Consortium, 2007; Dimas et al., 2009; Visel et 

al., 2009; Kasowski et al., 2010; Lindblad-Toh et al., 2011; The ENCODE Project 

Consortium, 2012). Thus, the predictive power of classical nucleotide-level alignment-score 

approaches remains limited for causal variant discovery in non-coding regions from GWAS 

and whole genome sequencing studies (Blow et al., 2010; Maurano et al., 2012b). 
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The Central Dogma of molecular biology refers to the transfer of genetic information 

from DNA to RNA to proteins (CRICK, 1970). Though the initial sequencing of the human 

DNA sequence resulted in 3 billion nucleotide “letters” and a surprisingly small number of 

22,000 distinct protein-coding loci (making up little more than 1% of the genome), this 

sequencing effort alone has largely failed to reflect the complexity that make our individuals 

unique. The widely held view that the human genome is mostly 'junk DNA' was finally 

debunked by the recent ENCODE project showing that 80% of the genome contains elements 

linked to biochemical functions – including 2.89 million unique DHSs, 8.4 million distinct 

DNase I footprints, and 636,336 binding regions (ENCODE. 2012). During development, a 

single fertilized precursor cell gives rise to a highly complex, multicellular organism 

comprising a large variety of cell types and tissues. This process of cell differentiation and the 

determination of cell type morphologies and functions are generally achieved by the 

extraordinary complex and dynamic regulation of gene expression in response to 

environmental stimuli and developmental programs.  

A major cellular process underlying the central dogma of molecular biology is cis-

regulation. This process involves the binding of effector molecules to their binding sites in 

non–coding DNA regions. In eukaryotes, gene expression is typically controlled by multiple 

cis-regulatory genomic elements (Figure 4, upper panel), whose spatiotemporal-specific 

activities additively contribute to target gene expression (Yáñez-Cuna et al., 2013). These 

regulatory regions tend to be organized into cis-regulatory modules (CRMs) comprising 

clusters of transcription factor binding sites (TFBS) for the coordinated binding of 

transcription factors (TFs) (Figure 4) (Arnone and Davidson, 1997; Pennacchio et al., 2006; 

Gerstein et al., 2012).  
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Figure 4: Regulation of gene expression (transcription). Chromatin is composed of DNA, 
which is wrapped around histones to form nucleosomes. Chromatin exists in a condensed, 
transcriptionally silent form (heterochromatin) and in a transcriptionally active form 
(euchromatin). Boundaries between heterochromatin and euchromatin may be marked by 
insulators. The region around the transcription start site (TSS) is often composed of a core 
promoter and a proximal promoter upstream of the TSS. Sequence-specific transcription 
factors bind to specific binding sites (TFBS) that are near to the TSS (proximal elements) or 
that are far away from it (enhancers), thereby recruiting RNA polymerase II to activate 
transcription of a gene. TFBS typically occur in clusters within so called cis-regulatory 
modules (CRMs). Adapted from Lenhard et al., 2012. 
 
 

TFBS, the building blocks of the cis-regulatory code, are short DNA sequences - 

typically 9-12bp (Jolma et al., 2013) – that are required for sequence-specific TF binding. A 

TFBS motif is most often described as a position weight matrix (PWM): a model for a fixed 

length sequence that specifies the probability of each nucleotide at each position (Hardison 

and Taylor, Nature 2012). Hence, the scale in the most popular visualization of TFBS 

matrices, the so called LOGO, is in bits (information content). Upon binding to their specific 

TFBS, TFs govern the recruitment of chromatin modifiers and cofactors thereby stabilizing 

the transcription initiation machinery and eventually regulating the spatiotemporal-specific 

activation or repression of target gene transcription. Of importance, enhancers placed out of 

their endogenous genomic context recapitulate TF binding and DNA and histone 
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modifications, suggesting that the information for gene expression patterns is encoded within 

the primary DNA sequence of the enhancers (Yanez-Cuna et al., 2012).  

CRMs thus integrate a variety of upstream signals – translating this information into 

the regulated expression of coordinated sets of genes, making them an obvious target to 

achieve broad phenotypic changes as a result of adaptive evolution (Blow et al., 2010; 

Schmidt et al., 2010; Taher et al., 2011). The computational CRM discovery is an important 

challenge in computational biology due to the plasticity of the mammalian regulatory DNA 

landscape and the high diversity and variability of TFBS. TFBS are variable in length and 

typically interspersed by gaps of neutral sequence. Moreover, even though TFBS often occur 

in specific combinations within a regulatory sequence, the order and arrangement of TFBS 

within CRMs of similar function is extraordinarily flexible. Thus, CRM are often functionally 

conserved, rather than conserved on a nucleotide level. As delineated above, the complex 

structure and flexibility of gene regulatory regions makes it particularly difficult to use 

existing computational approaches that assess sequence conservation or singleton TFBS 

annotation to detect functional regulatory genomic regions and within regulatory variants. 

Despite the critical importance of CRMs, no algorithms have so far been developed to harness 

the potential power of conserved TFBS patterns within CRMs to predict regulatory variants. 

 

1.6  Aims of the thesis 

Dissecting disease loci and their underlying molecular mechanisms depends on identifying the 

phenotypically causal disease variants. GWAS have largely failed to find the specific causal 

sequence variants that lead to proven disease mechanisms, despite that a plethora of highly 

significant SNPs have been found in the non-coding part of the genome. Although 

transcription is understood in broad conceptual terms, building predictive models for the 

identification of cis-regulatory sequence variants that affect transcriptional regulation has 
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proven challenging. Computational approaches that reliably assess the regulatory role of 

specific genetic variants would therefore be highly desirable. In this thesis, I concentrated on 

developing a computational methodology for finding and better defining functionally 

conserved regulatory regions, with the aim to help pinpointing cis-regulatory sequence 

variants that may explain disease associations by changing gene expression levels (Figure 5).  

 

 

Figure 5: Discovery of cis-regulatory sequence variants and their affected disease genes via 
systematically testing all sequence variants within a GWAS-associated genomic region for the 
presence of conserved co-occurring TFBS patterns. One representative TFBS matrix is 
explicitly shown. TFBS: transcription factor binding sites; TFBS modules: two or more TFBS 
occurring in the same order and in certain distance range in all or a subset of the orthologous 
sequences. 
 

 

I hypothesized that the presence of patterns of evolutionarily conserved TFBS in a CRM, 

within genomic regions surrounding a candidate variant is predictive of its cis-regulatory 

functionality, regardless of the cross-species conservation of the complete sequence on the 

nucleotide level (Figure 6). In order to test this hypothesis I developed a bioinformatics 

method, called “Phylogenetic Module Complexity Analysis” (PMCA), that is able to detect 

and classify genetic regions that contain evolutionary conserved TFBS patterns, thus leading 

to the identification of cis-regulatory genomic regions and the cis-regulatory sequence 
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variants within them that may mechanistically mediate genetic predisposition to a disease. 

The method relies primarily on regional co-occurrences and conservation of TFBS into 

clusters of transcriptional activity as a means to finding the functional regulatory variants and 

the effector molecules. I used primarily T2D as a showcase where novel cis-regulatory 

variants were pinpointed and novel TFBS were determined for T2D.  

 

 

Figure 6: PMCA extends sequence conservation to functional conservation. The genomic 
location of TFBS is rapidly evolving, challenging the use of sequence alignment algorithms 
for localizing gene regulatory elements. To get around this issue, PMCA exploits the presence 
of complex patterns of evolutionarily conserved co-occurring TFBS, regardless of the cross-
species conservation of the complete sequence, to effectively identify functional cis-
regulatory variants with a role in disease.  
 

In general, this thesis includes the computational PMCA methodology and its application on 

(1) GWAS-associated T2D risk loci; (2) the adiponectin locus associated with adiponectin 

levels; (3) the BOB.1/OBF.1 promoter. Those results are either in press or recently published 

and are described in the following chapters. 
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2 Results 

 

2.1 Computational Phylogenetic Module 

Complexity Analysis (PMCA) Methodology 

 

The content of this chapter pertains to the computational “Phylogenetic Module Complexity 

Analysis” (PMCA) developed in this thesis and describes the general design of the method.  

The PMCA methodology is the basis for the manuscript entitled “Leveraging cross-species 

transcription factor binding site patterns: from diabetes risk loci to disease mechanisms” (in 

press at Cell, CELL-D-13-00664). In the course of developing the complexity-based PMCA 

framework, I used basic tools of the commercially available Genomatix software suite 

(Genomatix Co., Munich), i.e. the RegionMiner for extraction of orthologous regions and the 

FrameWorker, which extracts TFBS modules from a set of DNA input sequences. The 

processing of a large number of SNPs, and computation of randomized background 

distributions, needed the implementation of PMCA in a software interface. This was only 

possible in a collaborative work with Bernward Klocke, PhD (Genomatix, Munich) and with 

the constructive help of Karsten Suhre (Weill Cornell Medical College in Qatar) for writing 

the pseudo-code. PMCA can be run by using the command-line version and scripting of the 

processing and counting of the output (XML format). This chapter describes (1) the general 

design of the PMCA method and (2) a detailed description of the PMCA algorithm in the 

form of a pseudo-code that an experienced bioinformatician can use to implement the steps 

described in the PMCA method in an automated manner. I refer to Appendix “PMCA 
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Procedures: General design of the PMCA method” for a step-by-step example for running 

PMCA manually using the Genomatix graphical user interface.  

 

2.1.1  PMCA Procedures: General design of the PMCA 

method  

The starting point of the PMCA method is a genetic variant that has been reported in a 

genome-wide association study as a tagSNP for the risk of a given disease or a phenotype. For 

the analysis in this manuscript, we individually test all non-coding SNPs that are in linkage 

disequilibrium (LD, r2>0.7) with the tag SNP (please note that any set of sequence variants 

may be analyzed by PMCA). For each non-coding SNP the PMCA method shall eventually 

provide a classification of the region surrounding the non-coding SNP as being either 

complex or non-complex. Complex regions are defined as being significantly enriched in 

phylogenetically conserved TFBS modules according to the scoring scheme we developed for 

this purpose. In non-complex regions, in contrast, the number of phylogenetically conserved 

TFBS modules does not exceed what is expected by chance. We estimate this significance 

using randomized sequences. 

 The following procedure is executed for each non-coding SNP. I used the 

commercially available Genomatix software suite (Genomatix Co., Munich) for these tasks, 

i.e. the RegionMiner for extraction of orthologous regions and the FrameWorker, which 

extracts TFBS modules from a set of DNA sequences. Briefly, the FrameWorker tool returns 

the most complex TFBS modules that are common to the input sequences, satisfying the user 

parameters. TFBS modules are defined as all TFBS that occur in the same order and in a 

certain distance range in all (or a subset of) the input sequences. However, in principle any 

equivalent method can be applied.  
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1. The flanking region (±60nt) of the non-coding SNP is extracted from the human genome; 

2. Ortholog regions are searched in the genomes of 15 fully sequenced vertebrate species and 

extracted if a region with a high degree of similarity is found; 

3. TFBS are identified in the set of ortholog sequences using position weight matrices from 

the Genomatix library; 

4. TFBS modules are identified in each ortholog sequence; TFBS modules are specifically 

defined as all two or more TFBS that occur in the same order and in a certain distance 

range in all or a subset of the input sequences.  

5. Phylogenetically conserved TFBS (�TFBS), TFBS modules (�modules), and occurrence of 

TFBS in TFBS modules (�TFBS_in_modules) are counted.  

6. Repeated counting weighs the degree of cross species conservation and the number of 

TFBS in the modules. This counting scheme alone would overestimate genetic regions 

that only have orthologs in a subset of closely related vertebrate species (e.g. mammal-

lineage specific TFBS). To account for this possibility, we also determine 

phylogenetically conserved TFBS with more restricted parameters (�restr-TFBS, details see 

below). 

7. Steps 3-5 are repeated one thousand times using randomized input sequences to estimate 

the probability of observing a given �TFBS, �restr-TFBS, �modules, and �TFBS_in_modules. 

Randomization of the sequences is done using local shuffling in order to conserve local 

nucleotide frequency distributions. The randomization accounts for the issue that certain 

TFBS might be favored merely due to the sequences nucleotide composition, i.e. high GC 

content may predict additional matches for matrices of the SP1 transcription factor; which 

might provoke overestimation of the variant-surrounding sequence; and that different 

ortholog set sizes for candidate variants might result in an artificial bias, i.e. a set of only 

three sequences allows only two combinations of sequences that contain the reference 
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sequence and fulfill the 50% quorum in contrast to larger sets. Contrary, a region with 

only primate sequences as orthologous shows a much higher, probably overestimated 

score. 

8. Based on the four weighed counts �TFBS, �restr-TFBS, �modules, and �TFBS_in_modules and the 

estimated background probability of observing these counts by chance, we determine an 

overall classification criterion Sall. 

9. The overall classification criterion labels the input region as complex or non-complex. 

(Note: steps (1-9) are detailed in the pseudo code on page 21-23 of the Supplemental 

Experimental Procedures, Appendix). 

10. To further select the variant with a function in disease, the overall disease-distinct 

clustering of TFBS at complex regions is assessed using positional bias analysis. (Note: 

the calculation of positional bias in step (10) is detailed in chapter 3 of the Extended 

Experiment Procedures, Appendix). 

 The basic assumption of the PMCA methods is that a genetic variant in a complex 

region has a measurable functional effect. For classification of a genomic regions as complex 

or non-complex we determined scoring criteria on the weighed counts (described in detail 

below) based on the experimental validation of cis-regulatory functionality for 21 sequence 

variants (whether this variant was functional or not in one of two assays: DNA binding 

activity or reporter gene activity). The gold standard for the test of a classification method is 

replication in an independent data set that has been measured after the method was fully 

established. In order to provide such as test I conducted experiments on DNA binding activity 

or reporter gene activity for a set of 62 T2D-associated SNPs that were selected from a 

representative set of potential candidate SNPs at genomic regions with different levels of GC 

content and different intronic or intergenic localization. The PMCA method with the 

parameters set as described below (and fixed before the experiments on the 62 SNPs were 
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conducted) results in 57 correct classifications, only 3 SNPs were misclassified as false 

positives and 2 SNPs as false negatives. I thus expected the PMCA method to have over 90% 

selectivity and sensitivity. 

 

2.1.2  Detailed description of the PMCA algorithm (pseudo-

code) 

Here, I describe in detail the steps that need to be taken when using the PCMA method with 

the Genomatix software in the format of a pseudo-code. In order to get a better feeling of 

these steps and how complex regions differ from non-complex regions for a region of interest, 

a step-by-step tutorial that can be followed manually using the interactive version of the 

Genomatix software (see provided screenshots in Appendix). While the RegionMiner and 

FrameWorker tools (Genomatix Co., Munich) presently represent the state-of-the-art, all steps 

in this method can be replaced by open-access tools and databases, such as AlignACE (Roth 

et al., 1998) for the identification of homologous regions, TRANSFAC (Matys et al., 2006) as 

TFBS databases, and custom-made TFBS module identification schemes. 

Pseudo-code for the PMCA algorithm 

For a given tagSNP select all non-coding SNPs in the LD region. 

For each non-coding SNP do the following: 

1. Prerequisites 

1.1 Generate a BED-file with  

- start position = SNP position – 60 bp  

- end position = SNP position + 60 bp  

1.2 Search for orthologous regions:  
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Input the BED-file from step 1.1 input to RegionMiner subtask ‘Search 
for orthologous regions in other species’   

1.3 Download all sequences found in step 1.2  

2. Assessment of ‘modular complexity’  

2.1 From 1.3 obtain a set of sequence files (S) where each file contains the human 
sequence surrounding the SNP according to the BED-file contents from 1.1 and 
up to 15 orthologous sequences from other species as found in 1.2. (Called 
‘ortholog sets’). 

�TFBS = 0 
�modules = 0 
�TFBS_in_modules = 0 

2.2 For each sequence set S do the following: 

NS = number of sequences in S 

For ( i = 2 to NS ) do the following: 

Call FrameWorker  using these parameters: 

ȗ = i / number (ȗ is the ‘quorum’)  

number of elements in Module: 2 to 10 

maximal distance variance: 10 

distance between elements: 5 to 200 

Parse the output file and determine the following numbers by 
parsing the XML output: 

ȦTFBS = number of TFBS in at least ȗ * Ns sequences of S  
�TFBS = �TFBS + ȦTFBS 

 
For Ȗ = 2 to 10 do the following  
 

# Ȗ is the number of TFBS that are required to occur  
# in a module to be counted 
 
ȦȖ-modules = number modules with Ȗ TFBS in at least ȗ * 
Ns sequences of S 
 
ȦTFBS_in_Ȗ-modules = number of TFBS modules with Ȗ 
TFBS in at least ȗ * Ns sequences of S 
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�modules = �modules + ȦȖ-modules 
�TFBS_in_modules = �TFBS_in_modules + ȦȖ-modules 

 
2.3 Repeat the calculations in step 2.2 but limited to parameter settings of 
ȗ >= 0.5 sequence set to compute �restr-TFBS  

 
2.4 Repeat the following 1,000 times 
 

Randomly shuffle the sequence set S; use a sliding window of 10 bp and 
permutate the bases in each window, thus leaving the local nucleotide 
distribution mainly unchanged. This generates randomized sequence 
sets that are similar in their local nucleotide distribution to S. 
Repeat steps 2.2 and 2.3 to obtain a random distribution of �TFBS

rnd, 
�restr-TFBS

rnd, �modules
rnd, and �TFBS_in_modules

rnd. 
 

3. Scoring and classification 
 

3.1 Estimate the probability p-esti = f(�i
rnd> �i) of observing a given number �i 

(where i stands for TFBS, rest-TFBS, modules, or TFBS_in_modules) as the 
fraction of randomly observed values of �i

rnd that are greater or equal than the �i
 

observed on the true sequences. For numeric stability reasons p-esti is set to 
1/1001 if this never occurs: 

p-estTFBS = f(�TFBS
rnd> �TFBS) 

p-estrestr-TFBS = f(�restr-TFBS
rnd> �restr-TFBS) 

p-estmodules = f(�modules
rnd> �modules) 

p-estTFBS_in_modules = f(�TFBS_in_modules
rnd> �TFBS_in_modules) 

 
3.2 Compute an Overall-score Sall = -log(p-estTFBS * p-estmodules * p-
estTFBS_in_modules)  
 
3.3 Classify a non-coding SNP as being located in a complex region if and only if: 

 ( Sall > 6.5 ) and (p-estrestr-TFBS < 0.15) and (p-estTFBS < 0.075) 
(Scoring criteria for classification)  
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2.2 Leveraging cross-species transcription factor 

binding site patterns: from diabetes risk loci to 

disease mechanisms. 

 

The result of this project that was conducted during this thesis is in press at the journal Cell 

(CELL-D-13-00664). The content of the manuscript includes the established computational 

PMCA methodology and its application on recently GWAS-associated T2D susceptibility 

loci. The main text of the manuscript is included in this chapter and follows a general 

summary of the study`s highlights.  

2.2.1  General Summary of the Study 

 

The results of this study can be briefly summarized in the following Highlights and visualized 

in the Graphical Abstract shown below:  

 

Highlights: 

Ź Cross-species analysis of co-occurring TFBS predicts cis-regulatory variants.  

Ź Analysis of diabetes-associated loci reveals clustering of distinct homeobox TFBS.  

Ź The rs4684847 diabetes risk allele, by binding the homeobox TF PRRX1, represses 

PPARG2 mRNA. 

Ź PRRX1 perturbs lipid metabolism and insulin sensitivity dependent on rs4684847. 
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Graphical Abstract: 

 

Graphical Abstract of the study: Genome-wide association studies (GWAS) have revealed a 
plethora of disease-associated risk loci in the non-coding genome, but the disease causal 
variants remain unknown in most cases. This study introduces a new approach for pinpointing 
cis-regulatory variants and their underlying disease mechanisms, based on phylogenetic 
conservation of co-occurring transcription factor binding sites (TFBS). The image illustrates 
patterns of TFBS conserved across humans and other vertebrate species, leading the way to 
cis-regulatory sequence variants, i.e. variants which affect gene expression and thereby 
disease risk. lllustration by Michael Pütz. 
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The majority of T2D affecting loci map to non-coding regions in the human genome 

(Hindorff et al., 2009), though the affected transcript isoforms responsible for mediating the 

effect are mostly unknown. Indeed, the specific cis-regulatory variants in the loci identified by 

GWAS approaches have rarely been pinpointed except for the TCF7L2 and the WFS1 loci 

(Gaulton et al., 2010; Stitzel et al., 2010), and the diverse sets of mechanisms by which they 

may increase disease risk are poorly characterized. In this proof-of-principle study, I applied 

PMCA on T2D genome-wide associated loci.  

 A feature of the ability to scan genome wide-associated non-coding genomic regions for 

functionality is the capability of agnostically identifying potentially informative cis-regulatory 

variants and their binding regulators in the absence of previous biological information. An 

important finding emerging from this study is the unexpected specific homeobox TFBS 

clustering at T2D regulatory risk SNPs, which was inferred from the PMCA approach and 

which distinguished T2D from different etiological trais: applying the computational 

inference procedure to all 47 GWAS-identified T2D susceptibility loci revealed a trait-

specific clustering of distinct homeobox TFBS matrix families CART, PDX1, NKX6, HOMF, 

HBOX, BCDF. The specific clustering of homeobox TFBS matrices at T2D SNP positions in 

complex regions was in strong contrast to non-complex regions and distinguished T2D from 

other traits, i.e. asthma and Crohn`s disease. To evolve the biological impact of PMCA 

inferences, i.e. computational prediction of cis-regulatory sequence variants and distinctive 

homeobox TFBS enrichment in regard to T2D pathogenesis, we pursued different lines of 

evidence:  

(1) In-depth experimental validation in primary human adipose cells at the PPARG 

locus 

The missense SNP rs1801282 (Pro12Ala) at the PPARG locus is one of the T2D susceptibility 

loci reported by many candidate gene association studies as well as GWAS. The confounding 
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factor arising from association studies becomes clear when considering that there are 23 non-

coding variants in high LD (r2 � 0.7, ranging from position Chr3, 12393125 to position Chr3, 

12396955; hg19; 1000G Project) with the Pro12Ala SNP, among them 18 in complete LD 

(r2 = 1). Though the GWAS tagSNP rs1801282 encodes a missense mutation (Pro12Ala) 

implying functionality, the Pro12Ala mutation could not explain the GWAS association so 

far. Rather, GWAS association results and functional studies appeared contradictory: the 

minor 12Ala allele, associated with enhanced insulin sensitivity in humans, paradoxically 

blunts transcriptional activity of the insulin-sensitizing PPARȖ2 factor (Deeb et al., 1998). 

During establishing the PMCA method, I therefore selected the PPARG locus for proof-of-

principle analysis arguing that a novel regulatory variant located in high LD with Pro12Ala, 

by allele-dependent PPARG2 up-regulation, might compensate for the decreased 

transcriptional activity caused by 12Ala thereby explaining the association signal. Causation 

due to dysregulation of gene expression has not been considered so far for the PPARG locus. 

Using the PMCA inference procedure, I could pinpoint one complex variant, rs4684847 

(C/T), overlapping with the T2D-distinct clustering of the homeobox TFBS matrices. The 

TFBS matrix overlapping with rs4684847 belongs to the homeobox CART matrix family 

(-log10(p) = 13.00, the highest score that we found among T2D-distinct TFBS matrix 

families), and is predicted to bind the homeobox transcription factor PRRX1. I have 

particularly made an effort to provide high-confidence proof at multiple levels that PMCA 

enables to inform on GWAS association signals in non-coding regions by extracting (a) the 

functional cis-regulatory variant rs4684847, which modulates PPARG2 disease gene 

regulation and (b) its upstream binding transcription factor PRRX1. In a great collaborative 

effort with Simon Dankel at University of Bergen, Norway, we performed a variety of wet lab 

studies, including reporter gene assays, electrophoretic mobility shift assay, qRT-PCR, allele-

specific primer extension assay (in collaboration with Bernhard Horsthemke, Essen, 
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Germany), siRNA-mediated knockdown studies in primary human adipose cells. In each of 

those assays, I specifically addressed the spatio-temporal context of the rs4684847 T2D risk 

allele (C allele) and could show its cell type-specific and cell stage-dependent repressive 

effect on endogenous PPARG2 gene expression in primary human adipose stromal cells 

during early differentiation. Those studies specifically unveil the role of PRRX1, via 

increased binding to rs4684847, as a novel key repressor affecting PPARG2 gene expression, 

a gene with a crucial impact on adipoycte differentiation and insulin senstitivity (Zhang et al., 

2004; Medina-Gomez et al., 2005). 

This work could further show that PMCA computational inferences at T2D risk loci lead to 

the discovery of a novel molecular mechanism underlying the rs4684847-phenotype 

association: Gene expression profiling in primary adipose stromal cells from rs4684847 

homozygous CC risk allele carriers with both PRRX1 and concurrent PRRX1/PPARG 

knockdown (performed by Simon Dankel, Bergen, Norway), and further wet lab functional 

assays in rs4684847 genotyped BMI-matched patient cells, revealed that lipid handling in 

terms of glyceroneogenesis and free fatty acids (FFA) release is perturbed in a rs4684847 

genotype-dependent manner. siRNA experiments showed that this effect was mediated by the 

homeobox factor PRRX1. Both an rs4684847-dependent association and a PRRX1 mRNA 

dependent correlation with serum FFA levels was confirmed for the rs4684847 risk allele (C 

allele) in a cohort of 67 BMI- and body fat matched patients. Glyceroneogenesis is a crucial 

metabolic pathway in adipocytes, regulating the re-esterification of FFA to triglycerides (TG) 

in the fasting state (Ballard et al., 1967), thereby controlling systemic FFA homeostasis and 

insulin sensitivity (Millward et al., 2010). Rosiglitazone, a synthetic ligand of PPARȖ2 

(Lehmann et al., 1995), pharmacologically increases insulin sensitivity largely via enhancing 

glyceroneogenesis and subsequently decreasing FFA release (Cadoudal et al., 2007). A recent 

study has shown that T2D patients harboring the PPARG risk haplotype had a reduced 
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therapeutic response to treatment with rosiglitazone (Kang et al., 2005), which, based on this 

work, might be explained by PRRX1 binding to the rs4684847 risk allele and thereby 

decreasing PPARȖ2 levels in homozygous CC risk allele carriers. When studying the reported 

insulin-sensitizing effect of rosiglitazone on glyceroneogenesis (Cadoudal et al., 2007) in 

patient samples, I observed a marked impaired response to rosiglitazone treatment in terms of 

glyceroneogenesis-mediated suppression of FFA from homozygous CC risk relative to 

heterozygous CT non-risk allele patient adipose samples. Importantly, PRRX1 silencing in 

homozygous risk patient samples was sufficient to fully abolish the reduced responsiveness to 

rosiglitazone, making PRRX1 an interesting target for pharmacological T2D therapy. 

Furthermore, we performed a homology directed repair genome editing approach 

(CRISPR/Cas) to genetically engineer human SGBS adipocytes which harbor the 

homozygous risk haplotype. By introducing solely the minor rs4684847 non-risk allele (T 

allele) in the risk haplotype genetic background we could show that that specific substitution 

of the rs4684847 non-risk allele for the risk allele in SGBS adipocytes is sufficient to induce 

the altered PPARG2 expression dependent on PRRX1. For providing the final in vivo 

evidence for T2D causality, I was very lucky getting the possibility to establish valuable 

collaborations with different research groups, i.e. Gunnar Mellgren (Bergen, Norway), Simon 

Dankel (Bergen, Norway), Leif Groop (Malmö, Sweden), Matthias Blüher (Leipzig, 

Germany) and Peter Arner (Stockholm, Sweden). Using three different measures for insulin 

resistance, i.e. triglyceride/HDL ratio, HOMA-IR, and glucose infusion rate measured by 

euglycemic hyperinsulinemic clamp studies we could confirm rs4684847 genotype-, and 

PRRX1 mRNA-dependent phenotypic changes in patient cohorts. In summary, those data link 

the in silico inferred variant rs4684847, via PRRX1, to perturbed lipid handling in primary 

human adipose stromal cells that provokes increased plasma free fatty acid levels and 

systemic insulin resistance.  
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(2) Enrichment analyses in GWAS data on insulin reistance and impaired insulin 

secretion 

In a collaborative project with Yi-Hsiang Hsu (Institute for Aging Research, Harvard Medical 

School, Boston, US), we could compute the enrichment of predicted cis-regulatory T2D risk 

SNPs that specifically localize within binding sites belonging to the group of homeobox 

TFBS for the two T2D features, i.e. insulin resistance and impaired insulin secretion. We 

interrogated GWAS SNP imputation data for insulin resistance (HOMA-IR) and impaired 

insulin secretion (HOMA-B) reported from the MAGIC consortium (Dupuis et al., 2010). The 

empirical p-values for the enrichment of SNPs that localize in close proximity  (SNP +/-20bp) 

to at least one of the homeobox TFBS matrix clusters were computed using 1,000 

permutations on the phenotype (95% confidence level). We confirmed an enrichment of the 

inferred homeobox TFBS-targeting SNPs for both impaired insulin secretion 

(mean=1.09x10-6; CI: 9.59x10-7–9.51x10-3, p=3.28 x 10-4; mean: permutation background; CI: 

95% confidence interval) and insulin resistance (mean=9.45x10-4, CI: 5.37x10-4–

1.34x10-2,p = 1.29x10-7).  

(3) Co-expression analyses using RNA-seq data assayed in human islets of Langerhans 

from 51 healthy and 8 T2D deceased donors 

 In a collaborative project with Leif Groop`s group at Lund University, Malmö, Sweden we 

were able to perform look-ups in their unpublished RNA-seq data from pancreatic ȕ-cells and 

could implicate inferred homeobox transcription factors in aberrant insulin secretion. RNAseq 

data revealed a significant 1.3 - 10.5-fold increase (7.28x10-9 < p-value < 4.02x10-4) in mRNA 

expression of eight inferred homeobox factors RAX, PRRX2, BARX1, PITX1, EMX2, NKX6-3, 

BARX2 and MSX2 - and a 11.7-fold decrease for PDX1 in islets from T2D subjects compared 

with non-T2D controls (FDR < 1%). In order to identify potential target genes in human islets 

for these nine T2D-specific differentially expressed TFs, a co-expression analysis was 
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performed in the 51 non-T2D controls against all expressed genes in the RNAseq data set 

(FDR < 5%). A pathway analysis (KEGG) of the potential target genes revealed that the 

“metabolic pathway” was found among the top 5 significantly (hypergeometric test, FDR 

corrected p-value<0.05) enriched pathways for all but one differentially regulated homeobox 

TFs (for MSX2, BARX2, PDX1, PRRX2 and NKX6-3), other top 5 enriched pathways includes 

“insulin signaling” (for NKX6-3 and PRRX2), “MAPK signaling” (for MSX2, PDX1 and 

BARX2), “Notch signaling” (for PRRX2), “Calcium signaling” (for PITX1) and “Pancreatic 

secretion” (for MSX2), all related to T2D pathophysiology. Seven of the analyzed 

differentially regulated homeobox TFs had as a potential target the insulin gene, i.e. RAX, 

PRRX2, BARX1, PITX1, EMX2, NKX6-3 and BARX2, and could be regarded as novel 

candidates for regulation of proinsulin production. Finally, we evaluated the effects of the 

nine identified homeobox TFs on insulin secretion in vitro and found that knocking-down 

each of the nine TFs using siRNA in a pancreatic ȕ-cell line (INS1 cells) significantly 

inhibited glucose-stimulated insulin secretion from ȕ-cells. 

 

 

2.2.2  Main Text of the Study 

In the following, the main text of the manuscript is attached and the Supplemental 

Experimental Procedures Section is attached in Appendix. 

 

2.2.2.1 Abstract 

Genome-wide association studies have revealed numerous risk loci associated with diverse 

diseases. However, identification of disease-causing variants within association loci remains a 

major challenge. Divergence in gene expression due to cis-regulatory variants in non-coding 
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regions is central to disease susceptibility. We show that integrative computational analysis of 

phylogenetic conservation with a complexity assessment of co-occurring transcription factor 

binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role 

in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of 

distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of 

PPARG2 expression in adipose cells, and demonstrate its adverse effect on lipid metabolism 

and systemic insulin sensitivity, dependent on the rs4684847 risk allele which triggers 

PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS 

provides a valuable contribution to the translation of genetic association signals to disease-

related molecular mechanisms. 

  

2.2.2.2 Introduction 

Recent advances in genome-wide association studies (GWAS) have yielded a plethora of loci 

associated with diverse human diseases and traits (Hindorff LA). However, signals emerging 

from GWAS, which involve typically dozens of variants in linkage disequilibrium (LD), have 

rarely been traced to the disease-causing variants and even more rarely to the mechanisms by 

which they may increase disease risk. The majority of common genetic variants are located in 

non-coding regions (1000 Genomes Project Consortium, 2012), and disease-associated loci 

are enriched for eQTLs (Nica et al., 2010), DHSseq and ChIPseq peaks (Maurano et al., 2012; 

The ENCODE Project Consortium, 2012), suggesting that variants modulating gene 

regulation are major contributors to common disease risk. 

 Experimental DHS, RNA, and ChIPseq approaches have been used to prioritize candidate 

cis-regulatory variants (Maurano et al., 2012; The ENCODE Project Consortium, 2012; Ward 

and Kellis, 2012b). However, such functional approaches require access to appropriate human 
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tissues and are further hampered by the spatial, temporal, environmental and epigenetic 

complexity of gene regulation. These limitations emphasize the need for bioinformatics 

approaches that reliably assess the regulatory role of non-coding variants. So far, phylogenetic 

conservation has been a common denominator in the search for non-coding regulatory regions 

(Chinwalla et al., 2002; Pennacchio et al., 2006; The ENCODE Project Consortium, 2007; 

Visel et al., 2009b; Blow et al., 2010; Lindblad-Toh et al., 2011; The ENCODE Project 

Consortium, 2012). However, intra- and cross-species differences in gene expression are often 

driven by changes in transcription factor binding sites (TFBS), and their rapid evolutionary 

turnover results in lineage-specific regulatory regions that are functionally conserved but have 

low phylogenetic conservation (Ward and Kellis, 2012a), thus challenging the use of these 

algorithms. Importantly, gene regulatory regions in eukaryotes tend to be organized in cis-

regulatory modules (CRMs), comprising complex patterns of co-occurring TFBS for 

combinatorial binding of transcription factors (TFs) (Arnone and Davidson, 1997; Pennacchio 

et al., 2006; Visel et al., 2013). CRMs integrate upstream signals to regulate expression of 

coordinated gene sets, making them a prime target to achieve phenotypic changes as a result 

of adaptive evolution (Junion et al., 2012). Despite the critical importance of CRMs, no 

algorithms have so far been developed to harness the potential power of conserved TFBS 

patterns within CRMs to predict regulatory variants in disease genetics. 

We show that cross-species conservation at the level of the CRMs – rather than at the level of 

the regulatory sequence that comprises them – identifies cis-regulatory variants within 

disease-associated GWAS loci. Exploiting phylogenetic conservation of TFBS co-

occurrences, we found homeobox TFBS as a cis-regulatory feature of T2D risk loci, for which 

the specific causal variants have rarely been pinpointed (Stitzel et al., 2010). Detailed analysis 

at the PPARG risk locus revealed the rs4684847 risk allele and, by changing binding of the 
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homeobox TF PRRX1, its genotype-dependent effect on PPARG2 expression and insulin 

sensitivity. 

 

2.2.2.3 Results 

 

Cross-species analysis of TFBS modularity discovers cis-regulatory SNPs at T2D risk 

loci 

We developed a method, PMCA, which leverages conserved co-occurring TFBS patterns 

within CRMs to predict cis-regulatory variants, i.e. variants affecting gene expression (Figure 

1A, Supplemental Experimental Procedures). To systematically identify cis-regulatory 

variants at GWAS risk loci, we extracted GWAS tagSNPs, and consequently all non-coding 

(nc) SNPs that are in high LD with these tagSNPs. PMCA individually tests each nc variant 

by analyzing the flanking region for cross-species conserved TFBS patterns, regardless of 

global sequence conservation. This requires first the extraction of the region surrounding a nc 

SNP (±60bp) from the human genome, and consequent identification of orthologous regions 

in 15 vertebrate species. Within each SNP-specific set of orthologous regions, 

phylogenetically conserved TFBS, TFBS modules (a cross-species conserved pattern of two 

or more TFBS occurring in the same order and in a certain distance range), and TFBS in those 

TFBS modules were identified and then counted. SNP-flanking regions with a significant 

enrichment of phylogenetically conserved TFBS modules are classified as complex regions, 

as compared to non-complex regions (example in Figure 1B) wherein the occurrence of TFBS 

modules does not exceed expectation by chance. To compute this enrichment we estimate 

background probabilities using randomizations of orthologous sets (details on scoring cut-offs 

in Supplemental Experimental Procedures). 
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 We applied PMCA to a set of eight GWAS T2D risk loci (MTNR1B, TCF7L2, PPARG, 

CENTD2, FTO, GCK, CAMK1D, KLF14) (Dupuis et al., 2010; Voight et al., 2010) covering 

strong and weaker GWAS signals, and reflecting the different T2D features, i.e. insulin 

resistance and impaired insulin secretion (Doria et al., 2008). Using non-coding sequence data 

we defined 200 SNPs in LD with the tagSNPs (r2 � 0.7, 1000G) (Figure S1A). PMCA 

predicted 64 complex and 136 non-complex regions (Figure 1C-G, Table S1). We ranked 

complex regions based on the count of TFBS in conserved TFBS modules (Table S2), and 

examined the allele-dependent cis-regulatory potential of the 25% highest scoring SNPs using 

in vitro EMSA and reporter assays. As predicted, SNPs in complex regions significantly 

differed in allele-dependent cis-regulatory activity compared to non-complex regions (Figure 

1H-I, Table S3). Indeed, the regulatory variants revealed effects ranging from 3.1- to 101-fold 

change in DNA-protein binding and 1.3- to 3.5-fold change in reporter activity. Moreover, the 

identified variants operated in a cell type-specific manner (Figure S1B). 

 To examine if the identified cis-regulatory variants in complex regions associate with 

T2D in vivo, we performed look-ups in the MAGIC and DIAGRAM cohorts (Dupuis et al., 

2010; Voight et al., 2010). The variants in complex regions revealed a similar or stronger 

association compared to the initial GWAS signal (Table S4), and a look-up in a recent fine-

mapping study (Maller et al., 2012) confirmed that our cis-regulatory SNPs belong to the 

predicted T2D-disease SNP set. GWAS signals are enriched for regulatory variants (Nica et 

al., 2010). Comparing random SNPs from the 1000G Project to a limited representation of 

GWAS signals for 19 human diseases (Hindorff LA, accessed June 2013) (Table S5A), we 

found a 1.12-fold overall enrichment of SNPs in complex regions (p=1.9x10-4, binomial 

distribution) (Table S5B-C), reflecting disease-conferring and low effect cis-regulatory 

variants. Finally, we applied PMCA on reported cis-regulatory SNPs associated with diverse 

disease-related traits, including cancer, myocardial infarction, thyroid hormone resistance, 
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hypercholesterolemia and adiponectin levels (MYC Pomerantz et al., 2009, MDM2 Post et al., 

2010, PSMA6 Ozaki et al., 2006, THRB Alberobello et al., 2011, SORT1 Musunuru et al., 

2010, APM2 Laumen et al., 2009). Consistent with the reported functional proof, our analysis 

informed on all but one of the cis-regulatory SNPs (Table S6). The highest scores inferred 

from PMCA predicted the myocardial infarction risk variant shown to regulate hepatic SORT1 

expression (Musunuru et al., 2010). Together, these results demonstrate the utility of cross-

species TFBS modularity information within CRMs to elucidate functionality of GWAS 

signals in the non-coding genome. 

 

Functional conservation beyond sequence conservation 

Given that TFBS turnover is characteristic of CRM evolution (Blow et al., 2010; Ward and 

Kellis, 2012a), the utility of sequence conservation in deciphering cis-regulatory variants may 

be limited. To assess the power of harnessing TFBS patterns beyond sequence conservation, 

allowing for sequence variability, we tested complex and non-complex regions for 

correlations with evolutionary constrained elements detected by the SiPhy-ʌ-method 

(Lindblad-Toh et al., 2011).  For this analysis, we extended our initial PMCA analysis of eight 

T2D loci to a set of 47 T2D risk loci comprising all GWAS-reported autosomal variants 

(Hindorff LA, accessed June 2012) including 487 complex and 978 non-complex regions 

(Table S7). Non-complex regions were depleted of constrained elements in their close 

proximity (Figure 2A). Conversely, complex regions were enriched for nearby constrained 

elements, consistent with a 1.37-fold enrichment of GWAS SNPs relative to HapMap SNPs 

(Lindblad-Toh et al., 2011). Although complex regions overlapped 1.88-fold more with 

constrained elements than non-complex regions (p=2.4x10-9, hypergeometric distribution, 

right sided), strikingly the majority of complex regions lacked an overlap with constrained 

elements (Figure 2B, Table S8). This lack of overlap was true for all variants that we 
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experimentally characterized as cis-regulatory (example in Figure 2C). In essence, 

considering sequence conservation helps to prioritize genomic regions that harbor potential 

causal variants, yet seems insufficient to pinpoint them. This underscores the importance of 

exploiting conservation in terms of a complexity assessment of co-occurring TFBS, in the 

search for cis-regulatory variants involved in human diseases. 

 To further support PMCA predictions at T2D risk loci, we merged our analysis with 

functional genomics data from The ENCODE Project Consortium 2011 (chromatin state and 

TF binding). We found complex regions highly enriched for both DHSseq peaks 

(p=3.52x10-10) (Figure 2D) and ChIPseq peaks (p=4.68x10-6) (Figures 2E, Table S9). 

Additionally, crossing our regulatory predictions for T2D risk SNPs with RegulomeDB, a 

data repository of multiple types of functional ENCODE data (Schaub et al., 2012), confirmed 

that complex regions are significantly enriched for functional annotations (p=3x10-24, 

hypergeometric distribution, right sided) (Table S10). 

 

Clustering of distinct homeobox TFBS is a specific feature of T2D-related complex 

regions 

TFBS clustering relative to transcription start sites indicates biological significance 

(FitzGerald et al., 2004), and TFBS combination coupled with the TFs recruited to a CRM 

determines CRM function (Zinzen et al., 2009). Thus, we sought evidence for a discerning 

T2D functional feature by exploring TFBS characteristics in evolutionary conserved complex 

regions at T2D risk loci. Given a SNP genomic region we used positional bias analysis, 

scanning 1,000bp with the SNP at midposition for the occurrence of putative TF binding 

sequences (883 TFBS matrices grouped in 192 TFBS matrix families) (Table S11). First, for 

the set of eight T2D risk loci selected for in-depth analysis above, we observed a significant 
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positional bias for distinct TFBS families (-log10(p)>6) exactly at SNP positions of complex 

contrary to non-complex regions (Figure 3A). This striking SNP-directed overrepresentation 

in T2D complex regions was restricted to specific TFBS in the homeobox superfamily, 

including the matrix families CART (-log10(p)=6.52) and PDX1 (-log10(p)=6.18) (Table 

S12A). To test whether these findings could be retrieved in a larger set of T2D-associated 

variants, we extended TFBS clustering analysis to the set of 47 GWAS T2D risk loci 

(Hindorff LA, accessed June 2012). Indeed, this comprehensive analysis reproduced co-

localization of T2D risk SNPs exclusively with homeobox TFBS matrices in complex regions 

as opposed to non-complex regions (Figure 3B, Table S12B). We again found specific 

clustering of the CART (-log10(p)=13.00) and PDX1 families (-log10(p)=6.78) together with 

the homeobox matrix families NKX6 (-log10(p)=8.50), HOMF (-log10(p)=8.94), HBOX 

(-log10(p)=8.54) and BCDF (-log10(p)=7.24). No other TFBS matrices showed a significant 

peak in the bias profile at SNP positions. Importantly, when applying PMCA on risk loci of 

T2D non-related traits, asthma and Crohn’s disease (Moffatt et al., 2010; Schaub et al., 2012) 

(Figure S3B-C, Table S13), we observed disease-distinctive TFBS at SNP positions (Table 

S12C-D). Both complex and non-complex regions lacked a clustering of homeobox TFBS at 

asthma risk SNPs (Figure 3C). The specific clustering of the Early Growth Response Factor 

(EGRF) matrix family for asthma risk SNPs in complex regions (-log10(p)=8.50, Figure 3D) 

was in strong contrast to T2D (-log10(p)=3.97, Figure 2E) and Crohn`s (-log10(p)=2.07, 

Figure S3D). Of note, the EGRF-binding factor EGR1 regulates asthma-related IL13-induced 

inflammation (Cho et al., 2006). 

 Homeobox TFs are known to be involved in tissue developmental processes including ȕ-

cell development (Jorgensen et al., 2007). However, except for the MODY gene PDX1 

(Fajans et al., 2001) and the common T2D-associated loci HHEX1 and ALX4 (Sladek et al., 

2007), the PMCA-inferred homeobox factors have not been implicated in T2D pathogenesis. 
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T2D is marked by insulin resistance and impaired insulin secretion (Doria et al., 2008). To 

evaluate a functional role of the homeobox TFBS matrix families in T2D pathogenesis, we 

extracted data for insulin resistance (HOMA-IR) and impaired insulin secretion (HOMA-B) 

(Dupuis et al., 2010), to compute the enrichment of predicted cis-regulatory T2D risk SNPs 

that localize in close proximity to those homeobox TFBS (±20bp, permutations on the 

phenotypes, n=1,000, 95% confidence interval, Supplemental Experimental Procedures). We 

verified a significant enrichment of SNPs that localize ±20bp at inferred homeobox TFBS for 

both insulin resistance (mean=1.09x10-6; CI:9.59x10-7–9.51x10-3, p=3.28x10-4; mean 

permutation background; CI:95% confidence interval) and impaired insulin secretion 

(mean=9.45x10-4; CI:5.37x10-4–1.34x10-2, p=1.29x10-7). Furthermore, we elucidated a 

potential effect of their binding TFs on impaired insulin secretion. Assessing mRNA levels in 

human islets from 51 healthy and 8 T2D deceased donors by RNAseq (L. Groop, unpublished 

data), we found a marked expression difference for RAX, PRRX2, BARX1, PITX1, EMX2, 

NKX6-3, BARX2, MSX2 and PDX1 in islets from T2D patients compared to healthy controls 

(7.28x10-9<p<4.02x10-4, FDR<1%) (Table S14). By genome-wide co-expression analysis we 

found significantly co-regulated gene sets (p<5.02x10-3; FDR<5%, n=51 healthy donors) 

(Table S15). Except for the gene set co-regulated with PITX1, we found metabolic pathways 

among the top 5 significantly enriched pathways (hypergeometric test, FDR corrected p<0.05) 

(Figure S3E). Other top 5 enriched pathways included insulin signaling, MAPK signaling, 

notch signaling, calcium signaling and pancreatic secretion. Knock-down of each candidate 

homeobox TFs in pancreatic INS-1 ȕ-cells significantly perturbed glucose-stimulated insulin 

secretion (Figure S3F). Moreover, except for PDX1 and MSX2 (corrected FDR, p=0.96 and 

p=0.89), all PMCA-inferred homeobox TFs were significantly co-expressed with the insulin 

gene in islets of 26 hyperglycemic individuals (HbA1C>6) (Table S16). Although the result 

for PDX1 was borderline non-significant it is a well-known regulator of insulin expression 
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(Brissova et al., 2002). The other TFs can be regarded as novel candidates for regulation of 

proinsulin production. 

 

The T2D identified variant rs4684847 regulates PPARG2 gene expression 

To establish the informative value of TFBS pattern analysis for pinpointing the cis-regulatory 

variant and binding TF underlying GWAS association signals, we chose the PPARG locus for 

detailed study. PPARȖ is crucial in adipogenesis, lipid metabolism and systemic insulin 

sensitivity (Rosen et al., 1999; Medina-Gomez et al., 2005), and exists as two isoforms: 

PPARȖ1 (PPARG1, PPARG3 mRNA) and PPARȖ2 (PPARG2 mRNA) (Fajas et al., 1998), 

the latter mainly expressed in adipocytes (Tontonoz et al., 1994). There is a robust association 

of PPARG with T2D (Deeb et al., 1998; Heikkinen et al., 2009; Dupuis et al., 2010; Voight et 

al., 2010). The T2D GWAS association comes from an LD region mainly tagged by the 

coding missense mutation Pro12Ala (Figure 4A, upper panel). However, the minor 12Ala 

allele, associated with enhanced insulin sensitivity in humans, paradoxically blunts the 

transcriptional activity of the insulin-sensitizing PPARȖ2 TF (Deeb et al., 1998). 

Hypothesizing that the elusive PPARG T2D signal instead arises from a regulatory variant 

that affects PPARG2 expression, we first confirmed - before analyzing variants at the PPARG 

locus with PMCA - a risk allele-dependent 3.8-fold decrease of PPARG2 mRNA in human 

adipose stromal cells (hASCs) (p=1.0x10-3) (Figure 4B). This effect was specific for 

PPARG2, as there was no effect on PPARG1 expression (Figure 4C). 

 First, to narrow-down the variants that could explain the decrease in PPARG2 expression 

and thereby the underlying T2D association, we applied PMCA to each of the 23 correlated 

non-coding variants at the PPARG locus (r2�0.7, 1000G Project) (Figure 4A). Seventeen 

variants were ruled out being located in non-complex regions (Figure S4A, Table S17). 
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Among the six variants in complex regions, five had either activating or repressing cis-

regulatory activity (Figure 4D), which may reflect gene regulatory dependency on the 

tissue/cell-type and the spatial, temporal, environmental and epigenetic context. In fact, while 

the qPCR data in undifferentiated hASCs showed a suppressive effect specific for the 

PPARG2 mRNA isoform, adipose tissue eQTL data showed an up-regulation of total PPARG 

mRNA in risk allele carriers  (p=0.01) (Figure S4B). 

 Second, to pinpoint the functional variants that may explain the GWAS-reported T2D 

association, we scrutinized the complex regions for those TFBS showing a clustering at T2D 

risk SNP positions (drawn from the overall TFBS clustering analysis in complex regions, 

Figure 3), pursuing the variants overlapping a TFBS matrix in the disease-distinctive cluster. 

As shown above, our comprehensive cross-species TFBS pattern analysis of 47 T2D risk loci 

unveiled a clustering of specific homeobox TFBS families as a characteristic feature of T2D 

risk SNPs (Figure 3B). Among the six non-coding variants at the PPARG, only one variant, 

rs4684847 (C/T), overlaps with the T2D-distinct clustering of the homeobox TFBS matrix. 

The TFBS matrix overlapping with rs4684847 belongs to the CART matrix family 

(-log10(p)=13.00, the highest score among TFBS matrix families), and is predicted to bind the 

homeobox TF PRRX1. The other five non-coding variants showed no homeobox TFBS match 

(Figure 4A, lower panel). 

 Third – as an independent approach to confirm rs4684847 mediating the PPARG2 

suppression – we examined the cellular context of genotype-dependent PPARG2 suppression, 

and epigenomic profiling data that allow for temporal chromatin state-dependent regulatory 

functional annotations. By allele-specific primer extension analysis in heterozygous 

undifferentiated hASCs genotyped for rs4684847, where each allele serves as an internal 

control for the other, we first confirmed a striking allelic imbalance with 5.4-fold lower 

PPARG2 mRNA expression from the C risk allele (p=6.0x10-4) (Figure 4E). Given the role of 
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PPARG2 in adipogenesis, we then tested whether the rs4684847 C risk allele might affect 

PPARG2 mRNA expression during adipogenesis. The allele-specific primer extension 

analyses in hASCs from heterozygous risk allele carriers revealed that the risk allele-

dependent suppression of PPARG2 mRNA diminished with progression of adipogenesis 

(p<0.001) (Figure S4C). These data suggest a highly temporal context-specific effect of the 

risk allele on PPARG2 suppression in the undifferentiated state. Given the availability of cell-

stage dependent open chromatin data in hASCs reported by Mikkelsen et al, 2010, we sought 

supportive evidence for rs4684847 as the variant underlying the cell-stage dependent allelic 

PPARG2 expression. We integrated all six variants in complex regions at the PPARG locus 

with genome-wide temporal regulatory annotations estimated by H3K27ac data. Among those 

six, only the flanking region rs4684847 (C/T) showed consistent cell stage-dependent 

H3K27ac density distributions (Figure S4D). Thus, the rs4684847-specific match with the 

T2D homeobox TFBS clustering, informed by conserved TFBS pattern analysis, could be 

confirmed by cell-stage dependent regulatory regions estimated by chromatin state data. 

Finally, we performed a host of in vitro and in vivo analyses to prove that the rs4684847 risk 

allele (C allele) mediates the suppression of PPARG2 mRNA expression via the 

transcriptional regulator PRRX1. By affinity chromatography and LC-MS/MS we could 

demonstrate a 2.3-fold increased binding of PRRX1 to the rs4684847 risk relative to non-risk 

allele (Supplemental Experimental Procedures). Moreover, by EMSA we found rs4684847 

risk allele-specific DNA-protein binding (Figure 4F), and competition EMSA and supershift 

experiments confirmed that PRRX1 was responsible for this allele-specific DNA-protein 

binding (Figure 4G). Furthermore, consistent with the GWAS signal for insulin resistance 

rather than insulin secretion (Voight et al., 2010), in luciferase reporter assays we observed 

rs4684847 cell type-specific effects in 3T3-L1 adipose cells, C2C12 myocytes and Huh7 

hepatocytes, whereas pancreatic INS-1 ȕ-cells and 293T cells lacked allelic activity (Figure 
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S4E). Luciferase activity in 3T3-L1 preadipocytes was 5.2-fold lower for the C risk allele 

(p=1.0x10-4, Figure 4H). This repressive effect was independent of 5´-vs. 3´-orientation to the 

reporter gene (p=0.03) and forward-reverse orientation (p=0.03) (Figure S4F), suggesting 

enhancer function for the non-risk allelic complex region. Importantly, perturbing the PRRX1 

consensus sequence without affecting the SNP position itself fully abrogated the C risk allelic 

repression of reporter gene activity (Figure 4H), whereas overexpressing PRRX1 enhanced it 

(p=2.0x10-4, Figure 4I). 

 We then sought final proof that the rs4684847 risk allele – independent of correlated 

sequence variants – causes the suppression of endogenous PPARG2 expression. We used an 

adopted CRISPR/Cas homology-directed repair genome editing approach (Wang et al., 2013) 

to introduce the rs4684847 non-risk allele in human SGBS preadipocytes, replacing the 

endogenous risk allele. Notably, the rs4684847 non-risk allele was sufficient to increase 

PPARG2 transcript levels 5.4-fold (p=0.005) (Figure 4J, left) (PPARG1 unaffected) 

(Figure S4G). In parallel experiments we performed PRRX1 knockdown and confirmed that 

1) risk allele-driven suppression of PPARG2 expression was reversed by PRRX1 silencing 

(p=0.005) and 2) PRRX1 silencing did not affect PPARG2 expression in non-risk allele cells 

(Figure 4J, right). 

 

rs4684847 via PRRX1 binding affects FFA homeostasis and insulin sensitivity 

The SNP rs1801282 (Pro12Ala) in PPARG associates with BMI, fasting insulin, and insulin 

sensitivity (Deeb et al., 1998; Voight et al., 2010). rs4684847 is located 6.5kb upstream of the 

PPARG2 specific promoter and is in complete LD (r2=1.0) with rs1801282. Via PMCA, we 

found that PRRX1 binds at the rs4684847 C risk allele and thus inhibits PPARG2 expression. 

On the other hand, the T allele of rs4684847 (minor allele frequency 6.5% in Caucasians) 
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reduces the binding ability of PRRX1 and thus maintains a higher level of PPARG2 

expression. Further in vivo evidence was obtained in primary human adipose stromal cells 

(hASC) isolated from BMI-matched subjects, showing rs4684847-dependent PPARG2 

mRNA expression (p=1.4x10-20, n=32). PPARȖ2 is crucial for maintaining insulin sensitivity: 

adipose-specific Pparg2 knockout mice develop insulin resistance independently of affecting 

body weight (Medina-Gomez et al., 2005), and PPARȖ is target of the thiozolidinedione 

(TZD) class of insulin-sensitizing drugs such as Rosiglitazone (Rosi) (Lehmann et al., 1995). 

Indeed, we observed rs4684847-dependent association with lower T2D risk (Voight et al., 

2010) (OR=0.89, 95% CI=0.86-0.92, p=3.75x10-11, n=80,648). Further, in hASC we found 

rs4684847-dependent increase in adipocyte insulin sensitivity (p=1.5x10-7, ratio insulin-

stimulated/basal 2-deoxyglucose uptake, Pearson’s correlation, n=32). We confirmed a 

significant interaction between the rs4684847 risk allele and adipose PRRX1 mRNA levels to 

HOMA-IR, independent of BMI (p=0.044, n=38, interaction model, Supplemental 

Experimental Procedures). In addition, we observed rs4684847-dependent correlations of 

PRRX1 mRNA levels with BMI, TG/HDL ratio, and BMI-adjusted HOMA-IR, and with 

glucose infusion rate (GIR) measured by euglycemic hyperinsulinemic clamp in a cohort of 

67 BMI- and body fat-matched obese patients (Table 1, Figure S4H). 

 To further examine PRRX1 as mediator of the repressive rs4684847 risk allele (C allele) 

effect on PPARG2 expression, we performed knockdown of PRRX1 in hASCs and found that 

PRRX1 silencing was sufficient to revert the risk allelic suppression (p=3.3x10-15) (Figure 

5A, Table 2). Then, to inform on the cellular processes by which PRRX1 may contribute to 

T2D, we studied the impact of PRRX1 on PPARȖ-regulated genes in hASCs from 

homozygous rs4684847 CC risk allele carriers by microarray analysis (n=9). We found 2,258 

transcripts regulated by PRRX1 knockdown (q<0.2), 336 of which were reversely regulated 

by concomitant PPARG knockdown (Figure 5B). Gene Set Enrichment Analysis (GSEA) 
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highlighted an enrichment of those anti-regulated genes among the most differentially 

expressed genes after PRRX1 knockdown (FDR=0, Figure 5C), revealing that PPARȖ2 

mediated the primary PRRX1 effect on global gene expression. Ingenuity Pathway Analysis 

(IPA) showed the strongest enrichment for lipid metabolism (p=2.81x10-14) followed by 

adipose tissue function, glucose homeostasis, nutritional disease and insulin resistance (Figure 

5D). Accordingly, an inverse relationship between PRRX1 and adipocyte triglyceride (TG) 

accumulation was observed in PRRX1-overexpressing SGBS adipocytes (Figure 5E). 

 By qPCR we confirmed rs4684847 allele-dependent dysregulation of genes in the 

identified biological pathways. Notably, the gene with the strongest risk allele-dependent 

decrease in mRNA levels was PEPCKC (Table 2). The top scoring IPA interaction network 

reinforced a central role for PEPCKC (Figure 5F). PEPCK-C is the enzyme controlling the 

first committed step of glyceroneogenesis, a crucial metabolic process in adipocytes 

regulating the re-esterification of free fatty acids (FFA) to TG (Ballard et al., 1967). 

Glyceroneogenesis limits FFA release from adipocytes in the fasting state thereby controlling 

systemic FFA homeostasis and insulin sensitivity (Millward et al., 2010). In the 67 BMI- and 

body fat-matched obese subjects we confirmed rs4684847 risk allele association with 

increased serum FFAs levels (p=0.049) and risk allele-dependent association of PRRX1 

mRNA with FFA levels (p=0.015, Table 1). To prove that rs4684847, by determining PRRX1 

binding, affects glyceroneogenesis and subsequent FFA release, we monitored pyruvate 

incorporation in TG (Ballard et al., 1967). We confirmed a PRRX1-dependent suppression of 

glyceroneogenesis in CC risk allele carriers, marked by a robust correlation with PRRX1 

mRNA levels (Figure 5G) and a risk allele-dependent increase in FFA release (Figure 5H). In 

a parallel experiment, we also found that PRRX1 silencing was sufficient to restore cellular 

insulin sensitivity in risk allele carriers (Figure 5I). Importantly, the PPARȖ ligand Rosi 

pharmacologically promotes insulin sensitivity largely via control of FFA homeostasis 
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through glyceroneogenesis (Cadoudal et al., 2007), and (Kang et al., 2005) reported impaired 

Rosi response in risk haplotype carriers. In our analysis of glyceroneogenesis in hASCs we 

observed an impaired response to Rosi-mediated suppression of FFA release dependent on the 

risk allele (Figure 5J). Strikingly, PRRX1 silencing in CC risk-allele patient samples was 

sufficient to abolish the reduced Rosi responsiveness, making PRRX1 a potential target for 

pharmacological T2D intervention. 

 In summary, by PMCA we demonstrate a clustering of specific homeobox TFBS at T2D 

risk SNPs. We specifically unveil a novel role of homeobox TF PRRX1 as a repressor of 

PPARG2 via its enhanced binding at the rs4684847 C risk allele, thereby provoking 

dysregulation of FFA turnover and glucose homeostasis (Figure 5K). 

 

2.2.2.4 Discussion 

We have developed a bioinformatics approach, PMCA, which enables the extraction of cis-

regulatory variants that may mechanistically contribute to human disease by dysregulation of 

gene expression. In line with our approach to exploit conservation in terms of co-occurring 

TFBS patterns, (Visel et al., 2013) has recently shown that combination of TFBS, rather than 

single TFBS, via combinatorial TF binding governs spatial enhancer activity in the 

developing telencephalon. Further, tissue-specific enhancers were accurately detected by in 

vivo mapping of the enhancer-associated proteins p300, in addition to comparative genomics 

approaches (Visel et al., 2009a; Blow et al., 2010). 

 Using T2D as a showcase we demonstrate the utility of PMCA for the generic prediction 

of distinct homeobox TFBS at T2D risk SNPs, which is important for understanding disease 

regulatory circuits when we consider that interactions in a regulatory network involve 

numerous genes and a rather small set of TFs (Califano et al., 2012). Pursuing the results 
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emerging from our comprehensive T2D analysis, we show that identification of the cis-

regulatory variant rs4684847 at the PPARG locus enabled linking the molecular upstream 

factor PRRX1 to aberrant downstream mechanisms of impaired lipid handling and insulin 

sensitivity, explaining the GWAS association with T2D. Notably, PRRX1 was recently 

implicated in adipogenesis (Du et al., 2013), yet the regulated genes remain elusive. 

Here, we restricted the analysis to SNPs in LD with GWAS SNPs. However, the 

approach could be applied to any other kind of variability, such as somatic mutations in 

cancer, without loss of generality. Certain issues will require consideration, e.g. analyzing 

genomes of closely related species to refine scoring criteria, and extending our analysis to 

whole genome sequencing studies, including rare variants data, should further inform on the 

genetic underpinnings of phenotypic diversity in humans. Our in silico scoring results predict 

varying numbers of regulatory SNPs per LD block. Studies have now found evidence for 

allelic heterogeneity (Maller et al., 2012; Schaub et al., 2012), yet the number of causal 

variants within a disease locus is elusive. We propose an integrative framework where 

computational TFBS modularity analysis may be synergistically combined with functional 

genomics and population genetics data. 

 In sum, our results demonstrate that the extension of sequence analysis to functional 

conservation integrates biological data with statistical signals, and our novel method should 

help to clarify the role of inherited and somatic variability in altering gene regulatory 

networks, in both mendelian and common human diseases. 

 

2.2.2.5        Experimental Procedure  

The detailed experimental procedures are included in the Supplemental Experimental 

Procedures, which is attached as Appendix. 
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Definition of LD blocks 

Tag SNPs were derived from reported disease risk loci identified by GWAS (references listed 

in Tables S1, S7 and S8). For each tag SNP, LD blocks were defined (CEU, The 1000 

Genomes Project Consortium, 2010, r2 � 0.7, NCBI GRCh37/hg19) using the SNAP viewer 

tool (Johnson et al., 2008), Broad Institute.  

Phylogenetic Module Complexity Analysis 

Our bioinformatics methodology analyzes the presence of complex patterns of evolutionarily 

conserved TFBSs in a cis-regulatory module (CRM), within genomic regions surrounding a 

SNP (SNP region) to predict its cis-regulatory functionality. For each SNP the 120 bp 

sequence with the SNP at central position (SNP region) was extracted from the human 

genome (NCBI GRCh37/hg19). Orthologous sequences were searched in 16 vertebrate 

species (ortholog set). The ortholog set was at first analyzed for the occurrence of 

transcription factor binding sites (TFBSs) that could be found in a defined input set of 

orthologous regions within the ortholog set on any strand (common TFBSs). We retrieved 

common TFBSs to identify TFBS modules that consist of at least two TFBSs co-occurring in 

the same orientation and distance range across a defined input set of orthologous regions. 

Generally, the complexity of TFBS modularity within the ortholog set is assessed based on 

the precise determination of the occurrence/number (#) of three measures, (1) #common 

TFBSs, (2) #common TFBS modules and (3) #TFBSs in modules. Simulation on random sets 

was performed to separate complex SNP regions from non-complex SNP regions by 

estimating the probability for random occurrence of all three measures. Our bioinformatics 

methodology is described in detail in Supplemental Experimental Procedures and Figure S1. 

Positional Bias Analysis 
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120 bp genomic regions with SNP at central position were scanned by MatInspector 

(Genomatix) for presence of TFBS matrix family matches at SNP position, and positional bias 

of TFBS matrix families was calculated as described for de novo detection of motifs by 

(Hughes et al., 2000) using overlapping 50 bp sliding windows in steps of 10 bp. Positional 

bias was calculated as binominal P value for each matrix family and each window. For 

additional details see the Extended Experimental Procedures. 

Correlation of SNP regions with evolutionary constraint, DNase-seq and ChIP-seq 

regions 

Genomic regions surrounding a candidate SNP were classified as complex and non-complex 

and were correlated to evolutionary constrained regions (Lindblad-Toh et al., 2011) or 

DNase-seq and ChIP-seq peaks (The ENCODE Project Consortium, 2012). From midpoint 

(+/-500bp) of constrained regions as anchor, the overlapping positions (correlation) with 

complex and non-complex SNP regions (SNP +/- 60bp) were counted, and resulting 

correlations were plotted versus position relative to the anchor. From complex and non-

complex genomic regions surrounding a SNP (+/-500bp) as anchor, the overlapping positions 

of DNase-seq and ChIP-seq regions (correlation) with complex and non-complex SNP regions 

(SNP +/- 60bp) were counted and plotted versus position relative to the anchor. For 

constrained, DNase-seq and ChIP-seq regions information and for additional details see the 

Extended Experimental Procedures. 

Human adipose tissue and primary human adipose stromal cells 

Human abdominal adipose tissue was obtained with informed consent from healthy male and 

female subjects undergoing lipoaspiration or surgical excision of subcutaneous tissue. 

Informed consent was obtained from all patients before the surgical procedure. Procedures for 

the different studies were approved by the ethical committee of the Faculty of Medicine of the 
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Technical University of Munich (Germany), the Regional Committee for Medical Research 

Ethics REK (Bergen, Norway), the Ethics committee of the University of Leipzig (Leipzig, 

Germany) or the ethics committees at Lund University (Sweden). Primary hASCs and mature 

human adipocytes were isolated as described and differentiated using a protocol modified 

from (Veum et al., 2011). Primary cells were genotyped using MassARRAY (Sequenom).  

Expression Analysis by qRT-PCR, allele-specific primer extension and eQTL 

Total cell RNA was prepared using TRIzol (Invitrogen), primary adipocytes with RNeasy 

Lipid Tissue Mini Kit (Qiagen). qRT-PCRs were performed using cDNA Reverse 

Transcription kit (Applied Biosystems) or SuperScript® VILOTM cDNA Synthesis Kit 

(Invitrogen), SYBR-Green or Universal ProbeLibrary (UPL) (Roche), and Mastercycler 

Realplex (Eppendorf) or LightCycler480 (Roche, Germany). For allele-specific primer 

extension SNP surrounding regions were amplified from cDNA, purified by agarose gel, 

primer extension performed using SNaPshot Kit (ABI Prism), genomic DNA amplified using 

GoTaq DNA Polymerase Kit (Promega), products analyzed by gel capillary electrophoresis 

on ABI 3100 DNA Analyzer and electropherograms analyzed using Gene Mapper software 

(ABI). For eQTL analysis total PPARȖ expression levels from GeneChip® Human Gene 1.0 

ST whole transcript based array (Affymetrix) and rs7638903 variant (r2 = 1.0 to rs4684847, 

and to Pro12Ala) genotyped by Omni express (Illumina) were compared. For additional 

details including primer information see the Supplemental Experimental Procedures. 

Cell Culture and Reporter Assays 

Culturing of Huh7 hepatocytes, INS-1 ȕ-cells, 293T cells and differentiation of C2C12 

myocytes, 3T3-L1 adipocytes and SGBS adipocytes as described (Fischer-Posovszky et al., 

2008; Laumen et al., 2009). 
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Genomic sequences surrounding the respective SNPs were synthesized (MWG, Invitrogen) 

and cloned into pGL4.22 (Promega) containing TK-promoter. Huh7, INS1, 3T3-L1 and 

C2C12 cells were transfected using Lipofectamine 2000 reagent (Invitrogen), renilla-

luciferase pRLUbi was cotransfected for normalization (Laumen et al., 2009). Luciferase 

activities were measured using LuminoscanAscent (Thermo) or Sirius luminometer 

(Berthold).  

Gene knock-down by siRNA 

Primary hASCs and SGBS cells were treated with PRRX1 ON-TARGETplus human siRNA 

SMARTpool or non-targeting control (Dharmacon) using HiPerFect (Qiagen). For additional 

details see the Supplemental Experimental Procedures. 

Electrophoretic mobility shift assay (EMSA) 

EMSA with 42bp SNP-adjacent regions was performed with annealed Cy5-labelled 

oligonucleotide probes (MWG) and native protein extracts from the respective cell lines, 

modified protocol from (Laumen et al., 2009). For supershift experiments cell extracts from 

293T cells transfected with pCMV-PRRX1-flag vector were pre-incubated with ĮPRRX1 (M. 

Kern) or control IgG (Santa Cruz Biotechnology), competition experiments with excess of 

unlabeled probe. Quantification of DNA-binding complexes was performed with ImageJ 

Software (http://rsbweb.nih.gov/ij/).  

DNA-Protein affinity chromatography, LC-MS/MS  

To identify rs4684847-specific binding proteins DNA-protein affinity chromatography was 

performed using Streptavidin magnetic beads (Invitrogen) and allele-specific biotinylated 

DNA-probes (MWG), followed by tryptic digest, LC-MS/MS using Ultimate3000 nano 

HPLC (Dionex) online coupled to a LTQ OrbitrapXL mass spectrometer (Thermo Fisher 
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Scientific) and data analysis based on the Ensembl mouse protein database (Version NCBI 

m37) using Progenesis LC-MS software v.2.5 as described (Hauck et al., 2010).  

Statistical Analysis 

All statistical analyses were done using the Graph Pad Prism software v5.02, Pearl or the 

Statistical Software R v2.14.2.  

 

2.2.2.6 Tables and Figure Legends 

 

Table 1 

Correlation of adipose tissue PRRX1 mRNA expression with T2D traits in 
rs4684847 risk allele carriers. 
 

 PRRX1  mRNA PRRX1  mRNA PRRX1  mRNA

rs4684847  
genotypes All CC CT and TT 

ȕ p ȕ p Ǻ p 
a) n=38 n=20 n=18 

lo
g(

B
M

I)
 

- 1.32 0.05 1.23 0.19 1.43 0.23 

Age 1.45 0.03 1.23 0.19 1.96 0.09 

lo
g(

T
G

/H
D

L)
 

- 6.92 7.54 x 10-4 6.40 0.02 6.35 0.07 

Age 6.97 7.36 x 10-4 6.14 0.02 6.81 0.07 

age/ 
BMI 4.86 8.3 x 10-3 5.00 0.07 2.64 0.33 

lo
g(

H
O

M
A

IR
) 

- 2.77 3.52 x 10-3 3.13 8.3 x 10-3 1.80 0.29 

Age 2.77 3.77 x 10-3 3.12 8.6 x 10-3 1.70 0.34 

age/ 
BMI 1.41 0.028 2.1 4.6 x 10-3 -0.55 0.63 

b) n=67 n=54 n=13 

lo
g(

G
IR

) 

age/ 
BMI -0.51 1.83 x 10-7 -0.78 3.30 x 10-8 -0.38 0.28 

lo
g(

FF
A

) 

age/ 
BMI 0.25 0.014 0.27 0.015 -0.009 0.99 
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Gene expression and phenotypes were measured in a) adipose tissue from a lean/obese patient cohort (mean±SD 
24.2±9.1 kg/m2), and b) adipose tissue samples from BMI-matched obese patients ( mean±SD 43.2±3.1 kg/m2) 
characterized by hyperinsulinemic euglycaemic clamp. rs4684847 risk-allele and non-risk allele genotypes were 
determined by Sequenom-assay. BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin 
resistance; TG, triglyceride; HDL, high density lipoprotein; GIR, glucose infusion rate of hyperinsulinemic 
euglycemic clamp; FFA, free fatty acids. p-values and ȕ-estimates from linear regression analysis of PRRX1 mRNA 
expression levels with phenotype measures are shown. 

 

 

Table 2 

Genotype-PRRX1-dependent regulation of PRXX1/PPARG anti-regulated genes in hASCs. 

 siNT siPRRX1 siPRRX1 / siNT 

 hetero homo hetero/homo hetero homo hetero/homo hetero homo 

 
Mean 

±SD 

Mean 

±SD 
FC p 

Mean 

±SD 

Mean 

±SD 
FC p FC p FC p 

PRRX1 
0.52 

±0.18 

0.51 

±0.19 
1.01 0.92 

0.11 

±0.05 

0.12 

±0.06 
0.90 0.56 0.25 2.83 x 10-

7 
0.22 4.02 x 10-8 

PPARG2 
4.32 

±1.07 

0.79 

±0.08 
0.18 2.46 x 10-

11 

4.34 

±1.47 

3.37 

±1.04 
0.77 0.08 1.00 0.96 4.29 7.24 x 10-

11 

PPARG1 
1.07 

±0.26 

1.04 

±0.33 
1.03 0.79 

1.18 

±0.35 

1.20 

±0.49 
0.98 0.90 1.15 0.35 1.10 0.41 

PEPCKC 
2.83 

±0.58 

1.03 

±0.20 
2.76 1.62 x 10-

10 

2.66 

±0.50 

2.98 

±0.42 
0.89 0.09 0.94 0.43 2.90 8.77 x 10-4 

PDK4 
2.01 

±0.88 

0.74 

±0.18 
2.73 3.19 x 10-5 

2.00 

±0.60 

1.73 

±0.61 
1.15 0.27 0.99 0.97 2.35 8.01 x 10-6 

LIPE 
1.37 

±0.64 

0.68 

±0.32 
2.01 2.00 x 10-3 

1.30 

±0.32 

1.21 

±0.45 
1.08 0.56 0.95 0.74 1.77 2.03 x 10-3 

ADIPOQ 
1.89 

±0.32 

0.95 

±0.31 
1.98 7.92 x 10-8 

1.85 

±0.44 

1.75 

±0.61 
1.05 0.66 0.98 0.81 1.84 2.84 x 10-4 

OPG 
0.78 

±0.36 

1.67 

±0.53 
0.47 3.91 x 10-5 

0.84 

±0.28 

1.09 

±0.38 
0.77 0.07 1.08 0.61 0.65 4.10 x 10-3 

TIMP3 
0.61 

±0.21 

1.50 

±0.52 
0.41 6.45 x 10-6 

0.83 

±0.33 

1.00 

±0.39 
0.83 0.23 1.36 0.06 0.67 0.01 

BBOX1 2.16 0.96 2.26 8.04 x 10-8 1.84 2.14 0.86 0.07 0.85 0.07 2.23 3.09 x 10-8 
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±0.48 ±0.30 ±0.37 ±0.44 

GLUT4 
1.57 

±0.35 

0.99 

±0.24 
1.58 6.15 x 10-5 

1.62 

± 

1.50 

±0.31 
1.09 0.26 1.03 0.67 1.50 1.08 x 10-4 

THRSP 
0.99 

±0.28 

1.61 

±0.39 
0.61 8.18 x 10-5 

1.53 

±0.33 

1.60 

±0.32 
0.95 0.57 1.55 1.38 x 10-

4 
0.99 0.93 

 
PRRX1/PPARG anti-regulated genes were identified by Illumina microarray analysis in samples with PRRX1 knockdown and 
simultaneous PRRX1 and PPARG knockdown during adipogenic differentiation (Figure 5E). Confirmatory qRT-PCR was performed 
for these representative top regulated genes in hASC from BMI-matched heterozygous (hetero, n = 16) and homozygous (homo, n = 32) 
risk-allele carriers (genotyped for the PPARG locus cis-regulatory variant rs4684847 and the tagSNP rs1801282 Pro12Ala). PRRX1, 
Paired-related homeobox 1; PPARG, peroxisome proliferator-activated receptor gamma; PEPCKC, Phosphoenolpyruvate carboxylase 
cytosolic; PDK4, pyruvate dehydrogenase kinase, isozyme 4; LIPE, lipase, hormone-sensitive; ADIPOQ, adiponectin, C1Q and 
collagen domain containing; OPG, Osteoprotegerin; TIMP3, TIMP metallopeptidase inhibitor 3; BBOX1, butyrobetaine (gamma), 2-
oxoglutarate dioxygenase (gamma-butyrobetaine hydroxylase); GLUT4, Glucose Transporter Type 4; THRSP, thyroid hormone 
responsive Spot 14 Protein; FC, fold change; p, p-value from unpaired t-test. 
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Figure 1. Discovery of cis-regulatory diabetes SNPs. 

(A) Workflow of the PMCA methodology: (1) The flanking region of a non-coding SNP is 

extracted from the human reference genome; (2) orthologous regions are searched in the 

genomes of 15 vertebrate species; (3) TFBS are identified in each orthologous sequence; (4) 

TFBS modules are identified in the set of orthologous sequences (TFBS modules defined as 

all, two or more TFBS occurring in the same order and in certain distance range in all or a 

subset of the orthologous sequences); (5) phylogenetically conserved TFBS �TFBS, TFBS 

modules �modules, and occurrences of TFBS in TFBS modules �TFBS_in_modules are counted; (6) 

repeated counting for different numbers of input sequences weighs the degree of cross-species 

conservation and the number of TFBS in modules. Computation of conserved TFBS with 

more restricted parameters �restr_TFBS accounts for genomic regions with low numbers of 

orthologs; (7) steps 3-6 are repeated using randomized input sequences (randomization of 

sequences is done using local shuffling in order to conserve local nucleotide frequency 

distributions) to estimate; (8) the probability p-est of observing a given �TFBS, �restr_TFBS, 

�modules, and �TFBS_in_modules and to calculate the overall scoring criterion; (9) input sequences 

are classified as complex and non-complex regions; (10) complex regions harboring a trait-

related TFBS at SNP position are selected for functional evaluation (trait-related TFBS are 

drawn from overall TFBS clustering analysis as described in text related to Figure 3). 

Supplemental Experimental Procedures. 

(B) Representative complex region (rs4684847) and non-complex region (rs13064760). 

Conserved TFBS and conserved TFBS in modules occurring in more than 2 vertebrate species 

are shown to illustrate TFBS modularity across species. 

(C-G) Classification of SNP regions for a set of eight T2D risk loci (Table S1, Figure S1).  

(C-E) Box-Whisker plots (IQR 50%) show the counts of conserved TFBS �TFBS (C), 

conserved TFBS modules �modules (D) and occurrences of TFBS in TFBS modules 

�TFBS_in_modules (E) for complex regions (red lines) and non-complex regions (black lines). 

Data points covered by the  IQR and the  whiskers  values  were  added  as  rug  at  the  sides  

of  the  plot. Note that values vary over a large range with higher median for complex regions 

for all criteria (at 47 T2D loci we find a median of 354.5/470.46 and 310/382.35 for 

�TFBS_in_modules in complex/non-complex regions). 

(F-G) Scoring of SNP regions is illustrated by histograms showing the probability p-est of 

observing �TFBS across species (F) and showing the overall scoring criterion Sall (G). Blue 
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curve: empirical density function of the histogram data. Red dashed line: cut-off scores 

separating complex from non-complex regions (-log10 p-estTFBS=1.12, Sall=6.5); SNP regions 

with a value to the left of the red line were defined as non-complex. 

 (H-I) Cis-regulatory activity of SNP regions. Non-complex regions include regions matched 

for TFBS density of complex regions (TFBS median=88). The allele-dependent change in 

DNA-binding activity from EMSAs (n=4) (H) and luciferase reporter activity (n=10) (I) is 

shown for each SNP. Mean±SD, p from linear mixed-effects model. See also Tables S2-3. 
 

Figure 2. Correlations of cis-regulatory predictions at 47 T2D risk loci with 

evolutionary constrained elements and functionally annotated genomic 

regions (Table S7-9). 

(A) Correlation of PMCA results with evolutionary constrained regions. The occurrences of 

487 complex and 978 non-complex T2D-associated regions within constrained regions from 

SiPhy-ʌ algorithm (Lindblad-Toh et al., 2011). Localization of SNPs relative to transcription 

start site in Figure S2A-B. 

(B) Venn diagram illustrates the number of complex and non-complex regions that directly 

map to a constrained element (overlap). 

(C) Complex regions at the PPARG locus (Figure 4E) lack an overlap with constrained 

regions. Zoom-in: the rs4684847 cis-regulatory region does not map to a constrained region 

(393bp upstream of nearest constrained element). A representative TFBS module 

(ȍTFBS_in_module = 3) is shown and its TFBS module conservation for a given quorum of five 

species is visualized by a sequence logo. 

(D-E) Correlation of complex (red line) and non-complex (black line) T2D-associated SNP 

regions to DHSseq (D) and ChIPseq (E) peaks. From the midpoint of 487 complex and 978 

non-complex regions, 1,000bp in both directions were scanned for DHSseq and ChIPseq 

peaks (Supplemental Experimental Procedure). For each position, the sum of occurrences was 

plotted. T2D complex regions were significantly enriched for overlaps with DHSseq and 

ChIPseq regions, displayed as a central peak (correlations with Crohn’s-associated regions in 

Figure S2C-D). 
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Figure 3. Positional bias of distinct homeobox TFBS families at T2D risk 

SNPs. 

Distribution of TFBS matrices relative to SNP positions (SNP±500bp) at T2D compared to 

asthma risk loci, calculated using positional bias analysis. 1,000bp genomic regions with 

SNPs at midposition were scanned for the occurrence of TFBS matches for 192 TFBS matrix 

families (sliding 50bp windows, p from binomial distribution model, Supplemental 

Experimental Procedure). 

 (A-B) TFBS family distribution in a set of eight and an extended set of 47 T2D risk loci. 

Complex regions reveal clustering of distinct homeobox TFBS matrix families at T2D risk 

SNP positions (±20bp, grey dashed lines). All TFBS families displayed equal distributions 

within T2D non-complex regions, represented (a subset of representative TFBS families is 

shown). 

(C) TFBS family distribution in a set of eight asthma risk loci. Asthma complex and non-

complex regions lack a positional bias at SNP positions for the homeobox TFBS matrix 

families clustering in complex regions at T2D risk SNPs (details on Crohn Figure S3). 

(D-E) TFBS family distribution in asthma risk loci revealed a specific EGRF matrix family 

clustering in complex regions at asthma risk SNPs (D). T2D complex regions lack a clustering 

of EGRF matrices at SNP positions (E). 

 

Figure 4. The non-coding SNP rs4684847 (C/T), by binding the homeobox 

factor PRRX1, represses PPARG2 expression at the PPARG diabetes risk 

locus. 

(A) Top panel: A LD regional plot of the PPARG locus. Diamonds tagSNP Pro12Ala and 

pairwise correlation of SNPs in LD (MAF�1%) against genomic position; Blue PPARG gene 

and exons; Middle/lower panel: Classification of SNPs in complex regions (red lines) and 

non-complex regions (grey lines) (PMCA steps 1-9, Figure 1A); Scanning of PPARG 

complex regions for T2D-distinct homeobox TFBS matrix families (CART, HOMF, HBOX, 

NKX6, BCDF, PDX1; Figure 3B) pinpoints rs4684847 (C/T), based on its overlap with the 

CART binding matrix for PRRX1 (step 10, Figure 1A). Zoom-in human PPARG gene; arrows 

TSS of PPARG1-3 mRNA isoforms; boxes coding exons (filled) and untranslated exons 

(open); lines introns; Second zoom-in CRM at rs4684847: the PRRX1 matrix co-occurs with 
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diverse TFBS matrices in consistent orientation and distance range across species, 

exemplarily illustrated by one conserved TFBS module (ȍTFBS_in_modules = 3; TFBS matrices: 

PRRX1, TEF, LHXF). 

(B-C) Genotype-dependent mRNA expression in undifferentiated hASCs genotyped for 

Pro12Ala and rs4684847 (r2=1.0). qPCR of PPARG1 and PPARG2 mRNA isoforms 

(standardized to HPRT) homozygous CC risk (n=9) and CT non-risk allele carriers (n=5) 

normalized to mean for CC. Mean±SD, t-test. 

(D) Validation of cis-regulatory predictions for complex regions at the PPARG locus. 

Quantified change in reporter activity in 3T3-L1 adipocytes is shown for each SNP, using 

luciferase constructs harboring the risk or non-risk alleles, representing an activating or 

repressing effect of the risk-allele on transcriptional activity. Mean±SD, n=3-14, paired t-test. 

(E) Allele-specific primer extension analysis in hASCs of heterozygous rs4684847 carriers 

(n=6) normalized to mean risk allele levels (D). Mean±SD, Mann Whitney U test. 

(F-G) Increased PRRX1 binding at the risk allele in EMSAs with rs4684847 allelic probes 

and 3T3-L1 preadipocyte nuclear extracts (F), confirmed by competition with cold PRRX1 

probe (G, left panel) and PRRX1 antibody shift of protein–DNA complex in 293T with 

ectopically expressed PRRX1 (G, right panel). 

(H) Reporter assays with constructs harboring the rs4684847 risk and non-risk allele in 3T3-

L1 preadipocytes. Truncation of the PRRX1 matrix without affecting rs4684847 reveals 

abrogated allelic cis-regulatory activity. Mean±SD, n=9, paired t-test. 

(I) Inhibition of reporter activity (normalized to pCMV control) at the rs4684847 risk allele 

by ectopic expression of PRRX1 in 3T3-L1 preadipocytes. Mean±SD; n=9, paired t-test. 

(J) Regulation of PPARG2 mRNA expression in SGBS adipocytes with the CC risk allele, or 

TT non-risk allele introduced by CRISPR/Cas9 genome editing approach. siPRRX1 and siNT 

transfection concurrent with induction of differentiation, PPARG2 mRNA assessed by qRT-

PCR, standardized to HPRT. Mean±SD, n=12, t-test. siNT, non-targeting siRNA. See also 

Figure S4 and Table S17. 

 

Figure 5. Binding of PRRX1 at the rs4684847 risk allele in human adipose 

cells affects lipid metabolism and insulin sensitivity. 
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(A,G-J) PRRX1 silencing in hASC from BMI-matched rs4684847 CT (n=16) and CC (n=32) 

risk allele carriers. siPRRX1 and siNT transfected concurrent with induction of adipogenic 

differentiation. 

(A) rs4684847-dependent PPARG2 and PRRX1 mRNA levels measured by qPCR 

(standardized to HPRT) 72 hours after induction of adipogenic differentiation. Left panel: 

Pearson’s correlation in the siNT set. Right panel: Box-Whisker plot comparing PPARG2 

mRNA in siNT vs. siPRRX1 treated cells (t-test). 

(B-C) Global gene expression profiling by Illumina microarrays (q<0.2) in hASCs from 

rs4684847 CC risk allele carriers transfected with siPRRX1 (n=9, grey dots) and co-

transfected with siPRRX1 and siPPARG (n=4, red dots) for 72 hours after induction of 

adipogenic differentiation (B). Distribution of siPRRX1/siPPARG anti-regulated genes 

among all regulated genes ranked by fold change (C). 

(D-E) Biological pathways associated with siPRRX1/siPPARG anti-regulated genes (D) and 

top scoring interaction network (E) from Ingenuity Pathway Analysis. 

(F) Oil Red O lipid staining of human SGBS cells with lentiviral-overexpressed flag-tagged 

PRRX1 (or control vector) 12 days after induction of adipocyte differentiation. Protein 

expression with Įflag (PRRX1) and ĮACTB antibodies. 

(G-H) rs4684847-dependent glyceroneogenesis rate measured by [1-14C]-pyruvate 

incorporation (G) and FFA release (H) in hASCs. Left panel (G): Pearson’s correlation in the 

siNT set: Right panel: Box-Whisker plot comparing siNT vs. siPRRX1 treated cells, t-test.  

(I) rs4684847-dependent increase of 2-deoxyglucose (2DG) uptake following insulin 

stimulation in hASCs. Box-Whisker plot comparing siNT vs. siPRRX1 treated cells. t-test. 

(J) rs4684847-dependent rosiglitazone-mediated suppression of FFA-release during 

glyceroneogenesis. Pearson’s correlation comparing siNT vs. siPRRX1. Mean±SD, t-test. See 

also Figure S4G,H and Table 1-2. 

(K) The rs4684847 risk allele (C allele) promotes PRRX1 binding 6.5kb upstream of the 

PPARG2 specific promoter, leading to suppression of PPARG2 mRNA expression and 

perturbated lipid handling in adipose cells, increased circulating FFA levels, insulin 

resistance, and risk of T2D. 

FC, fold change; FFA, free fatty acids. 
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2.2.2.7 Figures 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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2.3  Computer implemented method for identifying 

regulatory regions of regulatory variations and 

diagnostic means and methods for type 2 diabetes 

 
Large parts of the manuscript described in and Chapter 2.1 and Chapter 2.2 are the basis for 

two patents that have been filed and published by the Technical University of München. 

Those patents are based on my novel computational concept of exploiting cross-species 

conservation in terms of a complexity assessment of co-occurring TFBS within CRM, 

regardless of the Phylogenetic conservation at nucleotide level. .  I was largely involved in 

writing the patents. 

The patent “COMPUTER IMPLEMENTED METHOD FOR IDENTIFYING 

REGULATORY REGIONS OR REGULATORY VARIATIONS” includes the 

bioinformatics PMCA methodology as described in Chapter 2.1 and can be viewed online 

(http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013024173&recNum=87&docAn

=EP2012066144&queryString=obesity&maxRec=32487 ; Hyperlink: Claussnitzer 2013-1). 

The invention relates to the analysis of patterns of co-occurring TFBS across species for the 

computational identification of regulatory elements and regulatory sequence variants in the 

human genome.  

The patent “DIAGNOSTIC MEANS AND METHODS FOR TYPE 2 DIABETES” relates to 

the application of the PMCA methodology on genetic susceptibility loci that have been 

associated with T2D. The patent can be viewed online 

(http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013024175&recNum=217&docA

n=EP2012066150&queryString=%28%20& ; hyperlink:  Claussnitzer 2013-2). The patent 

was filed for a total of 41 cis-regulatory variants that were, by using the PMCA framework, 

computationally pinpointed. I validated the cis-regulatory functionality of those variants with 

a series of wet lab experimental approaches as described in Chapter 2.2 
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2.4  Functional characterization of promoter variants 

of the adiponectin gene complemented by 

epidemiological data. 

 

The content of this chapter has been published in Laumen et al, 2009, and is described below. 

For this manuscript, I could apply parts of the computational cross-species TFBS analysis on 

sequence variants that have been statistically associated with circulating adiponectin levels. 

The computational analysis served to select potential cis-regulatory SNP variants within the 

adiponectin locus, which might explain the statistical genotype association with circulating 

adiponectin levels. The in silico analysis pinpointed SNP variants, i.e. rs16861194, 

rs17300539, rs266729, that localize in a potential CRM within in the adiponectin promoter 

region.  

 

2.4.1  Introduction 

Adipose tissue produces and releases a variety of factors, which may be directly involved in 

the pathophysiology of obesity-associated insulin resistance (Hauner, 2005). One of the most 

interesting candidates with respect to the development of metabolic syndrome and type 2 

diabetes is the APM1 gene that encodes the abundantly expressed protein adiponectin. 

Circulating adiponectin concentrations are negatively associated with insulin resistance and 

atherosclerosis and are decreased in humans with type 2 diabetes, coronary artery disease, or 

obesity (Matsuzawa, 2006). Animal experiments showed that administration of adiponectin 

reduces blood glucose levels, improves insulin resistance, and directly ameliorates endothelial 

dysfunction (Yamauchi  et al., 2001; Berg et al., 2001; Ouedraogo et al., 2007). Furthermore, 
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low adiponectin levels are associated with other components of the metabolic syndrome, such 

as hypertension and dyslipidemia (Kadowaki et al., 2006). 

APM1 maps to chromosome 3q27, a region known to be linked to type 2 diabetes and the 

metabolic syndrome (Vionnet et al., 2000). In view of the important role of circulating 

adiponectin in the pathogenesis of major metabolic disorders, several studies have addressed 

the correlation of APM1 SNPs with adiponectin levels. They revealed a significant correlation 

between two SNPs, rs266729 and rs17300539, and adiponectin levels (Vasseur et al., 2000; 

Vasseur et al., 2002; Heid et al., 2006). In one of these studies, the functional activity of both 

SNPs for transcriptional regulation as promoter elements was analyzed by luciferase assay 

(Bouatia-Naji et al., 2006). However, these experiments were performed in COS7 cells that do 

not express adiponectin and hence do not represent an ideal cell system for this type of 

analysis. We performed transfection experiments using mutated promoter constructs in 3T3-

L1 adipocytes expressing endogenous adiponectin and analyzed DNA binding activity of 

different haplotype combinations of three promoter SNPs. Two of the selected SNPs are 

known to be associated with adiponectin levels and the third one lies in close proximity. This 

prompted us to assume that all three may be located in a transcriptionally functional element 

that may be altered by one or all SNPs. The relevance of these SNP haplotypes for human 

adiponectin levels was investigated in 1,692 participants of the MONICA/KORA 

(Cooperative Health Research in the Region of Augsburg) S123 cohort as well as in 696 

participants of the KORA S4 cohort. 

 

2.4.2  Research Design and Methods 

SNP selection. 

We searched for SNPs in the promoter region of the APM1 gene that 1) co-localize with 

putative transcription factor binding sites, 2) have been reported to be associated with 



�

88 
�
�

adiponectin level or other adiponectin-related traits, and 3) lie in close genomic proximity. 

The first criterion is based on the assumption that SNPs may interfere with the functionality of 

a binding site, and the second should ensure previous epidemiological SNP association with 

adiponectin or related parameters. The rationale for the third criterion is the fact that 

transcription factor binding sites are often found in close proximity and build a functional 

module; the combination of different transcription factor binding sites is usually essential for 

regulation of transcription. If potential regulatory SNPs are found in such a potential module, 

it may enhance the probability that they are indeed functional SNPs. We hypothesized that 

SNPs combining both properties were most likely to alter a functional module in humans. The 

SNP2 (rs17300539, G>A) showed the strongest association with adiponectin levels in several 

studies. This SNP has been chosen together with two additional SNPs that both have shown 

association with type 2 diabetes (SNP1 = rs16861194 A>G; SNP3 = rs266729 C>G; in 

MONICA/KORA S123, rs1648707 A>C has served as proxy for SNP3 with linkage 

disequilibrium values of r = 0.84 and Dƍ = 1). All three together are located in a small 80-bp 

part of the adiponectin promoter/enhancer region. Furthermore, all three SNPs lie within 

putative transcription factor binding sites that are shown in Figure 1. These putative binding 

sites have been predicted using the Genomatix software (Genomatix, Munich, Germany). 

 

Functional studies 

Cell culture. 

The mouse preadipocyte cell line 3T3-L1 was cultured as described (Laumen et al., 2008). To 

promote adipose differentiation, Dulbecco's modified Eagle's medium containing 10% fetal 

calf serum was supplemented with 250 nmol/l dexamethasone and 0.5 mmol/l isobutyl-

methylxanthine for the first 3 days and 66 nmol/l insulin throughout the whole differentiation 

period. 
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Transfection of cells. 

3T3-L1 cells were transfected on day 0, 6, and 8 of differentiation, respectively, using the 

Lipofectamine 2000 transfection reagent (Invitrogen, Karlsruhe, Germany). A total of 2 µg 

DNA and 2 µl transfection reagent were mixed according to the manufacturer's instructions 

and added to the cells for 4 h. Then 24–48 h after transfection, luciferase activity was 

measured using the dual-luciferase reporter assay (Promega, Mannheim, Germany). In all 

transfections, 0.2 µg ubiquitin-promoter renilla luciferase vector was cotransfected to 

normalize for transfection efficiency. 

Cloning and mutagenesis of adiponectin promoter luciferase vectors. 

A 2,100-bp adiponectin promoter (bases í2,125 to +41) was PCR amplified from genomic 

DNA using an iProof High-Fidelity PCR Kit (Bio-Rad, Germany) and cloned into the 

pGL3basic luciferase vector (Promega, Germany) as described recently (Kita et al., 2005), 

using the primers depicted in Table S1 in the supplemental material (found in an online-only 

appendix at http://dx.doi.org/10.2337/db07-1646). The haplotype configuration of the cloned 

promoter was determined by sequencing and was shown to carry the major allele (M) of the 

three SNPs described above (MMM-luc). Using the QuickChange Multi Site-Directed 

Mutagenesis Kit (Stratagene, Germany) and the primers listed in Table S1 (supplemental 

material), the variants of the three SNPs were introduced in all remaining seven possible 

combinations (for primers, see Table S2). All vectors were sequenced to confirm the correct 

SNP variation combination. 

Electrophoretic mobility shift assay. 

Probes for electrophoretic mobility shift assay (EMSA) were amplified by PCR from the 

above-described luciferase vectors carrying the eight different SNP combinations using the 

primers EMSA 5ƍ and 3ƍ (Table S1). The resulting 80-bp probe spans the APM1 gene 

corresponding to chromosome 3 position 188042104–188042183 (for sequence, see Figure S1 
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in the supplemental material). Primers contained a synthetic HindIII site, and resulting probes 

were cut to enable radioactive Klenow fill-in. EMSA was performed with 2–4 µg nuclear 

protein extract and with 30,000–50,000 cpm of a 32P-labeled probe as described previously 

(Schorpp et al., 1995). 

Statistical analysis of transfection studies. 

Overall, statically comparisons were performed using the Kruskal-Wallis test followed by 

pair-wise testing using the Dunn's multiple comparison test. 

 

Epidemiological investigation 

The KORA S4 and the MONICA/KORA S123 sample. 

The KORA Survey S4 (formerly known as S2000) is a population-based study of adults 

recruited from 1999 to 2001 conducted under the same conditions as the previous three 

surveys (S1, S2, S3) with patients recruited during the years 1984–1995 in the World Health 

Organization MONICA project. Details of the surveys are reported elsewhere (Loewel et al., 

2005). Study participants from all four surveys were from the study region of Augsburg 

(German nationality). Measures of weight and height were available to compute the BMI. All 

participants gave their written informed consent. 

A subsample of the KORA S4 survey including 696 subjects aged 55–74 years with ∼50% 

men was designed to address objectives regarding pre-diabetic stages. Adiponectin was 

measured in these subjects using the human adiponectin radioimmunoassay from Linco 

Research (St. Charles, MO) as described previously (Rathmann et al., 2006; Herder et al., 

2006). 

From the above-stated MONICA/KORA surveys S1, S2, and S3, a number of the 1,692 

subjects aged 35–74 years with equal gender distribution were selected randomly from each 

survey as a subcohort sample (MONICA/KORA S123 sample) (Thorand et al., 2005). 
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Adiponectin levels were measured using the human adiponectin enzyme-linked 

immunosorbent assay from Mercodia (Uppsala, Sweden). The intra- and interassay 

coefficients of variation of control sera were 3.2% and 5.8%, respectively. 

Genotyping. 

PCR primers were designed by Sequenom's MassARRAY Assay Design program. 

Genotyping analyses were carried out by means of matrix-assisted laser desorption 

ionization–time of flight analysis of allele-dependent primer extension products as described 

elsewhere (Weidinger et al., 2004). Genotyping calls were made in real time with 

MassARRAY RT software (Sequenom, San Diego, CA). Negative controls were included in 

all assays. In the 12.5% of randomly selected samples genotyped in duplicate, the discordance 

rate was 0.3%. 

Statistical analysis of epidemiological data. 

Statistical SNP and haplotype association analysis was performed using the SAS procedure 

SURVEYREG to account for the sampling scheme in the MONICA/KORA S123 sample in 

the estimation of the standard errors of association estimates; in the KORA S4 sample, linear 

regression was applied using the GLM procedure. The logarithm of adiponectin was used as 

the outcome variable to yield a normal distribution. All analyses were adjusted for age, sex, 

and BMI. An additive as well as a dominant genetic model was applied. The minor allele 

frequencies of SNPs were computed, and linkage disequilibrium was assessed. SNPs were 

tested for Hardy-Weinberg equilibrium. 

Haplotypes were estimated from genotypes via the expectation-maximization algorithm using 

the R statistics package (haplo.em) or SAS version 9.1 (Schaid et al., 2002). Haplotypes were 

used in the regression models including all haplotypes except the most common haplotype to 

compute the association with adiponectin per copy of a haplotype adjusted for the other 
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haplotypes compared with the group of subjects with two copies of the most common 

haplotype. 

 

2.4.3  Results 

SNP variants and haplotypes in the two epidemiological KORA samples. 

In the two epidemiological cohorts KORA S4 and MONICA/KORA S123, we analyzed the 

three SNPs that we had selected for our investigation as candidates for an adiponectin-

regulating role because of their nearby location in the APM1 promoter, because of their 

possible interference to transcription factor binding sites, and because of previous reports 

about association with adiponectin or related phenotypes. The SNPs analyzed were 

rs16861194 (SNP1), rs17300539 (SNP2), and rs266729 (SNP3) in KORA S4 and rs1648707 

in MONICA/KORA S123 as proxy for SNP3 (as described in RESEARCH DESIGN AND 

METHODS). The r2 values as a measure of linkage disequilibrium were 0.006 (0.009) and 

0.024 (0.179) for SNP1 compared with SNP2 and SNP3, respectively, and 0.038 (0.049) for 

SNP2 compared with SNP3 in the KORA S4 sample (and the MONICA/KORA S123 

sample); hence, they are not in linkage disequilibrium. We statistically reconstructed the 

haplotypes; of the theoretically possible eight haplotypes across the three SNPs, we observed 

five (MMM, MmM, MMm, mMM, and mMm, with M and m indicating the major or minor 

allele, respectively). SNP and haplotype characteristics are given in Table 1 and Table 2, 

respectively, indicating a large consistency of allele frequencies in the two cohorts. 

 

APM1 promoter activity during adipocyte differentiation. 

The MMM adiponectin promoter construct containing the major allele M in all three SNPs 

was transfected into 3T3-L1 preadipocyte cells (d0) and 3T3-L1 adipocytes 6 and 8 days after 

induction of differentiation (d6 and d8). We measured a significant induction of luciferase 
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activity during adipocyte differentiation (threefold on day 6 and fivefold on day 8, 

respectively) demonstrating the functionality of the promoter (Figure 2). 

Next, we focused on the five haplotypes observed in the KORA samples (MMM, MmM, 

MMm, mMM, and mMm). A significant overall difference between promoter activities was 

observed (Figure 2A), and each promoter construct revealed significant induction of 

luciferase activity upon differentiation compared with respective transfections in 

undifferentiated cells in pair-wise comparisons. On day 6 of differentiation, we found a 

tendency of 50% higher promoter activity of the MMM promoter compared with the mMM, 

MmM, and MMm promoters. On day 8 of differentiation, the most striking difference was 

observed between the MMM and the mMM promoter, with MMM showing a threefold higher 

activity than mMM (P < 0.05). Notably, both promoters with the minor allele at the SNP1 

position (mMM and mMm) revealed impaired basal promoter activity compared with the 

MMM promoter already in preadipocytes. 

Next, we transfected cells with promoters regulated by the theoretically possible, using 

nonexisting haplotypes in the epidemiological samples (Mmm, mmM, and mmm), and 

observed the strongest impact by the threefold major to minor allele alteration (mmm 

promoter) with a complete loss of basal promoter activity in preadipocytes. Additionally, the 

mmm promoter was almost resistant to transcriptional activation during differentiation 

supporting the importance of these sites for transcription of the APM1 gene. Interestingly, all 

promoters with the minor allele at the SNP1 position showed the strongest reduction of basal 

promoter activity or altered kinetic of activity during differentiation compared with the MMM 

promoter, suggesting a crucial role of SNP1 for promoter activation. 

 

Impact of rosiglitazone on APM1 activation depending on SNP variant combinations. 



�

94 
�
�

To investigate whether the different haplotype constructs had an impact on the inducibility of 

the APM1 gene promoter, we transfected 3T3-L1 adipocytes on day 6 after induction of 

differentiation and determined luciferase activity in the presence or absence of rosiglitazone. 

Promoters with MMM, MmM, MMm, or Mmm haplotypes revealed a two- to fivefold 

induction of luciferase activity after treatment with rosiglitazone compared with control 

treated cells (Figure 3). In contrast, all other haplotypes with the minor variant at the SNP1 

position (mMM, mMm, and mmm) showed no response upon rosiglitazone treatment. 

 

Influence of APM1 SNP variations on DNA binding activity. 

To analyze whether these haplotypes have an impact on DNA binding activity of nuclear 

proteins, we performed EMSAs using nuclear extracts from undifferentiated 3T3-L1 

(preadipocytes) and in vitro differentiated 3T3-L1 adipocytes (day 6 after induction of 

differentiation) and DNA probes with all eight possible haplotypes. We found one major 

complex and some minor slower migrating complexes using the DNA probe with the major 

SNP variants (MMM) and nuclear extracts from preadipocytes. Nuclear extracts from 

differentiated adipocytes revealed a slight decrease of the major complex and increased 

binding of a slower migrating complex. Most haplotypes showed similar patterns of DNA 

binding compared with MMM. In contrast, the mMM probe revealed strongly reduced DNA 

binding activity with nuclear extracts from preadipocytes, but comparable binding of major 

and minor complexes in differentiated adipocytes. Finally, we performed EMSAs with 

nuclear extracts of preadipocytes and adipocyte cultures that were induced with rosiglitazone 

to investigate whether stimulation affects DNA binding activity. Rosiglitazone treatment of 

preadipocytes abolished protein binding to DNA probes with MMM and the most other 

haplotypes (MmM, MMm, mmM, Mmm, and mmm), whereas no inhibition of DNA binding 

was found for the mMm variant. Moreover, we detected restored DNA binding activity for the 
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mMM variant. Surprisingly, rosiglitazone treatment of differentiated adipocytes had no major 

impact on DNA binding activity (Figure 4). 

 

Association of SNPs and haplotypes with circulating adiponectin in the epidemiological 

samples. 

Table 3 and Table 4 summarize the results of SNP and haplotype association analyses in the 

MONICA/KORA S123 (1,692 participants) and the KORA S4 (696 participants) samples. 

Subjects carrying the minor allele of SNP1 showed consistently lower circulating adiponectin 

levels in both cohorts, which was statistical significant in the larger MONICA/KORA S123 

sample (P = 0.001), but not in the smaller KORA S4 sample. Consistent to the SNP1 finding, 

all haplotypes found in the studies containing the minor allele for SNP1 showed reduced 

adiponectin level, which was statistically significant for the more frequent mMm (P = 0.009). 

This observation of lower adiponectin level for the SNP1 minor allele and the respective 

haplotypes is in line with the promoter assay finding of a reduced activity for these 

haplotypes. Subjects carrying the minor allele in SNP2 showed a significant increase in 

adiponectin levels in both KORA samples (P = 0.00005 and P < 10í9), which was in line with 

haplotype analysis for haplotype MmM (P < 0.0001 and P = 0.0002), but did not fit with the 

promoter activity assays. SNP3 showed decreased adiponectin levels in all studies, which was 

statistical significant in the larger MONICA/KORA S123 sample (P = 0.00001). Three 

haplotypes (mmM, Mmm, and mmm) were neither present in any subject of the KORA S4 

nor in the MONICA/KORA S123 sample. Given the sample size of 1,676 (696) in the 

MONICA/KORA S123 (KORA S4) sample and the haplotype frequency of 0.0025 (0.0015) 

as expected from the minor allele frequencies of the three SNPs, the finding of zero subjects 

with the mmm haplotype was statistically significantly different from what would have been 

expected by chance (P= 0.0167 in MONICA/KORA S123, P = 0.3534 in KORA S4, P = 



�

96 
�
�

0.0059 for both samples combined). This observation is in line with the observation of a 

complete loss of promoter activity. 

 

2.4.4  Discussion 

Recent epidemiological studies support the concept that SNPs in the APM1gene are 

associated with type 2 diabetes and other metabolic disorders in several populations 

(Ouedraogo  et al., 2007). In the current study, we investigated three different SNPs (SNP1 = 

rs16861194, SNP2 = rs17300539, and SNP3 = rs266729 or rs1648707) in the APM1 gene 

promoter region located within an 80-bp region of the promoter that are known for their 

association with circulating adiponectin levels or related phenotypes (Vasseur et al., 2002; 

Heid et al., 2006; Bouatia-Naji et al., 2006). We applied an approach of combining functional 

experiments with epidemiological data and showed that these SNPs influence basal and 

inducible APM1 promoter activity in 3T3-L1 adipocytes accompanied by alterations in DNA 

binding activity. In human epidemiological studies, we presented SNP and haplotype 

association analyses of two population-based samples of the MONICA/KORA studies, which 

was consistent with most of our functional findings. 

Intriguingly, the constructed promoter with the minor allele (mmm) in all SNPs was almost 

completely inactive with regard to basal activity and differentiation- or rosiglitazone-induced 

activity. Our results clearly demonstrate the functional relevance of these SNPs for activation 

of theAPM1 promoter by interfering with transcription factor binding sites. Indeed, we found 

specific binding of nuclear proteins to a DNA probe containing all three minor alleles as well 

as changes in the pattern of DNA-protein complexes upon adipocyte differentiation and partly 

also upon rosiglitazone stimulation. Given the highly reduced promoter activity and low 

circulating adiponectin levels being associated with increased risk of severe diseases such as 

type 2 diabetes and coronary heart disease (Yamauchi et al., 2001; Berg et al., 2001; 
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Tschritter et al., 2003; Stefan et al., 2003; Hotta et al., 2000; Kumada et al., 2003; Fruebis et 

al., 2001; Yamamoto et al., 2002; Iwashima et al., 2004), one may speculate that the mmm 

haplotype affects adiponectin expression in vivo to an extent that might be disadvantageous. 

This hypothesis is supported by our epidemiological finding that none of the 2,340 subjects in 

our analysis carried this haplotype, which was highly significantly different from what would 

have been expected by chance (P = 0.0059). Yet, further studies in humans are necessary to 

support this hypothesis. The importance of haplotype combination has also been shown for 

SNP2 and SNP3, which in combination, increases the risk of diabetes (Schwarz et al., 2006). 

The transcription factors involved in the regulation of the APM1 promoter were analyzed by 

several groups (Qiao et al., 2005; Kim et al., 2006; Iwaki et al., 2003); however, most studied 

promoter regions do not contain the SNPs analyzed here. One study demonstrated slightly 

higher promoter activity upon deletion of the promoter region containing these SNPs (Kita et 

al.; 2005). However, such deletion of promoter regions removes all regulatory sites and hence 

does not allow a SNP-specific analysis concerning the influence on binding characteristics of 

transcriptional activators or repressors. Indeed, our EMSA experiments revealed the existence 

of specific DNA binding complexes that are affected by adipocyte differentiation and 

rosiglitazone stimulation. At least two minor alleles in the haplotype (mMM or mMm) 

exhibited obvious alterations in DNA binding complexes. Surprisingly, the presence of 

relevant DNA binding factors was already found in preadipocytes. It has to be considered that 

epigenetic mechanisms may also be involved in the regulation of the analyzed promoter. It is 

known that transcription of theAPM1 gene is regulated by histone acetylation (Musri et al., 

2006). Interestingly, DNA binding activity upon rosiglitazone stimulation critically depends 

on the combination of several SNP variants. This supports the view that this promoter region 

represents a functional module with binding of various proteins that interact and build a more 

complex structure. As an example, we found alterations in DNA binding activity using the 
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DNA probe with the minor SNP1 allele and nuclear extracts from preadipocytes. Further 

introduction of a minor allele in SNP2 restored normal DNA binding, whereas introduction of 

a minor allele in SNP3 resulted in a different pattern of DNA binding activity. 

A potential limitation of our study is that mouse 3T3L1 cells may differ from human 

adipocytes regarding the presence of transcription factors. However, several transcription 

factors such as C/EBPs, SREBP, and PPARs were previously shown to regulate both the 

human and mouse adiponectin promoter, and the binding sites were well characterized (Qiao 

et al., 2005; Kim et al., 2006; Iwaki et al., 2003) (Figure 1). Bioinformatics binding site 

prediction revealed putative binding sites for the large family of homeodomain proteins and 

zinc finger proteins, yet clearly no binding sites for the so far known regulators of 

adiponectin. Although we could clearly show that the SNPs modulate DNA binding activity, 

the exact binding factors remain to be identified. A recent publication also suggested SNP3 by 

bioinformatics prediction to modify a zinc finger protein site (Zhang et al., 2008), but in this 

work, no attempt was made to analyze the influence of the SNP3 on DNA binding activity. 

The correlation between elevated circulating adiponectin levels and the presence of the minor 

allele in SNP2 is in line with published data and with a recent report of increased promoter 

activity in COS-7 cells (Bouatia-Naji et al., 2006). However, COS-7 is not an adipocyte cell 

line and may not express an appropriate set of transcription factors expected in adipocytes. 

Direct adiponectin measurement of endogenous adiponectin is not possible in the available 

cell models, since the cell line does not contain the different genomic haplotypes, but our 

transfection studies represent a good model to address this aspect. 

The minor allele of SNP2 resulted in a higher inducibility by rosiglitazone only in the 

combination with the major allele in SNP1. Even more for some minor allele constructs, this 

inducibility was increased from a lower basal level, whereas the haplotype with three minor 

alleles was not inducible at all. This serves as an additional hint for a functional interaction 



�

99 
�
�

between these two SNPs and furthermore that a functional analysis of SNPs should also take 

into account the activation state of cells. Peroxisome proliferator–activated receptor (PPAR)-Ȗ 

agonists such as rosiglitazone are known to induce adiponectin expression in adipocytes 

(Gustafson et al., 2003; Yang et al., 2002). Furthermore, treatment of type 2 diabetic patients 

with rosiglitazone improves insulin sensitivity but stimulates fat accumulation (Hauner, 

2002). The response to glitazones in humans could possibly differ depending on the promoter 

haplotype, which pinpoint a potential relevance of the APM1 promoter SNPs for improved 

individualized treatment. 

We found obvious changes in the promoter and DNA binding activity when the minor allele 

in SNP1 was present. These findings are in line with the known association of SNP1 with 

hypoadiponectinemia (Vasseur et al., 2002; Heid et al., 2006; Bouatia-Naji et al., 2006) and 

the significantly lower adiponectin levels in our MONICA/KORA S123 sample. Moreover, 

the epidemiological haplotype data extend these findings, with adiponectin being 

downregulated by the minor allele of SNP1 and upregulated by the minor allele of SNP2. An 

important challenge for the future characterization of this functional module is the 

identification of the nuclear factors whose binding is affected by SNP1 and SNP2. 

We used a combined functional and epidemiological approach and thus were able to 

overcome the drawback of each approach separately: On the one side, in epidemiological 

studies, it is not clear whether a significant SNP association is derived from the analyzed SNP 

directly or from a latent SNP in linkage disequilibrium. Significant haplotype associations can 

pinpoint a certain haplotype of interest, but it would remain to be shown which specific allele 

combination—and possibly including latent alleles between genotyped loci—would be of 

functional relevance. This is overcome by our functional haplotype promoter studies where all 

effects are clearly attributed to the distinct alterations analyzed, since polymorphisms in 

linkage disequilibrium have not been mutated; hence a major functional impact is exerted by 
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the combination of the here analyzed SNPs. On the other hand, functional studies alone do not 

allow the drawback to effects in humans. This limitation is overcome by adding 

epidemiological data, which support the functional findings regarding the regulation by SNP1 

and SNP2, the effects of haplotype combination, and a potential negative selection of the 

haplotype with minor alleles in all three SNPs due to suppressed adiponectin promoter 

activity. 

In conclusion, the present study on the APM1 gene is the first one analyzing the functional 

activity of APM1 regulatory SNPs in a cell model expressing endogenous adiponectin and 

shows the importance to consider SNP haplotypes. The epidemiological data support the 

functional findings and thereby underscore the relevance in humans. Our results demonstrate 

that promoter variants in the APM1 gene are relevant for the regulation of adiponectin 

transcription. Furthermore, our study represents a suitable approach by combining functional 

and epidemiological methods to characterize the role of gene variants. 
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2.4.5  Tables and Figure Legends 

 

Table 1. 

Characteristics of SNPs in the sample of the KORA S4 study (n = 696) and the 
MONICA/KORA S123 study (n = 1,692) 

rs number 
Positio
n* 

Call 
rate†(S4/S12
3) 

Hardy-Weinberg 
equilibrium P value‡(S4/S1
23) 

Minor 
allele 
frequency 
(S4/S123) 

SNP1 
rs1686119

4 í11426 0.966/0.988 0.494/0.865 
0.059/0.08
3 

SNP2 
rs1730053

9 í11391 0.951/0.990 0.347/0.897 
0.091/0.09
0 

SNP3
§ Rs266729 í11377 0.967/0.989 0.773/0.990 

0.278/0.33
3 

 

Table 2. 

Characteristics of haplotypes in the sample of the KORA S4 study (n = 696) and the 
MONICA/KORA S123 study (n = 1,653*) 

SNP1 SNP2 SNP3† Frequency (S4/S123) 

MMM A G C 0.571/0.577 

mMM G G C 0.059/0.0003 

MmM A A C 0.091/0.090 

MMm A G G 0.278/0.249 

Mmm G A G 0/0 

Mmm A A G 0/0 

mMm G G G 0/0.083 

mmM G A C 0/0 
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Haplotypes are given by stating m or M for each of the three SNPs in a row indicating 

whether the haplotype exhibits the minor (m) or the major (M) allele at the SNP location. 

*For complete data for all three SNPs. 

†Depicted is the genotype C>G of rs266729 measured in KORA S4; the proxy rs1648707 

with genotype A>C (not depicted) was measured in MONICA/KORA S123. 

 

Table 3. 

SNP association analysis in the KORA S4 sample (n = 696) and in the MONICA/KORA 
S123 sample (n = 1,692) 

SNP Genotype n Mean*(µg/ml)

Coefficient (P) 

Additive† Dominant‡ 

S123 (n = 
1,692) AA 1407 11.2062 Reference Reference 

SNP1 AG 253 10.5341 
í0.0602 (P = 

0.0014) 
í0.0634 (P = 

0.002) 

GG 12 10.1812 

GG 1388 10.7692 Reference Reference 

SNP2 AG 274 12.7478 
0.1665 (P < 

10í9) 
0.1748 (P < 

10í9) 

AA 13 14.6926 

AA 745 11.4570 Reference Reference 

SNP3§ CA 743 10.8979 
í0.0502 (P = 

0.00001) 
í0.0598 (P = 

0.0001) 

CC 185 10.3596 

S4 (n = 
696) AA 596 8.929 Reference Reference 

SNP1 AG 73 8.536 
í0.0362 (P = 

0.507) 
í0.0248 (P = 

0.6677) 

GG 3 4.967 
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SNP Genotype n Mean*(µg/ml)

Coefficient (P) 

Additive† Dominant‡ 

GG 544 8.536 Reference Reference 

SNP2 AG 115 10.164 
0.1897 (P = 
0.00005) 

0.2042 (P = 
0.00003) 

AA 3 9.7 

CC 349 9 Reference Reference 

SNP3§ GC 274 8.876 
í0.0287 (P = 

0.3273) 
í0.0185 (P = 

0.6167) 

GG 50 8.422 

 

Data are from linear regression on log(adiponectin), adjusted for age, sex, and BMI and 

survey (for the S123 sample) using an additive or a dominant genetic model. *Geometric 

mean of adiponectin concentrations in micrograms adiponectin per milliliter serum. 

†Mean change in log(adiponectin) per copy of the minor allele. 

‡Mean change in log(adiponectin) for subjects to the indicated reference (e.g., SNP1 with the 

AG or GG compared with the AA). 

§For SNP3 in the case of KORA S4, the genotype C>G of rs266729 is depicted; in the case of 

MONICA/KORA S123, the genotype A>C of the proxy rs1648707 is depicted. 

 

Table 4 

Haplotype association analysis in the KORA S4 sample (n = 696) and the MONICA/KORA 
S123 sample (n = 1,653*) 

Haplotype n Geometric mean† Coefficient 

S123 (n = 
1,676) MMM 0/1/2 300/799/554 11.343/11.035/11.029 Reference 

MmM 0/1/2 1,368/272/13 10.761/12.738/14.683
0.15641 (P < 

0.0001) 
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Haplotype n Geometric mean† Coefficient 

MMm 0/1/2 927/628/98 11.298/10.832/10.792
í0.022 (P = 

0.1009) 

mMM 0/1/2 NA NA NA 

mMm 0/1/2 1389/252/12 11.203/10.520/10.174
í0.0489 (P = 

0.0091) 

S4 (n = 696) MMM 0/1/2 119/356/221 9.003/8.878/8.758 Reference 

MmM 0/1/2 578/115/3 8.597/10.164/9.7 
0.1775 (P = 

0.0002) 

MMm 0/1/2 352/294/50 8.993/8.777/8.422 
í0.0155 (P = 
0.603879) 

mMM 0/1/2 620/73/3 8.918/8.536/4.967 
í0.019 (P = 
0.733164) 

mMm 0/1/2 NA NA NA 

 

Results from linear regression models on log(adiponectin), adjusted for age, sex, and BMI, 

survey (for the S123 sample), and the other haplotypes, with MMM being the reference using 

an additive genetic model. Haplotypes are depicted by m and M for the minor or major allele, 

respectively, in SNP1, SNP2, and SNP3. 0/1/2 = number of reconstructed haplotype copies. 

*For complete data for all three SNPs. 

†Geometric mean of adiponectin concentrations (µg/ml) per copy of the reconstructed 

haplotypes. 
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Figure 1. Schematic overview of the used promoter constructs.  

A: Schematic overview of the luciferase reporter vectors used in this study for transfections. 

Genomic location of the here analyzed SNP1 (rs16861194), SNP2 (rs17300539), and SNP3 

(rs266729) are marked (B). All experimentally verified transcription factor binding sites are 

shown for the human (B) and mouse locus (C), and the here analyzed SNPs are all located 

upstream of these sites. The genomatix-predicted putative binding sites are depicted. SNP1 

interferes with a putative CART binding site and SNP2 with a putative NKXH binding site 

(both sites for different families of homeobox proteins), and SNP3 interferes with a zinc-

finger binding site. 

 

Figure 2. APM1 promoter activity during differentiation.  

Transient transfection of 3T3-L1 cells at different stages of adipogenic differentiation with the 

indicated APM1 promoter constructs is shown. A total of 1 µg of the indicated promoter 

construct (MMM = APM1 promoter with the three described SNPs in the major configuration, 

m = minor variant, M = major variant) was transfected into 3T3-L1 cells at the indicated day 

of differentiation (day 0 = preadipocytes, day 6 and 8 = 6 or 8 days after induction of 

differentiation). A total of 0.1 µg ubiquitin-renilla vector was cotransfected for normalization 

of the transfection. The haplotypes observed in KORA samples are depicted separately from 

the theoretically existing but not observed haplotypes. Cells were harvested 24 h after 

transfection. Results are shown as the ratio of firefly-/renilla-luciferase activity and the mean 

of minimal five independent experiments ± SD. The Kruskal-Wallis overall comparison of all 

constructs and observed/theoretical haplotypes is indicated withP values; comparison of the 

day 0, 6, and 8 values for each construct were P < 0.001 for MMM, P < 0.001 for MmM, P < 

0.05 for MMm, P < 0.001 for mMM, P < 0.001 for mmm, P < 0.005 for mmM, P > 0.05 for 

Mmm, and P < 0.01 for mMm. The significance of Dunn's multiple comparison test 
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comparing the day 0 value for each construct with its values at day 6 and day 8, respectively, 

is indicated with asterisks: *P < 0.05 and **P < 001. 

 

Figure 3. Inducibility of different haplotypes by rosiglitazone.  

Transient transfection of 3T3-L1 cells with the indicated adiponectin promoter constructs at 

day 6 after induction of differentiation is shown. A total of 1 µg of the indicated promoter 

construct was transfected into 3T3-L1 cells. A total of 0.1 µg ubiquitin-renilla vector was 

cotransfected for normalization of the transfection. The haplotypes observed in 

MONICA/KORA S123 or S4 survey are separately depicted from the theoretical existing, but 

was not observed in patients. At 24 h after transfection, cells were induced with 1 µmol/l 

rosiglitazone for 24 h as indicated. Cells were harvested 24 h after transfection. Results are 

shown as the ratio of firefly-/renilla-luciferase activity and the mean of minimal three 

independent experiments ± SD. Kruskal-Wallis overall comparison of all constructs and of 

frequent/theoretical haplotypes is indicated with a P value, followed by the Dunn's multiple 

comparison test comparing the uninduced (í) with the respective rosiglitazone-induced (+) 

cells for each construct, as indicated with **P < 0.001. 

 

Figure 4. DNA binding activity of different SNP variant combinations. An 

80-bp fragment, described in RESEARCH DESIGN AND METHODS, was radioactively 

labeled, incubated with 2 µg of the indicated protein extracts, and separated on a gel as 

described. AC, 3T3-L1 adipocyte; PAC, 3T3-L1 preadipocyte; cells were induced with 1 

µmol/l rosiglitazone (+) or with DMSO control (í). 

 

 



�

107 
�
�

2.4.6 Figures 

 

Figure 1 

 

 

Figure 2 

 

 

Figure 3 
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Figure 4 
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2.5  Octamer-dependent transcription in T cells is 

mediated by NFAT and NF-țB. 

The content of this chapter has been published in Mueller et al., 2013, and is described below. 

For this manuscript, I performed a computational analysis of the BOB.1/OBF.1 promoter 

across a set of vertebrate species with a specific focus on putative NFAT and NF-țB 

transcription factor binding sites. The analysis includes parts of the PMCA computational 

framework. The hypothesis was that highly conserved NFAT and NF-țB within a promoter 

CRM might indicate a functionally relevant regulation of the BOB.1 gene via binding of NF-

țB and NFAT transcription factors. NFAT transcription factors are known to harbor an 

imperfect Rel homology domain that is only capable of weak DNA binding in the monomeric 

and dimeric form. These factors therefore tend to interact with other transcription factors such 

as AP-1 (c-Jun/c-Fos), GATA-4, MEF-2, and NF-țB (Liu et al., 2012; Hogan et al., 2003) to 

strengthen the DNA interactions. Indeed, the computational analysis identified unknown 

cluster of combinatorial NFAT/ NF-țB binding sites within the BOB.1/OBF.1 promoter.  

 

2.5.1  Introduction 

  

Regulated gene expression is a complex process since different signals need to be integrated 

in a cell-type-specific manner in accordance with the particular developmental stage as well 

as activation state. This complexity is achieved by the architecture of a given promoter and/or 

enhancer and therefore by the integrated action of different transcription factors in 

conjunction with recruited co-activators or –repressors. These proteins act together on 
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promoter DNA finally leading to the formation of specific transcriptional complexes based on 

the DNA sequence they bind as well on the activity of each component itself.  

 

The octamer element ATGCAAAT is one of such DNA sequences and plays an important 

role in mediating promoter activity of a large array of ubiquitous as well as lymphocyte-

specific genes. Octamer-dependent transcription is achieved in first line by transcription 

factors that belong to the Oct family. The selectivity of Oct factors to octamer sequences as 

well as their transcriptional activity can be enhanced by the recruitment of either ubiquitously 

expressed or cell type specific co-activators. For instance, the histone H2B promoter activity 

depends on Oct1 (Pou2f1) and its interaction with the transcriptional co-activator OCA-S, a 

protein complex containing GAPDH as a key component, whose expression is highly 

increased during the S phase of the cell cycle (Zheng et al., 2003). In lymphocytes, the 

transcriptional co-activator BOB.1/OBF.1 (Pou2af1) is responsible for the cell type specific 

octamer-dependent transcription. BOB.1/OBF.1 is recruited to DNA by the interaction with 

POU domains of the ubiquitously expressed Oct1 or the lymphocyte specific factor Oct2 

(Pou2f2) (Gstaiger et al., 1996; Gstaiger et al., 1995; Pierani et al., 1990; Luo et al., 1992; 

Luo et al., 1995; Pfisterer et al., 1995; Strubin et al., 1995), the two Oct family members 

expressed in lymphocytes (Staudt et al., 1986).  

 

However, not all octamer-regulated promoters depend on the presence of BOB.1/OBF.1 

(König et al., 1995; Shore et al., 2002). The ability of Oct1 or Oct2 to recruit BOB.1/OBF.1 to 

the DNA might be conferred by different octamer sequences that favor or disfavor the ternary 

complex formation of these proteins at the octamer motif (Tomilin et al., 2000). In addition, 

we and others demonstrated that the presence of BOB.1/OBF.1 enables Oct factors to bind to 
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unfavorable non-consensus octamer motifs (Lins et al., 2003; Brunner et al., 2006). Together, 

the lymphocyte specific regulation of octamer-dependent transcription depends on an 

appropriate DNA sequence, on the activity of Oct1 and Oct2 transcription factors, as well as 

on the presence of the transcriptional co-activator BOB.1/OBF.1. Furthermore, the latter is 

posttranslationally modified by phosphorylation at Ser184 which is required for its 

constitutively or inducible transcriptional activity in B or T cells, respectively (Zwilling et al., 

1997).  

 

The importance of octamer-dependent transcription is underlined by the phenotypes of Oct1-, 

Oct2- and BOB.1/OBF.1-deficient mice. The deletion of the ubiquitously expressed Oct1 

protein leads to embryonic lethality (Wang et al., 2004), and deletion of the lymphocyte 

specific Oct2 protein causes death of newborn mice shortly after birth (Corcoran et al., 1993). 

Fetal liver cell transfer into immuno-compromised mice revealed that Oct1 is dispensable for 

B cell development and function (Wang et al., 2004). In contrast, Oct2-deficient B cells are 

unable to differentiate into immunoglobulin secreting cells (Corcoran et al., 1993). This 

phenotype is similar to that observed for BOB.1/OBF.1-deficient mice. Although viable, these 

mice are unable to form germinal centers upon administration of T cell dependent antigens. 

Hence, the production of secondary immunoglobulins is severely compromised (Schubart et 

al., 1996; Nielsen et al., 1996; Kim et al., 1996). Beside missing germinal centers, 

BOB.1/OBF.1-/- mice show multiple defects at several stages of B cell development (Hess et 

al., 2001; Brunner et al., 2003; Samardzic et al., 2002). Although the relevance of Oct 

proteins and BOB.1/OBF.1 for B cell development and function cannot be dismissed, these 

proteins are also important for T cells. Functional octamer motifs could be detected within the 

promoter regions of the chemokine receptor CCR5 (Moriuchi et al., 2001) as well as IL2 

(Shibuya et al., 1989; Brunvand et al., 1988; Pfeuffer et al., 1994) and IL4 (Pfeuffer et al., 
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1994; Chuvpilo et al., 1993; Li-Weber et al., 1998) genes. Also, the IFNȖ promoter contains 

an octamer motif that is bound by Oct proteins together with BOB.1/OBF.1. As a 

consequence, the secretion of IFNȖ by BOB.1/OBF.1-deficient TH1 cells is reduced to a level 

that disabled these mice to efficiently combat a Leishmania major infection (Brunner et al., 

2007). Given the importance of the octamer-dependent transcription for B and T cell 

development and function it is, on the one hand, important to search for octamer-dependent 

target genes and, on the other, to understand the regulatory mechanisms underlying the 

octamer-dependent transcription itself.  

 

Regulation of transcription is one major mechanism to determine the capacity of a given 

protein. The promoters of ubiquitously expressed Oct1 gene or the lymphocyte-specific Oct2 

gene have not been described until today. In contrast, the BOB.1/OBF.1 promoter was 

extensively studied in order to investigate its cis-acting elements controlling its activity in B 

cells (Stevens et al., 2000; Shen et al., 2007; Massa et al., 2003) where BOB.1/OBF.1 is 

constitutively expressed at all stages of B cell development (Schubart et al., 1996), albeit at 

different levels. The highest expression of BOB.1/OBF.1 was found in germinal center B 

cells. Accordingly, signals important for germinal center formation, like the stimulation with 

anti-CD40 antibodies plus IL4, are able to increase the expression of BOB.1/OBF.1 in vitro 

(Qin et al., 1998; Greiner et al., 2000). In contrast, in T cells BOB.1OBF.1 expression is 

inducible by treatment of T cells with PMA/Ionomycin (P/I) or by antigen receptor 

engagement (Zwilling et al., 1997; Sauter et al., 1997) suggesting that different signals and 

possibly also transcription factors might be responsible for the expression of BOB.1/OBF.1 in 

B versus T cells. Interestingly, also the expression of the lymphocyte specific Oct2 protein is 

upregulated in activated T cells with a kinetic similar to that obtained for BOB.1/OBF.1 

(Kang et al., 1992; Bhargava et al., 1993). Since the expression and function of Oct proteins 
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together with BOB.1/OBF.1 was also found to be important for the control of TH1 and TH2 

immune responses (Brunner et al., 2007) the present study focuses on the regulation of 

octamer-dependent transcription in T cells. Our analyses revealed the involvement of the 

Ca2+/calmodulin-dependent phosphatase calcineurin (CN) since Oct2 and BOB.1/OBF.1 

expression are efficiently suppressed in the presence of the immunosuppressant cyclosporin A 

(CsA) or by the siRNA-mediated suppression of CN-A. Upon T cell receptor (TCR) 

stimulation CN turned out to be a key signaling molecule essential for the induction of both 

NFAT and NF-țB transcription factors (Clipstone et al., 1992; Palkowitsch et al., 2011; 

Frischbutter et al., 2011). CN dephosphorylates NFAT transcription factors enabling them to 

translocate into the nucleus where they control the expression of numerous genes essential for 

T cell activation and differentiation (Serfling et al., 2004). In addition, CN is involved in the 

regulation of the TCR-induced NF-țB signaling pathway by regulating the complex assembly 

of Carma1, Bcl10, and Malt1 (CBM) by dephosphorylating Bcl10. CBM formation is an 

essential prerequisite for the activation of the IțB-kinase complex that in turn phosphorylates 

the inhibitor of NF-țB (IțB) leading to its proteasomal degradation. Consequently, cytosolic 

NF-țB becomes released and translocates into the nucleus where it regulates, similar to 

NFAT, the promoter activity of numerous genes crucial for T cell development, 

differentiation and function. Therefore, both signaling pathways were analyzed for their 

capacity to mediate Oct and/or BOB.1/OBF.1 gene expression and were identified as 

important regulators of octamer-dependent transcription in T cells. 
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2.5.2  Materials and Methods 

Cell lines and culture 

The Jurkat-4 x Octamer-Luc cell line was generated by electroporation of Jurkat cells with a 

luciferase reporter construct bearing 4 copies of the octamer motif cloned earlier (Annweiler 

et al., 1993) together with a plasmid expressing the Puromycin resistant gene (pSV-Puro) and 

selected by Puromycin. Jurkat-NEMO-/- was described (Harhaj et al., 2000). Jurkat cells and 

derivates (Jurkat-4 x Octamer-Luc, Jurkat-NEMO-/-) and Ɏ-NX amphotropic retrovirus 

producer cells were cultured in DMEM (Gibco, Invitrogen), containing 10% FCS 

(Biochrome), 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco, 

Invitrogen), and 50 µM Į-mercaptoethanol at 37°C and 5% CO2. A3.01 T cells and Namalwa 

B cells as well as primary CD4+ cells were cultured in RPMI containing 10% FCS, 2 mM L-

glutamine, penicillin/streptomycin and 50 µM Į-mercaptoethanol at 37°C and 5% CO2.  

 

CD4+ T cell isolation 

Primary CD4+ T cells were isolated from lymph nodes of mice either by positive or negative 

selection using magnetic microbead technology (Miltenyi). 

 

Mice 

C57BL/6 wild type and TNFRI/p65 double-deficient mice (and all their 

wildtype/heterozygous combinations) were generated and obtained from our breeding facility. 

The NFATc1/c2 double knockout mice were generated by crossing the Nfatc2-/- mouse (Schuh 

et al., 1998) with the Nfatc1flx/flx (described in (Bhattacharyya et al., 2011) x Cd4-Cre mouse. 

Mice were analyzed 3-4 or 10-12 weeks after birth, respectively.  
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Cell stimulation 

Cells were stimulated in the presence of the following agents: 100 ng/ml Cyclosporin A 

(CsA) and 200 ng/ml FK506 (calcineurin inhibitors), 1, 2 or 4 µM Bay-117082 (a NF-țB 

inhibitor) as indicated, 25 ng/ml PMA, 500 ng/ml Ionomycin, 200 nM OH-tamoxifen (OHT) 

(all obtained from Sigma-Aldrich), 15 or 30 µM SB203580 (Upstate) as indicated, 4 µg/ml 

ĮCD3 and 0.5 µg/ml ĮCD28 (BD). The NEMO binding peptide and the NFAT inhibitory 

peptide 11R-VIVIT were obtained from Calbiochem. 

 

Promoter sequence analyses 

In silico search for binding sites in BOB.1/OBF.1 promoters of different species was 

performed using the MatInspector tool (Matrix Family Library Version 8.3) of the 

Genomatrix software tool (Genomatrix Company). 

 

Electrophoretic mobility shift assays (EMSA) 

Preparation of whole cell extracts for EMSA and the protocol of the EMSA procedure have 

been described earlier (Brunner et al., 2007). The used oligonucleotides bearing the 

appropriate transcription factor binding site were annealed and subsequently labeled using 

32P-ĮdCTP in a fill in reaction. Sequences are presented in the supplementary table 1. 

 

Promoter cloning 

The 1500 and 500 bp BOB.1/OBF.1 promotor constructs were cloned into the pTKL/2 vector 

containing the HSV-thymidine kinase promoter (-105 to +52) from the pBLCAT2 in front of 
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the firefly luciferase coding region. The HSV-thymidine kinase promoter was excised by a 

restriction endonuclease digest using HindIII and BglII and replaced by the 1500 bp, or 500 

bp BOB.1/OBF.1 promoter constructs cloned via genomic PCR using the following primers: 

mBOB.1/OBF.1prom 1500 bp 5’ (HindIII): GCC AGG AAG CTT AGG GGT TGA G; 

mBOB.1/OBF.1prom 1500 bp 3’ (BglII): GCC TTT TCT CTT TGA AGC AGA GAT CTT 

GGC TTC TTT ACT. For amplification of the 500 bp promoter fragment the same 3’ primer 

as for the 1500 bp fragment was used in combination with the following primer: 

mBOB.1/OBF.1prom 500 bp 5’ (HindIII): GAC CAA TGG TAA GCT TAG TCC TGC. 

Cloning of the BOB.1/OBF.1 promoter mBOB.1/OBF.1prom ǻ500 bp construct was 

achieved using the following combination of primers for genomic PCR: mBOB.1/OBF.1prom 

1500 bp 5’ (HindIII) as indicated above together with mBOB.1/OBF.1prom ǻ500 bp 3’ 

(BglII): CCA TTT ACA GGA CAG ATC TTA CCA TTG GTC.  

The BOB.1/OBF.1 promoter mBOB.1/OBF.1prom ǻ500 bp + TATA construct was generated 

by cloning of an insert that was amplified by genomic PCR using the following primers: 

mBOB.1/OBF.1prom 1500 bp 5’ (HindIII): GCC AGG AAG CTT AGG GGT TGA G and 

mBOB.1/OBF.1prom ǻ500 bp 3’ (HindIII): GCA GGA CTA AGC TTA CCA TTG GTC, 

into the HindIII site of the pTATA vector harboring the TATA box of the HSV-thymidine 

kinase promoter from pBLCAT2 (-38 to +52) in front of the firefly luciferase coding region. 

 

In vitro Mutagenesis 

Mutations of the predicted NFAT/NF-țB sites within the BOB.1/OBF.1 promoter were 

generated using the QuickChange™ Mutagenesis kit (Promega). Primers were ordered from 

Biomers and sequences are provided in supplementary table 4.  
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Transfection of cells 

Transfections of Jurkat T and Namalwa B cells were performed by electroporation (Bio-Rad) 

with 450 V and 250 µF in PBS. The expression vector for the constitutive active version of 

CREB (c2CREB) is a kind gift of G. Tiel (Al Sarraj et al., 2005). Expression vectors for 

NFATc1 and RelA/p65 have been described (Kempe et al., 2005; Chuvpilo et al., 2002). The 

pRLͲCMV plasmid (Renilla Luciferase control reporter vector; Promega) was cotransfected in 

all experiments and used for normalization of different transfection efficiencies in the 

individual experiments. For suppression of calcineurin A isoforms by siRNA Jurkat T cells 

were transfected with 75 nM of each SMARTpool siRNA (CnBa: PPP3CA # L008300-0005; 

CnBb: PPP3CB # L009704-0005) or with the appropriate concentration of control siRNA 

(OnTARGETplus # D001810-01-05) using the Nucleofection Kit V (Amaxa/Lonza). The 

cells were subsequently incubated for 72 h prior to analysis. Used SMARTpool siRNA were 

obtained from Dharmacon. 

 

Retroviral infection of cells 

For virus production the retroviral vectors expressing NF-ATc1/�A-ER, NF-ATc1/�C-ER 

(Nayak et al., 2009), IKK2-EE, IKK2-KD (Denk et al., 2001) or the respective empty vectors 

were transfected into the amphotropic ʔNX retrovirus producer cells by use of the calcium 

phosphate method. Supernatant containing the retrovirus was collected 24 h and 48 h after 

transfection and used to infect A3.01 T cells in the presence of 8 µg/ml polybrene. At two 

consecutive days spin infection was performed at 2700 rpm (1300 x g) and 37°C for 120 min. 

Positive cells were selected with Zeocin until all cells were nearly 100% positive for green 

fluorescent protein. 
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Western blots 

For Western blot analysis, 5 to 10 µg of total protein extracts were separated on 12.5% 

polyacrylamid gels and transferred onto nitrocellulose membranes (Schleicher&Schuell). 

Membranes were blocked (TBS, 0.1% Tween, 5% milk), stained with anti-BOB.1/OBF.1 

(Sigma), Oct2, ERK2, IKK2 (Santa Cruz Biotechnology) and NFATc1 (Alexis) antibodies 

followed by incubation with HRP-coupled secondary antibodies (Pierce), and visualized by 

enhanced chemiluminescence (Pierce).  

 

RT-PCR 

Total RNA was isolated using Trizol reagent (Qiagen) and reverse transcribed using MMLV 

reverse transcriptase (Roche). Quantitative PCR were performed using qPCR-SYBR-Green 

(Roche). Primers ordered from Biomers were designed using “Universal Probe Library Assay 

Design Center” Software (Roche). Primer sequences are given in supplementary table 2. 

Quantification of gene regulation was performed by the ǻǻCp method using RPL13 as house-

keeping gene.  

 

Chromatin Immunoprecipitation (ChIP) 

ChIP experiments were performed using the ChIP-IT Express Chromatin 

Immunoprecipitation Kit as well as the Re-ChIP-IT magnetic chromatin re-

immunoprecipitation kit from Active Motif according to the manufacturer’s protocol with 

slight modifications: after enzymatic digestion for 10 min, the chromatin was sheared by 2 

cycles of sonication (10 pulses each cycle) in the same buffer. The chromatin was pre-cleared 
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for 2 h with protein G microbeads (Invitrogen) and then incubated with rabbit polyclonal anti-

p65 antibody sc-372 (2 µg/ml; Santa Cruz Biotechnology), mouse monoclonal anti-NFATc1 

antibody 7A6 (4 µg/ml; Alexis), mouse IgG (Dianova) or normal rabbit serum (Pierce) at the 

appropriate concentrations for 4 h followed by incubation with protein G microbeads for 1 h. 

The amount of precipitated DNA was evaluated by quantitative PCR using the Roche Light 

Cycler LC480. The used primers and primer positions are depicted in Figure 6 and presented 

in supplementary table 3. The relative amount of precipitated DNA was calculated using the 

following formula: E(crossing point 1/10 total input – crossing point sample) and is depicted as amount of 

precipitated genomic DNA relative to that precipitated by control antibodies (mouse IgG or 

normal rabbit serum). E = efficiency of the PCR determined by serial dilutions of total input.  
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2.5.3 Results 

NFAT and NF-țB inhibitors restrain the inducible expression of BOB.1/OBF.1 and Oct2 

in T cells 

To elicit the signaling pathways controlling the octamer-dependent transcription in T cells, 

human Jurkat T cells were stably transfected with a luciferase reporter construct harboring 

four consecutive sequences bearing the octamer binding motif ATGCAAAT in front of a 

luciferase gene. As expected, the octamer activity was strongly upregulated upon treatment 

with P/I but remained unaffected by stimulation with either P or I alone suggesting the 

requirement of a combined calcium influx and PKC activation for octamer-dependent 

transcription in T cells (Figure 1A). Several transcription factors are known to depend on such 

a combinatorial calcium and PKC signaling, including NF-țB and NFAT. To further specify 

the signaling pathways controlling octamer dependent transcription, we used a panel of 

specific pharmacological inhibitors. Indeed, complete suppression of the inducible octamer 

activity was seen when the cells were pretreated with the CN inhibitor CsA. Also the NF-țB 

inhibitor Bay11-7082 as well as the p38 inhibitor SB203580 interfered with the inducible 

octamer activity, although less efficiently. These data suggest that Ca2+/CN, NF-țB and MAP 

kinase dependent signaling pathways are involved in the regulation of octamer-dependent 

transcriptional activity (Figure 1A). 

 

We next wondered whether the same pharmacological inhibitors could influence the activity 

of the known BOB.1/OBF.1 promoter. Therefore, a reporter construct harboring the 

previously described 1500 bp BOB.1/OBF.1 promoter (Stevens et al., 2000) was transiently 

transfected into Jurkat T cells which were either left untreated or pretreated with inhibitors for 

CN, NF-țB or p38 for 30 min prior to the stimulation with P/I. These experiments revealed 
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that the BOB.1/OBF.1 promoter is sensitive to all of the analyzed inducers and inhibitors, very 

similar to the octamer-dependent reporter (Figure 1B). To explore whether protein expression 

of BOB.1/OBF.1 mirrors its promoter activity, Jurkat T cells as well as primary CD4+ cells 

isolated from lymph nodes of C57BL/6 wildtype mice were either left untreated or pretreated 

for 30 min with the inhibitors used in the previous experiments and subsequently stimulated 

with P/I. Interestingly, we found a striking co-regulation of Oct2 and BOB.1/OBF.1 in Jurkat 

(Figure 1 C and D) and primary CD4+ T cells (Figure 1 E and F). Thus, the same inducers as 

well as inhibitors control the expression of Oct2 and BOB.1/OBF.1 at protein and mRNA 

levels. However, while the BOB.1/OBF.1 expression was completely abolished by treatment 

of Jurkat or CD4+ T cells with CsA even at low concentrations (50 to 100 ng/ml), low levels 

of Oct2 expression were still detectable (Figure 1C and E). In contrast, the NF-țB inhibitor 

Bay11-7082 had only a moderate influence on BOB.1/OBF.1 as well as Oct2 expression in 

Jurkat T cells even at high concentrations (2 to 4 µM), whereas in primary CD4+ T cells the 

inhibition of the NF-țB pathway led to an almost complete abrogation of Oct2 expression and 

to a marked reduction in BOB.1/OBF.1 expression at very low concentrations (1 µM) of the 

inhibitor. The insufficient block of BOB.1/OBF.1 and Oct2 expression by Bay11-7082 might 

be due to a residual NF-țB activity, as seen in EMSA experiments (Supplementary Figure 1). 

However, higher concentrations of the inhibitor Bay11-7082 were toxic for primary T cells. 

Also, pretreatment of primary CD4+ T cells with CN inhibitors CsA or FK506 or by the NF-

țB inhibitor Bay11-7082 completely inhibited the strong BOB.1/OBF.1 as well as Oct2 

induction seen after the more physiological stimulation with anti-CD3 and anti-CD28 

antibodies (Figure 1 G and H). The p38 inhibitor SB-203580 had a moderate effect on 

BOB.1/OBF.1 and Oct2 expression only at higher concentrations (Figure 1C) suggesting a 

rather minor and/or indirect effect of p38 on the regulation of octamer-dependent transcription 

in T cells. Interestingly, EMSA studies (Supplementary Figure 1) revealed that the NF-țB 
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inhibitor Bay11-7082 inhibits additionally NFAT binding to DNA and vice versa the CN 

inhibitors CsA and FK506 interfere with NFAT binding but also with the NF-țB signaling 

pathway, as it was described recently (Palkowitsch et al., 2011; Frischbutter et al., 2011). 

Therefore, the observed effect of CsA and FK506 on BOB.1/OBF.1 expression is not only 

mediated by inhibiting NFAT activity, since these compounds also affect the activity of NF-

țB, but rather by the combined activity of NFAT and NF-țB. However, treatment of murine 

primary CD4+ T cells or transfected Jurkat cells with specific NFAT and NF-țB signaling 

pathway inhibitors, like the NFAT inhibitory peptide 11R-VIVIT and the NEMO binding 

peptide, respectively, clearly demonstrates that both pathways are involved in the regulation 

of BOB.1/OBF.1 expression via the regulation of BOB.1/OBF.1 promoter activity (Figure 1I 

and J). 

 

The BOB.1/OBF.1 promoter contains several binding sites for NFAT and NF-țB  

Previously, the BOB.1/OBF.1 promoter was analyzed in order to identify regulatory elements 

responsible for its activity in B cells (Stevens et al., 2000; Shen et al., 2007; Massa et al., 

2003). In those studies a functional CREB/ATF site could be identified which is crucial for 

the B lymphocyte specific activity of the promoter. In addition, a sequence related to a NFAT 

binding site was described, however without any functional relevance for the B cell-specific 

BOB.1/OBF.1 promoter activity. In search for possible additional transcription factor binding 

sites using the Genomatrix Software we identified two combined NFAT/NF-țB binding sites 

within the BOB.1/OBF.1 promoter. Both newly identified sites are conserved between rat, 

mouse and man suggesting a possible functional relevance of these regulatory elements. In 

contrast to B cells, where a function of the predicted NFAT binding site has not been revealed 

(Stevens et al., 2000), an inducible complex formation could be detected after P/I treatment of 

primary CD4+ T cells. This complex resembles that formed at the NFAT site of the IL2 
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promoter used in control experiments (Figure 2B, lane 2 and C, lane 2). In addition, also an 

inducible complex formation could be observed using the newly identified combined 

composite and consecutive NFAT/NF-țB sites of the BOB.1/OBF.1 promoter as probes 

(Figure 2D and E, lane 2). In supershift experiments antibodies against NF-țB p50 were able 

to compete against the observed inducible complexes formed at the predicted NFAT/NF-țB 

binding sites within the BOB.1/OBF.1 promoter (Figure D, E lane 3) in a similar way like 

anti-p50 antibodies prevent p50 binding to a consensus NF-țB site (Figure 2F, lane 3). 

Interestingly, anti-p50 antibodies are also able to interfere with the inducible complex formed 

at the predicted NFAT site of the BOB.1/OBF.1 promoter (Figure 2B, lane 3) as well as with 

the NFAT-binding observed at the IL2 promoter site (Figure 2C, lane 3). Similarly, anti-p65 

antibodies interfere with binding to the consecutive and composite NFAT/NF-țB sites, which 

is comparable with the competition seen at the consensus NF-țB site (Figure 2D, E and F, 

lane 4). Additionally, anti-p65 antibodies also interfere with the complex formation on the 

NFAT site of the BOB.1/OBF.1 and IL2 promoters (Figure 2B and C, lane 4). The use of 

NFATc1 antibodies reduces the binding to the NFAT and NFAT/NF-țB sites of the 

BOB.1/OBF.1 promoter and generates supershifted complexes (marked by clamp in Figure 

2B, D and E, lane 5). Also, NFATc2 antibodies prevent complex formation to these specific 

sites (Figure 2B, D and E, lane 6). Control experiments using IgG antibodies or normal rabbit 

serum revealed the specificity of antibody binding (Supplementary Figure 2). Moreover, 

unlabeled ologonucleotides bearing the consensus NFAT or NF-țB binding site could 

efficiently compete against labeled NFAT or NFAT/NF-țB sites identified in the 

BOB.1/OBF.1 promoter (Supplementary Figure 2). Together, our data suggest that NFAT as 

well as NF-țB family members are able to bind to all of these newly identified potential cis-

acting elements of the BOB.1/OBF.1 promoter in vitro. 
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Newly identified NFAT/NF-țB binding sites contribute to BOB.1/OBF.1 promoter 

activity 

To demonstrate the importance of the potential NFAT or NFAT/NF-țB binding site for the 

BOB.1/OBF.1 promoter activity mutation analyses were performed. In these experiments 

specific point mutation were introduced to prevent either NFAT or NF-țB binding to these 

sites (Figure 3). Point mutation (G→T; Figure 3A) within the previously identified NFAT 

motif within the BOB.1/OBF.1 promoter did not lead to alterations in complex binding to this 

site. However, introduction of a point mutation (G→T) within the second core motif for 

NFAT and NF-țB clearly prevents inducible by P/I complex formation indicating the 

importance of this residue within this potential transcription factor binding site (Figure 3B). 

Within the consecutive NFAT/NF-țB binding site of the BOB.1/OBF.1 promoter both 

mutations, preventing NF-țB (GG→TT) as well as NFAT binding (CC→AA), abolish 

inducible complex formation upon treatment of T cells with P/I (Figure 3C). Therefore, both 

site possibly contribute to the inducible BOB.1/OBF.1 promoter activity in T cells. In contrast, 

whereas mutations of critical residues within the NF-țB motif (GG→TT) of the composite 

NFAT/NF-țB site within the BOB.1/OBF.1 promoter lead to a clear reduction of complex 

binding upon P/I treatment of CD4+ T cells, mutations within the potential NFAT binding site 

(CC→TT) slightly enhance the ability of complex binding to this site (Figure 3D). For 

comparison, the mutated consensus NFAT and NF-țB sites were also analyzed (Figure 3E).  

Additionally, the introduction of mutations into the 1500 bp BOB.1/OBF.1 promoter construct 

that was cloned in front of a luciferase gene and transfected into Jurkat T cells (Figure 3F) 

revealed that all three newly identified NFAT and NFAT/NF-țB site are important for full 

BOB.1/OBF.1 promoter activity as mutation of each reduces BOB.1/OBF.1 promoter activity 

by about 15 to 20 %. Mutation of all three NFAT/NF-țB sites led to a reduction of 



�

125 
�
�

BOB.1/OBF.1 promoter activity by 40 %. Interestingly, additional mutation of the previously 

identified CREB/ATF site, important for BOB.1/OBF.1 promoter activity in B cells, almost 

completely abrogates BOB.1/OBF.1 promoter activity in T cells.  

 

A 500 bp sequence is necessary and sufficient for the highest inducible BOB.1/OBF.1 

promoter activity in Jurkat T cells  

For the full activity of the BOB.1/OBF.1 promoter in B cells a sequence spanning 1500 bp 

was identified (Stevens et al., 2000). To define regions important for the inducible activity in 

T cells, additionally a shorter promoter construct was generated encompassing approximately 

500 bp upstream of the start site of transcription of the BOB.1/OBF.1 gene (Figure 4A). To 

compare the behavior of these constructs with respect to the basal as well as inducible 

BOB.1/OBF.1 promoter activity in B and T cells, the constructs were transfected into 

Namalwa B or Jurkat T cells. In accordance with previous findings (Stevens et al., 2000) the 

1500 bp promoter showed the highest basal activity in Namalwa B cells that could be further 

increased (3-fold) by treatment of cells with P/I (Figure 4B and C). In B cells, the activity of 

500 bp construct was approximately 3-times lower when compared to the 1500 bp fragment 

with respect to basal and inducible promoter activity. As expected, in T cells no basal 

BOB.1/OBF.1 promoter activity could be observed. However, it was strongly induced when 

cells were treated with P/I (Figure 4C). Notably, in T cells the 500 bp promoter construct 

showed the highest inducibility after P/I treatment (Figure 4B and C). The importance of the 

500 bp sequence of the BOB.1/OBF.1 promoter was further underscored by deleting this 

promoter element which led to the complete loss of basal and inducible BOB.1/OBF.1 

promoter activity in B and T cells (Figure 4B and C). This loss of activity was not caused by 

the deletion of regulatory elements necessary for the recruitment of the basal transcriptional 

complex, since the fusion of the same promoter construct to a TATA-box element of the 
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thymidine kinase promoter did also not lead to enhanced BOB.1/OBF.1 promoter activity in T 

cells (Supplementary Figure 3). 

In order to investigate the contribution of NFAT and NF-țB to the BOB.1/OBF.1 promoter 

activity in T cells, Jurkat cells were transfected with the 500 bp or 1500 bp BOB.1/OBF.1 

promoter constructs, together with expression vectors for NFATc1 or RelA/p65. Whereas 

overexpression of NFATc1 had only a moderate effect, overexpression of RelA/p65 already 

significantly enhanced the inducible activities of the 1500 and 500 bp promoters. Co-

expression of both factors together leads to a further increase of BOB.1/OBF.1 promoter 

activity, although this effect was modest (Figure 4D). Again, the 500 bp promoter construct 

was sufficient to achieve full BOB.1/OBF.1 promoter activity induced by NFAT/NF-țB 

overexpression.  

In B cells, the CREB/ATF site was found to be important for BOB.1/OBF.1 promoter 

activity. In order to investigate whether this site is also important for the inducible expression 

of BOB.1/OBF.1 in T cells, the 1500 bp promoter construct was transfected into Jurkat T cells 

together with expression vectors coding for NFATc1, RelA/p65 or a constitutive active 

version of CREB either alone or in different combinations of these vectors. Also in T cells, 

the CREB/ATF site seems to be of relevance since overexpression of a constitutive active 

CREB protein leads to a significant increase of BOB.1/OBF.1 promoter activity that was 

further enhanced by overexpression of NFAT and NF-țB (Supplementary Figure 4). These 

data together with our data obtained from EMSA and transfection experiments in that the 

CREB site was inactivated indicate that this CREB site is also of considerable importance for 

BOB.1/OBF.1 promoter activity in T cells. 
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Modulation of NFAT activity interferes with the expression levels of BOB.1/OBF.1 and 

Oct2 

One major regulator of NFAT activity is the Ca2+/calmodulin-dependent protein phosphatase 

CN that dephosphorylates cytosolic NFAT proteins. NFAT, in turn, translocates into the 

nucleus where it binds to DNA and regulates gene expression, a process that can be efficiently 

inhibited by CsA.  Down modulation of CN by Amaxa transfection of siRNA directed against 

the isoforms Į and ȕ of the catalytic subunit CN A revealed a clear dependence of 

BOB.1/OBF.1 and Oct2 expression on CN activity (Figure 5A). Obviously, Amaxa 

transfection of the indicated siRNA itself pre-activated Jurkat T cells, since BOB.1/OBF.1 as 

well Oct2 expression could be detected even in the unstimulated state. However, the 

expression of both proteins could be further enhanced by P/I treatment. Although the down 

regulation of CN expression was incomplete, a clear inhibition of inducible BOB.1/OBF.1 

and Oct2 expression could be observed indicating the importance of CN for BOB.1/OBF.1 

and Oct2 expression in T cells.  

In peripheral T cells, mainly two members of the NFAT family are expressed, NFATc1 and 

NFATc2. Upon T cell activation, the NFATc1 isoform NFATc1/ ĮAҏis predominantly 

expressed (Serfling et al., 2006). To study the influence of NFAT on BOB.1/OBF.1 or Oct2 

expression, human A3.01 T cells were retrovirally infected using vectors expressing either the 

NF1ATc1/�A or NFATc1/�C isoform that were fused to a part of the modified hormone 

binding domain of the estrogen receptor � (ER�) (54) which is controlled by OH-Tamoxifen 

(OHT). Whereas the OHT treatment of cells infected with the empty vector left BOB.1/OBF.1 

and Oct2 expression unaffected, a significant increase in their protein expression level could 

be observed when NFATc1/ ĮA or NFATc1/ ĮC became functional active in the presence of 

OHT (Figure 5B). 

To test whether the absence of endogenous NFAT protein expression would influence 
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BOB.1/OBF.1 as well as Oct2 expression, CD4+ T cells were isolated from Nfatc2-/-

xNfatc1flx/flxxCD4-Cre mice in which all T cells are devoid of the expression of NFATc1 as 

well as NFATc2. After stimulation of purified CD4+ T cells with either P/I or ĮCD3+ ĮCD28 

for 18 h the mRNA expression of BOB.1/OBF.1 and Oct2 was analyzed by quantitative PCR. 

The mRNA levels of BOB.1/OBF.1 as well as Oct2 were sensitive to the combined ablation of 

NFATc1 and NFATc2 protein expression (Figure 5C and D), indicating the importance of 

these factors for octamer-dependent transcription in T cells. 

  

Modulation of NF-țB activity affects the expression levels of BOB.1/OBF.1 and Oct2 

Next, we investigated the influence of the NF-țB activity on BOB.1/OBF.1 or Oct2 

expression. First, NEMO-deficient or wildtype Jurkat cells were stimulated with P/I. Western 

blot analysis revealed a clear dependence of BOB.1/OBF.1 expression on the presence of 

NEMO in T cells (Figure 6A). NEMO is essential for the canonical NF-țB signaling since its 

deficiency leads to a specific block of IKK activity (Harhaj et al., 2000). Therefore, these 

findings clearly indicate a contribution of NF-țB to the regulation of BOB.1/OBF.1 gene 

transcription.  

In another approach, human A3.01 T cells were retrovirally transduced using vectors 

expressing either a constitutive active version (EE) or a kinase dead mutant (KD) of IKK2 

(Denk et al., 2001) (Figure 6B). In EMSA, the modulation of NF-țB activity was monitored. 

Overexpression of a kinase dead version of IKK2 led to a clear reduction in the inducible NF-

țB binding activity, whereas overexpressing a constitutive active IKK2 led to an enhanced 

basal as well as inducible NF-țB activity. In EMSA, a clear correlation between NF-țB and 

Oct2 binding activity to the appropriate consensus DNA binding sites could be observed. 

Again, western blot analyses revealed a clear dependence of the expression level of 

BOB.1/OBF.1 and Oct2 on the level of NF-țB activity.  
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To analyze the effect of defective NF-țB activity on BOB.1/OBF.1 and Oct2 expression in 

vivo, we have used RelA/p65-deficient mice that were bred into the TNFR type 1 (TNFRI)-

deficient background to overcome the TNF-Į -induced liver toxicity and embryonic lethality 

(Alcamo et al., 2001) observed in RelA/p65-/- mice (58). CD4+ T cells were isolated from 

lymph nodes of mice deficient for TNFRI and RelA/p65 (double knock out = DKO) or from 

mice that were wildtype or heterozygous for one or the other or both genes and stimulated 

with P/I for 18 h. When the expression of RelA/p65 was abolished, the expression of 

BOB.1/OBF.1 was almost completely restrained, whereas Oct2 protein is still detectable 

although the level of expression was severely reduced (Figure 6C). Together, these data 

indicate an essential role of NF-țB signaling for the induction of Oct2 and BOB.1/OBF.1 

expression in T cells.  

 

To address the question if the loss or gain of NF-țB or NFAT transcription factors leads to 

changes in expression and/or binding activity of the other factor we have used the advantage 

of CD4+ T cells obtained from mice bearing genetic mutations either for NFATc1/NFATc2 or 

for TNFRI/p65. Additionally, we overexpressed NFATc1A and RelA/p65 in Jurkat T cells 

(Supplementary Figure 5). Interestingly, these experiments revealed that the deletion or 

overexpression of NFAT does not significantly lead to changes neither in NF-țB p65 

expression as seen in western blot analyses nor in NF-țB binding activity analysed in EMSA 

experiments using a consensus NF-țB binding site (Supplementary Figure 5A and C). 

However, deletion of RelA/p65 in primary CD4+ T cells leads to a clear reduction of NFATc1 

expression and consequently to a considerable reduction in NFAT binding activity to the 

DNA motif of the IL2 promoter. Vice versa, overexpression of RelA/p65 in Jurkat cells 

clearly enhances NFAT binding activity (Supplementary Figure 5B and C). These data 

indicate that the observed effect on BOB.1/OBF.1 and Oct2 expression in TNFRI/p65 double 
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deficient murine CD4+ T cells and in human Jurkat or A3.01 T cells expressing various 

mutants interfering with NF-țB signalling (Figure 6) could be mediated, at least in part, also 

by changes in NFAT activity. 

  

Analyses of contribution of NFAT and NF-țB to the BOB.1/OBF.1 promoter activity in 

vivo 

In order to clarify whether the observed NFAT and NF-țB effects on BOB.1/OBF.1 and Oct2 

expression are direct or rather indirect, primary CD4+ T cells were used in chromatin 

immunoprecipitation (ChIP) experiments in which a fragment encompassing 189 bp from the 

first 500 bp of the BOB.1/OBF.1 promoter containing the already described NFAT binding 

site was analyzed. Additionally, a second fragment of 161 bp was analyzed containing the 

combined NFAT/NF-țB sites described here. The locations of analyzed binding sites as well 

as of primers used for amplification of genomic DNA are depicted in Figure 6A. After 

induction with P/I, both fragments of the BOB.1/OBF.1 promoter could be efficiently 

enriched by NFATc1 and RelA/p65 antibodies (Figure 6B and C), indicating that NFAT and 

NF-țB transcription factors exert a direct effect on the BOB.1/OBF.1 promoter. 
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2.5.4 Discussion 

Stimulation of the TCR triggers the activation of different signaling cascades leading finally 

to the activation of NFAT, NF-țB and AP-1 which act together with several other 

transcription factors to orchestrate gene expression important for T cell function, survival, 

proliferation and differentiation. Oct2 and BOB.1/OBF.1 are among these induced genes in 

activated T helper cells. Due to their ability to act in concert at the octamer motif identified 

within the promoter region of the IFNȖ gene (Brunner et al., 2007) BOB.1/OBF.1 and Oct2 

are important for the balanced TH1 and TH2 cytokine secretion by T helper cells. While 

investigating signaling pathways, which regulate octamer-dependent transcription we found 

that the expression of BOB.1/OBF.1 as well as Oct2 critically depends on the expression and 

function of CN. Down-modulation or inhibition of the Ca2+/calmodulin dependent 

serine/threonine-specific protein phosphatase using either siRNA or CsA attenuated the 

expression of both proteins. The fact that CsA affects NFAT as well as NF-țB activity 

(Clipstone et al., 1992; Palkowitsch et al., 2011; Frischbutter et al., 2011) prompted us to 

investigate the involvement of both signaling cascades in the regulation of BOB.1/OBF.1 and 

Oct2 expression in T cells. Using NEMO as well as NFAT inhibitory peptides, blocking the 

NF-țB and the NFAT pathway in a specific manner, revealed that both transcriptional 

activities are involved that process.  

Indeed, we found several transcription factor binding sites within the BOB.1/OBF.1 promoter 

region conserved between mouse and man that can be bound upon stimulation by both NFAT 

and NF-țB family members in vitro as well as in vivo. The most distally located “composite” 

NFAT/NF-țB site (see Figure 2A) contains the classical NFAT core motif TTTCC that is also 

found in the distal promoter of the IL2 gene as well as an adjacent overlapping NF-țB binding 

motif AGGTGT that was recently described as an active NF-țB site within the human 

prostatic acid phosphatase gene promoter (Zelivianski et al., 2004). Composite NFAT/NF-țB 
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binding sites are described for numerous of promoters. For those identified within the HIV 

LTR and the human IL8 promoter binding of NFATc2 as a homodimer has been detected 

(Giffin et al., 2003; Jin et al., 2003). Others have shown that NFATc2 competes for binding 

with NF-țB to the composite NFAT/NF-țB site within the HIV LTR (Macian et al., 1999) 

indicating that either NFAT or NF-țB factors bind to this site. Indeed, there is no 

experimental evidence for a heterodimer formation between NFAT and NF-țB family 

members. Although in supershift experiments antibodies against NF-țB and NFAT are able to 

prevent inducible complex formation on this composite NFAT/NF-țB site, introduction of 

specific mutations revealed that rather NF-țB than NFAT transcription factors  are bound to 

this site. 

The second combined, “consecutive” NFAT/NF-țB site also contains the classical NFAT 

core motif TTTCC that is followed at the 5’ site by the sequence 5’-GGGAATCGCA-3’. The 

latter represents the canonical NF-țB decamer from position 1 to 6 and bears also a cytidine 

at position 9. At such consecutive sites, NFAT and NF-țB complexes can be formed 

simultaneously, not competing for binding among each other. However, in Re-ChIP 

experiments we were not able to show the mutual binding of NFATc1 together with RelA/p65 

(data not shown) to this site. Yet, both the NF-țB and the NFAT motif are important for 

transcription factor binding as individual mutation of both motifs prevents inducible by P/I 

complex formation. 

The third important site for the regulation of BOB.1/OBF.1 promoter activity is the already 

described non-consensus NFAT binding site GAAGAAA that has no functional relevance for 

the BOB.1/OBF.1 promoter activity in B cells (Stevens et al., 2000). In contrast, in T cells an 

inducible complex formation could be detected to this site in vitro. Moreover, a 500 bp 

BOB.1/OBF.1 promoter construct bearing this site was sufficient for full inducible promoter 

activity in T cells that could be further enhanced by cotransfection of expression vectors for 
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NFATc1 and RelA/p65. Cotransfection of both expression vectors together could further 

increase the promoter activity in comparison to that achieved by an individual overexpression 

of each factor indicating that both cooperate in the regulation of the 500 bp BOB.1/OBF.1 

promoter activity. Additionally, supershift experiments and chromatin immunoprecipitations 

revealed a binding of both, NFAT and NF-țB, to this part of the promoter. Hence, a not yet 

identified NF-țB binding site should be present in close proximity to the mentioned non-

canonical NFAT site. Because of a high homology between the DNA binding domains of NF-

țB and NFAT family members, they generate a similar conformation and therefore contact 

identical nucleotides at the core motif GGAAA (Wolfe et al., 1997). The non-canonical 

NFAT site GAAGAAA within the BOB.1/OBF.1 promoter is followed by the sequence 

AAAAAAG (Figure 2A). Both sites share high similarity with the core sequence GGAAA to 

which both factors, NF-țB and NFAT, are able to bind. The second motif AAAG seems to be 

of biologically relevance since the point mutation G→T prevents inducible complex binding 

in T cells. Possibly, this part of the BOB.1/OBF.1 promoter is essential for the cooperative 

action of NFAT and NF-țB necessary for the high inducible activity of the 500 bp promoter. 

Additionally, the CREB/ATF binding site, important for the promoter activity in B cells 

(Stevens et al., 2000) seems also to be relevant in T cells, since overexpression of an active 

version of CREB further increased the NFAT/NF-țB induced BOB.1/OBF.1 promoter activity 

in Jurkat T cells whereas mutation of this site abrogates significantly BOB.1/OBF.1 promoter 

activity. Therefore, the observed decreasing effect of the p38 inhibitor SB203580 on the 

BOB.1/OBF.1 promoter as well as on the activity of octamer-dependent transcription in 

general could be mediated by the inhibition of CREB and/or ATF-1 that can also bind to the 

same site as both factors need p38 kinase function for full transcriptional activity (Tan et al., 

1996). Otherwise, an inhibition of p38 could affect NFAT proteins since p38-mediated 
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signaling activates NFATc1 (NFAT2) promoter activity and also increases its mRNA stability 

(Wu et al., 2003).  

 

Together, here we identified three different functional NF-țB binding sites close to NFAT 

binding sites important for BOB.1/OBF.1 promoter activity. One of these NF-țB sites 

(identified in the composite NFAT/NF-țB site) was recently identified as an alternative NF-

țB binding site different from the canonical, the second (identified in the consecutive 

NFAT/NF-țB site) shares high homology to the canonical site, however there are variations 

within the second țB half-site, and the third (around the previously identified NFAT site) 

displays similarities to just the core motif to which NFAT and NF-țB proteins can bind. 

Indeed, deviations from the consensus NF-țB site were described for several promoters 

leading finally to the modulation of the affinity of different factors of the family to the 

appropriate site (Zabel et al., 1991) and also influences the composition of the interacting 

heterodimers bound (reviewed in (Natoli et al., 2005)). This leads to the assumption that the 

expression of BOB.1/OBF.1 is differentially regulated under certain conditions, like primary 

or secondary T cell activation or in different T helper subtypes, by different homo- or 

heteromeric complexes that are bound to one or the other NF-țB site within the promoter.  

The fact that the here identified NF-țB sites are in close proximity to NFAT sites and thereby 

build either composite or consecutive combined NFAT/NF-țB binding motifs suggests that 

either NFAT or NF-țB complexes or both together are able to transactivate the BOB.1/OBF.1 

promoter. This conclusion is in line with our overexpression data, where the modulation of 

NFAT or NF-țB activity alone has already significant influence on BOB.1/OBF.1 as well as 

Oct2 expression. Additionally, the use of specific inhibitory peptides revealed that both the 

NFAT and the NF-țB signaling pathway are important for BOB.1/OBF.1 promoter activity 
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and BOB.1/OBF.1 expression in T cells. Otherwise, we were not able to show simultaneous 

binding of both NFAT and NF-țB factors in Re-ChIP experiments. The fact that the deletion 

of RelA/p65 leads to a complete loss of BOB.1/OBF.1 expression in primary CD4+ T cells, 

whereas the deletion of NFATc1/c2 decreases BOB.1/OBF.1 expression by about 50% 

indicates that NF-țB activation is possibly of higher importance for sufficient BOB.1/OBF.1 

expression in T cells than NFAT factors. But the activity of NFAT and NF-țB depends on 

Ca2+ oscillation (Dolmetsch et al., 1998), which differs in different cell types, including TH1, 

TH2 and TH17 T helper subpopulations (Fanger et al., 2000; Weber et al., 2008). This leads 

to distinct levels of NFAT and NF-țB nuclear localization and finally to differential cytokine 

expression by different T helper subtypes. Therefore, it seems likely that also the availability 

and activity of NFAT or NF-țB family members in different T helper subpopulations or under 

certain differentiation conditions may determine whether the one or the other or both factors 

together contribute to the BOB.1/OBF.1 promoter activity in vivo.  

In fact, the regulation of BOB.1/OBF.1 expression in T cells seems to be complex, since in 

natural regulatory T cells (nTreg) its expression is down modulated (Marson et al., 2007), 

whereas in T cells which are anergized or suppressed by nTreg its expression was found more 

than 10 times higher than in non-suppressed CD4+ T cells (Sukiennicki et al., 2006). Although 

we have already described the importance of BOB.1/OBF.1 for balanced TH1/TH2 cytokine 

secretion (Brunner et al., 2007), the precise regulation of BOB.1/OBF.1 and Oct expression in 

different T helper subpopulations that possibly affects the induction of a different set of genes, 

remains to be elucidated. 

 

In summary, by an array of in vitro and in vivo approaches we provide evidences for the 

importance of NFAT together with NF-țB transcription factors for the regulation of octamer-
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dependent transcription in T cells. Further work is required to identify the promoter region as 

well as regulatory cis-acting elements responsible for the Oct2 gene regulation. Additionally, 

it will be interesting to address the question whether the same transcription factors / 

transcription factor binding sites, identified as important elements for the inducible 

BOB.1/OBF.1 expression in T cells, have also relevance for its basal as well as inducible 

expression in B cells. 

 

 

 

2.5.5 Figure Legends 

 

Figure 1. Inhibition of octamer function by CsA, p38 and NF-țB inhibitors 

in T cells.  

A) A luciferase reporter construct bearing four copies of the consensus octamer element was 

stabily transfected into Jurkat T cells. Cells were either left untreated or stimulated with P, I 

alone or together (P/I), or were pretreated with CsA (100 ng/ml), SB203580 (20 µM) or 

Bay11-7082 (2 µM) prior to the stimulation with P/I. Mean values ± s.d. of 5 experiments are 

shown. B and J) The 1500 bp BOB.1/OBF.1 promoter construct cloned in front of a luciferase 

gene was transfected together with the appropriate empty vector  (ev) into Jurkat T cells that 

were subsequently treated as described in (A) or as indicated. The determined relative 

luciferase activity of the empty vector without stimulation was set one and the fold increase of 

the promoter activity was calculated. Mean values ± s.d. of 3 (in B) and 2 (in J) independent 

experiments are shown J). The analyses of the pTATA promoter construct served as internal 

control. C to I) Jurkat or isolated primary CD4+ T cells were treated as indicated. After 18 h 

of stimulation cells were harvested. One part was used for protein extraction and 

immunoblotting (C, E, G, I), and the other half was used for RNA isolation and quantitative 

RT-PCR (D, F, H) for the detection of BOB.1/OBF.1 and Oct2 mRNA expression levels that 

were determined relative to the expression of the housekeeping gene RPL13. Analyses of 
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HPRT mRNA expression also normalized to RPL13 expression served as internal control 

(data not shown). The analyses of ERK2 expression (C, E, G, I) served as loading control.  

 

Figure 2. Inducible complex formation on potential NFAT and NF-țB sites 

within the BOB.1/OBF.1 promoter.   

A) Schematic representation of the murine BOB.1/OBF.1 promoter. Indicated are the position 

of the TATA-box, of the CREB/ATF-binding site, as well as the positions / sequences of the 

potential NFAT and NF-țB sites. B to F) Primary murine CD4+ T cells were either left 

untreated or stimulated for 18 h with P/I. Whole protein extracts were prepared and analyzed 

in EMSA. In supershift experiments, the indicated antibodies were used. 

Figure 3. Mutation analyses of potential NFAT and NF-țB sites within the 

BOB.1/OBF.1 promoter.  

A) Potential NFAT and NF-țB sites within the BOB.1/OBF.1 promoter as well as consensus 

NFAT and NF-kB site were mutated as indicated and used (B to E) in EMSA experiments 

together with whole cell extracts of isolated murine CD4+ T cells that were either left 

untreated or were stimulated for 18 h with P/I as indicated. F) Potential NFAT and NF-țB 

sites within the BOB.1/OBF.1 promoter that was cloned in front of a luciferase gene were 

mutated as indicated. Mutated constructs were transfected into Jurkat T cell that were 

subsequently stimulated with P/I over night. The % inhibition of promoter activity was 

calculated relative to the activity of the wildtype 1500 bp BOB.1/OBF.1 promoter was set as 

100 %. 

Figure 4. The BOB.1/OBF.1 promoter spanning 500 bp is necessary and 

sufficient for full inducible activity in T cells.  

A) Schematic representation of the BOB.1/OBF.1 promoter. The positions of the analyzed 

cis-elements as well as of the promoter fragments used in reporter assays are indicated. B and 

C) Namalwa B and Jurkat T cells were transiently transfected with the empty vector (ev) or 

with reporter constructs bearing either the 1500 bp or the 500 bp BOB.1/OBF.1 promoter 

construct or a deletion mutant of the longer version were the first 500 bp are missing 

(1500ǻ500 bp). The relative luciferase activity (B) or the fold induction (C) of different 
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promoter fragments was determined without or after stimulation of cells with P/I, were in the 

second case the fold induction was determined relative to the luciferase activity of the empty 

vector without stimulation that was set to one. (D) Jurkat T cells were transiently transfected 

with either the empty vector or the 1500 or 500 bp BOB.1/OBF.1 promoter constructs as 

indicated, either alone or together with expression vectors for NFATc1, RelA or combination 

of both. Transfected cells were either left untreated or stimulated subsequently with P/I. Next 

day the cells were harvested to determine the relative luciferase activity. The relative 

luciferase activity resulting from the transfection of the empty vector without induction was 

set to one. The fold induction relative to the empty vector was calculated and is depicted. B to 

D) Shown are the mean values ± s.d. of three independently performed experiments. 

Figure 5. Calcineurin and NFAT factors control the inducible 

BOB.1/OBF.1 and Oct2 expression in T cells.  

A) Jurkat T cells were nucleoporated either with scrambled siRNA or siRNA pools directed 

against the α and ȕ isoforms of CN A subunit (CN A α + ȕ). Subsequently, cells were 

stimulated for 8 h with P/I. Whole cell extracts were prepared and used for protein expression 

analyses of CN A α + ȕ, BOB.1/OBF.1 or Oct2 by immunoblotting. The detection of ERK2 

expression served as loading control. B) Human A3.01 T cells were infected retrovirally with 

vectors expressing either the NF1ATc1/ α A-ER or NFATc1/ α C-ER or just the empty 

control vector (HA-ER). Afterwards cells were either left untreated or treated with OHT, I, P/I 

or with combinations of these inducers as indicated. After 18 h of stimulation cells were 

harvested and subjected for immunoblotting using primary antibodies against NFATc1, 

BOB.1/OBF.1 and Oct2. The detection of ERK2 expression levels served as loading control. 

C and D) Primary CD4+ T cells were isolated from wildtype (wt) or mutant mice in which the 

expression of NFATc1 and NFATc2 was simultaneously deleted in T cells specifically 

(NFATc1c2-DKO). After stimulation of cells with P/I or with ĮCD3+ĮCD28 antibodies for 

18 h cells were harvested to analyze BOB.1/OBF.1 as well as Oct2 expression at mRNA 

levels by quantitative RT-PCR. The relative mRNA expression levels are expressed relative to 

that determined in unstimulated wildtype cells that were set as one. The experiments were 

performed twice in triplicates and using different dilutions of the cDNA reveling the same 

result. One representative experiment is depicted as mean values ± s.d. 
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Figure 6. NF-țB activity influences BOB.1/OBF.1 and Oct2 expression 

levels in T cells. 

Wildtype (wt) or NEMO-deficient (NEMO-/-) Jurkat T cells were stimulated for the time 

indicated with P/I or left untreated. The expression of BOB.1/OBF.1 was analyzed by 

Western Blotting. B) Human A3.01 T cells were retrovirally infected using vectors expressing 

either a constitutive active version of IKK2 (EE), a kinase dead version (KD) or the empty 

vector (ev). After selection, cells were stimulated with P/I for 18 h and subsequently analyzed 

for the protein expression levels of BOB.1/OBF.1 and Oct2 by Western Blotting (WB). The 

detection of IKK or ERK2 expression levels served as internal control or loading control 

experiments, respectively. Additionally, the same extracts were used in EMSA to monitor the 

NF-țB as well as Oct2 binding activity to DNA using labeled consensus sites. C) Primary 

CD4+ T cells of mice of the indicated genotype were either left untreated or stimulated with 

P/I for 18 h. Afterwards, the protein expression levels of BOB.1/OBF.1 and Oct2 were 

analyzed in immunoblots. 

Figure 7. NFAT and NF-țB transcription factors bind to different 

BOB.1/OBF.1 promoter regions in vivo.  

A) The nucleotide sequence of the analyzed mouse BOB.1/OBF.1 promoter region is 

depicted. The NFAT as well as the predicted combined NFAT/NF-țB site are shown in red. 

The position of used primers for amplification of DNA fragments after chromatin 

immunoprecipitation are shown with bold, italic letters. Underlined letters indicate the 

position of the TATA box. The start site of transcription is marked as +1. B and C) Murine 

primary CD4+ T cells were treated for 18 h with P/I. The chromatin was cross-linked, sheared 

and immunoprecipitated using the indicated antibodies. Immunoprecipitations using mouse 

IgG or normal rabbit serum served as negative controls. Immunoprecipitated DNA was 

purified and used as template in quantitative PCR reactions using primers as indicated in (A) 

for the detection of fragments bearing either the NFAT site (B) or both combined NFAT/NF-

țB sites (C). (D) As an internal control, precipitated DNA was amplified using primers 

(Supplementary Table 3) located upstream of analyzed potential NFAT and NF-țB sites of 

the BOB.1/OBF.1 promoter. 
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2.5.6 Figures 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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3 Discussion and Future Plan  

The computational framework, which was developed in this thesis, exploits phylogenetic 

conservation in terms of a complexity assessment of co-occurring TFBS to identify functional 

regulatory regions (as shown in this thesis for the BOB.1/OBF.1 promoter: Brunner et al., 

2013; Claussnitzer 2013-1). Furthermore, this work shows that its use in the integrative 

analysis of variants identified by GWAS and full-genome sequencing approaches may 

increase our ability to pinpoint genetic variants that mechanistically contribute to human 

traits, including disease, by dysregulation of gene expression (as shown in this thesis for risk 

SNPs associated with T2D and adiponectin level: Claussnitzer et al., Cell in press; Laumen et 

al., 2009; Claussnitzer 2013-2). While it has become increasingly clear that the majority of 

genotype-disease associations mapped so far in numerous GWAS and somatic mutations in 

cancer involve intergenic and intronic risk alleles (Trynka et al., 2013), so far no algorithms 

have been developed to harness the power of conserved TFBS patterns within CRMs, to 

predict regulatory variants involved in diseases and molecular phenotypes. Though I focused 

in this study on common T2D-associated SNPs that localize within predicted cross-species 

conserved CRMs, the approach may be applied to any non-coding genetic variant in regards 

to both heritable and somatic human variability, and may help to unveil causal gene 

regulatory mechanisms underlying complex diseases including cancer.   

In the following, I briefly describe the differences of the PMCA methodology compared to 

existing functional genomics and computational-based analysis methods and proceed then 

with potential future directions on how to synergistically use the PMCA framework with other 

data modalities. 

(1)  Distinguishing functional conservation and sequence conservation 
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Before now, computational approaches that use evolutionary sequence conservation have 

been proposed to predict candidate sequence variants with functional effects in human disease 

(Cooper et al., 2005; Lindblad-Toh et al., 2011). However, although pure sequence alignment 

has been successful in predicting deleterious protein-altering variants in coding regions of the 

genome, the predictive power of these classical alignment-score approaches remains limited 

for causal variant discovery in non-coding regions from GWAS and sequencing studies.�

Given that TFBS turnover is characteristic for CRM evolution, it does not seem surprising 

that most functionally annotated regulatory elements are not constrained between species and 

that only a fraction of computationally inferred highly conserved non-coding sequences reveal 

features  of  transcriptional  regulation  (Ludwig  et  al.,  2000;  Dermitzakis  and  Clark,  

2002; Fisher et al., 2006; The ENCODE Project Consortium, 2007; Attanasio et al., 2008; 

Blow et al.,  2010,  2010;  Schmidt  et  al.,  2010;  He  et  al.,  2011;  The  ENCODE  Project  

Consortium, 2012). The difference of the PMCA methodology is to discover co-occurrences 

of TFBS in a CRM, regardless of the cross-species conservation of the complete sequence.�

Indeed, using� transgenic mouse embryos to identify active enhancers in subregions of the 

developing telencaephalon, Visel et al., 2013 have recently suggested that the combination of 

TFBS, rather than a single TFBS, via combinatorial TF binding governs spatial enhancer 

activity. Furtermore, it is of note that the majority of cis-regulatory SNP variants, which were 

identified and experimentally characterized in this work, lacked an overlap with constrained 

genomic regions. In essence, with instances for bounds of sequence conservation approaches, 

I show in this thesis that sequence alignment algorithms are often not informative and that 

accounting for sequence variability within CRMs is crucial to pinpoint cis-regulatory variants 

in the non-coding genome and to infer their functional upstream and downstream effects.  

(2) Synergizing functional genomics and computational functional conservation 

approaches 
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Transcriptional regulation is controlled through multiple genomic regulatory layers. This 

includes chromatin accessibility, histone posttranslational modifications, TF binding and 

mRNA and nascent transcription. Projects such as ENCODE and GENCODE have begun 

epigenetic and non-coding RNA annotation of non-coding genomic regions and these 

databases have been used to associate GWAS findings en masse with putative function 

(ENCODE, 2012; Harrow et al., 2012). As a proof of concept, using ENCODE chromatin 

state and TF binding data (Neph et al., 2012b; The ENCODE Project Consortium, 2012), this 

work shows that examining cross-species TFBS co-occurrences is predicitive of regulatory 

functionality. It is important to note that non-computational approaches based on functional 

genomics data (e.g. DNase-, ChIP-seq, FAIRE-seq, RNA-seq) (The ENCODE Project 

Consortium, 2007; Gaulton et al., 2010; Stitzel et al., 2010; The ENCODE Project 

Consortium, 2012) have the disadvantage that they require access to appropriate human 

tissue, or to tissue from a particular developmental time stage (which frequently is 

impossible), and they can be hampered by the complexity of effects on gene regulation, such 

as environmental effects or epigenetic complexity. Another practical challenge for ChIP-seq 

experiments is the size of the TF repertoire which implies that more than 1,000 TFs 

(Vaquerizas et al., 2009) need to be potentially assayed in large numbers of different cell 

types and environmental states, until one could identify the disease-relevant TFs and their 

variant-dependent DNA sequence binding changes. Indeed, this thesis shows that 

computational analysis of cross-species conserved TFBS co-occurrences pinpoints cell-type 

and cell-stage-specific regulatory meaningful variants where annotation from large scale 

functional studies is still incomplete. PMCA might therefore serve as a more universally 

applicable approach than approaches relying on functional genomics data.  

Interestingly, a study recently published in Science (Kilpinen et al., 2013) examined 

the allelic variability within families (trio study) for different molecular phenotypes, i.e. 
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chromatin states, histone modifications, TF binding and transcription assayed in 

lymphoblastoid cell lines. This study could show that allelic variability in gene expression 

within individuals is primarily caused by TF binding, rather than histone tail modifications, 

and that transmission of chromatin states from parents to children depends on the properties 

of the underlying DNA sequence. Apart from that, leveraging genome-wide occupancy maps 

for a large number of TF, recent studies have shown the crucial importance of combinatorial 

TF binding to TFBS clusters in regulatory genomic regions (Wilson et al., 2010; Ravasi et al., 

2010).  Thus, genetically driven changes in binding of transcription factors to regulatory 

genomic regions in place of nucleosomes appear to trigger chromatin remodelling, suggesting 

TF as major determinants of allele-specific regulatory interactions. In future studies, it will be 

exciting to integrate the context-independent computational framework PMCA with those 

molecular phenotypic data modalities to pinpoint common and rare cis-regulatory genetic 

variants, their underlying binding TFs and the effect on gene expression, reflected by histone 

modifications. In sum, these results stress the need of integrative frameworks, where systems 

biology and regulatory genomics data are synergistically combined with computational 

approaches to investigate disease underlying molecular mechanisms at disease susceptibility 

loci (Califano et al., 2012).  
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Figure 7: Eric Green from the NIH, US projects in his `Charting a course for genomic 
medicine from base pairs to bedside`(Nature Perspective, 2011) that the transition from 
genomics research towards genomics medicine consecutively depends on understanding of 
the structure and biology of genomes, understanding the biology and its perturbation in 
disease, advancing the science of medicine and improving the effectiveness of healthcare. 

 

 

The rapid advances in genomics hold great promise for the study of human diseases 

and phenotypic traits. GWAS of common diseases have now identified thousands of genomic 

regions harboring disease-associated variants (Hindorff LA) and currently ongoing targeted 

sequencing and whole-genome sequencing studies will further lead the genomics community 

towards the discovery of millions of genetic variants not only for human common complex 

disorders but also for different types of cancer and rare Mendelian diseases. Before now, 

translation of these findings into an improved understanding of human disease has only been 

accomplished for a miniscule part of genomic risk loci. Identifying the disease-causing 

sequence variants is a prerequisite for the translation of GWAS- and sequencing-driven 

genomic risk loci towards personalized medicine, as the interpretation of a variants` 

functional effect is essential for developing therapeutic strategies and improving diagnostic 

means (Figure 7). This work may therefore represent a useful step toward translating 

genomics data into basic molecular mechanisms underlying human disease risk loci, and 
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ultimately to tailor medical treatment to the individual patient, i.e. personalized medicine 

(Figure 8).  

 

 

Figure 8: The interpretation of functional effects for the plethora of sequence variants is 
essential for understanding the genetic basis of variation in human diseases and traits.�
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6 APPENDIX 

6.1 INVENTORY of Supplemental Information 
Claussnitzer et al. Leveraging cross-species transcription factor binding site patterns: from 
diabetes risk loci to disease mechanisms 

 

SUPPLEMENTAL FIGURES 

Figure S1. Linkage disequilibrium (LD) block structure at eight T2D susceptibility loci included into 
the proof-of-concept analysis and cell-type specific cis-regulatory effects of SNPs in complex regions 
at T2D risk loci. Related to Figure 1. 

Figure S2. Distance of predicted cis-regulatory SNPs to transcriptional start site; frequency 
distribution of complex regions; and correlations of cis-regulatory predictions from PMCA at Crohn’s 
disease susceptibility loci with evolutionary constraint elements and functionally annotated genomic 
regions. Related to Figure 2. 

Figure S3. Performance of PMCA at T2D, asthma and Crohn’s disease susceptibility loci; positional 
bias analysis of TFBS matrices for Crohn`s-associated loci; and association of homeobox TFs – 
inferred from combinatorial framework analysis of PMCA and RNAseq - with metabolic processes 
and impaired glucose stimulated insulin secretion. Related to Figure 3. 

Figure S4. Figure S4. Variants in complex regions at the PPARG T2D risk locus and the homeobox 
factor PRRX1 as a rs4684847-dependent repressor of endogenous PPARG2 expression. Related to 
Figures 4-5 and Table 2. 

 

SUPPLEMENTAL TABLES 

Table S1. PMCA measures for candidate SNPs at eight T2D susceptibility loci included into the proof 
of concept analysis. Related to Figure 1. 

Table S2. PMCA measures for candidate SNPs at eight T2D susceptibility loci included into the proof 
of concept analysis (upper 25% of complex region ranking). Related to Figure 1. 

Table S3. PMCA measures and experimental validation of cis-regulatory predictions for candidate 
SNP regions. Related to Figure 1. 

Table S4. Association of tagSNPs and predicted cis-regulatory SNPs with T2D in DIAGRAM v2 data 
and glycemic traits in MAGIC consortium meta-analysis data. Related to Figure 1. 

Table S5. Reported GWAS loci for 19 diseases traits (A), PMCA measures of 2,045 candidate SNPs 
at the selected loci (B) and matched random variants (C). 

Table S6. PMCA measures for known cis-regulatory SNPs, associated to different traits. Related to 
Figure 1. 
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Table S7. PMCA measures for candidate SNPs at 47 autosomal T2D susceptibility loci compromising 
1,465 SNPs. Related to Figure 2 and 3.  

Table S8. Overlap of complex regions and non-complex regions with evolutionary constraint elements 
and localization to next TSS. Related to Figure 2. 

Table S9. Enrichment of functional annotation from DHSseq and ChIPseq peaks overlaps with 
complex regions. Related to Figure 2.  

Table S10. Association of cis-regulatory predictions at PMCA selected complex regions with 
functional RegulomeDB annotations. Related to Figure 2.  

Table S11. Transcription factors, TFBS matrices and TFBS matrix families. Related to Figure 3.   

Table S12. Positional bias analysis of TFBS matrix families in complex regions and non-complex 
regions. Related to Figure 3. 

Table S13. PMCA measures for candidate SNPs at asthma susceptibility loci and for candidate SNPs 
at Crohn's disease susceptibility loci. Related to Figure 3. 

Table S14. T2D-related homeobox TFs identified by a combinatorial analysis of PMCA and RNAseq 
expression data in islets from normoglycemic versus T2D subjects. Related to Figure 3.  

Table S15. Co-expression of T2D-related homeobox TFs with all transcripts from RNAseq in 
pancreatic islets from 51 healthy subjects. Related to Figure 3.  

Table S16. Co-expression of T2D-related homeobox TFs with all transcripts from RNAseq in 
pancreatic islets from 26 subjects at risk of diabetes. Related to Figure 3.  

Table S17. Experimental validation of PMCA predicted cis-regulatory variants at the PPARG T2D 
risk locus, 3p25.3. Related to Figure 4. 

 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
1. Definition of LD blocks 

2. Search for orthologous regions 

3. PMCA-Procedures: Description of the PMCA method 

3.1 Motivation 

3.2 General design of the PMCA method 

3.3 Detailed description of the PMCA algorithm (pseudo-code) 

3.4 Step-by-step example for running PMCA manually using the graphical user interface 

4. Positional Bias Analysis: Calculation of the TFBS positional bias 

5. Correlation of SNP regions with evolutionary constraint regions. 

6. Correlation of SNP regions to DNase-seq regions and ChIPseq regions 

7. Enrichment of complex regions in diseases loci 

8. GWAS enrichment analysis 

9. Assessment of SNP to TSS distance annotations 

10. Culture of cell lines 

11. Luciferase expression constructs  

12. Luciferase expression assays 



�

174 
�
�

13. Electrophoretic mobility shift assay (EMSA) 

14. DNA-Protein affinity chromatography, LC-MS/MS and label free quantification. 

15. Genome editing of SGBS preadipocytes 

16. Analysis of human tissue samples 

17. Analysis of RNAseq data from primary human islets 

18. eQTL analysis 

19. Isolation, culture and differentiation of primary human adipose stromal cells (hASC) 

20. Genotyping 

21. Gene knock-down by siRNA 

22. Quantitative RT-PCR and allele-specific primer extension analysis 

23. Genome-wide expression analysis in primary human hASC 

24. Assessment of lipid accumulation after PRRX1 overexpression 

25. Glyceroneogenesis and 2-deoxyglucose uptake measurements in primary hASC 

26. Statistical analysis 
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Figure S1. Linkage disequilibrium (LD) block structure at eight T2D susceptibility loci 

included into the proof of concept analysis and cell-type specific cis-regulatory effects of 

complex regions at T2D loci. Related to Figure 1. 

�

(A) LD blocks derived from eight tagSNPs that were included in the primary PMCA analysis 

are shown. Pairwise LD, measured as r2, was calculated from 1000G Pilot 1 data CEU (1000 

Genomes Project Consortium, 2010) using the SNAP viewer Tool (Johnson et al., 2008), 

Broad Institute. R2 is displayed in a range of plain white (r² = 0) to red (r² = 1.0). Plots were 

drawn using the LDheatmap package in R version 2.15. Detailed information on the presented 

LD blocks is summarized in Table S1. 

(B) Cell type-specific cis-regulatory effects of SNPs located in complex regions. Luciferase 

constructs of the respective complex regions were transfected into INS-1 pancreatic ȕ-cells 

(insulin secretory cell line), and differentiated 3T3-L1 adipocytes, C2C12 myocytes, and 

Huh7 cells (insulin responsive cell lines), respectively. The allele-dependent fold change in 

relative luciferase activity comparing the risk and non-risk alleles is shown for each SNP, 

representing an activating or repressing effect of the risk allele on transcriptional activity. 

Data are represented as mean ± SD (n = 9). p-values were calculated by paired t-test. 
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Figure S2. Distance to transcriptional start site, LD block frequency distribution and 

correlations with evolutionary constrained elements and functionally annotated genomic 

regions for PMCA-inferred cis-regulatory predictions. Related to Figure 2. 

(A) Distance to transcriptional start sites (TSS) for complex and non-complex regions 

obtained for 47 analyzed T2D LD blocks. Density histograms show all distances (bin size 500 

bp) between SNPs and TSSs (TSS annotated within 30,000 bp downstream of SNP positions). 

The distance distribution is shown for 487 complex regions (left) and 978 non-complex 

regions (right) identified by PMCA within the set of 47 T2D loci (for detailed information see 

Table S7). The histogram shapes of the two diagrams illustrate the equal positioning of 

PMCA categories (complex and non-complex regions) relative to downstream TSSs. 

(B) Frequency distribution for fractions of complex regions obtained for 47 analyzed T2D LD 

blocks. PMCA separates the SNPs at susceptibility loci into complex and non-complex 

regions. The frequency histogram (bin of LD block sizes = 0.05) displays the fractions of 
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complex regions in the 47 analyzed T2D susceptibility LD blocks (Table S7). The frequency 

distribution illustrates that the number of complex regions identified per LD block spreads 

over a large range (median = 29 %, average = 34.2 % (vertical dashed line), SD = 22.6 

(horizontal arrow)). 

(D-E) Correlations of PMCA results with DHSseq (A) and ChIPseq (B) data for 1,218 SNPs 

associated with Crohn’s diseases. For PMCA classification of SNP-surrounding genomic 

regions in complex and non-complex regions see Table S13B. The occurrences of DHSseq 

and ChIPseq DNA peaks in vicinity of complex and non-complex Crohn’s-associated SNP 

regions are shown (each position ± 500 bp from the SNP positions of complex and non-

complex regions was scanned for overlaps with DHSseq or ChIPseq peaks, see Supplemental 

Experimental Procedures). The number of complex and non-complex regions that directly 

overlap DHSseq and ChIPseq regions was determined by a comparison of their genomic 

positions. Complex regions were significantly enriched for overlaps with DHSseq and 

ChIPseq regions in the set of Crohn’s disease associated SNPs (p = 4.17 x 10-13 and 

p = 3.06 x 10-6, respectively, Fisher’s exact test, see also Table S9). 
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Figure S3. Performance of PMCA at T2D, asthma and Crohn’s disease susceptibility 

loci; positional bias analysis of TFBS matrices for Crohn`s-associated loci; and 

association of homeobox TFs – inferred from combinatorial framework analysis of 



�

181 
�
�

PMCA and RNAseq - with metabolic processes and impaired glucose stimulated insulin 

secretion. Related to Figure 3. 

 

(A-C) PMCA results are shown for 47 T2D (A), eight asthma (B) and eight Crohn’s disease 

(C) susceptibility loci (r2 � 0.7, Table S7). Box-whisker plots show the numbers obtained for 

each classification strategy (analysis for the complete set of input sequences). Plots show the 

distributions for ΩTFBS, Ωmodules and ΩTFBS_in_modules, including the median (horizontal bars), the 

interquartile region (IQR) representing the middle 50% range (boxes), extreme values 

(whiskers) and outliers (dots). Data points covered by the IQR and the whisker values were 

explicitly added as rug at the sides of the plot. Histograms illustrate the PMCA measures p-

estTFBS and overall score Sall used for PMCA scoring. The histograms show the distribution of 

–log10 of the estimated probability p-est to randomly observe an equal or higher ΩTFBS and 

the distribution for an equal or higher overall score Sall from all three criteria, as calculated 

from observations in the random set derived from 1,000 shuffled sequences per ortholog set. 

The blue curve illustrates the empirical density function of the histogram data. The red 

vertical dashed line indicates the cut-off scores separating complex from non-complex 

regions, SNP regions with a value to the left of this were defined as non-complex). The 

isolated peak at the right (low p-est / high overall score data) refers to data points that hit the 

lower limit of p-est calculations. 

(D) Positional bias analysis of TFBS matrices for a set of eight Crohn's disease susceptibility 

loci (1,218 candidate SNPs). Distribution of TFBS matrices relative to SNP positions 

(denoted by grey lines) within complex regions at the set of Crohn’s disease variants (Table 

S6D), assessed by positional bias analysis. Positional bias was calculated from TFBS match 

occurrence over 1,000 bp SNP regions for 192 TFBS matrix families (Genomatix Matrix 

Library version 8.4) within sliding 50 bp windows under a binomial distribution model 

(detailed in Supplemental Experimental Procedures). Positional bias profiles are presented for 

a subset of analyzed TFBS matrix families including the matrix families that matched the 

selection criteria of central SNP positions and –log10 (P) > 6 in the complex regions. The 

positional bias analysis within complex regions reveals specific clustering at SNP positions 

± 20 bp (denoted by grey dashed lines) of the TFBS matrix families NR2F, MYOD, HOXF 

(green) and HOMF and HBOX (red, see also bias at the size matched set of T2D loci, Figure 

2B). 
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(E) Genes co-expressed with homeobox TFs - identified by a combinatorial framework 

analysis of PMCA and RNAseq expression data in islets - associate with metabolic pathways. 

PMCA applied on 47 T2D loci identified 487 complex regions (Table S7) and a distinct 

clustering of five homeobox TFBS matrix families (Figure 3B; see also Table S11 for TFBS 

matrices) at SNP positions in complex regions. Analysis of mRNA levels in RNAseq data of 

primary human islets, comparing donors with and without T2D, implicated nine homeobox 

TFs RAX, PRRX2, BARX1, PITX1, EMX2, NKX6-3, BARX2, MSX2 and PDX1 as candidate 

TFs in T2D pathophysiology (Table S14). Pathway analysis was performed for gene sets co-

expressed with the identified nine homeobox TF in pancreatic islets from 51 donors without 

T2D. Gene sets were defined by correlating expression levels of all transcripts identified by 

RNAseq with the expression levels of the nine identified homeobox TFs (significantly co-

expressed genes defined by FDR 5%, Table S15). The top five significantly enriched 

pathways (hypergeometric test, FDR 5%), inferred from WEBGESTALT analysis using the 

KEGG database, are shown. 

(F) Glucose-stimulated insulin secretion in rat INS-1 ȕ-cells transfected with non-targeting 

(NT) control siRNA and siRNAs targeting the nine homeobox TFs BARX1, BARX2, MSX2, 

EMX2, NKX6-3, PITX1, RAX2, PRRX2 or PDX1 that were identified by a combinatorial 

framework analysis integrating PMCA findings at 47 T2D-risk loci and RNAseq expression 

data in islets from normoglycemic versus T2D subjects (Table S14). Insulin levels in the 

medium after 1h incubation with high glucose or low glucose (basal) were measured by 

ELISA (Supplemental Experimental Procedures). The ratio of (glucose-stimulated insulin 

levels) / (basal insulin levels) was calculated for siNT control and for each homeobox TF 

siRNA. The experiments were performed in triplicate, and are presented as mean ± SD 

(n = 5). p-values were calculated by paired t-test. 
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Figure S4. Variants in complex regions at the PPARG T2D risk locus and the homeobox 

factor PRRX1 as a rs4684847-dependent repressor of endogenous PPARG2 expression. 

Related to Figures 4-5 and Table 2. 

 

(A) Validation of cis-regulatory predictions at the PPARG T2D risk locus. Cis-regulatory 

predictions for variants in complex regions (red dots) were validated at the level of luciferase 

transcriptional activity (a random selection of variants in non-complex regions were included 

as a control (black dots)). Reporter assays were performed with luciferase promoter constructs 

matching the risk and non-risk alleles of the respective SNP-surrounding regions, reflecting 

the allele-specific change in transcriptional activity. The change in luciferase expression 

comparing the risk/non-risk or non-risk/risk allele (change � 1) is shown for each SNP as 

mean ± SD (n = 3-13). P-value was calculated by linear mixed-effects model. Details on the 
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analyzed SNPs are given in Table S17. Complex regions significantly differed from non-

complex regions at the transcriptional level. 

(B) Genotype-dependent increase in mRNA expression of total PPARG in human 

subcutaneous adipose tissue (n = 36). Box plots of the total PPARG expression level is shown 

for risk- and non-risk haplotype carriers of rs7638903, Pro12Ala and rs4684847 (cis-

regulatory variant). Risk-haplotype (GG + CC + CC) versus non-risk haplotype (GA/AA + 

CG/GG + CT/TT) are shown. The three SNPs are in perfect LD in the 1000G Pilot 1 data set 

(1000 Genomes Project Consortium, 2010) (r2 = 1.0). mRNA was measured by microarrays 

(Affymetrix) and statistics were calculated by Wilcoxon signed rank test. 

(C) Allelic imbalance of PPARG2 mRNA expression levels during early stages of adipocyte 

differentiation measured in primary hASC (human adipose stromal cells) heterozygous for the 

risk allele (genotyped for Pro12Ala and rs4684847, r2 = 1.0) at different time points after 

induction of differentiation. Allele-specific primer extension analysis of RNA (n = 6), 

calculated as ratio of the non-risk allele to risk allele. Data are presented as mean ± SD. p-

values were calculated by Dunn’s Multiple Comparison post-test after Kruskal-Wallis 

Oneway ANOVA (p < 0.0001). 

(D) Mapping of experimentally verified complex regions to H3K27ac regions at the PPARG 

locus. H3K27ac regions in undifferentiated primary hASC and hASC three days and nine 

days after induction of adipogenic differentiation were extracted from (Mikkelsen et al., 2010) 

(data accessible at NCBI GEO database, Edgar et al., 2002, accession GSE20752). H3K27ac 

chromatin state across the PPARG locus is shown as region plot. The localization of SNPs at 

complex regions at the PPARG locus are indicated, together with the PPARG exons A1, A2, 

the PPARG2 specific exon B and the first exon of PPARG1 and PPARG2. The complex 

region surrounding rs4684847 reveals cell stage-dependent H3K27ac marks (also H3K4me1, 

H3K4me2 and H3K36me3). 

(E) Allele-dependent repression of reporter gene activity in 3T3-L1 adipocytes, Huh7 

hepatocytes, C2C12 myocytes, INS-1 ȕ-cells and 293 cells. Luciferase assays in 3T3-L1 

adipocytes, Huh7 hepatoma cells, C2C12 muscle cells, INS-1 pancreatic ȕ-cells and 293T 

cells reveal cell type-specific cis-regulatory activity of the complex region SNP rs4684847. 

All reporter assays were performed with luciferase promoter constructs matching the risk and 

non-risk alleles of the respective SNP-surrounding regions, reflecting the allele-specific 
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changes in transcriptional activity. The data are presented as mean ± SD. p-values were 

calculated by paired t-test.  

(F) Reporter assays with constructs harboring the rs4684847-surrounding region in 5´-, 3´-, 

forward and reverse orientation (arrows) transfected in 3T3-L1 adipocytes (n = 9). 

(G) Regulation of PPARG1 mRNA expression in SGBS adipocytes with homozygous risk or 

non-risk allele introduced by the CRISPR/Cas9 genome editing approach. Cells were 

transfected with siPRRX1 and siNT concurrent with induction of differentiation. PPARG2 

mRNA was assessed by qPCR, standardized to HPRT mRNA. The data are presented as mean 

± SD (n = 12). p-values were calculated by paired t-test. 

(H) Genotype-dependent expression of PRRX1 mRNA levels in insulin resistant and insulin 

sensitive subjects matched for BMI, body fat, age and sex. PRRX1 mRNA in abdominal 

subcutaneous adipose tissue was measured by qPCR, standardized to HPRT mRNA. Insulin 

sensitivity was measured by euglycemic hyperinsulinemic clamp. Data are presented as mean 

± SD (n = 30 per group). p-values were calculated by unpaired t-test.  

 

6.3  SUPPLEMENTAL TABLES
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6.4  SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

6.4.1 Definition of LD blocks 

TagSNPs were derived from reported GWAS loci (corresponding references are listed in 

Tables S1, S7 and S13A). For each tagSNP, LD blocks were defined based on 1000G Pilot 1 

CEU data (1000 Genomes Project Consortium, 2010) (r2 � 0.7, NCBI GRCh37/hg19) using 

the SNAP viewer tool (Johnson et al., 2008), Broad Institute. For Crohn's diseases 

susceptibility loci, a previously published SNP set (Schaub et al., 2012) was chosen for 

PMCA analysis of candidate SNPs at (Table S13B).  

 

6.4.2 Search for orthologous regions 

For each SNP the 120 bp sequence with the SNP at central position (SNP region) was 

extracted from the human genome (NCBI GRCh37/hg19). Moreover, orthologous sequences 

for each of the 120 bp SNP-surrounding region of the human reference sequence were 

searched in 15 closely and distantly related vertebrate species, using the RegionMiner tool 

(Genomatix, Munich). First, loci homologous to the human SNP region were searched across 

the target organisms. In case no homologous loci could be identified, the flanking genes (up to 

20 gene loci in both directions) were considered in order to identify a syntenic region in the 

target species. To be assigned as a syntenic region, two homologous genes in the target 

organism need to be on the same contig and must show the same relative strand orientation as 

the genes in the source organism. Second, the input sequence (SNP region) was aligned to the 

syntenic region using a Smith-Waterman alignment. The syntenic regions had to fulfill the 

following alignment criteria: the alignment contained a highly conserved 50 bp stretch; the 

alignment had to be shorter than 1.5-fold the length of the input SNP region, and a sufficient 

overall alignment quality had to be reached. 
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Reference genome:  Human (Homo sapiens) 

Aligned genomes: Rhesus macaque (Macaca mulatta) 

Common chimpanzee (Pan troglodytes) 

Mouse (Mus musculus) 

Rat (Rattus norvegicus) 

Rabbit (Oryctolagus cuniculus) 

Horse (Equus caballus) 

Dog (Canis lupus familiaris) 

Cow (Bos Taurus) 

Pig (Sus scrofa) 

Opossum (Monodelphis domestica) 

Platypus (Ornithorhynchus anatinus) 

Zebrafish (Danio rerio) 

Chicken (Gallus gallus) 

Western clawed frog (Xenopus tropicalis) 

Zebra finch (Taeniopygia guttata) 
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6.4.3 PMCA Procedures: Description of the PMCA method 

 

This chapter describes the PMCA method at different degrees of detail. After the description 

of the general motivation for the choice of the method we describe the general design of the 

PMCA method that is intended for a general readership. We then provide a detailed 

description of the PMCA algorithm in the form of a pseudo-code that an experienced 

bioinformatician can use to implement the steps described in the method in an automated 

manner. Finally, we provide a step-by-step example for running PMCA manually using 

the graphical user interface. 

 

Motivation 

Bioinformatics approaches that reliably assess the regulatory role of specific genetic variants 

would be highly desirable (Cooper and Shendure, 2011). However, rapid evolutionary 

turnover results in many lineage-specific regulatory regions that are functionally conserved, 

have low phylogenetic conservation, challenging the use of phylogenetic conservation of 

genomic sequences as a sole denominator in the search for non-coding regulatory regions. 

Nucleotide-level evolutionary conservation alone has proven to be a poor predictor.  

 Gene regulatory regions in eukaryotes tend to be organized into cis-regulatory 

modules (CRMs), comprising complex patterns of co-occurring TFBS for the combinatorial 

binding of TFs. CRMs integrate a variety of upstream signals to regulate the expression of 

coordinated sets of genes, making them an obvious target to achieve broad phenotypic 

changes as a result of adaptive evolution. 

 Here we hypothesize that the presence of patterns of evolutionarily conserved TFBS in 

a CRM (TFBS modularity), within genomic regions surrounding a candidate variant are 

predictive of its cis-regulatory functionality, regardless of the cross-species conservation of 
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the complete sequence on the nucleotide-level. In order to test this hypothesis we need a 

bioinformatics method that is able detect and classify genetic regions that contain 

evolutionary conserved TFBS modules. In the following, we describe such a method, called 

phylogenetic module complexity analysis (PMCA). 

 

General design of the PMCA method 

The starting point of the PMCA method is a genetic variant that has been reported in a 

genome-wide association study as a tagSNP for the risk of a given disease or a phenotype. In 

this analysis we individually test all non-coding SNPs that are in linkage disequilibrium (LD, 

r2>0.7) with the tag SNP (for the analysis performed in this manuscript, see chapter 2. 

Definition of LD blocks in the Supplemental Experimental Procedures; note that any set of 

sequence variants may be analyzed by PMCA). For each non-coding SNP the PMCA method 

shall eventually provide a classification of the region surrounding the non-coding SNP as 

being either complex or non-complex. Complex regions are defined as being significantly 

enriched in phylogenetically conserved TFBS modules according to the scoring scheme we 

developed for this purpose. In non-complex regions, in contrast, the number of 

phylogenetically conserved TFBS modules does not exceed what is expected by chance. We 

estimate this significance using randomized sequences. 

 The following procedure is executed for each non-coding SNP. We use the 

commercially available Genomatix software suite (Genomatix Co., Munich) for these tasks, 

i.e. the RegionMiner for extraction of orthologous regions and the FrameWorker, which 

extracts TFBS modules from a set of DNA sequences. Briefly, the FrameWorker tool returns 

the most complex TFBS modules that are common to the input sequences, satisfying the user 

parameters. TFBS modules are defined as all TFBS that occur in the same order and in a 

certain distance range in all (or a subset of) the input sequences. However, in principle any 
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equivalent method can be applied. A more detailed description of the individual computing 

steps in terms of pseudo-code is given further down.  

 

10. The flanking region (±60nt) of the non-coding SNP is extracted from the human genome; 

11. Ortholog regions are searched in the genomes of 15 fully sequenced vertebrate species and 

extracted if a region with a high degree of similarity is found; 

12. TFBS are identified in the set of ortholog sequences using position weight matrices from 

the Genomatix library; 

13. TFBS modules are identified in each ortholog sequence; TFBS modules are specifically 

defined as all two or more TFBS that occur in the same order and in a certain distance 

range in all or a subset of the input sequences.  

14. Phylogenetically conserved TFBS (ȍTFBS), TFBS modules (ȍmodules), and occurrence of 

TFBS in TFBS modules (ȍTFBS_in_modules) are counted.  

15. Repeated counting weighs the degree of cross species conservation and the number of 

TFBS in the modules. This counting scheme alone would overestimate genetic regions 

that only have orthologs in a subset of closely related vertebrate species (e.g. mammal-

linage specific TFBS). To account for this possibility, we also determine phylogenetically 

conserved TFBS with more restricted parameters (ȍrestr-TFBS, details see below). 

16. Steps 3-5 are repeated one thousand times using randomized input sequences to estimate 

the probability of observing a given ȍTFBS, ȍrestr-TFBS, ȍmodules, and ȍTFBS_in_modules. 

Randomization of the sequences is done using local shuffling in order to conserve local 

nucleotide frequency distributions. The randomization accounts for the issue that certain 

TFBS might be favored merely due to the sequences nucleotide composition, i.e. high GC 

content may predict additional matches for matrices of the SP1 transcription factor; which 

might provoke overestimation of the variant-surrounding sequence; and that different 
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ortholog set sizes for candidate variants might result in an artificial bias, i.e. a set of only 

three sequences allows only two combinations of sequences that contain the reference 

sequence and fulfill the 50% quorum in contrast to larger sets. Contrary, a region with 

only primate sequences as orthologous shows a much higher, probably overestimated 

score. 

17. Based on the four weighed counts ȍTFBS, ȍrestr-TFBS, ȍmodules, and ȍTFBS_in_modules and the 

estimated background probability of observing these counts by chance, we determine an 

overall classification criterion Sall. 

18. The overall classification criterion labels the input region as complex or non-complex. 

(Note: steps (1-9) are detailed in the pseudo code on page 21-23 of the Supplemental 

Experimental Procedures). 

10. To further select the variant with a function in disease, the overall disease-distinct 

clustering of TFBS at complex regions is assessed using positional bias analysis. (Note: 

the calculation of positional bias in step (10) is detailed in chapter 3 of the Extended 

Experiment Procedures, page 31-32). 

 

The basic assumption of the PMCA methods is that a genetic variant in a complex region has 

a measurable functional effect. For classification of a genomic regions as complex or non-

complex we determined scoring criteria on the weighed counts (described in detail below) 

based on the experimental validation of cis-regulatory functionality for 21 sequence variants 

(whether this variant was functional or not in one of two assays: DNA binding activity or 

reporter gene activity), including the cis-regulatory SNPs in Table S2. The gold standard for 

the test of a classification method is replication in an independent data set that has been 

measured after the method was fully established. In order to provide such as test we 

conducted experiments on DNA binding activity or reporter gene activity for a set of 62 SNPs 
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that were selected from a representative set of potential candidate SNPs at genomic regions 

with different levels of GC content and different intronic or intergenic localization. The 

PMCA method with the parameters set as described below (and fixed before the experiments 

on the 62 SNPs were conducted) results in 57 correct classifications, only 3 SNPs were 

misclassified as false positives and 2 SNPs as false negatives. We thus expect the PMCA 

method to have over 90% selectivity and sensitivity. 

 

Detailed description of the PMCA algorithm (pseudo-code) 

Here we describe in detail the steps that need to be taken when using the PCMA method with 

the Genomatix software in the format of a pseudo-code. In order to get a better feeling of 

these steps, and how complex regions differ from non-complex regions for a region of 

interest, we provide a step-by-step tutorial that can be followed manually using the interactive 

version of the Genomatix software (see provided screenshots). In order to process a large 

number of SNPs, and to compute the randomized background distributions, we recommend 

use of the command-line version and scripting of the processing and counting of the output 

(XML format). While we believe that the RegionMiner and FrameWorker tools (Genomatix 

Co., Munich) presently represent the state-of-the-art, all steps in our method can be replaced 

by open-access tools and databases, such as AlignACE (Roth et al., 1998) for the 

identification of homologous regions, TRANSFAC (Matys et al., 2006) as TFBS databases, 

and custom-made TFBS module identification schemes. 
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Pseudo-code for the PMCA algorithm 

For a given tagSNP select all non-coding SNPs in the LD region. 

For each non-coding SNP do the following: 

1. Prerequisites 

1.1 Generate a BED-file with  

- start position = SNP position – 60 bp  

- end position = SNP position + 60 bp  

1.2 Search for orthologous regions:  

Input the BED-file from step 1.1 input to RegionMiner subtask ‘Search 
for orthologous regions in other species’   

1.3 Download all sequences found in step 1.2  

2. Assessment of ‘modular complexity’  

2.1 From 1.3 obtain a set of sequence files (S) where each file contains the human 
sequence surrounding the SNP according to the BED-file contents from 1.1 and 
up to 15 orthologous sequences from other species as found in 1.2. (Called 
‘ortholog sets’). 

�TFBS = 0 
�modules = 0 
�TFBS_in_modules = 0 

2.2 For each sequence set S do the following: 

NS = number of sequences in S 

For ( i = 2 to NS ) do the following: 

Call FrameWorker  using these parameters: 

ȗ = i / number (ȗ is the ‘quorum’)  

number of elements in Module: 2 to 10 

maximal distance variance: 10 

distance between elements: 5 to 200 
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Parse the output file and determine the following numbers by 
parsing the XML output: 

ȦTFBS = number of TFBS in at least ȗ * Ns sequences of S  
�TFBS = �TFBS + ȦTFBS 

 
For Ȗ = 2 to 10 do the following  
 

# Ȗ is the number of TFBS that are required to occur  
# in a module to be counted 
 
ȦȖ-modules = number modules with Ȗ TFBS in at least ȗ * 
Ns sequences of S 
 
ȦTFBS_in_Ȗ-modules = number of TFBS modules with Ȗ 
TFBS in at least ȗ * Ns sequences of S 
 
�modules = �modules + ȦȖ-modules 
�TFBS_in_modules = �TFBS_in_modules + ȦȖ-modules 

 
2.3 Repeat the calculations in step 2.2 but limited to parameter settings of 
ȗ >= 0.5 sequence set to compute �restr-TFBS  

 
2.4 Repeat the following 1,000 times 
 

Randomly shuffle the sequence set S; use a sliding window of 10 bp and 
permutate the bases in each window, thus leaving the local nucleotide 
distribution mainly unchanged. This generates randomized sequence 
sets that are similar in their local nucleotide distribution to S. 
Repeat steps 2.2 and 2.3 to obtain a random distribution of �TFBS

rnd, 
�restr-TFBS

rnd, �modules
rnd, and �TFBS_in_modules

rnd. 
 

3. Scoring and classification 
 

3.1 Estimate the probability p-esti = f(�i
rnd> �i) of observing a given number �i 

(where i stands for TFBS, rest-TFBS, modules, or TFBS_in_modules) as the 
fraction of randomly observed values of �i

rnd that are greater or equal than the �i
 

observed on the true sequences. For numeric stability reasons p-esti is set to 
1/1001 if this never occurs: 

p-estTFBS = f(�TFBS
rnd> �TFBS) 

p-estrestr-TFBS = f(�restr-TFBS
rnd> �restr-TFBS) 

p-estmodules = f(�modules
rnd> �modules) 

p-estTFBS_in_modules = f(�TFBS_in_modules
rnd> �TFBS_in_modules) 
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3.2 Compute an Overall-score Sall = -log(p-estTFBS * p-estmodules * p-
estTFBS_in_modules)  
 
3.3 Classify a non-coding SNP as being located in a complex region if and only if: 

 ( Sall > 6.5 ) and (p-estrestr-TFBS < 0.15) and (p-estTFBS < 0.075) 
(Scoring criteria for classification)  
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Step-by-step example for running PMCA manually using the graphical user 

interface 

 

 

Generate a BED-file describing the regions ± 60 bp around the SNPs. A bed file can be 

created with any text editor and should contain a single line containing the chromosome, 

genomic start and end position of the 120 nucleotide region and the SNP identifier.  

 

Below is an example for such a BED-file: 

chr3 12386277 12386397 rs4684847 

 

 

Upload the bed file to the Genomatix genome analyzer (GGA) software.  
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Search for orthologous regions by clicking on ‘Orthologous regions’ 

 
 

Extract the sequences 
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Start FrameWorker 

 
 

 Load the ortholog set that has been extracted in the previous step 
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Select parameter as described below and click on ‘Start FrameWorker’ 

 

Note that in the Genomatix software  
TFBS are designated as elements. 
TFBS modules are designated as models. 

 

 

 
 

Count TFBS in the graphical output according to counting scheme described in the 

algorithm 

 

Quorum constraint
Mandatory sequence. This�sequence�must�contain�the�modules. 

Distance constraint

Distance variance

Elements in modules
 
How�many�TFBS�should�be�in�
the�found�modules? 

�
No modules were found 
here.  
Ω

TFBS
: count the conserved 

TFBS in the human founder  
sequence  = 6 
Ω

modules
:  = 0 

Ω
TFBS_in_modules  = 0  
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 Repeat the step with the next quorum setting 

 

Repeat with different 
Quorum settings 
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 Count again 

 
 

 

 

 

Two modules with 2 
TFBS were found  
(Ω

modules
 =  2).  

 
If modules with more 
TFBS are found the 
numbers are added. 

Ω
TFBS

: count the conserved 
TFBS sites in the human 
founder sequence = 12 

�

�

Still the same output, switch to 
the modules. If modules with 
more TFBS are present do this for 
each module type. 

Count the number of TFBS in the 
human founder sequence 
Ω 

TFBS_in_modules
  = 3 

 
If models with more TFBS are present 
do this for each module type and add 
the numbers. 
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The counting is cumulative over the quorum constraint steps, i.e. at this point we have: 

ΩTFBS = 6 + 12 = 18 

Ωmodules = 2 

ΩTFBS in modules = 3 

Keep a second counting for �restr-TFBS which shall only be counted for Quorum constraints of 

� 50%. 

 

Finally for the ortholog set of rs4684847 we obtain four count values: 

1. ΩTFBS over all Quorum constraints 

2. Ωmodules over all Quorum constraints 

3. ΩTFBS in modules over all Quorum constraints 

4. ȍrestr-TFBS over Quorum restricted to ζ >= 50% 

 

The cumulative counting over all TFBS modules and Quorum constraints gives more weight 

on sets that yield TFBS modules with higher numbers of TFBS.  

 

Generate a large number of randomized sequence sets and repeat the same steps while 

keeping track of the count values as above. In order to get robust statistics this step should be 

performed a thousand times using the command line version of FrameWorker tool. 

 

The Genomatix Genome Analyzer (GGA) provides a Unix command line interface 

(Bioinformatics Workbench) to access the programs through scripting. FrameWorker 

generates XML output files that can be parsed to obtain the �TFBS, �restr-TFBS �modules, �TFBS_in 

_modules counts as shown in the manual examples. 

  

Finally each of the counts �TFBS, �restr-TFBS, �modules, �TFBS_in_modules from the 1,000 random 

sets is compared to the numbers from the original set. These values are then used to estimate 

the random occurrence of these counts and to derive the final overall-score as described 

above.  
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5.4.4 Positional Bias Analysis: Calculation of the TFBS positional 

bias 

The positional bias of a TFBS matrix was calculated as outlined for the assessment of de novo 

detected motifs (Hughes et al., 2000). For positional bias analysis, the 120 bp sequences 

analyzed with PMCA were extended to 1,000 bp sequences, serving as a background to check 

for a significant clustering of certain TFBS at SNP positions. The 1,000 bp sequences with the 

respective SNP at central position were extracted from the human genome build (NCBI 

GRCh37/hg19) for all complex regions and non-complex regions. The sequences were 

scanned by MatInspector (Cartharius et al.; Quandt et al., 1995) (Genomatix, Munich, 

Germany) for the presence of TFBS matrix family matches with respect to SNP positions 

(192 TFBS matrix families; 182 vertebrate families plus 10 other general families, Genomatix 

Matrix Library version 8.4). Matrix is used in the sense of positional weight matrix (PWM). 

This is a concept describing TFBS by the information content of the nucleotide distribution of 

the positions within a binding site. Hence the scale in the most popular visualization of TFBS 

matrices (PWMs), the so called LOGO, is in bits. What we refer to is weight matrix matches 

as indicators of putative binding sites. Individual weight matrices describing highly similar 

binding sites are placed into matrix families (Cartharius et al. 2005). Searching with families 

eliminates redundant output by giving only the best match within a family. 

Match positions on the sequences were scanned using overlapping 50 bp sliding 

windows in steps of 10 bp. The total number of matches for a given TFBS matrix family is 

regarded as independent individual trials that may match anywhere in the sequence. The 

positional bias for a scan window under this model becomes the cumulative binomial 

probability to obtain the exact number of matches found there up to the total number of 

matches in the sequence. The probability for the occurrence of a single match within a scan 
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window, independent of any sequence constraint, is given as the ratio of the window size to 

the sequence length. The positional bias p-value was calculated for each matrix family and 

each window (Table S6). For graphical visualization, –log10(p) was plotted over the mid-

positions of the scan windows. The evaluation of the positional bias was done by parsing the 

output of MatInspector with a Perl Script that tabulates for each TF-family the total number of 

matches, the scan windows, number of matches in the scan windows and binomial p-values. 

For graphical output these tables were input to R and used for plotting. 

 

5.4.5 Correlation of SNP regions with evolutionary constraint regions 

Genomic regions surrounding a candidate SNP were classified as complex and non-complex 

and were correlated to evolutionary constrained regions according to the method and data 

from (Lindblad-Toh et al., 2011). We used the RegionMiner-GenomeInspector tool 

(Genomatix, Munich) for this task. From the mid position (anchor position; 0 on the x axis of 

the plot) of each constrained region (determined by Siphy-ʌ-method Lindblad-Toh et al., 

2011) 500 bp in up and downstream direction were scanned for the positions overlapping with 

the 120 bp of analyzed SNP regions. For each position relative to the anchor the overlaps are 

counted (correlations) and these correlations versus position relative to the anchor are plotted. 

A preferred distance of SNPs in complex or non-complex regions to constrained elements 

would be visible as enrichment at defined positions relative to the anchor position. We used 

the 120 bp extended SNP regions in this analysis since we used the same regions to 

determining the TFBS module complexity. The use of 120 bp regions has the effect of 

smoothing the correlation graph, which in case of using exact SNP positions would more 

adopt the shape of a bar graph since accumulation of overlaps for extended regions is more 

likely than for single positions. The use of the midpoint of constrained regions as an anchor 
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was chosen since constraint regions do not have the same size. The results are presented in 

Figure 2 and Table S8. 

 

5.4.6 Correlation of SNP regions to DHSseq regions and ChIPseq 

regions 

Genomic regions surrounding a candidate SNP were classified as complex and non-complex 

and were correlated to DNase hypersensitive regions (referred to as DHSseq peaks; summary 

of Encode data wgEncodeRegDnaseClustered.bed from UCSC regulation super-track) and 

regions of transcription factor binding (referred to as ChIPseq peaks; summary of ENCODE 

ChIPseq data wgEncodeRegTfbsClusteredV2.bed from UCSC regulation super-track). We 

used the RegionMiner-GenomeInspector tool (Genomatix, Munich) for this task. From the 

mid position (anchor position; 0 on the x axis of the plot) of each SNP region 500 bp in up 

and downstream direction were scanned for the positions overlapping with the 120 bp of 

analyzed SNP regions. For each position relative to the anchor the overlaps were counted 

(correlations) and these correlations versus position relative to the anchor were plotted. 

Enrichment in the vicinity of SNPs would become visible as a peak around the anchor 

position (0). We used the 120 bp extended SNP regions in this analysis since PCMA used the 

same regions in determining the TFBS module complexity. The use of 120 bp regions further 

has the effect of smoothening the correlation graph, which in case of using exact SNP 

positions would more adopt the shape of a bar graph since accumulation of overlaps for 

extended regions is more likely than for single positions. The results are presented in Figure 2, 

Figure S2 and Table S9. 
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5.4.7 Enrichment of complex regions in diseases loci 

We chose 19 disease traits of major importance (Table S5) to test the PMCA method. For 

each trait a maximum of six SNPs and with lowest p-values were selected from the GWAS 

catalogue (Hindorff LA, accessed July 7th 2013), if their GWAS associations were reported in 

individuals of European descent, the SNP was not selected for another trait before, and they 

were part of the 1000 genomes data (1000G Pilot 1 CEU data, 1000 Genomes Project 

Consortium, 2010). Matched random variants were drawn from the 1000G data (1000G Pilot 

1 CEU data, 1000 Genomes Project Consortium, 2010). Matching was done as follows: Minor 

allele frequencies (MAF) of the disease associated SNPs were group into 10 bins. Then for 

each disease-associated SNP a random equivalent was drawn with a MAF score in the same 

bin, with the same genomic context (either intergenic, intronic, or exonic) according to 

Genomatix ElDorado 2012 annotation (Genomatix, Munich, Germany), and for the distance 

to the nearest TSS within ± 10% of the disease-associated SNP. The process of random 

drawing was done using a Pearl Script. 

 

5.4.8 GWAS enrichment analysis 

GWAS results of insulin resistance (HOMA-IR) and impaired insulin secretion (HOMA-B) 

were extracted from the MAGIC consortium data repository (Dupuis et al., 2010) 

(ftp://ftp.sanger.ac.uk/pub/magic/). We identified 713 SNPs in 47 previously reported T2D 

susceptibility loci (SNPs in LD with the most significant SNP in each locus with r2 > 0.7, 

Supplemental Table 7). TFBS-targeting SNPs were defined as the localization of SNPs in 

close proximity (SNP ± 20 bp) to at least one of the TFBS matrix clusters with p-value < 10-6 

(positional bias analysis, Supplemental Table 12). We performed an enrichment analysis by 

the hypergeometric test to assess an over-representation of six TF families around 713 T2D 

SNP targets of interest. To estimate empirical p-value of the enrichment, we created 1,000 
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datasets each with ~700 SNPs in ~45 to 50 genomic loci randomly selecting from the same 

GWAS results. Each simulated dataset has approximately similar total length of DNA 

sequences compared to the total length of 47 T2D loci. The same enrichment analyses were 

performed in each simulated dataset to create the null distribution, and the empirical p-value 

of T2D SNPs was estimated from this null distribution.     

 

5.4.9 Assessment of SNP to TSS distance annotations 

We analyzed SNPs by the Annotation and Statistics task of RegionMiner tool (Genomatix, 

Munich) with the option next neighbor analysis. This results in the transcript start sites (TSS) 

which are next to each SNP upstream and downstream and on either strand of the DNA. For 

visualization we used all distances where a TSS was annotated within 30,000 bp downstream 

of a SNP. To directly compare theses distances for SNPs located in complex and non-complex 

regions we used density histograms with a bin size of 500 bp. 

 

5.4.10 Culture of cell lines, Luciferase expression assays, EMSA, DNA-

protein affinity chromatography 

 

Culture of cell lines and Luciferase expression assays 

The rat insulinoma cell line INS-1 was cultured in RPMI medium (supplemented with 10 % 

FBS (fetal bovine serum), 100 mM sodium pyruvate, penicillin/streptomycin and 50 µM 2-

mercaptoethanol). Human Huh7 hepatoma, mouse C2C12 myoblast and mouse 3T3-L1 

preadipocyte cell lines were cultured in DMEM medium (supplemented with 

penicillin/streptomycin and 10 % FBS). The human preadipocyte SGBS (Simpson–Golabi–

Behmel Syndrome) cell line was cultured as previously described (Fischer-Posovszky et al., 

2008) in DMEM/Ham's F12 (1:1) medium (supplemented with 10% FCS, 17 µM biotin, 
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33 µM pantothenic acid and 1% penicillin/streptomycin). All cells were maintained at 37°C 

and 5% CO2. To promote adipose differentiation of the mouse preadipocyte cell line 3T3-L1, 

cells were grown to confluence with 10% FCS and medium was then additionally 

supplemented with 250 nM dexamethasone and 0.5 mM isobutyl-methylxanthine for the first 

three days and 10% FCS and 66 nM insulin throughout the entire differentiation period. 

C2C12 myoblasts were cultured in DMEM medium containing 10% horse serum to induce 

differentiation. The SGBS preadipocyte cell strain was grown to confluence. For induction of 

adipocyte differentiation cells were cultured in serum free MCDB-131/DMEM/Ham's F12 

(1:2) medium supplemented with 11 µM biotin, 22 µM pantothenic acid, 

1% penicillin/streptomycin, 10 µg/ml human transferrin, 66 nM insulin, 100 nM cortisol, 1 

nM triiodothyronine, 20 nM dexamethasone, 500 µM 3-isobutyl-1-methyl-xanthine (Serva, 

Germany) and 2 µM rosiglitazone (Alexis, Germany). 72 hours after induction of 

differentiation the cells were harvested in TRIzol reagent (Invitrogen, Germany). Unless other 

suppliers are mentioned, all cell culture materials were obtained from Invitrogen (Germany) 

and all chemicals from Sigma-Aldrich (Germany). 

 

Luciferase expression constructs 

To characterize the SNP-surrounding regions for allele-specific transcriptional activity, 

genomic sequences surrounding the respective SNPs were cloned into a basal pGL4.22 

promoter vector. For the promoter construct, a 752 bp thymidine kinase (TK) promoter was 

cloned upstream of the firefly luciferase gene into the EcoRV and BglII sites of the pGL4.22 

firefly luciferase reporter vector (Promega, Germany). SNP regions were extracted from 

human genome build (NCBI GRCh37/hg19). SNP regions were commercially synthesized as 

plasmid vectors (Mr. Gene, Germany) and as double-stranded oligonucleotides (MWG, 

Germany). Complementary oligonucleotides were annealed and purified on a 12% 
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polyacrylamide gel. SNP regions were subcloned either upstream of the TK promoter into the 

KpnI and SacI sites of the pGL4.22-TK vector or downstream of the luciferase gene into the 

BamHI site of the pGL4.22-TK vector. To further test for enhancer activity, SNP-surrounding 

regions were subcloned downstream of the luciferase gene in both 5´-to-3´ and 3´-to-5´ 

orientations into the BamHI site. The QuickChange Site-Directed Mutagenesis Kit 

(Stratagene, Germany) was used to alter single nucleotides (for the respective SNP, NCBI 

dbSNP). The orientation and integrity of each luciferase vector was confirmed by sequencing 

(MWG, Germany). 

 

Luciferase expression assays 

Huh7 cells (96-well plate, 1.1 x 104 / well) were transfected one day after plating with 

approximately 90% confluence, INS-1 cells (12-well plate, 8 x 104 / well) were transfected 

three days after plating with approximately 70% confluence, 3T3-L1 cells (12-well plate, 

8 x 104 / well) were transfected at day eight after the induction of differentiation with 

approximately 80% confluence and C2C12 cells (12-well plate, 2 x 105 / well) were 

transfected at day four after induction of differentiation with approximately 90% confluence. 

Huh7 were transfected with 0.5 µg of the respective firefly luciferase reporter vector and 1 µl 

Lipofectamine 2000 transfection reagent (Invitrogen, Germany), differentiated C2C12 

myocytes were transfected with 1 µg of the respective pGL4.22-TK construct and 2 µl 

Lipofectamine reagent, and both INS-1 ȕ-cells and differentiated 3T3-L1 adipocytes were 

transfected with 2 µg of the respective pGL4.22-TK construct and 2 µl Lipofectamine 

reagent. The firefly luciferase constructs were co-transfected with the ubiquitin promoter-

driven renilla luciferase reporter vector pRL-Ubi (Laumen et al., 2009) to normalize the 

transfection efficiency. Twenty-four hours after transfection, the cells were washed with PBS 

and lysed in 1x passive lysis buffer (Promega, Germany) on a rocking platform for 30 min at 
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room temperature. Firefly and renilla luciferase activity were measured (substrates D-luciferin 

and Coelenterazine from PJK, Germany) using a Luminoscan Ascent microplate luminometer 

(Thermo, Germany) and a Sirius tube luminometer (Berthold, Germany), respectively. The 

ratios of firefly luciferase expression to renilla luciferase expression were calculated and 

normalized to the TK promoter control vector. p-values comparing luciferase expression from 

risk and non-risk alleles or from overexpression experiments was calculated using paired t-

test. 

 For validation of PMCA-driven cis-regulatory predictions, and for the comprehensive 

analysis of the PPARG gene locus, allele-dependent change in reporter gene activity was 

calculated from 3-14 independent experiments for each analyzed SNP (ratio of the respective 

allelic activities). The quantified change in luciferase activity comparing risk / non-risk or 

non-risk / risk alleles (change � 1) was calculated for each SNP as mean and standard 

deviation. p-values were derived from linear mixed-effects model comparing the binary 

logarithm of the quantified ratios in allelic luciferase activity between SNPs in complex 

regions versus SNPs in non-complex regions. 

 

Electrophoretic mobility shift assay (EMSA) 

EMSA was performed with Cy5-labelled oligonucleotide probes. Respective SNP-

surrounding region oligonucleotides were commercially synthesized containing either the 

major or the minor variant (MWG, Germany). Cy5-labelled forward strands were annealed 

with non-labeled reverse strands, and the double-stranded probes were separated from single-

stranded oligonucleotides on a 12% polyacrylamide gel. Complete separation was visualized 

by DNA shading. The efficiency of the labeling was tested by a dot plot, which confirmed 

that all of the primers were labeled similarly. For analysis of overexpressed PRRX1 protein in 

EMSA, a PRRX1 expression vector (pCMV-PRRX1-flag, provided by M. Kern) and the 
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empty expression vector as control were transiently transfected into 293T cells using 

Lipofectamine 2000 (Invitrogen, Germany). 24 hours after transfection, the transfected cells 

were harvested as total native protein. Nuclear protein extracts from each analyzed cell line 

were prepared with adapted protocols based on the method described by Schreiber et al 

(Schreiber et al., 1989). The supernatant was recovered and stored at -80°C. DNA-protein 

binding reactions were conducted in 50 mM Tris-HCl, 250 mM NaCl, 5 mM MgCl2, 2.5 mM 

EDTA, 2.5 mM DTT, 20% v/v glycerol and the appropriate concentrations of poly (dI-dC). 

For DNA-protein interactions, 3-5 µg of nuclear protein extract from the respective cell line 

was incubated for 10 min on ice, and Cy-5-labelled genotype-specific DNA probe was added 

for another 20 min. For competition experiments 11-, 33- and 100-fold molar excess of 

unlabeled probe as competitor was included with the reaction prior to addition of Cy5-labeled 

DNA probes. Binding reactions were incubated for 20 min at 4°C. For supershift experiments, 

cell extracts were pre-incubated with 1 µl of antibody ĮPRRX1, provided by M. Kern) or 0.4 

µg of control IgG (Santa Cruz Biotechnology, USA) for 20 min at 4 °C. The DNA-protein 

complexes were resolved on a non-denaturation 5.3% polyacrylamide gel in 0.5x 

Tris/borate/EDTA buffer. All EMSAs were performed in triplicate or more, and fluorescence 

was visualized with a Typhoon TRIO+ imager (GE Healthcare, Germany). For comparison of 

genotype-specific DNA-binding activity in EMSA, competition EMSA and supershift 

experiments, the intensity of the DNA-protein complexes was quantified for both the major 

and minor allelic DNA-protein interactions using ImageJ Software (http://rsbweb.nih.gov/ij/). 

Quantification was related to the fluorescence intensity of the whole lane. Quantification was 

performed in quintuplicate for each single EMSA, and the change in quantified allele-

dependent fluorescence intensity was calculated (ratio of the respective allelic activity). For 

validation of PMCA-driven predictions on allele-specific DNA-binding activity, the 

quantified change in fluorescence comparing risk / non-risk or non-risk / risk alleles (change 
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� 1) is calculated for each SNP as mean and standard deviation. 3-4 independent EMSA 

experiments were conducted per SNP and p-values are derived from linear mixed-effects 

model comparing the decadic logarithm of the quantified change in fluorescence between 

SNPs in complex regions versus SNPs in non-complex regions. 

 

DNA-Protein affinity chromatography, LC-MS/MS and label free 

quantification 

To identify DNA-binding proteins interacting with the cis-regulatory SNP rs4684847 at the 

PPARG gene locus, we performed DNA-Protein affinity chromatography, LC-MS/MS and 

label free quantification. Affinity chromatography. Streptavidin magnetic beads (Dynabeads 

M-280, Invitrogen) were coupled with allele-specific biotinylated DNA-probes (the risk and 

non-risk allele, respectively, of rs4684847 at central position in a 42 bp sequence probe) 

overnight, washed, equilibrated with 1 x binding buffer (10 mM Tris-HCl, 1 mM MgCl2, 0.5 

mM EDTA, 0.5 mM DTT, 4% v/v glycerol) and incubated with nuclear extracts (binding 

buffer with 50 mM NaCl and 0.01% CHAPS) and poly (dI-dC) was added. Supernatant was 

recovered and beads were washed in binding buffer without CHAPS followed by stepwise 

elution of bound protein from the magnetic beads using increasing concentrations of NaCl. 

All steps were performed at 4°C. Input protein, wash supernatants and eluates were assayed in 

EMSA to confirm the binding activity. Mass Spectrometry. Eluates revealing allele-specific 

DNA-protein binding activity were subjected to tryptic digest and mass spectrometry was 

performed as described before (Hauck et al., 2010; Merl et al., 2012). Briefly, eluted samples 

were precipitated and protein pellets were resolved in ammoniumbicarbonate followed by 

tryptic digestion. LC-MS/MS analysis was performed on an Ultimate3000 nano HPLC system 

(Dionex, USA) online coupled to a LTQ OrbitrapXL mass spectrometer (Thermo Fisher 

Scientific, Germany) by a nano spray ion source. Peptides were automatically injected and 
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loaded onto the trap column in 5% buffer B (98% ACN/0.1% formic acid in HPLC-grade 

water) and 95% buffer A (2% ACN/0.1% FA in HPLC-grade water). The peptides were 

eluted from the trap column and separated on the analytical column by gradient from 5 to 31 

% of buffer B followed by a gradient from 31 to 95 % buffer. From the MS prescan, the 10 

most abundant peptide ions were selected for fragmentation in the linear ion trap if they 

exceeded an intensity of at least 200 counts and if they were at least doubly charged. During 

fragment analysis a high-resolution (60,000 full-width half maximum) MS spectrum was 

acquired in the Orbitrap with a mass range from 200 to 1500 Da. Label-free quantification. 

The mass spectrometry data were analyzed and quantified using the Progenesis LC-MS 

software (version 2.5, Nonlinear) as described (Hauck et al., 2010). Proteins were identified 

by searching MS and MS/MS data of peptides against the Ensembl mouse protein database 

(Version NCBI m37; 56410 sequences; 26202967 residues). Averaged LF quantification 

(LFQ) intensity values were used to calculate protein risk versus non-risk allele ratios. At the 

end, the analysis revealed an allele-specific 2.3-fold increased binding of the homeobox TF 

PRRX1 at the risk-allele of the rs4684847-surrounding region (p = 0.034 from Oneway 

ANOVA comparing the allelic difference of three independent experiments). 

 

5.4.11  Genome editing in SGBS preadipocytes 

To change the rs4684847 risk allele in SGBS preadipocytes to the non-risk allele we applied 

an adopted CRISPR/Cas homology directed repair (HDR) genome editing approach (Ding et 

al., 2013; Wang et al., 2013a). The CRISPR/Cas expression vector and the sgRNA-expression 

vector were kindly provided by Dr. Ralf Kühn (Helmholtz Zentrum München, München-

Neuherberg). For cloning of the NGG PAM sequence located 203 bp upstream of the 

rs4684847 variant we annealed the primers 5’CACCGAAACTCACAACAATGCTGGG-3’ 

and 5’AAACCCCAGCATTGTTGTGAGTTTC-3’ (the sgRNA target sequence (underlined) 
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and nucleotides for cloning (italics) are indicated), and cloned the resulting double-stranded 

DNA into a BbsI cloning site of the sgRNA expression vector in front of the U6 promoter, 

resulting in the sgRNA-rs4684847 vector. The sgRNA target sequence was predicted as high 

quality guide sequence for the low numbers of off-target sites using the algorithms published 

by Hsu et al., 2013 (the online tool Optimized CRISPR Design at http://www.genome-

engineering.org/ predicted 220 potential off-target sites). To generate a genomic DNA 

targeting-vector providing the rs4684847 risk and non-risk allele (C- and T-allele, 

respectively) for HDR-mediated genome editing, we amplified the genomic region 

surrounding the rs4684847 variant (-600 bp and +1,200 bp from chr3:12386337, NCBI 

37.1/hg19) from SGBS genomic DNA using the Q5 Hot Start High-Fidelity DNA Polymerase 

(New England Biolabs) and the primers 5’-GGCTTCCCAAAGTCCTGGGATTA-3’ and 5’-

CTTCCTTTTCTGCCCAGCTTCAAA-3’. The PCR product was cloned into the pJET1.2 

vector using the CloneJET PCR Cloning kit (Fermentas). Next, the endogenous homozygous 

rs4684847 C-allele was changed to the T-allele (underlined) using the primers 5’-

CATCTCTAATTCTTACAACTCCGAAAAGATAAGAAAACAGAG-3’ and 5'-

CTCTGTTTTCTTATCTTTTCGGAGTTGTAAGAATTAGAGATG-3'. Additionally in both 

targeting-vectors the NGG-PAM sequence was mutated from AGGACG (underlined) using 

the primers 5'-GCTTTGAATAACGTCCCAGCATTGT-3' and 5'-

ACAATGCTGGGACGTTATTCAAAGC-3' to avoid that targeting-vector DNA which was 

successfully integrated into SGBS genomic DNA would be recognized by the sgRNA-

rs4684847. The site directed mutagenesis was performed by overlap-extension PCR (Ho 

1989) and both orientation and integrity of each vector was confirmed by sequencing (MWG, 

Germany). Next, the sgRNA-rs4684847 vector, the CRISPR/Cas expression vector, the 

rs4684847 allele-specific targeting-vectors and a GFP-expression vector (to assess 

transfection efficiency) were co-transfected into the SGBS-preadipocyte cell line using the 
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Amaxa-Nucleofector device (program U-033) and the basis nucleofector kit for primary 

mammalian fibroblasts (Lonza). Additionally, a truncated CD4 expression vector – lacking all 

intracellular domains – was co-transfected to enable sorting of transfected cells after 

transfection, by magnetic bead selection using the MACSelect™ Transfected Cell Selection 

Kit (Miltenyi Biotec). The sorted cells were grown to confluence (transfection efficiency 

reached >95%, visually assessed by determining GFP-positive cells) and induced for 

adipogenic differentiation as described in the Supplemental Experimental Procedure chapter 

10. Culture of cell lines. PPARG1 and PPARG2 mRNA expression levels were determined as 

described in the chapter 22. Quantitative RT-PCR and allele-specific primer extension 

analysis. We assessed the genotype of the rs4684847 variant after HDR-mediated genome 

editing by sequencing 200 bp surrounding the SNP and confirmed homozygous C-allele and 

T-allele in the cells transfected with the respective genomic DNA targeting-vectors. 

 

5.4.12  Analysis of human adipose tissue samples 

Written informed consent was obtained from all patients who donated biological samples. The 

studies were approved by the local ethics committee of the Faculty of Medicine of the 

Technical University of Munich, Germany, University of Leipzig, Germany or the local ethics 

committee of Karolinska University Hospital, Stockholm, Sweden. 

PRRX1 mRNA was measured by qPCR (see chapter 21) in subcutaneous adipose 

tissue samples obtained from severely obese subjects matched for BMI (mean ± SD 43.2 ± 3.1 

kg/m2, n=67), body fat, age and sex, as described previously (Klöting et al., 2010). Linear 

regression analyses were performed for free fatty acids (FFA) and glucose infusion rate (GIR) 

during euglycemic hyperinsulinemic clamps, for risk-allele and non-risk-allele carriers, 

respectively. Subjects in both the high and low range of GIR were included to enable 

comparison of different levels of insulin sensitivity. 
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 To determine correlation with insulin sensitivity and circulating lipids (HOMA-IR and 

TG/HDL ratio), PRRX1 mRNA was also measured in another cohort comprising 30 obese 

(BMI>30 kg/m2) otherwise healthy and 26 non-obese (BMI<30 kg/m2) healthy women 

(Arner et al., 2012). All were pre-menopausal and free of continuous medication. They were 

investigated in the morning after an overnight fast. A venous blood sample was obtained for 

measurements of glucose, insulin, and lipids, and for preparation of DNA. HOMA-IR was 

calculated by the formula fP-Glucose (mmol/L) x (fS-Insulin (microU/ml)/ 22.5) (Bonora et 

al., 2000). After the blood sampling an abdominal subcutaneous adipose tissue biopsy was 

obtained by needle aspiration. Adipose microarray analysis was performed exactly as 

described (Arner et al., 2012) using the Affymetrix GeneChip miRNA Array protocol with 

1µg of total adipose RNA from each subject. Gene and miRNA expression have been 

deposited in the National Center for Biotechnology Information Gene Expression Omnibus 

(GEO; http://ncbi.nim.nih.gov/geo) and are accessible using GEO series accession number 

GSE25402. Linear regression analyses were performed to assess correlation of PRRX1 

mRNA with HOMA-IR and TG/HDL in a genotype-dependent and BMI- and age-

independent manner for 20 risk-allele and 18 non-risk allele carriers with available phenotype 

data. 

 

5.4.13  Analysis of RNAseq data from primary human islets 

Written informed consent was obtained from all patients who donated biological samples. The 

study was approved by the local ethics committee of Lund University, Sweden. RNAseq 

libraries of total RNA from 59 human pancreatic islet donors were made using the standard 

Illumina mRNA-Seq protocol. Sequencing was done in an Illumina HiSeq 2000 machine. 

Paired-end 101 bp length output reads were aligned to the human reference genome (NCBI 

37.1/hg19) with TopHat (Trapnell et al., 2009). Gene expression was measured as the 
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normalized sum of expression of all its exons. The dexseq_count python script (Anders et al., 

2012) was used by counting uniquely mapped reads in each exon. Gene expression 

normalization was done with the TMM method (Robinson and Oshlack, 2010). Further 

normalization was applied by adjusting the expression to gene length. 

Differential gene expression between normoglycaemic (n=51) and T2D donors (n=8) 

was assessed with the edgeR Bioconductor package (Robinson et al., 2009), and significance 

was defined as FDR < 1% (Table S14). Further, Pearson’s correlation and linear regression 

analyses were run using the R statistical computing environment for mRNA of the nine 

homeobox TFs, i.e. BARX1, BARX2, EMX2, MSX2, NKX6-3, PDX1, PITX1, PRRX2 and RAX, 

separately for the normoglycaemic group encompassing 51 donors (Table S14) and a group at 

high risk of T2D (HbA1C > 6) encompassing 26 donors (Table S15) against 18,567 genes 

with available gene expression data. The linear regression analysis was performed adjusting 

for sex, age and BMI. The obtained p-values of correlation/regression were FDR-corrected 

and a 5% significance threshold was used to select significantly co-expressed genes. 

Interestingly, expression levels for RAX from the group with HbA1c < 6 was found to be 

equal to 0 for all individuals, therefore no genes were co-expressed with RAX for HbA1c < 6. 

Similarly, after FDR-correction BARX1 did not have any significantly co-expressed genes for 

HbA1c < 6. 

Using the lists of significantly co-expressed genes (FDR 5%) for each of the nine TFs, 

pathway analysis was performed by WEBGESTALT (Wang et al., 2013b) with KEGG 

(Kanehisa et al., 2011) and Disease Association Analysis databases. The pathway enrichment 

analysis was based on the hypergeometric test, and an FDR threshold of 5% was used for 

selecting pathways significantly associated with the lists of significantly co-expressed genes 

for each TF. No pathway analysis was possible for RAX and BARX1. EMX2 had only six 
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significantly co-expressed genes which could not be unified to any pathway. In summary, six 

out of the nine TFs had pathway analysis information for the donors with HbA1c < 6. 

 

5.4.14  eQTL analysis 

Written informed consent was obtained from all patients who donated biological samples. The 

study was approved by the local ethics committee of Lund University, Sweden. Total PPARG 

mRNA expression levels of carriers and non-carriers of the protective allele of the rs7638903 

variant (perfect LD (r2 = 1.0) to the tagSNP Pro12Ala and the rs4684847 cis-regulatory 

variant; 1000G Pilot 1 (1000 Genomes Project Consortium, 2010)) were compared using 

Wilcoxon signed rank test. RNA was extracted from subcutaneous adipose tissue biopsies 

from 31 males from Malmö, Sweden, recruited for an exercise intervention (Elgzyri et al., 

2012). Only baseline (before exercise) examination data have been used here. Microarray 

analysis was performed using the GeneChip® Human Gene 1.0 ST whole transcript based 

array (Affymetrix, Santa Clara, CA, USA) following the Affymetrix standard protocol. Basic 

Affymetrix chip and experimental quality analyses were performed using the Expression 

Console Software, and the robust multi-array average (RMA) method was used for 

background correction, data normalization and probe summarization. Genotyping was 

performed using the Illumina Omni express following the Illumina standard protocol. 

 

5.4.15 Isolation, culture, differentiation and genotyping of primary 

human adipose stromal cells (hASC)  

Written informed consent was obtained from all patients who donated biological samples. The 

studies were approved by the local ethics committee of the Faculty of Medicine of the 

Technical University of Munich, Germany or the Regional Committee for Medical Research 

Ethics (REK) of Haukeland University Hospital, Bergen, Norway. Primary human adipocyte 
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progenitor cells for allele-specific primer extension analysis were obtained by lipoaspiration 

or surgical excision of subcutaneous adipose tissue, and were isolated and cultured as 

previously described (Hauner et al., 2001) with some modification. Briefly, after expansion 

and freezing, the cells were cultured in 6-well plates DMEM/F12 (1:1) medium 

(supplemented with 10% FCS and 1% penicillin/streptomycin) for 18 h, followed by 

expansion in DMEM/F12 medium (supplemented with 2.5% FCS, 1% 

penicillin/streptomycin, 17µM biotin, 33µM pantothenic acid), 132nM insulin (Sigma, 

Germany), 10ng/ml EGF (R&D, Germany), and 1ng/ml FGF (R&D, Germany)) until 

confluence. Adipogenic differentiation was then induced by additionally adding  50µL insulin 

(10mg/ml), 100µL cortisol (0.1mM), 1ml transferrin (1mg/ml), 50µL T3 (1nM/L), 50µL 

rosiglitazone (2mM), 100µL dexamethasone (25µM) and  1.25ml IBMX (20mM). The cells 

were harvested in TRIzol reagent (Invitrogen, Germany) (qPCR) or buffer RLT (Qiagen, 

Germany) (microarrays). 

 

Genotyping 

Primary hASCs and adipose tissue samples were genotyped for rs1801282 and rs4684847 

with a concordance rate of > 99.5% using the MassARRAY system with iPLEX™ chemistry 

(Sequenom, USA), as previously described (Holzapfel et al., 2008). Genotypes in primary 

hASC were additionally confirmed by Sanger sequencing. For rs1801282 the following 

primers were used: F, 5’-GATGTCTTGACTCATGGGTG-3’ and R, 5’-

CTGGAGTGTACACATGATAGT-3’ (PCR primers) and 5’-

GACTCATGGGTGTATTCACA-3’ (sequencing primer). For rs4684847 the following 

primers were used: F, 5’-CCTGAAGCGTATTTATGTAGCTCC-3’ and R, 5’-

CATTCAAGCCTTGTCACATCTCTG-3’ (PCR primers) and 5’-

CCTGAAGCGTATTTATGTAGCTCC-3’ (sequencing primer). The PCR reaction was 



�

220 
�
�

performed with around 50ng of input genomic DNA in a Professional Thermocycler 

(Biometra, Jena, Germany) as follows: 12 min at 95°C, 50 cycles of 20 sec at 95°C, 40 sec at 

56°C and 90 sec at 72°C, and finally 2 min at 72°C before cooling. 

 

5.4.16  Gene knock-down by siRNA  

SGBS cells grown to confluence in 6-well plates (day 0) were treated to induce adipocyte 

differentiation (see chapter 10) and simultaneously transfected using the same protocol and 

siRNA as for primary hASCs (see below). 72 hours after induction of differentiation, the cells 

were harvested in TRIzol reagent (Invitrogen, Germany) and frozen at -80ºC. Primary hASCs 

were grown as described above (chapter 19), and on the same day of inducing adipogenic 

differentiation, cells were transfected with 25nM non-targeting siRNA (siNT) control or 

25nM siRNA targeting PRRX1 (ON-TARGETplus human siRNA SMARTpool, Dharmacon, 

USA) for 72 hours, using HiPerFect (Qiagen, Germany) according to the manufacturer’s 

protocol. Knock-down efficiency was 70-80%. The rat insulinoma cell line INS-1 was 

cultured as described above. Cells were treated with 25nM non-targeting (NT) control or 

siRNA targeting the homeodomain transcription factors Barx1, Barx2, Msx2, Emx, Nkx6-3, 

Pitx1, Rax2, Prrx2 or Pdx1 (ON-TARGETplus human siRNA SMARTpool (Dharmacon, 

USA)) using HiPerFect (Qiagen, Germany) according to the manufacturer’s protocol. After 

72 hours, the medium was changed to low glucose concentration (5 mM) for 24 h. On the next 

day the medium was changed to low glucose (5mM) or high glucose medium (25mM) for 1 

hour to induce glucose-stimulated insulin-secretion. The medium supernatant was collected an 

insulin-concentrations were measured using a commercially available insulin-ELISA 

(Mercodia, Sweden). The cells were harvested in buffer RLT (Qiagen, Germany) and frozen 

at -80ºC for extraction of RNA and determination of knockdown efficiency. 
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5.4.17 Quantitative RT-PCR and allele-specific primer extension 

analysis 

RNA from SGBS cells, adipose tissue biopsies and primary hASCs was isolated by TRIzol 

reagent (Invitrogen, Germany) followed by the NucleoSpin Kit (Macherey-Nagel, Germany). 

The high capacity cDNA Reverse Transcription kit (Applied Biosystems, Germany) was used 

for transcription of 1µg total RNA into cDNA. qPCR analysis of PRRX1, the human PPARG1 

and PPARG2 isoform transcripts (NCBI Accession: NM_138712, NM_015869), and other 

genes (Table 1, primers are shown in table below) was performed using a qPCR SYBR-Green 

ROX Mix (ABgene, Germany) and using the Mastercycler Realplex system (Eppendorf, 

Germany) with an initial activation of 15 min at 95°C followed by 40 cycles of 15 sec at 

95°C, 30sec at 60°C and 30 sec at 72°C. Amplification of specific transcripts was confirmed 

by melting curve profiles (cooling the sample to 68°C and heating slowly to 95°C with 

measurement of fluorescence) at the end of each PCR. Mean target mRNA level was 

calculated by the ǻǻCT method relative to the level of hypoxanthin 

phosphoribosyltransferase (HPRT) (human) or Gapdh (rat) based on technical duplicates. 

For allele-specific primer extension analysis of the human PPARG2 isoform transcript 

in primary hASCs (heterozygous for rs1801282 and rs4684847) mRNA was reverse 

transcribed into cDNA using random hexamers. Next, the region surrounding the SNP 

rs1801282 was amplified using the cDNA forward and reverse primers. Genomic DNA 

regions surrounding the SNP rs1801282 was amplified using the genomic DNA primers. 

Annealing temperatures for genomic DNA PCR and RT-PCR were 59°C and 60°C 

respectively. PCR products were analyzed on an agarose gel and purified by gel extraction 

using the Wizard VS Gel and PCR Clean-Up System (Promega, Germany). Molarity of 

purified amplicons were calculated and primer extension assays were performed with 

Snapshot forward (51°C annealing temperature) and Snapshot reverse (54°C annealing 
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temperature) primers using the ABI Prism SNaPshot Kit. cDNA synthesis and primer 

extension assays were performed with kits from Applied Biosystems (Germany). For 

amplification of genomic DNA the GoTaq DNA Polymerase Kit (Promega, Germany) was 

used. The reaction products were analyzed by gel capillary electrophoresis on ABI 3100 DNA 

Analyzer and the electropherograms were analyzed with the Gene Mapper 4.0 software. The 

peak area values from RNA (or cDNA) primer extension products were normalized to the 

corresponding peak area values from genomic DNA primer extensions products in each 

experiment for both, the risk allele and the non-risk allele. To normalize for the mean 

expression level from the risk allele, the (RNA/genomic DNA) ratios for both, risk and non-

risk allele, were divided by the mean of all risk-allele ratios (Figure 4D). To assess allelic 

imbalance of PPARG2 mRNA expression during adipogenic differentiation the ratio of RNA 

levels (normalized to genomic DNA levels) from non-risk to risk allele were calculated 

(Figure S7C). Isoform specific primers for PPARG mRNA (MWG, Germany) were designed 

using the NCBI Primer Blast software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and 

optimized for secondary structures using the Net Primer analysis software 

(http://www.premierbiosoft.com/netprimer/). 

 

Primers and probes used for qPCR 

Gene Forward primer Reverse primer  

Human    

PCK1/PEPCKC GCTCTGAGGAGGAGAATGG TGCTCTTGGGTGACGATAAC  

PDK4 TGCCAATTTCTCGTCTGTATG AAAAACAGATGGAAAACTGAGG  

LIPE AGAAGATGTCGGAGCCCATA GGTCAGGTTCTTGAGGGAATC  

BBOX1 TTTCCAAGCAGGCCAGAG CTGAACCCCAGGTGGATG  

ADIPOQ CATGACCAGGAAACCACGACT TGAATGCTGAGCGGTAT  

OPG TTATGAGCATCTGGGACGGTGCTGT AAGGAAGGTACAGTTGGTCCAGGGT  

GLUT4 CTGTGCCATCCTGATGACTG CCAGGGCCAATCTCAAAA  

TIMP3 CTGACAGGTCGCGTCTATGA AGTCACAAAGCAAGGCAGGT  

THRSP CGAGAAAGCCCAGGAGGTGA AGCATCCCGGAGAACTGAGC  
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PPARG1 CGTGGCCGCAGATTTGA AGTGGGAGTGGTCTTCCATTAC  

PPARG2 GAAAGCGATTCCTTCACTGAT TCAAAGGAGTGGGAGTGGTC  

PRRX1 GTGGAGCAGCCCATCGTA TGGGAGGGACGAGGATCT  

HPRT TGAAAAGGACCCCACGAAG AAGCAGATGGCCACAGAACTAG  

    

Rat   Knockdown 
efficiency* 

Pdx1 TCCCGAATGGAACCGAGA GTCAAGTTGAGCATCACTGCC 39 % 

Barx2 AGTACCTCTCTACCCCAGACAG CGTCTTCACCTGTAACTGGCT 12% 

Pitx1 ACTCAGCCAGCGAGTCATCC TTCTTCTTGGCTGGGTCTTCC 41% 

Rax2 AGCGGGACCTTCAGTTTGG CTTGGTCTTCGTGCCGTACTC 65% 

Msx2 AAGGCAAAAAGACTGCAGGA GGATGGGAAGCACAGGTCTA 24% 

Emx2 GTCCCAGCTTTTAAGGCTAGA CTTTTGCCTTTTGAATTTCGTTC 42% 

Nkx6-3 ATGCAGCAACACCCCAGA CCAGTGAATAAGCCAGCCTC 54% 

Prrx2 ACTTCTCGGTGAGCCACCT GCTGCTTCTTCTTCCGTTTG 38% 

Barx1 CCTAGCCGTGGTCGCAT GCCAGTGGGAACTTGAACA 52% 

Gapdh TGGGAAGCTGGTCATCAAC GCATCACCCCATTTGATGTT - 

*Knockdown efficiency in rat INS-1 cells: Efficiency of siRNA knockdown in INS-1 cells determined by qPCR 
is shown as the ratio of (mRNA level in siNT transfected cells)/(mRNA level in siTF transfected cells) with 
mRNA level=mRNA levels of the indicated Genes (normalized to Gapdh expression levels); siNT=non-targeting 
control siRNA. 
 

Allele-specific primer extension analysis PPARG2 mRNA 

 Forward primer Reverse primer 
genomic DNA TCCATGCTGTTATGGGTGAA GGAGCCATGCACAGAGATAA 

cDNA TCCATGCTGTTATGGGTGAA GATGCAGGCTCCCATTTGAT 

Snapshot CTCTGGGAGATTCTCCTATTGAC TATCAGTGAAGGAATCGCTTTCTG 

 

 

5.4.18  Genome-wide expression analysis in primary human hASC 

Subcutaneous stromal vascular cells were obtained from liposuction aspirate of ten healthy 

rs4684847 risk-allele carriers, with written informed consent from each subject. The study 

was approved by the Regional Committee for Medical Research Ethics (REK) of Haukeland 

University Hospital, Bergen, Norway. Tissue was digested for 2 hours at 37ºC using a 1:1 

ratio of tissue and KRP buffer containing ~55 Wunch/liter collagenase with thermolysin 

(Liberase Blendzyme TM 10X, Roche) and 0.1% BSA. The digested tissue was filtered 
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through a 210µm nylon mesh into a cup, adipocytes were allowed to float, and the other cells 

in solution underneath were collected and centrifuged at 200g for 10 min. The floating 

fraction was washed two times with 15ml PBS to release more cells. Red blood cells were 

lysed using a buffer with 155mM ammonium chloride, 5.7mM dipotassium phosphate and 

0.1mM EDTA, followed by filtration through a 70µm nylon mesh cell strainer (BD Falcon). 

Cells were seeded in 12-well plates in DMEM GlutaMax (Gibco) supplemented with 

10% FCS and 1% penicillin/streptomycin, and induced to differentiate the day after plating 

(“day 0”) by adding cortisol (100nM/L), insulin (66nM/L), transferrin (10µg/ml), biotin 

(33µM), pantothenate (17µM/L), T3 (1nM/L) and rosiglitazone (10µM). On the same or 

following day (day 0 or 1), new differentiation medium was added and cells were transfected 

25nM siPRRX1 and 10nM non-targeting siRNA or 25nM siPRRX1 and 10nM siPPARG 

(ON-TARGETplus human siRNA SMARTpool, Dharmacon) using HiPerFect (Qiagen). 

After 72 hours, the cells were harvested in buffer RLT (Qiagen, Germany) and frozen at -

80ºC. 

RNA was extracted from siRNA-transfected lysates using the RNeasy Lipid Tissue 

Mini Kit (Qiagen, Germany), and total RNA quality was controlled by the Agilent 2100 

Bioanalyzer (RIN > 9). 240ng of total RNA from each sample was biotin-labelled using the 

Illumina TotalPrep RNA Amplification Kit. 750ng cRNA amplified from each sample with 

T7 RNA Polymerase was then hybridised at 58˚C for 17 hours, according to the Whole–

Genome Gene Expression Direct Hybridization Assay Guide from Illumina. Global gene 

expression was measured with Illumina Bead Array Technology (HumanHT-12 v4 

Expression Bead Chip, including 47,323 probes covering more than 28,000 annotated coding 

transcripts). The raw data are available in the MIAME compliant public repository 

ArrayExpress (accession number: E-MTAB-1906). 
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Data were quantile normalized and log2-transformed, and differential expression was 

determined by paired Significance Analysis of Microarray (SAM) using the J-Express 

software (Dysvik and Jonassen, 2001). One of the non-targeting control samples was 

excluded because there were no expression signals from this sample, leaving a total of 9 

sample pairs transfected with PRRX1 siRNA, four of which were co-transfected with PPARG 

siRNA. A total of 2,258 transcripts were defined as differentially regulated by PRRX1 knock-

down (q-value < 0.2), thereof 1,072 up-regulated transcripts. We selected a matching number 

of transcripts regulated by simultaneous PPARG knock-down (q<0.428), of which 1,125 were 

up-regulated, and identified 364 PRRX1-regulated transcripts that were also regulated by 

PPARȖ2, 336 for which siPPARG reversed the effect of siPRRX1 (anti-regulation). Because 

the PPARG siRNA targeted total PPARG mRNA, we assume that these anti-regulated 

transcripts were regulated via PPARȖ2 and not PPARȖ1, since PRRX1 specifically regulates 

PPARG2 mRNA expression (verified by qPCR, data not shown; see also Table 1 and Figure 

S4G). 

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was performed for 

the 336 transcripts regulated by siPRRX1 and reversed by siPPARG, to evaluate to what 

extent the effect of PRRX1 on global gene expression was mediated via PPARȖ2. Ranking all 

2,258 PRRX1-regulated transcripts by fold change, an accumulated score for the 336 anti-

regulated genes was calculated by starting at the top of the FC-ranked list, giving a positive 

value 1 for each transcript in the 336 list, while a negative value 1 was subtracted for each 

transcript not in the list. All genes at the top of the list within a positive accumulated score 

comprise the “leading edge”, which was used to obtain the enrichment p-value relative to the 

full set of 2,258 transcripts. Finally, for the 336 genes that were inversely regulated by 

PRRX1 and PPARȖ2, Ingenuity Pathway Analysis (IPA, www.ingenuity.com) (Qiagen, 

Germany) was performed to describe the best scoring molecular and cellular functional 
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categories and molecular networks. Standard settings for IPA were used. The top-scoring 

network (Figure 5E) is displayed with color overlay for each gene corresponding to the sum 

of fold change after PRRX1 knock-down and PRRX1+PPARG knock-down (darker red color 

indicates up-regulation by PRRX1 knock-down/down-regulation by PRRX1/PPARG knock-

down, and green vice versa). 

 

5.4.19  Assessment of lipid accumulation after PRRX1 overexpression 

To assess an inhibitory effect of PRRX1 on lipid accumulation in adipose cells, we stably 

overexpressed PRRX1 using lentiviral transduction in SGBS cells. The Prrx1 isoform lacking 

the OAR-domain was previously described to be responsible for an inhibitory function of 

Prrx1 protein (Norris et al., 2001) and designated as mouse Prrx1b. We synthesized (Eurofins, 

Germany) the human PRRX1 open reading frame lacking the OAR-domain (NCBI 

NM_006902.3, designated as PRRX1a) with an additional flag-tag sequence (5’-

GACTACAAGGACGACGACGATAAG-3’) inserted immediately after the PRRX1 start 

codon. This DNA followed by an internal ribosomal entry site and a reading frame for the 

fluorescent protein VENUS targeted to the nuclear membrane (Okita et al., 2004) was cloned 

into the lentiviral expression backbone pRRL.PPT.SFFV.EGFP.pre (Schambach et al., 2006) 

to replace its EGFP reading frame. VSV-G pseudotyped lenti virus was produced by transient 

cotransfection of this plasmid with 3 plasmids containing reading frames for viral genes Rev, 

gag, pol and the VSV-G protein into 293HEK cells (Schambach, 2006). Virus supernatant 

was enriched by centrifugation and SGBS cells were infected at an MOI of 10. Cells were 

differentiated into mature adipocytes as described above (section 9). 14 days after induction 

of differentiation, medium was removed, cells were washed twice with PBS, followed by 

fixing in 3.7% formaldehyde for 60 min. The fixation solution was removed and replaced by 

Oil-Red-O stain solution (0.3% Oil-Red-O in 60/40 isopropanol/H2O, filtered through a 
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0.2µm mesh) for 60 min, before carefully washing twice with PBS, adding 1ml PBS, and 

photography under a Nikon TE2000 microscope. 

 

5.4.20 Glyceroneogenesis and 2-deoxyglucose uptake measurements in 

primary hASC 

For metabolic studies, genotyped primary hASCs from BMI-matched subjects were induced 

to differentiate and treated with NT control or PRRX1 siRNA as described above (chapter 21) 

and treated or not with 10 µM rosiglitazone. After 72 hours, cells were fasted for 3 hours in 

serum-free, glucose-free DMEM containing 0.3% (w/v) fatty acid-free BSA. Then, cells were 

transferred in a Krebs Ringer Bicarbonate buffer containing 0.3% BSA, 5 mM pyruvate and 

20 µM [1-14C]-pyruvate (0.5 µCi) as precursor of glycerol-3-phosphate. 2 hours later, cells 

were rinsed in PBS and scraped in 10 mmol/l Tris-Cl, pH 7.4, containing 0.25 mol/l sucrose, 

0.1 mmol/l EDTA, 0.1 mmol/l dithiothreitol, and 0.1% Triton and frozen in liquid nitrogen 

before lipid extraction according the simplified method of Bligh and Dyer (Bligh and Dyer, 

1959). The subsequent [1-14C]-pyruvate incorporation was estimated by counting the 

radioactivity associated with the lipid fraction. The incubation medium (2 hours) was stored at 

í20 C for further NEFA (Free Fatty Acids Half Micro Test, Roche Diagnostics) 

determinations.  

Insulin-stimulated 2-deoxyglucose (2DG) uptake studies were established in the lab 

during my Diploma thesis and were performed as previously described (Claussnitzer et al., 

2011). Briefly, hASCs were induced to differentiate for three days, transfected with or 

without siRNA for 72 hours, and transferred to glucose-free Krebs-Ringer-Hepes buffer 

containing 2.5 mM pyruvate, and 0.5% BSA 2.5 hours prior to the experiment. Cells were 

stimulated or not with 1µM insulin for 30 sec. Basal and insulin-stimulated 2-DG uptake was 

initiated by the addition of KRH buffer containing 0.5% BSA, 2.5 mM pyruvate, 50 µM 2-
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DG and [3H]-2-DG [2 µCi/ml]. Uptake was terminated by addition of ice-cold KRH 

containing 150 µM phloretin and 15 µM cytochalasin B. Cells were lysed in 0.1 M NaOH and 

radioactivity was measured using liquid scintillation counting. Quenching of radioactivity was 

considered applying an external standard. 2-DG transport values were corrected for protein 

content determined by the bicinchoninic acid method (BCA Protein Assay Reagent, PIERCE, 

Rockford, USA). 

 

5.4.21  Statistical analysis 

A P<0.05 was considered statistically significant. p-values in luciferase assays were 

calculated by unpaired t-test. In experiments assessing allelic imbalance of PPARG2 mRNA 

expression during adipogenesis, p-values were calculated using Kruskal-Wallis Oneway 

ANOVA followed by Dunn’s Multiple Comparison post-test. For qPCR analysis of siRNA 

experiments, p-values were calculated using the Wilcoxon rank-sum test (INS-1 cells, n = 9) 

or paired t-test (hASC, n = 16/32). Unpaired t-test was used for qPCR experiments assessing 

genotype-dependent effects on mRNA expression (hASC, n = 16/32), and Mann Whitney U 

test was used for allele-specific primer extension analysis. Correlations of PRRX1 mRNA 

with PPARG2 mRNA, pyruvate incorporation, free fatty acid release and ratio insulin-

stimulated/basal 2-deoxyglucose uptake were calculated by Pearson’s correlation. For 

correlation analysis of adipose tissue PRRX1 mRNA expression with FFA levels and GIR 

(glucose infusion rate) in the BMI-matched study sample (n=67), we performed linear 

regression with log transformed values. For correlations with HOMA-IR, BMI and TG/HDL 

ratio levels (homozygous n=20, heterozygous n=18) we performed linear regression with log-

transformed residuals (adjusted for age, sex and BMI). In addition, based on these residuals an 

interaction model was used to calculate the interaction p-value for PRRX1 mRNA, rs4684847 

genotype and HOMA-IR (adjusted for age, sex and BMI, n=38): adjusted phenotype (1) ~ 
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adjusted mRNA (2) + SNP + adjusted mRNA * SNP. Statistical analyses were done using the 

Graph Pad Prism software version 5.02 or the Statistical Software R, version 2.14.2. 
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