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Abstract

With the increase of the power density of hydraulic turbines and the extension
of their operating range over the last decades, the fluid and mechanical dynamic
effects in the machine became significantly more pronounced. Under severe
operating conditions, the fluid flow pressure oscillations and the consequent dynamic
mechanical stresses may lead to the fatigue failure of the turbine runner, with the
occurrence of cracks. This has to be avoided in the early design phases, through
the correct and accurate prediction of the transient fluid flow, dynamic structural
motion, mechanical stresses and fatigue assessment.

The current dynamic simulation methods, for the Francis runners structure, are
very limited and do not offer the required accuracy for safe and competitive design.
They rely basically on extrapolated test data, numerous theoretical assumptions,
simplifications and experience. The numerical simulation method proposed here
intends to supply an accurate tool to predict the transient flow phenomena and the
dynamic mechanical stresses for the fatigue analysis.

The main part of the process concentrates on the computational fluid dynamics
(CFD) simulation of the transient fluid flow through the entire turbine. The
numerical model reproduces the complete turbine geometry and counts with
sophisticated hybrid turbulence models, as detached eddy simulation (DES) and
scale adaptive simulation (SAS). The turbulence modelling showed up to be decisive
for the proper turbine flow simulation. The transient pressure field history, provided
by the CFD analysis, constitutes the input for the runner mechanical stress
calculation. The structural simulation is carried out with the finite element method
(FEM), making use of the direct time integration method for the transient solution of
the runner structural motion for all time steps. The calculated dynamic mechanical
stresses in the runner are used for the subsequent fatigue life prediction.

As an example of application of the method, a Francis turbine, with high specific
speed and whose prototype is currently in operation, was simulated. Several
operating points were chosen for the calculations, including full load, higher part
load (HPL), part load and deep part load. These points were representative for
different types of dynamic phenomena taking place during the machine operation,
as rotor-stator interaction (RSI), draft tube instabilities (DTI), with the presence
of rotating vortex rope, and runner channel vortices (RCV).
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XXIV ABSTRACT

The numerical results of the transient fluid flow simulation were compared to
experimental results from model tests and achieved very tight agreement, showing
the high accuracy and advantages of the proposed method. The accurate numerical
simulation of the transient fluid flow through the hydraulic machine and the
computational calculation of the runner structural response, as well as the fatigue
assessment, offered the possibility to gain new knowledge about the dynamic
behaviour of Francis turbines.









Chapter 1

Introduction

For more than 150 years, waterpower has been significantly contributing to energy
generation. In the last decades, thanks to advanced engineering development and
due to the pressure for cost reduction, brought by the strong market competition,
the hydraulic turbines have experienced the astonishing increase of their power
density. The maximum power of individual generating units has increased and their
rotational speed has become faster, while their structure has got more slender and
lighter in comparison with the past. Table 1.1 illustrates this evolution. The current
demand for energy and grid regulation services also take the energy producers to
enlarge the machine operating range, pushing the turbine into operating conditions,
which were not experienced in past years.

With the extended operating range and with the increasing power density, several
dynamic phenomena, which were not clearly noticeable in the past, because of the
robust structure construction, became decisive for the smooth and safe operation
of modern hydraulic power plants. Among the many transient phenomena, which
take place in the generating unit, the pressure oscillations in the fluid flow through
the turbine and its impact on the mechanical structure are of main importance, for
assuring the machine reliable operation.

In normal operation, the pressure pulsations in Francis turbines arise typically from
the rotor-stator interaction (RSI) and from the draft tube instabilities (DTI). The
vortex shedding effect (VSE) at the trailing edge of the runner blades can, in some
cases, cause local pressure fluctuations. At extreme operating conditions, which are
though typically avoided, vortices in the runner channels (RCV) and leading edge
separation (LEC) can take place as well.

The oscillating pressure field over the runner blades leads to dynamic loads on
the runner structure, which produce dynamic mechanical stresses. The dynamic
structural stresses add up to the static stresses, caused by the mean pressure field,
and, in severe cases, material fatigue can initiate and propagate structural cracks,
damaging the runner seriously. Such cases have been extensively reported, as for
example by FISHER ET AL. [44], COUTU ET AL. [28|, BREKKE [21] and BHAVE,
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Table 1.1: Power evolution of hydraulic generating units, adapted from ULITH [157]
and HENRY [64].

Power Plant Country Year  Units Rated Maximum
Power Power
(MW /Unit) (MW /Unit)
Bai He Tan China 2020 16 1015 1015
Wu Dong De China 2019 12 862 1015
Xi Luo Du China 2012 18 784 784
Long Tan China 2007 9 714 790
Three Gorges China 2003 26 710 852
Xing6 Brazil 1994 6 527 535
Guri 11 Venezuela 1986 10 610 767
Itaipu Brazil 1984 20 740 740
Sayano-Shushenskaya Russia 1978 10 650 735
Grand Coulee 111 USA 1975 3 716 827
Cabora Bassa Mozambique 1975 5) 415 432
Mica Canada 1973 4 435 443
Dworshak USA 1973 3 294 294
Krasnoyarsk Russia 1972 5 508 208
Gokcekaya Turkey 1972 3 103 103
Churchill Falls Canada 1971 11 480 494
Estreito Brazil 1969 6 175 184
Paulo Afonso I1 Brazil 1961 3 93 93
Noxon Rapids USA 1960 4 108 108
Niagara Falls II Canada 1954 16 76 76

MURTHY AND GOYAL [15]. Figure 1.1 shows examples of cracks at the runner blade
trailing edge, near to the crown and band.

Even minor damages to the runner structure need to be immediately repaired,
implying in unexpected outage periods of the machine. For the turbine owner,
it means energy generation reduction and financial losses, while the turbine
manufacturer can be charged with contractual penalties and must assume the repair
costs, besides the consequent weakened market position. Also from the engineering
point of view and with view to the turbine development improvement, fatigue failures
in Francis runners shall be completely eliminated. Safe design shall also offer
the possibility to operate the machine in diverse operating conditions, eventually
extending the turbine operating range.

The objective of this study is to provide the understanding and the method to
numerically predict the pressure oscillations, in the early stages of the turbine design,
with computational fluid dynamics (CFD), to calculate the stresses with the finite
element method (FEM) and to estimate the runner fatigue life, in order to prevent
mechanical failures.



Figure 1.1: Typical fatigue cracks at the runner blade trailing edge, near to the
crown (left) and near to the band (right).

The numerical simulation of the dynamic fluid flow through the hydraulic turbine
involves sophisticated transient calculations and requires refined turbulence models.
It constitutes an important part of this study. The application of the transient fluid
simulation results as input for the structural calculation receives great attention as
well.

Design Process

The fatigue calculation, for the estimation of the runner life before the initiation
of cracks, requires as input the static and dynamic mechanical stresses actuating
on it. The procedure for obtaining the mean stresses is well established and
they can be numerically derived, as shown by numerous references, as done by
WICKSTROM [165]. The mean pressure field on the turbine runner can be accurately
evaluated, with respect to the subsequent structural analysis, by means of stationary
CFD simulations, as done since years as by e.g. KECK, DRTINA AND SICK [71]
and RUPRECHT AND MAIHOFER [132]. The static finite element analysis (FEA)
also relies on precise numerical models and delivers accurate results for the static
mechanical stresses, as seen in MAGNOLI, GALVANI AND PoOLL [89].

On the other hand, still today, for the determination of the dynamic stresses on
Francis runners, no method has made its way to standard, accurate and reliable
procedure. The dynamic phenomena in the fluid low through the complete machine,
e.g. DTI, are highly instationary and their accurate numerical simulation with CFD
poses several difficulties, which will be discussed in detail further on. The numerical
prediction of the dynamic pressure is beyond the current standard procedures. The
solution of this problem makes part of this study.

With no numerical data available for the pressure fluctuations on the runner,
experiments could, in theory, offer the solution to the problem. However, dynamic
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Figure 1.2: Typical experimental arrangement for measuring the pressure oscillations
in Francis model runners. Pressure transducers at the blade (left) and acquisition
equipment on the crown (centre, right). Reproduced from AVELLAN ET AL. [12].

pressure measurements in Francis model runners are seldom conducted. At present,
it constitutes no regular practice for ordinary model tests and it has mainly been
performed, e.g. by KUNTZ ET AL. [77] and NENNEMANN, VU AND FARHAT [109]
in specific research projects. The complicated experimental arrangement, as
exemplified by AVELLAN ET AL. [12] and reproduced in Figure 1.2, with pressure
transducers at the blades and the data acquisition unit mounted on the crown,
makes such tests extremely expensive and long. In addition, in this kind of test, the
number of pressure probes at the blades is also considerably limited. Attempts to
directly measure the stresses on the model machine are very disputable, since the
mechanical construction of the model and prototype runners are very different and,
therefore, also their dynamic mechanical properties.

Another experimental possibility would be to use strain-gauges to directly measure
the mechanical stresses on the prototype runner, as done by FISCHER ET AL. [44],
BJ@RNDAL, MOLTUBAKK AND AUNEMO [16] and GAGNE AND COULSON [48].
Figure 1.3 shows the strain-gauges at the runner trailing edge near to crown and
the acquisition system mounted under the runner cone. The complexity level of
this procedure is even greater than to measure the model runner. It involves
the unavailability of tested generating unit, during the measurements, for energy
production and incurs in significant costs. In addition, for the prototype being
tested, the objective to predict the fatigue life in the design stage cannot be achieved
any more. The extrapolation of the measured data for other similar machines can
be interpreted as coarse approximation, since the operating points are seldom the
same and the hydraulic and mechanical designs could be eventually different.

Being aware of the difficulties for determining the instationary mechanical stresses,
for the fatigue calculation, they are, in practice, estimated from the data from
the scarce experiments, from empirical factors and from the turbine manufacturers
experience. The estimation of the fatigue life, based on this current process, is
schematically depicted in Figure 1.4. The accuracy and scientific validity of this
method is disputable and the need for improvement is present. In the eventuality
of mechanical failures in the prototype runner, the mitigation solutions also rely on



Figure 1.3: Typical experimental arrangement for measuring the pressure oscillations
in Francis prototype runners. Strain-gauges at the blade trailing edge near to crown
(left). Acquisition system mounted under the runner cone (right). Reproduced from
FISCHER ET AL. [44].

weak theoretical background, as the installation of fins at the walls of the draft tube
cone, or on palliative solutions, as the welding of stress relief triangles (SRT) at the
blade trailing edges, near to the crown and band. Even if such solutions work, they
come anyway much too late, after the failure has already occurred in the prototype.

In order to improve the design process, it is proposed here to develop the guide lines
to numerically predict the fatigue life of Francis runners. The first step consists on
the accurate simulation of the dynamic flow phenomena in the complete turbine with
CFD and adequate turbulence models. With the time history from the numerically
calculated pressure field on the runner, the full transient FE simulations can yield
the dynamic mechanical stresses. These are used, in combination with the static
stresses, for the evaluation of the runner fatigue life. The scheme of the proposed
procedure is represented in Figure 1.5.

To systematically simulate the dynamic pressure field and to use it as input for the
structural analysis offers the advantage to predict the runner fatigue life at early
stages of the machine design, allowing avoiding fatigue cracks in the prototype.
Besides, with the appropriate numerical tools, it can provide accurate solutions for
the instationary pressure field and dynamic mechanical stresses, with low costs in
comparison to experiments.

At present, the instationary CFD and FE simulations, as proposed here, are
considerably time consuming and their integration in the development of the
hydraulic design, when numerous profile alternatives are compared, is still difficult.
However, such simulations can be carried out for the final hydraulic design,
before the prototype goes into manufacturing. In this way, fatigue failures in
the prototype should be avoided. With increasing computational capacity and
eventually moderated size of numerical models, the numerical prediction of the
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Figure 1.4: Current procedure in the turbine runner analysis.

fatigue life can possibly be performed, in the future, for the hydraulic design
alternatives.

Numerical Approach

The dynamic fluid flow through the hydraulic turbine is highly instationary in
many operating conditions and it can develop complex flow patterns and topology,
regarding the transient pressure field, velocity distribution and streamlines.

For the accurate CFD simulation of the transient flow, the numerical model has to
be able to capture the dynamic details of the fluid flow and to precisely approximate
the reality, not only qualitatively but also quantitatively, as long as the reliability
of the fatigue life prediction depends on all calculation steps, starting with the
instationary flow simulation. In the specific case of hydraulic machines, deciding
factors for the success of the dynamic fluid simulation are the reproduction of the
actual physical configuration of the turbine, with all its components, and to employ
proper turbulence models.

In the specific case of hydraulic turbines, the most important transient phenomena,
i.e. RSI, DTT and, to some extent, LEC, come from the interaction between the
different machine components. This interaction is mainly caused by the relative
motion between the rotating and stationary parts, i.e. between the runner and the
spiral case, stay vanes, guide vanes and draft tube. So the first difficulty in the
turbine CFD simulation is to properly reproduce the flow domain, including the
relative motion of the parts. For example, WUNDERER [170] adopted sophisticated
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Figure 1.5: Proposed procedure for the turbine runner analysis.

turbulence models for the flow calculation. However, his numerical simulation
counted only with the turbine runner, without, other components, thus limiting
the extensibility of his results for real machines.

The second important aspect is the utilisation of adequate turbulence models. The
current industrial standard for CFD simulations, as pointed out by SPALART [145],
is to employ the unsteady Reynolds averaged Navier-Stokes (URANS) equations,
based on k-€ or k-w turbulence models. Through the averaging process of the fluid
motion equations, URANS presents the tendency to deliver values for the turbulent
viscosity, which are considerably large. It leads to the undesirable effect, in the
numerical simulation, of excessively damping the dynamic flow phenomena, which
develop in the reality.

One alternative to solve this limitation of URANS, with moderate computational
resources, is the utilisation of hybrid turbulence models, which are the combination
of URANS and large eddy simulation (LES), like the detached eddy simulation
(DES) and scale adaptive simulation (SAS), see respectively STRELETS [149] and
MENTER AND EGOROV [100]. These hybrid methods are capable to identify regions
of the computational fluid domain, where the grid accuracy is enough to directly
simulate the eddies motion, without the introduction of additional artificial damping
through the turbulent viscosity, similar to LES. In other regions, where the grid is
not so fine, it assumes the URANS behaviour. This approach avoids the excessive
numerical damping of the transient fluid phenomena, delivering more accurate
results.

RUPRECHT ET AL. [130] were some of the first to identify this problem with the
turbulence modelling in the transient simulation of hydraulic turbines and to try
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to solve it. They realised the influence of the excessive numerical damping on the
simulation of DTI effects in Francis turbines and proposed the very large eddy
simulation (VLES). It also consisted in trying to preserve the dynamic characteristics
of the flow through the reduction of the turbulent viscosity. They achieved
acceptable results in the simulation of DTI. More recently, BENIGNI [14] employed
the SAS to calculate the DTT effects in bulb turbines.

The RSI effects have been simulated more often than DTI, as shown by KECK ET
AL. [72] for example. Since the RSI is mainly induced by the kinematic interaction
between runner and spiral case, stay vanes and guide vanes, the influence of the
turbulence modelling is moderate, but still present. Numerical research on the
VSE in Francis runners is still very limited, being restricted to extrapolations
of very simplified geometry simulations, as done by ANTONSEN [7], AUSONI [10]
and RUPRECHT ET AL. [131]. RCV and LEC have seldom been investigated with
transient calculations.

The fluid simulations conducted here concentrate on the utilisation of DES and SAS
for the numerical evaluation of the different transient effects in the Francis turbine.
As reference for the numerical results accuracy, experimental results are used. The
simulated transient results obtained for selected operating points are presented and
discussed. They are also used as input for the transient structural simulation, needed
for the fatigue assessment.

Text Organisation

The text is divided into the fluid and turbulence theory, the finite volume method
(FVM) for CFD, structure and fatigue theory, the finite element method (FEM) for
structural analysis and, finally, the principal part of it is dedicated to the application
of these theories and methods for the flow and structural simulation and fatigue life
prediction of real Francis turbines.

Chapter 2 presents the fundamentals of fluid mechanics, needed for understanding
the flow through the turbine and the numerical simulation method. It also describes
the turbulence modelling for CFD in detail, as long as the turbulence models are of
great importance for the accurate simulation of the transient flow phenomena in the
turbine. The traditional methods for instationary calculating the turbulence effect,
i.e. URANS and LES, as well as hybrid turbulence models, DES and SAS, receive
great attention.

Chapter 3 describes the FVM. This method constitutes the current industry
standard for numerical fluid simulations. Its theory fundamentals, as well as the
mathematical development, are explained. The discretisation techniques for the
physical domain, for the fluid motion equation, application of boundary conditions
and their numerical implementation are covered in the chapter.



In Chapter 4 the basics of structure theory are addressed. It concentrates on
dynamic motion and on the aspects needed for the development of the FEM.
Concepts of elasticity are also discussed, in view to the mechanical stresses. The
chapter ends up by presenting the fatigue calculation method employed in the study.
The aspects of the FEM, with the discretisation process of the physical space and
of the motion equations and with the formulation of finite elements and boundary
conditions, are described in Chapter 5.

Fundamentals of hydraulic turbines, concerning definitions, conventions, geometric
characteristics and energy conversion mechanism can be found in the first part of
Chapter 6. The second part of this chapter explains concepts of hydraulic turbines
dynamics and contains an overview of the transient effects.

Chapter 7 brings the instationary flow simulation and its results for real Francis
turbines. The model machine taken as example for the application of the proposed
calculation method is presented, together with its main technical data and the chosen
operating conditions for the simulation. The numerical model and calculation steps
are described in detail. Numerical results, for which measuring data is available, are
compared with the experimental results, for validating and checking the accuracy of
the proposed procedure. In the second part of the chapter, the results for operating
conditions with RSI and for the ones with DTT are presented and discussed.

In Chapter 8 the dynamic pressure field in the turbine, obtained from the
instationary flow simulation, is applied to the runner structure for the FE simulation.
The dynamic mechanical stresses are evaluated for the different operating conditions
and employed for the fatigue life prediction of the turbine runner.

Those interested only in the turbine calculation results can proceed directly to
Chapters 7 and 8, where the turbine simulation can be found. If the fluid and
turbulence modelling theory and CFD techniques are the main point, Chapters 2
and 3 should be read. On the other hand, if the structure and fatigue theory and the
FEM are of interest, Chapters 4 and 5 should be considered. If the reader is familiar
with the theory, Chapters 2 and 4 can be left aside. Though, the theory behind the
hybrid turbulence models, at the end of Chapter 2 could be worth reading. If the
numerical calculation techniques are already well dominated, Chapters 3 and 5 are
not imperative.






Chapter 2

Fluid Dynamics Theory

2.1 Basic Equations

The analysis of fluid flow problems, e.g. the instationary flow through hydraulic
turbines, has its fundamentals on the study and solution of the basic equations for
the fluid motion.

For incompressible flows, the fluid motion is fully characterised by the flow velocity
components, ¢;, and the pressure value, p, at every spatial coordinate, z;, of the
control volume and at every time instant, ¢t. In compressible flows of perfect gases,
the density, p, and one more thermodynamic variable, e.g. the internal energy, e, at
every spatial and time coordinate are also needed.

At every infinitesimal control volume, the fluid motion must respect the conservation
laws for the mass, moment and internal energy. Their expression can also be referred
to as the transport equations for the variables in question. The solution of the
corresponding differential equations allows the complete description of the fluid flow.

The mass conservation law, for compressible and incompressible flows, is represented
by the following formula:

9p | 0(pci)

~0 (2.1)

The moment conservation law, even more commonly known as the Navier-Stokes
equation, is given by:
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This expression is valid in the absence of field forces, otherwise, the field force
vector, f;, has to be added to the right hand-side. The first term represents
the instantaneous moment variation, the second is the convective term, the third
involves the pressure gradient, which can be thought as the source term in transport

equations, and the last is the diffusion term. The viscous stress tensor, ¢;;, involves
the deformation tensor, s;;, and is evaluated with the following expression:
2 ack
by = 21 = ghg 0 (2.3)

This formula is valid for Newtonian fluids and assumes the Stokes hypothesis for
the second viscosity, A = —2/3 p, which is correct for monoatomic gases and almost
always adopted in computational fluid dynamics (CFD). The deformation tensor
depends only on the velocity gradients.

o 1 aCi 6cj

The energy conservation law is constituted by a more complex expression, in which
the internal energy, e, the enthalpy, h, and the heat flux, ¢;, appear. The viscous
stress tensor, t;;, is also present, representing the way that part of the moment is
dissipated by the fluid viscosity in internal energy.

d(per)  Olciphe) — Og | O(city)
875 + c%j B 890]- + 8xj (25)

The total internal energy and the total enthalpy are defined as ¢; = e+ 1/2 ¢;¢; and
hy = h+1/2 ¢;c;. The internal energy and the enthalpy are related by h = e+ p/p.
The heat flux, ¢;, in the internal energy transport equation is obtained from the
Fourier heat flux law, where k; is the thermal conductivity.

oT
J

For determination of the thermodynamic state and the closure of the differential
equation system, the equation of state is needed. It relates the density, p, the
pressure, p and the temperature, 7. Considering the caloric properties of the gas
in question, the internal energy, e, and the enthalpy, h, can be related to the
temperature, 1. In several cases, the gas properties depends on temperature, as
it may be the case e.g. for the dynamic viscosity, u.
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Incompressible Fluids

Incompressible fluids are quite common in fluid flow problems and allow the
simplification of the basic equations. In hydraulic turbines, the water is at its liquid
state, allowing it to be considered as incompressible. The only exception would be in
cavitating portions of the flow, whose occurrence is mostly avoided in normal turbine
operation. For incompressible fluids, the density is constant and the divergent of
the velocity vector is zero. In addition, the energy conservation equation can be
discarded, as long as, in this case, the pressure and velocity fields are fully described
just by the mass and moment conservation equations.

9 (pci) _
o 0 (2.7)
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2.2 Averaging of the Basic Equations

2.2.1 Reynolds Average

Turbulence is present in almost all flows with practical interest in engineering
applications, as observed by TENNEKES AND LUMLEY [153]. Turbulence is
characterised by random fluctuations, which interact with the main flow, and whose
time and length scales spectra are so broad that the numerical solution of the exact
basic equations with the current technology would require prohibitive computational
resources for practical problems. This difficulty can be avoided with averaging
procedures for the Navier-Stokes equations. In the case of incompressible fluids,
the averaging relies on the method from REYNOLDS [120].

In turbulent flows, the variables can be separated in a stable, ®, and a stochastic
oscillating term, @', superimposed to the flow mean value.

O (25,) = B (1;) + T (4,1) (2.9)

The stationary part is defined as the mean value over the complete fluid motion
duration:

_ 1 [tHA
O (z;) = Altlinoo N /t O (z;,t)dt (2.10)
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For unsteady flows, this variable splitting can also be done, provided that the
characteristic time scale of the mean flow unsteady motion is far larger than the
one of the turbulent eddies motion, At > Tr. This is normally the case, since the
turbulent time scales are extremely short, and the unsteady mean value can also be
defined as ® (x;,t) = @ (z;,t) + @' (2;,t), where ' (x;,t) is defined in the same way
as @ (z;,t) just droping the limit calculation and taking At as finite.

Once the averaging procedure has been established, it can be applied to the mass and
momentum conservation equations to obtain the Reynolds averaged Navier-Stokes
(RANS) equations.

d (pci)
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The mean viscous stress tensor, ¢;;, is calculated with help from the mean strain-rate

AR
tensor, Sj;.

- 1 (0¢  0¢;
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Through the averaging process of the convective term, a new component in the
momentum conservation equation appears, 7;; = pc;c;, which is identified as the
Reynolds stress tensor. The turbulence kinetic energy is defined with the turbulent

velocity fluctuations as k = 1/2 cic.

The Reynolds stress tensor, 7;;, is symmetric and brings six new unknown variable
fields to the equation system. Therefore, additional equations are needed to
mathematically close the system. Multiplying the Navier-Stokes by ¢} and ¢}, adding
the two new equations together and time averaging the result, one obtains the
tensorial transport equation for the Reynolds stress.

87’,7» (‘9 (E/ﬂ'w‘) 8Ej 602 8 (97'1]
BT + Oy —i—ew sz+axk a2, + Ciji (2.14)

The dissipation tensor is represented by €;;, the pressure-strain correlation tensor
corresponds to II;; and Cjj; is the turbulent transport tensor. They are defined by:

oc,  Oc ocl oc
=7 (a_xj i asz-)’ =y ik = P+ 0
(2.15)
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Although the expression for the transport equation for the Reynolds stress could be
written, adding six more equations to the system, it introduced new pressure and
velocity correlations. The tensors €;;, II;; and Cj;, bring 22 new unknowns to the
problem. Further mathematical manipulations will not help to close the equation
system and its closure is only possible with the introduction of turbulence models,
to model the new terms in the RANS equations.

With exception of the stress transport turbulence models, almost all others models
take the Boussinesq approximation to simplify the Reynolds stress tensor expression.
BoUSSINESQ [19] postulates that the turbulent and the molecular diffusivities have
the same nature. This assumption allows the Reynolds stress tensor to be expressed
as function of the mean strain-rate tensor, S;;, in the same way as the viscous stress.

2

Tij = 2p17.Sij — 3

The first term is proportional to S;; and has exactly the same form as the viscous
stress tensor. The coefficient pur is the dynamic eddy viscosity. It is the only
difference between the viscous and the Reynolds stress tensors. The expression
of ur is needed for the closure of the differential equation system and must be
determined by the chosen turbulence model. It must be able to reflect the influence
of turbulence on the Navier-Stokes equations.

The second term in the simplified expression for the Reynolds stress tensor is needed
to guarantee the mathematical coherence of the relation between its trace and the
turbulence kinetic energy, 7;; = —2pk.

For the numerical computations, the first term is aggregated to the viscous stress
tensor, resulting in the diffusive term 0 (2.4 5;;) /0z;, where the effective dynamic
viscosity is pteg = p+pr. The second term can be added to the pressure component.
With this procedure, the RANS equations take the same mathematical form as the
original basic equations and the general numerical methods for transport equations
can be directly employed.

The Boussinesq approximation is relative simple and might show limitations to
predict flows with strong strain-rate gradients, secondary circulation or separation.
Some turbulence models try to suppress these limitation with higher order
approximations for 7;; or with the stress transport equations.

The turbulence kinetic energy, k, is an important parameter for the turbulence
models and its differential equation can be derived taking the trace of the Reynolds
stress transport equation.

0 (pk 0 (¢;pk 0 ok — —
o YO _pper (g - hadg -vg) e
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The turbulence kinetic energy production term, Py, and the dissipation rate, €, are
given by:

—— 0¢; _5 dc; Oc;
‘= Max] 8xj

(2.18)

Concerning the modelling, almost all turbulence models group the turbulent
transport and the pressure diffusion and approximate them by a diffusive term,
as it is done for the Reynolds stress tensor.

A it (2.19)

The Reynolds stress tensor simplification can also be introduced into the turbulence
kinetic energy production term, leading to:

2 0¢ e
J

The definition of the mean rotation tensor, {2;;, and the mean vorticity, €2, will be
useful for the upcoming development of some turbulence models.

1 [0e  Og B
Qi = 2 <8Ij - 8xi> , Q= \/m (2.21)

2.2.2 Favré Average

Since the fluid density is not constant in compressible flows, the Reynolds averaging
procedure cannot be directly applied to the basic equations. Otherwise, numerous
new correlations would appear and it would extremely increase the mathematical
complexity and the modelling difficulties. In the case of compressible flows, the mass
averaging, suggested by FAVRE [41] is used. Again the general unknown variable ®
can be split in a stable and in an oscillatory component.

D (25,t) = O (z;) + " (4, 1) (2.22)

The mean value, @, is now defined by the mass averaging. It consists in using the
density, p, as a weighting factor for the time average. The overline symbol denotes
the Reynolds averaging as before.
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1 1
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With some extensive mathematical manipulation combining the Reynolds and the
Favré average for different terms, using the assumptions introduced by HUANG,
COLEMAN AND BRADsSHAW [65] for the mean viscous stress tensor and the
approximation proposed by SARKAR ET AL. [135] for the pressure dilatation term,
the Favré averaged basic equations for subsonic flows can be written as:

dp  9(pc)
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In the expression above, Pr is the Prandtl number. The turbulence kinematic energy
equation is also expressed with the Favré averaging:

o(k) 0 (&pk) 9 jr\ Ok
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The Favré averaged equations are coherent with the Reynolds formulation. If the
fluid density is taken to be constant with the mass averaged equations, the Reynolds
averaged equations are exactly recovered.

2.3 Turbulence Modelling with the Averaged
Equations

The traditional turbulence models are developed based on the averaged basic
equations. They are closure models for the Navier-Stokes equations, allowing
the estimation of the turbulence kinetic energy, k, and of the Reynolds stress
tensor, 7;;, through the determination of the turbulence eddy viscosity, vy, for
the Boussinesq approximation. They normally do not rely only on theoretical
considerations, but also on empirical evidence and test cases, used for calibrating the
model parameters. The physical nature of the transport process is also considered,
dictating that the turbulence differential equations shall provide time variation,
convective, production, dissipation and diffusive terms.
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There are turbulence models, which count just with an algebraic relation for defining
the eddy viscosity, v, they are also called zero-equation turbulence models and have
nowadays limited application. There are also one-equation models, based on the k
equation or, more recently, on the turbulence eddy viscosity, vr. However, they
have limited accuracy for flows with complicated patterns, e.g. strong gradients,
recirculation or separation. Two-equation models are more accurate and can deal
with different flow types without the need of calibration for each individual problem.
They usually count with the k transport equation and one additional equation for
the turbulence dissipation rate, e, turbulence dissipation frequency, w, or turbulence
length scale, £. At present, the most common two-equation models are the k-¢, k-w
and their variants.

As long as the turbulence models count much more on physical insight than on
mathematical derivations, the dimensional analysis constitutes a useful method
for the turbulence fundamentals. The turbulence eddy viscosity can be related
to turbulence kinetic energy and dissipation.

/{ZZ
pr = Cup— (2.28)

The need for the proportionality constant, C,, comes from the dimensional analysis
and its exact value is part of the turbulence modelling.

A similar expression for the eddy viscosity, which involves the dissipation frequency,
w, instead of the dissipation rate, €, can also be derived from the dimensional
analysis.

k
i = pm (2.29)
w

The dissipation rate and the dissipation frequency are both related by € = f*kw,
with §* = 0,09.

The turbulence length scale is an important physical characteristic of turbulent flows
and is required by some models. It can be expressed in terms of the turbulence
kinetic energy, dissipation rate and frequency as well.

B2V
LT = —-—
€ B*w

(2.30)

Different definitions for the turbulence length scale can be found in the literature.
Most of them are equal, except for a multiplier constant. STRELETS [149] follows
the same definition above, Ly = k%2 /e, while WiLcOX [167] prefers ¢ = C,k%? /¢
and MENTER AND Ecorov [100] adopt L = C3/*k3/2 /.
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2.3.1 k-e Model

The currently still most widely spread turbulence model in industrial applications
is the so called standard k-e model, developed by LAUNDER and SPALDING [80].
Especially in the application field of hydraulic turbines, it enjoys great popularity,
as commented by RopI [127]. It is a two-equation turbulence model, which is based
on the specific turbulence kinetic energy, k, and specific turbulent dissipation rate,
€, transport equations, (2.31) and (2.32).

d(pk) O(cpk) — 9de 0 pur\ Ok
ot + oz; — T z; pet 0z; ot o ) Ox; (2:31)

d(pe)  0(Cpe) ., € 0g e 0 pur\ Oe
ot + 8£Ej = Celzﬂja—xj C'Qp? + 8_1'] o+ 0_—6 8—% (2.32)

The eddy viscosity is defined in the usual way with vp = C, k*/e. The adopted
constants in this case are C,, = 0,09, C, = 1,44, C, = 1,92, 04, = 1,0 and 0. = 1,3.

Through the solution of the k£ and e transport equations, it is possible to calculate
the turbulent dynamic viscosity, pr, which is substituted in the impulse equation
for the determination of the effective dynamic viscosity fis.

Due to its limitation to accurately predict the velocity profile in the near-wall region,
the k-e model is mostly employed in conjunction with wall functions in applications
where the viscous sub-layer in the boundary layer is not determinant. The strength
of the k-e model consists in its ability to precisely reproduce the deffect layer in a
variety of problems.

2.3.2 k-e Low-Reynolds Model

In attached flows, the standard k-e¢ model can reasonably predict the boundary
layer behaviour up to the logarithmic layer, but fails to reproduce it in the viscous
sub-layer. If no wall function is used and the velocity profile is numerically solved
up to the wall boundary, this turbulence model has to be modified to correctly
match the flow characteristics at low Reynolds numbers. To achieve this effect, the
closure coefficient C), and the production and dissipation terms in the e equation
are changed with the introduction of the damping functions f,, fi and f,.

d(pk) . 0(cpk) _ 0e 9 KN +N_T) g’“} (2.33)

+ = Tij — peE+ —
ot Oz J Oz, P Oz, oL

O(pe) | 0(cpe)
Bt 0a7j

¢ o 2 B ur\ 0
—C e 2 o s B Hr) 9€ 1 (034
CelflkTwan Ceng,Ok + + al‘j |:(/L+ 0k> 8I‘J:| ( 3 )
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An additional term, F, is included in the e equation and the dissipation rate
is substituted in the transport equations by the variable €, which involves the
dissipation value at the wall, €5. Their relation is established by € = ¢, + €.

The damping function f, is present in the eddy viscosity expression:

k’2
Hr = Cufup? (2.35)

JONES AND LAUNDER [70], LAUNDER AND SHARMA [79], LAM AND
BREMHORST [78] and CHIEN [26] give different expressions for the damping
functions, which make use of the turbulence and near-wall Reynolds numbers, Re
and Re,, and the dimensionless sublayer-scaled distance, y™.

2.3.3 k-w Model

The k-w model suggested by WILCOX [166] makes also use of the transport equation
for the kinetic energy, but the second differential equation is the transport equation
for the dissipation frequency w, instead of the dissipation rate e. One of its
advantages is that it can be integrated up to the wall boundaries without the
need for damping functions nor low Reynolds numbers corrections. According to
WILCOX [167] this turbulence model can better reproduce separated flows than the
k-e based models. However, MENTER [99] pointed out the excessive sensibility of
this model to the boundary conditions, leading in some cases to erroneous solutions.
The partial differential equations solved in the k-w model are:

ot + 8.CCJ' = Tij &cj pﬁ kw + axj (,U + Uk[LT) 855]- (236)
d(pw) O(Cjpw)  w  0g , 0 Y
ot + oy = akm oz, Bpw™ + oz, (1 + owpr) oz, (2.37)

The eddy viscosity is given by the relation vy = k/w and the constants chosen for
the model are o = 5/9, 5* =9/100, g = 3/40, 0, = 1/2 and o, = 1/2.

At wall boundaries, the turbulence kinetic energy is equal to zero, k& = 0, leading
to w — o0o0. In the numerical implementation of the turbulence model, limiter
functions are introduced to overcome this indetermination. In spite of this numerical
approximation, the k-w model has proven in practical applications to be able to
accurately determine the velocity profile in the near wall region of the boundary
layer, even in problems with separation and reattachment. In the deffect layer,
the k-w model encounters difficulties to properly reproduce the boundary layer
behaviour.
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2.3.4 k-e LCL Model and EASM

The k-e¢ LCL turbulence model comes from LIEN, CHEN AND LESCHZINER [84] and
relies on the non-linear eddy-viscosity approximation, with cubic terms. This higher
order model should eliminate certain limitations of the Boussinesq approximation,
in cases where the turbulence anisotropy is important, where sudden changes in
the mean strain-rate occur or where the geometry contains strong curved surfaces.
The advantage of using the LCL over the standard k-¢ model must be evaluated in
each case, since it requires more computational effort and, depending on the flow
characteristics, may bring no improvement to the solution quality.

The explicit algebraic stress model (EASM), proposed by Robpr1 [125, 126] and
GATSKI AND SPEZIALE [51], also tries to eliminate the deficiencies of the Boussinesq
approximation with the introduction of high-order terms (HOT) in the Reynolds
stress expression. One of its main features is to count with the anisotropy tensor,
b;j. The EASM can present improved results, in comparison to other two-equation
models, especially in problems with high streamline curvature and secondary flow,
as noticed by DEMUREN [34]. When compared to Reynolds stress models (RSM),
it has the advantage to require less computational resources, as long as it does not
directly deal with the tensorial Reynolds stress transport equation. However, it
cannot better predict sudden strain-rate changes or the return to isotropy.

2.3.5 k-w SST

In order to overcome the excessive sensibility of the k-w model to the boundary
conditions, MENTER [99] developed the k-w SST model. It makes use of the blend
functions F; and F3 to achieve the blending from the standard k-e and k-w models.
The purpose is to reproduce the k-w behaviour in the viscous and logarithmic
layers, where it can precisely describe the boundary layer dynamics, and to regain
the k-e characteristic in the defect layer, where it is less sensible to the boundary
conditions. This approach combines both models to take the maximum advantage
of their strengths in the distinct sub-layers of the boundary layer.

In the k-w SST model, the kinetic energy, k, transport equation is the same as
before, but the blending function is introduced in the turbulent dissipation frequency
equation, as below:

Dk)  Olpk)  oa . . 0 o
ot + al'j = Tij (?a:j 6 pCUk + 83:]- (M + JkuT) 8xj (238)

d(pw)  O(¢cjpw) v  0G , 0 Ow
ot * Oz, _VTT”&Ej fpes +8a:j e+ oupir) 0z
1 0k Ow
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(2.39)
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The last term in the last equation, which is not present in the original w equation,
comes from the transformation of the turbulent dissipation transport equation in
the dissipation frequency transport equation. The factor (1 — F}) provides the
blending from the k-¢ with the k-w model. Near to the wall boundaries, F| ~ 1
and (1 — F}) ~ 0, reproducing the original k-w model. From the defect layer and
going in the opposite direction of the wall boundaries, F; ~ 0 and (1 — F}) = 1,
causing the equations to behave as the standard k-e model.

The first blend function defined by MENTER [99] is:

‘ VE 5000\  4po.,k
F; = tanh (arg‘f) , arg; = min [max (0,0wa; e : C’Dk:y2 (2.40)
Where CDy,, also include numerical limiters:
1 0k Ow
CDpyy = 200, — = ——:107% 2.41
g max( P ‘wdz; Ox;’ ) (241)

Additionally, in the k-w SST model, MENTER [99] modified the turbulent dynamic
viscosity, pr, with a numerical limiter, to improve the Boussinesq approximation
and consider the shear stress transport.

alk
= 2.42
E— (a1w; QFY) (242)

There appear the second blend function and its argument.

Fy = tanh (arg3), arg, = max <2 (2.43)

vk 5001/)

0,09wy’ 32w

The constants ¢ in the k-w SST model are calculated with the constants ¢, and ¢,:

¢ =Fi¢1+ (1 — F1) g9 (2.44)

The constants ¢ in the first set are chosen as oy, = 0,85, o, = 0,5, 81 = 0,0750,
ap = 0,31, B* = 0,09, K = 0,41 and v, = (1/B* — 0, k*/V/3*, while the constants ¢,
corresponding to the second set are given by oy, = 1,0, 0., = 0,856, S = 0,0828,
B*=0,09, k = 0,41 and v, = B5/F* — 0w, k> /VB*.

The k-w SST model encountered, among others, great application in the simulation
field of free flows over aerofoils.
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2.4 Wall Treatment

If appropriate turbulence models are used, like the k-e¢ low-Reynolds, the k-w or
the k-w SST, the boundary layer can be numerically solved up the wall boundary.
In this case, adequate boundary conditions have to be fixed at the wall boundary.
The turbulence kinetic energy tends to zero as the wall is approached, £k — 0, as
well as its derivative in the direction normal to the wall, 0k/0y — 0. According
to its transport equation, € = v 9?k/dy?, which can be twice integrated, yielding
€ — 2vk/y? at the wall. If the dissipation frequency is rather employed in the
turbulence model, its limit at wall is w — oo and its numerical implementation
requires the use of a numerical limiter.

Nevertheless, the numerical resolution of the complete boundary layer requires very
fine computational meshes near to the wall, with y* values around 1, incurring in
high computational costs. If the solution of the boundary layer is not the main
point of interest in the fluid flow problem being addressed, the wall function can
be an alternative to the full numerical solution of the boundary layer. In many
industrial applications, the wall function can be employed without negative effects
on the simulated flow characteristics.

The wall function relies on the similitude law of the stable boundary layer for most
part of the flows. If the dimensionless sublayer-scaled velocity, u*, and distance,
y*, are used, the velocity distribution in the boundary layer describes a constant
pattern, as shown in Figure 2.1.

The sublayer-scaled velocity and distance are defined as follows:

YU U
y+ = y s ’U/+ _= u—t (245)

Where u; is the velocity component in the direction tangent to the wall and the
friction velocity, u,, is defined with the shear stress at the wall, 7,,.

Tw
P

As seen in Figure 2.1, the boundary layer can be divided in the viscous sub-layer, the
logarithmic layer and the defect layer. In the viscous sub-layer, the sublayer-scaled
velocity is equal to the sublayer-scaled distance, u™ = y*. In the logarithmic region,
they are related by the following law:

1
ut==-Inyt+C (2.47)
K

The logarithmic layer goes typically from y* = 30 until y = 0,15, where ¢ is the
thickness of the boundary layer, according to WILcox [167]. The von Karman
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Figure 2.1: Typical velocity profile at the turbulent boundary layer.

constant is kK = 0,41. The constant C' depends on the surface roughness and is
C = 5,2 for smooth surfaces. When the wall function is employed, it is necessary
that the distance between the first mesh point and the wall, ., produces y™ values
in the range mentioned above, where the logarithmic expression is valid.

The wall function can sometimes lead to difficulties in the prediction of highly
unstable boundary layers or when massive separation is present. In these situations,
the alternative would be the full numerical solution of the boundary layer up to the
wall, in spite of the computational costs. In the other cases, the law of the wall
should deliver satisfactory results, as in the case of hydraulic turbines.

2.5 Large Eddy Simulation and Hybrid Models

The unsteady Reynolds-Averaged Navier-Stokes equations (URANS), associated
with k-€ or k-w turbulence models and its variants, is not adequate for solving all
dynamic fluid flow problems. There are classic simple test cases, in which URANS
clearly fails to reproduce the dynamic flow pattern and to properly calculate the
transient pressure and velocity values. Common examples are the flow around a
circular cylinder or around a square cylinder, as shown by e.g. SPALART [145] and
BoscH AND RoDI [18] respectively, and vortex shedding in general, as commented
by FROHLICH AND RoDI [47]. DAVIDSON [31] and also WUNDERER [170] show
that flow separation can be a problem as well. Other problematic cases are flow
instabilities such as swirling flow in cones, treated by OGOR ET AL. [114], and
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Kelvin-Helmholtz instabilities. In all these cases URANS cannot accurately predict
the time dependent values of the pressure and velocity fields or even its oscillation
amplitude.

In all these test cases and in most practical applications, the oscillating values are
underestimated by URANS. Through the usage by URANS of traditional turbulence
models, as k-¢, k-w and its variants, excessive dissipation is introduced in the flow,
causing the flow transient effects to be excessively damped. The reduction by
URANS of the calculated oscillating effects is present in all flow regions, it means in
the boundary layer, in the wake region and in the flow core, as respectively revealed
by the sample cases with flow separation, vortex shedding and dynamic instabilities.
This limitation in URANS is related to the averaging procedure and to the way in
which the turbulence is modelled.

In URANS, no turbulent eddies are calculated. The motion of the eddies in all
turbulent scales is ignored and their effect on the other flow structures tries to be
included in the turbulence model alone, through the addiction of the turbulent eddy
viscosity, ur, to the molecular viscosity, u, resulting in the effective eddy viscosity,
lefr = 447, in the Navier-Stokes equations. No matter how fine the computational
grid and the time discretisation are, the turbulent eddies are not resolved by URANS
and the extra dissipation term is added in all regions of the flow. This approach
generates the excessive numerical damping and the underestimated transient results.

The other extreme to URANS, concerning turbulence, would be the direct numerical
simulation (DNS), in which the eddies in all turbulent scales are simulated instead
of modelled. Still DNS needs extremely refined grids and time steps to allow the
simulation of the even smallest eddies. As pointed out by SPALART [145], with
the current or in the near future available computer technology and computational
costs, DNS constitutes no alternative for industrial applications.

The large eddy simulation (LES) appears as an alternative to URANS and DNS. In
LES, not all turbulent eddies are simulated, but the eddies, which are larger than
the grid resolution, have their motion calculated and are not modelled, similar to
DNS. On the other hand, the smaller eddies, which cannot be resolved with the grid
and time resolution available in the numerical model, have their interaction with
the flow approximated by a turbulence model, as in URANS. Figure 2.2 illustrates
this idea by qualitatively relating the modelled portions of the turbulent energy
spectrum, F (k), to the turbulent wave length, A = 27 /k.

LES tries to eliminate the URANS limitations in the flow transient simulation,
as well as the excessive damping and underestimation of the transient phenomena,
with less computational resources than DNS. Though LES still requires finer meshes
and time steps than URANS, in order to solve the larger turbulent eddies motion,
incurring in computational cost, which might sometimes be high for the current
industrial standards. SPALART [145] sees the introduction of LES in everyday
industrial practice only in several years from now.
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Figure 2.2: Qualitative representation of the modelled turbulent energy spectrum,
E (k), as function of the turbulent wave number, k = 27/, for different approaches.

One solution to accurately simulate the transient flow in shorter times and with
lower computational costs than with LES is the usage of hybrid turbulence models.
They try to combine the speed and robust turbulence models of URANS with the
precision of LES in simulating the dynamic flow details with no attenuation of the
amplitude of transient variations. The central idea in the hybrid models is to behave
like LES in regions of the flow, where the computational grid is fine enough to allow
the solution of the eddies motion, and to switch to the URANS formulation, when
the mesh does not attain this refinement requirement.

With this approach, it is possible to use less refined meshes than with LES in
regions, which are not relevant to the overall low dynamics and of no interest for
the phenomena being studied. In such regions, the hybrid methods act with pure
URANS behaviour, employing usual two-equation turbulence models that are more
accurate than typical algebraic models used with LES and that can better deal with
more complicated flows in case of coarse meshes. On the other hand, in parts of
the computational domain with fine grids, the hybrid methods act like pure LES,
solving the small turbulent structures with no artificial damping.

Currently, the detached eddy simulation (DES) introduced by SPALART ET AL.[148]
and the scale adaptive simulation (SAS) developed by MENTER AND EGOROV [100]
enjoy the greatest popularity among the hybrid methods. SPALART [145] believes
that it is nowadays possible to adopt the hybrid methods for industrial applications
and design.
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2.5.1 Large Eddy Simulation

The mathematical implementation of LES is based on a familiar idea: the separation
of the velocity variables in two terms. However, the first one represents the resolved
velocity scales, called resolvable-scale filtered velocity, and the second corresponds
to the modelled scales, known as subgrid scale (SGS) velocity. The resolved velocity
scales refer to the eddy motion, which can be simulated with the available grid and
time step resolution, while the SGS velocity relates to the eddy motion occurring
inside the grid cells and which needs to be modelled.

U; = U; + u; (248)

In the formal definition of LES, a mathematical filter is applied to the velocity
components, allowing distinguishing and separating the resolved and unresolved
scales. For example, the space discretisation process, i.e. the computational mesh,
can be thought as an implicit filter, as long as velocity fluctuations occurring inside
the cell volume cannot be captured and need to be modelled. In this example, the
velocity fluctuations which can be resolved with the given mesh density correspond
to the first term in equation (2.48) and the velocity fluctuations inside the cell
volume are represented by the second term. LEONARD [81] formulates a general
filter expression as a convolution integral, where the filter function, G, is normalised
and, A, is the filter width, based on the cell size.

Ui (w;,t) = /VG(% — & A (&, 1) d&, A= (AzAyAz)'? (2.49)

Filters employed in LES include, among others, the volume-average box filter,
used by DEARDORFF [32] and the more commonly used Gaussian filter, found, for
example, in FERZIGER [42]. The definition of such mathematical filters serves for
the formal derivation of the motion equations, called in LES context resolvable-scale
equations, and specially for developing the turbulence models, which attempt to
take into account the SGS velocity. The filters do not explicitly appear in the
resolvable-scale equations and need not to be directly implemented in numerical
codes. SAGAUT [134] recognises the theoretical character of filters: “While the filters
[...] are definable theoretically, they are almost never quantifiable in practice”.

The derivation of the filtered mass and filtered moment conservation equations
follows a similar procedure to the Reynolds averaging process: the filter function
is applied to the complete mass conservation equations. Although the Reynolds
averaged Navier-Stokes and the resolvable-scale equations have different physical
meanings, they can assume exactly the same mathematical form, through the
definition of the SGS stress.

Ty = — (Gicj — Gic5) (2.50)
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By the nature of the filter function, none of the terms in the first correlation ¢;c; is
identically zero:

— == A A >
CiCj = CiCj + &y + ¢;¢; + ¢ic) (2.51)

The SGS stress can be rewritten in terms of the Leonard stress, L;;, the cross term,
Cij, and the SGS Reynolds stress, R;;.

7ij = — (Lij + Cij + Ryj) (2.52)

Lij = Eiéj — Eiéj, Cij = a + @, Rij = C;C;- (253)
The following step in the LES formulation is to satisfactorily model the SGS
stress. This problem is very similar to the turbulence closure problem in RANS.
SMAGORINSKY [143] proposed an estimation for the SGS stress similar to the

Boussinesq approximation. In the case of incompressible fluids:

Tij = 2pi7.Sij —
The resolved strain-rate, S;;, is computed with the resolvable-scale filtered velocity,
¢i, and vy represents the Smagorinsky eddy viscosity.

vr = (CsA)?*V28S;;S;; (2.55)

The filter width, A, in equation (2.55) is the evidence and consequence of the
application of the mathematical filter for the derivation of the turbulence model.
It is also the driving parameter to distinguish between the resolved and unresolved,
i.e. modelled, velocity scales.

The closure equation (2.55) has the same form of the mixing length turbulence
model, where the mixing length would be /,,;,, = CgsA. The Smagorinsky
approximation could be thought as the analogous to a simple zero-equation model,
in the RANS closure problem. However, in the present model, the analogous to
the mixing length is not constant, but proportional to the local cell size in the
computational fluid domain. As seen in equation (2.55), the eddy viscosity decreases
as the grid size is reduced, avoiding the introduction of excessive dissipation and
the attenuation of the simulated fluid dynamic phenomena. The eddy viscosity
is dependent on the local cell size. The model follows the logic that, if the grid
is fine enough, i.e. if the cells are small enough to reproduce the eddy motion, no
additional turbulent eddy viscosity, pr, is needed. Otherwise, the fluid motion would
be excessively damped. The increased viscosity is needed only in regions, where the
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computational mesh is not fine enough to resolve the eddies motion, resulting in
unresolved velocity scales.

Similar to the mixing length turbulence model, the Smagorinsky coefficient, Clg,
has no universal value and varies depending on the problem and on the flow type.
Typical values are between 0,06 and 0,10. Moreover, near to wall boundaries,
the VAN DRIEST [159] damping function or the alternate damping function from
P1roMELLI, MOIN AND FERZIGER [119] must be used. GERMANO ET AL. [53] try to
eliminate these deficiencies in the Smagorinsky model with the introduction of the
dynamic SGS model. It express Cg as a function of further filtered values involving
the Leonard stress, L;;, and the resolved strain-rate, S;;. Since it makes use of local
flow properties for the determination of C'g, a parallel can be drawn to the algebraic
zero-equation models applied in RANS.

The Smagorinksy and the dynamic SGS model are relative limited turbulence
formulations, when compared to the sophisticated two-equation approach in RANS.
Therefore, if the mesh refinement is inappropriate to capture the flow details, all
eddies will be modelled with the SGS stress, and these models can eventually deliver
poor predictions in complex flow regions. Besides the interest in simulating the small
scale details of the transient flow, this is an additional reason, why LES requires
refined meshes and time discretisation.

MOIN [105] points out one numerical aspect in the application of LES, affirming that
central difference schemes (CDS) are better suited for the simulation with LES than
upwind difference schemes (UDS), because they are less susceptible to numerical
dissipation.

2.5.2 Detached Eddy Simulation

The detached eddy simulation (DES) was first introduced by SPALART ET AL.[148§]
in the one-equation turbulence model proposed by SPALART AND ALLMARAS [146].
In order to switch between the URANS formulation, where the turbulent eddies
cannot be resolved, and the LES behaviour, where the grid density is adequate,
the definition of the turbulent dissipation, e, is modified, with a limiter for the
turbulence length scale, Ly. STRELETS [149] incorporates it in the k-w SST model.

1{33/2

Ly
= —F F = | 2.56
€ Ly DES DES = MmaX < Choms A ) ( )

The representative mesh size is chosen to be the greatest cell edge, A = max (4;).
The constant multiplying it is part of the modelling and is defined as Cpgg = 0,61.

In case that the predicted turbulence length scale is greater than the adjusted mesh
size, L > Cpgg/\, it implies that the grid refinement is enough to resolve the eddy



30 CHAPTER 2. FLUID DYNAMICS THEORY

motion and the turbulent dissipation assumes the modified value ¢ = k%2 /CpgsA,
with the objective to imitate the LES formulation.

If the opposite occurs, i.e. if the turbulence length scale is smaller than the adjusted
mesh size, Lt < Cpgs\, the turbulent motion cannot be explicitly solved and has
to be modelled as in traditional URANS. The limiter yields the unit value and the
dissipation assumes its original value € = k%2 /L.

The modified version of the turbulent dissipation is used only in the turbulence
kinetic energy transport equation and the turbulent dissipation transport equation
remains unmodified.

Even though the DES approach was originally formulated with the dissipation rate,
it can be employed with the dissipation frequency, due to their direct relation,
€ = f*kw. The combination of the DES with the k-w SST turbulence model results
in the turbulent equations (2.57) and (2.58).

d(pk)  0(cpk) “8@ e 0 ok
ot + &’Ej = Tyj 8:13]- B pwkFpgs + axj (/L + Uk,uT) axj (2_57)

0 0 (¢; oe; 9 0
ot Ox; vy 0, O; 0z;
(2.58)
1) POuz Ox; 0x;

Depending on the mesh and flow characteristics, there might be the undesired effect,
pointed out by MENTER AND KUNTZ [102], of inducing artificial flow separation in
the numerical simulation, when the original DES limiter definition is used. They
suggest eliminating this problem with the modification of the DES limiter, through
the introduction of the SST blending function.

Ly

FDES = Imax (1 - FSST) 3 1 (259)

DESA

The SST blending function can be chosen to have different definitions. If it is equal
to zero, Fggr = 0, the limiter from Strelets is recovered. Otherwise, it can be equal
to the first or the second SST blending functions, i.e. Fggr = F} or Fsgr = F5.

SPALART ET AL. [147] recognise this deficiency in their original model and define a
new DES limiter, which takes into account not only the mesh characteristics, but
also the flow properties. Again it was defined for the Spalart-Allmaras model, but
WUNDERER AND SCHILLING [171] reformulated it into Fpgg, for the application
with two-equation models.
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A _1
Fpps = |1 — (1 — F) max (1 _ Coss ;0>] (2.60)
Ly
F; = tanh [(8rd)3] . Tg= vl (2.61)

N 9ci % K2d2

(91’]- 895]-
After some mathematical manipulation, equation (2.60) can be written in a more
familiar and meaningful form:

Ly
Fopg = 1 2.62
pps = Max [(1 — Fy) CppsA + FyLr } (2.62)

The Fj; function is very similar in its form to the SST second blending function,
Fy, and is designed to be zero, in LES mode, and one in URANS areas.
Therefore, in pure LES, the modified DES limiter recovers the original limiter value,
Fpes = Lt/CprsA, as well as in pure URANS areas, Fpgs = 1. In mixed zones,
the adjusted mesh size, CpgsA, is substituted by its linear combination with the
turbulence length scale, Lr, as seen in equation (2.62). This modification delays the
switch to the LES mode, trying to avoid the artificial mesh induced fluid separation.
Moreover, it causes a sharper transition from URANS to LES, when compared to
the MENTER AND KUNTZ [102] model.

As in LES, an additional aspect of the DES is the interpolation scheme adopted
in the numerical solving method. In zones, where DES operates as LES, CDS
has to be selected, whereas, in URANS dominated zones, high-order UDS is more
suitable. This situation shows again the hybrid characteristic of DES. In order to
switch between CDS, in LES regions, and high-order UDS, in URANS regions, the
interpolation scheme is defined by TRAVIN ET AL. [155] as a blend of both.

®, = P + (1 — o) dEPS (2.63)

The blending function, o, is itself defined with help of the function A.

A
0 = Opmag tanh (ACHl) , A=CCpy,max <CDES —0,5; 0) (2.64)
turbg

The blending function cannot present values greater than one and, for this reason,
Omaz = 1. In the expression for the function A, L, represents a modified version
of the turbulence length scale. Nevertheless, it can be approximated by the original
turbulence length scale, Ly, = Lp. The parameter g serves to strength the
dominance of high-order UDS in zones, where the flow is nearly irrotational and

is defined by:



32 CHAPTER 2. FLUID DYNAMICS THEORY

Qmax (; 5)
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g =tanh (B*), B=Cp, (2.65)

The constants proposed by TRAVIN ET AL. [155] are chosen as Cy, = 3, Cy, = 1,
and Cp, = 2.

The MENTER AND KUNTZ [102] modification to avoid grid induced separation in
DES includes one modification to the interpolation scheme blending function as well:

0ssT—pEs = max (0; Fssr) (2.66)

Concerning the application of DES for turbomachines, WUNDERER [170] has
successfully simulated one turbine channel, including the guide vane and the runner,
at extreme part load, with the DES turbulence model.

2.5.3 Scale Adaptive Simulation

The scale adaptive simulation (SAS) is also a hybrid turbulence model, which can
behave like LES or URANS, in order to accurately simulate the dynamic turbulent
flow, without additional numeric damping and with a more robust turbulence
modelling, in regions where the turbulent eddy motion cannot be solved. Contrary
to DES, SAS tries to be mesh-independent and to switch from LES to URANS based
on local flow characteristics, rather than on grid properties.

With the objective to develop such a model, MENTER, KUNTZ AND BENDER [101]
first started following an idea similar to SPALART ET AL. [148], using a one-equation
model for the eddy viscosity transport. They pointed out that the destruction
term in the Spalart-Allmaras turbulence model is only significantly active near to
the wall boundaries and that, in other regions, it does not avoid the build-up of
excessive artificial dissipation. This modelling shortcoming can be avoided with
the introduction of a destruction term based on the von Karman length scale, Lk,
allowing the method to operate like LES, depending on the local value of L,k.
Although different and sometimes contradictory definitions for L,x can be found,
the form finally used for the SAS is:

S
Ly = k——— 2.67
" 0%¢; 9%¢; (2:67)

2 2
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Later MENTER AND EGOROV [100] proposed to continue this approach with a
formulation based on the k-w SST model. In reality the von Karman length scale,
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L.k, is first introduced into the k-kL model from ROTTA [129], whose equations can
afterwards be transformed into the k-w SST model. With an alternative modelling
of the production terms in the k-kL model, a relation between L,x and the length
scale, L, can be found. This is how the von Karman length scale is placed in the
model and the reason to start the derivation with the k-kL model. The use of an
alternative variable ® = \/kL, is preferable for the transformation into the k-w SST
equations and the determination of the closure coefficients. The turbulent equations
read:

d(pk) | 0(c;pk) 3/4, k? 0 ok
- 9 pr) Ok 2.
ot o ~GrE g, pet oz, (2.68)

d(p®) 0 (c;pP) 02¢c; 0%¢; ®*
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The eddy viscosity is determined from the relation between the length scale, the
kinematic energy and the dissipation frequency. In this model, the length scale is
defined with a modified constant:

(2.69)

vk

L =
Cﬁ/zlw

(2.70)

Since ® = VkL and vp = k Jw, the expression for the eddy viscosity can be directly
found:

vy = C)/'® (2.71)

The ( coefficients are calibrated with the logarithmic law of the wall and the o
coefficients with a viscid-inviscid interface, being defined as C, = 0,09, k = 0,41,
o, =09 =2/3,( =08, (= 3,51 and (3 = 0,0326.

In the ® transport equation, the term containing the second partial derivatives is
consequence of the more accurate Taylor expansion of the production term in the
equations from ROTTA [129]. It represents a sink term in the ® transport equation
and it can be rewritten, to be explicitly expressed with the von Karman length scale.
Allowing only the independent variables to remain and using the definitions of L,k
and v, the term in question becomes:

3
0%¢; 0%¢; (‘I)/ \/%)
oSy 28 G S ot N ) (2.72)
8x? (9:1:? k3/2 " L.,k
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In the LES zones, the von Karman length scale is reduced, causing the sink term to
be increased, thus reducing the variable ®, and, consequently, the eddy viscosity, vr.
From the theoretical point of view, this approach seems to be effective to achieve
the goal of reducing the excessive dissipation in the transient numerical simulations.

The transformation of the ® into the w transport equation is similar to the
transformation of the € into the w equation, for obtaining the k-w SST model,
and begins with the substitution of the ® variable and its first and second partial
derivatives by their expressions as functions of k£ and w. After some mathematical
manipulation, the terms of the k£ equation can be identified in both sides of the new
equation and cancel each other. After some modelling and the constants calibration,
the final SAS equations are obtained.

at " ow, o,

. 0 ok
— 0 pwk + oz, {(M + oppir) 8_%} (2.73)
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The first four terms on the right-hand side of the dissipation frequency transport
equation come from the transformation of the ® equation. They have their
coefficients adjusted to be identical to the k-w SST model. The additional term,
Fssr_gag, shall control the switch between LES and URANS and includes L, k.

FSSTfSAS = FSAS max (Tl — TQ; O) (275)

The constant Fgyg is not obtained from the transformation and is introduced to
adjust the SAS to the k-w SST model. The limiter prevents the SAS term to
become active in RANS regions. The functions 77 and T, are defined as following:

lefgp/iSQL, 2pk (1 ow Ow 1 0k 81{:)

Ty = — - —
LUK 2 (o) ax wQ 827]' (%j’ ]{?2 (%j aZL'j

(2.76)
The term 77 results directly from the transformation of the ® equation, except for
the calibrated constant, 52, and corresponds to the additional sink term in the ¢
equation, which limits the eddy viscosity in URANS zones. The first term in the T5
expression is also the direct result of the transformation, while the second one is an
empirical included limiter.

In regions, where URANS should be active, T} and T, are approximately equal,
cancel each other and the SAS model recovers the pure URANS formulation. In
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fluid zones, where LES should be active, T5 is much smaller than T3, T, < T}, and
the term with the von Kdarmén length scale is largely dominating.

The last constants for the model closure are given by Fgsqg = 1,25, 52 = (,Csa5 and

The von Karméan term original multiplier, (5, is modified by the constant Cgag,
with the objective to control the activation of the SAS term. Smaller values of Cga5
causes Fssr_sas to become 0 earlier, recovering the URANS mode, while larger
values activate the LES mode earlier.

Finally, to prevent eventual additional numerical dissipations due to the
discretisation scheme, the SAS model employs exactly the same approximation as
DES for the discretisation of the convective fluxes.

The idea to make SAS grid independent shall be understood in the way that very
particular mesh configurations do not adversely affect the numerical solution. After
all, the computational grid must be fine enough to resolve the dynamic structures
of interest or which might be affecting the flow, otherwise SAS will not alone bring
more accuracy to the transient solution. Without problematic meshes, SAS is not
necessarily more or less accurate than DES.

Regarding the usage and performance of SAS in practical applications, BENIGNI
ET AL. [14] simulated a bulb turbine and achieved better results than with
URANS, although the total number of computed time steps was excessively small.
WUNDERER [169] tested the SAS model in a turbine blade cascade with results
similar to DES.

2.5.4 Very Large Eddy Simulation

Along the years, other hybrid turbulence models have been developed and sometimes
they have been commonly designated very large eddy simulation (VLES). They
achieved variable grade of success. However, with the popularisation of DES and
SAS, their application is limited.

One of the VLES models, which deserves some attention in the simulation of
hydraulic turbines was presented by RUPRECHT ET AL. [130], as long as it was
employed in the prediction of vortices in the turbine draft tube cone. The model
in question makes use of the k-e¢ model from CHEN AND KiM [25], which has an
additional production term in the dissipation transport equation. This VLES model
introduces a limiter for the kinetic energy production term and for the eddy viscosity,
which is, as in DES, based on the grid size and the turbulent length scale.

Although the calculated pressure pulsations were excessively damped downstream
from the draft tube cone, the model prediction proved to be enough accurate in
the cone region itself, when compared to experimental results. Due to its excessive
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diffusion and no further development, this model was overran, as many others, by
DES and SAS. Nevertheless, it is among the first applications of hybrid turbulence
models to predict transient flows in hydraulic turbines.

2.6 Rotating Systems

One of the important characteristics of the fluid flow problem in turbomachines is
the runner rotational motion. In an inertial reference system, the fluid flow through
the runner always appears to be transient, even if the dynamic effects are neglected.
This is due to the relative motion of the runner, which is reflected in the kinematic
relations. However, in a non-inertial reference system attached to the runner centre
and ignoring the dynamic phenomena, the flow through the runner is observed as
stationary. This characteristic shall be used to avoid the appearance of additional
transient terms in the basic equations®.

The runner movement is purely rotational, so that the absolute fluid velocity vector,
in an inertial reference frame, c, can be described by the sum of its relative velocity,
in the runner reference frame, w, and the frame transport velocity, u, induced by
the runner angular velocity vector, €2.

c=wt+u=w+Qxr (2.77)

The vector r corresponds to the fluid position in relation to the runner centre in the
rotating reference frame. The angular velocity vector, €2, is considered constant,
leading to the following expression for the acceleration vector, a:

a=agta+ta, a=20xw, a,=02x(2xr) (2.78)

The absolute acceleration, in the stationary reference frame, is compounded by the
relative acceleration, in the rotating frame, a,.;, the Coriolis acceleration, a., and the
centripetal acceleration, a,. In the runner non-inertial reference frame, a. and a, are
responsible for the appearance of the inertial forces. If the fluid basic equations are
written in terms of the relative velocity, w;, the inertial forces must be considered
in the source term of the moment equation, as done by TRUCKENBRODT [156].

9p 0 (pwi)

pum— 2.

d(pw;) 0 (wjpw;) Op 0 :
- _ At 4T ro 2.
ot + oz, oz, + oz, (tij + 1) + 5] (2.80)

* The Reynolds- and Favré-average overhead symbols, "and ™, are omitted, since the equations
are valid for both incompressible and compressible flows.
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The additional source term, S!°*, coming from the runner rotational movement,
presents the following expression:

S=p(92 Q2 0) +2p( Qu, —Qu, 0)" (2.81)
Even in the rotational reference frame, it is simpler to deal with the transport of the
absolute velocity, ¢;, instead of w;, as observed by KROLL [76]. With this purpose,
the half of the inertial force coming from the Coriolis acceleration and the complete
inertial force arising from the centripetal acceleration are combined in the left side
of the moment equation, resulting in:

dp 9 (pci)
ot om,

—0 (2.82)
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Where the new source term, S/™°?, is changed to adapt to the modifications on the
left hand side of the equation.

sl = (Qe, —Qe, 0)° (2.84)

The advantage of this procedure is to maintain the absolute velocity, ¢;, as unknown
in the basic equations both in stationary or rotating grids, while only the equation
coefficients have to be modified for the runner, during the numeric solution.

When the reference frame is changed, the energy reference is modified as well.
Therefore, the energy conservation equation has also to be adjusted to consider
the rotating reference system.

0(per) | O (wiphi) _ 0 K p uT) 8h}

ot dr;  Ox; [\Pr  Pry) ox;

. % {wi (tij . TZ.].) } (2.85)

The relative total specific energy and enthalpy, in the rotating frame, e/® and

hi¢, count with the additional term w;u;, which can be moved to the source term
and explicitly handled during the numeric solution, in order to preserve the same
unknowns in stationary and rotating meshes.

el = e —uug,  hi% = hy — uu (2.86)






Chapter 3

Finite Volume Method in Fluid
Dynamics

The basic equations, which reproduce the fluid motion, have analytical solutions
only for simple problems, with trivial geometry and limited practical application.
Therefore, they must be discretised to allow their computational solution for
arbitrary geometries and flow patterns. The currently most adopted method for
fluid problems is the finite volume method (FVM). It has proven to be well adapted
to the non-linearities of the basic equations and very efficient numerically.

In the FVM, the discretisation of the fluid domain in small volumes (cells) and the
numerical approximation of the individual terms in the basic equations lead to a set
of algebraic equations, where the velocity components, the pressure and the specific
energy in each cell are the unknowns. The numerical advantages of this method
are the existence of numerous algorithms, which can efficiently solve the matricial
problem resulting from the algebraic equations set, and its simplicity to evaluate the
matrix components, which have to be repeatedly calculated, due to the non-linear
characteristic of the basic equations. From the theoretical point of view, the main
advantage of this method is to be conservative in regard to the transport fluxes.

The CFD code NS3D developed by the FLM at the TUM employs the FVM, as
well as the commercial codes ANSYS, Fluent and StarCD and the open source code
OpenFOAM.

3.1 Finite Volume Discretisation

3.1.1 Integral form of the basic equations

For the mathematical formulation of the FVM, the transport equation is written in
its general form, using the general variable ® to represent the variable field to be

39
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solved. For the mass conservation law, it assumes the unitary value, in the case of
the momentum conservation law, it is substituted by the velocity, ¢;, and for the
energy conservation, it corresponds to the specific energy, e.

0(p®) , 0(cip®) _ 0 (r M’) ty (3.1)

8t 8xj - 6’xj c%j

The first term represents the variation in relation to time, the second is the
convective transport term, the third the diffusive transport term and the last the
source term. The complete equation can be integrated in the fluid volume and the
Gaufl theorem can be applied to the convective and to the diffusive terms to express
them with area integrals.

/8(p<1>)dv+/cqumjd/1: Fa—q)njdA—l—/ qdV (3.2)
L, ot " 4 Oz v

For the numerical development of the FVM, the terms must be discretised in
space and time and the values of the variable ® at each cell centre become the
unknowns of the problem. The numerical schemes involved in the discretisations
must confer acceptable precision to the method. The approximation employed for
the discretisation of each term is explained separately.

3.1.2 Control volume

The physical domain, where the fluid flow takes place, e.g. blading channel,
corresponds to the physical control volume, which is used for balancing and to
represent the flow. Due to its numerical nature, the FVM requires the volume to be
spatially discretised in small volume cells, which of them constitutes a single small
control volume, where the conservation laws have to be respected. This leads to the
conservative nature of the FVM.

The discretised volume cells can be represented by the control volume in Figure 3.1.
The point P is located at the cell centre of the control volume being considered. In
structured grids, the points W, E, N and S correspond to the centre points of the
neighbouring cells and make reference to cardinal directions, i.e. west, east, north
and south. For three dimensional geometries, there are two additional cells, denoted
as bottom and top and whose centres are the points B and T'. The control volume
bounding faces are denoted by the small letters e, w, n, s, b and t and they are used
for the balancing of the transported scalar and vectorial quantities. The vector n
is the face normal vector and & represents the direction vector between the point
P and one of its neighbouring points. In the case of structured meshes, the grid
directions ¢, 7 and k are defined and are sufficient to locate any of the grid cells.
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Figure 3.1: Typical control volume used in the FVM and its notation convention.

In the collocated variable system, the values of the quantity being transported, ®, is
calculated at the centre of each cell and they become the unknowns of the numerical
problem. The variable values at the cell faces, for the determination of the transport
flows, are obtained through interpolation and constitute an important topic in the
discretisation of the basic equations, as it will be further seen.

3.1.3 Algebraic System

After the discretisation of the physical volume and of the transport equations, the
algebraic equation below can be written for each cell.

ARDp+ Y A = QF (3.3)
l

For structured grids, the variable value at each cell, ®p, is coupled only to its
neighbours, ®;, in the algebraic equation system and results in a sparse banded
matrix structure.

It must be observed, that the transport equations are non-linear and the mass flows
depend on the velocity components, which are unknowns of the system as well. It
means that the coefficients Ap and A;, in the algebraic system, have to be updated
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along the solution, with the values of the velocity components and density, in the
case of compressible flows.

The solver iterations carried out with constant coefficients Ap and A; are called
inner iterations and the iterations, which update them are the outer iterations. The
procedure used for solving the discretised equations will be commented in more
detail further on.

3.1.4 Numerical Approximations

For the numerical calculation of the terms in the transport equation, the analytical
integral relations have to be approximated by algebraic expressions. The mean value
theorem for integrals states that a function value exists in the integration domain,
which multiplied by the domain extension equals the exact integration result. This
function value is in principle not known and is approximated in the FVM by the
function value at the face centre, for area integrals. The expression for the area
integral is:

F, = / fdA = fA, ~ f.A, (3.4)
Ae

This approximation is also known as the midpoint rule and is second-order accurate.
In the FVM with collocated variables, they are stored at the cell centre and its value
at the face centre has to be calculated. To assure the second-order accuracy of the
midpoint rule for the area integrals, the approximation used for determining the
variables value at the face centre must also be second-order accurate.

The volume integral approximation is totally analogous to the area integral and the
second-order precision is achieved by taking the function value at the cell centre.
The volume integral is estimated by:

\%

The source terms are explicitly handled and are directly calculated with this
approximation. It means that, for the source term, the transported variable is not
treated as unknown and its value is taken from the previous iteration. The explicit
term is added to the independent vector in the matricial problem.

The gradients are also present in the transport equations and need to be numerically
evaluated as well. Through the integration of the gradient in the cell volume and
the application of the Gaufl theorem, followed by the approximation of the integrals
with the midpoint rule, the gradient at the cell centre, P, is estimated by:
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3.1.5 Diffusive Flux Discretisation

The discretisation of the flux terms in the transport equation constitute an important
element for the overall accuracy of the FVM and is not as trivial as it might appear.
The second-order accuracy of the midpoint rule for the integrals evaluation depends
on the precision of the flux terms discretisation.

The diffusive flux, in the east face, for example, is approximated with the use of the
midpoint rule by:

OP od
Fé = —ndA~T, | — LA, 3.7
‘ /Ae Ox; " (3%‘ ) . " (3.7)

Using the derivative in relation to the face normal direction, the previous expression
is equivalent to:

o
d __
Fé=T, (&m)eAe (3.8)

In Cartesian grids, the normal face direction is aligned with one coordinate axis and
the most evident approximation at the face centre is the central difference scheme
(CDS). In this very particular case, it is no more than the linear interpolation
from the cell centre values of the neighbouring cells. This interpolating scheme is
second-order accurate and suitable for the diffusive fluxes, from the numerical point
of view.

L)) b — Pp
(a—n)e A (39)

In the general case, where arbitrary meshes are employed, the normal direction at
the cell faces is not necessarily aligned with one coordinate axis and the normal
derivative cannot be readily calculated with CDS. In this situation, the derivatives
have to be determined from the gradient approximation in equation (3.6) and
interpolated to the face centre.

MUZAFERIJA [108] pointed out that this procedure can lead to oscillatory solution
fields, possibly causing the solution convergence and precision to be severely
deteriorated. His solution to eliminate the problem consists of a CDS estimation
and a deferred correction involving the gradient approximation.
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In opposition to the normal derivative in arbitrary meshes, the diffusive flux in the
direction of the straight line connecting any two neighbour points, e.g. P and E, can
be directly evaluated with CDS:

0D dp — Pp
Fi = r.|—| A.=T.A,—— 3.10
‘ (55)6 [xXg — xp| (3.10)

The direction given by £ is not the same from n, so the diffusive flux calculated in
this manner is not the same as the one through the east face. The error introduced
by the direction deviation is compensated with the deferred correction with the
gradient approximation:

Fé=T,A, (Z—i) + T A,

@) o

The overline symbol in the previous equation denotes the calculation with the
gradient approximation, in contrast to the normal CDS from equation (3.9). The
superscript n — 1 refers to the values from the previous iteration, which are treated
explicitly. It can be verified that, when the convergence is achieved, the first and
last terms cancel each other and the midpoint rule approximation for the diffusive
flux, e.g. at the east face, is obtained.

e

When the grid is nearly orthogonal, the deferred correction is not significant, when
compared to the implicit term and the convergence is not negatively impacted. The
opposite effect can occur in high-skewed meshes. From this point of view, the mesh
orthogonality is an important quality factor for arbitrary computational grids.

The diffusive term in the transport equation has a particularity in the case of the
Navier-Stokes equations. The viscous stresses are proportional to the strain tensor,
S;; and in the turbulence models used here, the Reynolds stress tensor is modelled
with the Boussinesq approximation, implying that this term is also a function of the
strain tensor. The two terms of the strain tensor are separated in the evaluation of
the integral:

ac; ac;
Fg:/A ua—;njdA+A uaiﬂnjdA (3.12)

The first term is treated implicitly, employing the diffusive flux discretisation, while
the second term is calculated explicitly, as part of the source term, since it does not
figure out as part of the diffusive flux in the general form of the transport equation.
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3.1.6 Convective Flux Discretisation

The convective flux in the transport equation is calculated with the area integral
approximation. For the east face, for example, the convective flux is numerically
given by:

Ff = / cip®n;dA ~ m. P, (3.13)
Ae

The mass flux through the cell face, m, is evaluated with the velocity components
from the previous iteration, i.e. they are not treated as unknowns and this approach
serves to linearise the equation system to a pure algebraic problem, so that it can
be solved in the matricial form.

me = (pcjn;A), (3.14)

As long as the variable values are stored at the cell centre, an interpolation
scheme is again needed to determine the values at the face centre. The most
simple interpolation scheme for the convective flux is the upwind difference scheme
(UDS). UDS guarantees the boundness of the solution and provides high stability
to the solution convergence. Still, it is only first-order accurate and, as shown by
PATANKAR [117], it creates excessive numerical diffusion, which sometimes might
even be greater than the real diffusion. This significant lack of precision makes UDS
unsuitable for most of the numerical simulations.

CDS could be a solution. However, CDS poses another problem for the convective
fluxes. When the cell Peclet number is greater or equal to 2, Pe = puAzx /T’ > 2,
which is a common condition in practical applications, CDS might produce
oscillatory solutions, affecting the solution convergence and accuracy.

To overcome the limitations from UDS and CDS, many interpolation methods have
been developed. One of them is the quadratic upwind interpolation (QUICK) from
LEONARD [82], but which does not offer significant advantages over CDS. Other
high-order upwind schemes have been developed and count with numerical limiters
to avoid oscillations and poor convergence. SKODA [142] brings the summary of
some of the popular high-order schemes like SMART, from GASKELL AND LAU [50],
MINMOD, from HARTEN [62] and OSHER, from CHAKRAVARTHY AND OSHER [23].

These high-order interpolation schemes involve more neighbour cells and, although
they offer acceptable convergence, they are not as robust as UDS. To reduce the
number of unknowns in the algebraic system and to improve the convergence
behaviour, the deferred correction is used with the high-order schemes.

O = (BUPS)" 4 (@105 — UP5)" (3.15)

€
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The high-order approximation is calculated from the previous iteration, n — 1, while
the coefficient matrix for the algebraic equation system has the same form as it
would have with UDS. The solution process starts with small values for v and, as
convergence is approached, v takes higher values. When v = 1 and the convergence
is reached, the UDS terms cancel each order and only the high-order approximation
remains.

As already explained in the fluid theory, for the hybrid turbulence models employed
here, i.e. DES and SAS, the convective flux is evaluated with the blend of CDS
and high-order upwind schemes, in order to eliminate any possibility of numerical
dissipation in LES mode.

®, = c®H% 1 (1 —0) 0P (3.16)

Where the blending function, o, comes from the turbulence modelling.

3.1.7 Instationary Terms Discretisation

The transient term in the transport equation needs to be discretised in relation to
the time to allow its numerical computation as well. The second-order implicit Euler
method was chosen to be used here. It is second-order accurate, as long as it takes
information from the previous two time steps for the current time step discretisation.
Considering a parabola in relation to the time, passing by the variable value in the
current and previous two time steps, the volume integral of the instationary term
can be approached with:

0(p®) . 3(pPp)" —4(pPp)" " + (pPp)"
/V LV ~ o AV (3.17)

The superscripts m, m — 1 and m — 2 correspond to the current and to the two
previous time steps.

The method is fully implicit, since the values of the transport variable, used in all
the other terms, i.e. convection, diffusion and source terms, is " and refers to the
time step being currently solved. The terms in @™~ ! and ®™2 are added to the
independent vector in the matricial equation.

3.2 Boundary Conditions

For the solution of the mathematical system, boundary conditions have to be
specified at the borders of the flow domain and they must reflect the physical
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conditions at the boundaries. The boundary conditions can be set, imposing the
values of the variables at the boundary faces, these are the so called Dirichlet
boundary conditions. The boundary conditions can also be specified, fixing the
gradients at the boundary faces, these are Neumann boundary conditions.

The types of boundary conditions in the FVM are, basically, inlet, outlet, walls,
symmetry and periodicity. In a computational domain composed by several
independent structured cell blocks, the boundary conditions at the interface faces
between them are set, ensuring the conservation of the scalar and vectorial fluxes.
There are different possible combinations for the boundary conditions, the most
common and numerically stable set, which was also employed for the turbine
simulations, is described below.

3.2.1 Inlet

The values of the velocity components, ¢;, at the inlet faces are usually given. They
can be derived from the total volumetric flow, ), and the inlet flow direction, or
from a known inlet velocity profile.

For incompressible flows, the gradients of the pressure, p, and of the pressure
correction, p/, are taken as constant at the domain inlet. For the FVM numerical
implementation, it means that the values of the pressure and pressure correction are
extrapolated from the interior of the fluid domain to the boundaries.

In the case of compressible subsonic flows, the pressure gradient is also imposed,
while the pressure correction, as proposed by FERZIGER AND PERIC [43], is given
by ¢, = cep},. For supersonic flows, the pressure is specified at the inlet with
Dirichlet instead of Neumann boundary conditions and, since its value is explicitly
specified, the pressure correction becomes zero.

In the case of compressible flows, where the internal energy transport equation also
has to be solved, the value of the temperature, T', at the inlet cell faces has to be
given.

The value of the kinetic energy, k, is normally prescribed at the inlet face based
on the turbulence intensity, Tu. Typical values for Tu are between 1% and 20%.
They are known from experiments or, alternatively, its influence on the numerical
simulation is tested. In flow simulations with long inlet sections or with turbulence
triggering geometry, its effect is rather negligible.

kin = gTUQCfn (3.18)

The values of the turbulent dissipation, €, are fixed, using an estimation based on
the kinetic energy and on a characteristic length, Lpqr . This length is specific for
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each flow and problem. As in the case of the kinetic energy, the value of L pa
must come from experiments or must be tested. Its effect on the numerical results
is similar to the influence of k.

k)

In the case of turbulence models derived from k-w, the values from the turbulent
dissipation frequency, w, can be computed from e, through the usual relation

w = F*e/k.

3.2.2 Outlet

The components of the velocity distribution at the fluid domain outlet make also
part of the problem unknowns. Therefore, at the outlet a constant velocity gradient
is imposed, leading to the extrapolation of the values in the domain interior to the
boundaries.

Ciout = Ci,p + Aout (Ci,P - Ci,Q) (320)

The index () makes reference to the centre point of the cell neighbouring the
boundary cell, whose centre is P. The parameter A, is the extrapolation factor
and is derived from the distance between the cell centres and the boundary.

Aot = Xpa — x| (3.21)
1XQ — Xpq| + [Xpq — Xp|

For subsonic flows, the pressure at the outlet boundary is imposed constant and
the pressure correction is set to zero, p’ = 0. The pressure level in the individual
boundary cells can be set equal to pens Or the pressure surface averaged at the
outlet boundary, ppg, can be fixed. The blending of these both conditions is also
possible, with the blending parameter ap.

Pout = ApPPQ + (]- - Oép) Pconst (322)

In the case of supersonic flows, the pressure value at the outlet is also part
of the solution and, therefore, is extrapolated from the domain interior values,
corresponding once again to the constant gradient boundary condition.

In compressible flows, when the temperature is also calculated, the Neumann
boundary condition is set for it at the outlet boundary. In the numerical
implementation, the value extrapolation is used again.
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At the outlet boundary, the gradients of the turbulence quantities, k£ and € or w, are
constant. It means, their values are extrapolated from the domain interior.

3.2.3 Wall

In this study, only impermeable walls are considered. Therefore, there is no mass
flow in the wall normal direction and the convective flux at the wall face disappears.
Here, the diffusive flux assures the momentum conservation. The wall face of the
cell is referred to as w.

Due to the no-slip condition at the wall, the velocity components are equal to the
prescribed wall velocity, ¢; = ¢;,,. For the solution of the momentum equations at
the wall cells, the diffusive flux is determined with the shear stress at the wall, 7,
and its direction. The derivation of the diffusive flux makes use of the wall local
coordinate system, (n,t,b), where n corresponds to the direction normal to the wall,
t to the flow direction in the cell centre point, P, and b completes the orthogonal
system, being normal to the n and ¢ directions. The typical wall cell, as well as the
coordinates and velocity components, can be seen in Figure 3.2.

The shear stress at the wall is calculated with the velocity partial derivatives. With
the local coordinate system aligned to the flow direction, the shear stress components
can be directly evaluated. It is different from zero only in the flow direction, t.

dey, Jdc dc
Tnn = 2”% =0, Tw= 'ua_T:’ Tnb = Ma_; =0 (32?))

The normal vector, n;, is known from the problem geometry, while the tangential
vector, t;, is only determined by the flow. In the third vector direction, b;, no flow
takes places, ¢, p = 0. The normal velocity component, ¢, p, is calculated with the
scalar product ¢; p n;. The tangential velocity vector, ¢;; p, is obtained from the
difference between the velocity vector, ¢; p, and the normal velocity vector, ¢; , p.

Citp = Cip— Cinp=Cip— (cjpmnj)n (3.24)

)

From the tangential velocity vector, c¢;; p, the tangential direction vector, t;, is
readily evaluated by:

Cit.P
f= WP 3.25
osop] (3:25)

The diffusive flux at the wall face, F? . is calculated with the shear stress in the

1,W)

flow direction and the integral is approximated, as usual, by the midpoint rule:
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Figure 3.2: Typical control volume at a wall boundary.

Fd = / TnttidA ~ TnttiAw (326)
Auw

i,w

From the definition of the shear stress in the flow direction, involving the partial
derivative dc;/0n, its value, 7, can be approximated with the cell centre velocity,
¢, p, the wall velocity, ¢; ., and the distance yp between the point P and the wall.

P — Ciw)ti
o o G~ Ci) b (3.27)
Yyp

In the numerical implementation of the FVM, the diffusive flux at the wall, Fi‘fw,
is computed with a deferred correction, with the shear stress from the previous
iteration, n — 1, in order to keep the matrix diagonal coefficients A% the same for

all cells. The deferred correction is added to the source term.

Aw n Aw . - - t n—1
Fioa (CZ—) + [—Ci— + MMEA@U (3.28)
’ yp yp yp

At the wall, Neumann boundary conditions are imposed for the pressure, as well
as for the pressure correction term, leading to the extrapolation from the domain
interior.

The wall temperature, T,,, can be fixed or the value of its derivative can be imposed,
which is equivalent to specify the wall heat flux, ¢, = =\ (97/0n),,.
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At the wall, the turbulent kinetic energy as well as its derivative assume the zero
value, leading to the Dirichlet, k,, = 0, and Neumann, (0k/dn), = 0, boundary
conditions.

For turbulence models based on the k and e transport equations, the value of
the turbulent dissipations is fixed at the wall boundary, with the approximation
suggested by CHAPMAN AND KUHN [24].

4k
ehme = 1/—2P —€p (3.29)
Yp

In the case of turbulence models, which make use of the k and w transport equations,
the asymptotic behaviour of the relation w = f*¢/k for k,, = 0 leads to w, — oo.
This boundary condition cannot be numerically implemented and, to overcome this
issue, MENTER [99] proposes the following limiter for the turbulent dissipation
frequency at the wall boundary:

6v

Ay~ 3.30
By (3.30)

Wy =

In this expression, MENTER [99] recommends to choose o, = 10.

When the grid density near to wall is fine enough and adequate turbulence models are
employed, the boundary layer can be numerically solved up to the wall. Nevertheless,
due to the required mesh density to accurately and fully describe the boundary
layer, the wall function is commonly used to model the turbulence in the cells
adjacent to the wall boundary. This modelling is taken into account in the numerical
computations, through the introduction of the dynamic viscosity at the wall face,
b, from the wall function.

From the numerical approximation of the shear stress at the wall, 7,4, the dynamic
viscosity can be expressed as:

M = ( i Tnt (331)

Cip — Ciw) ti

In the cells at the wall boundary, the theoretical wall shear stress, 7,, can be
approximated by the numerical calculated shear stress, 7,;, the tangential velocity,
ut, by ¢, p and the wall distance, y, by yp. With these approximations, substituting
Tnt by the definition 7, = pu? in the equation above and remembering the definitions
of ut = uy/u, and y* = pu,y/p, the following expression for the numerical wall
viscosity is obtained after some algebraic manipulation:
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In the logarithmic region of the boundary layer, the classical law of the wall can be
used to evaluate the value of ™ in the previous equation:

1
ut=—lnyt +C (3.33)
K

Still, the value of 4 needs to be calculated. However, it involves the friction velocity,
., which is not explicitly known. FERZIGER AND PERIC [43] suggest approximating
the friction velocity, in the numerical simulations using wall functions, by:

ur = CYAE? (3.34)

With this approximation, y* can be evaluated, as well as u™ with the law of the wall
and, finally, the wall dynamic viscosity, f,, for the determination of the diffusive
flux at the wall face in the momentum equations.

The application of the wall function to the wall cells, assumes that the first
mesh point is inside the logarithmic region of the boundary layer, otherwise, the
approximation is not valid. In some problems with turbulence scales of different
magnitude and for which limited know-how about the flow is available, it might be
difficult to achieve the requirements for the y* values. In such cases, it may be
necessary to generate successive meshes, until the logarithmic condition is satisfied,
or to employ modified versions of the wall function, as done e.g. by VIESER, ESCH
AND MENTER [161], where the law of the wall is blended with the analytic expression
of w, near to the wall, for k-w based turbulence models.

3.2.4 Free Slip Wall

The free slip wall is usually also referred to as Euler wall or symmetry boundary
condition. It is impermeable, like the no-slip wall, but the flow can freely slip at
its surface without any friction stress at the wall boundary. Again there is no mass
flux across the wall and the diffusive flux accounts for the momentum conservation.
Using the same coordinate system, as for the no-slip wall, the shear stresses can be
derived:

owy, ow ow
Tnn = 2,“ on ' Tnt = Ma_nt = 07 Tnb = :U’a_nb =0 (335)

Proceeding in the same manner as before, as in the case of the no-slip wall, and again
introducing the deferred correction, the diffusive flux at the free slip wall becomes:

n—1

o~ (ci@> + [—ciﬂ Loy lGr =)y (3.36)
yp yp
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The free slip wall normally constitutes a simplification of physical aspects of the
fluid flow. Nevertheless, it can sometimes be useful to solve modelling difficulties,
regarding the real problem.

3.2.5 Block Interface

When the problem being analysed involves the fluid flow through domains with
different topology, through stationary and rotating components or through parts,
for which different mesh strategies are desired, it might occur that the position of
grid nodes at both sides of the block interfaces do not exactly match. This condition
is also known as non-matching interfaces.

Taking the turbomachines as example, non-matching interfaces can take place at the
interface between the spiral case and the stay vanes or between the runner and the
draft tube, as long as different mesh strategies or grid densities are usually employed
for each one of these components. Staying by the turbomachines, non-matching
interfaces are also common at the interface between the guide vanes and the runner,
because of their relative motion, different blocking, grid density and periodicity.

Figure 3.3 shows the typical example of non-matching interfaces between two
structured grids. The numerical procedure, suggested by LILEK ET AL. [87] and
implemented among others by RIEDEL [123], consists in dividing the interface faces
into subfaces, defined by the intersection of the interface faces of one block with the
edges of the other non-matching block, and calculating the fluxes conservation with
these subfaces.

For example, taking the boundary cell of the left block, A, whose centre point is L,
its west face is subdivided into the subfaces [ — 1, [ and [ 4+ 1, which are obtained
from the intersection with the edges of the right block, B, boundary cells. The total
flux through the west face is computed with the subfaces [—1, [ and [+ 1. For higher
order interpolating schemes, the interior cells, with point centres LL and RR, must
also be taken into account for the computation of elements of the system matrix A.

3.2.6 Periodic Boundary Conditions

In several problems, there are geometrical patterns that are repeated in the
computational domain. This characteristic is described as spatial periodicity. The
classical example in turbomachines is the blading channel. Normally, all blade
channels have the same geometry and they are rotational periodic. Mainly in
stationary simulations, the numerical model counts with the simplification that the
flow is also periodic, due to the recurring geometry, and only one single periodic part
of the geometry is simulated. This simplification spares computational resources
and, in the case of stationary and homogeneous flows, delivers quite acceptable
results.
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Figure 3.3: Typical block interface with non-matching nodes.

When the one single periodic geometry element is simulated, adequate boundary
conditions have to set at the interface where the next periodic element would be.
Due to the periodic condition imposed to the flow, the transported variables must
assume the same value at the periodic interfaces. Taking the Figure 3.4 as example,
the variable ® has identical values at the interfaces A and B. This mathematical
relation is imposed as boundary condition with the help of the so called shadow
cells. The boundary cells at the interface B, with cell centres P and (), are repeated
next to the interface A, with cell centres P’ and ()’.

In the case of translational periodicity, the boundary condition is simply imposed as
®p = Op/, for all variables, also when they represent vector or tensor components.
For rotational periodic geometries or general periodicity, the transformation matrix,
T;;, has to be used for vectorial and tensorial quantities, ®; and ®;;.

(I)p/ = (I)p, (I)i,p/ = qu)j,P7 (I)ij,P/ = Tqu)ij,Pﬂk (337)

In the case of translational periodicity, the transformation matrix is the identity
matrix, T;; = 0;;. For rotational periodicity, defined with by the angle 7, around
the axial direction, as it is the normal case in turbomachines, the transformation
matrix becomes the rotation matrix.

3.3 Solver

In the solution of the algebraic system A%® p+ElA?><I>l = Q%, the matrix A contains
the coefficients related to the variables, which are implicitly solved. On the other
hand, the independent vector () contains the source terms, the explicitly treated
variables and the deferred corrections.
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Figure 3.4: Translational and rotational periodic boundary conditions.

The matrix coefficients Ap and A; depend on the velocity components, which
themselves are at the same time unknowns of the problem. This is due to the
non-linear property of the transport equations. Due to this characteristic, the
solution procedure of the algebraic system can be divided in inner and outer
iterations.

At a given outer iteration n, the matrix coefficients and the source terms are
calculated with the values from the previous iteration, n — 1. The inner iterations
are then processed with constant values for Ap and A;, during which the algebraic
system is solved. After it, the matrix coefficients and source terms are update with
the new values of velocity and density and a new outer iteration starts.

The algebraic system solution is solved iteratively, so that a convergence criterion
is needed to decide when to stop the inner and outer loops. There are different
criteria to define the convergence, the most common are based on the sum-norm,
maximum-norm and RMS-norm of the residuum vector, R. Common convergence
criteria are when the chosen residuum norm is smaller than a given value, €, or when
it is reduced by a given number of orders of magnitude in comparison to the initial
residuum. The value of €, or the reduction of how many orders of magnitude can
differ between different computational codes and, in some cases, may be related to
the nature of the physical problem being analysed.

As a general guideline, the inner iterations are solved with less accuracy than
the outer loop, since they are repeatedly solved, for each new outer iteration. In
stationary simulations, when some knowledge of the problem being solved is already
previously available, the convergence might also be defined based on the asymptotic
behaviour of important physical parameters of the flow.

Apart from the explicit treatment of some terms in the basic equations and the
deferred corrections, which are both already included in the discretisation procedure,
under-relaxation is also a common technique to increase the convergence stability. It
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consists in updating the values of the unknown variables to just a certain amount of
the current solved values, ®" ™! = ®" + ag (® — ®"). Smaller values of ag should, in
theory, make the convergence behaviour more stable, to detriment of the convergence
speed. The convergence stability can also be increased, by reinforcing the matrix
diagonal dominance for the impulse equations, in the inner interactions.

3.3.1 Segregated Solver and Implicit Pressure Correction

In the discretisation of the impulse equations, the pressure term, (—1/p) (Op/0x;),
is treated explicitly. This means that it is included in the source term and its value
is taken from the previous solution iteration. Following this approach, the impulse
equations deliver only the solution for the velocity components. The pressure field
is solved, by coupling the pressure to the mass conservation, by means of the
continuity equation. This procedure, known as pressure correction method, was
first successfully adopted by PATANKAR [117] and further developed by FERZIGER
AND PERIC [43] for general geometry grids.

The SIMPLE algorithm, as introduced by PATANKAR [117], makes use of the
staggered variable arrangement, instead of the collocated arrangement, as used here.
The implicit pressure correction, in combination with the collocated arrangement,
may lead, in several problems, to the numerical uncoupling between the velocity and
the pressure fields. This situation can negatively affect the solution convergence and
generate oscillating solutions. RHIE AND CHOW [122] propose a deferred correction,
for the interpolated velocity at the cell faces, in order to eliminate this problem
in collocated variable arrangements, assuring the coupling between velocity and
pressure fields.

DEMIRDZIC ET AL. [33] extend the SIMPLE algorithm for the application to
compressible fluids, proposing an approximation for the pressure and density
corrections.  Further modifications are introduced by VAN DOORMAL AND
RAITHBY [158] with the SIMPLEC algorithm or by IssA [68] in the PISO algorithm.
The PISO algorithm is indicated for instationary problems, where large time steps
are employed. In stationary problems, or when small time steps are used in transient

simulations, the SIMPLE and SIMPLEC algorithms should be preferred.

3.3.2 Coupled Solver

The first FVM codes based themselves on segregated solvers for computing the
numerical solution. Recently, some numerical codes employ coupled solvers as well
or exclusively. The coupled solver makes no use of the implicit pressure correction
method. It relies on the direct discretisation of the original mass conservation
equation. The pressure variable is included in the unknowns vector, it is no
more treated explicitly, but implicitly in the algebraic system, and it is solved
simultaneously with the velocity components.
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In general terms, the solution procedure is the same as for the segregated solver,
with the exception that the pressure, velocity components and mass flows do not
need to be corrected. As before, the mass and impulse conservation are first solved,
after it the energy conservation equation, the turbulent transport equations and,
eventually, any additional transport equation.

3.3.3 Linear Solvers

During the solution process, the algebraic system, A® = (), must be repeatedly
solved and the computational performance of the FVM code is strongly influenced
by the computational linear solver algorithm used for this task.

Direct elimination algorithms, e.g. the Gaufl elimination or the LU Decomposition,
are relative simple, but very computer expensive. Interactive solvers can provide
much superior computational efficiency. The Incomplete LU Decomposition or the
Strongly Implicit Decomposition (SIP) are examples of interactive methods.

However, other interactive methods, the conjugate gradient methods, like
CGS (conjugate gradient squared) or BCGSTAB (biconjugate stabilised), are
considerably faster and more stable, as commented e.g. by FERZIGER AND
PERIC [43].

Multigrid methods also deliver high performance for the solution of the linear system.
This method consists in using meshes of different densities, originated from the
coarsening of the original grid. The algebraic system is first solved in the coarsest
mesh, whose solution is interpolated to the finer grids, where it is solved again. As
explained by e.g. BRANDT [20] or HACKBUSCH [59], there are different methods for
coarsening the grid and for the interpolation procedure.

As commented by FERZIGER AND PERIC [43] and also experienced in this study
during the simulation of hydraulic turbines, the multigrid method might not bring
any speed increase to the numerical simulations in the case of transient flows.

The computational speed can also be increased with help of parallelisation, where the
solution of the algebraic system is distributed over several computers or computer
cores forming a cluster. As explained by SKODA [142], for the parallelisation, the
original computational mesh is divided, or partitioned, in several blocks, as if they
were blocks with non-matching interfaces. The solution of each one of these blocks
is assigned to one computer or core and the interface information, or interface fluxes,
are exchanged between them. Mainly due to the data exchange between processing
units, the performance increase is not a linear function of the number of processors
or cores and is bound to a maximum.






Chapter 4

Structure Dynamics Theory

The basic concepts of structure dynamics are reviewed for the study of the turbine
runner dynamic motion. The finite element method (FEM), used for the numerical
evaluation of the runner transient displacements and stresses, is formulated with
energy methods in structural mechanics. The elasticity theory is also involved in
the derivation of the FEM and in the evaluation of the mechanical stresses in the
Francis runner, while the fatigue theory is relevant for predicting its the fatigue life.

4.1 Elasticity Theory

The elasticity theory relates the displacements in a continuous elastic body to the
mechanical strains and stresses acting on it. The mechanical stresses are important
for the assessment of the structure strength, regarding static failure criteria and
the fatigue theory. They are also required for deriving the equilibrium equations in
structural mechanics, either using the equilibrium of forces of classical mechanics or
energy methods of analytical mechanics. The mechanical strains can be related to
the displacements, according to the following tensorial expression:

1 8uz 0u]~

The strain tensor is given by ¢€;;, while u; is the structure displacement at the
coordinate position x;. One important property from ¢;; is that it is a symmetric
tensor. The stress tensor, o;;, is also symmetric and can be obtained from
the mechanical strains using the Hook law, as found in e.g. TIMOSHENKO AND
GOODIER [154].

0ij = Cijri€ri (4.2)

29
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The elasticity tensor, Cjji, is symmetric as well and defined as follows:

E Ev
2(1+v) (9indju + Oudj) + (1+v)(1—2v)

Cijkl = 5ij5kl (43)

4.2 Dynamic Equilibrium

In systems with distributed mass and stiffness, it is practical to deal with the
equations of motion in their infinitesimal form and to integrate them within the
body boundaries. The fundamental law of motion, F' = m a, can be written with
differentials for an infinitesimal mass, dm = pdV', and using the tensorial notation,
pdV u; = dF;,,. The vector F;_, represents the sum of the external forces acting on
the body, m its mass and 1, its acceleration. The local density is denoted by p and
the volume is V.

ext

In statics, the equilibrium condition for a body is given by F; _, = 0. Using the
D’Alembert principle, the dynamic equation of motion can be expressed in a similar
form:

dF;,, — pdV ii; =0 (4.4)

ext
This expression characterises the dynamic equilibrium. The physical interpretation
is that in the body inertial system, if the inertial forces are applied, it seems as if
the structure were in static equilibrium in its own reference system. Even if this
manipulation may seem trivial, it is useful to express the dynamic motion in this
form, in regard to particular differential methods in analytical mechanics.

4.3 Equation of Motion for Elastic Bodies

When the dynamic of elastic bodies is analysed, its displacement, w; = u;(x;,t),
velocity, w;, and acceleration, ii;, as well as the mechanical stresses, o;; = o0y;(x;, 1),
are of interest.

With the energy method or with the force equilibrium method, the equation of
motion for elastic bodies can be derived. The displacement, u;, as function of the
position coordinates and time is the unknown of the problem. Once it is solved, the
stresses can be evaluated with the elasticity theory. The elastic properties of the
body are not only important for the stress calculation, but they are also determinant
for the deformed shape of the body, i.e. for the solution of u;.

For the formulation of the motion equations, the forces acting on the body must be
considered. Figure 4.1 shows the different kinds of forces applied to the body. The



4.3. EQUATION OF MOTION FOR ELASTIC BODIES 61
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Figure 4.1: Nature of forces acting on the body.

total field force is obtained by integrating the specific field force, f;, in the body
volume, while the resulting total force from the surface loads, p;, comes from the
integration of p; over the body surface, and the total punctual force is simply the
summation of the imposed punctual forces, X F;.

The equation of motion for elastic bodies is the starting point for the formulation
of the FEM.

4.3.1 Energy Method

The energy method, combined with variational principles from analytical mechanics,
offers a practical way to obtain the motion equations of the elastic body, in a suitable
form for the derivation of the FEM.

The total energy potential in mechanical systems, II, is given by the difference of
the internal potential elastic energy, U, and the work of the external forces, W.

N=U-W (4.5)

The external loads, which contribute for the work, W, are the field forces, surface
loads and punctual forces. In structure dynamics, the velocity, ;, and acceleration,
il;, must be considered. The D’Alembert principle can be employed here, to reach
the dynamic equilibrium of the system. In this case, the inertial forces are treated
as external forces and their work is included in W, in the expression of II. The
equation for the total energy potential can be expressed as:

H:(;A%%mj—KLﬁWW+AMWM+mO—(memﬁ}@m
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The dynamic equilibrium position of the elastic body, w; is such that II reaches its
minimum value. In other words, the solution of the body motion, wu;, minimises the
total energy potential. Using the variational principle, for any infinitesimal variation
of the displacement, du;, II is stationary:

The stationarity of the total energy potential implies that its variation is equal to
zero, when evaluated for the structure displacement solution, wu;.

ST (u;) = 0 (4.8)

It follows immediately that, 60U — oW = 0. It means that the variation of the work
is equal to the variation of the potential energy, in conservative systems. Usually,
O0W is denoted as the virtual work of the external forces, while, in this formulation,
0U could be seen as the virtual work of the internal forces.

The variational operator, 9, can be applied to the expression of II, for elastic bodies.
Considering that it is permutable with the integral and differential operators, in
relation to the space coordinates, it can be moved inside the integrals.

1 .
ST — : /V 5 (0y615) AV — /V(S (fiu;) dV — /A5 (piu;) dA — & (Fyu;) + /V 0 (Pmm():l;;

Remembering the relation, o;; = Cjjue€wn, the fact that the three tensors are
symmetric, the product derivative rule and after some mathematical manipulation,
the first integral becomes 0 (0;;€;5) = 20;;0€;;.

In the integrals involving the applied loads, f;, p; and F; are freely chosen, to
match the characteristics of the physical problem being studied, and are completely
independent from the variation. This means that in the second, third and fourth
terms on the right hand side, the variational only applies to u;.

The last term on the right hand side requires some more attention, as long as it
involves the structure acceleration, which comes from the application of inertial
forces in order to attain the dynamic equilibrium. The variation of the term
to be integrated is 0 (piu;) = pdiu; + pii;dou;. In analytical mechanics, the
mathematically rigorous treatment of this term is done with the Laplacian functional
or with the action principle. Here, it will only be mentioned that, in analytical
mechanics, the displacement, u;, and the velocity, u;, are treated as independent
variables and the time dependence of 1; is considered only implicitly. In i;, the time
derivative should be explicitly taken, so that with the application of the variational
operator, 9, the term is dropped way from the equation of motion.
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With the previous considerations, the equilibrium equation for the elastic body
motion becomes:

\%4 1% 14 A

4.3.2 Force Equilibrium Method

This method starts with the forces equilibrium in an infinitesimal body volume, as
in the classical mechanics theory. Nevertheless, the virtual displacement, which is
itself a concept from analytical mechanics, is also used here. It is used to obtain
the motion equations of the elastic body in a suitable form for the application of
Rayleigh-Ritz solution methods in the derivation of the FEM.

Taking the infinitesimal volume, showed in Figure 4.2, in the interior of the body and
considering the forces acting on it, related to the mechanical stresses, 0;;, related to
the external body forces, f;, and related to the punctual forces, the law of motion
can be expressed as:

o
pdV iy = (aij + %d%) dA; — 0y;dA; + fidV + F (4.11)
J

The terms in o;; cancel themselves mutually and the product dz;dA; results in the
infinitesimal volume, dV'.

aO'Z'j

i dV —
pu P

dV + fidV + F, (4.12)

J
At the body surface, boundary conditions are imposed. In this context, it

corresponds to the surface loads applied to the body. At the boundaries, the stresses
in the surface normal direction, n;, assumes the value of the specific area load, p;.

Pi = 04515 (413)

Both sides of the force equilibrium equation, at the infinitesimal volume, can be
multiplied by the virtual displacement, du;, which is completely arbitrary.

8@

Integrating equation 4.14 into the body volume, one obtains:
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Figure 4.2: Forces acting on the infinitesimal body volume.

/ piizdu;dV = / 0% sV + / FiowdV + Fidu, (4.15)
1% v Ox; 1%

The punctual force Fj is not integrated, but vectorial summed over the points of the
body, where it is applied.

The stress quantity in the first integral on the right hand side, is one of the terms
of the partial derivation of the product o;;0u;:

(4.16)

Considering the invariability of the differential operator ¢, regarding the partial
derivatives in relation to the body coordinates, together with the product derivative
above, the integral equation becomes:

1% v Oz, v du; v

Applying the Gaufl theorem to the second term on the right hand side and reminding
of the definition of the strain tensor, €;;, as function of the displacement partial
derivatives, and of the symmetry property of the stress tensor, one can write:

\%4 A \%4 \%4

Finally, applying the boundary condition p, = o0;;n; and rearranging, the desired
expression for the structure dynamic equilibrium is obtained.

Vv \% \%4 A
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4.4 Dissipation

In real problems, dissipation is always present in the motion of mechanical systems.
It can be inherent to the body, as in the case of structural, i.e. hysteretic, damping or
due to external forces, as when dampers are employed. The dissipative forces, also
denoted as non-conservative forces, must be taken into account for the description
and solution of the body motion. They need to be included in the equation of motion
for elastic bodies.

Using the energy method, certain types of non-conservative forces can be derived
from the Rayleigh dissipation function, .%#. The virtual work of such forces, W,
is given by:

The virtual work of the non-conservative forces can be included in the virtual work
of the external forces, dW. Invoking the stationarity of the total energy potential,
Ol = 60U — 6W = 0, the dissipative forces can be considered in the equation of
motion of the elastic body.

The definition of the non-conservative forces with the Rayleigh dissipation function is
very restrictive. In analytical mechanics, the description of more general dissipative
forces requires more elaborated concepts. On the other hand, with the force
equilibrium method, any kind of non-conservative force can be considered in a much
simpler manner.

Considering volume distributed dissipative forces, f,., they can be multiplied by
the virtual displacement, du;, their product can be integrated in the volume domain
and then added to the equation of motion, just like the other terms. If the
non-conservatives forces are defined over body surfaces or at multiple points, after
the multiplication by du;, they are integrated in the area, in one case, or summed
over the points, in the other case, and added to the equation of motion.

The dissipative forces usually depend on the structure velocity, ;, as in the case of
viscous damping, but they can also be function of e.g. u;, as it occurs for hysteretic
damping. Just as an example, considering the viscous damping and supposing that
the damping distribution, b = b (x, ¥, z), could be known, the motion equation would
be:

%4 \%4 \% \% A

In real cases, the damping distribution can seldom be determined, with exception
of the cases where damping components, especially designed with this objective, are
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used. In many problems, the damping is modelled as being proportional to mass
and stiffness properties or modal damping factors are assumed.

4.5 Boundary Conditions

The boundary conditions, to which the elastic body is submitted, can be of various
types. Usually, they are kinematic, restricting the displacement at given body points
or regions. They might also couple the displacement of different points or regions.
In the most common case, when the displacement is prescribed at given points, the
boundary condition becomes u; (z.,) — ¢; = 0, where the displacement ¢; is known
and imposed.

In the general case, the displacement must obey one set of restrictions, i.e. functions
defined by Cj(u;) = 0, at the volume region, at the surfaces or at discrete points.
Introducing the Laplace multiplier, A;, a new functional can be built:

In the general case, the displacement must obey one set of restrictions, i.e. functions
defined by C;(u;) = 0. Introducing the Laplace multiplier, \;, the constrain can be
expressed as A\;C;(u;) = 0. The constrain can be defined at volume regions, surfaces
or discrete points. In the first two cases, \;C;(u;) must be integrated in the domain
region. For the sake of simplicity, the mathematical derivation to follow will deal
only with the punctual restrictions, as long as the volume and area restrictions are
completely analogous, with exception of the integral operator.

The total energy potential, II, can be modified to take into account the restrictions
and a new functional, II can be built:

I =11 + \C; (4.22)

Similar to the unrestricted motion, treated before, the modified total energy
potential, II, is minimised for the dynamic equilibrium position w;, i.e. 611 (u;) = 0.
Taking the variation of II at u;, the constrained equation of motion becomes:

OIL = 011 + 60 C; + X\i6C; = 0 (4.23)

Even if the Laplace multiplier may first seem to be an artificial mathematical tool,
it usually represents physical characteristics of the system. For example, when the
set of constrains, C}, refers to displacement restrictions at the body fixed supports,
the Laplace multiplier, \;, corresponds to the reaction forces at them.
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4.6 Initial Conditions

For the transient solution of the elastic body motion, initial conditions are needed.
At the time instant ¢y, the structure displacement, w; (z;,t), and the velocity,
U; (x4, tp), must be given.

Normally, if no prior information is known, the displacement and velocity are usually
set to zero, u; (x;,t9) = 0 and 4; (z;,t9) = 0. This corresponds to the case, where
the structure is at rest and at the instant ty, the load is applied and the motion
begins.

Alternatively, the initial displacement can be prescribed as the structure static
equilibrium position. This procedure is useful, if the initial transient motion is
not of interest for the problem, and if just the steady-state condition is important.
It avoids the mean portion of the dynamic load to be suddenly applied, suppressing
its eventual impact load character.

4.7 Approximation Methods

The analytical solution of the equation of motion for elastic bodies is only practicable
for simple problems, with simplified geometry, loads and boundary conditions.
For general problems, approximation methods must be used. The approach from
RAYLEIGH [150] and RiTz [124] offer approximate solutions for the equation of
motion and it constitutes one of the underlying ideas in the FEM.

The vectorial notation is more suitable for the presentation of this approach. The
structure displacement is represented by the vector u = u(x,t), where x is the
coordinate vector.

The Rayleigh-Ritz method consists in representing the structure displacement in
the complete structure domain, with help of trial functions, N;, and with the
displacement of a limited number of coordinate points, w; = u(x;,t). The
approximation becomes:

Normally, the functions N; are polynomial functions. However, other differentiable
functions could also be used. For the chosen trial functions, the problem is reduced
to only solving the displacements u; at the discrete points x;, instead of finding the
functions u, which are defined and satisfy the equation of motion in the complete
domain at any coordinate x. The original continuous problem is replaced by the
discrete problem, where u; are the unknowns.
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If the approximated expression for u is introduced in the definition of the total
energy potential, IT becomes a function of the discrete displacements, IT = II (u;).
The stationarity condition, dII = 0, becomes equivalent to:

ol
8117;

ST = Su; =0 (4.25)

Since the variations du; are arbitrary, the expression above leads to the vectorial
relation:

o
8ui B

0 (4.26)

Ordering the displacements u; in the displacement vector U, ZIENKIEWICZ [177]
argues that, for stationary systems, the above equation leads to a matricial
expression of the form:

KU =F (4.27)

Where K is the stiffness matrix and F is the load vector.

This is the familiar form of the matricial force equilibrium equation for stationary
systems. This shows that the usage of trial functions, according to the Rayleigh-Ritz
method, as in the FEM, leads to the desired matricial form of the equilibrium
equations. The introduction of the u approximation in the equation of motion for
elastic bodies produces the same matricial equilibrium equation, as it will be seen
in the development of the FEM.

ZIENKIEWICZ [177] shows that K is symmetric and that it is positive definite, since
IT is minimised for the displacement solution.

In the instationary case, the trial functions yield the familiar discretised dynamic
equilibrium expression, involving the mass matrix and damping matrices, M and
C, as well:

MU+ CU+KU=F (4.28)

As described further on, in the FEM, the mass and stiffness matrices and the
load vector are obtained by replacing the continuous displacement vector, u, by
its approximation in the equation of motion for elastic bodies. The damping matrix
is often built with base on assumptions about the system dynamics.
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4.8 Basic Concepts of Fatigue Theory

Mechanical structures submitted to dynamic loads are subjected to fatigue. The
repeated alternating stresses, combined to the static stresses, may lead to the
initiation and propagation of cracks. In this failure scenario, the cracks initiate after
a given number of stress cycles and they may occur at dynamic and static stresses
levels significantly below the material yield limit. The effect of the alternating
stresses in opposite directions, repeated a large number of times, may bring the
structure to fail, due to fatigue.

This text presents the current common procedures for fatigue evaluation, with the
objective of estimating the turbine runner fatigue life and the fatigue damage caused
by each one of the different analysed operating points.

The purpose of fatigue analysis in the design of mechanical components is to predict,
how long they can operate, under determined load conditions, before a failure occurs.
Alternatively, for a desired fatigue life, the admissible loads, or the security factors
in relation to the actual loads, can be estimated. Fatigue failures are characterised
by the initiation and propagation of cracks in structural components. The crack
growth may even lead to fracture failure under determined conditions. How the
presence of cracks is treated, depends on the problem and design philosophy. For
most applications, as for example in the design and operation of hydraulic turbines,
even minimal cracks are not tolerated.

4.8.1 Relevant Types of Stresses for Fatigue

Fatigue is essentially caused by alternating stresses, which arise from the dynamic
structural loads. The alternating stress amplitude is represented by o,. The
dynamic stresses can be any varying function of time. The mean stress, o,,, also
has an influence on the fatigue endurance limit. The mean stress is mainly due to
the static mechanical loads, o,. Some manufacturing processes, such as welding
and mechanical conformation, introduce residual stresses, o, at the structural
components. This effect must be taken into account as well, leading to the mean
stress o, = 0+ 0. Figure 4.3 illustrates, how the different types of stress compose
the total stress.

The number of times, that the alternating stress is repeated, is represented by n
and corresponds to the number of stress cycles.

4.8.2 Fatigue Life

The fatigue life is the number of stress cycles that a component can resist, before the
initiation and propagation of cracks take place. It is sometimes referred to as service
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Figure 4.3: Relevant types of stress for the fatigue analysis as function of time.

life as well. The number of cycles that a component can support, depends mainly
on the load intensity and on the material properties. However, other factors, such
as the environment (e.g. water), surface finish, manufacturing processes or defects,
also influence the fatigue life.

The fatigue resistance of the materials is obtained experimentally. Test specimens
are submitted to different levels of alternating stress, until they are brought to
failure. Normally, significant scattering is found in fatigue test data, so that the
fatigue life for real applications is usually defined as the number of cycles, that high
percentages of the total number of test specimens can support.

With the experimental data, fatigue life curves, the so called S-N curves or
WOHLER [168] curves, are derived. Figure 4.4 shows the typical Wohler curve,
where the amplitude of the alternating stress, o, is related to the number of cycles
before failure, N.

The curve in Figure 4.4 is typical for ferrous alloys. Below a given alternating stress
level, o7, known as fatigue limit, the material is not subjected to fatigue failure.

The mean stress is an important parameter for the obtainment of the S-N curves,
it influences significantly the material fatigue life. For each value of o,,, different
Wohler curves are obtained. The multiple fatigue life curves can be combined in a
single diagram, the so called HAIGH [60] diagram, which can be seen in Figure 4.5.

In the Haigh diagram, each curve corresponds to the admissible number of cycles
for the mean and alternating stresses combinations, lying on this curve. Each pair
of o,, and o, defines a point in the Haigh diagram. The individual Wohler curve, on
which this point is found, gives the fatigue life for this point. Since only a limited
number of Wohler curves are available, it must be usually interpolated in the Haigh
diagram, between the Wohler curves, in order to obtain the fatigue life for the o,,
and o, combinations.
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Figure 4.4: Typical Wohler curve for ferrous alloys, relating the stress amplitude to
the admissible number of cycles.

4.8.3 Cumulative Fatigue

Normally, the load history over the structures is composed by multiple combinations
of static and alternating stresses, each of them occurring a different number of
cycles. However, the Wohler curves, associated to the fatigue life, are obtained under
constant values of mean stress and stress amplitude. In order to find the fatigue
life of structures submitted to multiple loads, PALMGREN [115] and MINER [104]
developed the concept of fatigue damage accumulation.

Taking m combinations of mean and alternating stresses, o, and o,,, occurring
n; number of cycles, each one of them causes to the structure a fatigue damage
amount, D; = n;/N;, where N; is the fatigue life for the i-th stress combination. In
this situation, the fatigue failure criterion, according to the Palmgren-Miner rule, is:

=

m
i=1

M= (4.29)

The constant C' may assume values between 0,3 and 3,0, depending on the material
and manufacturing process. In most cases, C' = 1,0. This means that, when the sum
of the accumulated damage is smaller than the constant, ¥D; < C', the structure
can support the loads without the occurrence of fatigue. If the sum is larger than
or equal to the constant, ¥ D; > C| fatigue failure will occur.

The Palmgren-Miner rule does not take into account the load history, i.e. how the
dynamic stresses are applied in relation to the time. MILLER [103] shows that
the order in which the loads are applied can influence the fatigue resistance. For
example, low stress cycles followed by high stress cycles results in longer fatigue life
as the opposite. However, in many practical applications, this effect is neglected.
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Figure 4.5: Typical Haigh diagram, relating the mean and alternating stresses
combination to the admissible number of cycles.

4.8.4 Load History and Range Counting

For the correct application of the Palmgren-Miner rule, the number of cycle reversals
for each load combination must be known. In other words, the load history actuating
on the component has to be determined. This is one of the difficulties in the fatigue
analysis, to accurately predict the operating conditions in which, for example, a
machine will be operated. Even if the stresses are exactly known for each operating
condition, sometimes is not clear how to estimate how often each of them will take
place.

In addition, in practical applications, the stress history for the different load cases
does not follow a simple sinusoidal variation in relation to the time. In numerous
cases, the stresses variations in relation to the time may assume complicated forms,
not described by analytical functions, and the cycle reversals and their amplitude
cannot be promptly identified. For this situation, counting algorithms have to be
employed to determine the number of cycles and their associated mean stress and
alternating stress amplitude.

The rainflow counting technique, as described by MATSUISHI AND ENDO [95], was
originally developed for evaluating measured transient stress data for the fatigue
analysis. It constitutes the current standard for dynamic stress assessment in fatigue
analysis. The rainflow algorithm can also be used for counting the number of cycles,
mean and alternating stresses, from complex design loads, obtained, for example,
from instationary finite element simulations. The rainflow counting, divides the
alternating stresses in classes and to each of these stress classes are associated n;,
Om, and og,.
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4.8.5 Elasto-Plastic Deformation

The fatigue mechanism described earlier, based on the mean and alternating stresses
and on the Wohler curves, is valid for total stresses below the yield limit of the
material, S,. This means that all deformations remain in the elastic regime. Under
these conditions, the structure can support a high number of load cycles, before
failing. This is classified as high cycle fatigue (HCF).

Depending on the manufacturing process, the residual stresses, oy, can be
significantly high, near to or even exceed the material yield limit. In the same
way, if 0,,, 0, or both are much too high, the total stress may exceed the elastic
limit as well. In these circumstances, the material works in plastic conditions. Under
elasto-plastic deformation, the structure can support a much lower number of cycles
than in the elastic regime. This condition is referred to as low cycle fatigue (LCF).

For elasto-plastic deformations, the elastic fatigue model has to be modified, in order
to include the plastic effects. In the plastic region, small stress increments lead to
large strain increments. For this reason, the strain is preferred for the elasto-plastic
model. MORROW [107] proposes the following formulation, to relate the alternating
strain amplitude, €,, to the fatigue life in the elasto-plastic regime, Ny:

Om ¢
= (2N;)" + €} (2Ny) (4.30)

The first term corresponds to the elastic deformation, €., while the second one
comes from the plastic deformation, €2. The elasticity modulus is represented by E
as usual, o is the fatigue strength coefficient, b the fatigue strength exponent, €
the fatigue ductility coefficient and c the fatigue ductility exponent. The parameters
O'}, b, e’f and c¢ are dependent from the material and are determined experimentally.

The effect of the mean stress, on the fatigue life is taken into account by the presence
of 0,, in the previous expression. For each value of o,,, the relation between the
alternating strain amplitude, €., and the elasto-plastic fatigue life, N¢, is modified.

The typical fatigue life curve, relating N; to €,, obtained from the non-linear
expression, can be observed in Figure 4.6.

With the alternating strain amplitude, the mean stress and the material fatigue
parameters, the fatigue life can be derived from the relation from MORROW [107].
Some tested materials also count with extended Haigh diagrams for the plastic
region.

The Morrow relation is valid only if the true alternating strain, e, = € + € is used.
However, during the mechanical design of the components, the stresses are normally
evaluated, based on linear stress-strain relationships. For the elasto-plastic fatigue
analysis, the true alternating strain, €, is calculated from the elastic alternating
stress and strain, ¢ and €, with the NEUBER [110] rule:
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Figure 4.6: Typical fatigue life curve, for the non-linear fatigue model.

Ouba = O€ (4.31)

The formula above has two unknowns, o, and ¢,. To solve this indetermination, the
equation is solved in conjunction with the hysteretic stress-strain relation:

1/n’
O, Oq
= 4.32
=% T (4.32)

The first term corresponds to the elastic alternating strain, €, and the second to the
plastic alternating strain, €?. The cyclic strength coefficient, K’, and the cyclic strain
hardening exponent, n’, are material constants. The typical hysteretic stress-strain
relation is illustrated in Figure 4.7.

The ASME [3] recommends always applying the elasto-plastic fatigue approach,
especially for welded structures. If the stresses remain at low values, in the elastic
linear region, the traditional elastic approach, based on the Wohler curves, is fully
recovered by the non-linear formulation.

4.8.6 Multiaxial Fatigue

The experimental fatigue data normally refers to the uniaxial stress state. However,
several mechanical components are subjected to multiaxial stresses, as in the case
of hydraulic turbines. For the application of the fatigue data in general cases of
multiaxial stress, the concepts valid for the uniaxial stress state have to be extended.

One of the extensions deals with the elasto-plastic deformation. GLINKA AND
BuczyNski [54] adapted the Neuber rule to the multiaxial stress state by the use
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Figure 4.7: Non-linear stress-strain relation, hysteretic effect and load cycles
example.

of tensorial stress and strain increments. This modification allows the derivation
of the true strain with the adapted Neuber rule from linear multiaxial stress-strain
analysis as performed for example with the finite element method (FEM).

As discussed by ARORA ET AL. [9], depending on the transient load characteristics,
the principal stress might be in phase or not. PapuGaA [116] and OGAREVIC
AND ALDRED [113] list several damage models, which can be employed for the
general case where the load is non-proportional and the principal stresses are not
in phase. For example, the FATEMI-SOCIE [40] model is based on the critical plane
principle, while WANG AND BROWN [164] assume that the micro-crack direction is
continuously changing.

The rainflow counting technique, used in cases where the stress time history is
known, can also be extended to the multiaxial stress state. WANG AND BROWN [164]
adapted the rainflow counting method to deal with multiaxial stress. For the
definition of the turning point in the proposed method, the equivalent von Mises
strain was used.






Chapter 5

Finite Element Analysis in
Structure Dynamics

The structures of mechanical components often involve complicated geometry and
loads. The most part of practical problems cannot be solved analytically for general
cases. At present, numerical methods are commonly employed to solve the static
structural problems as well as the dynamic motion of elastic mechanical bodies.

Today, the standard for such numerical calculations is the Finite Element Analysis
(FEA). In this method, the body volume is discretised in small structural elements,
as well as the motion equations. The discretised equations result in an algebraic
system of equations, which can be numerically solved with efficient matricial
algorithms.

Examples of commercial FEA programs, with the capability to solve mechanical
structural problems, are ANSYS and NASTRAN. There also numerous codes
developed by research institutes, as e.g. the FEM3D from the FLM of the TUM.

5.1 Discretisation

The finite element method employs the so called elements to discretise the volume
of the structure in question. The volume of the mechanical body is divided in
small components, which correspond to the finite elements. The elements may have
different geometric forms, e.g. quadrilaterals or triangles in 2-D and tetrahedra or
hexahedra in 3-D problems. The vertices of the finite elements are called nodes.
Some types of finite elements present mid-nodes at their edges, allowing them to
assume curved forms instead of configuring simply straight lines. Figure 5.1 shows
a typical finite element, with the coordinate system and the element displacements.

For any finite element type or configuration, the displacements,

u = (ug oul ug )T, of any structure point, which is found inside this

7
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Figure 5.1: Typical finite element, coordinates and displacements.

element, at the element coordinates (z,y,z), are approximated based on the

. T .
displacements of the element nodes, uf = ( uj,oug U ) , with help of a chosen

function NN;, called shape function.

u® = Z N; (z,y,z)uf (5.1)

In the equation above, a finite element with /N nodes was considered, the index i
makes reference to the node number inside the element and the superscript e denotes
one of the elements resulting from the structure discretisation.

With view to the numerical computations, the displacements of all element nodes
in all directions can be ordered in a single element displacement vector, Us:

T
Ue=(w, w, w, -+ uy, Uy, Uy, ) (5.2)

Yy

Using this representation, U,, for the displacements of the element nodes, the
displacement at any point inside the element can be rewritten as:

u® = N (z,y,2) Ue (5.3)

With this matricial formulation, N becomes the shape function matrix, whose
elements are the individual shape functions:

N 0 0 --- Ny O 0
N (z,y,2)=| 0 N O --- 0 Ny O (5.4)
o 0 N - 0 0 Ny
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5.2 Shape Functions

The usage of shape functions to approximate the structure displacements in the finite
element method is similar to the idea of representing the solution of the mechanical
system with a given set of analytical functions, as in the case of the Rayleigh-Ritz
method in analytical mechanics.

Complete polynomial functions offer simple mathematical handling and assure the
convergence and boundness of the finite element solution. They can be constructed
with Lagrange or serependity polynomials for quadrilateral and hexahedrical
elements, as discussed by ERGATOUDIS, IRONS AND ZIENKIEWICZ [37], and with
area and volume coordinates for triangular and tetrahedrical elements, as described
by ZIENKIEWICZ [177].

The order of the polynomial functions, used to approximate the mathematical
solution of the system motion, influences the accuracy of the numerical results. It is
recommended to use second-order polynomials for the shape functions, so that the
stresses and strains can better approximate the real solution. Moreover, quadratic
polynomials offer better convergence than linear ones, being able to achieve far more
accurate results with the same number of finite elements.

In the vicinity of mathematical singularities, as it is the case for the strain and
stress fields near to concave sharp edges, the shape functions cannot properly
approximate the theoretical solution. In such cases, the geometry must be improved
to eliminate the singularity, e.g. with smooth chamfers or fillets, or cautious
Engineering judgement must be adopted.

5.3 Stress and Strain Matrices

In structural analysis, it is usually desired not only to evaluate the structure
displacements, but also to estimate the mechanical stresses, being often even the
main goal. The components of the mechanical strain at any given point inside
one element are ordered in the strain vector, € = ( €xx €yy €2z Yoy Vyz Vem )T.
The same is performed for the stress components, in the stress vector,

T
o= ( Oz Oyy Ozz Taoy Ty: sz) )

The mechanical strains are obtained from the partial derivatives from the
displacement components. Their relation can also be expressed with the matricial
notation. For this purpose, the matrix S must be defined, which contains the partial
derivative operators.

T

d/0x 0 0 09/dy 0 0/0z
e=Su® S= 0 0/ody 0 09/ox 0/0z 0 (5.5)
0 0 09/0z 0 0/0y 0/ox
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In the finite element method, the nodal displacements are the basic unknowns and
they are obtained from the numerical solution of the problem. The structural strain
of the discretised system is calculated with the solved nodal displacements, using the
relation u® = N (z,y, z) Ue and defining the strain-displacement matrix, B, which
contains the partial derivatives from the shape functions.

e=B(z,y,2) Us; B =SN(z,vy,2) (5.6)

The elements of the matrix B can be calculated performing the multiplication
between the matrix S, containing the partial derivative operators, and the shape
function matrix, IN.

From the relations between strain and displacement and strain and stress,
0ij = Dijue€n, it is possible to calculate the stress from the nodal displacements,
with the introduction of the stress-strain matrix, D, whose elements are derived
from the material-law tensor, Cjj.

o =De; o =DBU, (5.7)

5.4 Element Matrices Calculation

After the discretisation of the structure with finite elements and the approximation
of the structure displacements with the nodal displacements and shape functions,
the motion equation for the continuous mechanical system must also be converted
into a discrete approximation, in terms of the nodal displacements, which are the
unknowns in the numerical problem. The approximate formulation of the motion
equation, using the nodal displacements and shape functions, gives rise to the set
of algebraic equations, which can be numerically solved, to find the values of the
vector Us.

The dynamic equilibrium equation for the continuous system, written with the
virtual displacements, du;, can be rearranged to gather the acceleration term and
the elastic forces on the left hand side and the external body and surface loads in
the right hand side.

%4 \% \% A

The material density is denoted by p, f; represents the volume distributed body
forces, p; corresponds to the pressure loads at the surfaces and P; relates to the
punctual applied forces.
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Since the objective is to come to a set of algebraic equations after the discretisation
with finite elements, the motion equation can be expressed in its matricial form.

/ pii® dudV + / oTdedV = / f.ToudV + / p.Tou'dA+ ) P out (5.9)
v 4 v 4

With the presence of the displacement vector u®, it is possible to proceed

to the discretisation of the motion equations, through the introduction of the
approximation, u® = N (z,y,2) Us. Employing matricial relations, differential
properties, after some algebraic manipulation and rearrangement, one comes to the
discretised motion equation as a function of the nodal displacements, U, and the
load vectors, fs, pe and Pe.

( / pNTNdV) ﬂe+< / BTDBdV) U, = / NTf,dV + / NTpedA+Y NTP,
Vv 1% 1% A

(5.10)

At this point, the finite element properties can be clearly identified in the discretised
equation of motion and it can be rewritten, with the definition of the finite element
mass matrix, Mg, stiffness matrix, K., and load vector, Re.

M.U, + K.U, = Re (5.11)

5.5 Mapped Elements

5.5.1 General Considerations

Mapped finite elements offer the possibility to transform the original real physical
geometry into simple element shapes, called canonical elements. The first reason,
for performing this transformation, is that any arbitrary element geometries can
be considered. Moreover, with the simple definition of shape functions, at the
canonical elements, elements of various orders and different properties can be easily
defined. Even though the theoretical derivation of the mapped elements is relative
sophisticated, the numerical evaluation of the element matrices and the numerical
integrations become considerably uncomplicated. This method is also well suited
for the modularisation of the computational code, allowing the element definitions
to be separated from the main calculation procedures.
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5.5.2 Coordinate Transformation

In very simple cases, the element shape functions can be directly written and
integrated in the problem coordinates, most usually in Cartesian coordinates.
However, in general tridimensional cases, with arbitrary elements and geometry,
particular element coordinate systems are used, offering the possibility to handle the
general cases with more ease. With this objective in mind, any given finite element,
with arbitrary coordinates, shall be transformed into a canonical element. Figure 5.2
depicts the example of a generic quadratic three dimensional tetrahedral element and
its corresponding canonical form. The coordinates used for the canonical elements
are called natural coordinates and are also shown.

To pass from the real finite element geometry to its canonical form, a transformation
function is needed, which associates the actual element coordinates to the natural
coordinates, £, n and (. The transformation functions, N/ = N/ (§,n,(), can be
defined in the same way as the shape functions:

(z y z)T:Z(xi Yi Zi )TN{ (5.12)

At the element nodes, (z;,y;, 2;) corresponds to (&;,n;,¢;) and the shape functions
assume unitary values, N; = d;;, where d;; is the Kronecker delta.

It is desirable that the transformation functions, N/, and the shape functions, N;,
become identical. This condition can be enforced and, in this case, when N; = N/,
the finite element type can be classified as isoparametric. Such element types
automatically follow the differentiability condition.

5.5.3 Jacobian Matrix

For the calculation of the element matrices, the expressions for M, K¢ and Re
must be integrated with respect to the Cartesian coordinates z, y and z. However,
employing canonical elements, the shape functions are defined in terms of the
natural coordinates £, n and (. This should pose no difficulty, since the coordinate
transformation can also be taken into account in the integral, with the introduction
of the Jacobian matrix, J.

/ f 2,y 2)dV = / £ (6, €)det d (€1, C) d2 (5.13)
1% Q

Where the Jacobian matrix is defined as:
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Figure 5.2: Example of a finite element with generic coordinates and its
transformation into a canonical element.

0x /0 Oy/O& 0z/0€
J=| 0x/on 0Oy/on 0z/0n (5.14)
0x/0C 0y/I¢ 0z/0C

The problem resides now in the evaluation of the Jacobian matrix. Expressing the
Cartesian coordinates x, y and z as functions of the natural coordinates &, n and (,
with the help of the shape functions, V;, the Jacobian matrix can be evaluated as:

(‘9N1/8€ 8NN/85 ry -+ IN
J=| ONi/On --- ONn/On Y1 YN (5.15)
ON,/OC - ONn/OC S

In the expression above, the first matrix makes no reference to the Cartesian
coordinates. It contains the partial derivatives of the shape functions in relation
to the natural coordinates and can be readily evaluated, since the functions are
defined in terms of these coordinates. The second matrix, x, simply contains the
physical coordinates of the element nodes. In this way the Jacobian matrix can be
determined with no additional difficulty.

For the calculation of the element matrices, with the transformed coordinates, the
partial derivatives in relation to the Cartesian coordinates, which appear e.g. in the
strain-displacement matrix, B, for the evaluation of the stiffness matrix, K, must
also be calculated in function of &, n and (. Applying the chain rule, the following
relation can be established between the partial derivatives:

o o0 9 \" o 8 o \"
(5 5 5c) (& 5 o) (516)

If the Jacobian matrix is invertible, it follows that:
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The analytical form of the inverse Jacobian matrix, J!, is potentially complicated
and could pose problems for the evaluation of the integrals. However, in practical
finite elements methods, the analytical expression of the inverse Jacobian matrix is
not derived, but numerically evaluated. This approach is suitable for the numerical
integration of the element matrices.

5.5.4 Area and Volume Coordinates

In the case of quadrilaterals or hexahedrical elements, their canonical elements
correspond to the unity-sided square and cube, in which the natural coordinates,
&, n, C, are extremely practical for designating the position of any point. On
the other hand, & n and ¢ do not form the best suited coordinate system, if
triangles or tetrahedra are dealt with. For this kind of elements, the area and
volume coordinates, the last defined by (L, Lo, L3, Ly), offer more practicity than
the natural coordinates, &, n, (.

The volume coordinates are depicted in Figure 5.3 for the quadratic tetrahedrical
element and their physical meaning for the coordinates L; is the volume ratio
between the tetrahedron constructed substituting the i-th vertex node by an internal
point P and the original tetrahedron. The coordinate system formed by the volume
coordinates is redundant. The coordinates form a linear dependent set and at any
point XL; = 1.

There are significant advantages in using this coordinate system. The nodal
coordinates and the shape functions can be defined in a simple manner, the
derivatives can be simply calculated and the numerical integrations can be simplified
too. Nevertheless, for the evaluation of the derivatives, for the strain-displacement
matrix or for the Jacobian matrix, and the calculation of the integrals, for the
element matrices, the natural coordinates still have to be used. Therefore, it is
necessary to establish the relations between the volume coordinates, L;, and the
natural coordinates, &, 1, (. The partial derivatives, in relation to the natural
coordinates, can be obtained with the chain rule.

ON;, ON; ON, T—Z ON;OL; ON;OL; ON;dL; \T (5.18)
o dn O B dL; 9¢ OL; 9y OL; OC ‘

J

With these relations, the partial derivatives in relation to &, n and ¢ can be
calculated, allowing the evaluation of the Jacobian matrix too. With the Jacobian
matrix, the derivatives in relation to the Cartesian coordinates can be obtained as
before, while the element integrals need adjustments to the integration limits.
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L;=1 L;=0

Figure 5.3: Example of a canonical finite element and its natural, or volume,
coordinates.

5.6 Element Matrices Numerical Integration

Applying the finite element method to practical problems, with general geometry
and elements, the element integrals are calculated with the help of numerical
approximations. Most usually, the Gaufl quadrature is employed. In this numerical
procedure, the integral value is approximated by a weighted sum of the integrated
function evaluated at selected points. These points are called integration points
and their number, M, location, (£,7,(), and weight, w, define the precision of
the numerical approximation. Denoting the integrand by the general function F,
for notation simplicity, the value of the volume integral is approximated, in the
Gaussian quadrature, by:

M
P €m0 dedndc = 3" i (660 (5.19)
=1

In the case of tetrahedra, the integrated function, F', is expressed in terms of the
volume coordinates, F' = F (Ly, Lo, L3, L) and calculated directly with them.

By the numeric integration with the Gaussian quadrature, one of the advantages of
employing the canonical elements becomes clear. The integration points in the
canonical elements are always the same, for any physical element. The actual
geometry of the physical element needs only to be considered in the constant nodal
coordinate vector, x. This simplifies enormously the integration procedure itself and
the calculation of the values of the integrated function, F', since, for a given element
type, it is evaluated always at the same natural coordinates.

In the case of tetrahedra and triangles, the points location in volume or area
coordinates and their weights, w;, can be respectively found in HAMMER, MARLOWE
AND STROUD [61] and COWPER [29].
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5.7 Damping

Most of the mechanical systems include some degree of damping, even if in some
cases it can be very small. There are several kinds of damping, which may themselves
have different mathematical formulations. Nevertheless, damping can be generally
considered in the finite element discretisation, through the multiplication of the
damping matrix, Ce, by the velocity vector, Ue. The new equation governing the
system motion becomes:

MeUe (t) + CeUe (t) + KeUe <t> =Re (t) (520)

In theory, the damping matrix could be obtained through the integration in the
element volume in the same way as the mass matrix, if the material specific damping
factor, b, could be defined. However, this is seldom the case, configuring much more a
mathematical abstraction than being applicable in the practice. Other formulations
for the damping matrix have to be considered.

The structural damping, also referred to as hysteretic damping, is sometimes
employed for mechanical structures, as exemplified by MEIROVITCH [98]. Tt assumes
that the damping forces are proportional, with the factor v, to the structure stiffness
and that they present 90° phase shift in relation to the elastic forces, C, = 7K,

with 7 = v/—1.

As pointed out by BATHE [13], damping is usually proportional to frequency and
damping ratios, (;, at given frequencies, w;, are also often experimentally known for
the system being analysed. In such cases the Rayleigh damping, or proportional
damping, is commonly used, C, = aM, + K.

5.8 Global Matrix Assembly

After the element equilibrium equations, the approximation for the displacements
with element shape functions and the element matrices and load vector were
formulated, the next step in the description of the finite element method focus
on the assembly of the global matrices, M, K, and global vectors, U, R, which shall
represent the complete mechanical system being studied.

The global displacement vector, U, contains all the element displacement vectors,
U,, in an ordered manner:

U= (U,...U,)" (5.21)

. ey

The individual element equilibrium equations enforce the equilibrium of each element
node. In addition, any given node can be shared by more than one element, requiring
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the addition of the force contribution of each element to this node. This leads to
the summation of the element matrix components, which correspond to the same
node. This process generates the global element matrices.

To allow the contribution of each element to the global matrices to be correctly
summed, the components of the element matrices are rearranged in the matrices, M;,
K, which have the same dimension of the global matrices and where the position of
their components agree with the position of the corresponding nodal displacements
in the global displacement vector. The same is performed for the element load
vector, providing the global load vector R;.

Finally, the rearranged matrices and vectors, M;, K; and R,;, can be added together,
to obtain the global matrices and vector:

M=) M; K= Ki;; R=) R, (5.22)

With the global matrices and global load vector, the discretised matricial equation
of motion for the complete structure can be written.

MU (t) + CU (t) + KU (t) = R (t) (5.23)

The procedure of adding the matrix components of the individual elements might
appear intuitive, although its formal mathematical derivation is not as evident as
it might suggest. This development can be found in ZIENKIEWICZ [177], where he
deals with the concepts of internal equivalent nodal force and internal nodal force
or, alternatively, with the integration over the complete structure domain.

5.9 Boundary Conditions

The structural motion is almost always restricted to some extent by mechanical
constraints, like e.g. supports, couplings and bearings. These physical restrictions
determine the boundary conditions of the mathematical problem. In mechanical
systems, they reflect most of the time kinematic constraints. Common boundary
conditions in finite element analysis are the displacement constraints, which
configure Dirichlet boundary conditions. For example, at the connection between
the turbine runner and shaft, some degrees of freedom of the runner coupling are
restricted and their displacements are imposed equal to zero.

In the general case, the displacement vector can be rearranged as,
U = (U1 U, )T, where the displacements are prescribed for the degrees
of freedom grouped in the vector Usy, and the degrees of freedom in the vector Uy
remain unknown. Rearranging the coefficients in the mass, damping and stiffness
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matrices and the forces in the load vector according to the reordered displacement
vector, the equation of motion can be expressed as:

(Mn Mu)(tﬁl)+ (cn 012)((J1)
Mz, Mo, U, Ca Coaa U,
N (Kn Klz)(U1>:(R1)
K21 Kaz U, R

Expanding the matricial equation, the linear system to be solved for the unknown
displacements, Uy, becomes:

(5.24)

M11ﬂ1 + C11U1 +Ki1Ui =Ry — Mlzsz — C12U2 - Ki2U, (5.25)

All the terms on the right hand side are known and can be regarded as a generalised
load vector. This equation preserves exactly the same structure as the general
discretised equation of motion and can be solved in the same way as the original
one.

After the linear system, is solved for the displacements Uy, considering the imposed
boundary conditions, the second matricial equation, resulting from the partition of
the original equation of motion, can be used to evaluate the reaction forces at the
nodes and directions defined by the prescribed displacement vector Us.

R2 — M21U1 ‘|‘ Mzzﬂz + Clel + ngUz + K21U1 —|- K22U2 (526)

General boundary conditions, relating for example one or more degrees of freedom,
can also be imposed. This is the case, for example, when links between nodes or
periodic boundary conditions between them are considered. Prior to the solution, the
actual values of these nodal displacements are not known. Nevertheless, a relation
between them is imposed.

This kind of kinematic relation can be expressed with algebraic equations and again
grouped in one matricial equation: T .U = a. Taking the energy functional, for the
structural problem, and adding the matricial constraint equation with help from
Laplace multipliers, A, the mathematical system to be solved becomes:

(3 a) (R (5 0) (1) (2 §)(R)=(8) o

Again the matricial equation to be solved has the same form of the original
discretised equation of motion and can be solved by common numerical procedures.
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5.10 Numeric Solver

The discretisation of the motion equations of the structural system with the finite
element results in an algebraic set of linear equations, whose unknowns are the
nodal displacements. This problem presents the general form Ax = b, and can
be solved by a variety of numerical procedure such as, the Gau-Seidel method,
matrix factorisation or gradient methods. Here, the preferred tool for the solution
of the discretised mechanical system is the preconditioned conjugate gradient (PCG)
solver.

5.10.1 Static System

If the structural static problem is considered, all derivatives in relation to the time
vanish, all displacements and forces are constant over the time and the equilibrium
equation, describing the system becomes simply:

KU =R (5.28)

This matricial equation, also considering the boundary conditions, is immediately
identified as having the form Ax = b and is solved, with no further complications,
by one of the numerical methods already mentioned.

5.10.2 Direct Time Integration

In the case of unsteady motion of the mechanical system, the time derivatives of the
structure displacements, U, are present, in the form of the velocity and acceleration
vectors, U and U. The displacements, velocities, acceleration and loads are functions
of time. One alternative to solve this instationary problem with numerical methods,
is the direct time integration. With this procedure, it is necessary to discretise the
equations of motion also in relation to the time. The technique covered here is the
NEWMARK [111] method.

At the original problem, with the equations of motion discretised in space with
the finite elements, the displacement, velocity and acceleration vectors are not
known. Applying the finite differences method in relation to time, the problem is
reformulated in such a way, that the displacement vector becomes the only unknown.
Supposing that the displacements, velocities and accelerations are known at the time
step n, the displacement vector has to be solved for the following time step, n + 1.
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(5.29)

In this formula, the matrix on the left hand side can be calculated from the global
element matrices and with the current time step size, At. The displacement vector,
at the instant ¢, 1, U,11, is the only unknown and the vector on the right hand side
is determined with the corresponding load vector, R, 1, the global element matrices
and the known displacements, velocities and accelerations from the previous solved
time step, U,, U,, U,. Finally, this equation presents once again the traditional
form, Ax = b, which can be solved as usual, at each time step.

In this approximation, a and ¢ are numerical constants and can be thought as
relaxation parameters. BATHE [13] points out three requirements for these numerical
parameters, so that the numerical stability and convergence in relation to the time
are guaranteed.

1/1 2 1 1
> (= o> = > .
a_4(2+07 5—? 2+5+a_0 (5.30)

The third condition is actually always fulfilled with the first two. Typical values for
the numerical parameters, as originally proposed by NEWMARK [111], are « = 1/4
and 6 = 1/2.

5.10.3 Modal Analysis

In the strict case of linear or explicitly linearised systems, the modal analysis
delivers information about the dynamic behaviour of the structure, allowing the
determination of the natural frequencies and mode shapes (i.e. eigenfrequencies and
eigenmodes or natural modes).

Starting with the undamped motion, MU+KU = F, the Rayleigh coefficient can be
calculated as function of the displacement, Z = UTKU /UTMU. When evaluated
at the mode shapes, ®;, this functional assumes local minima, which are equal to
the square of the corresponding natural frequencies, w,,. If the structure has N
degrees of freedom, there are N mode shapes and associated natural frequencies.
Any dynamic displacement of the linear system can be exactly described by a linear
combination of the mode shapes:
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N
U= ®q; U=2q (5.31)
i=1

The vector q contains the generalised coordinates of the system, ¢;, and ® is
the modal matrix, where the columns correspond to the mode shape vectors,
D= (P,...0y).

Substituting U in the undamped equation of motion and premultiplying it by ®T,

the mode shapes uncouple the linear system of equations:

PTMP + PTKPq = TF (5.32)

Each equation of the linear system becomes a forced ordinary second-order
differential equation in ¢;. Using the relation w? = ®TK®;/®TM®;, the uncoupled
individual equations can be rewritten as:

®TF
2 2T
¢i + W, q;i = Wy, <I>iT 5, (5.33)

In the uncoupled equations, it can be observed that the effect of the external forces
on the system dynamic response does not depend only on the excitation frequency,
but also on how the shape of the external loads matches with the mode shapes. The
product ®TF can be interpreted as the projection of the load vector on the natural
mode.

For harmonic excitations with forced frequency wy, the generalised coordinates
assume the classical sinusoidal solution form. If the external forces vary arbitrarily
in relation to the time, they can be decomposed in Fourier series. Alternatively, the
uncoupled equations of motion, in generalised coordinates, can be solved numerically
in the time domain, as it is normally done in the FEM.

Premultiplying the free undamped equation of motion, MU + KU = 0, by M1,
remembering that, in this special case, q; = —w?”qi, and after some mathematical
manipulation, it can be shown that the mode shapes and natural frequencies
correspond to the eigenvectors and eigenvalues of the following eigenproblem:

(MK) &, = (u2) ®, (5.34)
As solution of the eigenproblem, the mode shapes are orthogonal between them and
form a vectorial base. This explains why they uncouple the equation system and
why they can describe any dynamic displacement of the structure. In the FEM the
natural frequencies and natural modes of the system are commonly extracted with
the block Lanczos method, as described by GRIMES, LEWIS AND SIMON [55].
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Normally, in the numerical solution of the natural frequencies and natural modes
with the FEM, not all mode shapes are extracted. Usually a limited number M
of frequencies and modes are calculated, with M < N. Therefore, the structure
displacement is actually approximated by:

M
Ur > @y, (5.35)
=1

When the FEM is applied, it must be assured, that the number of extracted modes
is sufficient to properly simulate the structure motion and that they are significant
for the load geometry being applied, as long as the force vector is projected on the
mode shapes: ®TF.

If damping is considered, i.e. MU + CU + KU = F, the linear system can only
be uncoupled in the same manner as before, if ®TC® results in a diagonal matrix.
In this special case, ®FC®;/®PTM®P; = 2(;w,,., where (; is the damping factor, or
modal damping, associated to the i-th mode shape. The uncoupled equations, in
generalised coordinates, become:

ii + 2Cwn. d; 2 0= Q@i—TF 5.36

For harmonic excitations, the solution of this forced damped ordinary second-order
differential equation has the usual damped sinusoidal form. As for undamped
motion, the external forces can be expanded in Fourier series or the uncoupled
equations of motion can be numerically solved for general excitation forces.

In the general case, where the double product of the damping and mode shape
matrices does not result in a diagonal matrix, as e.g. when the gyroscopic effect
is considered as formulated by GERADIN AND KiLL [52] and Guo, CHU AND
ZHENG [58], the eigenproblem must be treated with state-space coordinates. This
means that the velocity becomes an additional unknown of the problem. On the
other hand, the relation between the displacement, U, and velocity, V, is included as
an additional matricial equation, U = V. This equation can be combined with the
equation of motion in a new matricial expression, which represents the eigenproblem
to be solved in the damped case:

(ﬁ 154)(3)*(13 —?\4)(3>=(§) (537)

The eigenproblem counts now with 2N eigenvalues and eigenvectors, significantly
increasing the computation times. The problem takes the form Az = Az, where the
mode shapes z are complex numbers vectors. In physical terms, this means that the
structural displacements are not necessarily synchronous for a given mode shape,
they might be phase delayed.
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5.10.4 Harmonic Analysis

When limited information about the excitation forces is available, or when it is
desired to deliberately simplify the problem, for computational reasons for example,
the dynamic external loads may be supposed to vary harmonically in relation to the
time.

Under this assumption and making use of the complex numbers notation, the load
vector is modelled by F = Fgest,

Considering this approximation, the displacements also vary sinusoidally, with
the exciting frequency, wy, and with a phase delay . In the steady state, the
displacements vary according to U = Uye™st, where Uy is a complex valued vector,
whose module and argument correspond to the vibration amplitude and phase delay.

Substituting U and F in the damped equation of motion and using the fact that, for
harmonic vibrations, U = —wj%U and U = iw;U, the matricial equation of motion
can be transformed into:

(—wiM 4 iw;C +K) Uy = Fy (5.38)

This expression has the same form as the static equilibrium equation, KU = F,
except for the fact that it involves complex numbers. Employing the complex number
arithmetic, the harmonic problem can be solved with the same solver algorithm as
static problems.

When more information is available, on how the dynamic loads vary in relation to
the time, and when the computational resources are not scarce, no simplification
has to be made. In this situation, the equations of motion can be directly solved
in the time domain, instead of making use of the harmonic procedure. This is the
case, for example, when the force time history is known for each time step of the
numerical simulation.

5.11 Initial Conditions

For the solution of the unsteady equations of motion, it is necessary to impose the
initial conditions for the system. Values have to be defined for the displacements,
velocities and accelerations at the starting time step, to. These are Uy, U, Us.
The initial conditions may assume any physical value, which is compatible with the
motion of the system. However, as long as the motion is normally not known before
the simulation, the velocities and accelerations are usually set as zero.

The displacements can also be taken as zero or be obtained from the solution of the
corresponding static system submitted to the initial load, Fy = F (o). The latter
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is the chosen approach here, since it should reduce the amplitude and duration of
initial free vibrations of the system, which would be consequence of a sudden applied
step load at the initial time step, ty. These initial conditions can be formulated as:

5.12 Fluid-Structure Interaction

The fluid-structure interaction (FSI) belongs to the class of so-called multi-field
problems, where phenomena of distinct physical nature take place simultaneously
and interact to eventually modify the system response. The fluid-structure
interaction (FSI) can be bidirectional or unidirectional, i.e. two-way or one-way
interaction, depending on with which intensity the fluid flow modifies the structural
behaviour or the opposite way around.

5.12.1 Bidirectional Coupling

The bidirectional coupling is from the theoretical point of view the most accurate
procedure for solving fluid-structure problems. With the two-way interaction,
the forces originated from the fluid flow are transferred to the structure surfaces,
displacing and deforming it. On the other hand, the structure motion modifies the
fluid low domain geometry as well as the fluid flow impulse.

In the bidirectional coupling the computational grids representing the fluid domain
and the structure have to be updated at every simulated time step. The force
transfer from the fluid to the structure is obtained with the application of the fluid
pressure at the walls as surface load at the structure. The structure displacements
are calculated by the finite element algorithm and used for updating the structural
mesh and the fluid wall boundaries. The wall displacements are used for adapting
the fluid domain grid and cause the variation of the fluid low momentum.

The monolithic approach in the solution of the fluid-structure interaction is seldom
applicable for problems of practical interest. The monolithic procedure solves
the fluid and structure motion equations simultaneously. It requires matching
meshes at the fluid-structure interface, which is rarely feasible for complex arbitrary
geometries. The simultaneous solution procedure of all physical fields increases the
stiffness of the resulting solution matrix and decreases the solver stability.

Practical fluid-structure interaction (FSI) problems are normally solved with the
sequential method, as done by EINZINGER [36]. As described by FLURL [45], the
fluid low and the structure motion are calculated separately, sequentially, the meshes
are updated, the data is interpolated for the distinct interface grids and transferred
between the finite volume (FV) model and the finite element (FE) model.



5.12. FLUID-STRUCTURE INTERACTION 95

From the point of view of the numerical solver, the two-way coupling may be weak
or strong. In the weak coupling, the data is transmitted between both fields only at
the end of each time step calculation. In the strong coupling, the data is transferred
several times for a single time step and the fluid flow and structural displacements
are solved, until the defined convergence criterion is reached.

5.12.2 Unidirectional Coupling

In several practical problems, the fluid-structure interaction is dominated by only
one of the physical fields. In such cases, the dominating field clearly influences the
behaviour of the second one, but suffers negligible influence from it. For example, a
thin flexible structure with small displacements and low oscillating velocities, as in
the case of Francis runners, suffers the influence of fluid flow pressure distribution
but cannot significantly affect the fluid flow dynamics. On the other hand, an
enough rigid structure may modify and control the flow without being displaced or
deformed.

In case of unidirectional coupling, the dominating field can be simulated without
considering the second physical field. Continuing with the previous example,
the transient fluid flow through the Francis turbine could be simulated without
considering the structural motion and without meaningful loss of accuracy. The
results from the numerical simulation of the dominating field can be used as input
for the numerical evaluation of the second one. For Francis turbines, the transient
pressure distribution from the CFD analysis can be used as surface load for the
structure dynamic analysis, as done e.g. by MAGNOLI [88], SEIDEL ET AL. [141]
and GUILLAUME ET AL. [56].

5.12.3 Acoustic Coupling

In the wunidirectional coupling, several authors, between them SEIDEL ET
GROSSE [140], KECK ET AL. [72], MONETTE, COUTU AND VELAGANDULA [106]
and GUILLAUME ET AL. [56], extend the effect of the fluid on the structure with
acoustic fluid finite elements. Among other authors, RODRIGUEZ ET AL. [128] claim
the utility of this method with experimental results, but which were not obtained
under real physical boundary conditions of an operating Francis turbine runner.

For the derivation of the acoustic finite elements, massive simplifications and
assumptions are applied to the Navier-Stokes equations, limiting the validity of
the acoustic approach in several applications. KINSLER [73] limit the acoustic
problem to fluid mediums with no viscosity, no primary flow, no variation of the
mean pressure and no variation of the mean density. With such assumptions, the
fluid low momentum conservation is reduced to:
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d(pci) _ Op

Considering the acoustic flow as adiabatic and small variations in pressure and
density, they can be related by dp/dp = a?, where a is the sound velocity in the
fluid for the reference density, py. Linearising the dependency between pressure and
density around a reference pressure, po, and density, pg, the partial time derivative
can be written as:

0 10
w_ P (5.41)
ot a? ot

Taking the gradient of the simplified momentum equation, the time derivative of the
mass conservation equation and combining them together, using the pressure and
density time derivative relation, the acoustic wave pressure equation is obtained.

10% 0%
+ == =0 5.42
a2 02 " Ox? (5.42)
Introducing the virtual work of the pressure, dp, integrating the acoustic wave
pressure equation in the volume and with some mathematical manipulation,
ZIENKIEWICZ [178] obtained the following integral expression in matricial form:

82 9T 0 T 0
/—5 @d{/—i—/ <6_X 6p> <8—Xp> dV—/An dp (& )dA (5.43)

At the interfaces between the fluid and structure domains, the normal flow
velocity at the wall is equal to the normal velocity of the structure surface,
cin; = OQu; /Ot n;. At the interface, the simplified fluid flow momentum conservation
can be rewritten in matricial form with the structural displacement derivatives,
ponTd*u/ot? = —nTd/0x p. The acoustic wave pressure integral equation becomes:

/—5—dV / 05N (2 dV—/ spn™ % 4 (5.44)
P o ax V) \axP )" = ) PPt G '

The acoustic elements are allowed to count with different shape function for the
pressure distribution, N/, in relation to the displacement shape function, N;. In the
same way as the virtual displacements, the virtual pressure, dp, is arbitrary and
can be eliminated from the acoustic wave pressure equation for the individual finite
elements.

1 .. ..
(—2/ N’N’TdV) P.+ (/ B’TB’dV) P.+ (po/ N’nTNTdA) U.=0 (5.45)
as Jy 14 A
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The matrix B’ combines the matricial differential operator and the pressure shape
function, B’ = 9/0x N'T. The acoustic wave pressure can be written in a compact
form with the acoustic fluid mass matrix, MY, acoustic fluid stiffness, K¥, and
acoustic coupling matrix, RE.

MPP, + KPP, + poRP U, = 0 (5.46)

If dissipation of the acoustic pressure wave is present, the term CEPG, where CF
is the acoustic fluid dissipation matrix, can be added to the left hand side of the
discretised acoustic pressure wave equation.

The acoustic coupling from the structure to the fluid was achieved with the kinematic
condition at the wall interface. From the fluid to the structure, this is done with the
application of the area integrated acoustic pressure as surface load to the structure.
The discretised structural element dynamic equilibrium equation is modified to:

MU, + CoU, + KU, = R, + ( / NN’TndA) P, (5.47)
A

The last term, related to the acoustic pressure surface load, results in REP,. The
discretised equations for the structural dynamic equilibrium and for the acoustic
pressure wave can be combined, resulting in the single matricial system to be solved.

Me 0 .[::Je + Ce O I:J-e
poRET MP P, 0 CP P,
n K. —RP Us )\ [ Re
0 KP P. ) 0

The usage of acoustic elements for the structural simulation of Francis runners is
controversial. None of the four simplifications introduced by KINSLER [73] and
used in the derivation of the acoustic elements are valid for hydraulic turbines.
Actually, they represent serious deviations from the real physic governing the
dynamic fluid flow in hydraulic turbines. Moreover, the relative motion of the
stationary components in relation to the runner cannot be covered by the acoustic
elements. For these reasons, it is recommended caution in the analysis of the results
obtained with the acoustic coupling in the simulation of hydraulic runners. Possible
solutions would be the one-way fluid-structure interaction (FSI) or the coupled
numerical calculation of the variable fields associated to the fluid and to the structure
over the time.

(5.48)






Chapter 6

Concepts of Hydraulic Turbines

This chapter brings some basic concepts about hydraulic turbines, which are
important for the better understanding of the numerical simulation results. The
two main topics here are the basic working principle of hydraulic turbines as well as
the essentials of the dynamic effects found especially in Francis turbines.

6.1 Machine Components

The Francis turbine is composed by the hydraulic machine, which converts most of
the water total pressure difference, Ap;, in mechanical torque at the runner, and
by the generator, which converts the shaft mechanical power into electrical current.
The hydraulic and electrical machines can be visualised in Figure 6.1.

The hydraulic part of the Francis turbine is composed by the spiral case, stay
vanes, guide vanes, runner and draft tube, as observed in Figure 6.1. The spiral
case provides the nearly homogeneous pressure and velocity distribution around the
blading channels, as well as the inlet swirl. The stay vanes and guide vanes have the
function to guide the flow and provide the ideal flow inlet angle for the runner. The
guide vanes opening can be adjusted, so that they can determine the volume flow
through the machine and optimise the flow inlet angle at the runner. The turbine
runner converts the water total pressure difference, Ap; in mechanical torque at the
machine shaft. The draft tube decelerates the flow, reducing the friction losses after
the runner and reducing the pressure level at the runner outlet.

For interest, other machine components, which are not direct related to the turbine
hydraulic parts can also be seen in Figure 6.1.

99
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Upper bracket
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Turbine runner
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Draft tube

Figure 6.1: Components in a typical Francis turbine. Adapted from VOITH
HYDRO [162].

6.2 Coordinates and Geometric Transformations

6.2.1 Blade Coordinates

The turbine blades present elaborated tridimensional shapes, with variable inlet
angle, outlet angle, wrap, camber and thickness distribution. For design purposes,
these are some of the parameters, which describe the blade geometry. For the
objectives of this study, especially to present the results from the numerical
simulation, it suffices to locate the points on the blade surface. This is achieved
with the usage of the u and v coordinates, as shown in Figure 6.2.

The u and v coordinates parameterise the blade surface and they are normalised,
varying from 0 to 1. With the pair of coordinates u and v, all points can be uniquely
located on the blade surface.

The u parameter runs along the blade length, from the blade trailing edge on the
pressure side (TE-PS), to the blade trailing edge on the suction side (TE-SS), passing
by the blade leading edge (LE). At the blade trailing edge on the pressure side
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Figure 6.2: Typical coordinates from a Francis blade.

u = 0,0, at the leading edge u ~ 0,5 and at the blade trailing edge on the suction
side u = 1,0. The v parameter runs over the blade, going from the crown to the
band. At the crown v = 0,0 and at the band v = 1,0.

An important part of the numerical results is presented based on the u and v
coordinates.

6.2.2 Meridian Plane

The cross-section of turbomachines is usually represented at the meridian plane.
The machine outline, at the meridian plane, is referred to as meridian contour.
For Francis turbines, the stay vanes, guide vanes, runner and draft tube cone are
depicted in the meridian plane, as for example in Figure 6.3.

The meridian contour makes use of the fact that the stay vane, guide vane and
runner blade geometry is always the same for every channel. In other words, the
meridian contour uses the periodic symmetry property of these components and
shows only the stay vanes, guide vanes and runner inlet and outlet edges and the
crown, band and draft tube cone contours.

Normally, on one side of the meridian plane, the pressure side of the hydraulic
components is represented, while, on the other side, the suction side can be found.

The meridian contour is obtained by the coordinate transformation (z,y, z) — (r, z).
The first two Cartesian coordinates z and y are replaced by the distance to the
machine rotation axis, i.e. by the radius, r, and the axial coordinate, z, is preserved.

The meridian contour contains all necessary information about the cross-section of
the water passages. The meridian representation is also practical to show analytical,
numerical or experimental results at hydraulic surfaces.
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Figure 6.3: Typical meridian contour from a Francis turbine.

6.2.3 Potential Streamlines

The potential streamlines are obtained from the solution of the two-dimensional
potential flow through the meridian contour. For the runner, it means the
two-dimensional potential flow between crown and band, without the blade
influence. Due to this simplified problem formulation, the determination of the
potential streamlines becomes simply the solution of a Poisson differential equation.

The potential streamlines are presented in an example in Figure 6.4.

The coordinate m runs along each individual streamline and it is also the measure
of the developed length along the streamline. The coordinate ¢ is normal to the
streamlines and is enough to identify them.

With the current CFD methods, the potential streamlines do not offer much relevant
information about the fluid flow. However, they are needed for the application of the
conformal transformation, which is often used for the design of the blade profiles.

6.2.4 Conformal Planes

For the project of turbomachines, the conformal transformation is usually employed.
It offers the advantage to preserve the geometrical angles in the transformed
geometry in relation to the original one. For this reason, the conformal mapping
is normally used in the design of blade profiles. Still, it can also be useful for
the presentation of analytical, numerical and experimental results in the blading
passages, as done here. An example of conformal transformation can be visualised
in Figure 6.5.
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Figure 6.4: Example of potential streamlines through the meridian contour from a
Francis turbine.

As exemplified in Figure 6.5, the conformal mapping, used for turbomachines,
transforms the revolution surface, obtained from a given potential streamline at the
meridian plane and defined by the coordinate set (r,0, z), into a planar geometry
described by the coordinate pair (x, ). Taking the constant reference radius, R,
and the constant reference meridional parameter, M, the conformal coordinates are
given by:

m g
Y= R0, e:R/ dm (6.1)
M T

The blade angle, s, which is defined by tan s = —dm/ (rdf), can be obtained
from the conformal transformation by tan g = —dl/ (Rd0).

6.3 Energy Conversion in the Turbine

The hydraulic turbine converts the most part of the hydraulic energy associated to
the fluid total pressure difference between the head water and tail water sections,
Ap;, into mechanical power at the turbine shaft, P,, = Tw. The shaft torque and
rotation are given by T and w. The total pressure difference, Apy, is calculated with
the mass averaged quadratic flow velocity, &2, pressure, p and elevation, Z, and with
the water density, p, and local gravity acceleration, g.

~2

Ac _ -
Apy = P + Ap + pgAz (6.2)
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Figure 6.5: Typical conformal transformation from Francis blades.

The total pressure difference in the turbine can also be simply expressed in terms of
water net head by H = Ap,/ (pg), between the sections 1-1 and 2-2 in Figure 6.6.
The net head is usually easily obtained by the elevation difference between head
water and tail water levels, zywr, — zrwr, minus the head losses at the inlet and
outlet circuits, AH;,.; and AH 40, before and after the turbine measuring planes
1-1 and 2-2. Figure 6.6 illustrates the water levels, hydraulic circuits and measuring
planes, in relation to the turbine.

6.3.1 Power, Efficiency and Losses

The hydraulic power available for the turbine depends on the net head, H, and on the
volume flow, ). The total available power for the hydraulic turbine is P = pgHQ).
However, the turbine cannot convert all the total hydraulic energy in mechanical
power and the delivered power is calculated with the turbine efficiency, 7:

Py =npgHQ (6.3)

Typical peak efficiency values, 7,,:, for high quality new Francis turbines are above
94%, for the model machine. With the non-scalable viscosity effects, there are
prototype machines, which achieve almost 97% efficiency at optimum.

The head losses, AH, associated to the hydraulic energy conversion in the machine,
can be divided among the turbine hydraulic components, i.e. spiral case, stay vanes,
guide vanes, runner, runner seals, runner disc, draft tube cone and draft tube. The
head losses in the different components, can also be expressed as efficiency losses
through An = AH/H. The relation between the efficiency losses and the turbine
efficiency is simply n =1 — X An.

6.3.2 FEuler Head

According to the theory, the fluid angular momentum variation in the runner control
volume between the blade inlet and outlet surfaces, respectively sections 1 and 2,
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Figure 6.6: Example of Francis turbine, showing the water levels, simplified
hydraulic circuits and measuring planes.

is responsible for the blade torque. Considering no transient effects neither fluid
viscosity and assuming homogeneuous flow distribution at inlet and outlet for the
theoretical approximation, the net head, H, can be related to the product of the
radius, r, and absolute velocity tangential component, c,,.

w
nH = E (r1€u; — TaCu,) (6.4)

The term nH can be interpreted as the net head amount that the turbine can
convert into mechanical power. With the potential fluid theory, this equation can
be interpreted as the relation between the runner power and the fluid vectorial
velocity variation caused by the blades geometry.

The term (w/g) rc, is defined as the local Euler head, e.g. Hg, and Hg, at the blades
inlet and outlet. It follows immediately the expression for the Euler head, given by
its variation in the runner, Hy = Hp, — Hp, or by the effective head, Hp = nH.

In spite of the simplifications in the derivation of the Euler head, it is often used as
design parameter in the development of modern Francis turbines.

The classical turbine theory, based on the potential flow, assumes homogeneous
velocity distributions across the streamlines. This is reflected by the derivation of
the Euler head for each streamline. Nevertheless, the Euler head or local Euler
head can also be defined for arbitrary velocity distributions, through the mass flow
average. This kind of averaging is useful, when the local Euler head are desired as
design parameter in the evaluation of CFD simulations.
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6.3.3 Velocity Triangle

The velocity components in the runner are important for the design of hydraulic
turbines due to the relation between the angular momentum variation and the Euler
head. The velocity triangle offers the possibility to relate the velocity coordinates
in absolute and relative system to the runner rotational motion and blade angles.

Figure 6.7 shows an arbitrary conformal plane, with a typical example of the velocity
triangle in the runner. The absolute velocity is represented by c, with the tangential
and meridional components, ¢, and ¢,,. In the potential flow theory, there is no flow
in the conformal plane normal direction. The meridional velocity component, c,,,
is determined by the turbine volume flow and remains the same in the stationary
and rotating coordinate systems. The tangential velocity component in the absolute
system is ¢,. The relative velocity in the runner rotating coordinate system is w
and the peripheral velocity, associated to the runner rotational motion, is given by
U = rw. The angle « is measured in the stationary coordinate system and is formed
by the vectors U and c. The angle between the vectors U and w refers to the
rotating coordinate system and is represented by /(.

Classical turbine texts, as e.g. the one from PFLEIDERER [118], assume a; equal to
the guide vane outlet angle and 2 equal to the runner blade outlet angle, 35,. They
normally also sustain that the optimal runner blade inlet angle, 3, is the same as

B

Actually, the real fluid flow is more complicated than described in the potential
theory. For example, a; is strongly influenced by the guide vane opening. However,
it is not equal to the guide vane outlet angle. SCHILLING ET AL. [138] experimentally
showed that the optimum runner blade inlet angle, (., deviates from 3;, by
d; = B1 — By different from zero. They observed that the flow outlet angle S,
also deviates from the runner blade outlet angle S5, with 64 = B2 — Sas.

The relations between the vectors shown in Figure 6.7 can be analytically obtained
by vectorial sum, vectorial scalar product and angular relations. The vectors can
also be constructed graphically, as in Figure 6.7.

In the classical analysis of turbine blades, the flow inlet angle «; is derived from
the guide vane opening and with the known value of ¢,,,, ¢; is calculated. From
c; and Uy, the relative velocity vector, w; can be determined. At the outlet, [
is derived from the blade outlet angle and, with the value of ¢,,,, ws is calculated.
With known wy and Us,, the absolute velocity vector, co can be obtained.

The current modern hydraulic design process of Francis runners starts with the
prescription of the Euler head at the blade outlet, Hg,. Experience shows that the
optimum values for Hp, are function of the n, value. From Hg, and ¢,,,, the blade
outlet contour, which is function of r9, and the blade outlet angle, §,,, are chosen.
Taking the Euler head difference, for a given head, and assuming a turbine efficiency
value, Hp, can be calculated by nH = Hp, — Hg,. Experience also shows that there
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Figure 6.7: Typical velocity triangle for Francis runners.

is a range of blade inlet angles, 3., which optimise the design. In conjunction with
the required Euler head at the inlet, Hg,, and ¢,,,, the guide vane position and the
blade inlet contour are determined.

The runner design is supported by CFD simulations to predict the real viscous
and turbulent fluid flow and to allow the further geometric optimisation. This
is an iterative design process, as long as there are several parameter combinations,
which satisfy the above mentioned conditions. Moreover, there are other parameters,
which influence the blade geometry, as e.g. wrap, rake angle, curvature and thickness
distribution, among others. The runner blade design must not only satisfy the head
requirements, but also optimise the efficiency, guarantee reasonable cavitation safety
margins and provide safe mechanical design.

6.4 Hydraulic Similarity

At design phase, new turbine designs are usually tested in the laboratory or
calculated at the model scale, in order to optimise and predict the prototype
behaviour. The experimental or simulation results, obtained for the model machine,
need to be transposed to the prototype conditions. This is only possible, if the
hydraulic similarity laws are respected. In general, the geometric similarity and
given sets of dimensionless numbers must be considered.
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6.4.1 Dimensionless Numbers

The complete hill chart can be fully determined with two coordinates, usually the
machine head, H, and flow, (). To allow the transposition from the model to the
prototype, the unit speed, n), and the unit flow, @}, are used to locate the points
on the model hill chart.

Q= (6.5)

The machine rotation is given by n and the characteristic diameter, D, is usually
chosen as D, or D,,. The unit speed, n}, can be thought as an indirect measure of
the head, H, while the unit flow, @), is normally associated to the machine flow, Q.

At hydraulic similar operating conditions, the model and the prototype have the
same values of n| and @, apart from the local gravity acceleration correction,
ny/m, = Voau/Vgp and Q) /Q1, = 9u/\/gp. The subscripts M and P
denote the model and prototype values, respectively. The prototype head or flow,
for example, can be determined from the model n} and @} values.

Dimensionless numbers are also defined for the unit power, P/, related to the turbine
mechanical power, P, and for the unit torque, 77, associated to the turbine shaft
torque, T'.

P T
~ D T i

P (6.6)

Not all dimensionless numbers are equal at the model and prototype. This is the
case, for example, of the Reynolds number, Re. Such non-similarities are taken into
account with corrections formulae. To remain with the example of the Reynolds
number, the higher ratio between inertial and viscous forces, at the prototype, causes
lower viscous losses and the model efficiency is increased, when transposed to the
prototype. Other dimensionless numbers are seldom identical at the model and
prototype, as for example the Froude number, Fr.

Some defined dimensionless numbers, as the specific speed, n,, and the specific load,
K, are not needed for the transposition from model to prototype conditions, but
they provide information about the machine characteristic.

ng = T;{{E , K=n,H (6.7)

Hydraulic turbines are commonly classified according to the specific speed value at
the best efficiency point. Typical specific speed values for Francis turbines are found
between ng,, = 20 min~' and Mgy = 100 min~'. At low n, values the runner flow
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is predominantly radial, while at high n, values the runner flow becomes more axial.
From the dynamic point of view, Francis machines with low n, are more affected
by rotor-stator interaction (RSI) rather than by draft tube instabilities (DTI), with
the opposite occurring at high n, values, as reported by SEGOUFIN ET AL. [139)].

The specific load, K, is related to the power density. It also constitutes an
approximate reference number to indicate, how large the mechanical loads are. With
the current technology, values of specific load around K = 500 denote conservative
designs, while values approximating K = 900 are associated to aggressive designs.

6.5 Model Test

Most of the hydraulic characteristics of the turbine cannot be measured in the
prototype with enough accuracy. Moreover, some hydraulic parameters, as the net
head or suction head, cannot be freely imposed at the power plant. The model test
offers the possibility to measure the turbine characteristic at the laboratory, with
high precision. It is also used for the turbine optimisation, during the design phase,
as well as to proof contractual guarantees.

For the model test, the hydraulic machine is constructed homologously to the
prototype geometry at reduced scale. The model machine is mounted at the
laboratory between high pressure and low pressure vessels that allow the arbitrary
variation of the net and suction heads. Hydraulic pumps are responsible for
regulating the head and flow.

During the model test, the hydraulic turbine can be tested at every desired operating
point. Normally the efficiency, cavitation characteristics, runaway speed, hydraulic
thrust, guide vane torque and pressure oscillations are measured at the model test.
The measured model data is expressed in terms of dimensionless numbers, which
allow the transposition to the prototype. The experimental data is often expressed
as function of the dimensionless numbers n} and @} and graphically represented as
model hill chart, as in Figure 6.8.

Standards for the conduction of the model test, evaluation of the experimental results
and transposition to the prototype can be found in the TEC STANDARD 60193 [67].

6.6 Cavitation

Cavitation might be present in hydraulic turbines under certain operating
conditions. The flow acceleration, caused by smaller cross-sections or flow direction
changes, can reduce the water static pressure level, p, at some regions to values below
its vapour pressure, p,,. When this condition occurs, cavitation takes place. There
are different types of cavitation patterns, depending on the machine component and
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Figure 6.8: Example of model hill chart, showing efficiency and guide vane opening
isocurves.

operating condition. The Thoma number, o, defined below, is used as parameter
for the cavitation phenomenon.

ham - hva - Hs
o = ams 7 ) (6.8)

The ambient, i.e. barometric pressure, hg,;, and the water vapour pressure, h,,,
are dependent from environment conditions and are expressed here in water column
meters. The net head and the machine submergence are expressed by H and H;.

If the highest Thoma number value at the runner blades, o;, becomes higher than
the plant Thoma number, oy, cavitating bubbles develop at the blades surface,
configurating areal cavitation. In theory this condition can occur at any operating
point. However, this is more typical at full load operation. Still, the current design of
large Francis machines does not tolerate areal cavitation at real prototype conditions.

At full load and part load, an intense vortex can be found in the draft tube cone.
Its swirl velocities reduce the local static pressure and brings the vortex core to
cavitate. The resulting cavitating region can be well observed during the model test
and allows the visualisation of the draft tube vortex. This cavitating phenomenon
experiences moderate influence from the Thoma number.
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When the net head exceeds the turbine operating range, considered during the design
phase, leading edge cavitation might appear. At these extreme head conditions, the
inflow angle at the runner deviates significantly from the one of the blades inlet
and the flow separates at the runner leading edge. The separated flow develops into
vortices, whose core cavitates. This kind of cavitation is connected to the separation
and experiences low influence from op.

The channel vortex can also be observed through the cavitation phenomenon. As
in the case of the leading edge cavitation, the channel vortex comes from the flow
separation. At some operating conditions, the channel vortex is even related to the
leading edge separation. The channel vortex experiences moderate influence from
the Thoma number.

For some runner blade geometries and at given operating conditions, more typically
at full load and overload, vVON KARMAN [163] vortex streets may develop at the
trailing edges. Depending on the intensity of the vortex shedding and on o,;, the
vortices might cavitate.

Although the numerical simulation of cavitation is not considered in this study,
the cavitation phenomenon offers an interesting possibility to compare experimental
observations with numerical results. Since the cavitating regions can be visualised
during the model test, it is an indication that the pressure in this region is below the
vapour pressure. When analysing the numerical simulation results, the isobarometric
surfaces, with the value p,,, allow the qualitative comparison with the experiments.

The cavitation limits are usually marked in the hill chart, as exemplified in
Figure 6.9. Detailed information about the cavitation phenomenon in hydraulic
turbines can be found, among others, in FRANC ET AL. [46] and in AVELLAN [11].
Basic knowledge about the cavitation phenomenon is brought by e.g. YOUNG [175].

6.7 Operating Range and Operating Points

The turbine operating range defines a closed region of the model hill chart, where
the turbine can be continuously operated. Inside the operating range, operating
points are defined. These are points, at which the machine is often operated, points
with special requirements or points, which are chosen for the machine design or
performance evaluation. The turbine design has to guarantee in the whole operating
range and especially at the operating points the agreed efficiency level, cavitation
safety, pressure oscillation amplitude, hydraulic forces limit, runaway limit and
structural safety, among others.

The model hill chart region, associated to the operating range, is commonly defined
by curves corresponding to constant maximum head, H,,,,;, constant minimum head,
H,.;», constant maximum power, P, constant maximum guide vane opening,
AYmaz, and minimum power, P, as function of the maximum power at each head.
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Figure 6.9: Example of cavitation limits on the model hill chart.

Figure 6.10 shows an example of operating range, defined in this way. Instead of
constant guide vane opening, the higher flows may also be limited by the cavitation
limit as function of the tail water level.

The maximum and minimum head limits are imposed to avoid the flow separation
at the runner blades leading edge. The maximum turbine power is limited by the
generator capacity. The maximum guide vane opening is imposed by mechanical
limits or by the cavitation safety at the point with the highest volume flow,
(Qmaz- The minimum power is often defined as a fraction of the maximum power,
with the objective to limit the pressure oscillation amplitudes in the turbine and,
consequently, to keep the structural loads within reasonable limits.

Some of the important points inside the operating range are associated to maximum
and minimum head and maximum and minimum power. High static mechanical
loads in Francis turbines are often related to the point with maximum head and
maximum power, (Hu, Praz), to the point with minimum head and maximum
power, (Hin, Praz), and to the point with maximum flow, @ ... Normally, the two
last points also present the lowest cavitation safety margin.

The part load operating points are relevant for the dynamic mechanical loads due
to the pressure oscillations in the turbine. Therefore, the point with minimum head
and minimum power, (H ., Pmin ), and the point with maximum head and minimum
power, (Haz, Prin), should be considered in the design of Francis turbines.
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Figure 6.10: Example of prototype operating range.

The rated point definition may depend on the customer or manufacturer philosophy,
often presenting more informative character rather than design meaning. The rated
point is commonly defined as the point with maximum power, P,,,,, maximum flow,
Qmaz, and maximum guide vane opening, A,z

The optimum clearly corresponds to the point with the best efficiency, 1oy, in
the overall model hill chart. Especially for machines with high specific speed, the
optimum may lie beyond the leading edge cavitation limit at the blade suction side,
thus, beyond the maximum head limit, outside the prototype operating range.

6.8 Instationary Effects

The operation of hydraulic turbines involves numerous dynamic aspects, concerning,
among others, the fluid flow and the structure vibrations. Depending on the machine
characteristics and on the operating conditions, dynamic phenomena, as rotor-stator
interaction, flow instabilities, separation and vortex shedding, can take place. The
runner structure is excited by these effects, leading to its dynamic motion.

In the past, hydraulic turbines counted with very massive constructions, when
compared with current designs. ULITH [157] argues that, for this reason, the
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Figure 6.11: Regions related to dynamic effects in the turbine hill chart.

dynamic effects could seldom be observed in old machine constructions and that, in
recent years, they became an important issue in the design of hydraulic machines.

The dynamic effects in hydraulic turbines are associated with the location of the
operating points in the model hill chart. Four major regions can be identified, as
seen in Figures 6.11 and 6.12. Figure 6.11 shows the different regions at the model
hill chart, while Figure 6.12 qualitatively illustrates these regions over a cross section
of the model hill chart. According to the dynamic effects, the different regions can
be identified as the rope free zone, the full load and overload zone, the part load
zone and the deep part load zone. Inside the full load and overload region, the full
load instability zone may exist for particular machines. Inside the part load region,
the higher part load zone might be present. The definition of these regions, their
description and the theoretical discussion about the dynamic phenomena taking
place in each of them are presented in the sequence. Figure 6.13 summarises the
typical flow patterns observed at the model test according to the different regions.

6.8.1 Rope Free Zone

The rope free zone is usually located around the best efficiency point (BEP), i.e.
around the optimum, or close to it, as depicted in Figure 6.11. In this region, the
swirl at the turbine outlet is close to zero and the velocity profile at the draft tube
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Figure 6.12: Regions related to dynamic effects at the turbine hill chart cross section.

inlet is extremely homogeneous. In the rope free zone, the pressure in the draft tube
cone is high enough to prevent the flow from cavitating. Under these conditions, no
important fluid flow instabilities take place in the draft tube cone and no vortex rope
or torch can be observed during the turbine model test, as exemplified in Figure 6.14.
Due to these favourable flow conditions, the pressure pulsations in the draft tube
are considerably low.

In the rope free zone, the dynamic phenomenon, which becomes more important is
the rotor-stator interaction (RSI). This effect comes from the interaction between
the turbine runner, which is rotating, the guide vanes, which are stationary, and the
inhomogeneous pressure distribution along the spiral case. With the relative motion
between runner and guide vanes, the inflow velocity vector at the runner varies and
leads to pressure pulsations. Each time that a blade leading edge passes behind
the trailing edge of a guide vane, a pressure pulse is originated, being responsible
for the pressure oscillations. The inhomogeneous pressure distribution at the spiral
case is seen by the runner as a dynamic load, because of its rotational motion. In
the rotating reference frame, the spiral case pressure distribution rotates around the
runner.

The runner excitation through the spiral case pressure distribution has the same
frequency as the machine rotation, f,. The excitation through the guide vanes
passage occurs with the frequency zq f,,, where 2y is the number of guide vanes.



116 CHAPTER 6. CONCEPTS OF HYDRAULIC TURBINES

Ay
. >
Rope
free
Deep part load Part load zone Full load

Figure 6.13: Flow patterns associated to dynamic effects in the different hill chart
regions.

The rotor-stator interaction (RSI) is present in all the operating range of the
machine. Its intensity mostly depends on the distance between the runner leading
edge and the guide vane trailing edge, as well as on the shape of the runner leading
edge. High head Francis turbines, with low n, values, are more subjected to strong
rotor-stator interaction (RSI), due to the small gap between runner and the guide
vanes, while low head Francis machines, with high n,, are not so concerned by this
dynamic effect, as observed by BREKKE [22].

At high head machines, with low n, values, the distance between the runner blade
inlet edge and the guide vane outlet edge is considerably small and it may lead, in
some cases, to the propagation of pressure waves in the guide vanes channels, in the
stay vanes channels and even in the spiral case. The pressure waves are associated to
the water compressibility. This effect has already been observed in some prototype
machines, as reported by LIESS [85] and DORFLER [35], and it could be simulated in
a Francis pump-turbine considering the water compressibility by YAN ET AL. [173].

6.8.2 Full Load and Overload

The full load and overload regions are situated above the rope free zone, as seen
in Figure 6.11, and are characterised by the set-in of the torch vortex in the draft
tube cone. Full load and overload have essentially the same characteristic and their
distinction is just a matter of definition in particular projects. At full load and
overload, the pressure in the draft tube cone becomes lower and brings the vortex
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Figure 6.14: Example of the free rope zone observation during the model test.

core to cavitate, making it visible, as seen in Figure 6.15. At this operating condition,
the swirl at the turbine outlet is in many cases negative and the vortex is stable,
assuming a pattern similar to a torch. The pressure pulsations coming from the
vortex at this operating condition are typically very low.

At full load and overload, the rotor-stator interaction (RSI) is present and
is, commonly, the principal dynamic effect, being responsible for the pressure
oscillations. ~ The rotor-stator interaction (RSI) was covered in the turbine
simulations performed during this study.

Most typically at full load and overload, von Karman vortex streets may be observed
at the runner trailing edge of some Francis turbines. The vortex shedding can reach
high excitation frequencies and in cases, where the runner trailing edge geometry
is not optimise with chamfers to reduce the amplitude of the von Karman vortices,
this effect might even lead to structural damages.

6.8.3 Full Load Instability

Few machines can experience a rare, but severe phenomenon, called full load
instability, as investigated by ALLIGNE ET AL. [2]. When present in the turbine,
this effect is restricted to a very thin range of guide vane openings, at high opening
angles, usually beyond the machine operating range. The portion of the turbine hill
chart, where the full load instability may appear is located inside the full load and
overload region, as shown in Figure 6.11.

The full load instability is characterised by the pulsation of the torch vortex, as
described by KOUTNIK, FAIGLE AND MOSER [74]. Through the variation of the
vortex radius, the cavitating fluid volume also changes and induce strong pressure
pulsations. The symmetrical shape of the pulsating vortex produces a symmetrical
pressure oscillation field in the draft tube, leading to possibly high head and torque
variations in the runner. The head variations and the associated synchronous
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Figure 6.15: Example of the full load torch observation during the model test.

pressure pulsations might propagate through the complete machine. At the full
load instability region, the torch vortex has the same appearance as in full load and
overload, with the exception of its larger radius.

The occurrence and magnitude of the full load instability is highly dependent on the
runner deflector geometry and on the Thoma number, o. According to ULITH [157],
in the cases where this phenomenon takes place, the volume flow is greater than
1,35 Qop: and its oscillating frequency is found between 0,10f, and 0,25f,. The
study of this two-phase fluid flow effect is beyond the scope of this text.

6.8.4 Part Load

The part load zone is found below the rope free zone, as identified in Figure 6.11,
and begins with the set-in of the rotating vortex rope in the draft tube cone.
RHEINGANS [121] was one of the first to identify this phenomenon in hydraulic
turbines. He was also able to determine the characteristic frequency of this effect,
which is normally between 0,25f, and 0,35f,. The vortex rope assumes a spiral
shape, as observed in Figure 6.16.

The flow pattern in the draft tube is primary dependent from the volume flow and
from the runner outlet swirl. At part load, the volume flow is lower than at the rope
free zone and the swirl assumes increasing positive values. At these flow conditions,
dynamic instabilities arise in the draft tube cone and the vortex rope is the result
of the vortex breakdown, as explained by SARPKAYA [136].

The pressure pulsations at part load may assume great amplitude, being higher
for machines with high n, and being lower at low n, values, as confirmed by
BREKKE [22]. The pressure oscillation under this condition is often spread through
all the hydraulic passage and might be noticed even at the spiral case. The Thoma
number has often limited influence on the pressure pulsations in the draft tube cone
at normal part load.
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Figure 6.16: Example of the part load vortex rope observation during the model
test.

Due to the important participation of part load in the pressure pulsations taking
place in the machine, the investigation of this operating condition, of the associated
draft tube instabilities (DTI) and of the rotating vortex rope constitutes an
important part of this study.

6.8.5 Higher Part Load

The higher part load (HPL) region is located inside the part load zone, as represented
in Figure 6.11, and it is limited to an extremely narrow range of guide vane openings.
This phenomenon is not always present in the turbine and it strongly depends on
the runner deflector geometry and on the Thoma number. The higher part load is
characterised by high pressure oscillation amplitudes, normally the highest over the
complete hill chart.

This phenomenon has first been identified in Francis turbines in the last decades and
its essential nature is still not completely revealed. Due to the recent identification of
the higher part load effect, extremely few research material is available on this topic.
In one of the few publications about this subject, KOUTNIK ET AL. [75] observed
that the vortex rope, at higher part load, rotates about itself, that it assumes an
elliptic shape and that its frequency is typically between 2,5f,, and 5,0f,. NICOLET
ET AL. [112] have performed the same observations as well.

To the author knowledge, until present in no published work there has been the
attempt to numerically simulate the higher part load phenomenon. The very
first successful numerical simulation of this effect in Francis turbines has been
reported by MAGNOLI AND SCHILLING [92], as part of this research work. The
choice of the machine and of the operating points allowed the quite accurate
numerically prediction of the higher part load phenomenon. The calculation results
and the comparison with experimental data is available within the simulation results
contained in this study.
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6.8.6 Deep Part Load

Below the part load region, one can find the deep part load zone. It begins with
the set-in of the channel vortex, as marked in Figure 6.11. The theoretical and
numerical studies about the deep part load are still very limited.

The channel vortex comes from the flow separation in the runner. The separation
takes place normally at the blade leading edge, but it may also occur at the crown.
An example of channel vortex is found in Figure 6.17.

At moderate deep part load, the vortex rope continues influencing the pressure
pulsations and the Rheingans frequency can still be found. As the turbine flow
is reduced, the inlet flow angle at the runner deviates more and more from the
design values and the separated flow region becomes larger. The flow becomes
progressively more chaotic, up to the point that no characteristic frequency can be
identified. XINGQI ET AL. [172] empirically identified high pressure pulsation values
associated to the flow separation at deep part load.

The channel vortex is also characterised by the cavitation of the separated flow. This
cavitation phenomenon might explain the strong influence of the Thoma number on
the pressure pulsations at deep part load and why different machine components,
e.g. spiral case and draft tube, are diversely affected by the o values.

Because of the strong effect of the cavitation phenomenon at low volume flow values,
this study was limited to the analysis of deep part load operating points close to the
set-in of the channel vortex.

6.8.7 Start-Stop Operating Conditions

Some transient conditions in the turbine operation are related to the start and
stop of the machine. The normal start and stop are controlled procedures, which
should assure the smooth operation of the turbine. Nevertheless, malfunctions at
the electric or hydraulic machine may lead to the sudden shut-off of the turbine or
to the runaway condition.

Start-Stop

When the machine is started, the guide vanes are progressively opened and the
turbine goes from the origin of the hill chart, n} = 0 and @} = 0, to a point of small
guide vane opening, where the torque is just enough to accelerate the shaft to the
synchronous speed and to overcome the mechanical losses. At this condition, known
as speed-no-load, the generator is synchronised with the electrical circuit and the
turbine is operating in a condition similar to runaway, but at small and controlled
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Figure 6.17: Example of the channel vortex observation during the model test.

guide vane opening. From this moment on, the machine can progressively take power
load, until the desired operating point is reached.

At the normal machine stop, the power load is smoothly removed from the machine
and the guide vanes are progressively closed, until the generator is disconnected
from the electrical circuit. The guide vanes are completely closed and the turbine is
stopped by the actuation of the generator mechanical breaks.

Speed-no-Load

When operating at speed-no-load, the machine runs at the synchronous speed and
the generator is synchronised with the electric circuit, so that the machine is able
to take power load at any moment. At this condition, the turbine required torque
is just enough to equilibrate the mechanical losses and it operates with small guide
vane openings. At speed-no-load, the machine is actually running in a condition
similar to runaway, with ny = nj_, but at synchronous speed. Depending on the
operating philosophy, some turbines might operate several hours at speed-no-load,
with the objective to provide immediate power reserve to the overall electrical grid.

Load Rejection

There are exception cases, in which the machine is operating at normal power load
and the generator has to be suddenly disconnected from the electrical grid. At
the load rejection condition, the turbine torque is no longer equilibrated by the
resistive electromagnetic moment and the machine accelerates, until the guide vanes
are rapidly closed. The turbine overspeed reaches, typically, values between 15%
and 40%. The fast closure of the distributor leads to a water hammer in the
hydraulic circuit upstream from the guide vanes. In the runner and draft tube,
the pressure assumes low values and oscillates, as consequence of the fast machine
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shut-off. Typical overpressure values, caused by the water hammer, are between
15% and 50% at Francis machines.

Runaway

At the runaway condition, the generator from the hydraulic turbine is unexpectedly
and suddenly disconnected from the electrical grid and the guide vanes cannot be
closed, for any kind of malfunction. In this situation, the resistive electromagnetic
torque at the generator disappears and does not equilibrate the turbine torque any
more. The turbine accelerates up to the runaway speed, which can reach, depending
on the machine design, 1,5 up to 3,0 of the nominal rotational speed, n. The
dimensionless runaway speed, n}_, can be measured during the turbine model test.

ULITH [157] explains that, at the runaway, the defective inflow angle at the runner
causes the massive flow separation at almost the whole blade extension. The shaft
moment becomes lower and lower, up to the point that just a thin healthy flow
near to the band is responsible for the turbine torque, which is just as large as the
mechanical losses.

6.8.8 Transposition to Prototype

The pressure oscillation amplitude is normally simply scaled from the model to the
prototype through the head similarity, as recommended by the IEC STANDARD
60193 [67].

AHp_g_M(np Dp)2 (69)

AHy gp \nym D
In most of the cases, this approximation is enough accurate. Nevertheless, depending
on the specific machine design and power plant conditions, the transposition is
not completely correct. This may occur because of the non-similarities between
the model and the prototype, which can be geometric or related to dimensionless
numbers, as e.g. to the Froude number, Fr. In the cases of discrepancy between
the model and the prototype, the influence and interaction with the power plant
hydraulic circuit constitute the most probable reasons.

6.8.9 Loads for Fatigue Analysis

At the design phase, the load history definition for the runner fatigue analysis can
be assumed based on the machine dynamic characteristics and on the expected
operating range. For the fatigue assessment, it is necessary to know, what the
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desired fatigue life is, how many hours the machine will operate at each operating
condition per year, how many starts and stops are expected per day and what is the
probability per year that the turbine goes into the runaway condition.

The fatigue life is defined according to the turbine manufacturer quality standards
and safety factors or on customer requirements. The operating hours at each
operating condition are sometimes precisely defined by the customer, otherwise, they
have to be estimated from the given turbine operating points and their weights.
If not defined by the customer, the number of starts and stops per day and the
probability of runaway have to be assumed during the turbine design based on the
experience.

At continuous operating conditions such as full load, part load, deep part load and
speed-no-load, the static and alternating mechanical stresses are derived from the
structural analysis, performed with the instationary fluid simulation output. The
normal start and stop operating conditions are simply approximated by a dynamic
mechanical load, starting from ¢ = 0 and whose amplitude is equal to the static
mechanical load at the reached operating point, o, = o, and 0, = 0,/2. Among
others, this calculation procedure is suggested by HUTH [66]. The same procedure
is adopted for the runaway condition, but assuming that the stresses go from the
normal level from continuous operating conditions to the runaway stress level.






Chapter 7

Turbine Fluid Flow Simulation

One of the main goals of this study was to apply the previously discussed
mathematical and numerical methods to investigate the dynamic behaviour of real
hydraulic turbines, concerning the fluid flow, the structural strength and their
interaction. The precise simulation of the machine allowed achieving the additional
goal of predicting the runner fatigue life and fatigue strength, leading to the objective
of optimising the turbine design and avoiding structural failures.

In this context, this chapter shall explain how to apply the mathematical and
numerical methods to the turbine calculation. The developed numerical model
of the machine and the chosen numerical parameters are described and proofed
with experimental data. The calculated results are presented and allow the deeper
understanding of the hydraulic turbines dynamic behaviour and the prediction of
important parameters, relevant for the machine design and operation.

7.1 Turbine Characteristics

The turbine model took as example for the investigations was a Francis vertical
machine, with specific speed n,,,, = 80,3 min~!, with recent hydraulic design and
which was already used for numerous prototypes in operation today. This machine is
identified here by FT 80. The model counted with 2y = 24 guide vanes and 2z, = 13
runner blades. This turbine model was chosen, because, as stated by FARHAT ET
AL. [39], experience showed that Francis machines with high specific speeds are more
susceptible to most types of instationary fluid flow phenomena, which might damage
the runner in some cases. Therefore, this application example allowed drawing
practical conclusions about the general dynamic behaviour of Francis turbines and,
at the same time, configured a challenging case from the point of view of the
numerical simulation.

125
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7.1.1 Experimental Data

Model test results were available for the F'T 80 and offered the possibility to proof
part of the computational calculated values with the reality. Figure 7.1 presents
the machine configuration during the model test and the measuring points. Four
pressure transducers were used at the spiral case inlet and another eight, four at
each draft tube outlet side, to measure the net head, H. The flowmeter for the
determination of the total volume flow, (), and the electrical devices for measuring
the shaft torque, T, and rotation, m, are not shown. Four additional pressure
transducers were located at the draft tube cone, with the only objective to watch
the pressure fluctuations.

The measured values in the model test are expressed, through the similarity law, in
terms of dimensionless parameters: the unit speed n}, unit flow @}, unit power P;
and unit torque 77. They can be thought as indirect measures of the head, flow,
power and torque.

Other values were also measured, which are themselves already dimensionless: the
model efficiency 7, the cavitation coefficient or Thoma number ¢ and the distributor
or guide vane opening Ar~.

Considering P/, 7] and 7, just one of them is necessary to fully characterise one
operating point, since P = npgQ; and P = 27/60 T|n].

To make the results more general, they are all presented in terms of normalised
variables in relation to the values at the optimum or best efficiency point (BEP).
Figures 7.2 and 7.3 show the experimentally determined model hill chart. The
normalised efficiency, 7/7op:, guide vane opening, A7y/A7v,,, and unit power,
P[/P; , are plotted in Figure 7.2 as function of the normalised unit speed, nj/n},
and unit flow, Q1/Q], ,. Figure 7.3 contains the normalised opening, the Thoma
number, o, the cavitation fixed limits for the leading edge at the pressure and suction
sides and the set-in of the channel vortex at deep part load. Both figures count with
the graphical representation of the machine operating range and selected operating
points.

Additional model hill charts are presented in Figure 7.4, where the amplitude of the
pressure fluctuations, AP, at the four draft tube measuring points can be seen.

The pressure pulsation values contained in the experimental results were considered
in relation to the time domain, i.e. they refer to the pressure signal variation along
the time:

Ap(t)=p—p (7.1)

The pressure is a function of time and varies from point to point, p = p(x,y, 2, t).
The same applies to the pressure oscillation, Ap = Ap (z,y, z,t). The time-averaged
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pressure, p = p(x,y, z) is approximated over the time period ¢, —¢;, which is chosen
considerably long in relation to the phenomenon of interest.

1 b2
p= / pdt (7.2)

to —t1 Jy

The experimental data presented here brings the pressure pulsation characteristic
amplitude, as defined and recommended by the IEC STANDARD 60193 [67]. The
characteristic amplitude is similar to the simple signal amplitude, with the difference
of applying statistical methods to eliminate spurious maxima and minima, induced
by the measurement error and interactions with the test rig.

As long as there were no external factors, which could perturb the numerical
simulations, as it might be the case for experimental values, the pure signal
amplitude was considered for the computational results.

AP = % [maxp (t) —minp(¢)], AP = % [max Ap (t) — min Ap (¢)] (7.3)

The amplitude defined here follows the mathematical definition and is the half
peak-to-peak value. Numerous studies bring the peak-to-peak value and several
experiments use the expression peak-to-peak characteristic amplitude. If the
comparison from the results here with other references is desired, it might be
necessary, in some cases, to multiply the values here by two.
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Figure 7.2: Turbine model hill chart, showing efficiency, guide vane opening, power
and the simulated points.

The pressure pulsation measurements were performed at stationary points at the
wall of the draft tube cone. Assuming the non-slip condition, the fluid velocity
at the wall was constantly equal to zero, ¢ = 0. The location of the measuring
points did not change, resulting in no elevation variation, Az = 0. Considering the
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Figure 7.3: Turbine model hill chart, showing cavitation fixed limits, Thoma number,
guide vane opening and the simulated points.

stationary local head at a fixed point at the wall, h = ¢*/(2g) + p/ (pg) + z, the
head oscillation amplitude, AH, could be directly related to the pressure oscillation
amplitude, AP.

AP AH AP

: 7.4
] H  pgH 74

AH

Because of the direct relation between AH and AP/ (pg), the pressure oscillation
amplitude is often denoted by AH and expressed in per cent of the turbine net head
as AH/H. Nevertheless, the notation AP/ (pgH) was preferred here.

At the pressure pulsation hill charts, in Figure 7.4, it can be observed that there is
no experimental data available for high guide vane openings and @} values. If full
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Figure 7.4: Turbine model hill chart, showing pressure pulsation amplitude and the
simulated points
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load instabilities were to be present in this machine, they would have been missing
in the model experimental data. Since the simulation of the full load instabilities
was not in the focus of this study, this limitation regarding the experimental data
was not relevant here.

7.1.2 Operating Points

The operating points chosen for the numerical simulations presented most of
the typical dynamic flow phenomena, which take place in Francis turbines, e.g.
rotor-stator interaction (RSI), draft tube instabilities (DTI) and runner channel
vortex (RCV). For all simulated points, there were experimental measurements of
head, flow, efficiency and pressure pulsations. The selected operating points are
presented in Table 7.1, with their normalised values for n}, @}, 1] and 7, as well
as the pressure oscillation amplitude and frequency at the measuring points in the
draft tube cone. The position of the operating points in the hill chart is plotted in
Figures 7.2, 7.3 and 7.4.

The optimum is the best efficiency point, denoted by OP 1. At this point, no
significant dynamic effects were to be expected, as long as the flow incidence at
the runner blades and the runner outlet velocity profile are designed to be optimal,
resulting in the smallest efficiency losses. This point should only pose difficulties
for the numerical simulation in what concerns the rotor-stator interaction (RSI)
between the spiral case, stay vanes, guide vanes and runner.

The rated operating point corresponds, in the case of the FT 80, to the prototype
maximum guide vane opening, maximum power and maximum flow, identified by
OP 2. Again, no important instabilities in the draft tube cone were to be expected.
However, due to the high power and flow, high static structural loads were expected.
From the numerical point of view, it should pose the same difficulties as the optimum
point.

The operating point OP 3 is found between the optimum and rated and corresponds
to the maximum prototype head at full load. Its flow characteristics should be

Table 7.1: Operating points chosen for the numerical simulations.

Y AP/ (pgH) I
Operating Point n’lm Qllopt Tl’m Nopt HW  90° TW  270° fn
O R C R O BN G %) (%) (%) (B )
OP 1 Optimum 1,000 1,000 1,000 1,000 0,41 038 0,39 049 0,220
OP 2 Rated 1,103 1,229 1,083 0972 036 039 038 040 0,165

OP 3 Full load high head 1,070 1,102 1,022 0,993 0,29 0,32 0,33 033 0,610
OP 4 Full load low head 1,199 1,228 1,000 0,977 0,32 0,35 039 039 1,740
OP 5 Part load high head 1,078 0,797 0,693 0,938 4,70 3,65 4,28 525 0,302
OP 6 Part load low head 1,199 0,848 0,644 0,910 529 451 571 6,78 0,282
OP 7 Deep part load 1,043 0,570 0,452 0,828 454 4,00 4,29 4,95 0,299




132 CHAPTER 7. TURBINE FLUID FLOW SIMULATION

similar to the optimum and rated points. From the structural point of view, this
point should be responsible for high stresses, because of the high head and load. The
rated and the full load and high head operating points could also serve as test cases
for the vortex shedding prediction at the runner trailing edges, since these vortical
structures could be observed at the model test.

One additional point, OP 4, is located at the minimum head, i.e. maximum n} for
the plant, and maximum guide vane opening. This point is also located at the full
load portion of the hill chart and was chosen because it lays at one of the limits of
the machine operating range. From the numerical point of view, its simulation is
similar to the three preceding points.

The remaining simulated operating points are found at part load. This flow regime
is characterised by strong flow instabilities in the draft tube cone, as reported by
C10cAN, MOMBELLI AND AVELLAN [27]. The part load simulation constituted
one interesting challenge for the numerical model. Moreover, the highest pressure
pulsation amplitudes in the machine take place at part load operating conditions.

One of the simulated points is part load at high head, OP 5. At this typical

part load operating point, the flow magnitude in comparison to the optimum is

Q}/Q) . = 0,797 and its position in the model hill chart is found inside the region
opt

of high pressure pulsation amplitudes.

At part load and low head, the simulated operating point, OP 6, with
Q,/ Q’lm = 0,848, is located in the narrow portion of the hill chart, where the
higher part load phenomenon takes place. The pressure pulsation amplitude is even
higher than at normal part load, caused by the elliptical shape and self-rotation of
the vortex rope in the draft tube cone. This operating condition is very challenging
for the computational model and was first numerically simulated by MAGNOLI AND
SCHILLING [92].

The last part load operating point, OP 7, can be found at the deep part load portion
of the hill chart. This point corresponds to the lowest prototype power and flow,
Q,/ Q’lupt = 0,569, in its whole operating range. At this condition, the flow presents
one more dynamic aspect, as long as the channel vortex is well developed inside the
runner blades channel, as depicted in Figure 7.3. In several prototypes, this point
would be outside of the operating range, as well as the hill chart region below the
part load operating points OP 5 and OP 6. For the prototype in question here,
the portion of the operating range corresponding to deep part load corresponded to
approximately 10% of the operating hours.

The rated operating point, OP 2, was taken for the computational tests and
validation of the numerical parameters for the stationary flow simulation.

The optimum, rated, full load at high head, part load at high head and part load
at low head operating points, OP 1, OP 2, OP 3, OP 5 and OP 6, were employed
for the comparison with the experimental data, regarding head, flow and efficiency.
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The part load operating points OP 5 and OP 6 were also used for the verification
of the instationary fluid flow simulation parameters and turbulence modelling in
transient flow conditions.

At the full load operating points, OP 2, OP 3 and OP 4, the dynamic flow effect
was essentially the rotor-stator interaction (RSI). The part load operating points,
OP 5, OP 6 and OP 7, were dominated by the draft tube instabilities (DTI). At
deep part load, OP 7, the runner channel vortex could also be observed.

The operating points OP 2, OP 3, OP 4, OP 6 and OP 7 correspond to the limits
of the prototype operating range, which can be observed in Figures 7.2, 7.3 and 7.4.
Together, they combine most of the dynamic fluid phenomena, which can take place
in Francis turbines. These points shall also be responsible for the most extreme
continuous operating conditions in the prototype machine, being of interest for the
structural simulation and fatigue assessment as well.

7.2 Fluid Simulation Numerical Setup

7.2.1 General Settings

The numerical model shall reproduce as accurately as possible the model machine
behaviour at the test rig. Therefore, numerous numerical schemes and parameters
were tested and verified with the available experimental results. The model accuracy
was assessed on terms of its agreement with the measured head, flow, torque and
efficiency. To test the numerical model accuracy, 5 from the 7 different operating
points in the machine hill chart were chosen. They correspond to optimum (OP 1),
rated (OP 2), normal operation (OP 3), partial load at high head (OP 5) and at
low head (OP 6).

The validation step is considered to be absolutely necessary, in order to achieve
reliable numerical results for the intended pressure pulsations simulation. The tests
and the final simulations were carried out both with the NS3D code, developed by
the Institute of Fluid Mechanics (FLM) from the Munich University of Technology
(TUM), and with the commercial code CFX [4] from ANSYS.

Geometry

The numerical model geometry reproduced exactly the geometry of the water
passages of the spiral case, stay vanes, guide vanes, runner and draft tube. In
other words, the geometry presented no deviations between the model machine and
the numerical model. This statement applies to the trailing edge geometry of the
runner blades as well. In the original model test, the blades trailing edges were
blunt. The numerical model counted with geometric extensions at the inlet, before
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the spiral case, and at the outlet, after the draft tube. The purpose was to avoid any

undesirable influence of the numerical boundary conditions on the region of interest
for the fluid flow.

The only simplification in the machine was the suppression of the runner seals and
runner side chambers. They are respectively responsible for the seal leakage and disc
friction at the runner. In Francis turbines with high specific speed, as in the case
here, these secondary flows are negligible for the runner fluid dynamics. According
to LIESS ET AL. [86], VIANO [160] and SCHILLING [137], the leakage and friction
losses can be determined algebraically with empirical factors and, for the machine
studied here, they represented no more than 0,22% and 0,21%, respectively.

All the simulations were performed at the model scale, allowing the direct
comparison with the available experimental model test data. This approach assured
the same conditions for the model test and for the numerical model, including the
Reynolds, Re, and Froude, Fr, numbers similarity.

Keeping in mind the machine dimensions, another advantage was the proportionally
thicker boundary layer in the model machine as in the prototype, which allowed the
resolution of the boundary flow with moderate number of cells. Typical values at
the model machine are Re ~ 107, while in the prototype they are typically Re ~ 108.
The transposition of the model results to the prototype was carried out with the
hydraulic similarity laws.

Pressure, Head, Flow, Torque, and Losses Evaluation

The net head, H, in the numerical model was evaluated in the same manner as in
the model machine, following the IEC STANDARD 60193 [67].

A A
H = p_zt’ Ap; = pTc + AD + pgAZ (7.5)

As specified in the standard, the average of the square velocity, ¢, is calculated with
the area averaged velocity value, given by )/A, where A is the cross-sectional area
of the measuring section. The average pressure, p, is given by the mean value of the
pressure transducers measurements. The average elevation Z is the mean elevation
of the pressure transducers position, at each measuring section.

According to the theory, the total pressure, Ap;, should be determined with the
mass-averaged values of the square velocity, ¢2, of the pressure, p, and elevation,
Z. However, the IEC STANDARD 60193 [67] specifies the head determination
during the model tests as described above for practical reasons and experimental
limitations. The net head calculated with the numerical model could have been
evaluated with mass-averaged values, but for the consistency in the comparison with
the experimental values, it followed the method specified by the IEC STANDARD
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60193 [67]. Nonetheless, the numerical simulation results showed that the deviation
in the head values computed with the experimental model test method and with the
mass-averaged values was below 0,1% for the chosen simulation points.

As long as the water was assumed as incompressible, the flow in the numerical
simulations, (), was calculated by the area integration of the normal velocity at the
outlet of the computational domain.

Q= / cimid A (7.6)

At the numerical model inlet and outlet, monitor points located at the same position
as the pressure transducers in the model machine were responsible for the numerical
pressure measurement. The elevation, z, where the numerical measurements were
performed, was the same as in the model test, due to the identical geometry of the
numerical and experimental models.

The numerical torque on the runner water passage was determined by the area
integration of the moment caused by the pressure on the hydraulic surfaces:

Tk = /ripjnjeijde (77)

The hydraulic head losses, AH, at the spiral case, pre-distributor, distributor and
draft tube were evaluated by the mass-averaged total pressure difference between
their inlet and outlet. At the inlet and outlet of each component, control surfaces
were defined and the mass-averaged total pressure was calculated at them. The
efficiency loss at each component was directly calculated by An = AH/H.

The head losses at the turbine runner could not be calculated only by the mass
averaged total pressure difference between its inlet and outlet, because the most
part of the hydraulic energy is converted in rotational work. From the total pressure
difference between runner inlet and outlet, the amount, which was used for producing
the runner torque, had to be subtracted, in order to obtain the runner head losses:

ﬁt in ﬁt, w,out Tw AHru
AHTU — U, N ru,out 7 Anru — 78
Py p9Q H (78)

The head losses at the runner seals and runner side chambers were estimated, based
on the works from LIESS ET AL. [86], VIANO [160] and SCHILLING [137]. The
head losses associated to these effects were considered in the computation of the
numerically predicted turbine efficiency. For the analysed operating points, the
estimated losses at the best efficiency point coming from the seals and disc friction
did not exceed 0,22% and 0,21%, respectively.
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The simulated total head loss in the turbine was simply the sum of the head losses in
the different components. Alternatively, the total efficiency loss could be obtained
by the sum of the individual efficiency losses. The turbine efficiency could be directly
derived by n=1—-X Anorn=1—-% AH/H.

The numerical simulated pressure pulsations were obtained directly from the time
history of the calculated pressure at the monitor points in the numerical model.

Mesh Generation

The first step in the numerical model preparation was the mesh generation. As long
as an important part of the pressure oscillations arises from the interaction between
the stationary and rotating components, the complete machine was simulated and
the computational grid considered all the machine components: spiral case, stay
vanes, guide vanes, runner and draft tube.

The single components were separately meshed, using their own appropriate mesh
strategy and using exclusively structured hexahedral grids. They were coupled
together for the numerical simulation with non-matching interfaces. The grid for
the complete machine simulation contains slightly more than 6 million cells. The
stay vanes, guide vanes and runner were meshed using the IDS software, developed
by the FLM, while the spiral case and the draft tube made use of the commercial
code ICEM [6] from ANSYS. The turbine blading, i.e. stay vanes, guide vanes and
runner, counts with the multiblock mesh strategy and with H-grids next to the
blading profiles. The spiral case and the draft tube were meshed with O-grids.

Figures 7.5 and 7.6 show the finite volume grid used for the numerical simulations.
At Figure 7.5, on the left, the meshing at the spiral case wall, at the stay vanes, at
the guide vanes, at the runner crown and at the pier nose can be observed. On the
right, the stay vanes, guide vanes, runner band and part of the draft tube can be
visualised. At Figure 7.6, on the left, the spiral case and draft tube meshes can be
easily identified. On the right, the O-grid at the spiral case sections and at the inlet
of the draft tube can be observed, as well as the runner, guide vanes and stay vanes
surface meshes.

On the left side of Figure 7.7, the multiblock strategy and the H-grid around the
stay vanes, guide vanes and runner blades are showed in more detail. The grid
is presented making use of the conformal transformation and corresponds to the
conformal plane v = 0,50. On the right, the grid is displayed at the meridian plane.

Mesh Density

The mesh parameters were optimised to keep the grid in a reasonable size, without
prejudice to the simulation accuracy. Default parameters for current automatic grid
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Figure 7.6: Surface and cross-section mesh for the complete machine simulation.

generators or tetrahedral meshes could have resulted in about 2 to 6 million cells
just for one blading passage. The number of cells achieved here, slightly more than
6 million cells for the complete machine, is similar to other current studies, which
concentrate on numerical transient simulations of the fluid flow in hydraulic turbines,
as found in YAN ET AL. [174] and ALLIGNE ET AL. [2].

The mesh resolution in the boundary layer is an important parameter, which can
influence the overall grid size in the case of hexahedral meshes. Since the phenomena
of interest here, rotor-stator interaction, draft tube instabilities and channel vortex,
occur mainly in the core of the fluid flow, distant from the solid boundaries, wall
functions were used to represent the boundary-layer behaviour. This allowed to
optimise the mesh density near to the walls, with the objective to achieve y* values
between 30 and 100 for all turbine components. It should be noticed that, due to
the flow velocity in the different machine components, the distance of the first cell

137
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Figure 7.7: Mesh at the conformal plane v = 0,50 and at the meridian plane for the
stay vanes, guide vanes and runner.

centre to the wall, yo, can be significantly different e.g. in the runner blades and in
the draft tube.

The numerical parameters were tested with the individual components and then
used for the complete machine simulation. The mesh density was varied until grid
independent results and y* values in the logarithmic region, between 30 and 100,
were obtained. For the spiral case, the mesh refinement went from approximately
500 thousand to 800 thousand cells. For one blading passage, i.e. stay vane, guide
vane and runner, the number of cells went from 80 thousand to 300 thousand. For
the draft tube, the cell number varied from 270 thousand to 550 thousand. The
maximum deviation with the finest grid, taking into account all simulated points
and all measured values, was 1,6%, as seen in Table 7.2 for the rated point, whereas
the maximum deviation with the coarsest mesh was 3,4%.

The deviations 0n} and 0@} presented identical values, indicating that it came from
the head estimation and not from the volumetric flow determination, as long as

n}, =nD/VH and Q) = Q/(D*VH), resulting in 6Q = 0.

Table 7.2: Mesh density effect on results. Rated point.

Simulation Deviation
Number of ny/ny,,, Q1/@4,,. T1/T1,,, 1/Nopt on} 0Q 0Ty on
Cells (%) (%) (%) (%) (%) (%) (%) (%)
3,6 - 108 1,065 1,187 1,060 0,951 —-3,4 -3,4 —2,2 —2,2
5,0 - 106 1,079 1,203 1,070 0,960 -2,1 -2,2 -1,2 -1,2
6,0-10° 1,096 1,222 1,100 0,987 -0,6 -0,6 1,6 1,5

Model Test ny/ny , =1103  Q1/Q),, =1,229 Ti/17,, = 1,083 1/ Nopt = 0,972
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Interpolation Schemes

Distinct interpolation schemes were also evaluated. Common interpolation schemes
as found, for example, in FERZIGER [43] were tested. As expected, UDS and CDS
resulted in inaccurate velocity and pressure distribution fields, as well as deviations
in the integral measured values, as e.g. in the efficiency values, with deviations up
to 5,1%. The second-order schemes MINMOD, from HARTEN [62], and QUICK
delivered the most accurate results for all measured quantities, as seen in Table 7.3.
However, MINMOD showed superior convergence behaviour, when compared to
QUICK and was used for the machine simulations.

Table 7.3: Interpolation scheme effect on results. Rated point.

Simulation Deviation
Interpolation ny/ny . Q1/Q1,, T1/T7,,,  1/Nopt o 0Q} 0Ty on
Scheme ) ) ) ) (%) (%) (%) (%)
UDS 1,069 1,192 1,028 0,926 -3,0 -3,0 -5,1 —4,7
CDS 1,069 1,192 1,028 0,926 -3,1 -3,1 -5,1 —-4,7
QUICK 1,093 1,219 1,102 0,993 -0,9 -0,9 1,8 2,2
MINMOD 1,096 1,222 1,100 0,987 -0,6 -0,6 1,6 1,5

Model Test ni/ni,,, = 1,103 1/@1,,, = 1,229 Ty/17,,, = 1,083 1/ Nopt = 0,972

Turbulence Models for Stationary Simulations

The standard k-e¢, k-e¢ LCL and k-w turbulence models, described e.g. in
WILCOX [167], as well as the k-w SST turbulence model developed by MENTER. [99]
were considered for the steady-state simulations. The models based on the
eddy-dissipation equation provided the best results and the fastest convergence
rate. Due to the non-linear formulation of the k-e LCL turbulence model, the
computations using it were more than 30% slower than with the standard k-e model,
with no noticeable accuracy improvement. Although the k-w models produced
acceptable results, with maximum deviation of 3,0%, its numerical stability and
convergence were poorer. The results from the test are shown in Table 7.4.

Table 7.4: Turbulence model effect on results. Rated point.

Simulation Deviation
Turbulence ny/ny,,, @Q1/Q4,,, T1/Ti,,, 1/Nopt o Q) oy on
Model () (-) ) (-) (%) (%) (%) (%)
ke 1,096 1,222 1,100 0,987 06  —06 1,6 1,5
k-e¢ LCL 1,103 1,230 1,115 0,987 0,0 0,0 3,0 1,6
k- 1,080 1,204 1,076 0,952 21 21 —06  -20

Model Test ni/ni,,, = 1,103 1/@1,,, = 1,229 Ty/17,,, = 1,083 N/ Nopt = 0,972
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Turbulence Content

Since the inlet turbulence content is of difficult experimental determination, the
prescribed inlet turbulence intensity was varied in the numerical tests from 1%
up to 10%. Nevertheless, it yielded negligible variations on the calculated values.
Reasons for it were possibly the long inlet pipe, about 2,5 times the spiral case inlet
diameter, and the significant turbulence production in the turbine. Table 7.5 brings
the simulation results.

Table 7.5: Turbulence content effect on results. Rated point.

Simulation Deviation
Twbulence  mi/ni, Qi/Qi, TU/TL, o onh  0Q, T oy
Intensity (-) (-) (-) (-) () (%) () (%)
1% 1,103 1,230 1,116 0,987 0,1 0,1 3.0 1,6
2% 1,096 1,222 1,100 0,987 —0,6 -0,6 1,6 1,5
5% 1,102 1,228 1,104 0,977 0,1 —0,1 1,9 0,6
10% 1,009 1225 1,000 0,964 03 —03 0,6 0,8
Model Test ny/ny,, =1,103  Q1/Q, , =1,229 Ti/T7,, = 1,083 1/ Nopt = 0,972

Inlet and Outlet Boundary Conditions

In addition to the prescribed turbulence intensity, the total volume flow completed
the boundary conditions set at the spiral case inlet section. At the outlet, the
computational domain extension was varied, in order to avoid boundary effects and
inaccuracies at the draft tube end, where the velocity and pressure fields are still
of interest. As studied by MAURI [96], a rectangular extension of the outlet section
was employed, with an extent of one third of the draft tube longitudinal length. The
pressure was fixed to a constant reference level at the outlet section.

Numerical Solver

To represent the evaluation of the computational codes, the pressure coefficient
distribution, C), at the rated operating condition, calculated with NS3D and CFX,
was plotted in Figure 7.8 over the normalised blade surface length, s, at three
conformal planes. The deviations between the two codes were minimal.

Numerical Results and Experimental Data

Table 7.6 shows the stationary simulation results, obtained with the more accurate
numerical model and parameters, i.e. with the finer grid density, the MINMOD
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Figure 7.8: Pressure coefficient distribution, along the runner blade, at the rated
point, simulated with NS3D and CFX.

interpolation scheme, the k-e turbulence model, 5% turbulence intensity at inlet
and the extended draft tube outlet. The computed head, flow, torque and efficiency
were compared to the experimental values, measured at the test rig, in terms of
dimensionless parameters, using the normalised unit speed, nj/nj ., unit flow,

Y/ @,,,,» unit torque, 77 / Ti,,, and efficiency, n /Nopt- Considering all the simulated
operating points, the deviations in the numerical results in relation to the measured
model test data was considerably low, mostly not exceeding 1,0% and with a
maximum computed value of 1,6%. Based on these results, the numerical model
was judged to be enough accurate for the further simulation steps, which dealt with
pressure pulsations, rotor-stator interaction and flow instabilities.

Figures 7.9 and 7.10 bring examples of the simulation results. The flow streamlines
through the complete machine at full load can be seen in Figure 7.9. In the runner,
the displayed streamlines were derived from the relative velocity in the runner
rotating reference frame, instead of being obtained from the absolute velocity. At
the left of Figure 7.10, the streamlines through the runner are presented together
with the piezometric pressure contours. On the right, streamlines starting from the
spiral case and entering into the pre-distributor and distributor can be observed.

Table 7.6: Experimental results obtained at the model test and numerically
simulated results.

Model Test Simulation Deviation

. T % & T/ N O W TN & G , ) )

()peramlng o Q! 77 - Q! T Topt ony  0Q) T on
POll’lt opt opt opt opt opt opt

OO N O RN G (G H C B C B O B ) B C70) B /) B )

Optimum 1,000 1,000 1,000 1,000 0,994 1,000 1,003 1,002 -0,6 -0,6 0,3 0,2

Rated 1,103 1,229 1,083 0,972 1,096 1,222 1,100 0,987 —-0,6 —-0,6 1,6 1,5

Normal 1,070 1,102 1,022 0,993 1,060 1,092 1,024 0,994 —-1,0 —-1,0 0,2 0,1

High Head 1,078 0,797 0,693 0,938 1,067 0,789 0,693 0,938 —-1,0 —-1,0 0,0 0,0

Low Head 1,199 0,848 0,644 0,910 1,190 0,842 0,651 0,919 -0,7 —-0,7 1,0 1,0
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Figure 7.9: Time-averaged streamlines at full load, obtained from the complete
machine simulation.

Figure 7.10: Time-averaged streamlines in the runner and in the spiral case at full
load, obtained from the complete machine simulation.

7.2.2 Transient Simulation Settings

Time Step

For the transient simulations of the complete machine, several time step sizes, At,
were considered. The sensitivity of the results to different values of At was checked
to assure the accuracy of the numerical calculations. The time step size was also
varied to optimise the computational speed, but without introducing any loss of
precision at the numerical results.
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Table 7.7: Size of the time steps tested for the transient simulations.

Time Steps per Period

DTI® HPL(®M VSE®)
() () 60660 0606

At)T 0 N  N/z N/z

Turbulence Model

850-103 3,06 1176 90 4,9 4170 349 08 URANS, DES, SAS
2,55-10 0,918 3922 302 16,3 1391 1163 25 URANS, DES, SAS
1,70-10%  0,0612 5882 452,5 2451 20858 1744 38,2 LES

Operating point: () Part load and low head (OP 6), ) Rated (OP 2).

The time step size had also to be adequate to the phenomena being studied. It
had to be able to capture the dynamic effects and also to offer enough resolution to
describe the relevant pressure and velocity variations along the time.

Table 7.7 brings the tested time step sizes, At, normalised to the machine rotation
period, T'. The corresponding runner rotation per time step, 6, can be read in the
table as well. The number of time steps per machine revolution, NV, is shown, as well
as the number of time steps per guide vane and runner passage, respectively N/z,
and N/z, which are important for the rotor-stator interaction (RSI). The number
of time steps for one oscillation period of other fluid dynamic phenomena, i.e. draft
tube instabilities (DTI), higher part load (HPL) and vortex shedding (VSE), is
presented in Table 7.7. The tested turbulence models with each time step size can
be found in the table.

With 117,6 time steps per machine revolution and the appropriate turbulence model,
it was possible to reproduce the overall flow behaviour in the draft tube, among
others the draft tube instabilities (DTT). However, at this condition, the rotor-stator
interaction could not be represented in detail. To obtain adequate time resolution
for the description of the interaction between the guide vanes and the runner, 392,2
time steps per machine revolution were used. It corresponded to 0,918° per time
step. This resulted in 30,2 time steps per runner blade passage and 16,3 time steps
per guide vane passage. This was the time step chosen for obtaining the transient
results.

The number of time steps per runner and guide vane channel and per oscillation
period did not correspond to an integer number, in order to avoid meeting the
oscillatory pressure pulsation signal always at the same point. With the non-integer
numbers of time steps for a complete oscillation period, the periodic time signal was
met at different points at each cycle. This simple procedure reduced the chances of
systematically missing maxima and minima of the pressure oscillation curve.

The time step size had a direct impact on the total elapsed time for the numerical
computations. On one hand, the reduced time step size implied in a larger number
of time discretisation points for a machine rotation. On the other hand, with
smaller time steps, fewer iterations were needed to achieve convergence within a
given time step. Using 392,2 time steps per machine revolution was about 8 times



144 CHAPTER 7. TURBINE FLUID FLOW SIMULATION

faster than using 5882 and about twice slower than using 117,6. As a reference for
the computation speed, 1,7 machine rotations with 392,2 time steps per revolution
could be computed within 24 hours in a Linux cluster with 8 Intel Q6600 processors,
each with 4 kernels, 2,4 GHz and 2 GB memory.

The transient simulation was initialised with the stationary solution corresponding
to the operating point being simulated. The main flow through all turbine
components, i.e. from the spiral case inlet until the draft tube exit, was only
stabilised after all the initial fluid volume had left the machine, passing the outlet
section of the computational finite volume model. In the case of the FT 80 turbine,
it corresponded to approximately 34 machine revolutions, at the rated operating
point, OP 2. This initial simulation period did not bring physical information about
the machine behaviour. Nevertheless, it was absolutely necessary to guarantee the
correctness of the numerical results simulated afterwards. Waiting for the initial fluid
volume to let the machine was essential for the validity of the numerical simulations.

To speed up the solution process, the first revolutions, which were computed until the
initial fluid volume had left the machine and which were discarded for the analysis,
were simulated with 196,1 time steps per turbine rotation. The time step size was
progressively reduced until 392,2 time steps per rotation were reached. After the
initial fluid volume let the machine, 30 runner rotations were computed for each
simulated operating point for the evaluation of the turbine dynamic behaviour.

The time step sizes were tested with different turbulence models. They had influence
on the stability of the numerical solution. With URANS, SAS and DES, the
numerical convergence could be reached already with 117,6 time steps per runner
revolution. On the other hand, the LES simulation diverged even with 392,2 time
steps per machine revolution. With N = 5882, it could be carried out.

With the finest time resolution and LES, it was even possible to numerically
reproduce the von Kérman vortex streets at the trailing edge of the runner blades.
However, the resulting vortex shedding phenomenon should be analysed with
caution. In opposition to the rotor-stator interaction (RSI), draft tube instabilities
(DTI) and runner channel vortex (RCV), where the structure vibrational motion
exercises no noticeable influence on the fluid flow, the vortex shedding effect can be
strongly affected by it.

At the rated operating point, the volume flow and the velocities were higher than at
the other calculated operating points. At this condition, the Courant number, CFL,
resulting from the LES simulation with 5882 time steps per machine revolution is
reproduced in Figure 7.11. The Courant number distribution at the stay vanes, guide
vanes and runner is shown at three different conformal planes, near to crown, at the
middle of the blades and near to band. The resulting values were always smaller than
one and in most regions even smaller than 0,5. It respected the recommendations
for LES simulations, as suggested by WUNDERER. [170] for example.

The URANS, SAS and DES simulations employed time steps 15 times larger and
consequently resulted in corresponding Courant number values 15 times larger as
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v = 0,20 v = 0,50 v = 0,80

Figure 7.11: Courant number, CFL, for the LES simulation of the rated point, at
different conformal planes and At/T = 1,70 - 107

well. As seen in the results from the transient flow simulation through the hydraulic
turbine, which are presented further on, the SAS and DES simulations could produce
as accurate results as LES, even with greater values for C'FL.

Besides the recommendation of CFL < 1,0 for LES simulations, the time step size for
LES was limited in this problem, as discussed before, by the numerical convergence.
In the calculations performed for the turbine, LES was unable to reach convergence
with the time step size employed with SAS and DES. For this reason, the hybrid
models SAS and DES could offer significant smaller computational times, when
compared to LES, with no deterioration of the simulation accuracy.

Solver

The numerical procedure for solving the transient time steps was tested. As stated by
FERZIGER, PERIC [43], multigrid methods brought no acceleration to the numerical
solution of the transient fluid flow equations. The BCGSTAB solution method was
as fast as the multigrid method, with the additional advantage of introducing no
artificial numerical oscillations in the computed transient pressure signals. Its better
numerical stability was possibly related to the very different turbulent scales present
in the complete machine simulation, as for example in the runner channels in contrast
to the draft tube.

The last test related to the solution of the transient fluid motion equations dealt
with the use of double or single computational precision. No deviation could be
identified in the results obtained with single or double precision. Therefore, the
simulations were carried out with single precision, with the advantage of running
twice as fast as with double precision.
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Turbulence Modelling and Experimental Data

In order to properly reproduce the flow transient effects, adequate turbulence models
were essential. They should allow the dynamic flow structures to develop, without
the introduction of excessive dissipation and artificial damping. The turbulence
modelling constituted an essential part of the transient numerical model and was
determinant for the success of the numerical calculations.

The URANS, SAS, DES and LES turbulence models were tested, with focus mainly
on the draft tube instabilities. To verify the accuracy and suitability of the different
turbulence models for the simulation of the transient flow in hydraulic turbines, the
numerical calculated results were compared with the available model test data.

The part load at high head and part load at low head operating points, OP 5
and OP 6, were chosen for the evaluation of the turbulence models. These points
were chosen, firstly because they were responsible for causing the highest pressure
pulsation amplitudes in the draft tube cone, as seen in the model hill chart, and
secondly because of the numerical difficulty to qualitatively and quantitatively
reproduce the rotating vortex rope in the draft tube cone. Therefore, these points
could offer meaningful and challenging test conditions for the turbulence modelling.

The pressure pulsation values measured in the draft tube cone during the model
test were compared with the simulated values calculated with each one of the tested
turbulence models. The comparison of the amplitude values could indicate, if they
were enough accurate and which of them were more accurate for the problem being
solved here. Moreover, the comparison of the simulated vortex rope shape with the
observed one could also give one more indication of the precision of the turbulence
modelling.

Tables 7.8 and 7.9 present the pressure oscillation amplitudes at the four measuring
points at the draft tube cone and the vortex rope rotation frequency. Table 7.8
brings the results for part load at high head, OP 5, and Table 7.9 for part load at
low head, OP 6. The experimental results from the model test and the calculated
values with URANS, SAS, DES and LES can be found in both tables.

The tables show that URANS was absolutely unable to reproduce the dynamic
flow effects in the draft tube, resulting in unacceptable deviation values for the
pressure oscillation amplitude and frequency. The weak performance of URANS
was due to its introduction of excessive damping in the numerical simulations. This
characteristic of URANS at transient problems had already been observed by e.g.
FROHLICH AND RODI, among many others, for much simpler problems.

On the other hand SAS, DES and LES delivered nearby similar results and all
three showed up to be able to properly reproduce the flow dynamic behaviour in
the Francis turbine. The comparison of the numerical and experimental results
points it out. At part load and high head, OP 5, the maximum deviations between
the experimental values and the ones calculated with SAS, DES and LES were
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Table 7.8: Experimental results obtained at the model test and numerically
simulated results, at part load and high head.

Results Deviation

Turbulence AP/ (pgH) i SAP of
Model HW 90° T™W 270° fn HW 90° ™ 270°

(02) I ) B ) B /) ) %) (%) ) (B (%)
URANS 0,07 0,08 0,07 0,06 20,82 —-98,5 —97.8 —984 —989 6794
SAS 4,31 3,23 3,85 4,52 0,298 -8,3 -—-11,5 -10,0 -13,9 -1,3
DES 4,18 3,02 3,84 4,59 0,301 -11,1 -173 -103 —-12,6 —0,3
LES 5,02 3,52 4,31 5,02 0,309 6,8 —3,6 0,7 —4.4 2,3

AP AP AP AP
Model Test — =470% —— =3,60% —— =428% —— =5,25% i = 0,302

pgH  (awy p9gH ooy  pgH  rwy  pgH  (br00)  fa

Table 7.9: Experimental results obtained at the model test and numerically
simulated results, at part load and low head.

Results Deviation

Turbulence AP/ (pgH) i OAP of
Model HW 90° T™W 270° fn HW 90° ™™ 270°

%) (%) (B) (%) ) (%) (%) (%) (%) (%)
URANS 0,07 0,11 0,11 0,09 0,069 —-98,6 —97,5 —981 —98,6 —758
SAS 5,04 4,44 5,94 6,40 0,315 —4,7 —16 4.0 —5,6 11,7
DES 5,47 4,13 5,41 6,24 0,295 34 -84 53 -8,0 4,6
LES 530 441 577 6,70 0,294 04 -23 11 -13 38

AP AP AP AP
Model Test —— =52% —— =451% — =571% — =6,78% e = 0,282

pgH  (awy p9H oy  pgH  rwy  pgH  (hr00)  fa

respectively —13,9%, —17,3% and 6,8%, as seen in Table 7.8. At part load and low
head, OP 6, the maximum calculated deviations for the pressure pulsation amplitude
were —5,6%, —8,4% and —2,3%, with SAS, DES and LES respectively, as observed
in Table 7.9.

MENTER AND KUNTZ [102] modified the DES limiter in relation to the original
turbulence model from SPALART ET AL. [148]. The purpose of this modification
was to avoid artificial grid induced separations. This effect should not be relevant
for the draft tube instabilities. However, since this modification could affect the
DES limiter, its influence on the turbine transient simulation was evaluated during
the present study.

The DES limiter was modified with the SST blending functions, Fsgr = F; or
Fgsr = F5. When Fggp = 0, it corresponded to the traditional DES model. The
numerical results for the pressure pulsation amplitudes at part load and low head,
OP 6, calculated with the different limiter functions, are presented in Table 7.10. No
significant difference, caused by the modified limiters, could be observed at the draft
tube instabilities. The SST blending function Fj presented the larger deviation with
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Table 7.10: Influence of the blend function on the DES results, at part load and low
head.

Results Deviation

Turbulence AP/ (pgH) i SAP of
Model HW 90° W 270° fn HW 90° T™W 270°

(%) (%) (%) (%) ) (%) (%) (%) (%) (%)
Fssr =0 5,25 4,35 5,88 6,18 0,313 -0,8 —-35 3,0 —8,8 11,0
Fsgr = F} 5,06 5,17 6,23 6,30 0,314 —4,3 14,6 9,1 7.1 11,3
Fssr = Fy 5,47 4,13 5,41 6,24 0,295 34 -84 =53 -8,0 4,6

AP AP AP AP
Model Test — =5,29% =451% —— =571% —— =6,78% i = 0,282

pgH (HW) pgH (90°) pgH (TW) pgH (270°) In

14,6%, while the traditional DES model and the one modified with F; showed similar
maximum deviations of —8,8% and —8,4%. The modification with F5 brought the
benefit of better predicting the vortex rope rotating frequency.

The SAS turbulence model from MENTER AND EGOROV [100] counts with the
closure coefficient Cssg = 0,50, which is responsible for switching between the
URANS and LES behaviour in the calculation domain. Higher values of C's4 5 lead to
larger portions of the fluid domain to assume the LES behaviour, while lower values
favour the URANS approach. To verify the influence of this closure coefficient on
the turbine dynamic flow simulation, the simulation of the part load and low head
operating point, OP 6, was repeated with C's4s = 0,75. No noticeable effect on the
pressure pulsation results could be observed going from C'sqs = 0,50 to C'gas = 0,75.

Figures 7.12, 7.13 and 7.14 offer one more possibility to verify the instationary
simulation results. They present the simulated vortex shape confronted to the
model test observation. The three visually compared operating points were the
rated, OP 2, part load at high head, OP 5, and part load at low head, OP 6. The
vortical structures observed during the model tests were due to the cavitating water
volume. The vortex surfaces extracted from the numerical simulations corresponded
to isobars at the water vapour pressure, i.e. the pressure level where the water volume
should begin to cavitate, py,. The numerical results in Figures 7.12, 7.13 and 7.14
were obtained with the hybrid turbulence models SAS and DES, with no significant
difference between them.

When observed during the model test, the rated operating point was visually
characterised by the vortex torch under the runner cone and by the vortex shedding
at the blades trailing edges. Figure 7.12 suggests that the simulated torch was
slightly smaller than the actual one, possibly because of the one-phase numerical
modelling of water. Nonetheless, the numerical calculations could fairly well
reproduce the torch shape at the rated point and even the von Karman vortex
streets at the blades trailing edge.
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Figure 7.12: Comparison of the von Karman vortex streets observed at the model
test and numerically simulated at the rated point.

Figure 7.13: Comparison of the vortex rope shape observed at the model test and
numerically simulated at part load and high head.

Figure 7.14: Comparison of the vortex rope shape observed at the model test and
numerically simulated at part load and low head.

At part load and high head and at part load and low head, the comparison of the
experimental observations with the numerical results, in Figures 7.13 and 7.14, shows
that the simulations with SAS and DES could extremely accurately reproduce the
shape of the rotating vortex rope in the draft tube cone. This also constituted an
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Figure 7.15: Pressure oscillation time history at the draft tube at part load and low
head.

indication that the dynamic pressure field predicted by the numerical model could
precisely match the real one.

The similarity between the calculated and the experimentally observed vortex
shapes, at the rated operating point and, especially, at part load, also showed that
the hybrid turbulence models, associated to the chosen numerical parameters for
the finite volume model and to the mesh topology and density, were appropriate for
the transient simulation of the turbine fluid flow. In contrast to the SAS, DES and
LES calculations, the simulations carried out with URANS were unable to generate
the draft tube instabilities and to generate the shape of the vortex rope.

The pressure time history at part load and low head, OP 6, calculated in the
points corresponding to the four draft tube measuring transducers, can be seen
in Figure 7.15, while its Fourier transform is represented in Figure 7.16. This last
figure shows that the characteristic RHEINGANS [121] frequency, typical from the
vortex rope rotation, could be identified in the calculated frequency spectrum. This
could again confirm the precision achieved with the usage of the hybrid turbulence
models in the simulation of the transient fluid low through the turbine.

The complex form of the pressure variation, in relation to the time, resulted in a
frequency spectrum, where the signal intensity was spread along a wide frequency
range. Therefore, the maximum value read from the Fourier transform did not
represent the real pressure fluctuation amplitude. The pressure oscillation amplitude
should be read from the pressure time history in Figure 7.15 and the characteristic
frequencies from the Fourier transform in Figure 7.16.
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Figure 7.16: Pressure oscillation Fourier transform at the draft tube at part load
and low head.

Considering the deviations achieved in the calculation of the pressure pulsation
amplitude, seen in Tables 7.8 and 7.9, SAS, DES and LES would all be suitable to
accurately simulate the fluid flow dynamic behaviour through the turbine. Although
LES proved to be the most exact of the three methods, it required the finest time
discretisation tested, 5882 time steps per machine revolution, in order to maintain
numerical stability and convergence. SAS and DES achieved fast as accurate results
as LES, but with considerably larger time steps per turbine rotation. SAS and DES
required just 392,2 time steps per machine revolution to assure the proper numerical
convergence during the computational calculations. This resulted in much shorter
durations for the simulations using SAS or DES in comparison to the ones using LES.
In relation to URANS, the SAS and DES simulation were slightly slower. From the
point of view of numerical convergence, computational costs and model preparation
effort, but also considering the deviations, SAS and DES were the most attractive
alternatives for the simulation of the fluid flow in hydraulic turbines in industrial
applications.

7.3 Fluid Simulation Results

The objective in the development and verification of the numerical model for the
simulation of the transient fluid flow through the turbine was to allow the precise
simulation of the pressure fluctuations in the hydraulic machine, especially at
the turbine runner. After the extensive verification of the numerical model with
experimental data, during the numerical setup, the model accuracy was considered
adequate for the extraction of dynamic results related to the transient fluid flow.
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The extension of dynamic measurements in the model machine or in the prototype
is very limited at present. Therefore, the numerical model developed here was used
to obtain more quantitative information about the dynamic behaviour of Francis
turbines, with the main purpose to predict how the pressure fluctuations might affect
the runner fatigue life. They are responsible for the dynamic structural load at the
runner and required for the accurate calculation of the dynamic structural stresses.
The CFD model allowed the numerical computation of the fluid flow transient effects,
providing the pressure dynamic distribution in the complete machine, including the
turbine runner.

The simulation results for which experimental data was available, i.e. efficiency,
head, volume flow, torque and punctual pressure pulsations at the draft tube cone,
were employed in the validation of the numerical model. Other calculated integral
quantities and calculated scalar and vectorial fields, which could not be extracted
from the experiments, e.g. the transient pressure distribution at the runner, are
presented here as results of the numerical simulation. Since the most important
dynamic phenomena in the turbine flow were associated with well determined
regions of the model hill chart, the main dynamic effects are studied at the chosen
operating points. The rotor-stator interaction (RSI) is discussed based on the full
load operation at the rated point, OP 2. The discussion on the draft tube instabilities
(DTTI) relies on the part load operating points at high and low head, OP 5 and OP 6.
The higher part load (HPL) could be simulated at part load and low head, OP 6,
and is also discussed. The runner channel vortex (RCV), typical, for example, at
deep part load, OP 7, is presented as well. At the operating point chosen at deep
part load, draft tube instabilities were also typical.

As long as the numerical setup showed the determinant influence of the turbulence
modelling on the accurate prediction of the pressure oscillations, comparisons
between URANS, SAS and DES calculations make also part of the numerical
simulations results.

7.3.1 Rotor-Stator Interaction at Full Load

At full load, the main dynamic effect in the Francis machine was the rotor-stator
interaction (RSI). This phenomenon arose from the relative motion between the
inlet stationary parts, i.e. spiral case, stay vanes and guide vanes, and the rotating
runner.

When the runner blades move along the stay vanes and guide vanes channels,
they constitute an obstacle to the flow, causing pressure oscillations in relation
to the stationary pressure field. The pressure pulsation amplitude caused by this
interaction depends on the radial distance between the guide vanes trailing edges
and the runner blades inlet edges and on the number of stay vanes, guide vanes and
runner blades, zr, 2o and 2, as discussed by NENNEMANN, VU AND FARHAT [109].
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In the runner reference frame, it appears as if the stay vanes and guide vanes were
rotating. They constitute the periodic restriction to the flow and, together with the
guide vanes wake, they cause the pressure variations. With the same number of stay
vanes and guide vanes, the theoretical oscillating frequency of this phenomenon in
the runner reference frame is zq f,,, where f,, is the machine rotating frequency.

In the runner rotating frame, the slightly inhomogeneous pressure distribution along
the spiral case in the rotational direction is also a source for rotor-stator interaction.
For the turbine runner, this inhomogeneous pressure distribution is transformed in
a dynamic load, because of the machine rotation. In the runner reference frame, the
theoretical oscillating frequency of the pressure variation induced by the spiral case
pressure distribution should be f,.

The rotor-stator interaction can also generate pressure waves, which can be reflected
inside the hydraulic machine, as shown by YAN ET AL. [173] with a compressible
CFD simulation. Due to constructive characteristics, especially the distance between
guide vanes and runner and their shape, this aspect of the rotor-stator interaction
should only be significant for Francis turbines, pump-turbines or pumps with very
low specific speed. As long as the calculated machine, the FT 80, counted with
Ngope = 30,3 min~!, the compressibility of water was not considered.

For the simulated machine, the chosen operating point in the full load region of
the hill chart was the rated point, OP 2, n’l/n’lom = 1,103, Q’l/Q’lom = 1,229. This
point should be representative for the rotor-stator interaction and the numerical
simulations confirmed this assumption. Figure 7.17 shows the normalised pressure
oscillations, Ap/ (pgH), in the runner as a function of time, for the rated point. In
the figure, three selected conformal surfaces can be seen at different time instants.
The conformal surface in the first column was located in the runner near to the
crown, at v = 0,20. The conformal surface in the second column was taken at
the middle of the runner channel, at v = 0,50, and the one on the last column
could be find near to the band, at v = 0,80. Each row corresponds to successive
time steps, allowing to observe how the pressure oscillation evoluted at these three
representative conformal surfaces. The time span from the first to the last picture
was the time required by the blades to move one runner channel pitch, 7'/2,, where
T is the rotating period. At the pictures, the grey scale was limited to +3,0%, to
improve the visualisation.

As seen in Figure 7.17, the pressure oscillations at the runner at full load were
dominated by the rotor-stator interaction. The influence of the non-axisymmetric
pressure distribution in the spiral case can be observed at the conformal surfaces near
to the crown and at the middle of the runner channel. At the conformal surface near
to the band, where the distance between the guide vanes and the runner was smaller,
the effect of the guide vanes passage on the pressure oscillations at the runner was
significantly more pronounced. Also the effect of the runner blade passage could be
identified at the stationary components.
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Figure 7.17:
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The pressure oscillation originated from the rotor-stator interaction (RSI) could be
observed in more detail by plotting the pressure time history for individual points
taken at the runner blade surface. The pressure oscillation time history for the
selected points is found in Figure 7.18. The points were chosen at the blade leading
edge, u = 0,50, near to the middle of the blade pressure side, u = 0,25 and near to
the middle of the blade suction side, u = 0,75, starting near to the crown, v = 0,05,
going along the blade, v = 0,25, v = 0,50, v = 0,75, and arriving near to the band,
v = 0,95. The points on the blade leading edge were chosen because they were
the points, at each conformal surface, where the distance to the guide vanes was
minimal. The other points were chosen on the blade pressure and suction sides with
the objective to identify the effect of the rotor-stator interaction on the blade body.
The point distribution from the crown up to the band was performed to evaluate
the effect of the radial distance between guide vanes and runner on the rotor-stator
interaction.

The analysis of the pressure oscillation time history, Ap (t) / (pgH), in Figure 7.18,
confirms that the distance to the guide vanes trailing edge is an important parameter
for the intensity of the pressure oscillations. As expected, the pressure variations
were much higher at the runner blades inlet edges than at the rest of their bodies. At
all conformal planes, i.e. at constant v coordinates, the pressure oscillations decayed
considerably from the blade inlet edge to the middle of the blade.

Analysing in the other blade coordinate direction, u, i.e. from the crown in direction
to the band, the effect of the radial gap size, between runner and guide vanes, could
again be observed. The pressure pulsations were significantly higher near to the band
than near to the crown, due to the fact that the radial distance between runner and
guide vanes was much smaller at the band, 0,035D,,, than at the crown, 0,136D;, .
At the crown, where the distance was larger, the fast oscillations, related to the
guide vanes passing frequency, was not as much pronounced as at the band. At the
crown, the slower oscillations, caused by the inhomogeneous pressure distribution
at the spiral case, dominated.

The Fourier transform of the pressure time history, seen in Figure 7.19, confirmed
the theoretical considerations about the oscillating frequency of the rotor-stator
interaction phenomenon. The plots show that the dominating frequencies were
f/fn = 1,0 and f/f, = 24, corresponding exactly to the machine rotating
frequency and to the number of guide vanes, zp = 24. As already discussed and
verified with the frequency plots, the low frequent oscillation was originated by the
non-axisymmetric pressure distribution at the spiral case, while the high frequent
oscillation came from the interaction with the guide vanes. The Fourier transforms
also pointed out the influence of the distance between runner and guide vanes on
the rotor-stator interaction. Near to the crown and in the middle of the blade,
the frequency spectrum was dominated by the effect coming from the spiral case
pressure distribution. Near to the band, at the leading edge, the peak in the Fourier
transform, corresponding to the guide vanes passing frequency, became much more
pronounced. The amplitudes presented in the frequency domain were smaller than
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Figure 7.18: Pressure oscillation time history at selected points at the rated
operating point.
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Figure 7.19: Pressure oscillation Fourier transform at selected points at the rated
operating point.

in the time domain, because of the intensity distribution over a frequency range, in
opposition to a pure sinusoidal curve.

The pressure fluctuation amplitude at the runner blade surface, obtained from the
pressure time history, can be found in Figure 7.20. The results generated with three
different turbulence models, URANS, SAS and DES can be encountered in the
figure. Seven conformal planes were used for representing the pressure oscillation
amplitude, AP/ (pgH), at the runner blades. They were again placed near to the
crown, v = 0,025, at the middle of the channel, v = 0,500, near to the band
v = 0,0975, and at intermediate positions, v = 0,125, v = 0,325, v = 0,725 and
v = 0,875. For each conformal plane, the values of AP/ (pgH) were plotted along
the blade extension, along the u coordinate, starting from the trailing edge at the
pressure side, u = 0,00, passing by the leading edge, v = 0,50, and arriving at the
trailing edge at the suction side, u = 1,00.

Once again, it can be identified in Figure 7.20 that the pressure pulsations arising
from the rotor-stator interaction were more pronounced around the blade leading
edge, u = 0,50, and near to the band. The other interesting information brought
by Figure 7.20 was the comparison between the turbulence models. The results
obtained with SAS and DES were extremely close to each other. The AP/ (pgH)
values predicted with SAS could reach 13,7% at the blade leading edge, while it
did not exceed 2,7% at the rest of the blade. These values were comparable to the
measurements from AVELLAN ET AL. [12], FARHAT, AVELLAN AND SEIDEL [3§]
and NENNEMANN, VU AND FARHAT [109] in similar machines.
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Figure 7.20: Pressure oscillation amplitude at selected conformal planes at the rated
operating point.

The URANS turbulence model could almost reach the pressure pulsation level
achieved with SAS and DES, but with less accuracy, especially at the blade body.
The URANS simulations predicted 12,4% for the maximum pressure fluctuation
amplitude at the leading edge and no more than 2,1% at the blade body. As long
as the rotor-stator interaction phenomenon was mainly driven by the kinematic
interaction between the runner and the stationary parts, the URANS inaccuracy
was not as much pronounced as during the simulations of the draft tube instabilities.

Figure 7.21 brings the pressure fluctuation amplitudes, AP/ (pgH), as contour
plot at the pressure and suction sides of the runner blades and guide vanes.
This representation allows the more intuitive visualisation of the dynamic pressure
distribution over the runner blades. The hydraulic surfaces were transformed to
the meridian view. The right side of the figure corresponds to the pressure side
and the left to the suction side. The colour scale was limited to 3,0% to improve
the visualisation. The high pressure fluctuation amplitude can be seen at the blade
leading edge and a second smaller local peak region was found at the pressure side,
near to the crown.
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Figure 7.21: Pressure oscillation amplitude at the rated operating point, meridian
view.

—0,2
—0,4

Figure 7.22: Time-averaged pressure at the rated operating point, meridian view.

For the structural simulations of the turbine runner, not only the dynamic pressure
field was needed, but also the static pressure distribution on the runner blades.
The calculated static pressure at the runner, normalised to the turbine net head,
P/ (pgH) can be found in Figure 7.22. The contour plot made use of the meridian
transformation to show the runner and guide vanes pressure and suction sides. The
runner blade pressure side is found at the right and the suction side at left. The
pressure reference level for the static pressure at the outlet of the finite volume
model was set to be equal to the relative pressure at the downstream tank at the
model test.
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7.3.2 Draft Tube Instabilities at Part Load

At part load, draft tube instabilities (DTI), associated to the vortex breakdown
phenomenon studied by SARPKAYA [136], usually take place under the runner cone
and in the draft tube cone of Francis turbines. With the reduced turbine volume
flow, the rotating vortex rope dominates the flow at the runner outlet and in the draft
tube cone. In hydraulic turbines, the vortex rope rotates at the RHEINGANS [121]
frequency, typically between 0,25 f,, and 0,35 f,,, observed at the stationary reference
frame and where f,, is the machine rotating frequency. The high pressure pulsation
amplitudes at part load are related to the rotational motion of the vortex rope.

The principal interest in studying the part load operating condition came from the
high structural loads in the turbine runner induced by the draft tube instabilities.
Due to the highly instationary character of this phenomenon, the appropriate choice
of the turbulence modelling for the CFD analysis played a determinant role in the
accurate prediction of the pressure pulsations at part load. For the simulated Francis
turbine, FT 80, the chosen operating point for studying the draft tube instabilities
was located at part load and high head, OP 5, ny/ny == 1,078, Q}/@Q},, = 0,797.

Figure 7.23 shows the variation of the dynamic pressure field at the runner blades
and the motion of the vortex rope under the turbine runner. The pictures in each
row correspond to successive time instants. The complete time span was equal to
the rotating period of the vortex rope, Tg,. In the first column of Figure 7.23,
the runner bottom view is presented. The blades were coloured according to the
instantaneous dynamic pressure value, Ap/ (pgH ) and the vortex rope was omitted.
In the second column, besides the dynamic pressure contour plots, the vortex rope
was also shown. The vortex rope surface was the isobar at the pressure level at
which the water volume should begin to cavitate, py,. The third column brings a
tridimensional view of the runner and vortex rope, very similar to the angle at which
it is normally observed at the model test.

In Figure 7.23, it can be observed that the vortex rope took place immediately below
the runner cone, extending up to the draft tube cone. The dynamic pressure field
rotated together with the vortex rope. The dynamic pressure distribution at the
bottom of the runner, at the blades suction side, presented a spiral form. These
aspects indicated the relation between the rotating vortex rope in the draft tube
cone and the pressure pulsations at the runner at part load.

The success in reproducing the real shape and motion of the vortex rope relied on
suitable turbulence models, associated to adequate computational grids. This might
possibly be the reason for the difficulty encountered by other authors to accurately
simulate the pressure oscillations in hydraulic turbines at part load.

Considering the pronounced dynamic characteristic of the flow at part load, the
appropriate choice of the turbulence model was fundamental for the accurate
simulation of the pressure oscillations. As already mentioned before, during the
discussion of the transient simulation settings, the flow instabilities at part load
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Figure 7.23: Pressure oscillations over one vortex rope rotation period at part load
and high head viewed from the draft tube.
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Figure 7.24: Pressure oscillation amplitude at selected conformal planes at partial
load and high head.

could only be captured by SAS, DES and LES. URANS was unable to reproduce this
effect. The adequate accuracy of the hybrid turbulence models and the limitation
from URANS was clearly demonstrated by the comparison of the measured and the
simulated pressure oscillation amplitudes in the draft tube cone.

Here, the pressure oscillation amplitude, AP/ (pgH), at the runner blades,
calculated with URANS, SAS and DES are compared in Figure 7.24. As already
explained for the rotor-stator interaction results, seven conformal planes were used
for representing the pressure fluctuation amplitude, each of them at constant v
coordinates, going from the vicinity of the crown up to the vicinity of the band.
The u coordinate went from the trailing edge at the pressure side, u = 0,00, passing
by the leading edge, u = 0,50, and arriving at the trailing edge at the suction side,
u = 1,00.

As seen in Figure 7.24, the values calculated with SAS and DES for the pressure
oscillation amplitude at the runner blades were extremely close to each other along
the complete blade surface. The maximum reached pressure oscillation amplitude at
the blade body, predicted with SAS, was 3,1% and at the blade leading edge 6,6%.
FARHAT, AVELLAN AND SEIDEL [38] measured similar values for a similar Francis
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turbine. Differently from the rotor-stator interaction, the high pressure oscillation
values at the blade body were distributed along the most part of the blade and not
only at limited regions.

The maximum pressure pulsation amplitudes predicted by URANS were 6,0% at the
blade leading edge and 0,9% at the blade body. At the leading edge, because of the
rotor-stator interaction, the values predicted by URANS were not significantly below
the ones obtained with SAS and DES. On the other hand, at the complete extension
of the blade body, where the pressure variations were dominated by the rotating
vortex rope, the AP/ (pgH ) values simulated with URANS were considerably below
the results obtained with SAS and DES. The low values predicted by URANS
were the consequence of its incapacity to capture the draft tube instabilities and
to reproduce the vortex rope in the draft tube cone. This limitation of URANS was
already expected, because of the excessive dissipation introduced in the transient
simulations, avoiding the normal development of the dynamic effects.

The capacity of SAS and DES to correctly reproduce the dynamic flow behaviour
in the draft tube lies on their hybrid characteristic, combining LES and URANS.
In the regions, where the mesh resolution is fine enough to allow the simulation of
the full transient flow characteristics, the SAS and DES models switch to the LES
behaviour. In other regions, where the mesh does not allow the resolution of the
larger eddies, SAS and DES assume the URANS character. As explained in the
theory chapter, the change between the LES and URANS behaviour is controlled by
the local mesh density, by the local fluid flow and by the blending function, which is
characteristic of each hybrid turbulence model. When the blend function tends to
0, SAS and DES approach the pure LES-like behaviour and, when it tends to 1, it
recovers the pure URANS characteristic. The combination of appropriate turbulence
modelling and adequate mesh density allows the simulation of the dynamic fluid flow
phenomena, without the addition of artificial and excessive dissipation.

The blending function presents different formulations in the SAS and DES
turbulence models. Nonetheless, they have the same function and for similar
numerical results, they should present similar values. In Figures 7.25 and 7.26, the
distribution of the DES blending function, Fpgg, in the simulated Francis turbine,
FT 80, can be encountered. Figure 7.25 brings the longitudinal cross-section of the
Francis turbine, starting from the spiral case and going up to the beginning of the
draft tube pier, while in Figure 7.26 the corresponding transversal cross-section is
depicted. In both figures, the stay vanes, guide vanes and runner blade surfaces
were transformed to the meridian view. The instant position of the rotating vortex
rope, at an arbitrary chosen time step, was also marked at the figures.

Figures 7.25 and 7.26 show that, behind the runner blades, under the runner cone
and in the interior of the draft tube cone and elbow, the blending function assumed
small values, tending to zero. In these regions, the low values of the blending
function caused the hybrid turbulence models to switch to pure LES mode. The
vortex rope could be predicted at these regions, with low blending function values,
at the location and with the shape, which were expected. The LES behaviour of the
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Figure 7.25: Limiter for the DES model, Fpgg, at the longitudinal plane cut.

Figure 7.26: Limiter for the DES model, Fpgg, at the transversal plane cut.
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hybrid turbulence models behind the runner blades, under the runner cone and in
the interior of the draft tube cone and elbow, avoiding the introduction of artificial
numerical damping, allowed the draft tube instabilities to develop their real dynamic
character in the numerical simulations.

Other LES regions could be identified at the interior of the larger spiral case sections
and at the vaneless space between the stay vanes and guide vanes and between the
guide vanes and the runner. The low values of the blending function at the vaneless
space, between the guide vanes and the runner, could explain why the rotor-stator
interaction results from URANS could not reach the level predicted by SAS and
DES.

Near to the wall boundaries in the computational simulation domain, i.e. near to
the turbine hydraulic surfaces, the blending function tended to 1. This caused the
hybrid turbulence models to switch to the URANS behaviour near to the walls
of the spiral case, stay vanes, guide vanes, runner and draft tube. As long as
the important flow dynamic effects in Francis turbines occur in the main stream
regions, the computational grid used for the numerical simulations intentionally did
not offer the mesh resolution for solving the boundary layer with the LES approach.
Therefore, in the wall vicinity, the hybrid turbulence models switched to URANS,
in this case to k-w SST, which was able to properly model the fluid flow in the
boundary layer.

The application of the SAS and DES to the transient turbine flow simulation offered
the advantage to allow the simulation of the draft tube instabilities with the LES
approach without the need to solve the boundary layer with LES. This allowed
avoiding excessive grid refinement in the wall regions as well as excessively small
time steps, thus keeping the computational costs in reasonable current industrial
standards for research and development.

The local mesh density is a parameter in the calculation of the local values of
the blending function. The blending function distribution in the turbine finite
volume mesh, in Figures 7.25 and 7.26, with low values in the vortex rope region,
confirmed that the employed grid density was adequate for the problem. At the
same time, it shows that the knowledge about the phenomenon being studied and
about the machine is required for the mesh generation and numerical setup of the
problem. However, in the case of the Francis turbines, the chosen mesh density was
in accordance to current industrial practices, which means that the simulation with
SAS or DES should be possible in current industrial applications without significant
additional effort.

The turbulent dynamic viscosity, ur, at selected cross-sections of the draft tube cone,
calculated according to the different turbulence models, can be found in Figure 7.27.
The cross-section planes A-A, B-B and C-C were respectively located near to the
draft tube cone inlet, at z/D;, = —0,49, close to the middle, at z/D;, = —0,93, and
near to the cone outlet, at z/D;, = —1,38, with the z coordinate measured from the
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Figure 7.27: Dimensionless dynamic turbulent viscosity, pr/u, calculated with
different turbulence models, at selected draft tube cone sections.
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distributor centreline. The cross-sections of the vortex rope, simulated with each
different turbulence model were also indicated.

As discussed in the theory section of this work, when turbulence models are
employed, the effective turbulent dynamic viscosity, pes = i + pr, replaces the
molecular dynamic viscosity, p, in the Navier-Stokes equations. The diffusive
transport term becomes larger and induces more dissipation in the fluid flow.
Figure 7.27 helps to explain how this effect affect the simulation of the draft tube
instabilities.

Next to regions, where the vortex rope was located, the turbulent dynamic viscosity
increased. The values calculated with LES were of the same order of magnitude as
the experimental values obtained by ALGIFRI, BHARDWAJ AND RAO [1], in spite
of their simpler flow and geometry.

Taking the LES results as reference, the ratio of the turbulent to the molecular
dynamic viscosity, pur/p, did not exceed 300. On the other hand, the pr/p values
simulated with URANS reached almost 25000, two orders of magnitude higher than
the calculation results obtained with LES. The high values for the turbulent dynamic
viscosity at large portions of the draft tube cone were in great part the reason for
the inability of URANS to properly reproduce the vortex rope and for its inaccuracy
in predicting the transient pressure variations.

The hybrid turbulence models, SAS and DES, thanks to their ability to switch to
the LES behaviour in the draft tube cone, led to values significantly lower than
calculated with URANS. The maximum pz/p values computed with SAS and DES
were around 1000 and 1500, respectively, and were limited to small regions of the
draft tube cone. The accuracy of the pressure pulsation results calculated with SAS
and DES confirmed that these values of pr/p and their distribution were acceptable
for the successful simulation of the turbine part load operation.

Focusing again on the pressure pulsation results themselves, their amplitudes,
AP/ (pgH), can be seen in Figure 7.28. The guide vanes and runner blades are
presented at their meridian view. The right side of the figure corresponds to the
pressure side and the left to the suction side. In opposition to the rated operating
point, at part load and high head, the higher pressure pulsation amplitudes were
distribute at the blade body as well and not only at the leading edge. The pressure
pulsation amplitudes at the blade body were higher at the suction than at the
pressure side, because of the vortex rope position under the runner.

The static pressure distribution, normalised to the turbine net head, p/ (pgH), is
presented in Figure 7.29. This load was necessary for the determination of the static
stresses in the structural analysis. Similar to the results at full load, the contour
plot employed the meridian transformation for the runner and guide vanes. At the
right side, the runner blade pressure side can be found and, at the left side, the
runner blade suction side. The pressure reference level for the static pressure at the
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Figure 7.28: Pressure oscillation amplitude at part load and high head, meridian
view.

Figure 7.29: Time-averaged pressure at part load and low head, meridian view.

outlet of the finite volume model was set to be equal to the relative pressure at the
downstream tank at the model test.

7.3.3 Draft Tube Instabilities and Higher Part Load

Inside the part load region of the turbine hill chart, there might exist a thin region,
where higher part load takes place. At higher part load, the pressure pulsation
amplitudes in the draft tube cone are higher than at normal part load. The
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Figure 7.30: Vector plots, streamlines and isobarometric contour in the draft tube
cone at higher part load.

experimental results and the numerical simulations indicated that the machine took
as example in this study, the F'T 80, presented the higher part load phenomenon.

At part load, the vortex rope in the draft tube rotates not only around the machine
vertical axis, but also around itself. Due to the near cylindrical shape of the vortex
cross-section at normal part load, the rotation around itself, i.e. the spin, can be
hardly observed. As described by KOUTNIK ET AL. [75] and experimentally observed
by NICOLET ET AL. [112], at higher part load, the vortex rope cross-section assumes
an elliptical shape. This shape is related to the pressure distribution. The elliptical
shape, associated to the vortex rope spin, causes the further increase of the pressure
oscillation in the draft tube cone. According to KOUTNIK ET AL. [75], the spin
occurs at frequencies higher than the Rheingans frequency, typically between 2,5f,
and 5,0 f,.

The part load and low head point, OP 6, ny/ny = 1,199, Q1/Q;, , = 0,848, was
initially chosen for the interest in studying the operating points with the highest
pressure oscillation amplitudes, because of the subsequent structural analysis. The
part load and low head operating point was not only located at the part load region
of the turbine hill chart, but also at the higher part load region, so it offered the
possibility to numerically investigate the higher part load phenomenon as well.

Figure 7.30 brings the axial projection of the simulated velocity vectors at the draft
tube cone section located at z/D;, = —0,93, as well as the associated streamlines
and the vortex rope cross-section. As seen from the vector distribution and from the
flow path described by the streamlines, the numerical model was able to reproduce
the vortex rope spinning movement as well as the rotation movement around the
machine axis. The vortex rope elliptical shape at higher part load could also be
reproduced by the numerical calculations, as illustrated in Figure 7.30.
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Figure 7.31: Pressure oscillation Fourier transform at the draft tube at higher part
load.

The higher frequency, associated to the higher part load phenomenon and coming
from the vortex rope spin, can be identified in Figure 7.31. The diagrams show
the Fourier transform of the simulated pressure time history at the four measuring
points in the draft tube cone. At the calculated frequency spectrum, the second
amplitude peak, located at f/f, = 3,37, was clearly captured.

From Figures 7.30 and 7.31 and their analysis, it could be verified that the numerical
model employed for the simulation of the Francis machine was capable to properly
simulate the higher part load phenomenon and its main characteristics, i.e. the
vortex rope spin, its elliptical shape and the higher frequency.

To the author knowledge, the numerical results presented here and by MAGNOLI
AND SCHILLING [92, 93, 94| constituted the first successful numerical simulation of
the higher part load phenomenon, which was published up to now.

Considering the pressure pulsation amplitudes at the runner at part load and low
head, OP 6, they were qualitatively similar to the ones calculated for part load
and high head, OP 5. Nevertheless, they presented higher amplitudes at OP 6
than at OP 5. The pressure pulsation amplitudes at part load and low head,
at selected conformal planes, can be encountered in Figure 7.32. Once again, as
for the previously presented operating points, the pressure oscillation amplitude,
AP/ (pgH), at the runner blades were extracted for seven conformal planes. The
conformal planes were located at the coordinates, v = 0,025, v = 0,125, v = 0,325,
v = 0,500, v = 0,725, v = 0,875, v = 0,975, going from the crown vicinity up to the
band vicinity. The u coordinate started at the trailing edge at the pressure side,
u = 0,00, passed through the leading edge, u = 0,50, and arrived at the trailing
edge at the suction side, u = 1,00.
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Figure 7.32: Pressure oscillation amplitude at selected conformal planes at partial
load and low head.

In the diagrams in Figure 7.32, the results of the numerical simulations obtained
with URANS, SAS and DES are compared. Again the AP/ (pgH) values calculated
with SAS and DES were close to each other, while URANS was inaccurate and could
not even approach the amplitudes predicted by the hybrid turbulence models. This
was the same behaviour already observed at the simulation of the part load and
high head operating point, OP 5. Due to the similarity of the two operating points,
the performance of the turbulence models at part load and low head was already
expected. The reasons for the accurate predictions of SAS and DES and for the
limitations of URANS were the same as discussed before.

From the diagrams in Figure 7.32, the numerically predicted values for the pressure
pulsation amplitudes with the hybrid turbulence models at part load and low head
were respectively 8,6% and 6,0% at the blade leading edge and at the blade body.
As seen in the plots, the values of AP/ (pgH) at the blade body were higher at part
load and low head, OP 5, in comparison to the other operating points previously
analysed. Moreover, the regions with higher pressure oscillation amplitudes, caused
by the rotating vortex rope under the runner, covered larger portions of the blade
surface, especially at its suction side.
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Figure 7.33: Effect of the DES blend function on the pressure oscillation amplitude
at selected conformal planes at partial load and low head.

At part load and low head, one additional test was performed, concerning the
DES limiter modification introduced by MENTER AND KuUNTZ [102]. The DES
simulations were repeated with Fsgt equal to zero, I} and F,. The results for the
pressure pulsation amplitude at the runner can be seen in Figure 7.33. As observed in
the figure, the usage of the different blending functions did not significantly influence
the level of the calculated pressure pulsation amplitudes. The only systematic
effect, which could be determined, was the slightly smaller values predicted by using
the blending function Fj, instead of the zero function or Fj. The reason for it
was that the blending function F,, suggested by MENTER AND KuNTZ [102] to
avoid non-physical flow separations induced by the computational grid, caused the
DES model to switch slightly later to the LES mode. As long as no grid-induced
separation was observed and Fgst = 0 and Fsgt = F; produced similar results, the
values considered for further analysis made use of Fsg = 0.

The distribution of the pressure oscillation amplitude, AP/ (pgH), at the runner
blades can be viewed in Figure 7.34. The contour plot is shown with help of the
meridian transform of the runner blades and guide vanes. The blade pressure side
is found at the right side of the figure and the blade suction side at the left side.
The contour plot also indicated that, at this operating point, the higher amplitudes



7.3. FLUID SIMULATION RESULTS 173

AP [ (pgH)
(%)
6,0

Figure 7.34: Pressure oscillation amplitude at part load and low head, meridian
view.

Figure 7.35: Time-averaged pressure at part load and low head, meridian view.

extended over large regions of the blade body, especially at its suction side, caused
by the proximity to the vortex rope.

Repeating the procedure for the previously calculated operating points, the
time-averaged pressure field was determined for the part load and low head operating
point, OP 6. Figure 7.35 depicts the static pressure distribution at the runner and
guide vanes, normalised to the net head, p/ (pgH). The contour plot is shown at
the meridian transform of the hydraulic surfaces. The pressure and suction sides
can be respectively found at right and left side of the picture. The experimental
level of the downstream tank during the model test was used as reference level for
the static pressure.
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7.3.4 Channel Vortex, Draft Tube Instabilities and Deep
Part Load

The deep part load region of the turbine hill chart is characterised by the set-in
of the channel vortex between the runner blades and by low volume flows. At this
operating condition, diverse transient phenomena take place in the Francis machine.
Naturally, the channel vortex in the runner, which defines the begin of the deep part
load region, belongs to them. The second dynamic phenomenon, present at deep
part load, is the flow separation at the runner blade leading edge. At moderate part
load, the rotating vortex rope under the runner cone and in the draft tube diffusor,
typical from part load, is still present. For very reduced volume flows, backflow
and recirculation occur in the turbine runner, up to the point that speed-no-load
is reached. At the lower portion of the deep part load region of the hill chart,
cavitation phenomena can also strongly influence the flow dynamics.

Up to now, there has been extremely limited research on the dynamic phenomena
taking place at deep part load. The possible reason for it is the complexity to
model the dynamic flow effects and cavitation, which might become important
at very reduced flows. Nonetheless, the presence of the highly transient flow
phenomena makes the deep part load an interesting operating condition for the
dynamic behaviour of Francis turbines. Experience in prototypes confirms that deep
part load constitutes a demanding operating condition for the runner structure.

For the importance of this operating condition, the deep part load operating point,
OP 7, ny/ny, , = 1,043, Q1/Q1,,, = 0,570, was included in the numerical simulations
for this study. This point was located at moderate deep part load, i.e. near to the
hill chart curve corresponding to the set-in of the vortex channel. This operating
point was frequent for the real prototype operation and, due to its moderate
characteristics, the cavitation effects were not significant, as experimentally observed
in the model test.

After the analysis of the influence of the turbulence models on the previously
computed operating points and the accuracy obtained with the hybrid models, it was
judged to be sufficient to calculate the deep part load point with just one method.
The transient numerical simulations at deep part load were carried out exclusively
with the DES turbulence model.

Figure 7.36 shows the calculated pressure pulsation amplitude, AP/ (pgH), at the
runner blades at seven conformal planes. As before, the conformal planes were
located at the coordinates v = 0,025, v = 0,125, v = 0,325, v = 0,500, v = 0,725,
v = 0,875 and v = 0,975, starting from the crown in direction to the band. The
coordinate assumed the values © = 0,00, v = 0,50 and u = 1,00 respectively at the
trailing edge at the pressure side, at the leading edge and at the trailing edge at the
suction side.

From the plots in Figure 7.36, it could be identified that the pressure pulsation
amplitudes at the blade body were considerably high in comparison to the previously
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Figure 7.36: Pressure oscillation amplitude at selected conformal planes at deep part
load.

operating points, especially at the blade suction side. The maximum values for
AP/ (pgH) were 14,7% at the blade leading edge and 7,6% at the blade body.
These high values, when compared to the previously simulated operating points,
were reached at deep part load because of the rotor-stator interaction (RSI), flow
separation, channel vortex and vortex rope.

The pressure oscillations at the blade leading edge were in part due to the
rotor-stator interaction (RSI). In addition to it, at deep part load, the flow separation
at the blade inlet edge and the associated vortex contributed to the high values of
AP/ (pgH) at the inlet edge.

Figure 7.37 shows the time-averaged streamlines at three conformal planes at the
runner, near to the crown, v = 0,20, at the middle of the runner channel, v = 0,50
and near to the band v = 0,80. The streamlines at the stay vanes and guide vanes
were in the absolute reference system, while the ones at the runner were at its
rotational reference system. At operating conditions distant from the optimum, the
runner flow shape differed considerably from the conformal surfaces, so that the
streamlines did not appear parallel to the surfaces at this representation.
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Figure 7.37: Time-averaged streamlines at the runner at deep part load, at the
conformal planes v = 0,20, v = 0,50, v = 0,80.

Due to the high head, nf}/ n'lopt = 1,043, and to the reduced volume flow,
@1/@4,,, = 0,570, the required guide vane opening resulted in small opening angles,
as seen in Figure 7.37. The consequently small flow inlet angle at the runner caused
the fluid separation at the blade leading edge at the suction side near to the crown.
The resulting separation vortex contributed for increasing the pressure oscillations
in the runner.

As before, the pressure pulsations at the blade body experienced the effect of the
vortex rope in the draft tube cone. At deep part load, they were also influenced
by the additional effect of the runner channel vortex. Figure 7.38 shows the
time-averaged streamlines and vortical structures in the runner channel. Different
visualisations are presented. On the left side of Figure 7.38, three channels and
three blades can be observed and, on the right side, one channel and one blade
from another angle. The streamlines were extracted in the runner rotating reference
frame. The vortical structures, represented by isosurfaces, were extracted with the
Ao method proposed by JEONG AND HUSSAIN [69].

The helical path of the streamlines around the channel vortex indicated its rotational
movement between the runner blades. This motion, associated to the instationary
character of the channel vortex, was responsible for the increase of the pressure
pulsations in the runner at deep part load. As seen in Figure 7.38, the channel
vortex started at the crown, near to the blade suction side, and developed along the
blade length, in direction to the band and to the blade outlet.

The channel vortex obtained from the instationary numerical simulations could also
be identified by the cavitating surfaces. Using the same method employed for the
previous operating points, the isobarometric surfaces at the vapour pressure, pya,
are shown in Figure 7.39. On the left side of Figure 7.39, the runner is viewed from
the top, showing how the channel vortex initiated near to and along the blade inlet
edge on the suction side. On the right side of Figure 7.39, the runner is viewed from
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Figure 7.38: Time-averaged channel vortex at the runner blades suction side at deep
part load.
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Figure 7.39: Cavitating channel vortex at the runner at deep part load.

the bottom, allowing to see how the channel vortex extended from the inlet to the
outlet of the runner channel. The numerically calculated channel vortex resulted in
the typical shape observed during model tests.

Figure 7.40 brings the contour plot with the distribution of the pressure oscillation
amplitude at the runner. The meridian transform of the blades pressure side and of
the guide vanes can be found on the right side, while the suction side transform is
on the left side. As already discussed, the high pressure oscillation amplitudes and
its complex distribution were caused by the numerous dynamic effects at moderate
deep part load, i.e. rotor-stator interaction (RSI), leading edge separation, runner
channel vortex (RCV) and draft tube instabilities (DTT).

For the upcoming numerical simulation of the static runner stresses at deep part
load, the time-averaged pressure distribution on the runner blades was evaluated.
Figure 7.41 shows the contour plot for the static pressure, p/ (pgH ), at the meridian
transform of the runner blades and guide vanes. The blade pressure side can be
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Figure 7.40: Pressure oscillation amplitude at deep part load, meridian view.

Figure 7.41: Time-averaged pressure at deep part load, meridian view.

found on the right and the suction side on the left. The pressure reference level at
the outlet of the computational domain was set to match the relative pressure at
the downstream tank during the model test.

7.3.5 Vortex Shedding Effects

Depending on the trailing edge geometry of the runner blades and on the operating
conditions, vortex shedding may take place in Francis runners. The runner blade
constitutes a blunt body and, behind it, vVON KARMAN [163] vortex streets may
appear at different intensities.
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Figure 7.42: Vortex shedding differential pressure oscillation amplitude and
oscillating frequency at the trailing edge at the rated operating point.

In modern designs, the trailing edge of the Francis blades is chamfered and brought
to extremely reduced thickness, virtually eliminating the problem. This procedure
was extensively studied by GUMMER AND HENSMAN [57] for other components of
hydraulic turbines. Moreover, there is no clear report of runner failure caused by
von Karméan vortices. For these reasons, this thematic should not be so relevant any
more.

However, there are still machines in operation, for which the chamfering procedure
was not employed, as it was the case of the turbine studied here. In such situations,
the vortex shedding effect can be the source of noise and blade vibrations. For
the evaluation of this phenomenon, the procedure presented here could be used.
With the dynamic simulation of the fluid flow, the vortex shedding effect could be
captured as well as its oscillation amplitude and frequency. The simulation of the
vortex shedding as done here should be interpreted as a first approach, since the
interaction with the structure might be important for this phenomenon, e.g. in the
case of lock-in effects as explained by BLEVINS [17].

For the simulation of the von Karman vortex streets behind the runner blades, the
LES, DES, SAS and URANS turbulence models were tested. In Figure 7.12, where
the main interest was to compare the experimental and the numerically simulated
draft tube vortex shape, the pattern of the vortex streets could be observed as well.
The numerically simulated vortices displayed the same pattern as during the model
test.

The differential pressure oscillation amplitude along the trailing edge calculated with
LES, DES, SAS and URANS is found in Figure 7.42 on the left. The difference
in the amplitude between the pressure and suction sides are shown along the
trailing edge length, starting near to the crown, v = 0,00, and going till the band,
v = 1,00. Concentrating on the LES results, the pressure oscillation amplitude, due
to the vortex shedding effect (VSE), experienced a minimum near to the crown and
increased in the direction of the band. The differential pressure oscillation amplitude
reached 3,7% near to the crown, passed through a minimum of 1,7% and achieved
6,7% near to the band.
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Figure 7.43: Limiter for the SAS model at full load at conformal planes.

The same general pattern could be observed for the frequency, on the right side
of Figure 7.42. The vortex generation was asynchronous along the trailing edge,
presenting distinct vortex shedding frequencies. The reasons for it were the local
blade geometry and flow conditions, as stream velocity, boundary layer thickness
and deviation angle. The calculated frequencies varied from around 86 times the
runner rotating frequency at the upper third part of the blade to 148 times the
runner rotating frequency along the lower half part of the blade.

In contrast to the rotor-stator interaction (RSI), to the draft tube instabilities (DTT)
and to the runner channel vortex (RCV) simulations, the hybrid turbulence models
were not able to reproduce the results achieved with LES, as seen in Figure 7.42.
The pressure oscillation amplitude calculated with the hybrid models was not as
large as with LES.

Figure 7.43 brings the probable explanation for this effect. As an example, the
DES blending function, Fpgg, distribution at three conformal planes, v = 0,20,
v = 0,50 and v = 0,80, is shown. The values of Fprg were near to 1 around
the blades, forcing the hybrid turbulence models to assume the URANS behaviour
near to the regions of the vortex shedding generation. The damping characteristic
of URANS was probably the cause for the reduced amplitudes evaluated with the
hybrid turbulence models. It is important to point out that the computational
mesh was intentionally not refined in the boundary layer, since the main interest of
this study was the numerical simulation of the rotor-stator interaction (RSI), draft
tube instabilities (DTI) and runner channel vortex (RCV), which are transient fluid
phenomena taking place at the core of the fluid flow and not at the boundary layers.
As seen before, for the simulation of these other dynamic effects, SAS and DES were
enough accurate.

Figure 7.44 brings the representation of the pressure oscillation amplitude,
AP/ (pgH), induced by the vortex shedding effect (VSE) and calculated with LES
at the meridian transform of the runner blades and guide vanes. The right side
corresponds to the pressure side and the left side to the suction side. The dynamic
pressure distribution on the runner blades could be used for the structural analysis
of the dynamic stresses caused by the von Karman vortices. In the assessment of
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Figure 7.44: Pressure oscillation amplitude at the rated operating point, meridian
view.

these mechanical stresses, the lock-in effect due to the fluid-structure interaction
should be kept in mind.

The pressure oscillation amplitude caused by the von Karman vortex streets
might be eventually high, when compared to those of other fluid phenomena as
rotor-stator interaction (RSI) and draft tube instabilities (DTI). Even though the
high amplitudes were limited to small areas at the blade trailing edge, it corresponds
to the blade location with the lowest stiffness and with the highest sensibility to
mechanical stresses. Therefore, vortex shedding should be avoided in runner design,
e.g. with blade chamfering, and its mechanical effects should be further investigated.

7.3.6 Results Summary and Further Considerations

The main objective of the fluid flow computational simulations was the numerical
prediction of the transient pressure distribution at the turbine runner. The
validation of the presented computation method and relevant turbulence models
was achieved through the comparison with the static and dynamic experimental
results. Extensive numerical results were produced and part of them is summarised
and commented here.

Pressure Oscillation Amplitude and Operating Points

The magnitude of the calculated pressure oscillations was dependent on the driving
fluid low dynamic phenomenon at each selected operating point. The principal flow
phenomena in the Francis turbine studied here were the rotor-stator interaction
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Figure 7.45: Pressure oscillation amplitude at selected conformal planes at rated
(OP 2), partial load and high head (OP 5), partial load and low head (OP 6) and
deep part load (OP 7).

(RSI), draft tube instabilities (DTI), higher part load (HPL) and runner channel
vortex (RCV). These effects could be respectively found at the rated operating point,
OP 2, at part load and high head, OP 5, part load and low head, OP 6, and deep
part load, OP 7.

The pressure oscillation amplitude at the runner blades at the calculated operating
points using the hybrid turbulence models is summarised in Figure 7.45. There, the
influence of the several dynamic fluid effects can be seen and compared. As before,
seven conformal planes, starting near to the crown, v = 0,025, passing through the
middle of the channel, v = 0,500, and going up to the band vicinity, v = 0,975,
were employed for representing the pressure oscillation amplitude, AP/ (pgH), at
the runner blades. For each conformal plane, the pressure oscillation amplitude is
plotted starting at the trailing edge on the pressure side, u = 0,00, passing through
the leading edge, u = 0,50, and arriving at the trailing edge on the suction side,
u = 1,00.

It can be seen in Figure 7.45, that in the case of the F'T 80 the highest pressure
oscillation amplitudes at the runner were reached at deep part load, OP 7, caused
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by the runner channel vortex (RCV). Next came the part load and low head,
OP 6, dominated by the higher part load (HPL), followed by part load and low
head, OP 5, where the draft tube instabilities (DTI) were the driving effect. The
pressure oscillation amplitudes at the rated operating point, OP 2, arising from
the rotor-stator interaction (RSI), became important only close to the band, at the
conformal planes v = 0,875 and v = 0,975, where the distance between the runner
blades leading edge and the guide vanes became more reduced.

The behaviour of high specific speed Francis machines would be the opposite. The
rotor-stator interaction would originate the higher pressure pulsation amplitudes,
while the draft tube instabilities, higher part load and runner channel vortex would
lose in importance. This behaviour and the corresponding pressure oscillation
amplitudes could be calculated in the same way as it was done for the FT 80 with
the calculation method presented here.

Figure 7.45 shows that at the rated operating point, OP 2, the pressure oscillations
caused by the rotor-stator interaction (RSI) could make themselves noticeable only
at the runner blades leading edge, while the amplitudes at the rest of the blade
remained low. On the other hand, for the part load operating points, OP 5,
OP 6 and OP 7, the pressure pulsation amplitudes remained elevated all over the
blade, including the leading edge and the blade body, i.e. pressure and suction
sides. Especially the suction side was submitted to the higher pressure oscillation
amplitudes, because of the relative position of the rotating vortex rope under the
runner, up to the draft tube cone. At deep part load, OP 7, where the calculated
values were higher, AP/ (pgH) was also significantly high at the leading edge, in
part due to the runner channel vortex, with its start location near to the leading
edge.

The time-averaged velocity profiles, for the radial, tangential and axial velocity
components, ¢, ¢, and ¢,,, for the optimum operating point, OP 1, for the rated,
OP 2, for part load and high head, OP 5, and part load and low head, OP 6, are found
in Figure 7.46. The velocity components were normalised in relation to the runner
peripheral velocity at the outer diameter of the blades inlet edge, Uy, = (D1, /2)w.
They were plotted along the normalised radial coordinate, r/ (D3/2), at the runner
outlet. Figure 7.46 brings also the distribution of the normalised Euler head at the
runner outlet, Hg, /H. The normalised value of the mass-averaged Euler head at
the runner outlet, Hp, /H, is written in the diagrams as well.

At the optimum operating point, OP 1, the velocity distributions were significantly
smooth and well balanced. The axial velocity component, ¢,,, had a nearby constant
value at a long extension of the runner outlet. With increasing power and flow, the
mass flow was slightly increased near to the runner centre, r — 0, and decreased
near to the outer portion of it, » — 1, as seen for the rated operating point, OP 2.

The opposite effect could be observed at the part load, OP 5 and OP 6. The axial
velocity, ¢,,, was considerably increased near to the outer diameter and strongly
decreased near to the runner centre. Further reducing the turbine volume flow, @,
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Figure 7.46: Circumferentially averaged velocity and momentum distribution at the
runner outlet at optimum (OP 1), rated (OP 2), partial load and high head (OP 5),
partial load and low head (OP 6).

and consequently going further into the direction of deep part load and speed-no-load
(SNL) would even result into backflow in the central portion of the runner outlet,
as it was already almost the case at part load and high head, OP 5.

At Figure 7.46, the relation between the turbine load and the circumferential velocity
and Euler head distributions can also be observed. At the optimum operating point,
OP 1, the ¢, distribution was well balanced along the radius, with regions of similar
extension with normal swirl, ¢, > 0, and counter-swirl, ¢, < 0. The mass-averaged
Euler head at the runner outlet for the optimum was Hg,/H = 4,6%. In the case
of the FT 80, the optimum, OP 1, belongs to the rope free zone and the pressure
pulsations in the draft tube cone were considerably low.

At the rated operating point, which corresponded to more volume flow and power
than at the optimum, the tendency for counter-swirl became dominant and the
mass-averaged Euler head resulted in a negative value, Hg,/H = —1,4%. The
pressure pulsations in the draft tube cone remained considerably low for the rated
operating point and the draft tube vortex assumed the torch shape.
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Table 7.11: Numerical simulated pressure oscillation amplitude on the runner blades
for selected operating points.

. . o QT4 n AP/ (pgH) [/ n
Operating Point m,, @, T, 7w  LE PS/SS LE PS/SS
O I C R C B (%) (%) ) (-)
OP 2 Rated 1,103 1,229 1,083 0972 137 2.7 2 24
OP 5 Part load high head 1,078 0,797 0,693 0,938 66 31 24 0,302
OP 6 Part load low head ~ 1,199 0848 0,644 0910 86 6,0 24 0,282
OP 7 Deep part load 1043 0570 0452 0828 147 7.6 24 0,299

At part load, with decreasing volume flow, the values of ¢, were considerably
increased along all the radial extension of the runner outlet and there was only
normal swirl, ¢, > 0. The higher values of ¢, resulted in considerably higher values of
the mass-averaged Euler head, which reached Hg,/H = 24,0% and Hg,/H = 32,2%
for part load and high head, OP 5, and part load and low head, OP 6. These two
operating points registered high pressure oscillation amplitudes at the draft tube
cone, with even the set-in of higher part load (HPL) at the operating point OP 6.
These operating points belonged to the portion of the hill chart, where the rotating
vortex rope in the draft tube cone was fully developed.

Pressure Oscillation Amplitude as Design Parameter

The pressure oscillation amplitude, AP/ (pgH), can be considered as an important
parameter for the excitation loads on the runner structure. The values of AP/ (pgH )
could be used as design parameter for the comparison of different runner designs, in
relation to their lower or higher potential to dynamically excite the runner structure.
They could also be used as driving parameter for the runner mechanical design and
structural assessment.

Table 7.11 summarises the numerically predicted pressure oscillation amplitude
at the runner and their respective dominating excitation frequency for different
operating points. The maximum pressure oscillation amplitude values, AP/ (pgH ),
at the runner blades leading edge (LE) and at their body, i.e. pressure and suction
sides (PS-SS), can be found in Table 7.11 and the same for the dominating excitation
frequency, f/f.. The values are listed for the operating points corresponding to the
important dynamic fluid flow phenomena taking place at the runner, with the rated
operating point, OP 2, being representative for rotor-stator interaction (RSI), part
load and high head, OP 5, for draft tube instabilities (DTT), part load and low head,
OP 6, for higher part load (HPL) and deep part load, OP 7, for runner channel vortex
(RCV).

In the case of Francis turbines with high specific speed, as for the FT 80 simulated
here, the pressure oscillation amplitude at the blade body should be the more
relevant parameter, especially at the operating points OP 5, OP 6 and OP 7,
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Table 7.12: Experimental pressure oscillation amplitude at the draft tube for selected
operating points.

- n QT AP/ (pgH) £
Operating Point nllopt Qllupt T{Um Nopt HW  90° TW  270° In

6 6 6 %) (%) (o) (B) ()

OP 2 Rated 1,103 1,229 1,083 0972 036 039 038 040 0,165
OP 5 Part load high head 1,078 0,797 0,693 0,938 4,70 3,65 4,28 525 0,302
OP 6 Part load low head 1,199 0,848 0,644 0,910 529 451 571 6,78 0,282
OP 7 Deep part load 1,043 0,570 0,452 0,828 454 4,00 429 4,95 0,299

where the draft tube instabilities (DTI), higher part load (HPL) and runner channel
vortex (RCV) were the driving phenomena. As long as turbines with high specific
speed normally present considerable distance between the runner blades leading
edge and the guide vanes, the rotor-stator interaction (RSI) should not be able
to strongly excite the runner structure and importantly contribute to the fatigue
damage, in spite of the higher AP/ (pgH) values at the blade leading edge at the
operating points OP 2 and OP 7. On the other hand, for Francis turbines with low
specific speed, the rotor-stator interaction (RSI) should be more determinant for
the structural load as the draft tube instabilities (DTT), higher part load (HPL) and
runner channel vortex (RCV).

The experimentally determined values of the pressure oscillation amplitudes in the
draft tube cone, which were previously used for the validation of the computation
method and turbulence modelling, can be found again in Table 7.12. They would
be relevant for the dynamic excitation of the draft tube cone, although structural
problems related to the draft tube cone were extremely rarely reported. Up to now,
values of AP/ (pgH) in the draft tube cone were used by several turbine owners as
parameter for the dynamic loads on the machine, possibly because of the current
simplicity to measure them.

However, the pressure oscillation amplitude in the draft tube cone cannot be used as
direct indication of the dynamic loads at the runner. The comparison of Tables 7.11
and 7.12 shows that there is no unequivocal direct relationship between the pressure
oscillation amplitudes at the runner and at the draft tube cone, just some tendency.
The highest pressure pulsations at the draft tube were reached at part load and low
head, OP 6, corresponding to higher part load (HPL), while the highest amplitudes
at the runner were produced by the runner channel vortices (RCV) at deep part
load, OP 7.

Therefore, the values of AP/ (pgH) at the runner should be employed as indication
and as design parameter for the dynamic loads at the runner. In opposition to the
pressure oscillation amplitude at the draft tube cone, they cannot be easily obtained
experimentally, but the calculation method proposed here made it possible.

The pressure oscillation amplitudes at the runner, presented in Table 7.11 for the
F'T 80 turbine, can serve as typical values for machines with similar specific speed,
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ng. With the simulation of other machines with similar specific speed, it would
be possible to investigate the bandwidth for the typical values. The calculation
of turbines with different specific speeds would allow the creation of an extensive
database with typical values as function of the machine n,.

Further Applications

The determination of the dynamic hydraulic total forces and moments at the turbine
runner could serve as example of further practical applications for the transient
fluid flow simulation at the Francis machine. The dynamic radial total forces
and moments at the turbine runner could be employed for the more accurate
rotordynamic simulations of the machine shaft line. As in the case of the dynamic
pressure field at the runner, the experimental determination of the radial forces
and moments at the runner during the model test is not trivial, requires special
measuring equipment and offers limited precision, due to the influence of the overall
shaft line dynamics of the model machine on the measured forces and moments.

The same methodology presented here could also be employed for the numerical
simulation of other operating points and operating conditions dominated by
transient effects, as e.g. speed-no-load (SNL) and full load instability (FLI). In the
case of speed-no-load, finer meshes at the runner channel would possibly be needed,
because of the reduced size of the complex vortical structures, which appear. For
full load instabilities (FLI), where the vortex torch under the runner and at the
draft tube cone becomes pulsating, cavitation models might be needed.

The procedure presented here could be employed for any other Francis machine as
well. Other examples for the application of this method can be found, for example,
in HASMATUCHI [63], where it was attempted to better understand the instability
of pump-turbines.






Chapter 8

Runner Structural Simulation

After the numerical simulation of the transient fluid flow through the Francis turbine
and the numerical prediction of the pressure pulsations in the machine, the secondary
objective of this study was the numerical simulation of the mechanical stresses in the
turbine runner. The determination of the stresses in the turbine runner allowed the
assessment of its structural and fatigue strength. It was also possible to evaluate the
stress level caused by the different operating points and the fatigue damage induced
by them.

The calculation of the mechanical stresses in the turbine runner was done with the
finite element method (FEM), using the transient pressure distribution resulting
from the previous CFD analysis. The precise and accurate results from the fluid
flow simulation were stored for each calculated time step and used as input for the
transient structural analysis. The structural simulation employed the real pressure
distribution and made use of no simplifications, approximations or assumptions
concerning the dynamic fluid low. With the availability of the pressure time history
at the runner, the finite element (FE) model could be solved through the direct time
integration.

This chapter describes the finite element (FE) model and the numerical setup. It
also brings the numerical results of the numerical structural simulations.

8.1 Turbine Runner Characteristics

8.1.1 Constructive Aspects

The mechanical stresses of the turbine runner were calculated using the real
prototype geometry and in prototype size. The prototype turbine configuration
can be seen in Figure 8.1, where the crown, band and shaft coupling designs can
be identified. Differently from the turbine fluid flow, which could be calculated or

189
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Figure 8.1: Cross-section through the turbine prototype.

measured in the model size and transposed to the prototype, in normal cases the
prototype runner in its constructive aspects is not homologous to the model runner.
Therefore, mechanical stresses should be computed using the prototype model, as
done here.

The main reason for the non-similarity between model and prototype runner is
their different geometry. The crown and band designs are normally unique to
the prototype being considered, leading also to different geometries for different
prototypes derived from the same hydraulic. The shaft coupling position and
geometry are also typical from the prototype being analysed. Although not
represented in Figure 8.1, the fillet radii between runner blade and crown and band
might as well be function of the prototype size, particular constructive restrictions
and manufacturing requirements.

The crown and band designs and the shaft coupling for the prototype machine
being studied here are shown in Figure 8.1. This configuration and the particular
prototype size were considered for the elaboration of the finite element (FE) model
used for the numerical computations of the static and dynamic mechanical stresses
in the turbine runner.
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The real size and geometry for the fillets between blade and crown and band were
modelled as well. At the leading edge near to the crown and band, the fillet radii
were respectively 0,74% and 0,83% of D;,. At the trailing edge near to the crown
and band, the size of the fillet radii was respectively 0,74% and 0,54% of D;,. The
fillet radius varied along the blade length between the leading and trailing edge, in
order to guarantee a smooth transition and an appropriate fillet surface.

The material employed for the runner was the stainless steel ASTM A743 CA-6NM,
equivalent to G-X5 CrNi 13.4. For the computation of the dynamic structural
behaviour, the complete runner with all its sectors, i.e. with its zo = 13 blades, was
modelled, instead of just one sector, because the transient pressure field did not
show any kind of symmetry, e.g. no cyclic symmetry.

8.1.2 Operating Points and Load Cases

The turbine runner was submitted to basically three types of structural loads, the
pressure load, centrifugal acceleration load and gravity acceleration load. Other
loads due to e.g. the runner unbalance or misalignment were not considered.
Transient operating conditions, such as start, stop and load rejection made not
part of the scope of this study, even though they could in theory be simulated with
the method presented here, but with much higher computational times and costs.

The most important load, in terms of its magnitude and dynamic characteristics,
was the pressure load originated from the fluid flow through the hydraulic turbine.
The pressure load counted with static and dynamic parts and constituted the source
for the runner dynamic excitations. The pressure load was calculated in the previous
CFD analysis. The dynamic pressure field at the runner was stored for each time
step of the transient fluid flow simulation and used as input for the finite element
analysis (FEA).

For the structural analysis, the transient fluid low was calculated for the operating
points defining the boundaries of the operating range. The rated, OP 2, full load
and high head, OP 3, full load and low head, OP 4, part load and low head, OP 6,
and the deep part load, OP 7, operating points defined the operating range of the
machine, as already discussed at the beginning of the previous chapter. In addition
to these 5 operating points, part load and high head, OP 5, was also calculated
in the finite element analysis (FEA). The location of the operating points and the
prototype operating range are again reproduced in Figure 8.2.

For the FT 80 machine, the rotor-stator interaction (RSI) was the dominating
dynamic fluid flow effect at the rated point, full load and high head and full load
and low head, OP 2, OP 3 and OP 4. At part load and high head, part load and
low head and deep part load, OP 5, OP 6 and OP 7, the draft tube instabilities
(DTI) became the most important effect. At part load and low head, OP 6, higher
part load (HPL) was present. At deep part load, OP 7, the runner channel vortex
(RCV) made part of the dynamic fluid flow phenomena.
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Figure 8.2: Operating range and operating points considered for the structural
analysis.

For the application in the finite element analysis (FEA), the pressure field was
simulated at the model scale and transposed to the prototype scale using the
hydraulic similarity laws for operating points not sensitive to the facility hydraulic
circuit dynamics. Considering the same operating point for the model and the
prototype, the relation between the model and prototype unit speeds could be
observed, ny /v/gu = ny,/+/gp. At the runner hydraulic surfaces, taken as no
slip walls, the local total pressure, p; = pc?/2 + p + pgz, was reduced to the
piezometric pressure, pg, and the unit speed expression, nj, = nD/ V/H, could be
used to determine the prototype runner pressure load.

PEy . PEp
5 5 (8.1)
py (nDar)™ pp (npDp)

The piezometric pressure of the model machine, at each point, (x,y,z), and at
each time step, t, could be obtained from the flow simulation and it contained
the static and dynamic parts of the pressure load. The other parameters, model
and prototype water density, pp; and pp, rotational speeds, n,; and np, and
characteristic diameters, D,,, and D;,,, were previously known. The prototype
pressure load, pg,,, could be obtained for each point and time step for all the
simulated operating points. It could be applied as pressure load at the hydraulic
active surfaces of the prototype runner in the finite element (FE) model.

With the real calculated transient pressure distribution at the turbine runner, there
was no need for any hypothetical, fictive or artificial load case and consideration
about the pressure field originated from the fluid flow through the hydraulic turbine.
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This methodology for the determination of the pressure load can be extended to any
other operating point of interest, with no need for simplifications or assumptions.
Up to now, no such detailed analysis without simplifications of the transient pressure
load on the runner had been carried out for Francis machines, possibly because of the
difficulties in simulating the transient volume flow and in dealing with the interface
between the finite volume (FV) and the finite element (FE) solver.

Each operating point resulted in a different static and dynamic pressure field at the
runner. Normally, different prototypes have distinct operational range and operating
points, (n}, Q7). This constitutes a further reason for performing the mechanical
stress calculations for the specific prototype machine being studied.

The runner sensibility to the centrifugal acceleration load is usually calculated with
a simple load case, where only the runner rotational speed at runaway is applied
as load to the finite element model. This test case was denominated as runaway
speed condition and differed from the real runaway condition. At the real runaway
condition, the pressure distribution on the runner blades is such that the resulting
torque is extremely reduced. The runaway speed load case employed here, as test
condition for the numerical setup of the finite element model, included just the
centrifugal acceleration load and was just used for test purposes. The normalised
maximum turbine runaway speed for the prototype was, np/n = 1,733.

8.2 Structural Simulation Numerical Setup

For the correct evaluation of the static and dynamic stresses in the turbine
runner, the finite element model was elaborated corresponding to the real runner
characteristics. The numerical aspects of the finite element model were tested, in
order to assure that the predicted mechanical stresses reproduce the real stresses in
the real runner as precisely as possible.

For the structural assessment, the stress components in the Cartesian components
were calculated with the finite element method (FEM) and the principal stress
components, oy, 0y and o3, could be derived as well as the von Mises equivalent
stress, o.

Geometry

The first basic requirement for the accurate prediction of the mechanical stresses
in the runner was that the finite element model geometry could precisely represent
the real designed and manufactured geometry. The CAD model, generated with
CATIA [30] for the elaboration of the finite element model, reproduced the real
geometry of the runner crown, band and blades. It also included the appropriate
fillet geometry, along all the fillets extension between the crown and the blades and
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Figure 8.3: Three-dimensional view of the runner mesh for the finite element
analysis.

the band and the blades. The fillet geometry at the blades trailing edge was also
properly constructed in the computational model. As already mentioned before, the
finite element model included the complete runner with all its sectors, i.e. zo = 13
blades, as long as the instantaneous instationary pressure load did not present any
kind of symmetry.

Mesh Generation

The computational grid for the finite element analysis (FEA), was created from the
geometric model with the commercial program ANSYS [5]. The mesh was generated
using quadratic tetrahedral elements with 10 nodes, one at each vertex and one at
the middle of each edge segment. The grid was created for one single sector and
copied for the remaining ones. The discretisation of the runner volume was done
with an unstructured mesh. Figure 8.3 brings the three-dimensional view of the
finite element mesh of the complete runner used for the structural simulation.

In Figure 8.4 the runner mesh can be seen in the meridian view. The details of
the mesh at the fillets regions can be observed in Figure 8.5. The fillets regions
were discretised with finer grid density. The finer mesh at the fillets was required,
as long as they were responsible for stress concentration and for the highest stress
gradients, as well as the peak static and dynamic mechanical stresses were located
at them. Therefore, the fillets regions had to count with fine grids and high element
concentration, in order to provide enough resolution for the computed stress field
and to accurately calculate the peak stress values. The fillets regions were of main
importance for the structural analysis.
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Figure 8.5: Detail view of the fillet mesh at the trailing near to crown (left) and
band (right) for the finite element analysis.

In order to reduce the computational costs for the transient analysis, the meshes
densities were defined for each runner surface and region, depending on its
importance and expected stress gradients and stress level. This offered the possibility
to reduce the overall computational grid size in comparison to fully automated
meshing algorithms for Francis runners, while keeping the same computation
accuracy.

Mesh Density

The general mesh density was the first tested parameter of the numerical model.
The same runner geometry was discretised with increasing number of elements and
keeping the same mesh topology. The influence of the mesh density on the dynamic
behaviour of the simulated runner was tested through the calculation of the first
natural frequency of the complete runner with increasing grid density. In Table 8.1,
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Table 8.1: Mesh density effect on results. First Natural Frequency.

Number  Number of Maximum Edge Length First Natural
of Nodes Elements L/Dy, (mm/m) Frequency
per Sector per Sector TE, TE, Fillet Blade Slice Outer wy,/w 1)
Crown Band Body Body Surface Surface ) (%)

31,0-10° 17,110 2,0 1,0 70 200 100 300 12,31 1,2

66,7-103  38,5-10° 1,0 06 40 200 100 300 12,27 0,9
102,1-103  63,7-10° 10 06 40 100 100 100 12,20 0,3
186,6- 103 118,6 - 10° 10 06 20 100 50 100 = 12,16 -

it can be found the number of nodes and elements per each sector of the runner,
the maximum element edge size for the distinct regions, the calculated first natural
frequency and its deviation, ¢, in relation to the value obtained with the finest mesh.
The element edge size was normalised to the characteristic diameter, L /D, and the
first natural frequency to the runner rotational angular speed, w,, /w. In Table 8.1
were listed the maximum element size for the fillets region between the blade trailing
edge and the crown and band (TE, Crown and TE, Band), for the remaining fillet
and blade surfaces, i.e. for the fillet and blade bodies, for the slice surfaces between
the runner sectors and for the outer surfaces not in contact with the main fluid flow.

The values in Table 8.1 show that even the results obtained with the less refined
mesh, counting with 17,1 thousand elements per sector, were already very close
to those obtained with the finest grid, with 118,6 thousand elements per sector,
presenting a maximum deviation of 1,2%. Based on these results, it was assumed
that the dynamic behaviour of the runner described by the tested finite element
models reached the mesh independency threshold. The reliable simulation of the
runner dynamic response could have been done even with the less refined mesh.

The mesh density effect on the stress and displacements results was tested for static
load cases. The first one was the centrifugal acceleration at the runaway speed
condition and the second one was the time-averaged pressure load at the rated
operating point, OP 2. As long as these two conditions were stationary, they were
tested in a single runner sector with cyclic symmetry boundary conditions at the
slice faces A and B.

2m .27 .27 2m
Uup, = Uj, COS — — Uy, Sin— , up, = Ua, sin — + Uy, cos — (8.2)
z9 Z9 z9 V)

Y
Due to the simplicity in the preparation of the finite element model at the runaway
speed condition, several runner mesh densities were tested and the results can be
found in Table 8.2. The number of nodes and elements per sector, the normalised
extreme values for the total and radial displacements, ur/D;, and w,/D;,, the
normalised equivalent stresses, o./S,, for the peak value at the blade trailing edge
(TE) at the crown and band and the maximum deviation in relation to the finest
mesh results are presented in Table 8.2. The yield stress is represented by S,.
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Table 8.2: Mesh density effect on results. Runaway speed.

TE

Number  Number of Extreme Value Crovx;n TE, Band  Extreme
of Nodes Elements Deviation
per Sector per Sector ur/Dy1,  u,/D1, oe/Sy oe/Sy oe/Sy
(mm/m)  (mm/m) ) (-) ) (%)

31,0-10° 17,1 -10° 0,734 0,417 0,320 0,145 0,320 2.0
66,7-10% 38,5103 0,736 0,417 0,325 0,140 0,325 ~2,0
85,6 - 103 50,9 - 103 0,759 0,428 0,333 0,140 0,333 1,9
102,1 - 103 63,7103 0,735 0,428 0,327 0,144 0,327 -1,7
186,6- 103  118,6 - 10° 0,748 0,425 0,326 0,142 0,326 -

Table 8.3: Mesh density effect on results. Rated point.

TE

Number Number of Extreme Value Crov:/n TE, Band
Mesh of Nodes  Elements
per Sector per Sector  ur/Di,  uy/D, oe/Sy oe/Sy oe/Sy
(mm/m)  (mm/m) (-) ) )
Normal 66,7-10% 38,5-103 0,972 0,390 0,239 0,118 0,127
Fine 85,6-10°  50,9-10° 0,980 0,397 0,236 0,116 0,129
Deviation 0 (%) -0,8 -1,6 1,4 1,5 -1,8

The results calculated with the different grid densities for the runaway speed
condition presented an extreme deviation of —2,0% in relation to those obtained
with the finest grid. The reduced deviations associated to no monotonic decreasing
tendency of the deviation with the increasing mesh density allowed to assume that
mesh independent results were achieved. This behaviour, even with considerably
different number of nodes and elements, could possibly be explained with the fact
that even with the less refined grid, the overall mesh resolution was enough to
reproduce the elastic behaviour of the runner and, at the fillets regions, even the
less refined grid counted already with a high node and element concentration.

As already mentioned, the grid density test was also performed for a real load case
condition. The time-averaged pressure load at the rated operating point, OP 2,
was employed for this verification. Since the preparation of this load case was more
demanding than in the case of the runaway speed test condition, two mesh densities
were evaluated. The results are presented in Table 8.3.

The extreme deviation between the results simulated with the two different finite
element grids remained considerably reduced, with an extreme deviation of —1,8%.
This reduced deviation made it acceptable to employ the normal mesh with
66,7 thousand nodes and 38,5 thousand elements for the numerical simulation
of the prototype runner, with the advantage of substantial gains regarding the
computational costs.
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Numerical Approximation Order

The numerical simulation of the runner structure with the finite element method
(FEM) was performed using a second-order approximation for the discretisation of
the displacement field. This was achieved with the usage of 10-node tetrahedra,
which counted with 3 nodes per edge, one at each vertex and one at the middle
point of the edges. This kind of element offered quadratic shape functions,
allowing an approximation of second-order for the displacements. The second order
approximation in the finite element analysis (FEA) offers much higher accuracy,
when compared to simple first-order approximations, as already pointed out by
BATHE [13] and ZIENKIEWICZ [177], among others. Therefore, the choice for the
second-order elements was mandatory, as in the case of any other accurate finite
element assessment.

Boundary Conditions

Displacement boundary conditions were used in the finite element analysis of the
turbine runner. They modelled the coupling between the runner and the turbine
shaft. At the shaft coupling, the runner displacements were restricted, imposing
them to be equal to zero. This boundary condition was investigated by MONETTE,
CouTu AND VELAGANDULA [106], among others, and was considered adequate for
the structural simulation of the turbine runner.

Loads

As mentioned before, the loads considered for the structural simulation of the
turbine runner were the hydraulic pressure load, centrifugal acceleration load and
gravity acceleration load. Loads originated from the eventual runner unbalance or
misalignment were not considered.

From the three considered loads, the hydraulic pressure load was the most important
and the responsible for the most part of the total structural load. The pressure
field for the hydraulic active surfaces was obtained from the CFD simulation. The
centrifugal acceleration and gravity acceleration loads could be represented by simple
analytical models incorporated into the finite element (FE) model.

The hydraulic pressure field was dependent from the machine operating point, varied
along the surfaces and in relation to the time, p = (z,y,2,t). With the CFD
simulation of the transient fluid flow through the complete turbine for different
operating points, the transient pressure field in the runner could be determined.
The pressure distribution on the runner surfaces was calculated and stored for each
time step of the numerical flow simulation and served as input for the finite element
analysis (FEA) of the runner structure with the direct time integration method.
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Due to the distinct numerical methods and objectives, the finite volume model
(FVM) for the fluid flow simulations and the finite element (FE) model for the
runner structural calculations counted with different meshes. For each time step,
the pressure field calculated with the finite volume mesh was interpolated to the
finite element (FE) surface mesh of the runner hydraulic passages. The hydraulic
pressure load was applied as surface load in the finite element (FE) model and was
allowed to vary at the individual element faces, with different values at the individual
elements nodes.

The time-averaged pressure field contributed to the static mechanical stresses in the
runner, ,,,. The time-varying portion of the pressure field, caused by the rotor-stator
interaction (RSI), draft tube instabilities (DTI), runner channel vortex (RCV) or
vortex shedding effect (VSE), depending on the operating point, were responsible
by the dynamic mechanical stresses in the runner, o,.

The pressure distribution on the runner active hydraulic surfaces, i.e. blade surfaces
and crown and band inner surfaces, was provided by the CFD simulation. However,
there are other runner surfaces, which were not part of the fluid flow simulation,
but which were submitted to less important pressure loads. For the runner, these
surfaces were composed by the runner crown and band seals, i.e. labyrinth rotating
surfaces, and by the crown and band outer surfaces, i.e. runner side chambers
rotating surfaces.

EINZINGER [36] describes analytical models commonly used for the modelling of the
pressure load at these non-hydraulic active surfaces. Along the seals, the pressure is
assumed to decay linearly and the linear pressure drop can be used for the pressure
distribution. At the crown and band outer surfaces, the pressure distribution is
modelled by employing the steady Euler equations in cylindrical coordinates. With
the non-slip condition, the only velocity component at the surfaces in the absolute
reference system is uy = rw. Assuming as well no variation in time or in the
tangential direction, the Euler equations yield the pressure distribution on the crown
and band outer surfaces. In this case, the pressure distribution is only a function of
the radius variation, Ap (r) = 1/2 pw?A (r?).

The centrifugal and gravity acceleration loads were the other two charges applied to
the runner in this study. Both loads were simply applied to the finite element (FE)
model as body loads. They were computed through the volume integration of the
specific body loads in the finite elements, f; = rw? for the centrifugal acceleration
in the runner rotating reference system and f;, = —g for the gravity acceleration.

Model Extension

For all the simulated operating points, the transient pressure field actuating on the
runner did not present any kind of symmetry. For the operating points near to
the optimum or at full load operating conditions, the dominating dynamic fluid flow
effect was the rotor-stator interaction (RSI). Due to e.g. the inhomogeneous pressure
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Table 8.4: Model extension effect on results. Runaway speed.

TE

Total Total Extreme Value ’ TE, Band

Model Crown
Extensio Number Number of

XLension of Nodes Elements ur/D1,  ur/D1, oe/Sy oe/Sy oe/Sy

(mm/m) (mm/m) ) ) -)

All sectors ~ 860,8-10° 500,8-10 0,741 0,420 0,328 0,141 0,328
Single sector 66,7103 38,5-10° 0,736 0,417 0,325 0,140 0,325
Deviation 0 (%) -0,7 —0,6 -0,7 -0,7 -0,7

distribution at the spiral case, the transient pressure field at the runner was different
for each one of its channels. At part load conditions, besides the inhomogeneous
spiral case pressure distribution, the rotating vortex rope in the draft tube cone was
also responsible for completely different charges at the runner channels for any given
instant. Due to the distinct charges actuating simultaneously on the runner sectors,
the finite element (FE) model for the transient simulations considered the complete
runner.

Some authors, as e.g. SEIDEL ET AL. [141], attempted to reduce the transient
structural simulation of the runner to only one sector with the usage of the spatial
Fourier transformation to model the distinct load in the runner channels. This
method simplifies the pressure load to a harmonic spatial wave and do not correspond
to the real pressure distribution, which presents a much more complex spatial
distribution. Therefore, the direct time integration method, with the complete
runner FE model and with the transient pressure load available from the CFD
simulation of the complete machine, was the method chosen here to assure the
results accuracy.

For the numerical test cases with static load conditions, only one runner sector
with cyclic symmetry boundary conditions was used. However, for the structural
simulation of the runner, the complete runner geometry with all its sectors was
needed, because the transient pressure field for the different operating points did
not present any kind of symmetry, as already mentioned. Table 8.4 brings the
comparison of the results obtained for the runaway speed condition simulated with
one runner sector and with the complete runner.

The marginal deviation was associated to the solver algorithm accuracy. The
reduced deviation value allowed the knowledge accumulated with the numerical
tests done with the sector model to be extended to the finite element model of the
complete runner.

Although the transient pressure loads in the runner did not present any symmetry
and the complete runner model was needed for the calculations, each one of the
runner sectors experienced successively the same charges and presented successively
the same stresses. Therefore, the finer mesh resolution to accurately resolve the
stress field was needed in only one arbitrary runner sector. The stresses were watched
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Table 8.5: Effect of the combination of coarse and refined sector meshes on results.
Runaway speed.

Total Total Extreme Value TE, TE, Band

Model Crown

Combinati Number Number of

OMbIIAMON ot Nodes  Elements ur/Dy,  up/D1, oe/Sy oe/Sy oe/pgH
(mm/m) (mm/m) (-) (-) )

All refined  860,8-10% 500,8-10% 0,741 0,420 0,328 0,141 0,328
One refined  432,1-103 241,0-103 0,735 0,417 0,325 0,138 0,325
Deviation 5 (%) -0,7 -0,7 -0,7 -1,7 -0,7

in this sector during the complete duration of the structural simulation. The grid
density in the other runner sectors was required only to be fine enough to deliver the
appropriate dynamic properties and internal forces at the boundaries of the watched
runner sector.

The previous numerical tests described before showed that even the less refined
quadratic mesh, which was investigated, was able to reasonably match the first
natural frequency of the runner as well as the displacements and stresses at runaway
speed condition. Nonetheless, the structural simulation results of the runner FE
model with all refined sectors, with 860,8 thousand nodes and 500,8 thousand
elements, were compared to the results obtained with the complete runner mesh,
counting with 432,1 thousand nodes and 241,0 thousand elements, where only one
sector was refined. The results are presented in Table 8.5.

As seen in Table 8.5, the results obtained with the FE models, where all sectors
were refined and where one sector was refined, brought a maximum deviation of
—1,7%. With these results, the method was considered valid for the structural
assessment of the runner. This approach allowed the reduction of around the half of
the computational effort for the transient structural calculations, without the loss
of accuracy for the numerical results.

Fluid-Structure Interaction

In the Francis turbine, phenomena of distinct physical nature take place. The
dynamic fluid flow through the turbine and the dynamic structural motion of the
mechanical components are present. The fluid and structural domains share common
interfaces. The walls at the boundaries of the fluid domain correspond to the wet
surfaces of the mechanical components. The transient fluid flow through the turbine
and the transient structural motion of the runner may affect each other, posing a
fluid-structure interaction (FSI) problem. The FSI may be modelled as bidirectional
or unidirectional, i.e. one-way or two-way.

For the structural investigation of the turbine runner, the fluid-structure interaction
was modelled as unidirectional. The influence of the fluid flow on the runner
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structural motion was considered, whereas the runner vibrational motion was not
able to modify the primary fluid flow. The instationary simulations of the runner
structural motion demonstrated that the maximum oscillation amplitude was not
larger than 2,4 - 10 D;_, being orders of magnitude smaller than the minimum
blade thickness and even the boundary layer thickness. In addition, the maximum
calculated structural oscillating velocity could not even reach 1,9-1073 U,,. For the
fluid flow, the runner structural motion was quasi-static and did not affect it.

On the other hand, the pressure oscillations caused by the transient fluid flow
were responsible for the dynamic loads at turbine runner and, consequently, for the
dynamic displacements and stresses. As mentioned before, the transient pressure
distribution originated from the dynamic fluid flow constituted the transient pressure
load at the active hydraulic surfaces of the runner structure.

Some authors, as SEIDEL ET GROSSE [140], KECK ET AL. [72], MONETTE, COUTU
AND VELAGANDULA [106] and GUILLAUME ET AL. [56], extend the interaction
between the runner structure and the surrounding fluid to acoustic wave propagation
effects. They make use of acoustic fluid elements in the FE structural simulation
for representing the fluid. In spite of its growing application to Francis runners
structural problems, the acoustic fluid elements count with massive simplifications,
as listed by KINSLER [73], that do not correspond to the physical reality in hydraulic
turbines.

The acoustic fluid elements formulation assumes no viscosity, no primary flow and
no variable mean pressure distribution in the complete fluid domain and no variation
of the mean density. This leads to no consideration of the boundary layer effects
and no convection. The pressure gradient along the turbine hydraulic passages and
their transient variation are ignored as well. When acoustic fluid elements are used
in the dynamic structural analysis of the runner, these approximations should be
kept in mind and caution is required in the assessment of the simulation results.

Solver

For the numerical solution of the transient motion of the mechanical system,
discretised with the finite element method (FEM), the direct time integration
method was used. This procedure was explained together with the FEM theory
and can be found in NEWMARK [111]. With the complete time history of the runner
pressure distribution obtained from the CFD analysis, the system motion could be
solved for each individual time step. The direct time integration method was well
suited for this approach.

Moreover, the direct time integration method offered computational benefits. With
the method proposed by NEWMARK [111], the temporal and spatial discretisation
of the mechanical system results at each current time step, n + 1, in an algebraic
matricial equation of the simple form Ax = b, where the independent term contains
information of the previous time step, n. The resulting matricial equation could be
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efficiently solved by the preconditioned conjugate gradient (PCG) method. This was
an important point for the computational efficiency, as long as the matricial equation
had to be solved for each time step. The PCG solver employed for the structural
analysis made use of computational double precision for the numerical operations.
With one low-end Intel 560J processor with 3,6 GHz and emulated double core, in
average 5H6 time steps, corresponding to around 1,42 runner revolutions, could be
solved for the runner structural simulation in one day. The PCG solver was faster
than the frontal and sparse solvers and also required less memory and storage space.

The modal superposition method could have been an alternative to the direct time
integration method. It would not have imposed any restriction on the modelling
of the mechanical system dynamics nor on the temporal and spatial pattern of
the pressure load variation. However, in order to assure the accuracy of this
method, a higher number of runner natural vibration modes would need to have been
previously extracted and stored for the further modal superposition step. With the
simple hardware chosen for the structural simulation, the computational memory
and storage costs were not attractive and the direct time integration method was
preferred thanks to its efficiency. Moreover, there would have been the uncertainty
on how many natural vibration modes to extract, in order to assure the accurate
description of the system dynamic motion.

Another alternative to the direct time integration method would have been the
numerical harmonic analysis of the FE discretised runner structure. The harmonic
solution method assumes that the complete structural load varies harmonically with
the time. Considering the complex time history, complex spatial distribution and
non-synchronous pressure load induced by the dynamic fluid flow, the harmonic
solution method would not have been able to accurately describe the system dynamic
motion just by considering the pressure oscillation amplitude. More precise results
would require the decomposition of the pressure time signal in Fourier series as
suggested by GUILLAUME ET AL. [56]. The Fourier series expansion would need to
be done for each node of the discretised runner surface, employing complex number
arithmetic for the punctual pressure oscillation amplitude and phase delay. To assure
reasonable accuracy, enough terms would need to be calculated in the Fourier series
expansion and each of them would result in a load distribution, whose displacements
would have to be calculated by the harmonic solver. After the numerical solution
computation, all terms would have to be combined to yield the total dynamic
displacement. Once again, the direct time integration was the preferred method, as
long as it offered a much simple solution procedure in comparison to the harmonic
analysis. With the harmonic analysis, there would also have been an incertitude
regarding the number of terms to be calculated in the Fourier series expansion.

Damping

In most mechanical structures, numerous kinds of damping are present. Few
theoretical or experimental damping data is available for turbine runners. Therefore,
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reference values of structural damping, ¢, taken from the literature were used.
According to AOKI [8], typical damping factors for welded structures, as in the
case of turbine runners, vary between 0,7% and 2,0%. This range is approximated
through the use of proportional or Rayleigh damping, C = oM + K.

8.3 Structural Simulation Results

The numerical setup and investigations of the finite element (FE) model allowed
the development of a reliable model for the prediction of the dynamic structural
behaviour of the turbine runner. The main interest was the estimation of the runner
mechanical stresses, static as well as dynamic, at different operating points. The
runner structural assessment offered the possibility to identify the critical operating
points and to evaluate the runner fatigue strength.

The runner static and dynamic mechanical stresses, o,, and o,, were calculated with
the runner FE model, using the direct time integration, for all the operating points,
which were previously calculated with CFD. The runner natural frequencies and
natural mode shapes were also evaluated, in order to obtain a general overview of
the runner vibrational characteristics.

8.3.1 General Dynamic Behaviour, Natural Frequencies
and Mode Shapes

An overview of the general dynamic behaviour of the runner could be obtained with
the natural frequencies and mode shapes. The runner natural frequencies could be
compared with the exciting frequencies predicted by the theory and the distance
between them could be evaluated. The mode shapes indicated the vibration pattern
of the runner, in case of matching excitation.

As mentioned before, several authors, among them SEIDEL ET GROSSE [140], KECK
ET AL. [72], MONETTE, COUTU AND VELAGANDULA [106] and GUILLAUME ET
AL. [56], extend the fluid-structure interaction effect with the usage of the acoustic
fluid elements in the FE model. This condition is often denoted by “runner in water”,
in opposition to “runner in air”, when no acoustic fluid elements are employed. The
respective natural frequencies are represented by, f,, and f,.

It is important to observe that the acoustic fluid elements assume no fluid viscosity,
no primary flow, no variable mean pressure distribution and no constant rotational
motion of runner. These simplifications do not correspond to the physical reality
found in hydraulic turbines. Therefore, the results produced by the modal
analysis should be interpreted as no more than an approximation of the dynamic
characteristics of the runner in operation. Nevertheless, it can deliver a qualitative
impression of the runner dynamic structural characteristic.



8.3. STRUCTURAL SIMULATION RESULTS 205

i=T7,k=6b=0 i=8k=2b=1 i=9 k=1b=1

Figure 8.6: Deformed shape and total displacements for the turbine runner natural
mode shapes, bottom view.

Figures 8.6 and 8.7 illustrate the first 9 mode shapes extracted for the turbine
runner of the FT 80. The deformed shape of the runner, for each of the extracted
mode shapes, 7, is shown in Figures 8.6 and 8.7. The modal displacements, ®;,
were normalised in relation to the mass matrix, ®FM®,; = 1, and the total modal
displacements were coloured with a grey scale.

The runner motion at the first mode shape, i = 1, was characterised by a twist
motion of the band around the crown. The crown nearly did not move, while the
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i=T,k=60b=0 i=8 k=2b=1 i=9k=10b=1

Figure 8.7: Deformed shape and total displacements for the turbine runner natural
mode shapes, isometric view.

band rotated around it, in the tangential direction, and moved axially as well, due
to the blades elasticity. At the second mode shape, i = 2, the runner oscillated
like a pendulum around the coupling to the shaft. These two first modes might be
influenced by the turbine shaft dynamic characteristics, as discussed by MEHNE [97].

At the second mode shape, as well as at the modes of higher order, the runner
oscillated in way similar to a thin disc, with diametral lines where the modal
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Table 8.6: Runner natural frequencies, natural mode shapes and nearest excitation
frequency.

Mode Mode Shape Natural Frequency Excitation
i k b fa/fn  fulfn  fu/fa h fel fn
) ® ) ) ) ) ee g )
1 0 0 12,3 10,2 0,83 SC 5 5
2 1 0 16,9 9.6 0,57 SC 5 5
3 2 0 23,4 13,3 0,57 SC 5 5
4 3 0 36,9 17,8 0,48 GV 1 24
5 4 0 42,8 17,3 0,41 GV 1 24
6 5 0 45,4 16,7 0,37 GV 1 24
7 6 0 46,5 16,2 0,35 GV 1 24
8 2 1 53,1 22.8 0,43 GV 1 24
9 1 1 54,4 23,4 0,43 GV 1 24
10 3 1 56,3 25,9 0,46 GV 1 24
11 4 1 58,5 27.9 0,48 GV 1 24
12 0 1 58,6 25,2 0,43 GV 1 24
13 5 1 60,4 28,7 0,47 GV 1 24
14 1 2 61,3 34,1 0,56 GV 1 24
15 6 1 61,5 28,8 0,47 GV 1 24
16 2 2 63,4 30,0 0,47 GV 1 24
17 0 2 63,7 29,9 0,47 GV 1 24
18 3 2 67,7 32,6 0,48 GV 1 24
19 4 2 69,6 32,4 0,47 GV 1 24
20 5 2 70,8 35,9 0,51 GV 1 24

SC: Unsymmetric pressure distribution, GV: Guide vane passage, DT: Vortex rope.

displacements were near to zero. These lines are often called nodal diameters, as
e.g. in LIANG ET AL. [83]. The number of nodal diameters, k, is directly related to
the deformation shape of the runner for a given mode shape. For mode shapes of
higher order, the blade trailing edge presented nodes similar to the nodes found in
vibrating strings or beams. Their number is denoted by, b. The number of nodal
diameters, k, and of blade nodes, b, give a precise idea of the mode shape geometry.

Table 8.6 lists the first 20 extracted mode shapes of the runner, with the
corresponding number of nodal diameters, k, and blade nodes, b. The natural
frequencies calculated with and without acoustic fluid elements, f, and f,,
normalised to the rotating frequency, f,, and the reduction factor, f,/f., are also
summarised in Table 8.6. The nearest excitation frequency, f., its origin and the
considered harmonic, h, can also be encountered in Table 8.6.

The most important excitations previewed by the theory in the runner rotating
reference frame are the unsymmetric pressure distribution in the spiral case (SC),
the guide vanes passage (GV) and the draft tube vortex rope rotation (DT). In the
rotating reference frame, the unsymmetric pressure distribution oscillates with the
same frequency as the rotating frequency, f,. The guide vanes passage can excite
the runner with the frequency, zg f,. The vortex rope rotates in the same direction
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as the runner with a lower frequency, leading to the excitation frequency f,, — fgn in
the runner rotating reference frame, where fr;, is the vortex rope rotating frequency
in the absolute reference system. Due to the nature of the modal analysis, the five
first harmonics of the excitation frequencies, h = 1,...,5, were also considered.

The modal analysis could also be useful for the qualitative approach proposed
by TANAKA [151]. The fluid interaction between guide vanes and runner is
approximated by pressure mode shapes, depending on the number of guide vanes,
2o, and runner blades, z5. With the formula k = m zy &+ n 2z, with m and n being
integers satisfying the equation, it is searched for runner mode shapes, which could
be excited by the runner and guide vanes interaction. A limitation in this qualitative
approach is that the inhomogeneous spiral case pressure distribution and the draft
tube rotating vortex rope are often ignored, although they can strongly excite the
runner. Moreover, with the current capability to numerically simulate the transient
pressure field in the Francis machine and use it as input for the finite element analysis
(FEA), this methods constitutes no more than a rough approximation.

The modal analysis could give qualitative information about the dynamic
characteristics of the runner. However, the modal analysis was not enough for the
modern quantitative evaluation of the dynamic mechanical stresses in the runner
at different operating conditions. Therefore, the direct time integration method
was preferred. Among the advantages of the direct time integration method, there
was no need for the natural frequencies and mode shapes extraction. Moreover, the
dynamic system response was not truncated to a limited number of mode shapes. No
information of how many and which mode shapes contributed to the dynamic motion
was necessary. No theoretical representations or simplifications of the pressure
distribution and time history were required with the direct time integration method
for the assessment of the structural response to the fluid excitation at different
operating points.

8.3.2 Full Load and Rotor-Stator Interaction

The mechanical stresses in the runner were calculated for the full load operating
conditions with the tested FE model and using the direct time integration method.
As mentioned before, the time-averaged pressure distribution from the CFD analysis
was used for the calculation of the mean stress, o,,, and the pressure oscillation time
history allowed the computation of the dynamic stress, o,.

The simulated points corresponding to the full load operating condition were the
rated, OP 2, full load and high head, OP 3, and full load and low head, OP 4.
These points defined the turbine upper operating limit. They covered the complete
head range, counted with the larger volume flow through the machine, ), and the
transient fluid flow was dominated by the rotor-stator interaction (RSI) effect. They
offered the possibility to evaluate the dynamic response of the runner structure to the
rotor-stator interaction and the associated mechanical stress level and distribution.
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Figure 8.8: Static equivalent mechanical stresses at the rated operating point,
meridian view.

As long as the transient flow had the same general pattern at all the points at full
load, the rated point, OP 2, was taken as example for the graphics and charts.

Figure 8.8 brings the distribution of the static equivalent stress, o, , in the runner
for the rated operating point, OP 2, normalised in relation to the material yield
stress, S,. The contour plot of o, is drawn in the meridian view of the runner,
where the blade pressure and suction sides can be respectively found at the right
and left sides of the picture.

It can be observed in Figure 8.8 that the highest stresses were located at the fillets
regions of the runner. This behaviour was already to be expected, due to the stress
e /Sy
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Figure 8.9: Static equivalent mechanical stresses at the rated operating point,
detailed view of the trailing edge at crown (left) and band (right).
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Figure 8.10: Static total displacements at the rated operating point, meridian view.

concentration in the junction of the blades to the crown and band. For the FT 80
and at full load, the highest static stresses took place at the blade to crown fillets
at the suction side in its middle portion between the inlet and outlet edges. The
maximum value reached for the static stress was o, /S, = 0,245.

In Figure 8.8 it can be observed that the static stress was also high close to the
blade to band fillet region. Static stress peaks could be identified as well at the
leading and trailing edges close to the crown and band. The trailing edge regions
close to the crown and band were of special interest and can be seen in detail in
Figure 8.9. These regions are more prone to cracks, as assessed by BHAVE, MURTHY
AND GOYAL [15]. At both regions, higher stress spots could be identified.

The total static displacements, ur,,, of the runner structure at the rated point,
OP 2, are shown in Figure 8.10. The contour plot for ur, is represented at the
runner meridian view with the blade pressure side on the right side and with the
suction side on the left side of the picture. The runner geometry seen in Figure 8.10
is slightly different from the runner nominal geometry and corresponds to the runner
deformed shape under the static loads at the rated point. For more visibility, the
deformation was increased in the graphical representation.

The total static displacements increased starting from the crown and going in
direction to the band. The reason was that the largest portion of up, came from the
static displacement tangential component. The runner was fixed at the coupling to
the shaft at the crown and the static tangential displacement was mainly caused
by the pressure difference between the pressure and suction sides of the blade,
responsible for the turbine mechanical torque.
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P

Figure 8.11: Dynamic equivalent mechanical stress amplitude at the rated operating
point, meridian view.
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One of the points of greatest interest in the structural assessment of the turbine
runner was the determination of the dynamic mechanical stresses. Combined to the
static mechanical stresses, they might importantly influence the expected runner
fatigue life. Figure 8.11 shows the calculated dynamic equivalent stress amplitude,
Oe,, for the FT 80 runner at the rated point, OP 2, normalised to the material
yield stress S,. As in the previous figures, the o., contour plot is drawn at the
meridian view with the pressure and suction sides ordered as before. To improve
the visualisation of the dynamic stresses, the contour colour scale was limited to an
upper cut-off value of o., /S, = 0,012.
O, /Sy
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Figure 8.12: Dynamic equivalent mechanical stress amplitude at the rated operating
point, detailed view of the trailing edge at crown (left) and band (right).
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Figure 8.13: Time history of the dynamic stress components at the trailing edge
near to the crown (top) and band (bottom) at the rated operating point.

At the middle of the blade and at the inlet, the dynamic mechanical stresses
remained low. The stress peaks were very pronounced at the blade trailing edge
near to the crown and band. The highest dynamic stresses were observed in the
blade trailing edge region near to the crown. This region of high stress extended
in a moderate degree along the trailing edge and along the fillet between blade
and crown. The highest dynamic stress was o.,/S, = 0,0277, located at the blade
trailing edge at the crown. High dynamic stresses were also found at the blade
trailing edge at the band and at its surrounding region, reaching the maximum local
value of o, /S, = 0,0132.

The trailing edge region near to the crown and band, where the highest stresses took
place at the rated operating point, OP 2, can be seen in detail in Figure 8.12. The
stress concentration at the fillet region at the trailing edge can be clearly identified.
The peak stresses were located in the region at the end of the fillets, where the blade
assumed its nominal thickness.

Figure 8.13 brings the time history of the dynamic stresses at the runner trailing edge
near to the crown and band, where the highest dynamic stress peaks were located.
The dynamic portion of all stress tensor components, normalised to the yield stress,
are plotted along the time, ¢, normalised to the machine rotation period, 7. The x
and y directions for the decomposition of the dynamic stress tensor were arbitrary



8.3. STRUCTURAL SIMULATION RESULTS 213

0,8 0,8

”mma/s h— Tmya/s h—
TE-CR Oyyq /Sy ===-= TE-CR Tyzq /Sy ===-=
)= B— L p—
~ 06 Frall¥ o~ 0,6 Erall¥
o [=}
= =
X /\ X
& 0,4 W 04
~ ~ Y
3 ] " .
&I " £ i i
i i i i it
@’0,2.!\/\ A i & opfit i
‘.‘ i\ A [ AN " ! ||
- i\ [ o Y R
- R Ji A \ i3 L
0.0 i Seaems SN\ NS =) e 0.0 R s PO ) .
0,0 5,0 10,0 15,0 20,0 25,0 30,0 70,0 5,0 10,0 15,0 20,0 25,0 30,0
f/fn f/fn
0,8 0,8
Orwg /Sy —— Tayq /Sy ——
TE-BD Oyyq /Sy ===~ TE-BD Tyzq /Sy =====
o /Sy === T /Sy ===
N 0,6 zza Py . 06 zxq /Py
[=} [=}
= =
X /\ X
& 0,4 w 0.4
~ / ~
3 ]
5 5
S *
8 o2 /\'\\q 8 o,
0.0 L= /) Jx—’.\ /\.—-\_ 0.0 k== .
’ 0,0 5,0 10,0 15,0 20,0 25,0 30,0 ’ 0,0 5,0 10,0 15,0 20,0 25,0 30,0
f/fn f/fn

Figure 8.14: Fourier transform of the dynamic stress components at the trailing
edge near to the crown (top) and band (bottom) at the rated operating point.

chosen, while the z direction corresponded to the machine rotation axis. The upper
two plots refer to the dynamic stress components at the trailing edge near to the
crown and the two lower ones to those at the trailing edge near to the band.

At the time history plot, two dominating vibration frequencies could be identified:
the slower one caused by the excitation through the inhomogeneous pressure field
in the spiral case and the faster one corresponding to the excitation from the guide
vanes passing frequency. The runner structural response related to the spiral case
pressure distribution excitation revealed a complex shape, while the response to the
guide vanes excitation presented a nearly sinusoidal shape.

The Fourier transform of the time signal, in Figure 8.14, could point out the
dominating runner structural response frequencies. The first one, corresponding
to the slower vibration, was concentrated around f/f, = 1,0, where f,, denotes the
machine rotation frequency. Due to the complex shape of the excitation related
to the spiral case pressure distribution, the frequency spectrum was considerably
dispersed around the characteristic frequency, f/f, = 1,0, and its harmonics were
very pronounced. The guide vanes passing frequency, f/f, = 24, could also be
identified in the dynamic stress frequency spectrum. In the case of the response to
the guide vanes excitation, the spectrum amplitude was less dispersed around the
characteristic frequency, because of the nearly sinusoidal form of the excitation.

The Fourier transform could also qualitatively reveal the participation of the
excitations arising from the spiral case and from the guide vanes in the runner
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Table 8.7: Mean and dynamic equivalent stresses at full load.

Mean Equivalent Stress

Operating Point Oem /Sy (-)

LE, Crown LE, Band TE, Crown TE, Band Fillet, CR
OP 2 Rated 0,134 0,208 0,118 0,127 0,239
OP 3 Full load high head 0,132 0,186 0,130 0,111 0,226
OP 4 Full load low head 0,093 0,169 0,097 0,108 0,176

Dynamic Equivalent Stress

Operating Point Oe, /Sy ()

LE, Crown LE, Band TE, Crown TE, Band Fillet, CR
OP 2 Rated 0,0033 0,0047 0,0277 0,0132 0,0040
OP 3 Full load high head 0,0027 0,0032 0,0229 0,0133 0,0027
OP 4 Full load low head 0,0028 0,0038 0,0205 0,0127 0,0039

Stress Ratio

Operating Point Oe, /0e,, (%)

LE, Crown LE, Band TE, Crown TE, Band Fillet, CR
OP 2 Rated 2,5 2,2 23,4 10,4 1,7
OP 3 Full load high head 2,0 1,7 17,7 11,9 1,2
OP 4 Full load low head 3,0 2,2 21,1 11,8 2,2

structural response. Considering all dynamic stress components, the larger portion
of the dynamic stresses came from the guide vanes excitation. Nonetheless, it could
be observed that, in the case of the FT 80 at full load, the spiral case excitation
contributed strongly to the dynamic mechanical stresses as well.

The runner structural response to the fluid dynamic excitation was also computed
for the other points of interest located at the full load part of the hill chart. At
these operating points, the driving dynamic effect was the rotor-stator interaction
(RSI). The rated, OP 2, the full load and high head, OP 3, and the full load and
low head, OP 4, operating points showed very similar dynamic behaviours. The
variations in the dynamic stress values were influenced by the different head, volume
flow and guide vane opening, which changed the distance between the guide vanes
trailing edge and the runner blades leading edge. At the operating points at full
load, the dynamic excitation mechanism was the same, arising from the rotor-stator
interaction (RSI).

Table 8.7 summarises the calculated static and dynamic stress values for the full load
operating points at the most important locations of the runner. The stress values
are listed for the leading edge (LE) at the crown and band, for the trailing edge
(TE) at crown and band and for the middle of the blade at the crown (CR) fillet,
where the highest static stresses were found. Also the ratio between the dynamic
and static mechanicals stresses, o, /0., , can be encountered in the table.

All three calculated full load operating points had the same behaviour regarding
the dynamic mechanical stresses in the runner. The equivalent dynamic stress
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amplitude, o.,, presented the same tendency in relation to the observed locations
in the runner and the calculated values for a given location were in the same order
of magnitude for all points at full load. The table shows that the trailing edge
near to the crown and band, with peak stresses of respectively o, /S, = 0,0277 and
e,/ Sy = 0,0133, were the most important locations for the dynamic and strength
assessment of the runner structure. The middle of the fillet region between the crown
and the blade, in spite of its higher static mechanical stress, o, /.S, = 0,127, showed
out to be irrelevant for the dynamic evaluation, due to its low dynamic mechanical
stress, o, /S, = 0,0040.

Another interesting parameter in Table 8.7 is the ratio of the dynamic to the
static equivalent mechanical stress, o, /0., . In the case of the FT 80 at full load
conditions, the maximum ratio at the trailing edge near to the crown was reached
at the rated operating point, OP 2, with o, /0., = 23,4%. At the trailing edge
near to the band, the maximum ratio was o, /0., = 11,9% at full load and high
head, OP 3. The ratio o, /0., constitutes an important parameter for the fatigue
analysis. Part of the reason for these high ratios at full load was possibly the low
static stresses present in the runner.

8.3.3 Part Load and Draft Tube Instabilities

The part load operating conditions were characterised by important transient fluid
flow phenomena in the draft tube cone. At part load, the rotating vortex rope could
be observed in the draft tube cone. Significant pressure pulsations were associated
to the vortex rope rotational motion, which reached the runner blades. The vortex
rope motion and the associated transient dynamic pressure field were calculated, as
already discussed before, and the stored pressure time history was used as input for
the dynamic finite element analysis (FEA). The time-averaged pressure field was
employed for the determination of the static stress, o,,. As before, the direct time
integration method was used for the transient runner finite element (FE) simulation.

For the analysis of the influence of the draft tube instabilities (DTI) on the
mechanical stresses in the runner, the part load and high head operating point,
OP 5, was chosen. This operating point was characterised by the ordinary part load
operation, with the presence of the rotating vortex rope in the draft tube cone, no
higher part load (HPL) effects and no runner channel vortices (RCV).

Figure 8.15 shows the calculated normalised equivalent static stresses, o,,/S,, in
the turbine runner at part load and high head, OP 5. The blade pressure and
suction sides are respectively found at the right and left sides of the meridian view
in Figure 8.15. The contour plot scale for the equivalent static stress was limited in
the picture for better visualisation purposes.

The equivalent static stress distribution at part load and high head, OP 5, assumed
a shape similar to the one obtained at the full load operating conditions. However,
the general static stress was lower, reaching the maximum value of o.,, /S, = 0,118
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Figure 8.15: Static equivalent mechanical stresses at the part load and high head
operating point, meridian view.

at the middle of the fillet between crown and blade. Figure 8.16 shows in detail that
local equivalent static stress peaks could again be observed at the blade trailing edge
near to the crown and band. This could negatively impact the runner fatigue life.

The total static displacements, ur,, , at the part load and high head operating point
are depicted in Figure 8.17. The normalised contour plots made use of the runner
meridional representation. The observed displacement distribution was again similar
to the one calculated for the full load operating points. The reason was that the
static displacements were dominated by the tangential displacement, which arose
from the torque applied to the runner blades by the time-averaged pressure load.

Figure 8.16: Static equivalent mechanical stresses at the part load and high head
operating point, detailed view of the trailing edge at crown (left) and band (right).
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Figure 8.17: Static total displacements at the part load and high head operating
point, meridian view.

At part load, the power and runner torque are considerably lower than at full load
and the displacements at part load were consequently lower as well.

The topic of greater interest in the study of the influence of the draft tube
instabilities (DTI) on the runner structure was the analysis of the dynamic
mechanical stresses, as long as they might strongly impact the runner fatigue life.
Figure 8.18 presents the equivalent dynamic mechanical stresses, o.,, in the runner,
normalised to the yield stress, S,. The contour plot presented at the meridian view
had its grey scale limited to o, /S, = 0,030, in order to improve the visibility of the
stress levels.

The largest portion of the blade showed low dynamic stress levels. The highest
equivalent dynamic mechanical stresses, o.,, were again located at the trailing
edge near to the crown and band. The extension of the high stress regions was
considerably limited and small high stress spots were associated to the peak stress
locations, due to the stress concentration at the trailing edge fillets. Figure 8.19
shows in detail the stress distribution at the trailing edge near to the crown and
band. The absolute stress maximum was reached at the trailing edge near to the
band, with o, /S, = 0,0333. It was significantly higher than the local stress peak
at the trailing edge near to the crown, where its value achieved o, /S, = 0,0142.
At the part load and high head operating condition, OP 5, the trailing edge near to
the band was the critical location from the point of view of the dynamic stresses.

The time history of the dynamic stress tensor components can be found in
Figure 8.20. The stress components normalised to the yield stress were plotted
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Figure 8.18: Dynamic equivalent mechanical stress amplitude at the part load and
high head operating point, meridian view.

as function of time normalised to the runner rotation period. The upper and lower
parts of the figure show respectively the dynamic stress components at the blade
trailing edge near to the crown and band. The z and y directions for the tensor
decomposition were took arbitrarily. The Fourier transform of the dynamic stress
tensor components was plotted in Figure 8.21.

The pressure oscillation coming from the vortex rope rotation was expected to be
the driving phenomenon in the runner excitation at part load. In order to identify
the vortex rope effect on the dynamic mechanical stresses with help of the time
history and Fourier transform plots, its frequency had to be converted to the runner
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0,005
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Figure 8.19: Dynamic equivalent mechanical stress amplitude at the part load and
high head operating point, detailed view of the trailing edge at crown (left) and
band (right).



8.3. STRUCTURAL SIMULATION RESULTS 219

4,0 4,0

TE-CR Cwny /Sy —— TE-CR Tayh /Sy ——
3,0 Tyyg /Py =777 3,0 Tyzg /Oy =777
2.0 Ozzq /Sy —7= 2.0 Tzay /Sy ===
NO o™
S 1,0 S 1,0 e
x 0,0 M’M\v - A”ﬂft"”—v X 0,0 P Wit AN
= ? o 4 . " /N .,
2 WIYWWY W VAT W “a
—1,0 S -1,0
S ) S ’
o N
—2,0 —2,0
~3,0 —~3,0
—4.0 —4,0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
t/T t/T
4,0 4,0
TE-BD . Ol /Sy —— TE:BD Tayly /Sy ——
3,0 '/. \ s o 3.0 e e
o S. - T Sy ===
20 | A \ 20 -y
o™ 5]
S 1,0 / \ Z S 1,0
X BERTE ~ dmmand . X Lmrm o
0,0 = 3 et .o 0,0
3@ , / \ \ & i e
-1,0 § S -1,0
bj ’ J" ‘\\ \-\ S ,
—2,0 Wi - —2,0
—-3,0 —-3,0
—4.0 —4,0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
t/T t)T

Figure 8.20: Time history of the dynamic stress components at the trailing edge near
to the crown (top) and band (bottom), at the part load and high head operating
point.

rotating reference frame. At the absolute reference frame, the runner rotated with
the frequency f,, while the vortex rope at high part load and high head, OP 5,
rotated with the Rheingans frequency of fr, = 0,302f,. This means that the vortex
rope rotation was slower than the runner revolution, so that, in the runner rotating
reference frame, the vortex rope frequency had to be converted to f/f, = 1= fri/ fn,
resulting in f/f, = 0,698.

Considering the vortex rope rotating frequency in the runner rotating reference
frame, its effect on the runner structural response and, consequently, on the dynamic
mechanical stress could be identified in the time history and Fourier transform, in
Figures 8.20 and 8.21. The slower vibration movement was originated from the
vortex rope excitation, while the faster one was due to the guide vane passage with
f/fn = 24. Especially at the trailing edge near to the crown, the time signal
of the dynamic stress components presented a complex shape, differing from pure
sinusoidal curves.

The time history analysis of all stress components showed that the vortex rope was,
as expected, the most important effect for the dynamic stresses at part load, as
seen in Figure 8.20. The amplitude of the fast stress oscillations, corresponding to
the guide vanes passage, was considerably lower, being almost negligible. This can
also be qualitatively observed in the Fourier transform, where the amplitude of the
first peak at low frequency, f/f, = 0,698, related to the vortex rope rotation, was
significantly higher than the second one at high frequency, f/f, = 24, coming from
the guide vane passage. These considerations show that the high dynamic stress
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Figure 8.21: Fourier transform of the dynamic stress components at the trailing

edge near to the crown (top) and band (bottom), at the part load and high head

operating point.

levels at part load at the trailing edge near to the crown and band were induced by
the draft tube instabilities (DTI).

Table 8.8 summarises the runner structural analysis at part load and high head,
OP 5, with the calculated stress values at the blade leading edge (LE) near to the
crown and band, at the middle of the runner fillets between crown (CR) and blade
and at the blade trailing edge (TE) near to the crown and band. The normalised
equivalent static stress, o,,/S,, the normalised equivalent dynamic stress, o, /Sy,
and the stress ratio, o, /0., /5,, were listed in Table 8.8.

As already discussed, the highest dynamic equivalent stresses, o.,, were located at
the blade trailing edge near to the crown and band. The maximum value was reached

Table 8.8: Mean and dynamic equivalent stresses at part load and high head.

Equivalent Stress LE, Crown LE,Band TE, Crown TE, Band Fillet, CR
Mean Oe,. /Sy (-) 0,068 0,106 0,133 0,093 0,118
Dynamic o, /S, (-) 0,0055 0,0070 0,0142 0,0333 0,0115

Ratio o, /oo, (%) 8,1 6,5 10,6 35,7 9.8
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near to band, in opposition to the full load condition, where the critical location was
near to the crown. The evaluated dynamic stress levels were considerably higher than
at full load, showing that, for high specific speed machines, the part load operating
condition is determinant for the runner dynamic behaviour and for the fatigue life.

8.3.4 Higher Part Load and Draft Tube Instabilities

Besides the ordinary part load operating condition, the so called higher part load
(HPL) phenomenon may take place in the hydraulic turbine in specific regions of
the turbine hill chart. As already explained, at higher part load (HPL), the vortex
rope in the draft tube cone assumes a pronounced elliptical cross-sectional shape
and, due to its self-rotation, the pressure pulsations at part load are increased. The
interest here was to verify, if the higher part load (HPL) effect, which could be clearly
observed during the model tests as well as in the fluid flow simulation, could have
a distinct influence on the runner dynamic structural behaviour, when compared to
the ordinary part load operating condition.

The numerical fluid flow simulation of the higher part load condition (HPL) was
successfully carried out for the part load and low head operating point, OP 6. The
transient pressure oscillation distribution on the runner blades was stored and used
as pressure load for the direct time integration of the runner finite element (FE)
model. The part load and low head operating point, OP 6, was also important for
the structural assessment of the runner, because it belonged to the boundary of the
machine operating range, being the vertex point between the minimum head and
minimum power limits.

The mean equivalent stress, o, , and the mean total displacement, uy, , distributions
at the runner were extremely similar to the ones obtained previously at part load
and high head, OP 5. They presented exactly the same shape. Therefore, they
were not repeated here for the part load and low head operating point, OP 6. This
similarity was already expected, since the time-averaged pressure distribution at the
runner should not be significantly different from part load and high head, OP 5, to
part load and low head, OP 6.

The dynamic equivalent stress distribution at part load and low head, OP 6, was also
similar to the one observed at part load and low head, OP 5, with the difference that
the dynamic stress peaks were more pronounced. The normalised o., distribution
can be found in Figure 8.22, with the detail of the blade trailing edge near to crown
and band in Figure 8.23. There, the contour plot scale was limited to o, /S, = 0,030
for better visualisation. The runner blade pressure side can be found on the right
side of the meridian view and the suction side on the left side.

As observed for the previously analysed operating points, the contour plot of o, /.S,
at part load and low head, OP 6, counted with the peak stress locations at the
trailing edge near to the crown and band. The reached values were respectively,
oe,/Sy = 0,0183 and o, /Sy = 0,0407. These values were close to the ones obtained
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Figure 8.22: Dynamic equivalent mechanical stress amplitude at the part load and
low head operating point, meridian view.

previously at part load and low head, OP 5, but somewhat higher, even though
in the same order of magnitude. The higher part load (HPL) effect seemed not to
decisively influence nor significantly increase the level of the dynamic mechanical
stress values. The time history and the Fourier transform of the dynamic stress
components in Figures 8.24 and 8.25 were able to better identify the excitation
mechanism and clarify the corresponding runner structural response.

The pattern of the normalised stress components time history in Figure 8.24,

associated to the runner structural response to the fluid flow pressure fluctuations at

higher part load (HPL), did not show any qualitative difference to the ordinary part
a ea/ Sy
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Figure 8.23: Dynamic equivalent mechanical stress amplitude at the part load and
low head operating point, detailed view of the trailing edge at crown (left) and band

(right).
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Figure 8.24: Time history of the dynamic stress components at the trailing edge
near to the crown (top) and band (bottom), at the part load and low head operating
point.

load operating condition. The frequency spectrum at higher part load in Figure 8.25
also did not contain any qualitative difference in relation to normal part load.

As discussed before in the analysis of the effect of the higher part load (HPL)
phenomenon on the fluid flow pressure pulsations, a higher oscillating frequency
related to the vortex rope self-rotation was present in its frequency spectrum.
However, this higher frequency was not found again in the Fourier transform of
the dynamic stress components in the turbine runner. There could be drawn the
conclusion that the higher part load phenomenon in the turbine flow could not
excite the runner structure in any special or specially critical manner. The runner
structural response to the draft tube instabilities at higher part load (HPL), for the
FT 80 turbine, was not different from its response to normal part load excitation.

The possible explanation would be that the portion of the pressure oscillations
exclusively related to the higher part load (HPL) could not importantly excite the
runner natural vibration modes and that the excitation due to the vortex rope
rotation around the machine axis was the far stronger effect. The only noticeable
effect of the higher part load (HPL) was that they slightly increased the pressure
pulsation level at part load and low head, OP 6, in relation to part load and high
head, OP 5, and this slight increase could also be found in the dynamic mechanical
stresses in the turbine runner.

In the time history and in the Fourier transform of the dynamic stress tensor
components seen in Figures 8.24 and 8.25, the Rheingans frequency of the rotating
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Figure 8.25: Fourier transform of the dynamic stress components at the trailing
edge near to the crown (top) and band (bottom), at the part load and low head
operating point.

vortex rope could be identified. The Rheingans frequency of fr, = 0,282f,, in the
stationary reference frame, corresponding to f/f, = 0,718 in the runner rotating
reference frame, could be observed in the numerically calculated dynamic stress
components. The guide vane passing frequency, f/f, = 24, could be noticed as
well, but, as in the case of part load and high head, OP 5, its contribution to the
dynamic mechanical stresses in this high specific speed Francis turbine was almost
negligible in comparison to the dynamic stress portion related to the vortex rope
rotation.

Table 8.9 shows the summary of the static and dynamic mechanical stresses in the
runner at part load and low head, OP 6, and the ratio between them. The static
mechanical stresses were slightly lower than at part load and high head, OP 5,

Table 8.9: Mean and dynamic equivalent stresses at part load and low head.

Equivalent Stress LE, Crown LE,Band TE, Crown TE, Band Fillet, CR
Mean Oe,. /Sy (-) 0,040 0,090 0,113 0,094 0,080
Dynamic o, /S, (-) 0,0049 0,0102 0,0183 0,0407 0,0123

Ratio e, [Oe, (%) 12,1 11,4 16,3 43,4 15,4
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possibly because of the smaller head. As already mentioned, in the same way as for
the previously analysed operating points, the highest dynamic stresses were located
at the trailing edge near to the crown and band. These two locations were again
the more important for the dynamic assessment of the runner structural response
and for the fatigue life evaluation. The other locations, in spite of relatively high
static stresses, were not relevant from the point of view of the dynamic stresses.
The high stress ratios were partially due to the low static stresses, but also to the
strong vortex rope excitations. These high ratios might have significant impact on
the runner fatigue damage.

8.3.5 Deep Part Load and Channel Vortex

The runner mechanical stresses were of special interest at deep part load. This
operating condition was expected to be extremely demanding for the runner
structure, due to the large magnitude of the fluid flow pressure oscillations and
because of the presence of the runner channel vortices. The deep part load operating
point, OP 7, was chosen for the study of transient fluid flow phenomena. It counted
with the rotating vortex rope, with the runner channel vortices and no relevant
cavitation effects. From all numerically calculated operating points, the deep part
load, OP 7, showed the highest pressure oscillation amplitudes. The dynamic
pressure field of each simulated time step was used as load for the direct time
integration solution of the runner finite element (FE) model.

The calculated static equivalent mechanical stress distribution in the turbine runner,
arising from the deep part load, OP 7, pressure load, was qualitatively very similar to
the one obtained at part load. This can be observed in Figure 8.26, where the contour
plot for the normalised o, values is shown with the meridional transformation. One
more time, local stress peaks were located at the blade trailing edge near to the crown
and band, as seen in detail in Figure 8.27. However, they reached considerably
higher levels at the trailing edge near to the crown and band, with respectively
e, /Sy = 0,144 and o, /S, = 0,124. The total static displacements of the runner,
ur, , did not brought any special feature and did not show any qualitative difference
in relation to the other operating points and, due to its limited interest, its graphical
representation was omitted here.

Of greater interest at deep part load, OP 7, were the dynamic mechanical stresses
at the turbine runner. The normalised dynamic equivalent stress distribution can
be found in Figure 8.28, with the runner blade pressure side on the right side of the
meridian view and the suction side on the left side. The highest dynamic stresses
were located once more at the trailing edge near to the crown and band, as viewed
in detail in Figure 8.29. Besides from the stress concentration at these locations, it
could be noticed that relatively high stresses were distributed along the whole blade
trailing edge. Moreover, the peak stresses at the trailing edge near to the crown
and band reached significantly higher values in comparison to the other evaluated
operating points, with respectively o, /S, = 0,0462 and o.,/S, = 0,0640. These
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4

Figure 8.26: Static equivalent mechanical stresses at the deep part load operating
point, meridian view.
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results could shed light on the strong influence of deep part load on the runner
dynamic stresses and showed its importance for the dynamic structural assessment
of the runner and its fatigue life. At the deep part load operating point, OP 7,
besides the high absolute dynamic stress peak at the trailing edge near to the band,
the local stress peak at the trailing edge near to the crown was very pronounced as
well. Both locations were nearly of same importance for the fatigue damage analysis
from the point of view from the deep part load operating point, OP 7.

The time history and its Fourier transform for the normalised dynamic stress tensor
components can be encountered in Figures 8.30 and 8.31. The time evolution of the
stress components showed a complex periodical shape, produced by the vortex rope

Figure 8.27: Static equivalent mechanical stresses at the deep part load operating
point, detailed view of the trailing edge at crown (left) and band (right).
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P’ 4

Figure 8.28: Dynamic equivalent mechanical stress amplitude at the deep part load
operating point, meridian view.
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rotation at deep part load and by the runner channel vortex. The time signal and
the frequency spectrum were strongly dominated by slow vibrations corresponding
to the Rheingans frequency. The frequency in the stationary reference frame,
frr = 0,299, could be found in the runner rotating reference frame, corresponding
to f/f, = 0,701. The guide vane passing frequency could be identified in the time
history and in the frequency spectrum, but only in extremely limited extension
for this high specific speed hydraulic turbine. Its contribution to the dynamic
mechanical stresses in the FT 80 at deep part load, OP 7, was negligible in
comparison to the vortex rope rotation effect.
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Figure 8.29: Dynamic equivalent mechanical stress amplitude at the deep part load
operating point, detailed view of the trailing edge at crown (left) and band (right).
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Figure 8.30: Time history of the dynamic stress components at the trailing edge
near to the crown (top) and band (bottom), at the deep part load operating point.

The static and dynamic equivalent stresses in the runner and their ratio were listed
in Table 8.10, with the values for the locations at the leading edge (LE) near to the
crown and band, at the trailing edge (TE) near to the crown and band and at the
middle of the fillet between blade and crown (CR). The trailing edge near to the
crown and band presented high static as well as dynamic equivalent stresses and, in
addition to it, their ratios of 32,1% and 51,5% were importantly high. This made
the deep part load operating point, OP 7, a strong potential contributor for the
fatigue damage at the trailing edge near to the crown and band.

Table 8.10: Mean and dynamic equivalent stresses at deep part load.

Equivalent Stress LE, Crown LE,Band TE, Crown TE, Band Fillet, CR
Mean Oe,. /Sy (-) 0,028 0,067 0,144 0,124 0,054
Dynamic o, /S, (-) 0,0071 0,0088 0,0462 0,0640 0,0131

Ratio e, [Oe, (%) 25,1 13,2 32,1 51,5 24,1
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Figure 8.31: Fourier transform of the dynamic stress components at the trailing
edge near to the crown (top) and band (bottom), at the deep part load operating
point.

8.3.6 Results Summary and Further Considerations

The dynamic mechanical stresses in the Francis runner were calculated with the
finite element method (FEM) and using the direct time integration method. The
time history of the previously numerically simulated oscillating pressure field in the
hydraulic turbine was used as input, constituting the transient pressure load for the
finite element analysis (FEA).

The evaluation of the dynamic mechanical stresses at the rated operating point,
OP 2, full load and high head, OP 3, full load and low head, OP 4, part load and
high head, OP 5, part load and low head, OP 6, and deep part load, OP 7, offered the
possibility to understand and characterise the runner dynamic response to distinct
transient fluid phenomena as rotor-stator interaction (RSI), draft tube instabilities
(DTI), higher part load (HPL) and runner channel vortices (RCV).

Table 8.11 summarises the computed mean and alternate equivalent mechanical
stresses, 0., and o.,, and their ratio, at the runner critical stress locations for
the chosen operating points. The stress values were normalised in relation to the
material yield strength, S,. They were listed for the leading edge (LE) near to the
crown and band, for the trailing edge (TE) near to the crown and band and for the

middle of the fillet between blade and crown (CR).
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Table 8.11: Mean and dynamic equivalent stresses for the simulated operating
points.

Mean Equivalent Stress

Operating Point Tenn /Sy (-)

LE, Crown LE, Band TE, Crown TE, Band Fillet, CR
OP 2 Rated 0,134 0,208 0,118 0,127 0,239
OP 3 Full load high head 0,132 0,186 0,130 0,111 0,226
OP 4 Full load low head 0,093 0,169 0,097 0,108 0,176
OP 5 Part load and high head 0,068 0,106 0,133 0,093 0,118
OP 6 Part load and low head 0,040 0,090 0,113 0,094 0,080
OP 7 Deep part load 0,028 0,067 0,144 0,124 0,054

Dynamic Equivalent Stress

Operating Point oe, /Sy ()

LE, Crown LE, Band TE, Crown TE, Band Fillet, CR
OP 2 Rated 0,0033 0,0047 0,0277 0,0132 0,0040
OP 3 Full load high head 0,0027 0,0032 0,0229 0,0133 0,0027
OP 4 Full load low head 0,0028 0,0038 0,0205 0,0127 0,0039
OP 5 Part load and high head 0,0055 0,0070 0,0142 0,0333 0,0115
OP 6 Part load and low head 0,0049 0,0102 0,0183 0,0407 0,0123
OP 7 Deep part load 0,0071 0,0088 0,0462 0,0640 0,0131

Stress Ratio

Operating Point Oc, /0c,, (%)

LE, Crown LE, Band TE, Crown TE, Band Fillet, CR
OP 2 Rated 2,5 2,2 23,4 10,4 1,7
OP 3 Full load high head 2,0 1,7 17,7 11,9 1,2
OP 4 Full load low head 3,0 2,2 21,1 11,8 2,2
OP 5 Part load and high head 8,1 6,5 10,6 35,7 9,8
OP 6 Part load and low head 12,1 11,4 16,3 434 15,4
OP 7 Deep part load 25,1 13,2 32,1 51,5 241

The highest mean equivalent stresses, o, were found at the middle of the fillet
between blade and crown. However, this location was revealed to be irrelevant for
the dynamic analysis and for the fatigue assessment, because of its low alternate
stresses, o.,. The trailing edge near to the crown and near to the band were the
locations, where the maximum dynamic mechanical stresses, o.,, were found for
all operating points. Moreover, high static mechanical stresses, o, , were found
at these locations as well. The trailing edge near to the crown and near to the
band were also characterised by elevated o, /., ratios. For these reasons, the
trailing edge near to the crown and band could be pointed out as critical for the
runner dynamic structural analysis. They constituted the points with more risks for
structural damages, as confirmed by numerous field observations, e.g. by FISHER ET
AL. [44]. Therefore, the trailing edge near to the crown and band were the points of
interest for the fatigue assessment.

The correlation between the dynamic stresses and the operating points showed that,
in the case of the FT 80 turbine, the rotor-stator interaction (RSI), associated to
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the full load operating conditions, OP 2, OP 3 and OP 4, were responsible for
moderated ., values. For low specific speed Francis turbines, the dynamic stresses
related to the rotor-stator interaction (RSI) would have been much higher, because
of the higher pressure oscillation amplitudes induced by the tight distance between
guide vanes trailing edge and runner blades leading edge in this kind of machines.

The analysis of the operating points and the calculated dynamic stresses revealed
that, for the F'T 80, the vortex rope rotation associated to the draft tube instabilities
(DTI) at part load, OP 5, OP 6 and OP 7, produced high o, values at the observed
locations. This behaviour brought in evidence the impact of the high pressure
oscillation amplitudes at part load on the dynamic mechanical stresses for high
specific speed machines, like the FT 80. Low specific speed machines, where the
pressure oscillation amplitudes in the draft tube cone are considerably lower, should
have their structure much less influenced by the vortex rope rotation.

The higher part load (HPL) phenomenon, at part load and low head, OP 6, did not
caused any qualitatively different response of the runner structure to the pressure
oscillations, when compared to ordinary part load, as in the case of part load and
high head, OP 5. The higher dynamic mechanical stresses calculated at OP 6 in
comparison to OP 5 came from the higher pressure oscillation amplitudes and not
from qualitatively distinct dynamic phenomena. At deep part load, OP 7, the
presence of the runner channel vortex (RCV), together with the rotating vortex
rope, induced the highest dynamic mechanical stresses in the runner.

These numerically obtained results confirmed the common perception that the
endurance of high specific speed Francis turbines are negatively impacted by part
load and deep part load operation, where the rotating vortex rope coming from
the draft tube instabilities (DTI) is present. On the other hand, low specific speed
Francis runners would be strongly sensible to the rotor-stator interaction (RSI).

8.4 Fatigue Assessment

Francis runners submitted to though operating conditions, counting with not
optimised mechanical design or manufactured without high quality processes might
be subjected to mechanical failures, with the occurrence and propagation of fatigue
cracks. There are numerous reports on the occurrence of fatigue cracks in Francis
runners, as discussed among others by e.g. FISHER ET AL. [44], COUTU ET AL. [28],
BREKKE [21] and BHAVE, MURTHY AND GOYAL [15]. Under these circumstances,
the fatigue analysis of the runner structure gains on relevance, in order to prevent
the mechanical failure of this important turbine component.

The chosen approach in this study was to evaluate how the different turbine
operating conditions could contribute to the runner fatigue damage. The pressure
distribution over the turbine runner actuated as structural loads on it. The
time-averaged pressure field was responsible for the static loads, while the pressure
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oscillations generated the dynamic loads. The static loads resulted in the mean
mechanical stresses and the transient loads in the dynamic mechanical stresses. The
combination of both stress components originated the runner fatigue damage.

Interesting here was to investigate how the pressure pulsations associated to the
distinct transient fluid flow phenomena, as rotor-stator interaction (RSI), draft tube
instabilities (DTI) and runner channel vortices (RCV), could influence the runner
fatigue damage and fatigue life. With this objective, the operating points studied
before, rated, OP 2, full load and high head, OP 3, full load and low head, OP 4,
part load and high head, OP 5, part load and low head, OP 6, and deep part load,
OP 7, were also used for the fatigue assessment of the F'T 80 runner.

Procedure

The mean and alternate mechanical stresses from the runner finite element analysis
(FEA), performed using the pressure time history from the transient fluid flow
numerical simulation, were taken as input for the runner fatigue assessment. More
precisely, the calculated stress time history could be employed as input for the fatigue
calculations. The runner structural analysis carried out previously showed that the
trailing edge near to the crown and near to the band were the locations, where the
highest dynamic stresses were found and, at the same time, they counted with high
mean stress levels. In addition, field test observations, as reported by FISHER ET
AL. [44], pointed out the occurrence of cracks at these locations. Therefore, the
trailing edge near to the crown and near to band were the relevant and chosen
locations for the fatigue analysis. The investigation of the fatigue models and
methodology themselves did not belong to the scope of this study. The relevant
elements of the fatigue theory were just applied in the analysis of the turbine
runner, with the exclusive practical objective to estimate the contribution of the
distinct machine operating conditions to the runner damage and their influence on
the fatigue life.

Fatigue Models

The results from the finite element analysis (FEA) revealed a multiaxial stress state
at the trailing edge near to the crown and near to the band. At both locations,
the multiaxial stress state was present for all simulated operating points. The time
history plots of the mechanical stress components indicated that they were mostly
in phase, but that they were not proportional to each other. This means that the
directions of the principal stresses varied constantly over the time. Under these
stress conditions, more elaborated fatigue models were needed for the assessment of
the runner, as the critical plane principle described by FATEMI-SOCIE [40] or the
micro-crack approach proposed by WANG AND BROWN [164].
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For the runner fatigue analysis, high cycle fatigue (HCF) was considered. Taking
a typical machine rotational speed of np = 150 rpm as example, after 8 000 hours
of operation, the excitations arising from the inhomogeneous spiral case pressure
distribution would have imposed 7,2-107 fatigue cycles to the runner, the guide vane
passage 1,7 - 10° cycles and the vortex rope rotation approximately 2,2 - 107 cycles.
The high number of cycles in this typical example, together with the ASME [3]
recommendation for welded structures, justified the adoption of high cycle fatigue
(HCF). The NEUBER [110] rule had to be adapted to the multiaxial stress state with
e.g. the procedure from GLINKA AND BUCZYNSKI [54].

The runner dynamic structural analysis showed that the time variation of the
dynamic stress components could not be approximated by simple analytic functions.
However, their time history was made available by the transient numerical structural
simulation of the runner with the finite element method (FEM), as if it were
experimental measured stress data. This offered the possibility to employ the
rainflow method to determine the alternate stress amplitude and the associated
number of cycles. The original rainflow counting algorithm from MATSUISHI AND
ENDO [95] had to be substituted by one, which could deal with the multiaxial stress
state. The modification introduced by WANG AND BROWN [164] was chosen for this
study for being suitable for the application to stress data obtained with the finite
element method (FEM).

For the fatigue analysis, the material properties are of great importance. For
more accurate results, material data from specific fatigue strength tests are
needed. Turbine manufacturers normally carry out these tests for their runner
material. In the case of the FT 80, the runner material was the stainless
steel ASTM A743 CA-6NM, equivalent to G-X5 CrNi 13.4, for which specific
fatigue properties were available, as for example from TVFA WIEN AND
LBF INSTITUT [152] research activities.

The manufacturing process might introduce residual stresses in mechanical
components and affect their fatigue life. In the case of Francis runners, which were
not stress relieved, the residual stress magnitude at the blade trailing edge near to
crown and band might even reach the material yield strength, S,. Due to the ductile
nature of stainless steel, the stress level is reduced to 10% up to 20% of the yield
strength after commissioning, as reported by SABOURIN ET AL. [133], and tends to
be completely eliminated during long-term operation as formulated by ZAHAVI AND
TORBILO [176].

Uncertainties

The static and dynamic stresses actuating in the turbine at different operating
points could be accurately estimated with the procedure presented in this study,
using the transient fluid flow simulation and the transient structural analysis. The
uncertainties related to the loads at stable operating conditions were not more than
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those inherent to the CFD and FEA in general. The dynamic stresses in the runner
at transitory operating conditions, as e.g. start and stop or load rejection, could
be estimated by the approximation proposed by HUTH [66]. Alternatively, they
could have been estimated by the same numerical procedure employed here for the
operating points or determined experimentally.

The fatigue analysis itself brings some uncertainties with it. For example, the
fatigue life of a test specimen examined at the laboratory should be interpreted
as a statistical result and means a high probability, usually over 90%, that the
specimen fails after a given number of cycles. This statistical character of the
fatigue analysis should be kept in mind, especially because of the high deviation
in the material fatigue properties. Another point of inherent uncertainty in the
fatigue analysis is related to the fatigue damage models, which attempt to predict
the material useful life. Even if these models are based on experimental observations,
they rely on mathematical representations of the material behaviour regarding the
crack initiation mechanism.

The magnitude of the residual stresses and the way, in which they are reduced along
the machine operation, are based on field test observations from e.g. SABOURIN ET
AL. [133] and on the mathematical model proposed by ZAHAVI AND TORBILO [176].
This limited approach might lead to some inaccuracy. The uncertainty related to the
influence of residual stresses on the fatigue life might be minimised by a sensitivity
analysis. Moreover, residual stresses should not importantly modify the relative
contribution of each analysed operating point to the runner fatigue damage.

The fatigue life of the Francis runner depends on how the machine is operated, i.e.
the combination and frequency of operating points, also known as load spectrum. In
the design phase, the load spectrum can only be assumed and tries to reproduce how
the machine will be run, when in commercial operation. The evaluation of different
possible scenarios for the load spectrum can minimise the uncertainties related to it.
Still, the relative fatigue damage, caused by each operating point during the same
normalised time period, is not affected by the load spectrum.

Considering the uncertainties in the fatigue assessment of turbine runners, the
fatigue analysis should be understood as an orientation in the design of Francis
runners, which shall be complemented by experience and engineering judgment.
Nonetheless, more important here was the investigation of the effect of the distinct
operating conditions on the runner fatigue life. This objective could be reached
anyway, as long as the relative damage originated by each operating condition was
little sensible to the uncertainties in the fatigue analysis.

8.4.1 Fatigue Damage and Operating Points

The effect on the runner fatigue of the distinct studied operating conditions, i.e.
rotor-stator interaction (RSI), draft tube instabilities (DTI), higher part load (HPL)
and runner channel vortex (RCV), was assessed through the determination of the
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Table 8.12: Fatigue damage and operating points.

Cumulated Damage after 1000 hours

Operating Point D (-)
TE-CR TE-BD
OP 2 Rated 5,0-10°6 8,3-10°7°
OP 3 Full load and high head 2,9-1076 9,3-107°
OP 4 Full load and low head 1,6-10°6 2,7-107°
OP 5 Part load and high head 4,2-10°7 5,1-104
OP 6 Part load and low head 6,1-10°7 1,1-10*
OP 7 Deep part load 1,4-107* 6,9-10*
Vortex shedding effect 7,7-1078 1,3-10°7

fatigue damage caused by each simulated operating point. The fatigue damage,
D, associated with each operating point was determined by n/N, based on the
PALMGREN-MINER [115, 104] concept, where n was the number of load cycles during
a reference time and N the corresponding number of cycles until fatigue failure for
this load. For example in the case of the draft tube instabilities (DTT), the number
of load cycles, n, would be the number of vortex rope rotations during the reference
period and the number of cycles until failure, N, would be the required number of
vortex rope rotations until the crack initiation.

Results

For the comparison of the relative fatigue damage under same conditions, the number
of cycles at each operating point was determined for a reference operating duration of
1000 hours. This means that for the determination of the fatigue damage the stress
history associated to each operating point was multiaxially rainflow counted during
1000 hours of operation and D was calculated with the chosen fatigue model. For
the evaluation of the individual D values, the PALMGREN-MINER [115, 104] rule was
employed together with the rainflow counting method applied to the stress history
of the individual operating point being analysed.

Table 8.12 lists the fatigue damage at the blade trailing edge near to the crown
(TE-CR) and band (TE-BD) for each simulated operating point. The fatigue
damage was calculated taking into account the multiaxial stress state, using the
rainflow counting method and assuming a residual stress of o/, = 0,20.

There could be observed that the fatigue damage was larger at the blade trailing
edge near to the band than near to the crown, being fast one up to two orders
of magnitude greater, depending on the operating point. For the operating points
OP 2 to OP 7, D went from 4,2-10 7 up to 1,4-10* at the trailing near to the crown
and from 8,3-10°° up to 6,9-10 % near to the band.

At the full load operating conditions, the blade trailing edge near to the band was
mainly submitted to the high frequent dynamic stresses arising from the guide vane
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passage. The dynamic stresses at the trailing edge near to the crown were rather
dominated by the low frequent spiral case inhomogeneous pressure distribution. At
part load operation, the nature of the excitation at the trailing edge near to the crown
and band was the same, coming from the vortex rope rotation, still with significantly
higher dynamic mechanical stresses at the trailing edge near to the band than near
to the crown. These were the main reasons for the greater calculated fatigue damage
at the trailing edge near to the band than near to the crown.

From the values in Table 8.12; the critical fatigue location for the FT 80 runner
was the trailing edge near to the band. Other machines, depending on their design,
geometry, mean and dynamic stress levels and excitation frequencies could, in theory,
experience more fatigue sensitivity at the trailing edge near to the crown.

At the trailing edge near to the crown, the larger fatigue damage was caused by the
deep part load, OP 7, with D = 1,4-10 4, followed by the full load operating points,
OP 2, OP 3 and OP 4, and after by the part load operating points, OP 5 and OP 6.
The origin of the larger fatigue damage amount was mainly the dynamic stress
component. At the trailing edge near to the crown, the influence of the rotating
vortex rope on o, was not as significant as at the trailing edge near to the band.

Considering the critical fatigue location for the FT 80, the trailing edge near to the
band, the greatest fatigue damage, D = 6,9-10%, came from deep part load, OP 7,
due to the high dynamic stresses generated by the draft tube instabilities (DTT) and
by the runner channel vortex (RCV).

After deep part load, OP 7, the larger D values were reached by part load and high
head, OP 5, and low head, OP 6, with respectively D = 5,1-10* and D = 1,1-10*.
Again, the greater contribution for the fatigue damage came from the high dynamic
stresses, originated from the proximity of the band-near portion of the blade to the
rotating vortex rope. Although the pressure pulsations and dynamic stresses were
higher at part load and low head, the fatigue damage was larger at part load and
high head, OP 5, possibly because of the higher mean stresses induced by the higher
head. The presence of higher part load (HPL) at part load and low head (OP 6)
did not noticeably influence the fatigue damage amount.

At the trailing edge near to the band, the lower fatigue damage was generated by
the full load operating conditions, OP 2, OP 3 and OP 4, as long as the rotor-stator
interaction (RSI) produced the lower pressure pulsations for the F'T 80.

This behaviour was typical from high specific speed machines, where the part
load operating points with the presence of the draft tube instabilities (DTI) are
responsible for the higher pressure oscillation amplitudes, for the higher dynamic
mechanical stresses and, as just seen, for the higher fatigue damage at the runner
structure critical location. At low specific speed machines, the draft tube instabilities
(DTI) become less important and the rotor-stator interaction assumes the role of
the driving dynamic phenomenon. At low n, hydraulic turbines, the larger amount
of fatigue damage is expected to be produced by the full load operating conditions,
because of the strong presence of rotor-stator interaction.
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The approach presented here, with the transient fluid flow simulation and the
subsequent transient finite element analysis (FEA) of the runner structure, could
be repeated for any other operating point or any other Francis machine for the
estimation of the corresponding fatigue damage.

The fatigue damage results for the FT 80 showed that reducing the machine output
to part load and deep part load created the most demanding conditions from the
point of view of fatigue life. If not clearly required by energy generation and
grid regulation strategies, this operating range could be avoided, resulting in the
extension of the machine useful life. There should be drawn attention to the point
that especially operating points with high alternate stress amplitudes, caused by the
fluid flow pressure pulsations, could lead to significantly higher fatigue damage.

Table 8.12 brought as well the estimated fatigue damage produced by the structural
excitation through the vortex shedding effect (VSE). As discussed before, the vortex
shedding CFD and FEA computations should be interpreted in this study just as
a qualitative approach. For this reason, the exact computed values for the fatigue
damage coming from the vortex shedding effect (VSE) had no relevant meaning.
However, it could serve as estimation of the order of magnitude of D, caused by the
vortex streets at the runner blades trailing edge. With values of D in the order of
magnitude of 7,7-10°® at the trailing edge near to the crown and D = 1,3-10 7 near
to the band, the vortex shedding effect did not appear as a relevant phenomenon
for the fatigue assessment of the runner and would have been negligible.

Transient Operating Conditions

For the completeness of the fatigue assessment, not only the accurately simulated
operating points were considered, but also transient operating conditions as start,
stop, load variation, load rejection and runaway. These transient operating
conditions could have been numerically calculated with the method presented here.
However, for simplicity, their associated stresses were estimated with the approach
proposed by HUTH [66].

For the fatigue assessment here, the start, stop and load change were taken into
account. Experimental surveys from GAGNON ET AL. [49] show that the transient
stress levels in Francis turbines during the start phase depend on the start sequence.
Slow start regimes reduce the facility responsiveness, but keep the dynamic stresses
at low levels. Fast starts are associated to higher dynamic stresses.

Based on the observations of GAGNON ET AL. [49] and SABOURIN ET AL. [133],
four start regimes were considered, soft start, slow start, normal start and fast start.
For each of them, stress amplification factors were assumed in relation to the mean
stresses, respectively taking the values 1,0, 1,3, 1,6 and 2,0. The stop condition
was chosen to be comparable to a soft start. Two load change conditions were
considered, from part load to optimum operating range and from the latter to full
load, taking into account the mean stress variation, as suggested by HUTH [66].
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Table 8.13: Fatigue damage and operating conditions.

Cumulated Damage after 1000 cycles

Operating Condition D (-)
TE-CR TE-BD
Soft Start 9,7.10°8 3,910 8
Slow Start 9,0-1077 2,4-1077
Normal Start 3,9-1076 8,5-1077
Fast Start 4,7-10°° 1,5-107°
Stop 9,7.10 % 3.9-10 &
Part load to optimum < 1,0-10712 <1,0-10712
Optimum to full load < 1,0-10712 1,1-10710

Table 8.13 lists the fatigue damage for the considered transient operating conditions,
calculated for the multiaxial stress state, using the rainflow counting method and
assuming a residual stress of 0¢/S, = 0,20. As reference for the fatigue damage
computation, 1000 cycles were imposed for each condition.

There can be seen in Table 8.13, that, in the case of the F'T 80, the critical fatigue
location for the transient operating conditions was once more the blade trailing edge
near to the band. It could be confirmed that more aggressive start sequences were
responsible for larger fatigue damage, with D = 3,9-10°® at the trailing edge near
to the band for the soft start and D = 1,5-107° for the fast start. Between the
soft and fast start procedures, the fatigue damage was increased with a much faster
rate than the dynamic mechanical stresses. For more safety towards fatigue, smooth
start sequences should be preferred, when acceptable from the point of view of the
facility operational strategy.

In the case of pump-turbines, where the start, stop and operating mode reversal are
subjected to tougher dynamic solicitations, because of the flow dynamics and also
often due to the operational strategy, the participation of the transient conditions
in the total fatigue damage becomes of main importance.

For Francis machines at transient operating conditions, the accurate pressure
oscillations and induced dynamic mechanical stresses in the runner can be simulated
with the CFD and FEA approaches proposed here, with the benefit of offering a
more precise fatigue assessment, as done here for the operating points associated to
rotor-stator interaction (RSI), draft tube instabilities (DTT), higher part load (HPL)
and runner channel vortices (RCV).

Counting Method

The rainflow method took the advantage of counting with the stress time history
obtained from the runner transient finite element (FE) simulation, offering the
possibility to evaluate the fatigue damage as if experimental multiaxial data were
available. When the stress time history is not known, the analytic method idealising
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Table 8.14: Fatigue damage and counting method.

Cumulated Damage after 1000 hours

Operating Point D0
TE-CR TE-BD

Analytic Rainflow Analytic Rainflow
OP 2 Rated 1,4-10° 5,0-10°6 46-10°° 8,3-10°°
OP 3 Full load and high head 7,8-1076 2,9-10°6 4,5-1076 9,3-107°
OP 4 Full load and low head 48.10°6 1,6-10°6 3,810 2,7-107°
OP 5 Part load and high head 2,1-10°7 42-10°7 6,4-10°6 5,1-104
OP 6 Part load and low head 5,4-1077 6,1-10°7 1,6-107° 1,1-10*
OP 7 Deep part load 5,5-107° 1,4-107% 2,7-107 6,9-10

the alternate stress as a sinusoidal function of time is often employed. Here,
as long as the multiaxial time history was available, there was no reason not to
use the rainflow counting method. However, for investigative interest, the fatigue
damage results obtained with the multiaxial rainflow counting method from WANG
AND BROWN [164] were compared to those, which used the analytical sinusoidal
approximation. The fatigue damage for the distinct operating points obtained with
both counting methods, combined to the multiaxial stress-state and a residual stress
of 0¢/S, = 0,20, can be found in Table 8.14.

Table 8.14 shows that, with exception of the fatigue damage at the trailing edge
near to the crown at full load, the values of D computed with the rainflow counting
method were higher than those using the analytic approximation. The sophisticated
approach of the rainflow counting method, dividing the alternate stresses in classes,
offered the possibility to more accurately evaluate their amplitude and frequency.
The analytical method was not able to appropriately resolve the complex time signal
and precisely reproduce the stress variations.

In the case of part load, OP 5, OP 6 and OP 7, with the complex time signal shape
caused by the draft tube instabilities (DTT), the analytic counting method resulted
in too low fatigue damage values in comparison to the rainflow counting method.
For example, the fatigue damage computed with the analytic counting method at
the trailing edge near to the band at deep part load, OP 7, was D = 2,7-10* and
with the rainflow method D = 6,9-107%.

On the other hand, at full load, OP 2, OP 3 and OP 4, the fatigue damage predicted
with the analytic counting method at the trailing edge near to the crown was higher
than with the rainflow counting. The probable reason for it was the superposition
of the slow stress variation coming from the inhomogeneous pressure distribution
in the spiral case with the fast variation caused by the guide vanes passage. For
the FT 80 at the trailing edge near to the crown, the contribution of the guide vane
passage was in the reality not so important as the inhomogeneous spiral case pressure
distribution, but, with the combination of both, the former was overestimated by
the analytic counting method.
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Table 8.15: Fatigue damage and stress state.

Cumulated Damage after 1000 hours

Operating Point D ()
TE-CR TE-BD
Uniaxial Multiaxial Uniaxial Multiaxial

OP 2 Rated 7,1-10°6 5,0-10°6 1,2-10°6 8,3-107°
OP 3 Full load and high head 3,8-10°6 2,9-10°6 1,5-1076 9,3-107°
OP 4 Full load and low head 2,1-10°6 1,6-10°6 3,9-10°7 2,7-107°
OP 5 Part load and high head 6,4-10°7 42107 4,1-10°6 5,1-104
OP 6 Part load and low head 7,6-107 6,1-10°7 1,7-10°6 1,1-107*
OP 7 Deep part load 2,0-10 1,4-1074 7,1.10°6 6,9-10%

Nevertheless, the results produced with both methods shared the same order of
magnitude, so that if the more accurate rainflow counting results were not available,
the analytic method could have been an approximation for the fatigue damage with
still tolerable loss of accuracy. If the stress time history is available, the rainflow
counting method should be preferred.

Fatigue Model

The fatigue life prediction relies on fatigue models, which idealise the material
behaviour in relation to mean and cyclic stresses regarding the initiation of cracks.
For the estimation of the fatigue damage caused by the different operating points
and transient fluid flow phenomena presented before, the micro-crack approach from
WANG AND BROWN [164] was selected. This method could take into account the
multiaxial stress at the trailing edge near to the crown and band, whose dynamic
stress components were not in phase. When compared to uniaxial models, this
procedure should provide more accurate results for considering the general stress
state and for not restricting the independent time evolution of the stress components.

For the estimation of the gain of accuracy with general multiaxial fatigue models in
relation to uniaxial approaches, the WANG AND BROWN [164] multiaxial method
was compared to the SMITH, WATSON AND TOPPER [144] uniaxial model. The
calculated values with both methods, considering the rainflow counting method and
a residual stress of 0¢/S, = 0,20, are seen in Table 8.15.

The estimated values of D revealed that the uniaxial model delivered higher fatigue
damage amounts at the trailing edge near to the crown than the multiaxial method.
Still, the values predicted by both models for this location were similar. At
the trailing edge near to the band, the values obtained by the SMITH, WATSON
AND TOPPER [144] uniaxial model were too low in comparison to the WANG
AND BROWN [164] multiaxial micro-crack approach. The probable reason for the
deviations between both methods was the very pronounced multiaxial stress state
at the trailing edge near to the crown and band and the nature of the stress tensor
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Table 8.16: Fatigue damage and residual stress.

Cumulated Damage after 1000 hours

Operating Point D)
TE-CR TE-BD
09 a0 a0 o0 o0 a0
— =00 —=02 —=10 —=00 —=0,2 —=1,0
s, V5, "0, T 5, T s, T s, T
OP 2 Rated 22.10° 50.10° 23.10° 3,9-10° 83.10° 3,7.10°

OP 3 Full load and high head 1,4-10° 29.10° 1,2.10° 43-10° 9,3-10° 4,0-10*
OP 4 Full load and low head 8,3-107 1,6:10° 6,8-10° 1,3.10° 2,7.10° 1,1-10*
OP 5 Partload and high head 4,0-107 4,2.107 1,1.10° 1,9-10* 5,1-10* 6,5-10°°
OP 6 Part load and low head 2,5-107 6,1-107 2,2-10° 49.10° 1,1-10* 7,1-10™*
OP 7 Deep part load 6,0.10° 14-10* 89-10* 27.10* 6,9-10* 7,3-10°

time history, where its components were not in phase. The larger deviations in the
fatigue damage values at the trailing edge near to the band, when compared to
those near to the crown, were related to the higher alternate stresses at the former,
increasing the importance of the dynamic component in the fatigue calculation.

If multiaxial stress data is available for the runner, it would be recommended that
multiaxial stress models were used. Alternative fatigue models could be used, as the
FATEMI-SOCIE [40] critical plane principle or other multiaxial methods as listed, for
example, by PApUGA [116].

Residual Stress

As discussed before, the residual stress in the turbine runner represents a source of
uncertainty in the prediction of the fatigue damage. Residual stress measurements in
prototype runners were already performed, as done e.g. by SABOURIN ET AL. [133].
Though, they are still limited to a very reduced number of especial cases. Although
the reported residual stress range of 0¢/S, = 0,10 until 0¢/S, = 0,20 seems
reasonable, material properties scattering and dependency on the manufacturing
process should be expected.

In order to investigate the sensibility of the fatigue damage amount to the residual
stress, the fatigue evaluation was repeated for three different residual stress levels,
00/Sy = 0,10, 0¢/S, = 0,20 and 0¢/S, = 1,00. The results of the fatigue calculations
with variable oy, with the rainflow counting method and with the multiaxial stress
state are presented in Table 8.16.

The residual stress could significantly increase the fatigue damage amount, as it
could be seen, for example, at the trailing edge near to the band at deep part load,
OP 7, with values of D = 2,7-10%, D = 6,9-10* and D = 7,3-10°2 for the increasing
values of gg. There could also be identified a stronger dependency of D on o for
locations and operating points with high dynamic mechanical stresses, o,, here at
the trailing edge near to the band at part load, OP 5, OP 6 and OP 7.
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With the objective of reducing the uncertainty of the residual stress in the estimation
of the fatigue life, sensibility analysis towards o as done here could be integrated
in the fatigue assessment process of Francis runners.

8.4.2 Turbine Operation Scenarios and Fatigue

The fatigue damage, D, caused by the different operating points and distinct
transient fluid flow phenomena, can be compared between each other, with the
objective to identify the most critical conditions for the considered hydraulic turbine
runner. The fatigue damage can also serve as a comparison parameter in the
evaluation of the relative fatigue endurance of new runner designs in relation to
other alternatives or to already existing machines. The fatigue damage for different
operating points and conditions can be employed as well in the estimation of the
runner fatigue life.

Besides the uncertainties in the calculation of the fatigue damage as analysed before,
the evaluation of the runner fatigue life brings additional sources of inaccuracy. They
consist basically in the incertitude about how the hydraulic turbine will be operated
when in real commercial use. Depending on the operating and energy production
strategy, the machine can be submitted to very varied regimes of operation.

As example here for the estimation of the runner fatigue life, based on the numerical
simulation of the transient fluid flow, transient runner structural response and
fatigue damage calculation, multiple turbine operation scenarios were considered.
They could illustrate the proposed procedure and provide a qualitative assessment
on how the FT 80 would behave in commercial operation.

Three distinct operation scenarios were initially considered. They took into account
the total operation time per year, the amount of operating hours at several operating
points and the occurrence frequency of transient operating conditions.

The first scenario, described as base energy generation, reproduced typical operating
conditions for a hydraulic turbine participating in the stable slightly varying energy
generation as base for the electrical grid. Under this condition, the machine would
be in operation almost continuously along the year, the operation at full load would
be far more frequent than at part load and starts, stops and load changes would not
be frequent.

The second scenario considered the turbine in operation for energy demand
regulation. The hydraulic turbine would be used to quickly respond to daily
variations in the electrical energy consumption. The turbine would still be most
of the time of the year in operation, but with regular downtimes, when the demand
would be lower. Due to energy regulation aspect, the turbine would be mainly
operated at full load, but with an increasing participation of part load. Starts, stop
and load changes would also be more frequent.
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Table 8.17: Turbine operation scenarios for fatigue assessment.

Scenario 1 Scenario 2 Scenario 3
Load Condition Base Energy Energy Demand Grid Stability
Generation Regulation Regulation
Operating time per year 8000 h 7000 h 6000 h
Full load participation 90% 70% 40%
OP 2 Rated 30% 20% 10%
OP 3 Full load and high head 10% 30% 25%
OP 4 Full load and low head 50% 20% 5%
Part load participation 10% 30% 60%
OP 5 Part load and high head 3% 10% 15%
OP 6 Part load and low head 5% 15% 10%
OP 7 Deep part load 2% 5% 35%
Starts and stops per day 1 2 3
Part load to optimum per day 2 4 22
Optimum to full load per day 6 12 26

The third scenario put the turbine in operation for grid stability regulation. With
this operation philosophy, the hydraulic turbine would be used not only for energy
demand regulation, but also for providing ancillary services to assure the electrical
grid stability. The turbine would also be operated in a similar way, if used for
maximising financial gains in the spot energy market. In this scenario, the turbine
would count with longer downtime periods, with even longer operation at part load,
especially at deep part load, and would count with numerous starts, stops and load
changes. Pump-turbines are often used for this kind of scenario as well, even under
more demanding conditions.

Table 8.17 lists the typical values assumed for each one of the idealised scenarios,
showing the amount of operating hours per year, the participation of the different
operating points in the total operating time, the number of starts and stops per day
and the number of load changes from part load to optimum and from optimum to
full load per day. Vortex shedding effects were considered only at full load operating
conditions, in accordance with the model test observations for the F'T 80. Scenario 1
counted with slow start procedure, Scenario 2 with normal and Scenario 3 with fast.

The previous fatigue damage results could be combined to estimate the total fatigue
damage, Dr, for each scenario. With the PALMGREN-MINER [115, 104] rule and
with the operation duration or frequency for each operating point or condition, the
total fatigue damage could be obtained from the combination of the individual
fatigue damage, D, results. This procedure could be repeated for any other
operational scenario, provided the individual fatigue damages were known. If the
operational regime would be precisely known, the values taken for the scenario could
be simply substituted by the actual figures and the new total fatigue damage could
be evaluated.

The fatigue damage values for each operating point and operating condition were the
previously calculated with the rainflow counting method, multiaxial stress state and
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00/, = 0,20. In the estimation of the fatigue life, the PALMGREN-MINER [115, 104]
principle assumes that crack initiation occurs, when 3 n;/N; = C. For the Francis
runner being analysed, the constant in the rule was taken as C' = 0,3. With the
total fatigue damage per year and considering the maximum admissible value of C|
the expected fatigue life could be estimated.

Table 8.18 brings for Scenarios 1, 2 and 3 the fatigue damage, D, at the trailing
edge near to the crown and band, originated from one year of operation under the
corresponding scenario conditions for each operating point and operating condition.
The participation, D/Dy, of each of them for the total fatigue damage can also be
seen in Table 8.18. The total fatigue damage per year, D7, and the expected amount
of years in operation until the initiation of cracks can be found in Table 8.18 as well.

It could be observed for this high specific speed machine that, with the increasing
participation in the turbine operation of part load and especially from deep part
load, the total fatigue damage became considerably larger. The high participation
of the deep part load operating point, OP 7, with respectively 50,9%, 71,7 and 83,3
of the total damage, Dp, at the trailing edge near to the crown and 16,8%, 22,7
and 66,3 near to the band for Scenarios 1, 2 and 3, allowed detecting that operating
points with high dynamic mechanical stresses arising from high pressure pulsations
in the turbine runner could severely reduce its fatigue life. Even at Scenario 1, where
the participation of full load was more important and part load operation was very
limited, the contribution of deep part load, OP 7, to the total fatigue damage was
considerably elevated. In the case of low specific speed machines, the tendency of the
total fatigue damage to be dominated by the most critical operating point would
remain. However for low n, hydraulic turbines, the critical effect for the fatigue
endurance would be the rotor-stator interaction (RSI), especially at full load, and
not the draft tube instabilities (DTI) at part load, as observed for the FT 80.

For the FT 80, the start procedure could reach 14,2% in the total damage
participation at the trailing edge near to the crown in Scenario 3, where starts
and stops were more frequent and where the fast start procedure was assumed.
Scenarios 1 and 2 showed that reduced number of starts and stops as well as smoother
start procedures could limit its associated total damage participation at this runner
location to respectively 0,7% and 4,1%. Turbines and pump-turbines with even
more unfavourable start procedures would have their runner fatigue life even more
significantly affected by the fatigue damage caused by the start procedure. The
remaining transient operating conditions, i.e. stop and load change, contributed
only marginally to Dr. The vortex shedding effect had limited participation in the
total fatigue damage as well, being not critical for the fatigue endurance.

At first glance, the amount of years in operation until crack initiation in the
turbine runner was quite elevated, going from 453 years at the trailing edge near
to the band at Scenario 1 down to 136 years at Scenario 3. Again, it could be
observed how the operating conditions with high dynamic mechanical stresses could
reduce the runner fatigue endurance. The fatigue life calculations counted with the
uncertainties relative to the fatigue analysis and assumed the hypothesis of healthy
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Table 8.18: Fatigue damage and fatigue life for different scenarios.

Cumulated Damage per Year

Scenario 1 Scenario 2 Scenario 3
Trailing Edge at Crown Base Energy Energy Demand Grid Stability
Generation Regulation Regulation
D D/Dr D D/Dr D D/Dr
) (%) (-) (%) (-) (%)
OP 2 Rated 1,2-10°° 27,0 7,0-.10°6 10,1 3,0-10°6 0,8
OP 3 Full load and high head 2,4-10°° 5,3 6,2-10°6 8,9 4,4-10°6 1,2
OP 4 Full load and low head 6,3-1076 14,0 2,2.10°6 3.2 4,7-1077 0,1
OP 5 Partload and high head 1,0-10°7 0,2 2,9-1077 0,4 3,8-1077 0,1
OP 6 Part load and low head 2,4-10°7 0,5 6,4-10°7 0,9 3,6-10°7 0,1
OP 7 Deep part load 2,3-107° 50,9 5,0-107° 71,7 3,010 83,3
Start 3,3-1077 0,7 2,810 4,1 5,1-107° 14,2
Stop 3,5-10°8 0,1 7,1-10°8 0,1 1,1-107  «0,1

Part load to optimum 7,310 <« 0,1 1,5-10 2 «0,1 8,010 2 <« 0,1
Optimum to full load 221012 «0,1 44102 <0, 9,510 1?2 <« 0,1

Vortex shedding effect  5,6-1077 1,2 38107 05 19107 0,1
Total Damage, Dr (-) 4,5-107° 6,9-107° 3,6-10*
Years until crack initiation 6704 4319 836

Cumulated Damage per Year

Scenario 1 Scenario 2 Scenario 3
Trailing Edge at Band Base Energy Energy Demand Grid Stability
Generation Regulation Regulation
D D/Dr D D/Dr D D/Drp
) (%) (-) (%) (-) (%)
OP 2 Rated 2,0-10% 30,1 1,2-1074 10,8 5,0-107° 2,3
OP 3 Full load and high head 7,5-107° 11,3 2,0-10% 18,3 1,4-107* 6,4
OP 4 Full load and low head 1,1-10°* 16,4 3,8-107° 3,5 8,1-10°6 0,4
OP 5 Part load and high head 1,2-10* 18,6 3,6-1074 33,5 4,6-1074 20,9
OP 6 Part load and low head 4,5-107° 6,8 1,2-107* 11,0 6,8-107° 3,1
OP 7 Deep part load 1,1-107* 16,8 2,4-107% 22,7 1,5-1073 66,3
Start 8,8-10°8 < 0,1 6,2-10°7 0,1 1,6-10°° 0,7
Stop 1,4-10% <«0,1 2910% <01 4310% <0,

Part load to optimum  7,3-10® <« 0,1 1,5:102 <01 80102 <«0,1
Optimum to full load 2,4-10710 <« 0,1 491001 <« 0,1 1,1-107 < 0,1

Vortex shedding effect  9,6-1077 0,1 6,5-10°7 0,1 3,2.10°7 < 0,1
Total Damage, Dt (-) 6,6-104 1,1-10°3 2,2-10°3
Years until crack initiation 453 280 136

material, i.e. free of manufacturing defects. As exemplified by BREKKE [21], Francis
runners might fail after few hours of operation in the case of critical crack growth
conditions, associated to poor manufacturing and aggressive design. To minimise
the probability of failures, the calculated expected fatigue life of new runner designs
could be compared to those of proofed existing designs. Anyway, the absolute value
of the predicted fatigue life can give an indication of the risk of crack failure during
the runner projected life.
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To investigate the sensibility of the runner fatigue life to the stress levels, three
additional scenarios were considered. Scenarios 4, 5 and 6 were based on the
intermediate Scenario 2, energy demand regulation. Scenario 4 investigates the
influence of the residual stress, o, on the fatigue damage and fatigue life. With
00/Sy, = 0,50, it simulates the effect of poor manufacturing processes on the runner
fatigue endurance. Scenarios 5 and 6 respectively considered mean and alternate
stresses 1,5 times larger than those actually actuating in the F'T 80. Both simulated
the impact of aggressive design on the fatigue damage. The higher dynamic
mechanical stresses in Scenario 6 could have been produced by low structural
strength of the runner or by elevated pressure oscillation amplitudes. Besides the
investigation of these conditions, Scenarios 4, 5 and 6 could also be interpreted as
sensibility analysis for the stress parts towards uncertainties.

The fatigue assessment results for Scenarios 4, 5 and 6 can be found in Table 8.19.
The table is analogous to the one with the results for Scenarios 1, 2 and 3.

In Scenarios 4 and 5, the residual stress and the static mechanical stress, produced
by the time-averaged pressure load, had the effect of increasing the mean stress,
om- It could be noticed that the dominance of the operating points with higher
alternate stress, o,, here part load and high head, OP 5, and deep part load, OP 7,
was increased in the total damage participation.

More important was the effect of the increased stress on the total fatigue damage
and expected fatigue life. The expected amount of years until crack initiation was
clearly reduced in all three additional scenarios. In Scenario 5, the increase of the
static mechanical stresses, induced by the time-averaged pressure load, had limited
influence on reducing the fatigue life, when compared to the other stress parts.
It showed that the higher static pressure levels on the runner blades could not
importantly reduce its fatigue endurance. The increase of the residual stress, gg, in
Scenario 4, was responsible for significantly reducing the runner fatigue life. At the
trailing edge near to the band, the expected fatigue life would have been shortened
to 30 years, which would be often lower than the desired useful life of hydraulic
turbines. There could be seen that low quality material or manufacturing processes
might negatively impact the runner fatigue endurance. Scenario 6, considered higher
dynamic mechanical stresses, o,, with the effect of importantly reducing the runner
fatigue life. At the trailing edge near to the band, the critical location, the expected
amount of years until crack initiation dropped to no more than 17 years. This
value would not be acceptable for the turbine commercial operation. Scenario 6,
could emphasise the decisive effect of high dynamic mechanical stresses, caused by
high pressure pulsations in the runner or by low-strength runner structures, on the
reduction of the runner useful life. This kind of sensibility analysis, together with
the fatigue assessment procedure, could be incorporated in the fatigue assessment
of Francis runners.

Possible critical conditions would be, for example, the combination of Scenarios 4
and 6, i.e. the occurrence of high residual stress and high dynamic mechanical stress.
This would represent, among others, the association of poor manufacturing process
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Table 8.19: Fatigue damage and fatigue life for additional scenarios.
Cumulated Damage per Year
Scenario 4 Scenario 5 Scenario 6
Trailing Edge at Crown High Residual High Mean High Alternate
Stress Stress Stress
D D/Dr D D/Dr D D/Dr
) (%) (-) (%) (-) (%)
OP 2 Rated 3,2:107° 8,0 9,3-10°6 9,1 4,1-107° 7,5
OP 3 Full load and high head 2,5-107° 6,3 8,0-10°6 7,8 3,3-107° 5,9
OP 4 Full load and low head 9,5-1076 24 2,710 2,6 1,4-107° 2,6
OP 5 Partload and high head 7,6-10°7 0,2 2,9-1077 0,3 9,3-1077 0,2
OP 6 Part load and low head 2,3-10°6 0,6 781077 0,8 2,9-10°6 0,5
OP 7 Deep part load 3,1-10 78,6 8,0-107° 77,9 4,4-1074 79,7
Start 1,1-107° 2,9 9,2.1077 0,9 1,2-107° 2,2
Stop 8,5-1077 0,2 1,1-1077 0,1 1,1-10°6 0,2
Part load to optimum  3,4-10'° <« 0,1 1,5-1012 < 0,1 1,5-10 12 < 0,1
Optimum to full load  5,7.10° «0,1 44.10? «0,1 44102 <«0,1
Vortex shedding effect  3,7-10°6 0,9 5,7-1077 0,6 6,8-10°6 1,2
Total Damage, Dr (-) 4,0-10* 1,0-107* 5,5-107%
Years until crack initiation 756 2934 544
Cumulated Damage per Year
Scenario 4 Scenario 5 Scenario 6
Trailing Edge at Band High Residual High Mean High Alternate
Stress Stress Stress
D D/Dr D D/Dr D D/Drp
) (%) (-) (%) (-) (%)
OP 2 Rated 5,1-10% 5,2 1,6-107% 10,4 6,9-104 3,9
OP 3 Full load and high head 8,4-107* 8,5 2,6-104 17,1 1,1-1073 6,4
OP 4 Full load and low head 1,6-10* 1,6 4,8-107° 3,2 2,2.104 1,2
OP 5 Part load and high head 4,6-10°3 46,5 5,1-1074 34,0 9,8-103 55,0
OP 6 Part load and low head 7,5-107* 7,6 1,5-107% 10,3 1,4-1073 7,8
OP 7 Deep part load 2,6-1073 26,1 3,7-10 24.9 4,6-1073 25,6
Start 2,7-10°6 < 0,1 2,6-10°7 < 0,1 3,0-10°6 < 0,1
Stop 23107  «0,1 4010% <01 46107 <0,1
Part load to optimum  2,4-10° <« 0,1 15102 <01 15102 <«0,1
Optimum to full load  1,5-10° <«0,1 63-10° <01 7310° <01
Vortex shedding effect  4,3-107* 4.4 9,1-10°7 0,1 1,1-107° 0,1
Total Damage, Dr (-) 9,9-10°3 1,5-1073 1,8-10°2
Years until crack initiation 30 200 17

to aggressive runner mechanical or hydraulic design. In unfavourable cases, it could
lead to rapid runner fatigue crack failures. High quality manufacturing, stress relief,
conservative design and accurate numerical design process, as proposed here, could
positively contribute to more safety for new runner designs towards useful life and
reliable operation.






Chapter 9

Conclusion

The pressure oscillations induced by the transient fluid flow through Francis turbines
are at the origin of mechanical stresses in the runner, which in extreme cases may
lead to structural failures through fatigue crack initiation and propagation, affecting
the machine reliable operation. This study could successfully propose a procedure to
numerically calculate the pressure pulsations in Francis turbines and the mechanical
stresses in the runner caused by them, offering the basis for the fatigue life prediction.
As example for the proposed methodology, a real high specific speed Francis machine,
FT 80, that has been in operation since years, was chosen together with full load,
part load and deep part load operating conditions.

The accuracy in the numerical simulation of the transient fluid flow was of main
importance for the reliable estimation of the dynamic mechanical stresses and
fatigue damage in the runner. The employed finite volume (FV) model for the
numerical calculations of the fluid flow through the Francis turbine considered the
complete machine and made use of hybrid turbulence models, as detached eddy
simulation (DES) and scale adaptive simulation (SAS). The numerical results could
be compared with available model test data and were able to offer very tight
agreement with the experimental values, concerning basic performance data and
pressure oscillation amplitude.

The numerical fluid flow investigations showed that the turbulence models were
of great importance for accurate transient simulations. The DES and SAS
turbulence models could deliver much superior numerical results than the unsteady
Reynolds-averaged Navier-Stokes (URANS) equations, when compared to the
experimental data. These more sophisticated turbulence models, DES and SAS,
were able to avoid the introduction of excessive artificial dissipation through the
turbulent viscosity in the fluid flow. In the case of draft tube instabilities (DTI),
this allowed the large vortical structures under the runner and in the draft tube
cone to properly develop in the transient simulation. As long as the dynamic fluid
flow effects were responsible for the pressure pulsations and consequently for the
dynamic mechanical stresses, the more precise numerical flow calculation with DES
and SAS could improve the accuracy of the complete process.
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In the simulations carried out here, the DES and SAS turbulence models presented
similar precision when confronted to the large eddy simulation (LES), with the
important advantage for industrial applications of being computationally more
efficient, with much shorter simulation times. The DES and SAS turbulence models
delivered results with similar accuracy between them for the investigated hydraulic
turbine. Both models require knowledge of the fluid flow problem being analysed, in
order to assure accuracy and reasonable computational costs. The application of the
DES and SAS turbulence models to the transient fluid flow computations allowed
precisely reproducing the rotor-stator interaction (RSI), draft tube instabilities
(DTI), higher part load (HPL) and runner channel vortices (RCV) for the FT 80.

The time-averaged and transient pressure fields at the runner obtained by the CFD
analysis were used as input for the finite element analysis (FEA) of the runner
structure, with the objective of determining the static and dynamic mechanical
stresses. The dynamic pressure field from the CFD analysis was stored for each
individual calculated time step and could be used as pressure load at each time
step of the finite element analysis (FEA). This offered the possibility to avoid
all kind of simplifications, regarding the dynamic pressure load produced by the
pressure pulsations, in the runner transient structural simulation. With the
pressure time history available for every location at every time step, the direct time
integration method could be employed. This brought the advantage of suppressing
all restrictions in the dynamic behaviour of the runner structure.

The availability of accurate CFD data for every time step could improve the
precision in the prediction of the dynamic mechanical stresses. The runner finite
element analysis (FEA) with reliable pressure load input could deliver absolutely
new knowledge about the influence of dynamic fluid flow phenomena, as rotor-stator
interaction (RSI), draft tube instabilities (DTI), higher part load (HPL) and runner
channel vortex (RCV), on its structural response and dynamic mechanical stresses.
This allowed the gain of dynamic mechanical information about the F'T 80 runner
at full load, part load and deep part load operating conditions.

The precise transient structural evaluation of the runner produced more accurate
data for the fatigue analysis. The static and dynamic mechanical stresses from
the finite element (FE) computations were used as data for the fatigue assessment.
The fatigue analysis counts with inherent uncertainties, due to its statistical nature,
material models and scattering of material properties. The procedure carried out
here could reduce the uncertainties regarding the mean and alternate stresses. Still,
other types of incertitude remained, as the residual stress level in the runner and
the real operation history of the hydraulic turbine when in commercial operation.
Parameter sensibility analysis and the consideration of different turbine operation
scenarios could reduce the importance of these shortcomings.

The fatigue analysis showed that especially high residual and alternate stress levels
could significantly reduce the runner fatigue endurance. High residual stresses might
be the consequence of poor manufacturing processes, while high alternate stresses
might have their origin at high pressure oscillation amplitudes and low-strength
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runner structure, as result of much too aggressive design. The combination of these
critical conditions could explain part of the fatigue crack failures reported in Francis
turbines. High quality manufacturing processes and material, sensible hydraulic and
mechanical design as well as accurate analysis procedures, as presented here, can
increase the operational safety of Francis turbine runners.

Further Developments

The developments achieved here in the transient simulation of the fluid flow through
Francis hydraulic turbines can serve as base for additional advances in the numerical
study of dynamic phenomena in hydraulic turbines. The procedure presented here
for the FT 80 at full load, part load and deep part load could be repeated for
any other Francis machine and operating point. Especially interesting would be
the simulation of extreme operating conditions as speed-no-load (SNL). With the
increment of computational power, this methodology could be incorporated in the
future into the industrial analysis and design of Francis turbines. The application
range of this method in the numerical prediction of transient fluid flow effects could
be extended to other reaction-type hydraulic machines as pumps and pump-turbines.
In the case of pumps and pump-turbines, this procedure could increase the accuracy
in the prediction of pump and S-shape instabilities.

The application range of the method proposed here could be extended and its
accuracy even further improved with the introduction of cavitation models. This
could increase the precision in the simulation of operating points with significant
cavitating regions in the fluid flow, as for example in off-design operating conditions
as e.g. speed-no-load. The introduction of cavitation models would be necessary
for the computational simulation of overload operating conditions, where full load
instability takes place, arising from the pulsating cavitating vortex torch.

The numerical flow calculation of transient operating conditions, as start and stop
procedures, load rejection and load change, could be carried out with the usage of
moving meshes for the fluid volume mesh around the guide vanes.

New possibilities in the operation of Francis turbines, more precisely the active flow
control, could be numerically tested, employing the procedure used here, before
the application in the prototype. The study of the active flow control in Francis
machines was already initiated by WUNDERER AND SCHILLING [171] and MAGNOLI
AND SCHILLING [91, 90] and could be the base for new developments.

Concerning the numerical structural calculations, the accuracy in the prediction of
the runner dynamic mechanical stresses could be further improved with the adoption
of the two-way coupled fluid-structure interaction (FSI) for the turbine runner. The
method discussed here for the determination of the dynamic loads caused by the
fluid flow and their application in the fatigue assessment could be extended to other
hydraulic turbine components subjected to transient fluid flow phenomena.
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