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Abstract—This report describes a flexible, object-
oriented software framework for modelling linear inverse
problems, including solvers for analytic and least-squares
solutions with optional regularization. Real-world linear
problems can be composed at runtime, making the library
suitable for a broad variety of applications. We demon-
strate this flexibility with examples from X-ray Computed
Tomography for linear attenuation and differential phase
contrast.

I. INTRODUCTION AND OVERVIEW

THE reconstruction of physical quantities from
measured signals is typically stated as an in-

verse problem. For the purpose of this work, we
assume a linear measurement model, i.e. a linear
relation between the physical quantities and the
measured values. Application examples include dif-
ferent variants of tomographic reconstruction [1],
image denoising [2][3], deconvolution and super-
resolution[4].

Mathematically, we are interested in problems of
the type

A(x) = y, A linear operator (1)

where the linear relation A and the right-hand side
y are known, and we seek to solve for x. For this
work, we focus on large-scale problems where a
discrete representation of A will exceed the memory
of present-day computers by far. On top of that, the
inverse problem is assumed to be ill-posed, therefore
not directly (or only poorly) solvable in the presence
of noise.

In the following, we will introduce the mathe-
matical notations before describing the major com-
ponents of our software framework. We will then
demonstrate the application of the framework in a
case-study using X-ray CT with attenuation contrast
and differential phase contrast.

II. MATHEMATICAL NOTATIONS

Formalizing equation (1), we define a linear prob-
lem as follows:

Definition II.1 (Linear Problem). Let X , Y denote
two Hilbert spaces, and A ∈ L(X, Y ) a linear
operator. Further, we assume y ∈ im (Y ) to be
known such that ∃x ∈ X:

A(x) = y. (2)

The inverse problem to (2) consists of finding a x ∈
X , such that A(x) = y holds.

Note that if A is invertible, the solution to this
inverse problem is uniquely given by x = A−1(y).

The linear problem is completely defined by
y ∈ Y and A ∈ L(X, Y ). Furthermore, X , Y
may be function spaces (such as Lp), for example
when modeling an image or signal as a function
f : Ω→ R, where Ω denotes some coordinate set.

Informally, y contains measurements or observa-
tions, and A is a linear model of how the (unknown)
signal x causes the observations. In practice, the
measurements will be corrupted by noise, denoted
by ξ ∈ Y , and instead of y, we only know y + ξ.

To represent the linear problem on computers, we
use the following conventions:

Definition II.2 (Discretization). Let f : X → Y
denote a function between two Hilbert spaces X, Y ,
and {bi}i∈I a finite set of basis functions bi : X → Y
such that f can be written as their linear combina-
tion:

f =
∑
i∈I

xibi (3)

The coefficient vector x = {xi}i∈I is called the
discretization of f .

Please note that in real-world scenarios discretiza-
tion most likely will introduce discretization errors.
For simplicity, we will neglect these errors noting
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that in practice equality will be replaced by approx-
imated equality.

Lemma II.3. Let W,X, Y, Z be Hilbert spaces with
functions f ∈ XY and g ∈ WZ , and an operator
A ∈ L(XY ,WZ) such that A(f) = g.

Further, let x denote a discretization of f with
respect to {bi}i∈I , bi ∈ XY , and y a discretization
of g with respect to {cj}j∈J , cj ∈ WZ . Then, A can
be approximated by a finite-dimensional matrix A
as follows:∑

j∈J

yjcj = g = A(f)

=
∑
i∈I

xiA(bi)︸ ︷︷ ︸
∈WZ

=
∑
i∈I

xi
∑
j∈J

ai,jcj

=
∑
j∈J

(∑
i∈I

ai,jxi

)
cj

This leads to y = Ax, where the columns a·,j
of matrix A equal the discretization of A(bi) with
respect to {cj}j∈J .

In words, the matrix A approximates the linear
operator A using discretization within its range as
well as its domain.

Again please note, that in practice these dis-
cretizations most probably cause errors. In order
to cope with that, we instead aim at minimizing
minx ‖Ax−y‖ using some norm, instead of solving
the equation directly.

As an illustration of this mathematical formula-
tion, we show two concrete examples in the set-
ting of two-dimensional X-ray CT, one for atten-
uation contrast, one for differential phase contrast.
Other tomographic imaging modalities such as PET,
SPECT or optical tomography, can be represented in
a similar manner.

A. X-ray attenuation CT

The goal of X-ray attenuation CT is the re-
construction of the linear attenuation coefficient
f : R2 → R of an unknown object from X-ray
projection data. The acquisition process is modeled
by the Radon transform

Rf(θ, s) :=

∫
L(θ,s)

f(x) dx (4)

R

R�1

Fig. 1: Computed tomography – a linear problem
using the Radon transform R.

where L(θ, s) = {x ∈ R2 : x1 cos θ + x2 sin θ =
s} denotes the line with normal (cos θ, sin θ)T and
(signed) distance s ∈ R from the origin.

Using lemma II.3, the discretized version (also
called series expansion) reads as follows: Given a fi-
nite set of measurements (ym)Mm=1 (assumed to form
a discretization of Rf ), the unknown function f is
expanded with respect to a given basis (ψn)Nn=1 via
f =

∑N
n=1 xnψn. Then, the discretization (xn)Nn=1 is

determined from the measurements,

ym = Rf(θm, sm) =
N∑
n=1

xnRψn(θm, sm) (5)

This yields the linear problem Rx = y, see Fig. 1.

B. Differential phase contrast CT

X-ray differential phase contrast imaging (DPCI)
can be modeled similar to X-ray attenuation imaging
[5], [6], [7], but measuring a differential signal of
the phase shift instead of attenuation values. An
appropriate mathematical model is:

Pf(θ, s) :=
∂

∂s

∫
L(θ,s)

f(x) dx (6)

Again, this can be turned into a linear problem using
series expansion, and we write Px = y. Due to
the structure of P we can decompose this operator
into a differential operator and the Radon operator:
P = D ∗R.

III. SOFTWARE FRAMEWORK

For solving linear inverse problems, we designed
an object-oriented software framework, consisting of
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DataContainer 
y

LinearOperator 
A

LinearProblem 
Ax=y

Solver

DataContainer 
x

Fig. 2: Flow chart – Solve linear problem

the components depicted in Fig. 2. In more detail,
the components are:
• A DataContainer handling discrete repre-

sentations of signals (functions) as serialized
data. Meta data describing the discretization
and the nature of the serialized data is held
within a DataDescriptor. Furthermore, a dic-
tionary transform may be attached to repre-
sent data in different bases / frames [8], for
instance the Fourier basis or Wavelet, Curvelet
frames.

• A hierarchy of LinearOperator classes pro-
viding a generalized representation of the
corresponding mathematical counterpart. In
particular, we offer means to concatenate such
operators using text expressions and operator
composites.

• Class LinearProblem combines such a (po-
tentially composite) linear operator A with
measurements y.

• A set of Solver classes to implement algo-
rithms to compute or approximate solutions
for such linear problems. We provide ana-
lytical as well as iterative solvers, with or
without regularization (in particular `1-based
penalties).

As the variety of problems we are able to tackle
depends on the implementation of the according

LinearOperator, we will focus on this part of our
framework. The LinearOperator class provides an
abstract definition of elements of L(X, Y ) as de-
scribed in lemma II.3. While we support explicit ma-
trix representation, our main objective are operators
for which the explicit formulation exceeds system
memory. For this purpose we define linear operators
abstractly, requiring implementations to provide two
methods:
• apply(x), computing A(x)
• applyAdjoint(x), computing A∗(x) (A>x in

case of a real-valued operator)
This leaves vital optimizations such as closed form
index calculations (for differential operators) or
GPU ray-casting (for Radon operators) to special-
ized implementations.

At the time of writing, we support a number of
such concretizations:

A. Basis and frame transformations

Apart from the pixel basis, representing data in
a different frame [8] may be preferable to exploit
properties such as sparsity of Wavelet coefficients,
or compact support in Fourier space. We currently
support two transforms, Fast Fourier Transform
(FFT) and Curvelet transform [9], [10]. Further
transforms such as Wavelets[11], spherically sym-
metric basis functions (‘blobs’) [12], etc. can be
added as needed.

B. Fourier convolution

Following the convolution theorem for two in-
tegrable functions f , g, we provide a discretized
convolution operator for a given convolution filter
g using the FFT operator as follows:

Cg(f) = g ∗ f = F−1{F{g} · F{f}} (7)

C. Radon operator

For the purpose of X-ray computed tomography,
we support several implementations of the Radon
operator as described previously. These include
CPU-based and highly optimized GPU projectors
for the pixel basis, but also a closed-form projector
for the Curvelet frame [13].

For other imaging modalities, suitable operators
can be implemented in a similar manner.
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D. Differential operator

As approximation to the differential operator,
we provide finite differences (forward, central and
backward) for the pixel basis.

E. LinearOperatorComposite

Based on linear operator arithmetic we imple-
mented the LinearOperatorComposite class to
support recursive concatenation of linear operators.
In order to simplify its use, the concatenation is
constructed using a textual representation, support-
ing the binary operators +, -, *, and the unary
operator ˆT. Note that these operators are evaluated
dynamically at run-time.

Using this modular principle, we enable formula-
tion of a broad variety of linear inverse problems.

IV. CASE-STUDIES

Returning to our case-study of X-ray computed
tomography, we use the Shepp-Logan phantom [14]
to generate virtual measurements for both attenua-
tion and phase-contrast, by applying the respective
forward models (4) and (6). As examples, we will
study three linear solvers – one analytic and two
iterative approaches – that are easily implemented
with just a few statements using our framework.

To reconstruct other imaging modalities, one sim-
ply needs to provide an implementation of an appro-
priate forward model in form of a linear operator.

A. Filtered Back-Projection

Filtered Back-Projection (FBP) constitutes an an-
alytic solver to the Radon-problem (4). Let R ∈
L(L1,L1) denote the Radon operator, and C ∈
L(L1,L1) the convolution operator as described in
section III-B. Then,

x = (R> ◦ C)(y) (8)

is the inversion of the Radon problem [1].
In our framework, this solver can be expressed

using the LinearOperatorComposite as illustrated
in Fig. 3, showing the logical flow chart as well as a
reconstruction result for the Shepp-Logan phantom.

LinearOperator 
Radon R

LinearProblem 
Rx=y

FBP

DataContainer 
y

DataContainer 
x

LinearOperator 
Convolution C

Fig. 3: Flow chart for FBP reconstruction

LinearOperator 
Radon R

LinearProblem 
Rx=y

ADMM+L1

DataContainer 
y

DataContainer 
x

LinearOperator 
Finite Diff. D

Fig. 4: Flow chart for CT reconstruction using TV-
penalty

B. Alternating Direction Method of Multipliers for
`1-regularized linear regression

Furthermore, we support the Alternating Direc-
tion Method of Multipliers (ADMM) for the special
case of `1-regularized linear regression as described
in [15]. Assuming a linear operator T ∈ L(X, Y )
such that T (x) is sparse, solving the `1-regularized
problem

arg min
x

1

2
‖R(x)− y‖22 + λ‖T (x)‖1 (9)

yields a suitable reconstruction [16]. Examples for
such T are the differential operator (leading to to-
tal variation regularization) or wavelet/frame trans-
forms (providing special sparsity properties). Fig. 4
reproduces the flow chart and the result of a TV-
regularized ADMM reconstruction for CT.
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LinearOperator 
Radon R

LinearProblem 
(D*R)x=y

Linear CG

DataContainer 
y

DataContainer 
x

LinearOperator 
Finite Diff. D

Fig. 5: Flow chart for DPCI CT

C. Linear Conjugate Gradient
The Conjugate Gradient (CG) method [17] is a

well-known iterative solver for linear inverse prob-
lems. In its standard configuration, the operator is
required to be symmetric and positive definite. Our
framework keeps track of whether this is the case
for a given setup, and if not, falls back to solving
the least squares problem via the normal equation.
In case of the DPCI CT, we solve

arg min
x

1

2
‖P(x)− y‖22 (10)

via the normal normal equation

P>P(x) = P>y. (11)

Using the LinearOperatorComposite, we model
the linear operator for DPCI using a differential and
a radon operator and solve it using linear CG, as
shown in Fig. 5.

V. CONCLUSION

In this work we present a flexible, object-oriented
software framework mapping the properties of lin-
ear operators and linear problems into software,
and providing solvers to compute solutions to the
resulting inverse problems. Focusing on ill-posed,
large-scale inverse problems and composition of
operators, this framework is widely applicable and
can be extended to a broad variety of applications,
such as the various tomographic imaging modalities.
As an example, we presented applications to X-
ray CT imaging of attenuation contrast and phase
contrast.
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