
1 INTRODUCTION  

Wildfires are a natural hazard with potentially severe 
economic, social and ecologic consequences. This 
motivates investigations into the factors influencing 
wildfire behavior and their utilization for prediction 
purposes. In this paper, we summarize the 
development of a Bayesian network (BN) model for 
predicting wildfire behavior. 

Many authors have described the development of 
probabilistic prediction of wildfire occurrence and 
behavior using regression models; e.g. in (Brillinger 
et al., 2003), a generalized additive model is 
proposed for fitting wildfire occurrence data. BN 
models for predicting the number of wildfire 
occurrences were proposed by (Dlamini, 2010, 
Papakosta and Straub, 2011). In these two papers, 
the conditional probability tables (CPTs) of the BN 
are learned from data, while the structure of the BN 
is introduced by the authors based on process 
understanding.  

Learning of the BN structure as well as its 
parameters has been previously applied in the fields 
of natural hazards and environmental modeling. For 
example, (Kuehn et al., 2011) develop a BN to 
model the joint probability distribution of 
earthquake parameters Similarly (Mesbah et al., 
2009) develop a BN for modeling water quality in a 
river. (Alameddine et al., 2011) investigate different 
constraint-based structure-learning algorithms to 
establish a BN that predicts chlorophyll levels. They 

also consider the sensitivity of these algorithms to 
the scheme for discretizing random variables. A 
comparison between BNs with automatically learned 
structure to a BN constructed from expert 
knowledge is carried out by (Ordóñez Galán et al., 
2009) for an application in reforestation planning. 

Our focus is on the prediction of wildfire 
spreading using BNs. For prediction purposes, a 
number of observable variables (indicators) are 
available, which are indirectly related to wildfire 
spreading. Among the available indicators it is not 
obvious, which of them are most informative for 
describing the conditions for wildfire spreading, and 
which are not informative or redundant. In this 
paper, structure-learning algorithms are applied to 
identify the relevant indicators. A final BN model is 
then developed combining the identified indicators 
with understanding of the process, and is compared 
to a Naïve Bayesian Classifier (NBC) model.  

The approach is applied to a study area on 
Cyprus, for which data from 611 wildfires were 
available. 

2 METHODOLOGY  

2.1 Bayesian networks 
Only a brief summary of Bayesian networks (BNs) 
is provided. For further information, the reader is 
referred to introductory textbooks such as (Jensen 
and Nielsen, 2007). 

Learning a Bayesian network model for predicting wildfire behavior 

K. Zwirglmaier, P. Papakosta, D. Straub 
Engineering Risk Analysis Group, Technische Universität München, Germany 

ABSTRACT: A Bayesian network (BN) model for predicting wildfire spreading was developed. From the 
available indicator variables related to weather, topography and land cover, the most informative were 
selected with the help of automatic structure learning algorithms. A final BN model was then constructed 
from these indicators using phenomenological reasoning. Automatic structure learning of the complete model 
was found to have severe limitations due to large number of variables in combination with limited number of 
observations. The BN model was learned and validated with data from the Mediterranean island of Cyprus. 
The final BN was compared to a Naïve Bayesian Classifier (NBC), which serves as a benchmark, and it was 
shown to be applicable for prediction purposes.  



A BN is a graphical representation of a joint 
probability distribution 𝐹𝐹(𝐗𝐗) of a set of random 
variables  𝐗𝐗. Each variable 𝑋𝑋𝑖𝑖 in 𝐗𝐗 is represented by 
a node. The nodes in a BN are connected by directed 
links, which represent the statistical dependence 
structure among variables. The directions of the 
links do not necessarily have to represent causality. 
However, a network is easier to interpret if they do. 
The resulting graph must be acyclic, i.e. there must 
not be any directed path 𝑋𝑋𝑖𝑖 → · · · → 𝑋𝑋𝑖𝑖 for any 𝑋𝑋𝑖𝑖 
in  𝐗𝐗. In Figure 1 an example of a directed acyclic 
graph (DAG) representing the BN structure is 
shown.  

 
Figure 1 Example of a directed acyclic graph (DAG) 
representing the BN structure. 

To each of the nodes 𝑋𝑋𝑖𝑖 a conditional probability 
table (CPT) is attached. This CPT is the distribution 
of the random variable 𝑋𝑋𝑖𝑖, conditional on its parents. 
The CPTs of all 𝑋𝑋!s together with the DAG 
completely define the joint probability distribution 
of  𝐗𝐗. 

The DAG of a BN reveals which variables are 
statistically dependent for given evidence. If e.g. two 
variables are dependent, additional evidence that is 
obtained for one of them will alter the distribution of 
the other variable. Variables that are dependent are 
said to be d-connected; if they are independent they 
are said to be d-separated (Pearl, 1988). The d-
separation properties of the BN are directly related 
to the Markov blanket of a node. The Markov 
blanket of a variable 𝐴𝐴 consists of the parents and 
the children of  𝐴𝐴 and all other parents of   𝐴𝐴′𝑠𝑠 
children. If all the variables in the Markov blanket of 
a node  𝐴𝐴 are known, 𝐴𝐴 is d-separated (and thus 
independent) of all remaining variables in the BN.  

2.2 Structure learning 
A DAG for a BN is often constructed from expert 
knowledge. If one knows how the variables 
influence each other, a graph representing these 
causal relations can be developed. For applications 

where such knowledge is unavailable, observations 
can be used to automatically learn the structure. Two 
different approaches for learning a BN structure 
exist: 

• In the score-based approach, a number of 
candidate graphs are generated and the one 
that is best according to some score (like the 
Bayesian information criterion BIC or the 
Akaike information criterion AIC) is chosen.  

• The constraint-based approach derives a set 
of conditional and unconditional 
independence properties from the data. Then 
a DAG is constructed, which represents these 
independence properties as accurately as 
possible.  

In this paper, constraint-based algorithms are used to 
learn parts of the BN, in order to identify relevant 
indicators. The structure of the eventual BN model is 
constructed from understanding of the process. 
Finally a score-based approach is applied to compare 
this BN to a reference NBC model. 

In the following, two of the most important 
constraint-based algorithms, the PC algorithm 
(Spirtes et al., 2001) and the NPC algorithm (Steck 
and Tresp, 1999, Steck, 2001) are explained and 
compared by an example.  

Both constraint-based algorithms take two steps 
in order to come up with a DAG for a BN. In a first 
step, an undirected graph is derived. The links of this 
undirected graph coincide with those of the eventual 
DAG, however they are not oriented. In a second 
step, these links are oriented.  

Both algorithms perform independence tests on a 
dataset, i.e. for each pair of variables they search for 
a set of nodes, such that these two variables are 
conditionally (on this set of nodes) independent 
according to the data. For example, 𝐼𝐼(𝐴𝐴, 𝐵𝐵|𝐒𝐒) means 
that the variables 𝐴𝐴 and 𝐵𝐵 are found to be 
conditionally independent if all variables in 𝐒𝐒 are 
known. They are not independent if only a subset of 
𝐒𝐒 is known. If two variables are unconditionally 
independent, S is the empty set. For further 
information on independence tests we refer to 
(Spirtes et al., 2001). The aim of both the PC and the 
NPC algorithm is now to find a DAG, which 
represents the independence properties of an 
underlying distribution as suggested by the data.  

For illustration purposes, we consider the 
following example with four variables  𝐴𝐴,  𝐵𝐵, 𝐶𝐶 and 
𝐷𝐷. From the available data, it is found that A and D 
are independent, i.e. 𝐼𝐼(𝐴𝐴, 𝐷𝐷). Furthermore, the 
following conditional independence properties were 
identified:   𝐼𝐼(𝐴𝐴, 𝐵𝐵|𝐶𝐶),  𝐼𝐼(𝐵𝐵, 𝐶𝐶|𝐴𝐴) and  𝐼𝐼(𝐵𝐵, 𝐷𝐷|𝐶𝐶). For 
all the other pairs of nodes, no sets of nodes are 
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found, such that they are conditionally independent. 
Note that the tests are performed so that the 
conditioning set 𝐒𝐒 is minimal, i.e. the pairs with 
identified independence properties are not 
independent given any real subset of 𝐒𝐒. As an 
example, 𝐴𝐴 and 𝐵𝐵 are not independent if 𝐶𝐶 is not 
known.  

When two variables are found to be conditionally 
or unconditionally independent, it is desired that 
their corresponding nodes are d-separated 
respectably in the DAG. For two nodes to be d-
separated in a graph, they must not be connected 
through a direct link. For this reason, the PC 
algorithm ensures that no links exist between any 
pairs of variables that were found to be independent, 
either conditionally or unconditionally. Starting 
from a complete undirected graph, all links between 
variables with identified independence properties are 
deleted. In our example, the links  [𝐴𝐴, 𝐷𝐷],  [𝐴𝐴, 𝐵𝐵], 
[𝐵𝐵, 𝐶𝐶] and [𝐵𝐵, 𝐷𝐷] are deleted and the resulting 
undirected graph is as shown in Figure 2. According 
to this solution, B would be d-separated from all 
other nodes under all circumstances, implying that B 
is unconditionally independent of all other variables. 
Clearly, this is in contradiction to the identified 
independence properties, which state that 𝐵𝐵 is only 
conditionally independent of 𝐴𝐴, 𝐶𝐶 and 𝐷𝐷. 

 

 
Figure 2 Undirected graph obtained from the PC 
algorithm. 

The PC algorithm will lead to the correct, undirected 
graph, if the distribution can be represented in a 
DAG and if all the derived independence properties 
are actual properties of the underlying distribution 
and not due to some random noise (Steck, 2001). 
However, in many applications, where only a limited 
number of observations are available, the identified 
independence properties are influenced by random 
noise. In the considered example, the PC algorithm 
leads to inconsistencies, as discussed above. It is not 
possible to say whether this is because of random 
noise or because the true distribution cannot be 
represented by a graphical model.  

The NPC (necessary path condition) algorithm 
tries to overcome the problem of random noise by 
checking the derived independence properties for 

consistency. Roughly speaking, the necessary path 
condition states, that a node 𝐶𝐶 can only cause two 
nodes 𝐴𝐴 and 𝐵𝐵 to be d-separated, if there is a path 
from 𝐴𝐴 to 𝐶𝐶 not crossing 𝐵𝐵 and a path from 𝐵𝐵 to 𝐶𝐶 
not crossing 𝐴𝐴. 

Instead of directly removing the links between 
pairs of nodes that were found to be independent, the 
NPC establishes a condition for each of those links. 
These conditions state that in order to remove a link 
between two conditionally independent nodes, there 
must be a link between each of them, and all the 
nodes that they were found to be conditionally 
independent on. This corresponds to the shortest 
possible necessary path.  

For our example, these conditions are condition I 
to IV in Table 1. Exemplarily, condition II states that 
the link [𝐴𝐴, 𝐵𝐵] can be removed if there are links 
between 𝐴𝐴 and 𝐶𝐶 as well as between 𝐵𝐵 and 𝐶𝐶.  

Looking at Table 1, we find that there are links 
that appear in the third as well as in the fourth 
column. On the one hand, these links are to be 
removed, as they link two nodes that were found to 
be independent; on the other hand, these links are 
needed to fulfill a necessary path condition. If this is 
the case for a pair of links, the NPC algorithm tries 
to come up with a new necessary path. For example, 
condition IV states that the link [𝐵𝐵, 𝐷𝐷]  can be 
removed as long as the links [𝐵𝐵, 𝐶𝐶] and [𝐷𝐷, 𝐶𝐶] exist. 
However, the link [𝐵𝐵, 𝐶𝐶] is to be removed according 
to condition III. In this case, condition IV can be 
reformulated to condition IV’ by inserting III into it. 
If now either condition IV or condition IV’ can be 
fulfilled in a graph, the link [𝐵𝐵, 𝐷𝐷] can be removed. 
For condition II and III it is not possible to identify a 
new necessary path, because the link [𝐵𝐵, 𝐶𝐶] is 
required by condition II and [𝐴𝐴, 𝐵𝐵] is required by 
condition III. For this reason, either the property 
𝐼𝐼(𝐴𝐴, 𝐵𝐵|𝐶𝐶) or 𝐼𝐼(𝐵𝐵, 𝐶𝐶|𝐴𝐴) can not be represented in the 
final DAG. Therefore, [𝐴𝐴, 𝐵𝐵] and [𝐵𝐵, 𝐶𝐶] are referred 
to as inconsistent links.  

Table 1 Conditions for removing links between 
independent variables, which were established by the 
NPC algorithm. 

Conditio
n 

Property If (remove) Then (keep) 

I 𝐼𝐼(𝐴𝐴, 𝐷𝐷) [𝐴𝐴, 𝐷𝐷] - 
II 𝐼𝐼(𝐴𝐴, 𝐵𝐵|𝐶𝐶) [𝐴𝐴, 𝐵𝐵] 𝐴𝐴, 𝐶𝐶 , [𝐵𝐵, 𝐶𝐶] 
III 𝐼𝐼(𝐵𝐵, 𝐶𝐶|𝐴𝐴) [𝐵𝐵, 𝐶𝐶] 𝐵𝐵, 𝐴𝐴 , [𝐶𝐶, 𝐴𝐴] 
IV 𝐼𝐼(𝐵𝐵, 𝐷𝐷|𝐶𝐶) [𝐵𝐵, 𝐷𝐷] 𝐵𝐵, 𝐶𝐶 , [𝐷𝐷, 𝐶𝐶] 
IV’ 𝐼𝐼(𝐵𝐵, 𝐷𝐷|𝐶𝐶) [𝐵𝐵, 𝐷𝐷] 𝐵𝐵, 𝐴𝐴 , [𝐶𝐶, 𝐴𝐴], [𝐷𝐷, 𝐶𝐶] 

 
In the left graph of Figure 3, the inconsistent links 
are shown with dashed lines. The links, which do not 
correspond to inconsistencies, coincide with the 
links of the graph found by the PC algorithm in 
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Figure 2. However, in order to only violate a 
minimal number of the identified properties, one of 
the inconsistent links also needs to be present. On 
the right-hand side of Figure 3, the two possible 
graphs are presented.  

The approaches used to orient the links in the 
undirected graph are different for the two 
algorithms. However, in both cases converging 
connections are oriented first, as it was shown in 
(Verma and Pearl, 1991) that two DAGs are 
equivalent, if they have identical links (independent 
of direction) and the link directions in all converging 
connections coincide. After that the remaining edges 
are oriented in a way that no further converging 
connections and no directed cyclic paths are created.  
 

 
Figure 3 Undirected graphs learned from the same data 
as the graph in Figure 2, but with the NPC algorithm. 
The links [A,B] and [B,C] are not consistent (left), 
therefore there are two possible solutions (right). 

In many real world applications, the number of 
variables to consider is large, but there are only a 
limited number of observations from which the 
structure can be learned. In these cases, structure 
learning becomes difficult because of the 
inconsistencies. However, even if it is not desired to 
learn the complete structure from data, we suggest 
that structural learning algorithms can still be useful 
when it comes to identifying relevant indicator 
variables.  

For the sake of illustration, assume that the 
variable 𝐷𝐷 is the target variable in the structure of 
Figure 3 learned with the NPC algorithm. We 
therefore are interested in identifying indicators that 
influence 𝐷𝐷, which are the variables in 𝐷𝐷’𝑠𝑠 Markov 
blanket. Regardless of the direction of the link 
[𝐷𝐷, 𝐶𝐶], 𝐶𝐶 is part of 𝐷𝐷’s Markov blanket. 
Furthermore, A is part of it, if the links [𝐷𝐷, 𝐶𝐶] and 
[𝐴𝐴, 𝐶𝐶] are oriented such that 𝐶𝐶 is a   common child 
of 𝐷𝐷 and 𝐴𝐴. In order to find out if 𝐵𝐵 is relevant, we 
have to consider multiple possible versions of the 
graph. If 𝐵𝐵 is in none of the possible directed graphs 
in the Markov blanket of 𝐷𝐷, we can consider it to be 

not relevant. In the current example, we would 
consider 𝐵𝐵 to be relevant only if 𝐶𝐶 was a common 
child of 𝐵𝐵 and 𝐷𝐷. 

2.3 Discretization of continuous random variables 
In BNs, usually discrete random variables are used, 
as the possibilities to perform inference with 
continuous random variables in BNs are still limited. 
Observations from the real world are often 
continuous in their nature. Therefore, continuous 
random variables need to be discretized in advance. 
A good discretization should ensure that as little 
information as possible is lost while having a 
reasonably small number of intervals (Kotsiantis and 
Kanellopoulos, 2006).  
A number of algorithms for discretizing continuous 
variables exist. For a review on different 
discretization techniques, the reader is referred to 
(Kotsiantis and Kanellopoulos, 2006). In many 
approaches, the indicator variables are discretized in 
a way that their interdependence to an already 
discretized target variable (i.e. the variable, which is 
to be predicted) is maximized according to some 
measure of interdependence. In this paper, we apply 
the class-attribute interdependence maximization 
(CAIM) measure (Kurgan and Cios, 2004). These 
approaches are however only capable of maximizing 
the interdependency between an indicator variable 
and the target variable. They do not consider that 
some indicator variables may develop a significant 
interdependency to the target variable only if they 
are considered together. Techniques, which do 
consider this also, are referred to as “dynamic 
discretization” (Kotsiantis and Kanellopoulos, 
2006).   

3 LEARNING A WILDFIRE BEHAVIOR 
PREDICTION MODEL 

As a case study, a BN to predict fire behavior in the 
Republic of Cyprus is learned. Cyprus is located in 
the Mediterranean region, which is prone to 
wildfires, mainly due to its climate that is 
characterized by long, hot and dry summers and 
mild, wet winters (Pyne, 2009). Further details on 
the case study area are provided in (Papakosta and 
Straub, 2013). 

In the scope of this work the term wildfire refers 
to all types of wild-land fires. Furthermore wildfire 
behavior is described through the burnt area. Other 
characteristics, such as spread rate, energy release or 
fuel consumption, are not included here. The main 
factors governing wildfire behavior are the types and 
amount of organic fuels and their moisture as well as 
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wind and topography (Dupuy, 2009). A BN for 
predicting wildfire behavior should therefore contain 
indicators, which accurately describe these main 
influencing factors. In the current case study, the 
most important, available data for this purpose is: 

Fire Data: Between 2006 and 2010, 611 wildfire 
occurrences were recorded in the study area. This 
fire data includes information on date location and 
the size of the burnt area. 

Weather data: Daily noon values of dry-bulb 
temperature, relative humidity, wind speed, wind 
direction, as well as accumulated precipitation of the 
last 24 hours are observed at five weather stations 
(Papakosta and Straub, 2013). 

Fire behavior indices: As part of the Canadian 
Fire Weather Index System (CFWIS) (Lawson and 
Armitage, 2008), a number of indices are calculated, 
mainly from weather data, in order to rate fire risk. 
The fine fuel moisture code index (FFMC), the 
initial spread index (ISI) and the buildup index 
(BUI) are used here. The FFMC describes the 
moisture content of the litter and cured fine fuels. 
The ISI is intended to describe the initial rate of fire 
spreading. In its calculation, the FFMC and the wind 
speed are used. The BUI represents the amount of 
material available for combustion as fuel. 

Land cover: Descriptions of the land use type 
with three different levels of detailing are available. 
They follow the methodology of the Coordination of 
information on the environment (CORINE) Land 
cover program (Perdigão et al., 1997).  

Topographic data: From a Digital Elevation 
Model (DEM), slope and aspect are derived for each 
location, using GIS software. 

Based on the above listed available indicators, the 
relevant factors for fire behavior are to be described, 
i.e. amount, type and moisture of fuels as well as 
topography and wind.  

Wind and topography are characterized by the 
directly observable variables wind speed, wind 
direction, slope and aspect. The relative direction of 
the wind to the slope, which is an important 
parameter for fire spreading, is included as the 
difference between aspect and wind direction.  

Type and amount of fuel are considered to be 
described by the indicator land cover. With the 
available indicators, the influencing factor most 
difficult to represent may be fuel moisture. Although 
fuel moisture is a major part of the indices from the 
CFWIS, it was found in (Papakosta and Straub, 
2011) that the fine fuel moisture code, FFMC, may 
not suit the Mediterranean climate well for 
predicting wildfire occurrence, and it may thus also 
not be ideal for predicting wildfire behavior. 
Therefore, in addition to the CFWIS indices, direct 

weather observations are included in the set of 
potential indicator variables. These include 
precipitation, temperature and relative humidity, 
either on the day of the fire occurrence or 
mean/cumulative quantities for a number of days 
prior to the occurrence. 

In order to select the variables that are most 
informative and not redundant, a structure with 
cumulative/mean variables (for 1, 3, 7, 14 and 21 
days before the fire occurrence) together with the 
variables for the quantities on the day of the 
occurrence, the CFWIS indices and the target 
variable, is learned. As mentioned in section 2.2, 
structure learning has limitations when many 
variables are present. To limit the number of 
variables, DAG structures are learned separately for 
variables describing temperature, relative humidity 
and precipitation, respectively.  

As an example, Figure 4 shows a structure 
consisting of potential indicator variables related to 
precipitation. Even in this smaller structure, the NPC 
algorithm finds inconsistent links, which are shown 
as dashed lines. To further reduce inconsistencies, 
the black directed links were introduced as prior 
constraints. In the graph of Figure 4 there are two 
different types of inconsistent links (shown with 
different line styles). Inconsistent links of the same 
type influence each other. As an example, the 
presence or the orientation of the link [Burnt Area, 
Cum. Prec. 21d] will influence either the presence or 
the orientation of the link [Burnt Area, BUI]. It will 
not influence the other inconsistent links, as they 
belong to a different group (shown in a different line 
style). These groups are known as ambiguous 
regions in the literature (Steck, 2001). 
Depending on the orientation of the uncertain links 
attached to the target variable, the Markov blanket of 
the target variable can consist of either the FFMC, 
the BUI and the cumulative precipitation of the 
previous 21 days, or of these three nodes together 
with the parents of the latter two. Using BN software 
one can resolve the structure, such that one obtains 
the different possible versions of the DAG. For the 
graph in Figure 4, both inconsistent links attached to 
the target variable, were found to be oriented 
towards it in every version of the DAG. Therefore, it 
is concluded that the connection is converging and 
that the FFMC, the BUI and the cumulative 
precipitation from the previous 21 days were taken 
to be informative for predicting the burnt area.  

For the final BN model, the indicators that were 
chosen to be relevant (either through understanding 
of the process or through the structure learning 
method discussed above), are divided into groups of 
nodes, which are assumed to significantly influence 



each other. Dependencies within these groups are 
modeled through hidden variables. The hidden 
variables are not observed, however their parameters 
can be learned using the expectation-maximization 
(EM) algorithm (Dempster et al., 1977). The main 
advantage of hidden variables is that they can 
represent the joint influence of a set of variables and 
thus reduce the number of links to the target variable 
(Straub and Der Kiureghian, 2010). In this way, the 
number of parameters needed to specify the model 
can often be significantly reduced. 

 
 

 
Figure 4 Result obtained from learning the structure of a 
set of indicator variables related to precipitation with the 
NPC algorithm. The black arrows represent prior 
constraints. The grey links are the directed links that 
could be learned without ambiguity. The undirected 
dashed links represent links, for which a consistency 
problem was found. Note that the inconsistent links with 
the same line style influence each other. 

3.1 The final model 
The indicator variables, which are considered to be 
relevant, are included in the final BN model shown 
in Figure 5. For example, the three variables ‘BUI’, 
‘FFMC’ and Mean ‘Cum. prec. 21d’ were found to 
be relevant from the learned structure in Figure 4 
and are therefore included in the final model.  

All relevant indicators are divided into groups. A 
first group contains the nodes ‘Wind speed’, ‘Slope’ 
and ‘Aspect-wind-direction-difference’. Different 
combinations of these driving forces are represented 
in the unobservable and therefore hidden variable 
‘Exogenous driving forces’. 

In order to model dependencies between the 
nodes ‘BUI’, ‘ISI’ and ‘FFMC’, the hidden variable 
‘Fuel conditions’ is introduced as a common parent. 

Similarly, the hidden variable ‘General weather 
situation’ is introduced as parent to the variables 
containing weather information. The ‘FFMC’ and 
the ‘Temperature of the previous day’ as well as the 
‘FFMC’ and the ‘ISI’ are assumed to be directly 
connected, because of the way the CFWIS indices 
are calculated.  

The variable ‘Land cover’ has 13 distinct states. 
In order to reduce the number of parameters needed 
to specify the CPT of the target variable, ‘Land 
cover’ is modeled as its child. This is contrary to 
causality, as one would assume that land cover type 
influences the burnt area and not vice-versa. This 
has some non-intuitive consequences: In the case, 
where only the land cover type is observed and all 
other nodes are unknown, the observation of the 
‘Land cover type’ will influence the probability of 
all other indicators, i.e. they are d-connected. 
However, this is not critical in most applications 
because usually all indicators are observed and their 
dependence structure is thus irrelevant. 

 All continuous nodes with the exception of 
‘Wind speed’, ‘Aspect-wind-direction-difference’ 
and ‘Slope’ where discretized using the CAIM 
algorithm (c.f. section 2.3). These three variables are 
likely to have a significant influence on the target 
variable only if they are considered in combination. 
Since the CAIM algorithm does not capture such 
interdependencies between attribute variables, these 
three variables are discretized using equal frequency 
discretization (Dougherty et al., 1995). 
 
 

 
Figure 5 A BN model for predicting wildfire spreading. 
The target node is displayed in grey and the hidden 
variables with dashed boundaries. 
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3.2 Results 
In order to validate the model, the set of available 
cases is divided into two parts, where one part is 
used to learn the model and the other one to test the 
accuracy of the predictions. The data from fires 
occurring in 2009 were used for validation, since 
2009 was the year with the smallest number of fire 
occurrences (89). 

As a benchmark, a Naïve Bayesian Classifier 
(NBC) model is used. This reference model is 
composed of the same variables as the BN in Figure 
5. However, in the DAG of the NBC model, all 
indicator variables have the target variable as their 
only parent. The advantage of this type of model is 
that inference is easy and the CPTs are kept small. 
The disadvantage of the NBC is that it is not always 
capable of representing the true joint distribution of 
the involved variables, due to its simplicity. NBC 
models have shown to perform well when it comes 
to classification tasks, i.e. where only the most likely 
state of the target variable is of interest (Jensen and 
Nielsen, 2007). 

At first, the mode of the predicted distribution is 
compared to the actual observed burnt area. This 
comparison is carried out through a so-called 
confusion matrix, which is shown in Table 2. For 
each combination of predicted interval and observed 
interval, it presents the number of corresponding 
cases. Here, the frequencies of the reference NBC 
are shown in brackets.  

The confusion matrix seems to indicate that both 
models have similar classification performance. A 
single measure for such classification performance is 
Cohen’s κ-index (Cohen, 1960). This index is 0 if 
the classifications by the model are as good as a 
“classification by chance”. The κ-index is 1 if all 
cases used for validation were classified correctly. 
For the current case (i.e. predicting the cases from 
2009 with models learned from the remaining years’ 
data), the κ-index for the final BN is 0.35 and 0.36 
for the reference NBC.  

The κ-index, as well as the confusion matrix, 
accounts only for the mode of the predicted 
distribution. In many cases, the entire distribution is 
of interest, in particular when risk is to be calculated. 
The entire distribution is considered when 
comparing the likelihood (or its logarithm) of a test 
dataset. The log-likelihood is calculated as:  

 
𝐿𝐿𝐿𝐿 𝐝𝐝|𝑀𝑀 = log!" Pr 𝑑𝑑!|𝑀𝑀

!

!!!

  

= log!" Pr 𝑑𝑑!   𝑀𝑀
!

!!!

 

 
 
 

 
(1) 

where 𝐝𝐝 is the validation dataset with 𝑛𝑛 = 89 cases 
and 𝑑𝑑! is the i-th case in 𝐝𝐝. 𝑀𝑀 is the model. The log-
likelihood of the BN in Figure 5 is -37.6; the log-
likelihood of the reference NBC is -40. Therefore, 
the observations made in 2009 are about 250 
≈ 10!!".! 10!!"  times more likely according to 

the final BN model. 

Table 2 A confusion matrix comparing the intervals of the 
burnt area [ha] predicted by the BN vs. the actually 
observed intervals. The number of cases obtained with 
the reference NBC are shown in brackets. 

 True interval 

Pr
ed

ic
te

d 
in

te
rv

al
  [0,1] (1,10] (10,100] (100,∞) 

[0,1] 42(39) 10(9) 4(4) 0(0) 
(1,10] 4(7) 13(14) 10(8) 1(2) 
(10,100] 2(1) 1(0) 0(3) 0(0) 
(100,∞) 0(1) 0(1) 1(0) 1(0) 

4 DISCUSSION 
It has been shown that probabilistic predictions of 
wildfire spreading are possible with a BN, which 
uses only easily observable data about land cover, 
weather and topography. This prediction is more 
accurate for small fires, which occur more 
frequently and which therefore are better represented 
in the data set available for learning the parameters 
of the model. With more observations predictions 
may get better for medium large and large fires as 
well.  

The burnt area is likely to be influenced by 
human factors, in particular the response time, i.e. 
how fast a fire is recognized and extinguished. 
Predictions may therefore be improved if these 
factors are also considered. Alternatively, one could 
predict the spreading rate of a fire rather than the 
burnt area directly. However, it is more difficult to 
collect historic data describing the spreading 
characteristics of past fire events. 

The continuous indicator variables (with the 
exception of wind, slope and their respective 
directions) were discretized separately with respect 
to the target variable. This approach does not 
consider interdependencies between the indicators. 
A more optimal discretization scheme for the 
specific problem could probably be found if 
dynamic discretization would be applied, which can 
consider such interdependencies.  

5 CONCLUSION 
A Bayesian network (BN) model to predict the burnt 
area due to a wildfire was developed. Constraint-



based BN learning algorithms were applied to 
identify relevant indicators for the prediction. A 
final BN was constructed based on these indicators 
and understanding of the process. The final BN 
model is validated and shown to be applicable for 
prediction purposes. 
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