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Abstract: Risk-based optimization of inspection using influence diagrams is investigated. 
To this end, a fatigue deterioration model using a Dynamic Bayesian Network (DBN) ap-
proach is presented. The DBN incorporates information from previous inspection cam-
paigns. Decision and utility nodes are defined inside the network to represent inspection 
and repair activities. The optimal inspection strategy (subject to safety or utility con-
straints) is approximated using the Limited Memory Influence Diagram (LIMID) ap-
proach, and is solved using the single policy updating, a local optimization strategy. In a 
numerical investigation, this method is found to give solutions that are slightly better than 
those obtained with simple heuristics that were previously applied, such the reliability 
threshold or periodic inspection heuristic. Finally, the numerical example demonstrates the 
superiority of adaptive inspection strategies, whereby inspections are planned based on the 
results of previous inspections. 

Keywords: optimal inspections, Bayesian network, decision models, fatigue, influence 
diagrams. 

 

1. Introduction  
Deterioration processes, in particular fatigue and corrosion, lead to a reduction of the 
reliability of structural systems. Because deterioration processes are commonly associated 
with significant uncertainty, inspection and monitoring are often an effective means to 
increase the reliability. Based on the results of inspections, repair and replacement actions 
can be planned. This is known as condition-based maintenance 0. 

The uncertainty in deterioration processes is commonly represented through probabilistic 
models, comprising of deterministic deterioration models whose parameters are 
represented by random variables. In order to assess the effect of different inspection and/or 
monitoring strategies, their expected costs, including the risk associated with potential 
failures, can be computed and compared. This is commonly known as risk-based planning 
of inspection and monitoring [9] and is a special case of the pre-posterior analysis of the 
Bayesian decision theory (0, 0). The computation of the expected costs for a given 
inspection strategy requires integration over the entire outcome space of all random 
variables in the deterioration model as well as over all possible inspection outcomes. This 
is a computationally demanding problem. In addition, to compute the expected cost it is 
also necessary to include (and optimize) the maintenance and repair actions into the 
analysis. Since the number of potential alternative inspection and monitoring strategies is 
very large, solving the complete optimization problem is thus computationally intractable 
for realistic applications. For this reason, different heuristics (e.g. 0, 0) have been 
developed in order to approximate the optimal solution, including periodic inspections (PI) 
and reliability threshold (RT). More recently, the use of the limited memory influence 
diagram (LIMID) was suggested by NIELSEN &  SØRENSEN [5]. 



In this paper, we present and compare different algorithms for the optimal planning of 
inspections in a structural element subject to fatigue deterioration. The fatigue crack 
growth process is represented through a dynamic Bayesian network (DBN). The 
optimization parameters are the times of inspections and times of repair actions. This 
decision problem is modeled as an influence diagram. Besides the classical PI and RT 
heuristics, we investigate two alternative formulations of the problem as a LIMID. We find 
that the LIMID outperforms the classical approaches, but also has increased computational 
demands. However, the complexity of the LIMID algorithm is shown to be of similar order 
than PI and RT. It is thus a viable alternative, which is particularly promising for planning 
inspections in systems, where the number of decision alternatives is much larger and 
simple heuristics such as PI and RT are not available. 

 

2. Dynamic Bayesian networks and influence diagrams 
2.1 Bayesian networks 

A Bayesian network (BN) is a probabilistic model. It consists of a set of random variables 
(nodes) and directed links which form a directed acyclic graph (DAG), i.e. there is no 
directed path from any variable to itself. A discrete BN furthermore fulfils the following 
requisites 0: 

• Each variable has a finite domain. 
• To each variable � with parents ��, ��, …, �� is attached a conditional probability 

table ���|
�, 
�, … , 
�
 � Pr�� � �|�� � 
� � … � �� � 
�
. �� is called a parent 
of � if it has a link towards �. If a variable has no parents, the table corresponds to 
its unconditional probability mass function (PMF). 

In Fig. 1, exemplarily a simple BN representing the condition of a structural element 
before and after applying a load is shown. The condition of the element is represented by �� and ��, the damage size (crack depth) before and after the application of load ��, re-
spectively. Variable �� represents a possible inspection outcome of the condition �� in 
case an inspection is carried out. Nodes �� and �� are described by unconditional PMFs. 
The probability table of �� contains the PMFs of the damage size conditional on the previ-
ous damage size �� and the load ��. The probability table attached to �� describes the like-
lihood of the inspection outcome, i.e. the probability of an observation (e.g. detect damage) 
given the condition ��. 

 

Fig. 1. Example of a Bayesian network 

If the states of some variables are known (i.e. instantiated) in the BN, the PMFs of the re-
maining nodes can be updated to their posterior. For example, in the BN of Fig. 1, an in-
spection outcome �� can be included by instantiating the corresponding node with the 
observed state ��, e.g. no detection of a defect. The PMFs of the remaining nodes ��, ��, 
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and �� are then updated to their conditional PMF given ��. This ability to efficiently per-
form Bayesian updating makes BNs suitable for modeling deterioration processes when 
partial observations from inspections and monitoring are to be included 0. 

 

2.2 Dynamic Bayesian networks 

In some cases, BNs contain a repetitive sequence of nodes which are associated with mul-
tiple times or spatial locations. Such a BN is called dynamic Bayesian network (DBN) and 
is useful for modeling time-dependent processes, including structural deterioration 0. Ex-
tending the BN of Fig. 1 to multiple loads ��, conditions ��, and observations �� at times � � 1, … , � the DBN shown in Fig. 2 is obtained. 

 

Fig. 2. Example of a dynamic Bayesian network 

 

2.3 Influence diagrams 

BNs can be extended to influence diagrams (ID), which additionally include decisions and 
utility (cost). In the ID, decisions are shown as squared nodes and utilities as diamond-
shaped nodes. In the latter, a utility value is assigned to each combination of states of the 
parents nodes, which can be either random variables or decision nodes, but not utility 
nodes. In case there are several utility nodes, the total utility is the sum of the individual 
utilities. In the ID, the optimal decision is the one that maximizes the total expected utility, 
in agreement with classical decision analysis 0. 

The decision nodes describe different decision options, which influence the random varia-
bles that are children of the decision node. This influence is quantified through the condi-
tional PMF of these child nodes. Links pointing towards the decision nodes represent the 
available information at the time of making the decision. All parents of the decision nodes 
are known when making the decision. However, there exist different versions of IDs, 
which differ in the way information is handled. Often, the ID is based on the no-forgetting 
assumption: When making a decision, all previous decisions as well as previous observa-
tions are known. This requires that there is a temporal ordering of the decisions. The no-
forgetting assumption leads to significant computational demands. For this reason, the lim-
ited memory ID (LIMID) was introduced, which makes an explicit link between the nodes 
that are known before taking the decision and the decision node 0. In the LIMID, only the 
direct parents of a decision node are known at the time of making the decision. This 
reduces (or limits) the number of nodes that will be considered for the decision, decreases 
the size of the policy domain and facilitates the obtaining of the optimal strategy that gives 
the maximum expected utility. In this paper, we use LIMIDs to represent the inspection 
and repair decision processes.  
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Fig. 3 shows an example ID for the deterioration example presented earlier as a DBN in 
Fig. 2. Here, the decisions �� are included on whether or not to repair the structural ele-
ment at times � � 1, … , �. These decisions are made based on the result of the inspections ��, hence the links �� � ��. To differentiate the condition of the element before and after 
the repair, the nodes ���  are introduced. The conditional PMF of these nodes are identical to 
that of �� in case no repair is carried out, and they differ if a repair is carried out. The utili-
ties � ,� are the (negative) cost of repairs and the utilities �!,� are the cost associated with 
failure at time �. The last slice does not include a repair decision, since such an action 
would be pointless at the end of the service life. 

 

Fig. 3. ID of the multi-decision structure condition example 

 

2.4 Policies and strategies 

In the ID, decisions are taken based on information available when making that decision. 
In the LIMID, these are the nodes with links pointing to the decision node. A policy con-
sists of a set of rules defining which decision to take as a function of the available infor-
mation. The more information is used for making a decision, the larger the policy domain 
and consequently the computational demand. A set of policies of all decision nodes in the 
ID is called a strategy. 

 

3 Risk-based planning of inspections using influence diagrams for 
a structural element subject to fatigue 

In condition-based maintenance of structures, it has to be decided when, where and how to 
inspect. Here we restrict ourselves to finding optimal decisions on when to inspect, and we 
present IDs to solve this problem. The optimal inspection strategy is defined as the one that 
minimizes the expected cost, defined as the sum of inspection, repair and failure cost. Note 
that the expected cost of failure is the risk.  

For the numerical investigation, a structural element subject to fatigue deterioration is con-
sidered. Inspections are possible in each year of the service life, potentially followed by 
repair actions in case of adverse inspection outcomes. 
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3.1 Fatigue crack growth model 

To model the fatigue crack growth, we consider a simplified case corresponding to crack 
growth in an infinite plate, described by Paris' law (e.g. 0): "��#
"# � $ %∆' )*��#
 +,

 (1) 

where � is the crack depth; # is the number of stress cycles; ∆' is the stress range per cycle 
with constant stress amplitudes; and $ and - are empirically determined model parame-
ters. Parameters ∆', $, and - are modeled as time invariant random variables. Using the 
boundary condition ��# � 0
 � ��, the previous equation leads to 

��#
 � %/1 0 -2 2 $∆',*,/�# 4 ����5,/�
+��5,/�
67
 (2) 

In order to use a DBN for the fatigue model, the time is discretized in intervals of 1 year. If #� � #��
 is the number of cycles at time step �, then the crack depth at the end of each 
year can be expressed recursively as a function of the crack depth in the previous year as 

�� � 89*,/� 4 ��5���5,/�
:��5,/�
67
 (3) 

where 9 � /1 0 ,� 2 $∆', ∆#. Here, ∆# � #� 0 #�5� is the number of stress cycles per 

year. Variable 9 is defined in order to reduce the dimension of the variable space.  

The failure event of the component is defined by the limit state function ; � �< 0 ��#
 (4) 

where �< represents the critical crack depth. The condition of the component is indicated 
by the binary variable =�, which takes value 1 when ; > 0 (i.e. safe event) and 0 when ; ? 0 (i.e. failure event).  

In STRAUB 0, a DBN model and algorithm was developed for this simple crack growth law, 
as presented in Fig. 4a. For the purpose of the present study, the model is simplified by 
eliminating the variables 9� and -�, leading to a simple homogeneous Markovian deterio-
ration model for �� as shown in Fig. 4b. The resulting discrete Markov process for the 
crack depth �� follows the recursive relation @A��
 � B @A�� 0 1
 (5) 

where � � 1,2, . . . , �, B is the transition probability matrix and @A��
 is the vector 
describing the discretized probability distribution of ��. @A�0
 is given by the probability 
distribution of ��. The Markov model is homogenous if all random variables in the model 
are time-invariant. Note that the unconditional marginal distribution of the crack depth and 
the unconditional probability of failure of the two models in Fig. 4 are identical. However, 
as soon as observations are made, the conditional distributions computed with the two 
models will differ.  

 



a)  

 

b) 

 

Fig. 4. DBN of the original (a) and simplified (b) fatigue crack growth model 

 

3.2 Influence diagram for modeling inspections  

To assess the effect of inspections and to determine optimal inspection times, the fatigue 
DBN of Fig. 4 is extended to an influence diagram (ID). The ID is presented in Fig. 5. The 
elements of this ID are introduced in the following. 

Inspection decisions. At every time step �, a decision node D� is included in the BN. Each 
decision has two possibilities: no inspection (D� � 0) or inspection (D� � 1). In the ID 
shown in Fig. 5, this decision node has no parents. Because we follow the LIMID conven-
tion described above, this implies that the inspection is planned without any previous 
knowledge. This assumption will later be relaxed. 

Observations. In case an inspection is carried out at time �, the random variable �� will 
indicate if a crack was detected (�� � 1) or not detected (�� � 2). If no inspection was 
carried out (i.e. D� � 0), then the corresponding state of the variable will be no measure-
ment (�� � 3). In case an inspection is performed, the probability of detection (PoD) de-
scribes the probability of detecting the crack. It is a non-decreasing function of the crack 
depth (i.e. larger cracks have larger probabilities to be detected) and is here represented by 
the following relation 0: Pr��� � 1|��
 � FGD���
 � 1 0 exp�0��/10 --
 (6) 

Repairs. Repair actions are included in the model as a function of the observed conditions 
of the component and the system. Whether or not to repair at time � is in principle also a 
decision that may be optimized jointly with the inspection decision. However, it has been 
found that simple decision rules are sufficient for the repair action in the considered case, 
and no optimization is needed 0. The rule is that if the system fails or a crack is detected 
during an inspection, the component will be repaired. This is included in the ID through 
the variable ��� . If no repair is carried out, the state of ���  will be identical to ��; if a repair 
is carried out, its conditional distribution is equal to the distribution of the initial crack 
depth ��, assuming that the new condition is probabilistically identical to the original one. 

Component and system condition. Structural systems are often redundant, so that failure of 
an element does not necessarily imply a system failure. Here, the redundancy of the system 
with respect to component failure is defined in a simplifying manner as the probability that 
the system does not fail when the component does. =K,� and =L,� denote the condition (i.e. 
failure or safe) of the system and the component, respectively, at time �. We define the 
redundancy M as: 
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PrN=K,� � safeR=L,� � failureV � M (7) 

In the extreme case with no redundancy M � 0, element failure will directly lead to system 
failure. Similarly, if the system is fully redundant with respect to element failure, M � 1, 
then the system will not fail if only this element fails. This simple model does not account 
accurately for multiple element failures, which must addressed by an advanced model 0. 

Utilities. The variables =K,� (system condition), D� (inspection decision), and �� (observa-
tion) are associated with costs. These are modeled by the utility nodes �K,�, �W,�, and � ,�. 
The utility of an inspection, repair and system failure events are 0$W, 0$ , and 0$K,.  

 

3.3 Memory assumptions in the ID model 

In the LIMID, only those nodes with links to the decision nodes are assumed to be known 
at the time of making the decision. This assumption can strongly reduce the computational 
effort when optimizing the decisions. With increasing memory, i.e. with increasing number 
of links to the decision nodes, the policy domains of the decision nodes increases, making 
the solution of the optimization problem intractable. On the other hand, reducing the 
number of information links toward the decision node leads to suboptimal solutions, in 
particular if compared to the no-forgetting assumption.  

In the first ID presented in Fig. 5, it is assumed that no information is available when the 
inspection decision is made. We call this the no-memory ID. The advantage of the no-
memory ID is that all inspections can be planned a-priori, since no observation during the 
service life will influence the inspection decisions.  

Alternatively, we consider the ID presented in Fig. 6, where information from previous 
observations and decisions is taken into account when planning the inspections. In this ID, 
it is assumed that the observation made at the previous inspection is known when deciding 
upon inspection. Two additional variables, ��X and Y�, are included in the model and con-
tain the observation from the last inspection and the time when it was performed. We call 
this ID the last-inspection ID. 

 

3.4 Finding optimal inspection times with the ID 

When solving decision problems, the size of the solution domain can quickly become 
intractable as the number of decision nodes increases. Depending on the type of 
application, some characteristics (e.g. symmetry) can be used to reduce the computational 
demands of the decision problem 0. Alternatively, approximate solutions can be obtained. 
In particular, single policy updating (SPU) is an iterative algorithm for solving LIMIDs 
that runs over each decision node, obtaining its locally optimum policy that maximizes the 
expected utility of the decision problem by keeping the remaining policies fixed. An 
iteration is completed when all decision nodes are locally maximized and the algorithm 
stops when the next iteration does not further reduce the expected utility. Due to its local 
nature, the solution obtained with SPU is likely to be suboptimal. 

For the inspection planning problem, simple heuristics were defined in the past to reduce 
the solution space (see e.g. 0). The two most common heuristics are summarized in the 
following. 

 



 

Fig. 5. ID modeling the fatigue inspection planning (no-memory ID). 

 

Fig. 6. ID modeling the fatigue inspection planning (last-inspection ID). 

 

Periodic inspections (PI), also known as equidistant inspections: The number of possible 
inspection times of the decision problem increases exponentially with the number of time 
steps � (i.e. 2Z combinations). However, if it is required that the inspection intervals are 
fixed, then the number of possible combinations is reduced to �. The optimization problem 
can be formulated in terms of a single variable, the number of inspections #[. If #[ 
periodic inspections are performed in � time steps, then the inspection times are 

\ �#[ 4 1] , \ 2�#[ 4 1] , . . . , \ #[�#[ 4 1] (8) 

where ̂ · ` is the smaller integer function. The goal is to find the optimal number of equally 
spaced inspections that gives the maximum expected utility. 

Reliability threshold (RT). The reliability of the component at time step � is its probability 
of being in a safe condition Pr�a�b 
 � Pr��L 0 �� > 0
. Often, it is expressed through the 
reliability index c� � Φ5�ePr�a�b 
f, with Φ5� being the standard normal cumulative 
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distribution function. A reliability threshold c, defines a lower bound of the reliability 
index. For a given threshold, an inspection is planned at time � if it would hold that c�g� h c, without this inspection. In this way, the inspection times follow directly from c,. Note that the implementation of the RT heuristic with the ID differs slightly from the 
original version, because the computation of Pr�a�b 
 and c� is based on the averaged 
performance, i.e. it is not computed based on the actual repair history as in STRAUB &  

FABER 0.  

The PI and RT heuristics approximate the solution of the no-memory decision problem. 
Their possible solutions domains are considerably smaller subsets of the complete solution 
domain, thus reducing the computational effort. Both PI and RT approaches define a single 
parameter optimization problem. Their algorithms have a linear complexity order with 
respect to the number of time steps whereas SPU complexity depends on the maximum 
size of the variable domains considered in the decision problem. 

 

4 Numerical investigations 
To investigate the different algorithms for optimizing the inspection planning with respect 
to the minimal life cycle cost, the simple DBN crack growth model presented in Sec. 3.1 is 
implemented. The parameters of the model are summarized in Tab. 1. These parameters as 
well as the discretization scheme are taken from STRAUB 0. In Tab. 2, the variables of the 
IDs are summarized. The cost of repair, $ , and system failure, $K, are expressed relative 
to the cost of inspection, $W. The transition matrix B of Eq. (5) is estimated by Monte Carlo 
simulation with 10i samples of parameters $, ∆' and - according to the prior 
distributions of Tab. 1. 

In this analysis, the following parameter values were assumed for the life cycle model: 
total time period � � 15 years; system failure cost $K � 5000; inspection cost $W � 1; 
repair cost $ � 0.1; and redundancy M � 0.2. Discounting was neglected for the purpose 
of this example.   

The inspection planning problem was solved for the no-memory ID (Fig. 5) with the PI and 
RT heuristics, with the SPU algorithm and – for comparison – with a full search (i.e. cov-
ering all 2�k possible inspection schedules). Furthermore, it was solved for the last-
inspection ID (Fig. 6) with the SPU algorithm. 

 

Tab. 1 Parameters of the decision problem 

Variable Distribution Mean Standard deviation and correlation 

�� [mm] Exponential 1 1 

�< [mm] Deterministic 50 0 

∆' [N mm-2] Normal 60 10 

ln�$
,- a Bi-Normal (-33; 3.5) (0.47; 0.3),   m � 00.9 

Δ# [yr-1] Deterministic 105 0 

a Dimensions corresponding to Newton and millimeter 



Tab. 2 Domains and variables discretization 

Variable Number 
of states 

Discretization / states Conditional Probability Distribution 

�� (mm) 80 0,exppln�0.01
: eln�50
0 ln�0.01
 f/78t ln�50
 u, ∞ 

F MN�� wx yzR��5� x y{V � |z,{ 

where yz is the }-th interval of the discreti-
zation of �� or ��5�� . 

=L,�  2 1: Safe 

0: Fail PrNw=L,� � ~R��V � �0 �� ~ � 1, �� � �<1 �� ~ � 0, �� � �<1 �� ~ � 1, �� h �<0 �� ~ � 0, �� h �<
w 

=K,�  2 1: Safe 

0: Fail 

PrNw=K,� � ~R=L,�V
� ��

� M� �� ~ � 1, =L,� � 01 0 M� �� ~ � 0, =L,� � 01 �� ~ � 1, =L,� � 10 �� ~ � 0, =L,� � 1
w 

�K,�  1 0 �K,� � � 0 �� =�K � 00$K �� =�K � 1w 
D�  2 0: No inspection 

1: Inspection 

 

�W,�  1 0 �W,� � � 0 �� D� � 00$W �� D� � 1w 
��  3 1: Insp. with detection 

2: Insp. with no detec-
tion 

3: No measurement 

Pr�w�� � �|��, D�

� � 1 �� D� � 0, � � 3FGD���
 �� D� � 1, � � 11 0 FGD���
 �� D� � 1, � � 20 G��~M���~

w 
� ,�  1 0 � ,� � � 0 �� �� � 2,30$ �� �� � 1 w 
���  (mm) 80 

 

0,exppln�0.01
: eln�50
0 ln�0.01
 f/78t ln�50
 u, ∞ 

PrNw��� x yzR��, ��, =K,�V
�

���
��PrN�� x yzV �� =K,� � 0PrN�� x yzV �� =K,� � 1, �� � 11 �� =K,� � 1, �� x yz , �� � 20 G��~M���~

where yz is the }-th interval of the discreti-
zation of �� or ��5�� . 

 



4.1 Results 

The total expected cost of the inspection planning solutions obtained with the PI and the 
RT heuristics are shown in Fig. 7. For the PI approach, the optimal number of inspections 
is found to be 6, with the RT approach the optimal reliability threshold is found to be c, � 3.34. 

a)  

 

b)  

 

Fig. 7 Expected cost of inspection schedules with (a) periodic inspections and (b) reliabil-
ity thresholds. 

The total expected costs for all five solution strategies are summarized in Tab. 3. The 
difference in the total expected cost among the optimal solutions is relatively small despite 
the inspection times and disaggregated costs (i.e. failure, inspection and repair costs) being 
quite different among the solutions. As an example, Fig. 8 shows the disaggregated 
expected costs for the PI and the SPU (no-memory ID) solution. The reason for the small 
differences in expected costs is likely the fact that all optimal solutions of the no-memory 
ID have six inspections, and the minimum reliability obtained with these optimal solutions 
is also fairly similar, as evident from Fig. 9. 

The optimal solution is obtained with the last-inspection ID, solved using the SPU 
algorithm. This is not surprising, since this is the only strategy that allows adapting the 
inspection times based on inspection results. The disadvantage of this strategy is that 
inspections cannot already be planned at the beginning of service life.  

 

Tab. 3 Optimal solutions obtained with different algorithms. 

Approach Expected cost Inspection times CPU time (sec) 

PI 14.91 2, 4, 6, 9, 11, 13 0.4 

RT 14.70 2, 4, 6, 8, 10, 13 4.3 

SPU (no-memory ID) 14.05 1, 2, 4, 5, 7, 9 164 

Exact solution (no mem-
ory) 

13.97 1, 2, 3, 5, 7, 10 313 

SPU (last-inspection ID) 13.75 Policies for each deci-
sion node 

165 
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Comparing the SPU solutions obtained for the two different IDs, it is seen that the mini-
mum expected cost decreases from 14.05 to 13.75 when the observation from the last per-
formed inspection is taken into account for deciding on the next inspection (the last-
inspection ID). In this case, the SPU algorithm provides an adaptive policy for each deci-
sion node. For example, the resulting policy of the decision node D�� indicates that an in-
spection is to be carried out unless there was an inspection in the previous year 
(independent of what was observed) or two years ago without crack detection.  

a)  

 

b)  

 

Fig. 8 Expected cost of optimal solution for: a) PI, and b) SPU (no-memory ID) 

 

a)  

 

b)  

 

c)  

 

d)  

 

Fig. 9 Reliability index of the optimal solutions for (a) periodic inspections; (b) reliability 
threshold; (c) SPU (no-memory ID); and (d) the exact solution (no-memory ID). 

 

The computation time for the SPU solution is considerably larger than for PI and RT. The 
same is observed when increasing the considered service life period �, and hence the num-
ber of steps in the DBN (see Fig. 10). However, all these algorithms show a similar com-
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plexity order (a linear increase with the number of time steps). In contrast, the exact solu-
tion of the no-memory ID was obtained by a complete search among all possible combina-
tions of inspection times. This procedure has an exponential complexity order with respect 
to the number of time steps. For illustration purpose, the last two points of the exact solu-
tion (no-memory) curve in Fig. 10 (� � 25 and � � 50) were estimated by extrapolation. 

 

Fig. 10 CPU time for finding the optimal solution 

While the SPU algorithm requires significantly more computation time than the PI and RT 
heuristics, it is more flexible because it allows to adapt the inspections to the results of 
previous observations, as shown for the case of the last-observation ID. If the observations 
from the previous inspections are considered before deciding to inspect, an adaptive policy 
is followed. Since any information can only increase the expected utility of optimal deci-
sions [3,10], it follows that the maximum expected utility of the last-observation ID (or any 
other adaptive policy implemented through an ID with memory) must be larger or equal 
than that of a fixed inspection schedule based on the no-memory ID.  

 

5 Conclusions and outlook 
In this paper, the optimal inspection times for a structural element subject to fatigue are 
identified through a set of algorithms. The optimization problem is formulated through 
influence diagrams, whereby varying assumptions regarding the adaptivity of the inspec-
tion schedule were made. As expected, the adaptive inspection scheduling leads to lower 
expected costs. Among the algorithms for optimizing a non-adaptive inspection plan, the 
one obtained with the single policy updating (SPU) algorithm performs the best. However, 
the examined heuristics, which allow to significantly reduce the computational effort in the 
optimization, also perform well.  

These results of this paper are useful in the investigation of inspection planning problems 
in systems with multiple elements, whose deterioration characteristics are correlated. The 
proposed DBN/ID framework can be extended to solve such problems, but the associated 
computational complexity will increase with increasing system size, and simple heuristics 
are no longer readily available. Therefore, it is essential to have efficient algorithms for 
solving these problems, and the SPU algorithm seems promising for this purpose.  
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