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Abstract: Risk-based optimization of inspection using infloerdiagrams is investigated.
To this end, a fatigue deterioration model usirigyaamic Bayesian Network (DBN) ap-
proach is presented. The DBN incorporates informmafrom previous inspection cam-
paigns. Decision and utility nodes are defineddaedihe network to represent inspection
and repair activities. The optimal inspection ggt (subject to safety or utility con-
straints) is approximated using the Limited Memdnfluence Diagram (LIMID) ap-
proach, and is solved using the single policy updata local optimization strategy. In a
numerical investigation, this method is found teegsolutions that are slightly better than
those obtained with simple heuristics that werevipresly applied, such the reliability
threshold or periodic inspection heuristic. Finatlye numerical example demonstrates the
superiority of adaptive inspection strategies, \wbhgrinspections are planned based on the
results of previous inspections.

Keywords. optimal inspections, Bayesian network, decisiondet®, fatigue, influence
diagrams.

1. Introduction

Deterioration processes, in particular fatigue aodosion, lead to a reduction of the
reliability of structural systems. Because deta@tion processes are commonly associated
with significant uncertainty, inspection and mornitg are often an effective means to
increase the reliability. Based on the resultsngpections, repair and replacement actions
can be planned. This is known as condition-basedterance 0.

The uncertainty in deterioration processes is comynmepresented through probabilistic
models, comprising of deterministic deteriorationodels whose parameters are
represented by random variables. In order to asbessffect of different inspection and/or
monitoring strategies, their expected costs, inalgidhe risk associated with potential
failures, can be computed and compared. This igmoamy known as risk-based planning
of inspection and monitoring [9] and is a specide of the pre-posterior analysis of the
Bayesian decision theory (0, 0). The computationthe expected costs for a given
inspection strategy requires integration over tindéire outcome space of all random
variables in the deterioration model as well asr @lepossible inspection outcomes. This
is a computationally demanding problem. In addititmcompute the expected cost it is
also necessary to include (and optimize) the miaamee and repair actions into the
analysis. Since the number of potential alternaitigpection and monitoring strategies is
very large, solving the complete optimization peshlis thus computationally intractable
for realistic applications. For this reason, difier heuristics (e.g. 0, 0) have been
developed in order to approximate the optimal smhjtincluding periodic inspections (PI)

and reliability threshold (RT). More recently, thise of the limited memory influence

diagram (LIMID) was suggested byEUSEN & SZRENSEN[5].



In this paper, we present and compare differenbrilgns for the optimal planning of
inspections in a structural element subject togtedi deterioration. The fatigue crack
growth process is represented through a dynamice®ay network (DBN). The
optimization parameters are the times of inspestiand times of repair actions. This
decision problem is modeled as an influence diagfesides the classical Pl and RT
heuristics, we investigate two alternative formiglas of the problem as a LIMID. We find
that the LIMID outperforms the classical approaches also has increased computational
demands. However, the complexity of the LIMID aigun is shown to be of similar order
than Pl and RT. It is thus a viable alternativejalthis particularly promising for planning
inspections in systems, where the number of detisiternatives is much larger and
simple heuristics such as Pl and RT are not availab

2. Dynamic Bayesian networks and influence diagrams
2.1Bayesian networks

A Bayesian network (BN) is a probabilistic modelconsists of a set of random variables
(nodes) and directed links which form a directegichc graph (DAG), i.e. there is no
directed path from any variable to itself. A diger8N furthermore fulfils the following
requisites O:

» Each variable has a finite domain.

* To each variabl&¥ with parentd}, Y,, ..., Yy is attached a conditional probability
tablep(x|y1,y2, ..., yn) = Pr(X =x|¥; =y, N ...nYy = yy). Y; is called a parent
of X if it has a link toward<X. If a variable has no parents, the table corredpdn
its unconditional probability mass function (PMF).

In Fig. 1, exemplarily a simple BN representing ttendition of a structural element
before and after applying a load is shown. The tmmdof the element is represented by
a, anda,, the damage size (crack depth) before and afeeagiplication of load.,, re-
spectively. VariableZ; represents a possible inspection outcome of tmeliton a, in
case an inspection is carried out. NodgsandL, are described by unconditional PMFs.
The probability table oft; contains the PMFs of the damage size conditiondhe previ-
ous damage siz®, and the load.;. The probability table attached Zg describes the like-
lihood of the inspection outcome, i.e. the prohgbdf an observation (e.g. detect damage)
given the conditiom, .

Fig. 1. Example of a Bayesian network

If the states of some variables are known (i.damisated) in the BN, the PMFs of the re-
maining nodes can be updated to their posteriarekample, in the BN of Fig. 1, an in-
spection outcomé&; can be included by instantiating the correspondinde with the
observed state,, e.g. no detection of a defect. The PMFs of tmeaiaing nodes,, a,,



andL; are then updated to their conditional PMF gizgenThis ability to efficiently per-
form Bayesian updating makes BNs suitable for miodetieterioration processes when
partial observations from inspections and monigpane to be included 0.

2.2Dynamic Bayesian networks

In some cases, BNs contain a repetitive sequennedds which are associated with mul-
tiple times or spatial locations. Such a BN isexltlynamic Bayesian network (DBN) and
is useful for modeling time-dependent processesduding structural deterioration 0. Ex-
tending the BN of Fig. 1 to multiple loadsg, conditionsa,, and observationg; at times

t =1,..,T the DBN shown in Fig. 2 is obtained.

Fig. 2. Example of a dynamic Bayesian network

2.3Influence diagrams

BNs can be extended to influence diagrams (ID)civiaidditionally include decisions and
utility (cost). In the ID, decisions are shown agi@ed nodes and utilities as diamond-
shaped nodes. In the latter, a utility value isgaesl to each combination of states of the
parents nodes, which can be either random variaimedecision nodes, but not utility
nodes. In case there are several utility nodestata utility is the sum of the individual
utilities. In the 1D, the optimal decision is theeothat maximizes the total expected utility,
in agreement with classical decision analysis 0.

The decision nodes describe different decisionoogti which influence the random varia-
bles that are children of the decision node. Thikience is quantified through the condi-
tional PMF of these child nodes. Links pointing &ods the decision nodes represent the
available information at the time of making the idem. All parents of the decision nodes
are known when making the decision. However, thedst different versions of IDs,
which differ in the way information is handled. &ft the ID is based on the no-forgetting
assumption: When making a decision, all previoussitens as well as previous observa-
tions are known. This requires that there is a taadpordering of the decisions. The no-
forgetting assumption leads to significant compatetl demands. For this reason, the lim-
ited memory ID (LIMID) was introduced, which makas explicit link between the nodes
that are known before taking the decision and #@sibn node 0. In the LIMID, only the
direct parents of a decision node are known attithe of making the decision. This
reduces (or limits) the number of nodes that walldonsidered for the decision, decreases
the size of the policy domain and facilitates théaming of the optimal strategy that gives
the maximum expected utility. In this paper, we UHdIDs to represent the inspection
and repair decision processes.



Fig. 3 shows an example ID for the deterioratioanegle presented earlier as a DBN in
Fig. 2. Here, the decisior®. are included on whether or not to repair the stmat ele-
ment at timeg = 1, ..., T. These decisions are made based on the resiie ahspections
Z:, hence the linkg; — R;. To differentiate the condition of the elementdrefand after
the repair, the nodesg are introduced. The conditional PMF of these nadeddentical to
that ofa, in case no repair is carried out, and they diffarrepair is carried out. The utili-
tiesUr . are the (negative) cost of repairs and the @i, . are the cost associated with
failure at timet. The last slice does not include a repair decjssimce such an action
would be pointless at the end of the service life.

Fig. 3. ID of the multi-decision structure conditiexample

2.4Policies and strategies

In the ID, decisions are taken based on informatieailable when making that decision.
In the LIMID, these are the nodes with links pamgtito the decision node. A policy con-
sists of a set of rules defining which decisiortake as a function of the available infor-
mation. The more information is used for makingeaision, the larger the policy domain
and consequently the computational demand. A spolidies of all decision nodes in the
ID is called a strategy.

3 Risk-based planning of inspections using influedia@rams for
a structural element subject to fatigue

In condition-based maintenance of structures, sttbebe decided when, where and how to
inspect. Here we restrict ourselves to finding mojadi decisions on when to inspect, and we
present IDs to solve this problem. The optimal ecdjpn strategy is defined as the one that
minimizes the expected cost, defined as the suimspgction, repair and failure cost. Note

that the expected cost of failure is the risk.

For the numerical investigation, a structural eletsibject to fatigue deterioration is con-
sidered. Inspections are possible in each yeahefservice life, potentially followed by
repair actions in case of adverse inspection ouésom



3.1Fatigue crack growth model

To model the fatigue crack growth, we considernapéified case corresponding to crack
growth in an infinite plate, described by Parig’ i&.g. 0):
da(n)

e C [AS Jmra(n) ]m (1)

wherea is the crack depthy is the number of stress cyclds, is the stress range per cycle
with constant stress amplitudes; ahc&ndm are empirically determined model parame-
ters. ParametersS, €, andm are modeled as time invariant random variablegdJthe
boundary conditiom(n = 0) = a,, the previous equation leads to

(1-m/2)~*

m
1— =) CAS™ ™20 + a0/ 2)

a(n) = [( 2

In order to use a DBN for the fatigue model, timeetiis discretized in intervals of 1 year. If
n, = n(t) is the number of cycles at time stgpthen the crack depth at the end of each
year can be expressed recursively as a functitimeofrack depth in the previous year as

e = [qn2 + a0 ®

whereq = (1 — %) CAS™ An. Here,An = n, — n,_, is the number of stress cycles per
year. Variable is defined in order to reduce the dimension oftagable space.

The failure event of the component is defined lgyliimit state function

g = ac—an) (4)

wherea, represents the critical crack depth. The conditbthe component is indicated
by the binary variablé;, which takes value 1 whesn > 0 (i.e. safe event) and 0 when
g < 0 (i.e. failure event).

In STRAUB 0, a DBN model and algorithm was developed fas siinple crack growth law,
as presented in Fig. 4a. For the purpose of thgeptestudy, the model is simplified by
eliminating the variableg, andm,, leading to a simple homogeneous Markovian deterio
ration model fora, as shown in Fig. 4b. The resulting discrete Markowcess for the
crack deptha; follows the recursive relation

pa(t) =Ap.(t—1) (5)

where t =1,2,...,T, A is the transition probability matrix ang,(t) is the vector
describing the discretized probability distributioha,. p,(0) is given by the probability
distribution ofa,. The Markov model is homogenous if all random afales in the model
are time-invariant. Note that the unconditional gnaal distribution of the crack depth and
the unconditional probability of failure of the twoodels in Fig. 4 are identical. However,
as soon as observations are made, the conditiasi@ibdtions computed with the two
models will differ.



Fig. 4. DBN of the original (a) and simplified (fatigue crack growth model

3.2Influence diagram for modeling inspections

To assess the effect of inspections and to determiimal inspection times, the fatigue
DBN of Fig. 4 is extended to an influence diagrdD).(The ID is presented in Fig. 5. The
elements of this ID are introduced in the following

Inspection decisiondAt every time step, a decision nod®; is included in the BN. Each
decision has two possibilities: no inspectidh € 0) or inspection D, = 1). In the ID
shown in Fig. 5, this decision node has no par&#sause we follow the LIMID conven-
tion described above, this implies that the indpacts planned without any previous
knowledge. This assumption will later be relaxed.

ObservationsIn case an inspection is carried out at timé¢he random variabl&, will
indicate if a crack wasletected(Z, = 1) or not detectedZ; = 2). If no inspection was
carried out (i.eD, = 0), then the corresponding state of the variablé lvélno measure-
ment(Z; = 3). In case an inspection is performed, pmebability of detectionPoD) de-
scribes the probability of detecting the crackisla non-decreasing function of the crack
depth (i.e. larger cracks have larger probabiliteebe detected) and is here represented by
the following relation 0O:

Pr(Z, = 1la;) = PoD(a;) = 1 — exp(—a;/10 mm) (6)

Repairs Repair actions are included in the model as atfon of the observed conditions
of the component and the system. Whether or no¢gair at timet is in principle also a
decision that may be optimized jointly with thepestion decision. However, it has been
found that simple decision rules are sufficienttfug repair action in the considered case,
and no optimization is needed 0. The rule is th#te system fails or a crack is detected
during an inspection, the component will be remhifghis is included in the ID through
the variablea;. If no repair is carried out, the stateagfwill be identical toa,; if a repair

is carried out, its conditional distribution is efuo the distribution of the initial crack
deptha,, assuming that the new condition is probabilistycgaentical to the original one.

Component and system conditi@tructural systems are often redundant, so #ilatré of

an element does not necessarily imply a systemréiHere, the redundancy of the system
with respect to component failure is defined innapdifying manner as the probability that
the system does not fail when the component dégsandE., denote the condition (i.e.
failure or safe) of the system and the componespectively, at time. We define the
redundancy as:



Pr(ES,t = safe|EC,t = failure) =r (7)

In the extreme case with no redundancy 0, element failure will directly lead to system
failure. Similarly, if the system is fully redundawith respect to element failure,= 1,
then the system will not fail if only this elemdatls. This simple model does not account
accurately for multiple element failures, which maddressed by an advanced model O.

Utilities. The variabless, (system condition)D, (inspection decision), ant, (observa-
tion) are associated with costs. These are modsitdtie utility nodedJs,, U;,, andUg .
The utility of an inspection, repair and systenhui@ events are-C,;, —Cr, and—Cs,.

3.3Memory assumptions in the ID model

In the LIMID, only those nodes with links to theci@on nodes are assumed to be known
at the time of making the decision. This assumptiam strongly reduce the computational
effort when optimizing the decisions. With increggsimemory, i.e. with increasing number

of links to the decision nodes, the policy domahshe decision nodes increases, making
the solution of the optimization problem intrac&bOn the other hand, reducing the
number of information links toward the decision adédads to suboptimal solutions, in

particular if compared to the no-forgetting assuompt

In the first ID presented in Fig. 5, it is assuntiedt no information is available when the
inspection decision is made. We call this ttememorylD. The advantage of the no-
memory ID is that all inspections can be planngaiar, since no observation during the
service life will influence the inspection decisson

Alternatively, we consider the ID presented in Fog.where information from previous
observations and decisions is taken into accouenvgtanning the inspections. In this ID,
it is assumed that the observation made at thaqurewnspection is known when deciding
upon inspection. Two additional variables, andz,, are included in the model and con-
tain the observation from the last inspection dreltime when it was performed. We call
this ID thelast-inspection 1D

3.4Finding optimal inspection times with the ID

When solving decision problems, the size of theutsmh domain can quickly become
intractable as the number of decision nodes ineea®epending on the type of
application, some characteristics (e.g. symmetay) lee used to reduce the computational
demands of the decision problem 0. Alternativeppraximate solutions can be obtained.
In particular, shgle policy updating(SPU) is an iterative algorithm for solving LIMIDs
that runs over each decision node, obtaining tallp optimum policy that maximizes the
expected utility of the decision problem by keepiig remaining policies fixed. An
iteration is completed when all decision nodeslacally maximized and the algorithm
stops when the next iteration does not further cedbe expected utility. Due to its local
nature, the solution obtained with SPU is likelyoosuboptimal.

For the inspection planning problem, simple heiosstvere defined in the past to reduce
the solution space (see e.g. 0). The two most camnsaristics are summarized in the
following.
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Fig. 6. ID modeling the fatigue inspection plann{fagt-inspection ID).

Periodic inspections (Pl)also known as equidistant inspections: The nurobgossible
inspection times of the decision problem increasqsonentially with the number of time
stepsT (i.e. 2T combinations). However, if it is required that thepection intervals are
fixed, then the number of possible combinationgdkiced td’. The optimization problem
can be formulated in terms of a single variable tumber of inspections,. If n,
periodic inspections are performedlirtime steps, then the inspection times are

T 2T n,T .
[np+1|'[np+1|""'[np+1| (8)

where| - | is the smaller integer function. The goal is talfthe optimal number of equally
spaced inspections that gives the maximum expexdtis.

Reliability threshold (RT)The reliability of the component at time stes its probability
of being in a safe conditioPr(F,) = Pr(a. — a, > 0). Often, it is expressed through the
reliability index g, = ®~1[Pr(F,)], with ®~1 being the standard normal cumulative



distribution function. A reliability threshol@,, defines a lower bound of the reliability
index. For a given threshold, an inspection is péhat timet if it would hold that
Bi+1 < Bm Without this inspection. In this way, the inspeantitimes follow directly from
Bm- Note that the implementation of the RT heuristith the ID differs slightly from the
original version, because the computationPofF,) and 3, is based on the averaged
performance, i.e. it is not computed based on ttigaa repair history as inTEAUB &
FABER O.

The Pl and RT heuristics approximate the solutibthe no-memory decision problem.
Their possible solutions domains are consideraiglier subsets of the complete solution
domain, thus reducing the computational effort.rB®t and RT approaches define a single
parameter optimization problem. Their algorithmweéeha linear complexity order with
respect to the number of time steps whereas SPpleaity depends on the maximum
size of the variable domains considered in thesii@tiproblem.

4 Numerical investigations

To investigate the different algorithms for optimig the inspection planning with respect
to the minimal life cycle cost, the simple DBN dragrowth model presented in Sec. 3.1 is
implemented. The parameters of the model are suin@thin Tab. 1. These parameters as
well as the discretization scheme are taken frama8s 0. In Tab. 2, the variables of the
IDs are summarized. The cost of rep&jf, and system failure}s, are expressed relative
to the cost of inspectioid;. The transition matriA of Eq. (5) is estimated by Monte Carlo
simulation with 10 samples of parameter§, AS and m according to the prior
distributions of Tab. 1.

In this analysis, the following parameter valuesevassumed for the life cycle model:
total time periodl = 15 years; system failure cost = 5000; inspection cost, = 1;
repair costCy = 0.1; and redundancy = 0.2. Discounting was neglected for the purpose
of this example.

The inspection planning problem was solved forrtbenemory ID (Fig. 5) with the Pl and
RT heuristics, with the SPU algorithm and — for pamson — with a full search (i.e. cov-
ering all 215 possible inspection schedules). Furthermore, i walved for the last-
inspection ID (Fig. 6) with the SPU algorithm.

Tab. 1 Parameters of the decision problem

Variable Distribution Mean Standard deviation andelation
a [mm] Exponential 1 1

a. [mm] Deterministic 50 -

AS [N mm?  Normal 60 10

In(C),m?® Bi-Normal (-33;3.5) (0.47;0.3), p = —0.9

An [yr] Deterministic 18 —

2 Dimensions corresponding to Newton and millimeter



Tab. 2 Domains and variables discretization

Variable Number Discretization / states  Conditional Probability fhitsution

of states
a, (mm) 80 0,exp{In(0.01): [In(50) Pr(a.€ Li|a;—1 €Ix) = Ajx
—1n(0.01) /78 . o . .
+In(50) }, wherel; is thej-th interval of the discreti-
zation ofa, ora;_;.
Ece 2 1: Safe 0 ife=1a;>a,
. Cai 1 ife=0a;=>a
0: Fail — — Yt c
Pr(Ec, = e|a.) 1 ife=1a<a,
0 ife=0,a<a,
ES,t 2 1 Safe Pr(ES't = e|EC,t)
0: Fail ( T ife=1E;:=0
_J1-7n ife=0E,=0
") 1 ife=1E,=1
0 ife=0E,=1
Us,t 1 - 0 ifES=0
US,L‘ = . S _
D, 2 0: No inspection
1: Inspection
UI,t 1 —_ U _ { 0 if Dt = 0
=l-¢ ifD =1
Z; 3 1: Insp. with detection  Pr(Z; = z|a, D;)

1 if D, =0,z=3

2: Insp. with no detec- -
PoD(a;) ifD;=1z=1

tion =
1—PoD(a;) if Di=1,z=2
3: No measurement 0 otherwise
Ure 1 - U 2{ 0 ifZ, =23
Rt _CR lf Zt = 1
a, (mm) 80 0,exp{In(0.01): [In(50) Pr(a; € I;|a,, Z;, Es,)
—llng%(’l) 1/78 (Pr(ao € ) if Es; =0
H (0]
"0} _ 4Pr(a0 €1) if Ese =1,Z, =1
L 1 ifES,t: 1,atEIj,Zt =,
0 otherwise

wherel; is thej-th interval of the discreti-
zation ofa, ora;_;.




4. 1Results

The total expected cost of the inspection plansiolytions obtained with the Pl and the
RT heuristics are shown in Fig. 7. For the Pl appho the optimal number of inspections
is found to be 6, with the RT approach the optimgdilability threshold is found to be
Bm = 3.34.

a) b)

® 50 o @ 50 - —— Reliability

S 40 ® Periodic Insp. S 40 - Threshold

-3, 0 - LIMID ISR

5 ° P

Q ____.__Q__._._._._.._._9__.___.__.___.__ 8 20 -

O 10 210 -

o <

> 0 T T T T T 1 Lu O : : | :

Ww o 3 6 9 12 15 o 1 2 3 a4
Number of inspections Reliability threshold

Fig. 7 Expected cost of inspection schedules va)hperiodic inspections and (b) reliabil-
ity thresholds.

The total expected costs for all five solution &gies are summarized in Tab. 3. The
difference in the total expected cost among ther@tsolutions is relatively small despite
the inspection times and disaggregated costddilare, inspection and repair costs) being
quite different among the solutions. As an examplg. 8 shows the disaggregated
expected costs for the Pl and the SPU (no-memoyysdiution. The reason for the small
differences in expected costs is likely the faett thil optimal solutions of the no-memory
ID have six inspections, and the minimum reliapibbtained with these optimal solutions
is also fairly similar, as evident from Fig. 9.

The optimal solution is obtained with the last-iesfoon ID, solved using the SPU
algorithm. This is not surprising, since this i thnly strategy that allows adapting the
inspection times based on inspection results. Tisaddantage of this strategy is that
inspections cannot already be planned at the begjrof service life.

Tab. 3 Optimal solutions obtained with differerg@ithms.

Approach Expected cost Inspection times CPU tire)(s
Pl 14.91 2,4,6,9,11, 13 0.4

RT 14.70 2,4,6, 8,10, 13 4.3

SPU (no-memory ID) 14.05 1,2,4,5 /7,9 164

Exact solution (no mem13.97 1,2,3,5,7,10 313

ory)

SPU (last-inspection ID)  13.75 Policies for eacltidel65

sion node




Comparing the SPU solutions obtained for the twitedknt IDs, it is seen that the mini-
mum expected cost decreases from 14.05 to 13.78 thieeobservation from the last per-
formed inspection is taken into account for degdon the next inspection (the last-
inspection ID). In this case, the SPU algorithmvmtes an adaptive policy for each deci-
sion node. For example, the resulting policy of dleeision node&,, indicates that an in-
spection is to be carried out unless there was rspection in the previous year
(independent of what was observed) or two yearsaatjmut crack detection.

a) b)

._.
RN
Individual cost

Individual cost
=
(0]
Cumulative cost
Cumulative cost

Eos Ll dntatan

12345678 9101112131415

2345678 9101112131415
Time, t (years) Time, t (years)

CFailure WM Repair —Inspection ==Cumulative cost O Failure mmmRepair T Inspection ==Cumulative cost

Fig. 8 Expected cost of optimal solution for: a) &id b) SPU (no-memory ID)

a) b)
mﬁ_ 8
é 5 - é 5
54 J\M\m 4 \I\\[\\I\\[\i\\i\\o
Py 2
= 3 =3 -
o) o)
2 S
v— 2 T T T T 1 —_ 2 T T T T ]
2 o 3 & 9 12 15 g 0 3 6 9 12 15
Time, t (years) Time, t (years)
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@_6 T @_6 T
é 5 4 é 5 -
4 4
Pn) Pn)
:?:2 3 - ;_:3 3 -
Q 2 T T T T 1 Q 2 T T T T L
&"03691215 &"03691215
Time, t (years) Time, t (years)

Fig. 9 Reliability index of the optimal solutionsrf(a) periodic inspections; (b) reliability
threshold; (c) SPU (no-memory ID); and (d) the éxatution (no-memory ID).

The computation time for the SPU solution is coesathly larger than for Pl and RT. The
same is observed when increasing the considergetesdife periodT, and hence the num-
ber of steps in the DBN (see Fig. 10). Howevertlake algorithms show a similar com-



plexity order (a linear increase with the numbetimfe steps). In contrast, the exact solu-
tion of the no-memory ID was obtained by a compsetarch among all possible combina-
tions of inspection times. This procedure has goegntial complexity order with respect
to the number of time steps. For illustration pwgathe last two points of the exact solu-
tion (no-memory) curve in Fig. 10 (= 25 andT = 50) were estimated by extrapolation.

= 1E+16 - A+ Periodic Insp.
% 1E+13 - - ¢ = Rel. Threshold
\q_;lE+10* —O— SPU (no memory ID)
g 1E+07 =@=Exact solution (no
5 memory)

- —o0
T 1E+04
O 1E+01- g ,/ ¢ = = S oIf TS EE R TR

1E-02 &

20 40 60 80 100
Time periods, T (years)

Fig. 10 CPU time for finding the optimal solution

While the SPU algorithm requires significantly meamputation time than the Pl and RT
heuristics, it is more flexible because it allowsadapt the inspections to the results of
previous observations, as shown for the case dbteobservation ID. If the observations
from the previous inspections are considered bafepiding to inspect, an adaptive policy
is followed. Since any information can only incredke expected utility of optimal deci-
sions [3,10], it follows that the maximum expectaidity of the last-observation ID (or any
other adaptive policy implemented through an IDhwitemory) must be larger or equal
than that of a fixed inspection schedule basedhemb-memory ID.

5 Conclusions and outlook

In this paper, the optimal inspection times fortraictural element subject to fatigue are
identified through a set of algorithms. The optiatian problem is formulated through
influence diagrams, whereby varying assumptionangigg the adaptivity of the inspec-
tion schedule were made. As expected, the adaptsgection scheduling leads to lower
expected costs. Among the algorithms for optimizangon-adaptive inspection plan, the
one obtained with the single policy updating (SRldprithm performs the best. However,
the examined heuristics, which allow to signifidgmeduce the computational effort in the
optimization, also perform well.

These results of this paper are useful in the tiy&son of inspection planning problems
in systems with multiple elements, whose detenonatharacteristics are correlated. The
proposed DBN/ID framework can be extended to selweh problems, but the associated
computational complexity will increase with incrgassystem size, and simple heuristics
are no longer readily available. Therefore, it ssemntial to have efficient algorithms for
solving these problems, and the SPU algorithm sgeomising for this purpose.
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