
On the range of exponential functionals of Lévy
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Abstract

We characterize the support of the law of the exponential functional
∫∞
0 e−ξs− dηs

of two independent Lévy processes ξ and η. Further, we study the range of the map-
ping Φξ for a fixed Lévy process ξ, which maps the law of η1 to the law of the cor-
responding exponential functional

∫∞
0 e−ξs− dηs, where (ηt)t≥0 is a one-dimensional

Lévy process, independent of ξ. It is shown that the range of this mapping is closed
under weak convergence and in the special case of positive distributions several
characterizations of laws in the range are given.
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1 Introduction

Given a bivariate Lévy process (ξ, η)T = ((ξt, ηt)
T )t≥0, its exponential functional is defined

as

V :=

∫ ∞

0

e−ξs−dηs, (1.1)

provided that the integral converges almost surely. Exponential functionals of Lévy pro-
cesses appear as stationary distributions of generalized Ornstein-Uhlenbeck (GOU) pro-
cesses. In particular, if ξ and η are independent and ξt tends to +∞ as t → ∞ almost
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surely, then the law of V defined in (1.1) is the stationary distribution of the GOU process

Vt = e−ξt
(∫ t

0

eξs−dηs + V0

)
, t ≥ 0, (1.2)

where V0 is a starting random variable, independent of (ξ, η)T , on the same probability
space (cf. [22, Theorem 2.1]). Hence, when V0 is chosen to have the same distribution as
V , then the process (Vt)t≥0 is strictly stationary.

Unless ξt = at with a > 0, the distribution of V is known only in a few special cases.
See e.g. Bertoin and Yor [8] for a survey on exponential functionals of the form V =∫∞
0
e−ξs− ds, or Gjessing and Paulsen [15], who determine the distribution of

∫∞
0
e−ξs− dηs

for some cases. We state the following example due to Dufresne (e.g. [8, Equation (16)])
of an exponential functional whose distribution has been determined and to which we will

refer later. Here and in the following we write “
d
=” to denote equality in distribution of

random variables.

Example 1.1. For (ξt, ηt) = (σBt + at, t) with σ > 0, a > 0 and a standard Brownian
motion (Bt)t≥0 it holds

V =

∫ ∞

0

e−(σBt+at)dt
d
=

2

σ2Γ 2a
σ2

,

where Γr denotes a standard Gamma random variable with shape parameter r, i.e. with
density

P (Γr ∈ dx) =
xr−1

Γ(r)
e−x1(0,∞)(x)dx.

Denote by L(X) the law of a random variable X and let ξ = (ξt)t≥0 be a one-dimensional
Lévy process drifting to +∞. In this paper we will consider the mapping

Φξ : Dξ → P(R) := the set of probability distributions on R,

L(η1) 7→ L
(∫ ∞

0

e−ξs− dηs

)
,

defined on

Dξ := {L(η1) : η = (ηt)t≥0 one-dimensional Lévy process independent of ξ

such that

∫ ∞

0

e−ξs− dηs converges a.s.}.

An explicit description of Dξ in terms of the characteristic triplets (cf. (1.3)) of ξ and η
follows from Theorem 2 in Erickson and Maller [14]. Denote the range of Φξ by

Rξ := Φξ(Dξ).

Although the domain Φξ can be completely characterized by [14], much less is known
about the range Rξ and properties of the mapping Φξ. In the case that ξt = at, a > 0
is deterministic, it is well known that Dξ = IDlog(R), the set of real-valued infinitely
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divisible distributions with finite log+-moment, and that Φξ is an algebraic isomorphism
between IDlog(R) and Rξ = L(R), the set of real-valued selfdecomposable distributions
[17, Proposition 3.6.10].

For general ξ, the mapping Φξ has already been studied in [5], where it has been shown
that Φξ is injective in many cases, while injectivity cannot be obtained if ξ and η are
allowed to exhibit a dependence structure. Further in [5] conditions for continuity (in a
weak sense) of Φξ are given. These results were then used to obtain some information on
the range Rξ. In particular it has been shown that centered Gaussian distributions can only
be obtained in the setting of (classical) OU processes, namely, for ξ being deterministic
and η being a Brownian motion.

In this paper we take up the subject of studying properties of the mapping Φξ and of
distributions in Rξ, and start in Section 2 with a classification of possible supports of the
laws inRξ. Section 3 is devoted to show closedness of the rangeRξ under weak convergence.
It also follows that the inverse mapping Φ−1

ξ is continuous if it is well-defined, i.e. if Φξ

is injective. In Sections 4 and 5 we specialize on positive distributions in Rξ. Section 4
gives a general criterion for positive distributions to belong to Rξ. In Section 5 we use
this criterion to obtain further results in the case that ξ is a Brownian motion with drift.
We derive a differential equation for the Laplace exponent of a positive distribution in
Rξ and from this we gain concrete conditions in terms of Lévy measure and drift for
some distributions to be in Rξ. We end up studying the special case of positive stable
distributions in Rξ.

For an Rd-valued Lévy process X = (Xt)t≥0, the characteristic exponent is given by its
Lévy-Khintchine formula (e.g. [26, Theorem 8.1])

log ϕX(u) := logE
[
ei⟨u,X1⟩

]
(1.3)

= i⟨γX , u⟩ −
1

2
⟨u,AXu⟩+

∫
Rd

(ei⟨u,x⟩ − 1− i⟨u, x⟩1|x|≤1)νX(dx), u ∈ R,

where (γX , AX , νX) is the characteristic triplet of the Lévy process X. In case that X is
real-valued we will usually replace AX by σ2

X . We set νX({0}) = 0 for any Lévy measure
νX . In the special case of subordinators in R, i.e. nondecreasing Lévy processes, we will
also use the Laplace transform

LX(u) := E[e−uX1 ] = eψX(u), u ≥ 0,

of X and call ψX(u) the Laplace exponent of the Lévy process X. We refer to [26] for
further information on Lévy processes. In the following, when the symbol X is regarded
as a real-valued random variable, we also use the notation ϕX(u) and LX(u) for its char-
acteristic function and Laplace transform, respectively. The Fourier transform of a finite

measure µ on R is written as µ̂(u) =
∫
R e

iux µ(dx). We write “
d→” to denote convergence

in distribution of random variables, and “
w→” to denote weak convergence of probability

measures. We use the abbreviation “i.i.d.” for “independent and identically distributed”.
The set of all twice continuously differentiable functions f : R → R which are bounded
will be denoted by C2

b (R), and the subset of all f : R → R which have additionally
compact support by C2

c (R).
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2 On the support of the exponential functional

In this section we shall give the support of the distribution of the exponential functional
V =

∫∞
0
e−ξs− dηs when ξ and η are independent Lévy processes. In particular it turns

out that the support will always be a closed interval. A similar result does not hold for
solutions of arbitrary random recurrence equations, or for exponential functionals of Lévy
processes with dependent ξ and η, as we shall show in Remark 2.4.

For ξ being spectrally negative, it is well known (e.g. [7]) that V has a selfdecomposable
and hence infinitely divisible distribution. In [26, Theorem 24.10] a characterization of
the support of infinitely divisible distributions is given in terms of the Lévy triplet. In
particular the support of a selfdecomposable distribution on R is either a single point, R
itself or a one-sided unbounded interval. Unfortunately the characteristic triplet of V is
not known in general and also, for not spectrally negative ξ this result can not be applied.

Before we characterize the support of the law of V =
∫∞
0
e−ξs− dηs when ξ and η are

general independent Lévy processes, we treat the special case when ηt = t in the following
lemma. Much attention has been paid to this case, and in particular, it has been shown
that the stationary solution has a density under various conditions, see e.g. Pardo et
al. [24] or Carmona at al. [12]. Haas and Rivero [16, Theorem 1.4, Lemma 2.1] gave a
characterization when this law is bounded and obtained that this is the case if and only
if ξ is a subordinator with strictly positive drift, and derived the support then. So parts
of the following lemma follow already from results in [16], nevertheless we have decided
to give a detailed proof.

Lemma 2.1. Let ξ be a Lévy process drifting to +∞ and set V =
∫∞
0
e−ξsds. Then

suppL(V ) =



{
1
b

}
, if ξt = bt with b > 0,[

0, 1
b

]
, if ξ is a non-deterministic subordinator with drift b > 0,[

1
b
,∞
)
, if ξ is non-deterministic and of finite variation,

with drift b > 0 and νξ((0,∞)) = 0,

[0,∞), otherwise.

Proof. The claim is clear if ξ is deterministic, while it follows from Remark 1.1 if ξ is a
Brownian motion with drift, so suppose that νξ ̸≡ 0. Suppose first that νξ((0,∞)) > 0,
and let x0 ∈ suppL(V ) ∩ (0,∞). Let c ∈ supp νξ ∩ (0,∞) and y0 ∈ (e−cx0, x0). We shall
show that also y0 ∈ suppL(V ), so that by induction suppL(V ) must be an interval with
lower endpoint 0 if νξ((0,∞)) > 0. To see this, define z0 ∈ (0, y0) so that

z0 + e−c(x0 − z0) = y0.

Let ε ∈ (0, x0−z0
2

) and define

A = Aε :=

{
ω ∈ Ω :

∫ ∞

0

e−ξs(ω) ds ∈ (x0 − ε, x0 + ε)

}
.
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Then P (A) > 0 since x0 ∈ suppL(V ). Define the stopping time T1 ∈ [0,∞] by

T1 := inf

{
t ≥ 0 :

∫ t

0

e−ξs(ω) ds = z0

}
.

Since t 7→
∫ t
0
e−ξs(ω) ds is continuous, T1 is finite on A. Let δ1 ∈ (0, x0−z0

2
) and δ2 ∈ (0, c).

Then νη((c− δ2, c+ δ2)) > 0, and since P (A) > 0, there are a (sufficiently large) constant
K = K(ε, δ1, δ2) > 0 and a (sufficiently small) constant δ = δ(ε, δ1, δ2) > 0 such that
δ < 1 and

B := Bε,δ1,δ2,δ,K := A ∩
{
T1 ≤ K,

∫ T1+δ

T1

e−ξs ds ≤ δ1,

∆ξs ̸∈ (c− δ2, c+ δ2), ∀ s ∈ (T1, T1 + δ]
}

has a positive probability. Now define the set C = Cε,δ1,δ2,δ,K to be the set of all ω ∈ Ω,
for which there exists an ω′ ∈ B, some time t(ω′) ∈ (T1 ∧ K, (T1 ∧ K) + δ] and some
α(ω′) ∈ (c− δ2, c+ δ2) such that

(ξt(ω))t≥0 = (ξt(ω
′) + α(ω′)1[t(ω′),∞))t≥0,

namely, the set of ω whose paths behave exactly like a sample path from the set B, but
with the exception that additionally exactly one jump of size in (c− δ2, c+ δ2) occurs in
the interval (T1 ∧K, (T1 ∧K) + δ]. Since T1 ∧K is a finite stopping time, it follows from
the strong Markov property of ξ and from P (B) > 0 that also P (C) > 0. But for ω ∈ C,
with ω′ ∈ B and α = α(ω′) ∈ (c− δ2, c+ δ2) as in the definition of C, we obtain∫ ∞

0

e−ξs(ω) ds =

∫ T1(ω′)

0

e−ξs(ω
′) ds+

∫ T1(ω′)+δ

T1(ω′)

e−ξs(ω) ds+ e−α
∫ ∞

T1(ω′)+δ

e−ξs(ω
′) ds

∈
[
z0 +

∫ T1(ω′)+δ

T1(ω′)

e−ξs(ω) ds+ e−α
(
x0 − ε− z0 −

∫ T1(ω′)+δ

T1(ω′)

e−ξs(ω
′) ds

)
,

z0 +

∫ T1(ω′)+δ

T1(ω′)

e−ξs(ω) ds+ e−α(x0 + ε− z0 −
∫ T1(ω′)+δ

T1(ω′)

e−ξs(ω
′) ds

)]
⊂
[
z0 − δ1 + e−c(x0 − z0 − ε) + (e−c−δ2 − e−c)(x0 − z0 − ε)− e−c+δ2δ1,

z0 + δ1 + e−c(x0 − z0 + ε) + (e−c+δ2 − e−c)(x0 − z0 + ε) + e−c+δ2δ1

]
.

Since y0 = z0+e
−c(x0−z0), we see that y0 ∈ suppL(V ) by choosing ε, δ1 and δ2 sufficiently

small. So we have shown that suppL(V ) is an interval with 0 as its lower endpoint if
νξ((0,∞)) > 0.
By a similar reasoning, one can show that suppL(V ) is an interval with +∞ as its upper
endpoint if νξ((−∞, 0)) > 0.

It follows that suppL(V ) = [0,∞) if νξ((0,∞)) > 0 and νξ((−∞, 0)) > 0. Now suppose
that ξ is of infinite variation with νξ((0,∞)) > 0 (but νξ((−∞, 0)) = 0), or νξ((−∞, 0)) >
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0 (but νξ((0,∞)) = 0). Then there is α > 0 such that for each t1, t0 > 0 with t1 > t0 and
K > 0 the event

{ξs ≥ −2, ∀s ∈ [0, t0], ξs ≥ K, ∀s ∈ [t0, t1], ξs ≥ αs, ∀s ≥ t1}

has a positive probability, since limt→∞ t−1ξt exists almost surely in (0,∞] by [13, The-
orems 4.3 and 4.4]) and since suppL(ξt) = R for all t > 0 (cf. [26, Theorem 24.10]).
Choosing t0 small enough and t1, K big enough, it follows that 0 ∈ suppL(V ) since
suppL(V ) is closed. On the other hand, since also the event

{ξs ≤ 2, ∀s ∈ [0, t2]}

has positive probability for each t2 > 0 as a consequence of the infinite variation of ξ, it
follows that suppL(V ) is unbounded, hence showing that suppL(V ) = [0,∞) if ξ is of
infinite variation.

Now assume that ξ is of finite variation with drift b ∈ R, νξ((0,∞)) > 0 and νξ((−∞, 0)) =
0. We already know that 0 ∈ suppL(V ). If b ≤ 0, then the event {ξs ≤ 2, ∀s ∈ [0, t2]} has
a positive probability for each t2 > 0, and hence suppL(V ) is unbounded. If b > 0, then
for each ε > 0 and t2 > 0, the event {ξs ≤ (b+ ε)s, ∀s ∈ [0, t2]} has a positive probability
by Shtatland’s result (cf. [26, Theorem 43.20]), so that sup suppL(V ) ≥

∫ t2
0
e−(b+ε)s ds for

each t2 > 0 and ε > 0, and hence sup suppL(V ) ≥ 1/b. On the other hand, in that case
V =

∫∞
0
e−ξs ds ≤

∫∞
0
e−bs ds = 1/b, so that suppL(V ) = [0, 1/b].

Finally, assume that ξ is of finite variation with drift b > 0, νξ((0,∞)) = 0 and
νξ((−∞, 0)) > 0. Then suppL(V ) is unbounded and by arguments similar to above,
using that limt→∞ t−1ξt = E[ξ1] ∈ (0, b), we see that inf suppL(V ) = 1/b, so that
suppL(V ) = [1/b,∞). This finishes the proof.

Now we can characterize the support of L
(∫∞

0
e−ξs− dηs

)
when ξ and η are independent

Lévy processes. Observe that Theorem 2.2 below together with Lemma 2.1 provides a
complete characterization of all possible cases.

Theorem 2.2. Let ξ and η be two independent Lévy processes such that V :=
∫∞
0
e−ξs− dηs

converges almost surely.

(i) Suppose that η is of infinite variation, or that νη((0,∞)) > 0 and νη((−∞, 0)) > 0.
Then suppL(V ) = R.

(ii) Suppose that η is of finite variation with drift a, νη((0,∞)) > 0 and νη((−∞, 0)) = 0.
Then for a ≥ 0

suppL(V ) =

{[
a
b
,∞
)
, if ξ is of finite variation with drift b > 0 and νξ((0,∞)) = 0,

[0,∞), otherwise,

and for a < 0

suppL(V ) =

{[
a
b
,∞
)
, if ξ is a subordinator with drift b > 0,

R, otherwise.
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(iii) Suppose that η is of finite variation with drift a, νη((0,∞)) = 0 and νη((−∞, 0)) > 0.
Then for a > 0

suppL(V ) =

{(
−∞, a

b

]
, if ξ is a subordinator with drift b > 0,

R, otherwise,

and for a ≤ 0

suppL(V ) =

{(
−∞, a

b

]
, if ξ is of finite variation with drift b > 0 and νξ((0,∞)) = 0,

(−∞, 0], otherwise.

Proof. Denote by D([0,∞),R) the set of all real valued càdlàg functions on [0,∞). Since
ξ and η are independent, we can condition on ξ = f with f ∈ D([0,∞),R) and it follows
that, for Pξ-almost every f ∈ D([0,∞),R),

Vf :=

∫ ∞

0

e−f(s−) dηs = lim
T→∞

∫ T

0

e−f(s−) dηs

converges almost surely. Hence we can apply the results in [27] for such f , and obtain
that Vf is infinitely divisible with Gaussian variance

Af = Aη

∫ ∞

0

e−2f(s) ds

and Lévy measure νf , given by

νf (B) =

∫ ∞

0

ds

∫
R
1B(e

−f(s)x) νη(dx) for B ∈ B(Rd) with 0 ̸∈ B

(cf. [27, Theorem 3.10]). In particular, Af > 0 if and only if Aη > 0, νf ((0,∞)) > 0 if
and only if νη((0,∞)) > 0, and νf ((−∞, 0)) > 0 if and only if νη((−∞, 0)) > 0. Further,
since lims→∞ f(s) = +∞ Pξ-a.s.(f), for any ε > 0 we conclude that

νf ((−ε, ε) \ {0}) =
∫ ∞

0

νη((−ef(s)ε, ef(s)ε) \ {0})ds = ∞

provided that νη ̸≡ 0. This shows that 0 ∈ supp νf , Pξ-a.s.(f). It then follows from [26,
Theorem 24.10] that

suppL(Vf ) = R, Pξ − a.s.(f)

if Aη > 0, or if νη((0,∞)) > 0 and νη((−∞, 0)) > 0. Hence in that case P (Vf ∈ B|ξ = f) >
0 Pξ-a.s.(f) for any open set B ̸= ∅, so that P (V ∈ B) =

∫
P (Vf ∈ B|ξ = f) dPξ(f) > 0.

Hence suppL(V ) = R, which shows (i).

To show (ii), suppose that η is of finite variation with drift a, and that νη((0,∞)) > 0
and νη((−∞, 0)) = 0. Then, for Pξ-a.e. f , Vf ≥ a

∫∞
0
e−f(s) ds > −∞ and hence Vf is of

finite variation. It then follows from [27, Theorem 3.15] that Vf has drift a
∫∞
0
e−f(s) ds

and [26, Theorem 24.10] gives

suppL(Vf ) =
[
a

∫ ∞

0

e−f(s) ds,∞
)
.
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Since P (V ∈ B) =
∫
P (Vf ∈ B|ξ = f) dPξ(f), the assertion (ii) follows from Lemma 2.1.

Finally, (iii) follows from (ii) by replacing η by −η.

The following result is now immediate.

Corollary 2.3. Let ξ be a Lévy process drifting to +∞, and η another Lévy process,
independent of ξ such that L(η1) ∈ Dξ. Then V =

∫∞
0
e−ξs− dηs ≥ 0 a.s. if and only if η

is a subordinator.

Remark 2.4. (i) Let ξ and η be two independent Lévy processes such that V =
∫∞
0
e−ξs− dηs

converges almost surely and consider the associated GOU process (Vt)t≥0 defined by (1.2).
Then it is easy to see that Vn = AnVn−1 +Bn for each n ∈ N, where ((An, Bn)

T )n∈N is an
i.i.d. sequence of bivariate random vectors given by

(An, Bn)
T =

(
e−(ξn−ξn−1), e−(ξn−ξn−1)

∫
(n−1,n]

eξs−−ξn−1 dηs

)T
(e.g. [22, Lemma 6.2]). Further, if V0 is chosen to be independent of (ξ, η)T , then (V0, . . . , Vn−1)

T

is independent of ((Ak, Bk)
T )k≥n for each n. Since L(V ) is the stationary marginal distri-

bution of the GOU process, it is also the stationary marginal distribution of the random
recurrence equation Vn = AnVn−1 + Bn, n ∈ N. We have seen in particular, that the
support of L(V ) was always an interval. Hence it is natural to ask if stationary solutions
to arbitrary random recurrence equations will always have an interval as its support.
We will see that this is not the case. To be more precise, let

(
(An, Bn)

T
)
n∈N be a given

i.i.d. sequence of bivariate random vectors. Suppose that (Xn)n∈N0 is a strictly stationary
sequence which satisfies the random recurrence equation

Xn = AnXn−1 +Bn, n ∈ N, (2.1)

such that (X0, . . . , Xn−1) is independent of
(
(Ak, Bk)

T
)
k≥n (provided that such a solution

exists) for every n ∈ N. Then the support of L(X0) does not need to be an interval, even
if An is constant and hence An and Bn are independent. To see this, let An = 1/3 and let
(Bn)n∈Z be an i.i.d. sequence such that P (Bn = 0) = P (Bn = 2) = 1/2. Then

Xn =
∞∑
k=0

3−kBn−k, n ∈ N0, (2.2)

defines a stationary solution of (2.1), which is unique in distribution. Obviously, the
support of L(X0) is given by the Cantor set{

∞∑
n=0

3−nzn : zn ∈ {0, 2}, ∀ n ∈ N0

}
,

which is totally disconnected and not an interval.
(ii) The stationary solution constructed in (2.2) is a 1/3-decomposable distribution (see
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[26, Definition 64.1] for the definition). By Proposition 6.2 in [5], there exists a bivariate
Lévy process (ξ, η)T such that ξt = (log 3)Nt for a Poisson process (Nt)t≥0 and such that∫ ∞

0

e−ξs− dηs =

∫ ∞

0

3−Ns− dηs

has the same distribution as X0 from (2.2). In particular, its support is not an interval.
Hence a similar statement to Theorem 2.2 does not hold under dependence.

3 Closedness of the range

This section is devoted to show that, as in the well-known case of a deterministic process
ξ, the range Rξ = Φξ(Dξ) is closed under weak convergence. On the contrary, closedness
of Rξ under convolution does not hold any more as will be demonstrated in Example 3.6
below.
It will also follow that the inverse mapping (Φξ)

−1 is continuous, provided that Φξ is
injective. Recall that Φξ is injective if, for instance, ξ is spectrally negative (cf. [5, Theorem
5.3]). Further, for any ξ drifting to +∞, Φξ is always injective when restricted to positive
measures L(η1) [5, Remark 5.4]. Thus, although Φξ need not be continuous (which follows
by an argument similar to [5, Example 7.1]), the inverse of Φξ restricted to positive
measures will turn out to be always continuous.

We start with the following proposition, which shows that the mapping Φξ is closed.

Proposition 3.1. Let ξ be a Lévy process drifting to +∞. Then the mapping Φξ is closed

in the sense that if L(η(n)1 ) ∈ Dξ, η
(n)
1

d→ η1 and Φξ(L(η(n)1 ))
w→ µ for some random

variable η1 and probability measure µ as n→ ∞, then L(η1) ∈ Dξ and Φξ(L(η1)) = µ.

Proof. For n ∈ N, let W (n) be a random variable such that

W (n) d
=

∫ ∞

0

e−ξs− dη(n)s and W (n) is independent of (ξ, η(n))T ,

where η(n) is a Lévy process induced by η
(n)
1 independent of ξ. Then the limit L(η1) is

infinitely divisible by [26, Lemma 7.8]) and we can define η as a Lévy process induced
by η1, independent of ξ. Let W be a random variable with distribution µ, independent of
(ξ, η)T . The proof of [5, Theorem 7.3], more precisely the part leading to Equation (7.12)
there, then shows that for every t > 0 we have(

e−ξt ,

∫ t

0

eξs− dη(n)s

)T
d→
(
e−ξt ,

∫ t

0

eξs− dηs

)T
, n→ ∞.

Due to independence this yields(
W (n), e−ξt ,

∫ t

0

eξs− dη(n)s

)T
d→
(
W, e−ξt ,

∫ t

0

eξs− dηs

)T
, n→ ∞,

9



and since L(W (n)) is the invariant distribution of the GOU process driven by (ξ, η(n))T ,
this implies

W (n) d
= e−ξt

(
W (n) +

∫ t

0

eξs− dη(n)s

)
d→ e−ξt

(
W +

∫ t

0

eξs− dηs

)
, n→ ∞.

Since also W (n) d→ W as n→ ∞, this shows that

W
d
= e−ξt

(
W +

∫ t

0

eξs− dηs

)
for any t > 0. Since the GOU process driven by (ξ, η)T is a Markov process, this shows
that µ = L(W ) is the unique invariant distribution of this GOU process. By [4, Theorem
2.1], this shows that

∫∞
0
e−ξs− dηs converges a.s., i.e. L(η1) ∈ Dξ, and that

µ = L(W ) = L
(∫ ∞

0

e−ξs− dηs

)
= Φξ(L(η1)),

giving the claim.

In order to show that Rξ is closed, we shall first show in Proposition 3.3 below that

if a sequence (Φξ(L(η(n)1 )))n∈N is tight, then (η
(n)
1 )n∈N is tight. In order to achieve this,

observe first that as a consequence of [19, Lemma 15.15] and Prokhorov’s theorem, a

sequence (L(η(n)1 ))n∈N of infinitely divisible distributions on R with characteristic triplets
(γn, σ

2
n, νn) is tight if and only if

sup
n∈N

∣∣∣∣γn + ∫
R
x

(
1

1 + x2
− 1|x|≤1

)
νn(dx)

∣∣∣∣ <∞

and the sequence (ν̃n)n∈N of finite positive measures on R with

ν̃n(dx) = σ2
n δ0(dx) +

x2

1 + x2
νn(dx)

is weakly relatively compact (in particular, this implies that supn∈N ν̃n(R) < ∞). Using
Prokhorov’s theorem for finite measures (e.g. [1, Theorem 7.8.7]), it is easy to see that
this is equivalent to

sup
n∈N

σ2
n <∞, (3.1)

sup
n∈N

∫
[−1,1]

x2 νn(dx) <∞, (3.2)

sup
n∈N

νn(R \ [−r, r]) <∞, ∀ r > 0, (3.3)

lim
r→∞

sup
n∈N

νn(R \ [−r, r]) = 0, and (3.4)

sup
n∈N

|γn| <∞. (3.5)

The following lemma gives direct uniform estimates for µ([−r, r]) in terms of the Lévy
measure or Gaussian variance of an infinitely divisible distribution µ which will be needed
to prove Proposition 3.3.
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Lemma 3.2. Let µ be an infinitely divisible distribution on R with characteristic triplet
(γ, σ2, ν). For ε ∈ (0, 1) denote by Iε the set

Iε := {z ∈ R : 1− cos z ≥ ε}.

Then for any p ∈ (0, 1) and a > 0, there is some ε = ε(a, p) ∈ (0, 1) such that

λ1(Iε ∩ [−y, y])
λ1([−y, y])

≥ 1− p, ∀ y ≥ a, (3.6)

where λ1 denotes the Lebesgue measure on R. For δ > 0, denote by

∥ν∥δ := ν(R \ [−δ, δ])

the total mass of ν|R\[−δ,δ] and

M(ν) :=

∫
[−1,1]

x2 ν(dx).

Further, let c > 0 be a constant such that

cos(t)− 1 ≤ −ct2, ∀ t ∈ [−1, 1].

Then

µ([−r, r]) ≤ 4(e−ε(δ/r,p)∥ν∥δ(1− p) + p), ∀ p ∈ (0, 1), r, δ > 0, (3.7)

µ([−r, r]) ≤ 1−min{e−∥ν∥2r , 1− e−∥ν∥2r/2}, ∀ r > 0, (3.8)

µ([−r, r]) ≤ 2r

∫ 1/r

−1/r

e−M(ν)ct2 dt, ∀ r ≥ 1, (3.9)

and

µ([−r, r]) ≤ 2r

∫ 1/r

−1/r

e−σ
2t2/2 dt, ∀ r > 0. (3.10)

Proof. Equation (3.6) is clear. Let r > 0. Then an application of [19, Lemma 5.1] shows

µ([−r, r]) ≤ 2r

∫ 1/r

−1/r

|µ̂(t)| dt = 2r

∫ 1/r

−1/r

exp

(
−σ2t2/2 +

∫
R
(cos(xt)− 1)ν(dx)

)
dt

(3.11)
which immediately gives (3.10). Let δ > 0. Equation (3.7) is trivial when ∥ν∥δ = 0, and
for ∥ν∥δ > 0 observe that by (3.11) and Jensen’s inequality we can estimate

µ([−r, r]) ≤ 2r

∫ 1/r

−1/r

exp

(∫
|x|>δ

(cos(xt)− 1)∥ν∥δ
ν(dx)

∥ν∥δ

)
dt

≤ 2r

∫ 1/r

−1/r

(∫
|x|>δ

e(cos(xt)−1)∥ν∥δ ν(dx)

∥ν∥δ

)
dt

11



=

∫
|x|>δ

(
2r

|x|

∫ |x|/r

−|x|/r
e(cos z−1)∥ν∥δ dz

)
ν(dx)

∥ν∥δ
. (3.12)

By (3.6) we estimate for |x| ≥ δ and p ∈ (0, 1) with ε = ε(δ/r, p)

2r

|x|

∫ |x|/r

−|x|/r
e(cos z−1)∥ν∥δ dz

≤ 4

λ1([− |x|
r
, |x|
r
])

(
e−ε∥ν∥δλ1

(
[−|x|

r
,
|x|
r
] ∩ Iε

)
+ λ1

(
[−|x|

r
,
|x|
r
] \ Iε

))
≤ 4(e−ε∥ν∥δ(1− p) + p),

which together with (3.12) results in (3.7). Similarly, (3.9) is trivial whenM(ν) = 0, while
forM(ν) > 0 define the finite measure ρ on [−1, 1] by ρ(dx) = x2ν(dx). We then estimate
with (3.11) and Jensen’s inequality, for r ≥ 1,

µ([−r, r]) ≤ 2r

∫ 1/r

−1/r

exp

(∫
[−1,1]

cos(xt)− 1

x2
M(ν)

ρ(dx)

M(ν)

)
dt

≤ 2r

∫ 1/r

−1/r

(∫
[−1,1]

exp

(
cos(xt)− 1

x2
M(ν)

)
ρ(dx)

M(ν)

)
dt

≤ 2r

∫ 1/r

−1/r

(∫
[−1,1]

e−ct
2M(ν) ρ(dx)

M(ν)

)
dt,

which gives (3.9). Finally, let us prove Equation (3.8). This is again trivial when ∥ν∥2r = 0,
so assume ∥ν∥2r > 0. By symmetry, we can assume without loss of generality that

ν((−∞,−2r)) ≥ ∥ν∥2r/2 > 0.

Let (Xt)t≥0 be a Lévy process with L(X1) = µ, and define

Yt :=
∑

0<s≤t,∆Xs<−2r

∆Xs and Zt := Xt − Yt, t ∈ R,

where ∆Xs := Xs−Xs− denotes the jump size of X at time s. Then (Yt)t≥0 and (Zt)t≥0 are
two independent Lévy processes, and (Yt)t≥0 is a compound Poisson process with Lévy
measure ν|(−∞,−2r). Denote by (Nt)t≥0 the underlying Poisson process in (Yt)t≥0 which
counts the number of jumps of (Yt)t≥0. Then

µ(R \ [−r, r]) = P (|Y1 + Z1| > r)

≥ P (|Z1| > r, Y1 = 0) + P (|Z1| ≤ r, Y1 < −2r)

= P (|Z1| > r)P (N1 = 0) + P (|Z1| ≤ r)P (N1 ≥ 1)

= P (|Z1| > r)e−ν((−∞,−2r)) + (1− P (|Z1| > r))(1− e−ν((−∞,−2r)))

≥ min{e−ν((−∞,−2r)), 1− e−ν((−∞,−2r))}
≥ min{e−∥ν∥2r , 1− e−∥ν∥2r/2},

which implies (3.8).
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The next result is the key step in proving closedness of Rξ.

Proposition 3.3. Let ξ be a Lévy process drifting to +∞ and (L(η(n)1 ))n∈N be a sequence

in Dξ such that (µn := Φξ(L(η(n)1 )))n∈N is tight. Then also (η
(n)
1 )n∈N is tight.

Proof. Denote by (γn, σ
2
n, νn) the characteristic triplet of η

(n)
1 . We have to show that

conditions (3.1) – (3.5) are satisfied. Since ξ has càdlàg paths, there are some 0 < D1 ≤
1 ≤ D2 <∞ and some measurable sets An ⊂ D([0,∞),R) with

D1 ≤ e−f(s) ≤ D2 ∀ f ∈ An, s ∈ [0, 1],∫ ∞

0

e−f(s−) dη(n)s converges a.s., ∀f ∈ An,

and P ((ξs)s∈[0,1] ∈ An) ≥ 1/2. Conditioning on ξ = f for f ∈ D([0,∞),R), we obtain for
any r > 0 by independence of ξ and η(n)

µn(R \ [−r, r]) ≥
∫
An

P

(∣∣∣∣∫ ∞

0

e−f(s−) dη(n)s

∣∣∣∣ > r

)
Pξ(df)

≥ 1

2

(
1− sup

f∈An

P

(∣∣∣∣∫ ∞

0

e−f(s−) dη(n)s

∣∣∣∣ ≤ r

))
. (3.13)

For fixed f ∈ An the distribution of
∫∞
0
e−f(s−) dη

(n)
s is infinitely divisible with Gaussian

variance

σ2
f,n = σ2

n

∫ ∞

0

(e−f(s))2 ds ≥ D2
1σ

2
n (3.14)

and Lévy measure νf,n satisfying

νf,n(B) =

∫ ∞

0

ds

∫
R
1B(e

−f(s)x) νn(dx) (3.15)

for any Borel set B ⊂ R \ {0} (cf. [27, Theorem 3.10]). In particular, for f ∈ An and any
δ > 0,

νf,n(R \ [−δ, δ]) ≥
∫ 1

0

ds

∫
R
1R\[−δef(s),δef(s)](x) νn(dx) ≥ νn(R \ [−δ/D1, δ/D1]). (3.16)

From (3.15) we obtain∫
[−1,1]

t2νf,n(dt) =

∫ ∞

0

ds

∫
R

(
e−f(s)x

)2
1{|e−f(s)x|≤1}(x) νn(dx),

for f ∈ An, hence∫
[−1,1]

t2νf,n(dt) ≥ D2
1

∫
[−1,1]

x21{|D2x|≤1}(x)νn(dx) = D2
1

∫
[−1/D2,1/D2]

x2νn(dx). (3.17)
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Now suppose (3.1) were violated. Then by (3.13), (3.10) and (3.14) we conclude that

sup
n∈N

{
µn(R \ [−r, r])

}
≥ 1

2
sup
n∈N

{
1− 2r

∫ 1/r

−1/r

e−D
2
1σ

2
nt

2/2 dt

}
=

1

2

for every r > 0, contradicting tightness of (µn)n∈N. Hence (3.1) must be true.

Now suppose that (3.3) were violated, so that there is some δ > 0 such that supn∈N ∥νn∥δ =
∞ with the notions of Lemma 3.2. Let p ∈ (0, 1/4) be arbitrary. Then by (3.7) and (3.16),
we have for every f ∈ An, with ϵ = ϵ(D1δ/r, p) as defined in Lemma 3.2, that

P

(∣∣∣∣∫ ∞

0

e−f(s−) dη(n)s

∣∣∣∣ ≤ r

)
≤ 4

(
e−ε(D1δ/r,p)∥νf,n∥D1δ(1− p) + p

)
(3.18)

≤ 4e−ε(D1δ/r,p)∥νn∥δ(1− p) + 4p.

From (3.13) we then obtain that

sup
n∈N

{
µn(R \ [−r, r])

}
≥ 1

2
(1− 4p) > 0, ∀ r > 0,

which again contradicts tightness of (µn)n∈N so that (3.3) must hold.

Now suppose that (3.4) were violated. Then there is some a > 0 and a sequence (δk)k∈N
of positive real numbers tending to +∞ and an index n(k) ∈ N for each k such that

∥νn(k)∥2δk/D1 ≥ a, ∀ k ∈ N.

Let p ∈ (0, 1/4) be arbitrary and choose ε = ε(D1, p) as in Lemma 3.2. Let b > 0 be such
that

b1 := 4
(
e−ε(D1,p)b(1− p) + p

)
< 1.

Let f ∈ An. Then if ∥νf,n(k)∥D1δk ≥ b we have

P

(∣∣∣∣∫ ∞

0

e−f(s−) dη(n(k))s

∣∣∣∣ ≤ δk

)
≤ b1 < 1

by (3.18), while if ∥νf,n(k)∥D1δk < b we obtain from (3.8) and (3.16) that

P

(∣∣∣∣∫ ∞

0

e−f(s−) dη(n(k))s

∣∣∣∣ ≤ δk

)
≤ 1−min{e−∥νf,n(k)∥2δk , 1− e−∥νf,n(k)∥2δk/2}

≤ 1−min{e−b, 1− e−∥νn(k)∥2δk/D1
/2}

≤ 1−min{e−b, 1− e−a/2}.

From (3.13) we then conclude

µn(k)(R \ [−δk, δk]) ≥
1

2

(
1−max{b1, 1− e−b, e−a/2}

)
> 0 ∀ k ∈ N.

In particular,

lim sup
r→∞

sup
n∈N

{µn(R \ [−r, r])} ≥ 1

2

(
1−max{b1, 1− e−b, e−a/2}

)
> 0,
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which again contradicts tightness of (µn)n∈N. We conclude that also (3.4) must be valid.

Now suppose that (3.2) were violated, but (3.3) holds. Then by (3.13), (3.9), (3.17) and
with c from Lemma 3.2 we have for every r ≥ 1

sup
n∈N

{
µn(R\[−r, r])

}
≥ 1

2
sup
n∈N

{
1− 2r

∫ 1/r

−1/r

exp

(
−D2

1ct
2

∫
[−1/D2,1/D2]

x2 νn(dx)

)
dt

}
=

1

2
,

where we have used that (3.3) together with supn∈N
∫
[−1,1]

x2 νn(dx) = ∞ imply

supn∈N
∫
[−1/D2,1/D2]

x2 νn(dx) = ∞. This again contradicts tightness of (µn)n∈N so that

(3.2) must hold.

Finally, suppose that (3.5) were violated but that (3.1)–(3.4) hold. Then there is a sub-
sequence of (γn)n∈N which diverges to +∞ or −∞, and without loss of generality assume
that this is (γn)n∈N. Since (µn)n∈N is tight by assumption, there is a subsequence of (µn)n∈N
which converges weakly, and for the convenience of notation assume again that (µn)n∈N
converges weakly to some distribution µ. Let the Lévy process U with characteristic
triplet (γU , σ

2
U , νU) be related to ξ by E(U)t = e−ξt , where E(U) denotes the stochastic

exponential of U . Then it follows from [5, Corollary 3.2 and Equation (4.1)] that

γn

∫
R
f ′(x)µn(dx)

= −1

2
σ2
n

∫
R
f ′′(x)µn(dx)−

∫
R
µn(dx)

∫
R

(
f(x+ y)− f(x)− f ′(x)y1|y|≤1

)
νn(dy)

− γU

∫
R
f ′(x)xµn(dx)−

1

2
σ2
U

∫
R
f ′′(x)x2 µn(dx)

−
∫
R
µn(dx)

∫
R

(
f(x+ xy)− f(x)− f ′(x)xy1|y|≤1

)
νU(dy)

for every function f ∈ C2
c (R). Consider the right hand side of this equation. The first

summand remains bounded in n by (3.1) and weak convergence of µn, and the second
remains bounded in n by (3.2) and (3.3), since

|f(x+ y)− f(x)− f ′(x)1|y|≤1| ≤ 2∥f∥∞1|y|>1 + ∥f ′′∥∞y21|y|≤1

(cf. [5, Proof of Lemma 4.2]), where ∥ · ∥∞ denotes the supremum norm. The third and
fourth summands converge by weak convergence of µn, and the fifth summand remains
bounded in n by [5, Equation (3.6)] (actually, the fifth summand can be shown to con-
verge). We conclude also that γn

∫
R f

′(x)µn(dx) must be bounded in n for every f ∈ C2
c (R).

Choosing f ∈ C2
c (R) such that

∫
R f

′(x)µ(dx) ̸= 0, we obtain that (γn)n∈N must be
bounded and hence the desired contradiction. Summing up, we have verified (3.1) – (3.5)

so that (η
(n)
1 )n∈N must be tight.

Now define

D+
ξ := {L(η1) ∈ Dξ : η1 ≥ 0 a.s.},

Φ+
ξ := (Φξ)|D+

ξ
,
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and

R+
ξ := Φξ(D

+
ξ ) = Φ+

ξ (D
+
ξ ).

By Corollary 2.3,
R+
ξ = Rξ ∩ {µ ∈ P(R) : suppµ ⊂ [0,∞)}.

We now show closedness ofRξ under weak convergence and that the inverse of Φξ (provided
that it exists) is continuous.

Theorem 3.4. Let ξ = (ξt)t≥0 be a Lévy process drifting to +∞.
(i) Then Rξ and R

+
ξ are closed under weak convergence.

(ii) If Φξ is injective, then the inverse Φ−1
ξ : Rξ → Dξ is continuous with respect to the

topology induced by weak convergence.
(iii) The inverse (Φ+

ξ )
−1 : R+

ξ → D+
ξ is continuous.

Proof. (i) Let (µn = Φξ(L(η(n)1 )))n∈N be a sequence in Rξ which converges weakly to some

µ ∈ P(R). Then (µn)n∈N is tight, and by Proposition 3.3, (η
(n)
1 )n∈N must be tight, too.

Hence there is a subsequence (η
(nk)
1 )k∈N which converges weakly to some random variable

η1. It then follows from Proposition 3.1 that also L(η1) ∈ Dξ and that Φξ(L(η1)) = µ.
Hence µ ∈ Rξ so that Rξ is closed. Since {µ ∈ P(R) : suppµ ⊂ [0,∞)} is closed, this
gives also closedness of R+

ξ .

(ii) Let (µn = Φξ(L(η(n)1 )))n∈N be a sequence in Rξ which converges weakly to some µ. By

Proposition 3.3, (η
(n)
1 )n∈N is tight. Let (η

(kn)
1 )k∈N be a subsequence which converges weakly

to some η1, say. Then L(η1) ∈ Dξ and Φξ(L(η1)) = µ by Proposition 3.1, and since Φξ is
injective we have L(η1) = Φ−1

ξ (µ). Since the convergent subsequence was arbitrary, this

shows that L(η(n)1 ) = Φ−1
ξ (µn) converges weakly to Φ−1

ξ (µ) as n → ∞ (cf. [10, Corollary
to Theorem 25.10]). Hence Φξ is continuous.

(iii) This can be proved in complete analogy to (ii).

Remark 3.5. Closedness of R+
ξ under weak convergence and continuity of (Φ+

ξ )
−1 can

also be proved in a simpler way by circumventing Proposition 3.3 but using a formula
for the Laplace transforms of η

(n)
1 and µn (cf. [5, Remark 4.5], or Theorem 4.1 below),

and showing that µ(n) w→ µ implies convergence of the Laplace transforms of η
(n)
1 . A

similar approach for showing closedness of Rξ is not evident since there is not a similarly
convenient formula for the Fourier transforms available, but only one in terms of suitable
two-sided limits (cf. [5, Equation (4.7)]).

As a consequence of Theorem 3.4, we can now show that Rξ will not be closed under con-
volution if ξ is non-deterministic and satisfies a suitable moment condition. We conjecture
that Rξ will never be closed under convolution unless ξ is deterministic.

Corollary 3.6. Let ξ = (ξt)t≥0 be a non-deterministic Lévy process drifting to +∞ such
that E[(e−2ξ1)] < 1. Then Rξ is not closed under convolution.
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Proof. Let (ηt)t≥0 be a symmetric compound Poisson process with Lévy measure ν =
δ−1+δ1, where δa denotes the Dirac measure at a. Then L(η1) ∈ Dξ and V :=

∫∞
0
e−ξs−dηs

is symmetric, too, and since by [3, Theorem 3.3] we have E[V 2] <∞, this yields E[V ] = 0.
Now let (Vi)i∈N be an i.i.d. family of independent copies of V . Then by the Central Limit
Theorem,

L
(
n− 1

2 (V1 + . . .+ Vn)
)
→ N (0,Var (V )), n→ ∞,

with Var (V ) ̸= 0. If Rξ was closed under convolution, we had L(n− 1
2 (V1 + . . . Vn)) ∈ Rξ

and due to closedness of Rξ under weak convergence this gave N (0,Var (V )) ∈ Rξ. This
contradicts [5, Theorem 6.4].

4 A general criterion for a positive distribution to be

in the range

From this section on, we restrict ourselves to positive distributions in Rξ, i.e. we only
consider Φ+

ξ and R+
ξ as defined in Section 3. We start by giving a general criterion to

decide whether a positive distribution is in the range R+
ξ of Φ+

ξ for a given Lévy process
ξ.

Theorem 4.1. Let ξ be a Lévy process drifting to +∞. Let µ = L(V ) be a probability
measure on [0,∞) with Laplace exponent ψV . Then µ ∈ R+

ξ if and only if the function

gµ : (0,∞) → R

gµ(u) := (γξ −
σ2
ξ

2
)uψ′

V (u)−
σ2
ξ

2
u2
(
ψ′′
V (u) + (ψ′

V (u))
2
)

−
∫
R

(
eψV (ue−y)−ψV (u) − 1 + uψ′

V (u)y1|y|≤1

)
νξ(dy), u > 0, (4.1)

defines the Laplace exponent of some subordinator η, i.e. if there is some subordinator η
such that

E
[
e−η1u

]
= egµ(u), ∀ u > 0. (4.2)

In that case, Φξ(L(η1)) = µ.

Using a Taylor expansion for |y| ≤ 1, it is easy to see that the integral defining gµ converges
for every distribution µ on [0,∞).

Proof. Observe first that

−E
[
V e−uV

]
= L′

V (u) = ψ′
V (u)e

ψV (u) (4.3)

E
[
V 2e−uV

]
= L′′

V (u) = ψ′′
V (u)e

ψV (u) + (ψ′
V (u))

2eψV (u) (4.4)

for u > 0. Hence

gµ(u)LV (u)
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= −uγξE
[
V e−uV

]
−
σ2
ξ

2

(
E
[
V 2e−uV

]
u2 − E

[
V e−uV

]
u
)

−
∫
(−1,∞)

(
LV (ue−y)− LV (u)− uE

[
V e−uV

]
y1|y|≤1

)
νξ(dy), ∀ u > 0. (4.5)

Now if µ = L(V ) ∈ R+
ξ , let L(η1) ∈ D+

ξ such that µ = L(V ) = Φξ(L(η1)). Then
gµ = logLη by Remark 4.5 of [5], so that (4.2) is satisfied.

Conversely, suppose that V ≥ 0, and let η be a subordinator such that (4.2) is true. Define
the Lévy process U by e−ξt = E(U)t, where U denotes the stochastic exponential of U .
Then by [5, Remark 4.5] and (4.5), (4.2) is equivalent to

logLη(u)LV (u)

= uγUE
[
V e−uV

]
− σ2

Uu
2

2
E
[
V 2e−uV

]
−
∫
(−1,∞)

(
LV (u(1 + y))− LV (u) + uE

[
V e−uV

]
y1|y|≤1

)
νU(dy), ∀ u > 0,

and a direct computation using (4.3) and (4.4) shows that this in turn is equivalent to

0 =

∫
[0,∞)

(
f ′(x)(xγU + γ0η) +

1

2
f ′′(x)x2σ2

U

)
µ(dx)

+

∫
[0,∞)

µ(dx)

∫
(−1,∞)

(
f(x+ xy)− f(x)− f ′(x)xy1|y|≤1

)
νU(dy)

+

∫
[0,∞)

µ(dx)

∫
[0,∞)

(f(x+ y)− f(x)) νη(dy) (4.6)

for all functions f ∈ G := {h ∈ C2
b (R) : ∃u > 0 such that h(x) = e−ux, ∀x ≥ 0}, where

γ0η denotes the drift of η. Observe that (4.6) is also trivially true for f ≡ 1. Denote by

R[G] :=
{
h ∈ C2

b (R) : ∃n ∈ N0, ∃λ1, . . . , λn ∈ R, ∃u1, . . . , un ≥ 0

such that h(x) =
n∑
k=1

λke
−ukx ∀ x ≥ 0

}
the algebra generated by G. By linearity, (4.6) holds true also for all f ∈ R[G]. Since G is
strongly separating and since for each x ∈ R there exists h ∈ G such that g′(x) ̸= 0, the
set G satisfies condition (N) of [20, Definition 1.4.1], and hence R[G] is dense in S2(R) by
[20, Corollary. 1.4.10], where

S2(R) := {h ∈ C2(R) : lim
|x|→∞

(1 + |x|2)k(|h(x)|+ |h′(x)|+ |h′′(x)|) = 0, ∀ k ∈ N0}

is the space of rapidly decreasing functions of order 2, endowed with the usual topology
(cf. [20, Definition 0.1.8]). In particular, for every f ∈ C2

c (R) ⊂ S2(R) there exists a
sequence (fn)n∈N in R[G] such that

lim
n→∞

sup
x∈R

[
(1 + |x|2) (|fn(x)− f(x)|+ |f ′

n(x)− f ′(x)|+ |f ′′
n(x)− f ′′(x)|)

]
= 0.
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Since (4.6) holds for each fn, an application of Lebesgue’s dominated convergence theorem
shows that (4.6) also holds for f ∈ C2

c (R); remark that Lebesgue’s theorem can be applied
by Equations (3.5) and (3.6) in [5] for the integral with respect to νU and µ and by
observing that

|f(x+ y)− f(x)| ≤ 2∥f∥∞1y>1 + ∥f ′∥∞y10<y≤1

for the integral with respect to νη and µ.

Since C2
c (R) is a core for the Feller process

W x
t = x+

∫ t

0

W x
s− dUs + ηt (4.7)

with generator

AWf(x) = f ′(x)(xγU + γ0η) +
1

2
f ′′(x)x2σ2

U

+

∫
(−1,∞)

(f(x+ xy)− f(x)− f ′(x)xy1|y|≤1)νU(dy)

+

∫
[0,∞)

(f(x+ y)− f(x))νη(dy)

for f ∈ C2
c (R) (cf. [5, Theorem 3.1 and Corollary 3.2] and [26, Equation (8.6)]), we have

that
∫
RA

Wf(x)µ(dx) = 0 for all f from a core, and hence µ = L(V ) is an invariant
measure for the GOU process (4.7) by [21, Theorem 3.37]. By [4, Theorem 2.1(a)], this
implies that

∫∞
0
e−ξs− dηs converges a.s. and that L(

∫∞
0
e−ξs− dηs) = µ, so that L(η1) ∈ D+

ξ

and Φξ(L(η1)) = µ, completing the proof.

Remark 4.2. To obtain a similar handy criteria for a non-positive distribution to be in
the range Dξ seems harder. A general necessary condition in this vein for a distribution
µ = L(V ) to be in the range Rξ, where ξ is a Lévy process with characteristic triplet
(γξ, σ

2
ξ , νξ), can be derived from Equation (4.7) in [5]. If further E[V 2] <∞, and log ϕη(u)

denotes the characteristic exponent of a Lévy process η such that E[eiuη1 ] = ϕη(u), u ∈ R,
then by Equation (4.8) in [5],

ϕV (u) log ϕη(u) = γξuϕ
′
V (u)−

σ2
ξ

2

(
u2ϕ′′

V (u) + uϕ′
V (u)

)
−
∫
R
(ϕV (ue

−y)− ϕV (u) + uyϕ′
V (u)1|y|≤1) νξ(du). (4.8)

In [6, Example 3.2], this equation has been derived using the theory of symbols. Hence,
a necessary condition for V with E[V 2] < ∞ to be in Rξ is that there is a Lévy process
η, such that the right-hand side of (4.8) can be expressed as ϕV (u) log ϕη(u), u ∈ R. In
Example 4.3 of [6] it has been shown that the existence of some Lévy process η such
that the right-hand side of (4.8) can be expressed as ϕV (u) log ϕη(u) is also sufficient for
µ = L(V ) with E[V 2] <∞ to be in Rξ, hence this is a necessary and sufficient condition
for L(V ) with E[V 2] < ∞ to be in Rξ, similar to Theorem 4.1. Without the assumption
EV 2 <∞, a necessary and sufficient condition is not established at the moment.
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We conclude this section with the following results:

Lemma 4.3. Let ξ be a spectrally negative Lévy process of infinite variation, drifting to
+∞. Then every element in R+

ξ is selfdecomposable and of finite variation with drift 0.

Proof. That any element in R+
ξ must be selfdecomposable has been shown in [7], since ξ

is spectrally negative. Since every element in R+
ξ is positive, it must be of finite variation,

and it follows from Theorem 2.2 and [26, Theorem 24.10] that the drift must be 0.

Remark 4.4. It is well known that a selfdecomposable distribution cannot have finite
non-zero Lévy measure, in particular it cannot be a compound Poisson distribution, which
follows for instance immediately from [26, Corollary 15.11]. This applies in particular to
exponential functionals of Lévy processes with spectrally negative ξ. However, even if ξ
is not spectrally negative, and (ξ, η)T is a bivariate (possibly dependent) Lévy process,
then

∫∞
0
e−ξs− dηs (provided it converges) still cannot be a non-trivial compound Poisson

distribution, with or without drift. For if c denotes the drift of a non-trivial compound
Poisson distribution with drift, then this distribution must have an atom at c. However,
e.g. by [7, Theorem 2.2], L(

∫∞
0
e−ξs− dηs) must be continuous unless constant. In other

words, if
∫∞
0
e−ξs− dηs is infinitely divisible, non-constant and has no Gaussian part, then

its Lévy measure must be infinite. In particular, it follows that if η is a subordinator
and

∫∞
0
e−ξs− dηs is infinitely divisible and non-constant, then its Lévy measure must be

infinite.

5 Some results on R+
ξ when ξ is a Brownian motion

If ξt = σBt+ at, t ≥ 0, with σ, a > 0 and (Bt)t≥0 is a standard Brownian motion, then by
Lemma 4.3, R+

ξ is a subset of L(R+), the class of selfdecomposable distributions on R+.
Recall that a distribution µ = L(V ) on R+ is selfdecomposable if and only if it is infinitely
divisible with non-negative drift and its Lévy measure has a Lévy density of the form
(0,∞) → [0,∞), x 7→ x−1k(x) with a non-increasing function k = kV : (0,∞) → [0,∞)
(cf. [26, Corollary 15.11]). Further, to every distribution µ = L(V ) ∈ L(R+) there exists
a subordinator X = (Xt)t≥0 = (Xt(µ))t≥0, unique in distribution, such that

µ = L
(∫ ∞

0

e−t dXt

)
, (5.1)

(cf. [18, 30]). The Laplace exponents of V and X are related by

ψX(u) = uψ′
V (u), u > 0 (5.2)

(e.g. [2, Remark 4.3]; alternatively, (5.2) can be deduced from (4.1)). Denoting the drifts
of V and X by bV and bX , respectively, it is easy to see that

bV = bX

∫ ∞

0

e−tdt = bX . (5.3)
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Since the negative of the Laplace exponent of any infinitely divisible positive distribution
is a Bernstein function and these are concave (cf. [28, Definition 3.1 and Theorem 3.2]) it
holds uψ′(u) ≥ ψ(u) for any such Laplace exponent. Together with the above we observe
that

ψX(u) ≥ ψV (u) and hence

∫
(0,∞)

(1− e−ut) νX(dt) ≤
∫
(0,∞)

(1− e−ut) νV (dt), ∀ u ≥ 0.

Finally, the Lévy density x−1k(x) of V with k non-increasing and the Lévy measure νX
are related by

k(x) = νX((x,∞)), x > 0 (5.4)

(e.g. [2, Equation (4.17)]). In particular, the condition k(0+) < ∞ is equivalent to
νX(R+) <∞, and the derivative of −k is the Lévy density of νX .

Differential equation, necessary conditions, and nested ranges

In the next result we give the differential equation for the Laplace transform of V , which
has to be satisfied if L(V ) is in the range D+

ξ . In the special case when η is a compound
Poisson process with non-negative jumps, this differential equation (5.5) below has already
been obtained by Nilsen and Paulsen [23, Proposition 2]. We then rewrite this differential
equation in terms of ψX , which turns out to be very useful for the further investigations.

Theorem 5.1. Let ξt = σBt + at, t ≥ 0, σ, a > 0 for some standard Brownian motion
(Bt)t≥0. Let µ = L(V ) ∈ L(R+) have drift bV and Lévy density given by x−1k(x), x > 0,
where k : (0,∞) → [0,∞) is non-increasing. Then the following are true:

(i) µ ∈ R+
ξ if and only if there is some subordinator η such that

1

2
σ2u2L′′

V (u) +

(
σ2

2
− a

)
uL′

V (u) + ψη(u)LV (u) = 0, u > 0, (5.5)

in which case µ = L(V ) = Φξ(L(η1)). In particular, if η is a subordinator, then the
Laplace transform of V satisfies (5.5) with LV (0) = 1, and if V is not constant 0,
then limu→∞ LV (u) = 0.

(ii) Let the subordinator X = X(µ) be related to µ by (5.1). Then µ ∈ R+
ξ if and only if

the function

(0,∞) → R, u 7→ aψX(u)−
σ2

2
uψ′

X(u)−
σ2

2
(ψX(u))

2

defines the Laplace exponent ψη(u) of some subordinator η. In that case

Φξ(L(η1)) = L
(∫ ∞

0

e−t dXt

)
= µ. (5.6)
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Proof. (i) By Theorem 4.1, µ = L(V ) ∈ R+
ξ if and only if

ψη(u) =

(
a− σ2

2

)
uψ′

V (u)−
σ2

2
u2
(
ψ′′
V (u) + (ψ′

V (u))
2
)
, u > 0, (5.7)

for some subordinator η, in which case µ = Φξ(L(η1)). Using (4.3) and (4.4), it is easy to
see that this is equivalent to (5.5). That LV (0) = 1 is clear. If V is not constant 0, then
it cannot have an atom at 0 (e.g. [7, Theorem 2.2]), hence limu→∞ LV (u) = 0.
(ii) If L(V ) = L

(∫∞
0
e−t dXt

)
∈ L(R+) for some subordinator X, then by (5.2) ψ′

V (u) =
u−1ψX(u) and ψ

′′
V (u) = u−1ψ′

X(u)−u−2ψX(u). Inserting this into (5.7) yields the condition

ψη(u) = aψX(u)−
σ2

2
uψ′

X(u)−
σ2

2
(ψX(u))

2, u > 0, (5.8)

which gives the claim.

Remark 5.2. (i) Since uψ′
X(u) ≥ ψX(u) as observed after Equation (5.3), it follows from

(5.8) that

ψη(u) ≤
(
a− σ2

2

)
ψX(u)−

σ2

2
(ψX(u))

2, u > 0,

when the subordinators X and η are related by (5.6).
(ii) Equation (5.8) is a Riccati equation for ψX . Using the transformation

y(u) = exp(
∫ u
1
ψX(v)
v

dv) = C LV (u) for u > 0 by (5.2), it is easy to see that it reduces to
the linear equation (5.5). Unfortunately, in general it is not possible to solve (5.5) in a
closed form.
(iii) Since for any subordinator η, ψη(u) has a continuous continuation to {z ∈ C :
ℜ(z) ≥ 0} which is analytic in {z ∈ C : ℜ(z) > 0} (e.g. [28, Proposition 3.6]), for any
fixed u0 > 0 Equation (5.5) can be solved in principle on (0, 2u0) by the power series
method (e.g. [11, Section 2.8, Theorem 7, p. 190]). In particular when νη is such that∫
(1,∞)

euxνη(dx) < ∞ for every u > 0 (e.g. if νη has compact support), then ψη(z) =

−bηz +
∫
(0,∞)

(e−zx − 1) νη(dx), z ∈ C, is an analytic continuation of ψη in the complex

plane. Hence it admits a power series expansion of the form ψη(z) =
∑∞

n=0 fnz
n, z ∈ C,

with f0 = 0 and Equation (5.5) may be solved by the Frobenius method (e.g. [11, Sect.
2.8, Theorem 8, p. 215]). To exemplify this, assume for simplicity that 2a/σ2 is not an
integer. Equation (5.5) has a weak singularity at 0. Its so-called indicial polynomial is
given by

r 7→ r(r − 1) +

(
1− 2a

σ2

)
r = r

(
r − 2a

σ2

)
.

The exponents of singularity are the zeros of this polynomial, i.e. 0 and 2a/σ2, and since
we have assumed that 2a/σ2 is not an integer, the general real solution of (5.5) is given
by

LV (u) = C1u
2a/σ2

∞∑
n=0

cnu
n + C2

∞∑
n=0

dnu
n, u > 0,

where C1, C2 ∈ R, c0 = d0 = 1, the coefficients cn, dn are defined recursively by

cn :=
−1

n(n+ 2a/σ2)

n−1∑
k=0

ckfn−k, dn =
−1

n(n− 2a/σ2)

n−1∑
k=0

dkfn−k, n ∈ N,
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(e.g. [11, Section 2.8, Equation (14), p. 209]) and the power series
∑∞

n=0 cnu
n and

∑∞
n=0 dnu

n

converge in u ∈ C. Since LV (0) = 1, we even conclude that C2 = 1.

Next, we show that the ranges of Φξ, when ξt = σBt + at, are nested when σ and a vary
over all positive parameters.

Theorem 5.3. Let B = (Bt)t≥0 be a standard Brownian motion. For a, σ > 0 let ξ(a,σ) :=

(ξ
(a,σ)
t )t≥0 := (σBt + at)t≥0. Then R

+
ξ(a,σ) = R+

ξ(a/
√
σ,1). Further, for a, σ, a

′, σ′ > 0 such that

a/
√
σ ≤ a′/

√
σ′ we have R+

ξ(a,σ) ⊂ R+

ξ(a
′,σ′). In particular, for fixed σ > 0, the family R+

ξ(a,σ),

a > 0, is nested and non-decreasing in a, and for fixed a > 0 the family R+
ξ(a,σ), σ > 0, is

nested and non-increasing in σ.

Proof. Since (σBt + at)t≥0 has the same distribution as (Bt
√
σ + at)t≥0, we obtain for a

Lévy process η = (ηt)t≥0 such that L(η1) ∈ Dξ(a,σ) and η is independent of B,∫ ∞

0

eσBt+at dηt
d
=

∫ ∞

0

eBt
√
σ+at dηt =

∫ ∞

0

eBt+(a/
√
σ)t dηt/√σ.

Hence L(η1/√σ) ∈ Dξ(a/
√
σ,1) and Φξ(a,σ)(L(η1)) = Φξ(a/

√
σ,1)(L(η1/√σ))). In particular, R+

ξ(a,σ)

⊂ R+

ξ(a/
√

σ,1) . Similarly, R+
ξ(a,σ) ⊃ R+

ξ(a/
√

σ,1) so that R+
ξ(a,σ) = R+

ξ(a/
√

σ,1) . For the second

assertion, it is hence sufficient to assume σ = 1. Now if a < a′ and µ ∈ R+
ξ(a,1)

, let the

subordinator X be related to µ by (5.1). Then

aψX(u)−
1

2
uψ′

X(u)−
1

2
(ψX(u))

2 = ψη(u), u > 0,

by Theorem 5.1 (ii), hence

a′ψX(u)−
1

2
uψ′

X(u)−
1

2
(ψX(u))

2 = ψη(u) + (a′ − a)ψX(u), u > 0,

defines the Laplace exponent of a subordinator by [28, Corollary 3.8 (i)]. Hence µ ∈ R+

ξ(a
′,1)

again by Theorem 5.1 (ii). The remaining assertions are clear.

Remark 5.4. Although R+
ξ(1,σ) ⊂ R+

ξ(1,σ
′) for 0 < σ′ < σ, and σBt + t converges pointwise

to t when σ → 0, we do not have
∪
σ>0R

+
ξ(1,σ) = R+

ξt=t
(= L(R+)). For example, a positive

3/4-stable distribution is in L(R+) but not in
∪
σ>0R

+
ξ(1,σ) , as follows from Example 5.6

or Corollary 5.12 below.

While it is difficult to solve the equations (5.5) and (5.8) for given ψη, they still allow to
obtain results about the qualitative structure of the range. The following gives a simple
necessary condition in terms of the Lévy density x−1k(x) for µ to be in R+

ξ , and to

calculate the drift bη of (Φ+
ξ )

−1(µ) when µ ∈ R+
ξ .

Theorem 5.5. Let ξt = Bt+ at, t ≥ 0, for σ, a > 0 and some standard Brownian motion
B = (Bt)t≥0. Let µ = L(V ) ∈ L(R+) with drift bV and Lévy density x−1k(x). Let the
subordinator X be related to µ by (5.1) and denote its drift by bX .
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(i) If µ ∈ R+
ξ , then bX = 0 and limu→∞ u−1/2|ψX(u)| = limu→∞ u1/2|ψ′

V (u)| exists and
is finite. If µ = Φξ(L(η1)) for some subordinator η with drift bη, then bη and ψX are
related by

bη =
σ2

2
lim
u→∞

u−1(ψX(u))
2 =

σ2

2
lim
u→∞

u(ψ′
V (u))

2. (5.9)

(ii) If µ ∈ R+
ξ has Lévy density x−1k(x), then bV = 0 and lim supx↓0 x

−1/2
∫ x
0
k(s) ds <

∞. In particular, if µ = Φξ(L(η1)) for some subordinator η with drift bη, then bη > 0
if and only if lim supx↓0 x

−1/2
∫ x
0
k(s) ds > 0.

Proof. (i) Suppose that µ = L(V ) = Φξ(L(η1)) ∈ R+
ξ . Then bV = 0 by Lemma 4.3

and hence bX = 0 by (5.3). Since ψ′
X(u) = −

∫
(0,∞)

e−uxx νX(dx) we conclude that

limu→∞ ψ′
X(u) = 0 by dominated convergence. Since bX = 0 and since limu→∞ u−1ψX(u) =

−bX = 0 and limu→∞ u−1ψη(u) = −bη by [28, Remark 3.3 (iv)], (5.9) as well as the neces-
sity of the stated condition follow from (5.8) and (5.2).
(ii) Since k(x) = νX((x,∞)) by (5.4), it follows from [28, Lemma 3.4] that

e− 1

e
≤ |ψX(u)|
u
∫ 1/u

0
k(s) ds

≤ 1, u > 0.

Hence (ii) is an immediate consequence of (i) and Lemma 4.3.

Example 5.6. Let ξt = σBt+at be as in Theorem 5.5. Let µ ∈ L(R+) with Lévy density

x−1k(x). Then
∫ 1

0
k(x) dx <∞. If lim infs↓0 k(s)s

1/2 = +∞, then lim infx↓0 x
−1/2

∫ x
0
k(s) ds =

+∞. Hence µ ̸∈ R+
ξ . In particular, a non-degenerate positive α-stable distribution with

α > 1/2 cannot be in R+
ξ . A more detailed result will be given in Corollary 5.12 below.

Selfdecomposable distributions with k(0+) <∞

In this subsection we specialize to selfdecomposable distributions with k(0+) < ∞ and
give a characterization when they are in the range R+

ξ for ξ a Brownian motion with drift.

Theorem 5.7. Let ξt = σBt + at, t ≥ 0, σ, a > 0 for some standard Brownian motion
(Bt)t≥0. Let µ = L(V ) ∈ L(R+) have drift bV and Lévy density x−1k(x), x > 0, where
k = kV : (0,∞) → [0,∞) is non-increasing. Let the subordinator X = X(µ) be related to
µ by (5.1). Assume that k(0+) <∞, equivalently that νX(R+) <∞.

(i) Then µ ∈ R+
ξ if and only if bX = 0 and νX has a density g on (0,∞) such that

lim
t→∞

tg(t) = lim
t→0

tg(t) = 0 (5.10)

and such that

G : (0,∞) → [0,∞), t 7→ (a+σ2νX(R+))

∫ t

0

g(v) dv+
σ2

2
tg(t)− σ2

2

∫ t

0

(g∗g)(v) dv

(5.11)
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is non-decreasing. If these conditions are satisfied, then

Φξ(L(η1)) = µ,

where η is the subordinator with drift 0 and finite Lévy measure νη(dx) = dG(x).

(ii) Equivalently, µ = L(V ) ∈ R+
ξ if and only if bV = 0 and −k : (0,∞) → (−∞, 0]

is absolutely continuous with derivative g on (0,∞) satisfying (5.10) and such that
G defined by (5.11) is non-decreasing. In that case, Φξ(L(η1)) = µ, where η is a
subordinator with drift 0 and finite Lévy measure νη(dx) = dG(x).

Proof. (i) Assume that νX(R+) < ∞. Suppose first that µ ∈ R+
ξ , and let (ηt)t≥0 be a

subordinator such that Φξ(L(η1)) = µ. Then bX = 0 by Theorem 5.5 (i), and by Theorem
5.1 (ii), we have (5.8) with

ψη(u) = −bηu−
∫
(0,∞)

(1− e−ut) νη(dt) and ψX(u) = −
∫
(0,∞)

(1− e−ut) νX(dt), u ≥ 0.

Since LνX (u)2 = LνX∗νX (u) and (νX ∗νX)(R+) = νX(R+)
2, where LνX denotes the Laplace

transform of the finite measure νX , we conclude

ψX(u)
2 =

(∫
(0,∞)

(1− e−ut) νX(dt)

)2

= νX(R+)
2 − 2νX(R+)

∫
(0,∞)

e−ut νX(dt) +

∫
(0,∞)

e−ut(νX ∗ νX)(dt)

=

∫
(0,∞)

(1− e−ut) (2νX(R+)νX − νX ∗ νX)(dt).

Hence, from (5.8), on the one hand

σ2

2
uψ′

X(u) = bηu+

∫
(0,∞)

(1− e−ut) ρ1(dt)−
∫
(0,∞)

(1− e−ut) ρ2(dt), (5.12)

where

ρ1 := νη +
σ2

2
νX ∗ νX and ρ2 := (a+ σ2νX(R+))νX .

On the other hand, uψ′
X(u) = −u

∫
(0,∞)

e−utt νX(dt), and rewriting
∫
(0,∞)

(1−e−ut)ρi(dt) =∫∞
0
ue−utρi((t,∞)) dt by Fubini’s theorem as in [28, Remark 3.3(ii)], (5.12) gives

σ2

2
u

∫
(0,∞)

e−uttνX(dt) = −bηu+ u

∫ ∞

0

e−ut (ρ2((t,∞))− ρ1((t,∞))) dt, u > 0.

Dividing by u, the uniqueness theorem for Laplace transforms then shows that bη = 0 and
that νX has a density g, given by

g(t) =
2

σ2t
(ρ2((t,∞))− ρ1((t,∞))) , t > 0. (5.13)
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From this we conclude that limt→∞ tg(t) = 0 and that limt→0 tg(t) =
2
σ2 (ρ2(R+)−ρ1(R+))

exists in [−∞,∞) since ρ2(R+) <∞. But since g ≥ 0, the limit must be in [0,∞), hence

ρ1(R+) < ∞ so that νη(R+) < ∞, and since
∫ 1

0
tg(t)
t
dt =

∫ 1

0
g(t) dt < ∞, we also have

limt→0 tg(t) = 0. Further, by (5.13), the total variation of t 7→ tg(t) over (0,∞) is finite.
Knowing now that νX has a density g with limt→∞ tg(t) = limt→0 tg(t) = 0, we can write
using partial integration

uψ′
X(u) =

∫ ∞

0

(
d

dt
e−ut

)
tg(t) dt =

∫ ∞

0

tg(t)d
(
e−ut

)
= tg(t)e−ut

∣∣t=∞
t=0

−
∫ ∞

0

e−ut d(tg(t)) =

∫ ∞

0

(1− e−ut) d(tg(t)).

Inserting this in (5.12), we obtain by uniqueness of the representation of Bernstein func-
tions (cf. [28, Theorem 3.2]) that

σ2

2
d(tg(t)) = νη(dt) +

σ2

2
(g ∗ g)(t) dt− (a+ σ2νX(R+))g(t) dt,

or equivalently

νη(dt) = (a+ σ2νX(R+))g(t) dt+
σ2

2
d(tg(t))− σ2

2
(g ∗ g)(t) dt. (5.14)

Since νη is a positive (and finite) measure, so is the right-hand side of (5.14), and hence
G is non-decreasing with νη(dt) = dG(t), finishing the proof of the “only if”-assertion.
The converse follows by reversing the calculations above, by defining a subordinator η
with drift 0 and Lévy measure νη(dt) := dG(t), observing that t 7→ tg(t) if of finite total
variation on (0,∞) by (5.10) and (5.11), and then showing that νη satisfies (5.12) and
hence that ψη satisfies (5.8).
(ii) This follows immediately from (i), (5.3) and (5.4).

Remark 5.8. Let ξt = σBt + at, t ≥ 0, with σ, a > 0 and (Bt)t≥0 a standard Brownian
motion.
(i) If µ ∈ R+

ξ and X is a subordinator such that (5.1) holds and such that νX(R+) < ∞,
then the Lévy density g of νX cannot have negative jumps, since by (5.11) this would
contradict non-decreasingness of G.
(ii) Let X be a subordinator with νX(R+) < ∞ and bX = 0, and suppose that νX has
a density g such that there is r ≥ 0 with g(t) = 0 for t ∈ (0, r] and g is differentiable
on (r,∞) (the case r = 0 is allowed). Then L(

∫∞
0
e−t dXt) ∈ R+

ξ if and only if g satisfies
(5.10) and(

a+ σ2νX(R+) +
σ2

2

)
g(t) +

σ2

2
tg′(t)− σ2

2
(g ∗ g)(t) ≥ 0, ∀ t > r. (5.15)

This follows immediately from Theorem 5.1 (iii) since the right-hand side of (5.15) is the
derivative of the function G defined by (5.11).

The following gives an example for a distribution in R+
ξ such that νX(R+) <∞.
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Example 5.9. Let r ≥ 0 and let g : [0,∞) → [0,∞) be a function such that g(t) = 0
for all t ∈ (0, r) (a void assumption if r = 0), g|[r,∞) is continuously differentiable with
derivative g′, such that g is strictly positive on [r,∞), limt→∞ g(t) = 0 and such that −g′
is regularly varying at ∞ with index β < −2 (in particular, g′(t) < 0 for large enough t).
Then g defines a Lévy density of a subordinator X with drift 0 such that νX(R+) < ∞
and L(

∫∞
0
e−t dXt) ∈ R+

σBt+at
for large enough a.

Proof. Since −g′ is regularly varying with index β and limt→∞ g(t) = 0, g is regularly

varying at ∞ with index β+1 < −1 and limt→∞
−tg′(t)
g(t)

= −β−1 by Karamata’s Theorem

(e.g. [9, Theorem 1.5.11]). In particular, limt→∞ tg(t) = 0, further limt→0 tg(t) = 0 since
g(0) <∞, and g is a density of a finite measure. Next, observe that

(g ∗ g)(t)
g(t)

=

∫ t/2

r

g(t− x)

g(t)
g(x) dx+

∫ t−r

t/2

g(x)

g(t)
g(t− x) dx, t ≥ 2r.

But for any ε > 0, when t ≥ tε is large enough, we have g(t − x)/g(t) ≤ 2−β−1 + ε for
x ∈ (r, t/2], and g(x)/g(t) ≤ 2−β−1 + ε for x ∈ [t/2, t − r] by the uniform convergence
theorem for regularly varying functions (e.g. [9, Theorem 1.5.2]). Since

∫∞
0
g(t) dt < ∞,

this shows that lim supt→∞
(g∗g)(t)
g(t)

< ∞. Since also g ∗ g as well as |g′| are bounded on

[r,∞), it follows that (5.15) is satisfied for all t ≥ r for large enough a, and for t ∈ (0, r)
it is trivially satisfied. Hence L(e−t dXt) ∈ R+

ξ for large enough a.

Next we give some examples of selfdecomposable distributions which are not in R+
ξ .

Example 5.10. Let ξt = σBt + at, t ≥ 0, with a standard Brownian motion B and
σ, a > 0.
(i) A selfdecomposable distribution with Lévy density c1(0,1)(x)x

−1 and c > 0 is not in
R+
ξ by Theorem 5.7, since k(x) = 1(0,1)(x) satisfies k(0+) <∞ but is not continuous.

(ii) If X is a subordinator with non-trivial Lévy measure νX such that νX has compact
support, then L(

∫∞
0
e−t dXt) is not in R

+
ξ by Theorem 5.7, since if it were then νX had a

density g, and if xg denotes the right end point of the support of g, then 2xg is the right
endpoint of the support of g ∗ g, showing that the function G defined by (5.11) cannot be
non-decreasing on (0,∞).
(iii) If X is a subordinator with finite Lévy measure and non-trivial Lévy density g which
is a step function (with finitely or infinitely many steps), then L(

∫∞
0
e−t dXt) is not in

R+
ξ by Remark 5.8 (i), since g must have at least one negative jump as a consequence of∫∞
0
g(t) dt <∞.

Positive stable distributions

In this subsection we characterize when a positive stable distribution is in the range R+
ξ .

We also consider (finite) convolutions of positive stable distributions, i.e. distributions
of the form L(

∑n
k=1Xi), where n ∈ N and X1, . . . , Xn are independent positive stable

distributions.
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Theorem 5.11. Set ξt = σBt + at, t ≥ 0, a, σ > 0 for some standard Brownian motion
(Bt)t≥0. Let 0 < α1 < . . . < αn < 1 for some n ∈ N and bi ≥ 0, i = 1, . . . , n and let µ
be the distribution of

∑n
i=1Xi where the Xi are independent and each Xi is non-trivial

and positive αi-stable with drift bi. Then if µ is in R+
ξ it holds bi = 0, i = 0, . . . , n,

α1 ≤ ( 2a
σ2 ∧ 1

2
) and αn ≤ 1

2
. Conversely, if bi = 0, i = 0, . . . , n and αn ≤ ( 2a

σ2 ∧ 1
2
), then µ

is in R+
ξ .

Proof. Assume µ = L(V ) = L(
∫∞
0
e−ξs−dηs) ∈ R+

ξ for some subordinator η. Since ψV (u) =∑n
i=1 ψXi

(u), the drift of V is
∑n

i=1 bi. By Lemma 4.3, this implies
∑n

i=1 bi = 0 and hence
bi = 0 for all i. Since each Xi is positive αi-stable with drift 0 and non-trivial, we know
from [26, Remarks 14.4 and 21.6] that the Laplace exponent of Xi is given by

ψXi
(u) =

∫
(0,∞)

(e−ux − 1)νXi
(dx) =

∫ ∞

0

(e−ux − 1)cix
−1−αidx

with ci > 0. Hence

ψV (u) =
n∑
i=1

∫ ∞

0

(e−ux − 1)cix
−1−αidx,

such that

ψ′
V (u) = −

n∑
i=1

ciu
αi−1Γ(1− αi) and ψ′′

V (u) =
n∑
i=1

ciu
αi−2Γ(2− αi), u > 0.

Hence (5.7) reads

ψη(u) = −
n∑
i=1

[((
a− σ2

2

)
ci Γ(1− αi) +

σ2

2
ci Γ(2− αi)

)
uαi

+σ2

i−1∑
j=1

cicjΓ(1− αi)Γ(1− αj)u
αi+αj +

σ2

2
c2i (Γ(1− αi))

2u2αi

]

=: −
n∑
i=1

(
Aiu

αi +
i−1∑
j=1

Bi,ju
αi+αj + Ciu

2αi

)
=: −f(u), u > 0. (5.16)

Observe that Ai ∈ R, and Bi,j, Ci > 0 for all i, j. As the left hand side of (5.16) is the
Laplace exponent of a subordinator it is the negative of a Bernstein function [28, Theorem
3.2] and thus f(u), u ≥ 0, has to be a Bernstein function if a solution to (5.16) exists.
By [28, Corollary 3.8 (viii)] a Bernstein function cannot grow faster than linearly, which
yields directly that αi ∈ (0, 1/2], i = 1, . . . , n. As by [28, Definition 3.1] the first derivative
of a Bernstein function is completely monotone, considering limu→0 f

′(u) ≥ 0 we further
conclude that necessarily A1 ≥ 0, which is equivalent to α1 ≤ 2a

σ2 .

Conversely, let V be a non-trivial finite convolution of positive αi-stable distributions
with drift 0 and 0 < α1 < . . . < αn ≤ ( 2a

σ2
∧ 1

2
). Then Ai ≥ 0 for all i and the pre-

ceding calculations show that the right hand side of (5.7) is given by f(u), which is the
Laplace exponent of a subordinator, namely an independent sum of positive αi-stable

28



subordinators (for each Ai ≥ 0), (αi + αj)-stable subordinators (for each Bi,j), 2αi-stable
subordinators (for each αi <

1
2
) and possibly a deterministic subordinator (if αn = 1/2).

Hence L(V ) ∈ R+
ξ by Theorem 4.1.

As a consequence of the above theorem, we can characterize which positive α-stable
distributions are in R+

ξ :

Corollary 5.12. Let ξt = σBt + at, t ≥ 0, a, σ > 0 for some standard Brownian motion
(Bt)t≥0. Then a non-degenerate positive α-stable distribution µ is in R+

ξ if and only if

its drift is 0 and α ∈ (0, 2a
σ2

∧ 1
2
]. If this condition is satisfied and µ has Lévy density

x 7→ cx−1−α on (0,∞) with c > 0, then µ = Φξ(L(η1)), where in the case α < 1/2, η is a
subordinator with drift 0 and Lévy density on (0,∞) given by

x 7→ cα

(
a− σ2

2
α

)
x−α−1 + σ2c2

α(Γ(1− α))2

Γ(1− 2α)
x−2α−1,

and in the case α = 1/2 = 2a/σ2, η is a deterministic subordinator with drift σ2c2(Γ(1−
α))2/2.

Proof. The equivalence is immediate from Theorem 5.11. Further, by (5.16), we have
Φξ(L(η1)) = µ where the Laplace exponent of η is given by

ψη(u) = −
((

a− σ2

2

)
cΓ(1− α) +

σ2

2
cΓ(2− α)

)
uα − σ2

2
c2(Γ(1− α))2u2α.

The case α = 1/2 = 2a/σ2 now follows immediately, and for α < 1/2 observe that∫ ∞

0

(e−ux − 1)x−1−β dx =

∫ u

0

(
d

dv

∫ ∞

0

(e−vx − 1)x−1−β dx

)
dv

= −
∫ u

0

vβ−1Γ(1− β) dv = −Γ(1− β)

β
uβ

for β ∈ (0, 1) und u > 0, which gives the desired form of the drift and Lévy density of η
also in this case.

Example 5.13. Reconsider Example 1.1, namely,

V =

∫ ∞

0

e−(σBt+at)dt
d
=

2

σ2Γ 2a
σ2

,

where V has the law of a scaled inverse Gamma distributed random variable with pa-
rameter 2a

σ2
. In the case that 2a

σ2
= 1

2
, or equivalently a = σ2/4 this is a so called Lévy

distribution and it is 1/2-stable (cf. [29, p. 507]). Reassuringly, by Corollary 5.12, L(V )
is a 1/2-stable distribution if a = σ2/4.
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Corollary 5.14. Let ξt = σBt + at, t ≥ 0, σ, a > 0 for some standard Brownian motion
(Bt)t≥0. Then R+

ξ contains the closure of all finite convolutions of positive α-stable dis-

tributions with drift 0 and α ∈ (0, 2a
σ2

∧ 1
2
], which is characterized as the set of infinitely

divisible distributions µ with Laplace exponent

ψ(u) =

∫
(0, 2a

σ2∧
1
2
]

m(dα)

∫ ∞

0

(
e−ux − 1

)
x−1−αdx (5.17)

where m is a measure on (0, 2a
σ2

∧ 1
2
] such that∫

(0, 2a
σ2 ∧

1
2
]

α−1m(dα) <∞. (5.18)

Proof. Denote by M1 the class of all finite convolutions of positive α-stable distributions
with drift 0 and α ∈ (0, 2a

σ2 ∧ 1
2
], by M2 its closure with respect to weak convergence,

and by M3 the class of all positive distributions on R whose characteristic exponent can
be represented in the form (5.17) with m subject to (5.18). We show that M2 = M3,
then since M2 ⊂ R+

ξ by Theorems 5.11 and 3.4 (i), this implies the statement. To see
M2 ⊂M3, denote by L∞(R) the closure of all finite convolutions of stable distributions on
R (cf. [25, Theorem 3.5], where L∞(R) is defined differently, but shown to be equivalent
to this definition). Using the fact that L∞(R) is closed, it then follows easily from [25,
Theorem 4.1] that also M3 is closed under weak convergence. Since obviously M1 ⊂ M3

(take m to be a measure supported on a finite set), we also have M2 ⊂ M3. Conversely,
M3 ⊂M2 can be shown in complete analogy to the proof of [25, Theorem 3.5].

Remark 5.15. From the proof of Theorem 5.11 it is possible to obtain a necessary
and sufficient condition for a finite convolution of positive, stable distributions to be in
R+
ξ . Indeed if the Xi are such that ψXi

(u) = −ciuαi with ci > 0 and αi ∈ (0, 1), then

µ = L(
∑n

i=1Xi) is in R+
ξ if and only if the function f defined by (5.16) is a Bernstein

function. After ordering the indices, the function f can be written as
∑m

i=1Diu
γi with

0 < γ1 < . . . γm < 2 and coefficients Di ∈ R \ {0}. Since∑
i=1,...,m;γi<1

Diu
γi =

∫ ∞

0

(1− e−ux)
∑

i=1,...,m;γi<1

Diγi
Γ(1− γi)

x−1−γi dx

as seen in the proof of Corollary 5.12, it follows from [28, Corollary 3.8(viii)] and [26,
Example 12.3] that f is a Bernstein function if and only if γm ≤ 1, Dm ≥ 0 and∑

i=1,...,m;γi<1

Diγi
Γ(1− γi)

x−1−γi ≥ 0, ∀ x > 0.
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