
Technische Universität München

Lehrstuhl für Computation in Engineering

A Parallel, Multi-Resolution Framework for Handling Large
Sets of Complex Data, from Exploration and Visualisation to

Simulation

Vasco Varduhn

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. André Borrmann

Prüfer der Dissertation:

1. Univ.-Prof. Dr. rer. nat. Ernst Rank

2. Univ.-Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz

Die Dissertation wurde am 26.03.2014 bei der Technischen Universität München eingereicht

und durch die Ingenieurfakultät Bau Geo Umwelt am 05.05.2014 angenommen.

Abstract

In this work, techniques from computational science and engineering are applied to demanding

questions and challenges from civil engineering concerning our cities. Many complex features

of urban regions can be described by fusing and integrating highly detailed multi-scale data.

A parallel data access framework with clearly defined and proven interfaces to all parts of

the simulation pipeline such as preprocessing, numerical simulation and postprocessing is

developed. This framework is capable of storing, handling and providing access to large

amounts of highly detailed data from constructions, built infrastructure, geographical data

and infrastructure networks.

The strict usage of parallelisation techniques and efficient algorithms is necessary and intro-

duced in detail. These techniques make it possible to create a framework which can provide

access to multi-resolution representations of large data sets fast enough to put into practice a

complete exploration and simulation pipeline, which ranges from a multi-monitor or CAVE-

based real-time visualisation to multi-scale simulation scenarios such as flooding of urban

regions.

Finally, the application of an urban flooding simulation with the incorporation of pipe network

interaction is given. The capabilities of the framework allow the coupling of the different

simulations to be handled efficiently and insight is gained over all scales from the global flow

behaviour to the impact on single construction entities.

Zusammenfassung

In dieser Arbeit werden Ansätze der Ingenieursinformatik sowie des wissenschaftlichen Rech-

nens auf Fragestellungen des Bauingenieurwesens zur Untersuchung hoch detaillierter Stadt-

modelle angewendet, um Beiträge zur Beantwortung dringender Fragen und Herausforderun-

gen unserer stetig wachsenden Städte zu leisten.

Ein parallelisiertes Datenhaltungskonzept wird vorgestellt, das klar definierte Schnittstellen

zu einzelnen Schritten der numerischen Simulation, wie zum Beispiel effiziente Datenspei-

cherung oder Verarbeitung, zur Verfügung stellt. Dieses Datenhaltungskonzept bietet die

Möglichkeit, große Mengen von Produktmodelldaten vorzuhalten und in Echtzeit zu verar-

beiten. Diese Daten umfassen die vollständige geometrische und semantische Beschreibung

von Städten, einschließlich Gebäuden und Konstruktionen, kartografischen Oberflächen und

Spezifikationen von Rohrleitungs- und Versorgungsnetzen.

Diese Datenbasis wird in einem verteilten Konzept zusammengeführt und effiziente Schnitt-

stellen zu Simulation und Visualisierung werden implementiert und detailliert beschrieben.

Diese Schnittstellen reichen von der Anbindung einer komplexen Visualisierungs- und Aus-

wertungsumgebung, einschließlich der Möglichkeit der interaktiven Erkundung der Daten, bis

hin zur numerischen Simulation auf großen Parallelrechnern.

Das entwickelte Gesamtkonzept wird anhand einer großflächigen Überflutung von Städten

demonstriert, wobei neben der Oberflächenströmung auch das unterirdische Kanalnetzwerk

und deren Interaktion berücksichtigt wird. Durch die detaillierte Auswertung der numerisch

gewonnenen Daten auf verschiedenen Skalen kann eine Untersuchung der Ausbreitung des

Wassers Auswirkungen sowohl auf der Ebene der ganzen Stadt, als auch auf der einzelner

Gebäude oder gar einzelner Bauwerksdetails genau aufzeigen und dementsprechend bewertet

werden.

Vorwort

Die vorliegende Arbeit entstand während meiner fünfjährigen Tätigkeit als wissenschaftlicher

Mitarbeiter am Lehrstuhl für Computation in Engineering an der Technischen Universität

München (TUM) und in dem interdisziplinären Forschungsprojekt ”Virtual Arabia” zwischen

der King Abdullah University of Science and Technology (KAUST) und der TUM.

Mein besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr. Ernst Rank für seine

fachliche Expertise und seine tatkräftige Unterstützung zum Gelingen meiner Arbeit. Durch

sein Vertrauen in mich und meine Forschung sowie durch die mir übertragene und anvertraute

Lehrtätigkeit konnte ich mich weiter entwickeln.

Ich danke Herrn Prof. Dr. Hans-Joachim Bungartz sehr für die Übernahme des Koreferats,

seine kritischen Kommentare zu meiner Arbeit und der vorliegenden Monographie, sowie

seine fachliche Unterstützung als Principal Invesitgator des Virtual Arabia Projektes.

Ich danke allen Kollegen am Lehrstuhl, insbesondere Hanne Cornils, Dr. Ralf-Peter Mundani

und Jérôme Frisch, Dr. Angelika Kneidl und Nils Zander, sowie den Projektkollegen Dr. Jens

Schneider, Amal Benzina, Gerrit Buse, Daniel Butnaru, Alin Murarasu und Marc Treib für

die intensive Zusammenarbeit und ihre persönliche Unterstützung.

Mein größter Dank gilt meiner Familie und meinen Lieben für ihre Unterstützung während

der gesamten Zeit und insbesondere in der Endphase.

VII

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Structure . 3

2 Input Data and Preprocessing 5

2.1 Building Information Modelling . 6

2.1.1 Industry Foundation Classes . 7

2.1.2 CAD Data and 3rd Party Building Information Models 8

2.2 3D City Model . 8

2.3 Geographic Information System . 9

2.3.1 Terrain Specification . 10

2.3.2 Pipe and Supply Network Data . 10

2.4 Levels of Detail . 11

2.4.1 Multi-Resolution Raster Data . 12

2.4.2 Stepwise Coarsened Product Model Data 13

2.4.3 GPU-based Generation of Levels of Detail 15

2.5 Multi Resolution Meta Format . 22

2.6 Data Fusion and Set Augmentation . 25

3 Framework 27

3.1 Hierarchical Data Representation . 29

3.1.1 Local Scale - Product Model Details 32

3.1.2 Global Scale - Location Awareness . 35

3.2 A Scalable Hybrid Parallel Approach . 36

3.2.1 Multi-Level Parallelisation . 38

3.2.2 Building Up the Framework . 40

3.2.3 Interfacing Multi-Resolution Geometry 43

3.2.4 Interfacing Auxiliary Information . 46

3.2.5 Interfacing Linearised Octree Representations 48

3.2.6 Interfacing Voxel Representation . 49

3.2.7 Interfacing Voxel Query . 52

3.2.8 Communication Protocol of the Framework Access 53

3.3 Load Distribution . 54

3.3.1 Probabilistic Mapping . 56

3.3.2 Modified Space Filling Curves . 56

3.3.3 Distribution Quality . 59

4 Visualisation and Exploration 63

4.1 Visualisation . 64

4.1.1 Visualisation of Hierarchical Ordered Product Model Data 64

4.1.2 Integration of Simulation Data . 70

4.1.3 Parallel Visualisation in CAVE-like Environments 71

4.2 Navigation and Data Exploration . 74

4.2.1 Interacting Handheld Devices . 76

4.2.2 User Tracking and Tracked Interaction 77

4.2.3 Product Model Investigation and Engineering Applications. 80

5 Coupling Grid-Generation and Simulation Frameworks 85

5.1 Coupling the Sierpinski Framework . 86

5.1.1 Derivation of the Bathymetry Discretisation 87

5.2 Coupling the Peano Framework . 91

5.2.1 Interfacing the Geometry Description 92

5.3 Coupling OpenFOAM . 95

5.3.1 Preprocessing the Solid/Fluid Discretisation 97

5.3.2 Mesh Generation . 98

5.3.3 Parallel Mesh Generation and Domain Decomposition 102

6 Multi-Resolution Parallel Numerical Simulation 105

6.1 Fluid Flow Simulation . 106

6.1.1 Three-Dimensional Potential Flow . 106

6.1.2 Two-Dimensional Shallow Water Equation 106

6.1.3 Three-dimensional Incompressible Navier-Stokes Equation 107

6.1.4 Three-dimensional Free Surface Simulation 108

6.2 Resolution Refinement . 110

6.2.1 Resolution Adaption . 111

6.3 Postprocessing - Propagation to Product Model Data 117

6.4 Performance Results . 119

7 Urban Flooding Simulation with Pipe Network Interaction 121

7.1 Existing Work . 122

7.2 A Holistic Pipe Network and Surface Flow Approach 124

7.2.1 Surface Flow . 125

7.2.2 Pipe Network Flow . 127

7.2.3 Interplay of Surface and Pipe Network Flow 130

7.3 The Scenario . 131

7.3.1 Data Basis and Discretisation . 131

7.3.2 Boundary Conditions . 131

7.3.3 Results . 131

8 Conclusion and Outlook 139

A Appendix 143

A.1 Data Fusion and Set Augmentation . 143

A.2 CiE Sandstorm Cluster . 146

A.3 Shaheen . 147

A.3.1 KAUST Blue Gene/P ‘Shaheen’ . 147

A.4 OpenFOAM Mesh Specification . 148

A.4.1 points . 148

A.4.2 faces . 148

A.4.3 boundary . 149

A.4.4 owner . 150

A.4.5 neighbour . 151

A.5 OpenFOAM Case Definition . 152

A.5.1 system/controlDict . 152

A.5.2 system/decomposeParDict . 153

A.5.3 system/fvSchemes . 154

A.5.4 system/fvSolution . 155

A.5.5 setFieldsDict . 156

1

Chapter 1

Introduction

1.1 Motivation

Today, more people live in cities and metropolitan areas than in the countryside. In emerging

countries such as China, in particular, there is a strong trend towards developing mega-

cities. Simultaneously, larger cities present tremendous challenges for the future. The ongoing

shortage of fossil resources requires the implementation of energy-efficient building and city

concepts. The high population density in cities demands proper infrastructure for public

transportation and supply networks. Natural disasters such as the European flood in 2013

affect the people of a whole city and the constructions and built infrastructure there. These

examples show that planning on the city scale is of the utmost importance. Whereas this is a

very large scale, the granularity of the entities such as constructions and built infrastructure

is very fine. Individual buildings are complex structures, cities cover thousands of buildings.

Together with the infrastructure, a city means a very extensive scope for the investigation of

physical phenomena, performance evaluation, identification of optimisation possibilities, or

mitigation of risk potential. In these application scenarios the challenges of the future have

to be tackled using efficient approaches.

Computational science and engineering has become the third pillar of research in addition to

theory and experiment. There are even fields where it is the only applicable approach. The

investigation of flooding in a city can obviously not be performed in an experiment. Neither

can the damaging effect of substances on the ozone layer be investigated by performing a real

experiment. This shows that there is an emerging demand to apply numerical simulation to

questions concerning cities and their buildings as a whole.

In the field of computational science and engineering, there is a great variety of efficient,

massively parallel and highly detailed applications for performing engineering relevant tasks

from the fields of data exploration, numerical simulation and postprocessing. As has been

2 1. Introduction

known for many years from disciplines such as automotive and aeronautical research, a strict

exploitation of highly detailed product model descriptions, accurate numerical simulation and

the examination of efficiently performed analyses in the early stages of the planning phases

give engineers and scientists a tool in hand with which to gain an insight into the behaviour,

potential and weaknesses of new constructions even before the first prototype has been built.

A strict adherence to these techniques has the potential to achieve an optimisation of new

constructions, taking place even before they have been built or helping to evaluate existing

constructions.

Although all the potentials mentioned are there even or especially in the field of civil engi-

neering, a strict exploitation from computational science and engineering has not yet been

put into practice. But the very high complexity in civil engineering, especially in the field of

city models and their buildings and built infrastructure exerts much more pressure to do so.

In order to investigate the effects of natural disasters, to perform energy-efficient planning

of buildings, to plan public transportation objects in a city, it is not only the assembly of

the constructions with respect to each other which is important, but also the fully detailed

description of the individual buildings. For an urban flooding investigation, for example,

the global flow behaviour has to be investigated on scales in the range of tens of kilometres,

but the impact on constructions and built infrastructure has to be examined in the range of

metres and centimetres. Civil engineering applications are extremely multi-scale in nature.

Over the last two decades, there have been significant developments in the field of building

and construction modelling, digital city models and large-scale geospatial services. Today,

the fully detailed product models of constructions and built infrastructure can be described,

digital city models examining the assembly of all buildings in a city are available, as are

geospatial descriptions of the terrain, the surface and the land usage.

To put it in a nutshell, in civil engineering the multi-scale fully detailed description of cities,

landscapes, constructions and built infrastructure is possible, together with a strong demand

for the efficient investigation of real-life problems on the basis of these highly complex data

by using the approaches of computational science.

1.2 Goal

The aim of this work is to apply techniques from computational science and engineering to

the approaches of civil engineering and make a contribution to taking a further step towards

answering the demanding questions and challenges of our cities.

In order to achieve this, a parallel data access framework with clearly defined and proven

interfaces to all parts of the simulation pipeline such as preprocessing, numerical simulation

and postprocessing is developed. This framework is capable of storing, handling and provid-

1.3. Structure 3

ing access to large amounts of highly detailed data from constructions, built infrastructure,

geographical data and infrastructure networks.

In order to put such a framework into practice, the strict usage of parallelisation techniques

and efficient algorithms is necessary and is introduced in detail. These techniques make it

possible to create a framework which can provide access to multi-resolution representations

of large data sets fast enough to put into practice a complete exploration and simulation

pipeline, which ranges from a multi-monitor or CAVE-based real-time visualisation to multi-

scale simulation scenarios such as flooding of urban regions.

Since it is clear that the expert knowledge of engineers is indispensable in order to set up

simulation scenarios which deliver accurate and reliable results and insight, the general in-

teroperability with existing visualisation and simulation environments is shown for various

scenarios. Finally, the application of an urban flooding simulation with the incorporation of

pipe network interaction is given. The capabilities of the framework allow the coupling of

the different simulations to be handled efficiently, and insight is gathered over all scales from

the global flow behaviour to the impact on single construction entities.

1.3 Structure

This work is organised as follows. In Sec. 2 the various data sources ranging from fully

detailed product model descriptions of constructions and built infrastructure, and digital

city models through to geospatial large-scale descriptions are given. These different sources

are used to form a complex multi-scale data basis by fusing all input data to a common data

set and enriching the coarse scale data with the fully detailed product model descriptions.

Furthermore, a multi-resolution description of the complete data set is derived by introducing

a level of detail approach to the whole data assembly.

In Sec. 3 the centrepiece of this work is presented: a parallel data access and processing

framework which is capable of handling the complete model of a city with all constructions

and built infrastructure. The hybrid parallelisation concept for this framework follows; this

is essential to handle such large amounts of complex multi-resolution data. In order to show

the applicability of the framework and prepare real-life applications, coupling interfaces to

data exploration, visualisation and numerical simulation approaches are developed within

this dissertation project. This chapter closes with a load distribution strategy based on

space-filling curves and an investigation of its quality.

In Sec. 4 the visualisation and exploration of the framework presented is developed. Starting

from the visualisation of the hierarchically ordered multi-resolution product model data, the

integration of simulation data is prepared. All approaches are transferred to multi-monitor

CAVE-like installations. In order to investigate the full complexity of the underlying data,

4 1. Introduction

adequate hand-held navigation for such visualisation environments is introduced.

In order to open the door for various numerical simulations, the multi-scale representation of

the underlying data is interfaced in Sec. 5 in order to drive general purpose grid-generation

and parallel numerical simulation frameworks. Based on the coupled frameworks, various

numerical simulations are introduced and performed in Sec. 6. These simulations use the

inherent multi-representation approach of the framework presented and therefore allow sim-

ulations based on almost any computational domains and resolutions.

In Sec. 7 the applicability of the complete approach presented in this work is shown by

simulating urban flooding with the pipe network interaction of a city and its buildings. In

order to investigate the effects of a drainage system collapsing due to a heavy rain scenario

in a city, a three-dimensional parallel free surface flow simulation is incorporated with the

interaction of the one-dimensional pipe-network flow. The holistic approach enables the

behaviour to be investigated on the city-wide scale and allows the adaptive investigation

down to the scale of buildings and construction details.

5

Chapter 2

Input Data and Preprocessing

In this chapter, the data basis for the framework with its supported input formats is intro-

duced and the compatibility with almost any data format is shown. Afterwards, the pre-

processing steps performed are presented, which cover the generation of stepwise coarsened

representations of the fully detailed data. The definition of a metaformat is then introduced,

in which all data formats supported are stored in an efficient and fast manner, and the con-

version algorithms to this format are given. Finally, a data fusion algorithm is presented,

which organises data originating from different scales and fuses them to one basis as a large

set of complex data.

The data basis covers, on the one hand, data for constructions and built infrastructure,

which describe buildings, bridges, etc. Furthermore, geographic data are integrated, from

which large-scale information such as the elevation and the texture of the surface and land

usage information, and also pipe and power supply networks are derived. The introduction

of data from numerical simulation follows with their creation and is therefore postponed to

the following sections.

After the description of the data types supported, level of detail (LoD) algorithms are in-

troduced. These algorithms make it possible to stepwise coarsen a complex structure by

means of a simpler representation such that the coarsening error made is acceptable in the

situation to which it is applied. A good example is the stepwise coarsening of the terrain

during visualisation. When exploring individual details, a fully resolved mesh is used for

visualisation. The larger the scale of investigation, the coarser the mesh can be made, for

example by collapsing individual elements and approximating them with the average of the

collapsed elements without obtaining a not negligible error - at least for visualisation. Three

level-of-detail algorithms will be introduced, which cover different aspects and application

scenarios. The first algorithm implements LoDs for product model data and coarsens the

fully detailed description of a construction by approximating individual complex parts with

their bounding box. The second algorithm computes the outer shell of the product model

6 2. Input Data and Preprocessing

and exploits the Graphics Processing Unit (GPU) to speed up the computation. A third

algorithm is introduced, which relies on approximating complicated structures with textured

polyhedra. This computation is also performed on the GPU and provides good speed-up

possibilities for visualisation purposes.

After introducing the data types supported and levels of detail, a meta-format is presented,

which is capable of storing and providing read access to a single model with all its LoDs and

auxiliary information in an efficient and fast manner. This binary format makes it possible

to read individual parts such as an individual LoD or specific auxiliary information without

reading the whole file into main memory and therefore it is well suited for interactive and

parallel access.

Finally, the topic of enriched data sets is covered. This comes from the fact that one of

the application scenarios of the framework presented is to develop a system which makes it

possible to investigate urban flooding on multiple scales, ranging from the overall flooding

behaviour in the city to the effects on specific construction details. Geographic information

systems (GIS) provide information on the elevation and usage of the surface, whereas city

models give the assembly of buildings within their surroundings, and Building Information

Models (BIM) define a single building in full detail. Building Information Models distinguish

from geometric models by the fact, that besides the geometric representation particularly the

rich semantic description is stored.

What is not available is a complete, fully detailed specification of a city or even a district

with all its buildings, but this is imperative for the framework presented in order to show the

applicability and feasibility of the approach. In order to overcome this obstacle, an algorithm

has been developed and implemented which enriches a given city model with building product

model data based on a similarity criterion. This algorithm is based on a metric and replaces

the coarse representation of single buildings with fully detailed synthetic product models and

results in a scenario which has the complexity of a necessary, but not available real world

data set. Based on this enriched data set, which has been generated for the city centre of

Munich, the algorithms and approaches presented in the following are tested and applied.

2.1 Building Information Modelling

Building Information Modelling (BIM) is the ongoing process of describing the data of a

construction in a digital product model over the whole life cycle [1] of the construction. This

ranges from the planning process and the construction work through to the maintenance

during the life time of the building and also to the deconstruction of the building. It must

be pointed out that BIM is not restricted to a single purpose or a single discipline such as

architecture, construction or maintenance [2] but is a holistic approach for handling building

2.1. Building Information Modelling 7

data in the architecture, engineering and construction (AEC) industry [3, 4, 5, 6, 7]. A strict

adherence to BIM can overcome the problem that information which is not managed efficiently

loses its value, leading to a lack of insight due to disjointed or incompatible information

handling [8, 9]. In the latest research, BIM has been extended from a static description of

constructions to a dynamically evolving information database, supporting 4D modelling and

parametric descriptions of relations in order to cope with the challenges of the development

processes [10, 11, 12, 13].

2.1.1 Industry Foundation Classes

Industry Foundation Classes (IFC) are an open standard and provide a specification for

performing Building Information Modelling. It is an object-oriented data model for interop-

erability in the AEC industry and is maintained by buildingSMART [14].

IFC use the Standard for the Exchange of Product model data (STEP) [15] ISO 10303 for

storing the relational description of the product model. A product model for the main building

of Technische Universität München, Munich, Germany is given in Fig. 2.1. The model has

been developed in a student project conducted at the Chair of Computational Modelling and

Simulation at Technische Universität München.

Figure 2.1: IFC product model of the main building of TUM [16].

IFC are currently the best choice and the industry standard for performing BIM and ex-

changing product model data for constructions. Over the last decades, IFC have undergone

a development process and this is still ongoing. In March 2013 the latest update of the

standard, IFC4, was launched and relies on XML as the data format [14].

IFC can deliver the complete specification of a construction or built infrastructure, ranging

from the fully detailed geometric representation to the auxiliary information such as relations,

a window as an opening element of a wall, for example, or measured data such as the floorspace

of a room, insulation class of the glass in a window or the address of an installed network port.

IFC is therefore well suited as one data source for the purpose of the framework presented

as it provides feature-rich data and allows general interoperability by being the standard for

storing building product model data.

8 2. Input Data and Preprocessing

On the other hand, it has to be mentioned that IFC is also still in a development process.

There are still unmet challenges in describing construction details properly. For example, the

intersection of walls is not defined exactly. For a detailed review of the unanswered modelling

questions in IFC, the reader is referred to [17, 18].

Besides the specification of buildings IFC are extended to the description of constructions

and built infrastructure facilities such as bridges, tunnel segments and roadways [19, 20].

The specific modelling demands of different types of built infrastructure are an active field

of research.

2.1.2 CAD Data and 3rd Party Building Information Models

As described in Sec. 2.1.1, IFC are a standard data format for describing the product model

definition of constructions and built infrastructure. In order to bring BIM to life, it has to be

supported by industry, and software vendors have gone to a lot of effort to incorporate and

support IFC. All large developers of computer-aided design (CAD) software provide and are

actively developing import and export interfaces to and from IFC.

At the moment there is already support for the major and widely distributed software tools

such as AutoDesk Revit or Nemetschek Allplan, to name but a few, but the consistency in

respect of the import and export features is still limited. It is therefore still only a semi-

automated process to bring product model data from a construction tool to IFC, and not the

whole feature set of all construction tools is compatible and transferable to and from IFC.

For a detailed review of the interoperability of IFC with specific CAD tools, the reader is

referred to [21].

Nevertheless, there is the process of transferring basically any 3D models, drawings and

construction plans with their auxiliary information from all major software tools to IFC. For

the purpose of the work presented it is therefore sufficient to stick to incorporating IFC as a

data source for product model data from constructions and built infrastructure.

2.2 3D City Model

3D city models are schemes for representing a district, a city or even a country with its

buildings, land usage and infrastructure by assembling the entities covered in the area of

interest. Today, many institutions provide detailed 3D models of cities and the number is

still increasing; 3D models of Berlin [22, 23] and London [24] are available, to name but two

out of many.

The common standard for 3D city models is City Geography Markup Language (CityGML) [25,

26, 27] which is based on and extends the Keyhole Markup Language (KML) [28]. CityGML

2.3. Geographic Information System 9

fuses data from different sources in order to provide a product model for cities with their

3D objects. It must be pointed out that CityGML does not only focus on the geometric

representation of buildings and their visualisation, but also covers semantic and relational

information and therefore functions as a common interface model for virtual 3D city and

landscape models [29]. Fig. 2.2 shows the city model of Berlin, Germany [22].

Figure 2.2: CityGML model of Berlin, Germany [22].

Its definition, growing coverage, and availability for domains of interest make CityGML well

suited for many applications beside visualisation as shown in [30] and these range from urban

planning [31, 32] and disaster management [33] through to public affairs.

Nevertheless, it must be pointed out that there are unresolved challenges in implementing

CityGML which are addressed differently [34]. Files tend to become very large and can

easily reach many gigabytes in size for complex scenarios; furthermore, city models can also

be distributed over multiple files and then the linking between elements over different files

becomes an issue.

2.3 Geographic Information System

A Geographic Information System (GIS) is a data processing system which focuses on han-

dling spatial data. In [35] a GIS is defined as follows: ”A GIS is a computer-based system to

aid in the collection, maintenance, storage, analysis, output and distribution of spatial data”.

A GIS basically handles two different types of data, raster data and vector data. Raster data

are sets of discretised values on a usually uniform, two-dimensional grid. Typical examples of

10 2. Input Data and Preprocessing

raster data are elevation maps and orthophotos for specifying the shape and representation

of the surface of the earth. Vector data are in general a set of geometric primitives such as

lines, polygons, or points and so on.

Another important aspect of GIS modelling is georeferenciation and the processes of mapping

input data coordinates to spatial real world coordinates. As the surface of the earth is similar

to the surface of a sphere, the question arises of how to map 2D coordinates of a map, for

example, to the 3D coordinates of the earth. In general, two different coordinate systems are

used. The first one is the geographic coordinate system and in this method, the coordinate

is defined by the two angles of the polar coordinates of the spherical surface. The second one

is a projected coordinate system as is used for the Gauss Krüger coordinates; for projected

coordinates the 2D plane on which the points are defined is projected to the surface of the

earth [36, 37, 35].

2.3.1 Terrain Specification

The terrain specification is a typical type of raster data in GIS, consisting of the elevation

map, giving the height values of the surface on a (regular) grid, and orthophotos generated by

aerial picture taking. From the elevation map a 3D mesh is generated on which the texture

derived by the aerial photos is projected.

Figure 2.3: Realistic terrain representation is achieved by mapping the conforming texture to a
surface definition given on a (uniform) grid.

Fig. 2.3 shows a dataset provided by the Chair for Geoinformatics at Technische Universität

München, which very accurately describes the area of Voralberg in Austria. The dataset

has been generated and provided by the federal state [38] and is provided for the scientific

community; a further source for GIS data is [39] and the integration of CityGML models [40].

2.3.2 Pipe and Supply Network Data

Pipe and supply network data are typical types of vector data. Usually networks are defined

as a graph, where the nodes are the intersections of the pipes and the edges are the pipes. The

2.4. Levels of Detail 11

graph can be represented by a node list, which provides the exact position of the intersection

of the network, and an adjacency matrix. The adjacency matrix has the dimension of the

length of the node list and stores kij at an entry if there is a connection between node i and

node j. Usually 0 indicates no connection and a value different from 0 indicates a connection.

These values can be encoded only with yes or no if a connection exists, store the weight of

the edge, or be a lookup key table where, in the case of a pipe network, the diameter of the

pipes, roughness values or the material the pipes are made of is stored.

Figure 2.4: The pipe network of the sewer system in the city centre of Munich, Germany for a
domain of approximately 2 square kilometres.

Fig. 2.4 shows the pipe network [41] of the sewer system in the city centre of Munich measuring

approximately 2.6 km by 0.8 km. The dataset is provided by the Chair for Geoinformatics

at Technische Universität München. It consists of over 1, 800 pipe segments having a total

length of over 38km.

2.4 Levels of Detail

In order to process large data sets and complex geometries, one of the essential issues is how

to select the part which is of interest and necessary for the application from a vast amount

of information, and how to work out which part can be ignored. Furthermore, a decision has

to be made as to the resolution at which the individual data of the set investigated have to

be processed.

12 2. Input Data and Preprocessing

Of course this is a highly situation-specific and application-specific question, one of the driving

parameters is the scale of the domain of interest. On a large scale, the individual elements

generally have a coarse representation or resolution, as the number of individual elements is

high. On a fine scale, only a couple of elements will be investigated, but these elements are

highly resolved.

A good example for a description using the concept of levels of detail is the visualisation

of a city model. In order to visualise the whole model of a city, individual houses can be

approximated by their coarse outer shape and details such as the exact outline of the windows

can be neglected. Even finer details such as the handrail of the stairs inside the building are

not even visible. This is just one example, but it already shows that a model has to have

multiple representations - called levels of detail (LoD) - in order to decide which level to

apply at the moment the model is processed.

In the literature, it is common to use five different levels of detail [27, 42] for buildings and

the assembly of buildings in city models, starting from the coarsest and progressing to the

finest. This is also known as aggregation and generalisation approach.

1. LoD0 holds just the elevation model as an extruded (textured) surface mesh.

2. LoD1 holds approximations of individual buildings with their bounding box.

3. LoD2 extends LoD1 with the shape of the roof and textures for the facade.

4. LoD3 contains the full outer geometry of every individual building.

5. LoD4 holds the fully detailed description of the buildings including interior and instal-

lations.

In the following these LoD definitions will be introduced and additional formulations given in

order to cover all the different demands made by the current setting for which this framework

is used.

2.4.1 Multi-Resolution Raster Data

As introduced, LoD0 gives an approximation of the domain of interest with a textured surface

mesh. From the GIS sources introduced in Sec. 2.3.1, a mesh for the elevation and a texture

can be derived which leads directly to LoD0.

Even if this is the coarsest LoD defined, it does not indicate a low density or easy to process

data. Terrain data are available at very fine resolutions as shown in Sec. 2.3.1. In order to

provide the right resolution of raster data for a specific scenario, down sampling methods

have been implemented within this dissertation project.

2.4. Levels of Detail 13

For input raster data M0 = mi,j a down sampling of level k is defined by Mk = mk
i,j = mk·i,k·j ,

where the number of raster points of Mk decreases as the square over k. Values are then

interpolated linearly over the domain of M1. Fig. 2.5 gives two raster data sets, a surface

mesh and a terrain texture, with three coarsening steps.

Figure 2.5: Two raster data sets describing a surface (top) and the corresponding texture (bottom),
both with a stepwise down sampling for k = [1, 200, 800] (f.l.t.r.). The dataset is provided by the
Chair for Geoinformatics at Technische Universität München.

There are approaches in which highly resolved terrain elevation and texture data are pre-

processed by using efficient encoding algorithms and therefore terra scale datasets can be

processed in real-time [43, 44].

2.4.2 Stepwise Coarsened Product Model Data

As introduced, LoD4 contains the fully detailed description of a building including its interior

and installations. As this LoD consists of the non-coarsened data, it can be derived from BIM

data as introduced in Sec. 2.1 directly, but BIM is capable of storing much more detailed

information. Besides the detailed geometric representation, auxiliary information such as

measured data, material parameters or performance values are also available.

As IFC are used in this work for handling BIM data, the derivation of the explicit geometry

and auxiliary information has to be performed. This is done by using the IFCEngine [45]

14 2. Input Data and Preprocessing

library. IFCEngine interprets a given IFC file and delivers the geometric representation as

an indexed 3D triangular mesh together with the mapping of auxiliary information to the

identifiers of the mesh, which are the individual building elements. The triangular mesh can

be stored directly and the mapping of the auxiliary information is stored as a set of arrays

where each holds the information for a single element of the product model. The UML

specification of the resulting discretised product model representation is given in Fig. 2.6.

AuxiliaryInformation

ReferenceElement

name: String

MeasuredData

name: String
dataType: Type
datum: Byte[]

Vertex

x: Float
y: Float
z: Float

Face

normal: Vector
colour: Vector

Element

IFCBuilding

schemaVersion: String
filename: String

1
1..*

1

1
1..*1..*

1..*
1..*

1..*

1

Figure 2.6: A discretised product model representation of an IFC file stores the list of indexed faces,
which give the fully detailed geometry of the model. For every face, the identifier gives the mapping to
the corresponding building element. Every building element is stored with the full set of its auxiliary
information.

This representation now provides LoD4 directly for a given IFC model, LoD1 and LoD2 are

derived by performing stepwise coarsening of the LoD4 data.

In a first step, all individual elements such as doors or windows are approximated individually

with their bounding boxes. In a second step, all elements of the same type are approximated

with their bounding boxes. In a third step, the group of elements is approximated with

its bounding box which provides the bounding box of the model. The pseudocode of the

algorithm is given in Alg. 1.

Fig. 2.7 shows the geometry derived and all three coarsening steps for an IFC model with a

representation of 1.1million triangles and 3.4million vertices. Furthermore, the model con-

2.4. Levels of Detail 15

Algorithm 1 calculateBBoxApproximation

void calculateBBoxApproximation (Object bu i l d i n g){

BBox bui ld ingElements [] ;
BBox buildingElementGroups [] ;
BBox bu i l d ingOut l i n e ;

for (each e in bu i l d i ng . e lements ())
bu i ld ingElements [e . elementID] . adaptBBoxWith (e) ;

for (each be in bui ld ingElements)
bui ldingElementGroups [be . elementTypeID] . adaptBBoxWith (be) ;

for (each beg in buildingElementGroups)
bu i l d ingOut l i n e . adaptBBoxWith (beg) ;

}

tains a set of over 100k pieces of auxiliary information. It should be pointed out that this

information covers not only measured data but also the mapping between elements. By

having this for a window, for example, information is stored as to which wall contains this

opening element, in which building the floor is located, and what the coordinates of the

building are.

The algorithm presented for generating levels of detail for product model data is performed

per IFC file and at the preprocessing stage of the framework. In Tab. 2.1 a listing of some of

the processed IFC files is given together with the coarsening achieved concerning the quantity

of triangles needed for the respective LoD representation.

2.4.3 GPU-based Generation of Levels of Detail

In the following two further level of detail formulations are presented. These algorithms are

well suited for graphics accelerators and therefore their GPU-based implementation is given,

even if the formulations are independent of the specific hardware they are performed on.

Generation of the Outer Shell

As introduced, LoD3 contains the fully detailed description of the outer shell of a building. In

order to generate this LoD of a product model, an algorithm has been developed which uses

the capabilities of the GPU to retrieve the subset of the fully detailed geometric description

which forms the outer shell. Usually a reduction of up to 90% is achieved. This reduction

leads to a representation which is loss free as long as the domain of interest is on the outside

of the buildings. Furthermore, the complement of the outer shell provides the representation

of the inner (structure) of the product model, see Fig. 2.8.

16 2. Input Data and Preprocessing

Figure 2.7: The fully detailed geometric representation of a building product model is coarsened by
the set of bounding boxes for each individual building element. All bounding boxes of the same type
of element are grouped and approximated by their bounding boxes. The bounding box of all groups
of element types gives the bounding box of the product model (f.t.t.b).

The algorithm developed works as follows. As introduced in Sec. 2.4, the fully detailed

representation of the product model is derived and stored as an index triangular mesh. The

mesh is scaled and translated such that its bounding box fits the 3D unit interval. From

2.4. Levels of Detail 17

#Triangles
Description init step 1 step 2 step 3

Studienarbeit BIC Gefägnis 307532 10436 3402 48
BIC Studienarbeit Haus RG 165614 6450 1026 48
Studienarbeit CAD-Haus RB 73657 2690 978 48
BIC Bürogebäude-JG 55922 1442 834 36
ProjektBIC Villa-MP 53659 1919 762 42
Testat-Bic Haus-AS 50193 1693 564 48
Einfamilienhaus 46929 1355 750 36
Studienarbeit Haus-LT 45223 1121 714 54
3D BIC Haus-MH 44874 1498 714 36
3D Haus-RP 44307 1510 684 36
Bic-Studienarbeit-Haus LG 42648 1305 564 48
Studienarbeit Bic (Haus) 41170 1469 624 42
BIC Einfamilienhaus-PW 36358 1286 540 36
3D-BIC Haus-MW 35094 1172 594 42
Einfamilienhaus-YP 29841 1059 600 48
BIC Studienarbeit Wohnhaus-LK 29788 927 498 48
Studienarbeit Haus-NY 28235 799 390 24

Table 2.1: By performing the stepwise level of detail coarsification presented, the number of triangles
to be processed is reduced iteratively.

Figure 2.8: After identifying the outer shell of a fully detailed product model, the complement of
the shell with respect to the product model gives the inner structure of the construction.

this triangular mesh all windows are identified; this is directly provided by the auxiliary

information. Before processing the data further, all windows are removed from the mesh and

the mesh is re-indexed with one identifier per triangle, not per building element, in ascending

order starting with 0. The algorithm takes advantage of the GPU’s very fast ability to detect

18 2. Input Data and Preprocessing

hidden pixels. Every triangle of a given mesh is assigned a unique colour value. All triangles

are processed as for visualising, and from the colour of the visible triangles the identifier

(coded in its colour) is retrieved as given in Fig. 2.9.

Now, the visible triangles at that special orientation of the product model are derived. Then,

the product model is rotated along all axes and the indices are collected. By doing so, the

indices of all triangles are identified which are visible from the outside.

Figure 2.9: The indexed mesh of a product model is rendered with colour-encoded identifiers of the
triangles. The frame buffer of the scene rendered contains the colour value of the visible triangle for
every pixel and therefore the information of all visible triangles for that view.

Alg. 2 gives the pseudocode for the algorithm. Fig. 2.10 gives the increasing number of

identified triangles over the rotation steps. Both rotation angles are discretised with 72

steps each. It can be seen that by rotating around the horizontal axis in the inner loop more

triangles are already identified with the first full inner rotation. By performing the horizontal

rotation on the outer loop, the identification of the triangles increases on reaching each main

axis of the building.

This algorithm is performed in a preprocessing step and the accuracy can be adapted in the

following way. As the GPU is not limited to the resolution of a monitor and can also be used

without, the resolution of the frame buffer can be set to a chosen value in order to achieve

the desired accuracy. In Fig. 2.11 the derived outer shell with a reduction of over 90% for a

building product model is depicted.

Tab. 2.2 gives a listing of some of the processed IFC files together with the reduction achieved

in relation to the number of triangles needed for the corresponding LoD representation.

Textured Polyhedra

One of the key applications for level of detail formulations is to speed up visualisation.

Therefore an LoD has been implemented within the dissertation project which brings about

a great simplification of the product model by representing its outer view.

2.4. Levels of Detail 19

Algorithm 2 calculateOuterShell

void c a l c u l a t e O u t e r S h e l l (Object bu i l d i ng){

vec to r [bool] v i s i b l e T r i a n g l e s [bu i l d i ng . t r iang l eCount ()] = fa l se ;

for (each e in bu i l d i ng . e lements ())
bu i ld ingElements [e . elementID] . c o l o r = toBas i s256 (e . elementID) ;

for (f loat angleX = 0 ; angleX<360; angleX++){
for (f loat angleZ = 0 ; angleZ <360; angleZ++){

e . rotateMesh (angleX , angleZ) ;
f rameBuf fer = render (e . mesh ()) ;
for (each p in f rameBuf fer . p i x e l s ())

v i s i b l e T r i a n g l e s [toBas i s10 (p . c o l o r)] = true ;
}
}
}
}

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000

nu
m

be
r o

f i
de

nt
ifi

ed
 tr

ian
gl

es

 rotation steps

Order z;x

Order x;z

Figure 2.10: The rotation of the product model is discretised over the two rotation angles. As for
every single rotation step the visible triangles are identified and added to the triangles already found,
the number of triangles increases.

One of the most prominent representations of complex geometries is the derivation of textured

polyhedra [46]. Especially for building models which consist primarily of glass, the highly

detailed small-scale representation of the outside still ends up in a high number of primitives,

as most of the complex inner parts are also visible from the outside. In order to achieve a

reduced representation, the complete product model is approximated by a simple geometry

such as its bounding box or its convex hull, and every face of this simplified representation

is textured with the corresponding view of the original geometry.

20 2. Input Data and Preprocessing

Figure 2.11: On a fully detailed BIM model (left) the outer shell is generated using the GPU-based
algorithm for identifying the visible triangles forming the outside. In order to gain an insight into the
reduction of about 90% from 84578 to 6686 triangles, the wire frame representation is given (right).

#Triangles
Description full outer shell

TUM Building1 1097258 213715
BIC Haus-MD 109626 24418
CAD-Studienarbeit-Haus RS 7556 1731
Studienarbeit Bic Haus-NT 53834 12701
3D-Ansicht Haus-DH 6668 1579
BIC Studienarbeit Haus RS 138541 33024
Revit Haus-MG 88108 21006
Studienarbeit CAD Haus-KF 82985 20293
BIC Studienarbeit Haus-SK 80085 20847
BIC EF-Haus 57941 15362
Bic-Studienarbeit Haus-GW 1356 365
Reihengarage 1418 391

Table 2.2: By performing outer shell calculation of fully detailed product models, a reduction of up
to 90%can be achieved.

These views can originate from real data such as photographs [47] or be derived from the

discretised product model representation. When using photographs, texture mapping is a

semi-manual process where the photographs are usually provided or taken by the user and

then assigned to the simplified geometry.

In order to automatically derive a texture for a product model, the simplified geometry has

first to be identified. Fig. 2.12 shows a product model with its bounding box and convex

hull. For the simplified geometry, the projection of the view along the normals of every face

is computed and stored as a texture. For reasons of convenience, all textures of the faces

are usually stored in a single picture and can be referenced by their relative position in the

texture. Fig. 2.13 gives the resulting combined texture of a product model’s bounding box.

2.4. Levels of Detail 21

Figure 2.12: In order to derive a textured representation of a product model, the complete model is
approximated by a simplified geometric representation such as its bounding box or the convex hull.

Figure 2.13: The bounding box of a product model identifies the - in this case six - projection planes
for the generation of the textures. The projection of the view along the normal of the face is computed
for every face and all textures are combined to the representation of the model.

It should be pointed out that besides the bounding box and the convex hull as a simplex for

texturing, almost any geometric representation can be chosen including hierarchical repre-

sentations. The process of computing the texture along the normal of every face applies to

general solids.

22 2. Input Data and Preprocessing

2.5 Multi Resolution Meta Format

In order to form an efficient data basis, a meta-format for storing and accessing multi-

resolution geometries has been developed and implemented. The key demands for this data

basis and therefore properties of the format are as follows:

• Conversion and storage routines for all data types introduced

• Storage of all LoDs introduced

• Support of auxiliary information

• Binary storage for fast access to the data especially for read access

• Direct access to individual information without the necessity to read the whole file and

search through the data

Particular attention should be drawn to the direct access to individual parts of the data.

When processing large data sets, many of the individual elements are needed and processed

only on a very coarse LoD. Therefore it has to be possible to access a single level of detail

of an individual product model without reading and storing the usually large, complete

specification of the model in the main memory. In the literature, it is common to apply level

of detail approaches and use hierarchical storage schemes for geometries. [48, 44]. The need

for covering multiple geometric representations where each of them has a sub-structure which

groups single elements, augments them with additional information and links them to each

other, led to the implementation of the meta-format presented.

Looking at the coarse structure of the format it consists of four parts: header, polygonal

representation of the geometry, texture data, and auxiliary information. The header contains

an identifier of the file which is unique among all files processed by the framework, a short

description, and the information as to whether one geometry is split up among multiple files.

Splitting up data and not combining them to a single file can be of interest especially for

large-scale data such as terrain data or the definition of pipe networks.

Field Name Size[byte]

Header fileId Integer
description Char[256]
numberOfFile Integer
countOfFiles Integer
sizeOfPolygonalData Integer
sizeOfTextureData Integer
sizeOfAuxiliaryData Integer

2.5. Multi Resolution Meta Format 23

The header has a size of 256 + 6 · sizeof(Integer) = 280 bytes. When opening a file, initially

the first 280 bytes are read. From the information in the header the total file size is available.

Therefore direct access to specific data is ensured on this first coarse level. In order to load

just the polygonal description of the geometry with all levels of detail, only the segment

[280 + 1; 280 + sizeOfPolygonalData]

bytes has to be loaded. In order to load just the texture data with all levels of detail, only

the segment

[280 + sizeOfPolygonalData+ 1; 280 + sizeOfPolygonalData+ sizeOfTextureData]

bytes has to be loaded. In order to load just the auxiliary information, only the segment

starting at 280 + sizeOfPolygonalData+ sizeOfTextureData+ 1 bytes has to be loaded.

The polygonal data contain the geometric representation of all five LoDs generated for a

model. At the beginning of the block, two arrays with five integer values each are stored;

they contain the number of vertices and the number of triangles the LoDs consists of.

This header is followed by the list of all vertices, the order being such that initially all vertices

of LoD0 and then LoD1 until LoD4 are stored. Every individual vertex is stored with its

coordinates, the vertex normal, the colour value, and the texture coordinates.

The list of the vertices is followed by the list of the faces. The specification of a face contains an

identifier and the list of the vertices forming this triangle. In order to also store dimensionally

reduced information such as the definition of a pipe network as a graph, how many vertices

form a face is also stored. For triangular elements this is three, for the definition of a pipe

network as line elements this is two.

With these data the geometric description of an LoD of a model is complete, further infor-

mation is stored as auxiliary information and will be dealt with later in this Section.

Field Name Size[byte]

Polygonal Data countOfVertices Integer[5]
countOfFaces Integer[5]
verticesPerFace Integer[5]

vertexCoordinates Float[3]
vertexNormal Float[3]
vertexColor Float[4]
textureCoordinates Float[6]

faceId Integer
faceVertices Integer[3]
textureId Integer[3]

24 2. Input Data and Preprocessing

Accessing a single LoD now follows the exact same scheme of identifying the different segments

as for the polygonal, texture and auxiliary data.

It should be mentioned that this storage scheme of course contains redundant information.

Usually the vertex information of a coarse level of detail is a subset of the fine representation,

and the list of vertices could be saved as one single list of all vertices needed for the different

LoDs. Nevertheless, the data are saved for each LoD in their entirety since this makes it

possible to read a single level of detail from a file without having to read the full list of all

vertices. In this work the possibility of accessing data directly is preferred over saving disk

space with a non-redundant storage of the vertices.

The definition of the polygonal representation is followed by the texture data. The texture

data consist of a set of images where the dimension is stored for each single image. Every

texture is referenced by the texture ID which is saved with the face information.

Field Name Size[byte]

Polygonal Data countOfTextures Integer
widthOfTexture Integer[countOfTextures]
heightOfTexture Integer[countOfTextures]

data Float[4]

Finally, the set of auxiliary information is stored. This information is basically an array of

structs, consisting of the face ID, name of the property, the data type with the length of the

value and the data. The data type is encoded using a single byte indicating the enumerator

of (Float, Double, Integer, Char, void*).

Field Name Size[byte]

Auxiliary Data countOfRecords Integer

propertyName Char[256]
propertyDataType Char
propertyDataLength Integer
data sizeof(propertyDataType)*propertyDataLength

The introduction of the different data sources and file types at the beginning of the Chapter

has been kept short by intention. This is inspired by the fact that it will be shown that the

approaches and algorithms developed and presented apply to complex data in general and do

not exploit special features of specific data formats. Furthermore, it is not feasible in such a

work to focus on all possible data formats and types in detail.

At this point, a data storage format as the basis of the framework introduced is available,

and all further research and investigation is restricted to data of this type.

It should not be denied that this format limits the possible data sources of the framework

presented and therefore the applicability in multiple ways. The geometric representation

covers tessellated surfaces only. The derivation of volumetric elements has to be performed

2.6. Data Fusion and Set Augmentation 25

by a subsequent application; free-form or high-order descriptions are not supported. Also

the type of auxiliary information is limited to (sets of) data arrays which are assigned to

construction entities. More complex specifications of buildings and their construction parts

such as life-cycle information, histograms, simulation profiles, or parametric data require for

more advanced storage routines. But the meta-format presented is a good starting point

for further approaches and enables the demonstration of the applicability of the framework

presented.

2.6 Data Fusion and Set Augmentation

At this point almost all data from three different sources have been introduced and are avail-

able in a common storage format. Fully detailed models of buildings and constructions are

accessible not only with their geometric information but also with the auxiliary information

of a full attributed product model. 3D city models are accessible on larger scales which give

the assembly of the buildings in the urban context. Geospatial sources deliver large-scale in-

formation such as the terrain with its elevation and the texture. Furthermore, pipe network

information for the city rain water drainage system is also available.

What is not yet explained but crucial for the work presented is the assembly of a sufficiently

large data set in order to show the applicability of this approach. It should be mentioned

that this is not self evident. The Chair for Computation in Engineering and the Chair

of Computational Modelling and Simulation at Technische Universität München conduct

research projects in order to derive high quality product model definitions. In Finland and

Singapore, for example, it is required to provide the IFC description of public buildings.

The algorithm developed within this dissertation project is given in A.1.

26 2. Input Data and Preprocessing

27

Chapter 3

Framework

This chapter presents one of the key parts of this work: a data access framework which is

capable of handling large sets of complex product model data.

An outlook concerning the demands placed on this framework can be obtained by anticipating

and briefly introducing one of the applications of this framework. In Sec. 7, this framework

will be applied in order to investigate the impact of heavy rainfall events on urban regions

under the interaction of overground flow and the rain water drainage system. Ultimately,

the following question is to be answered: If a heavy rainfall scenario occurs in a city with

dense building cover, which parts of the city, its buildings and the equipment within the

buildings are affected if the sewer network fails and parts of the city and buildings are not

flooded by the rain but by the sewer system, which is unable to cope with the amount of

water originating from the parts of the city where the rain is falling.

This setting directly introduces the key demands placed on the framework, which are the

following:

Thousands of fully detailed building product models must be organised and access to them

has to be provided on multiple levels of detail. This multi-resolution representation of the

underlying fully detailed product model data must be available for every single model in-

dividually, as there are parts of the computational domain which must be highly resolved

and parts which can be coarse or even be neglected. Additionally, the required resolution of

individual models must be able to change over the runtime of the framework, depending on

which parts of the computational domain are computationally demanding at that moment.

The framework must provide this on the fly.

Besides the small-scale product model data, the same demands also apply to large-scale data.

The fine detailed terrain specification of the city and the definition of the pipe network within

the city must be provided by the framework.

28 3. Framework

It should be pointed out again that the multi-scale representation of the data is not limited to

the geometry. Also, the auxiliary information is covered by the level of detail approach. The

roughness of the individual pipe segments of the sewer network is kept, as is the definition of

construction level details of building parts such as the information as to whether a flooded

element is an electronic device and can be damaged by the water, for example.

Looking at this data basis of the framework it is clear that a hierarchical approach is in-

evitable. In order to estimate the required performance of the framework, the interfaces of

the framework are of interest.

For investigating the behaviour of the fluid flow during the flooding in the city, numerical

simulation will be applied and therefore, a mesh - a discretisation of the computational

domain - has to be generated. This mesh will easily have a resolution of hundreds of millions

of degrees of freedom in order to capture the computational domain accurately. Following

that, the need for efficient parallelisation techniques is obvious. Even a hierarchical data

structure and efficient algorithms will still end up with a computational load which makes

parallelisation strategies inevitable.

In order to not only compute numbers, but also gain an insight about the impact of the

flooding on the scenario, efficient postprocessing algorithms are essential. Therefore, a multi-

monitor and cave-like visualisation will be presented in order to enable engineers, city planners

and specialists to dive into the data and visually investigate the results, adapt model param-

eters or estimate the impact of the simulated quantities. This multi-tile visualisation of the

data set covers not only the geometric representation of the product model data but also the

visualisation of the results of the numerical simulation.

Handling large data sets is an active field of research and investigated for various cases.

Pocket-size navigation systems perform multi-level access to the maps of a whole continent.

GoogleEarth [49] provides interactive visualisation of the terrain and surfaces and provides

basic semantic information for buildings, constructions or heritage sites over the whole globe.

These approaches rely on distributed processing databases [50], cloud computing [51] or pre-

fetching spatial structures [52]. The proposed application scenario – especially large-scale

numerical simulation and multi-monitor visualisation – still needs new concepts. Existing

distributed and cloud computing approaches lack the performance required concerning la-

tency, network bandwidth and parallel computing efficiency.

Coming back to the field of handling fully detailed product model data, in the literature there

are various approaches to coupling the different scales by building up a common database.

This is achieved by extending the schema definition, integrating the different sources via Web

Services and (relational) data bases [40, 53, 54]. All existing approaches lack at least one

of the formulated demands. Either the approaches achieve a performance which makes the

discretisation of the domain not feasible for massively parallel simulations, as the computa-

3.1. Hierarchical Data Representation 29

tional mesh derived for the simulation easily grows to billions of degrees of freedom during

runtime. Or the transmission between different scales is not fully guaranteed such that either

only coarse representations on the large scale or highly detailed information for small local

scales are provided.

In order to cope with all demands with the proposed application, a dual layer hierarchical data

structure is presented with its parallelisation strategy and interfaces for coupling numerical

simulation, parallel visualisation and postprocessing of the data.

This chapter is organised as follows. Sec. 3.1 introduces the dual layer hierarchical struc-

ture which holds the global assembly of all data and the hierarchical product model scale

representation.

Sec. 3.2 gives the hybrid parallel parallelisation strategy of the framework which can answer

the request to the data set with the right representation at a desired resolution and fast

enough. For these requests, a set of interfaces to the framework is presented which will be

shown to provide an efficient coupling to different application scenarios. These range from

the script-driven exploration of the data set through to the multi-resolution visualisation

on semi-immersive environments and the coupling to high-performance grid generation and

simulation frameworks.

In Sec. 3.3, the load distribution strategy is introduced. From the input data itself it is not

clear which parts of the data set will be requested at a very fine resolution, which at a low

resolution and which parts of the framework may not even be part of the computational

domain. Therefore, a distribution of the data and thus of the computational load to many

parallel processors has been developed which is independent of the specific request to the

framework but still shows good scalability.

3.1 Hierarchical Data Representation

Hierarchical concepts are a standard in computer science and generally follow the principle

that it may be advantageous when performing an algorithm on a set of raw data to initially

structure the data and then use the hierarchy of the data gained. This principle is also

referred to as divide et impera or divide and conquer [55, 56]. Of course, one has to invest

something before one can earn something, and the investment may be worth it but does

not have to be, if for example building up the hierarchy outweighs the gain in hierarchically

ordered data.

A simple example is a large store which sells tools and the search for a specific screwdriver.

If there is no order to the items for sale, every single item has to be checked to see if it is

the screwdriver requested and this has to be done for every order. If the data are sorted, the

30 3. Framework

location of the screwdriver is separated from the shovels and the hammers. The screwdrivers

are ordered into Phillips screwdrivers and flat screwdrivers and the Phillips screwdrivers are

sorted by their size. In such a setting it is easy to find a certain screwdriver and it looks like

this system is advantageous as the solution is found in a small number of steps. But this only

applies if many orders are processed, if only a single order has to be processed, it makes no

sense to initially sort the whole store.

Hierarchical data structures are a large field of research, this work makes use of one of the most

prominent and frequently used three-dimensional hierarchical data structures - the octree,

the two-dimensional version is usually called quadtree. Besides the octree, there are many

further data structures such as region trees, R* trees and many others [57, 58]. The octree

has been chosen due to its superior properties for the applied parallelisation and domain

decomposition techniques. It efficiently provides a hierarchically ordered non-overlapping

decomposition. The optimal suitability of the octree will be derived with the applications it

is used for in the following.

An octree builds up a hierarchical representation of an object by bisecting the domain along

every dimension and performing this bisection recursively for every sub domain which is

intersected by the boundary of the object.

Expressed a little more formally, the octree generation can be introduced as follows: Given

are a domain Ω, an object Γ ⊂ Ω for which a hierarchical representation is to be calculated,

and a function f(x) : Ω→ A, which assigns every x ∈ Ω a value a ∈ A and A is a finite set.

A typical application is to compute Γ0, δΓ, Γ̄, i.e. the inner, the boundary and the closure of

Γ.

The basic algorithm for generating an octree representation works as follows: The octree is

built up as a tree with root node ω = Ω by performing the following hierarchical algorithm.

If f is constant over ω, this node is a leaf node with value f(ω), otherwise ω is bisected along

every dimension and the algorithm is called recursive for all, in three dimension eight, subsets

of ω. These eight subsets or child nodes are called octants. Usually a maximal depth dmax

and an undetermined state s ∈ A are defined in order to limit the depth of the tree. As it

is possible that there are parts of the domain on which f is not constant even after infinite

bisections, the recursion is stopped after dmax steps and the node is defined as a leaf with the

undetermined value s.

As an example, let Ω be the unit square, Γ the unit sphere and f the state of a point as to

whether it is inside or outside the domain. From this view, the states of the function f are

often referred to as black nodes to mean the inside, white nodes the outside and grey nodes

the boundary of the geometry. Fig. 3.1 gives the octree representation for dmax = 5.

It is obvious that the exact representation of the sphere will not be achieved due to the

axis-parallel bisection approach of the octree. Nevertheless, the octree has a couple of ad-

3.1. Hierarchical Data Representation 31

Figure 3.1: The octree representation of a sphere is calculated for a maximal depth dmax = 5, the
increasing accuracy is adaptive to the boundary.

vantageous properties which will be derived in this work. Two of them can already be seen

here. On the one hand the calculation of the volume is simple as it reduces to summing up

the volume of black nodes and the volume of a node is directly given by its level in the tree.

On the other hand it can be observed that only the boundary and therefore the not deter-

mined part of the geometry is refined along the depth of the tree and therefore an adaptive

description of the geometry is achieved.

1

32

0

Morton Code = 10112

1

32

0
1

32

01
32

0

Figure 3.2: The Morton Code of a quadtree, the two-dimensional version of an octree, uses the
bisecting nature of the data structure and the order of the child nodes to directly identify the address
of an octant.

The coordinates of every single octant can be easily derived by the Morton Code [56] as

shown in Fig. 3.2. During the construction of the octree, the ordering of the child nodes for

a given parent node is kept constant, which means that for every node it is known which

quadrant of the eight octants is covered - in 2D there are four and in 3D eight. In this work

32 3. Framework

the order top-left→top-right→bottom-left→bottom-right in two dimensions is used and in

three dimensions the front octants are followed by the back octants.

3.1.1 Local Scale - Product Model Details

The fully detailed product model data are the finest scale of the data handled by this frame-

work. In order to perform local operations on the data, an octree representation of the data

is generated separately for all levels of detail as introduced in Sec. 2.4. Having this hier-

archical representation of a single product model at hand, local operations such as efficient

visualisation, information exploration and mesh generation for individual objects will be put

into practice and presented.

The common file format presented in Sec. 2.5 provides an indexed triangulation for each level

of detail, where the indices link to the auxiliary information of each element. A triangular

mesh of the product model at level of detail i is denoted as mi, whereas (mi)j describes the

individual triangles of the mesh. Based on this, the pseudocode for generating the octree for

a single product model is given in Alg. 3.

Algorithm 3 generateOctree

Octree o c t r e e = generateOctree (Mesh m, Domain d){

o c t r e e . root = generateOctant (m. t r i a n g l e s () , d) ;
}
Octant o = generateOctant (Tr i ang l e s t r i [] , Domain d){

for (int i =0; i<t r i . count () ; i++)
i f (t r i [i] . i n t e r s e c t s (d))

o . t r i a n g l e s () . add (t r i [i]) ;

i f (octant . t r i a n g l e s () . count () > 0){
o . type = grey ;
o . c h i l d r e n [0] = generateOctant (o . t r i a n g l e s () , d . s p l i t (0 , 0 , 0)) ;
o . c h i l d r e n [1] = generateOctant (o . t r i a n g l e s () , d . s p l i t (0 , 0 , 1)) ;
o . c h i l d r e n [2] = generateOctant (o . t r i a n g l e s () , d . s p l i t (0 , 1 , 0)) ;
o . c h i l d r e n [3] = generateOctant (o . t r i a n g l e s () , d . s p l i t (0 , 1 , 1)) ;
o . c h i l d r e n [4] = generateOctant (o . t r i a n g l e s () , d . s p l i t (1 , 0 , 0)) ;
o . c h i l d r e n [5] = generateOctant (o . t r i a n g l e s () , d . s p l i t (1 , 0 , 1)) ;
o . c h i l d r e n [6] = generateOctant (o . t r i a n g l e s () , d . s p l i t (1 , 1 , 0)) ;
o . c h i l d r e n [7] = generateOctant (o . t r i a n g l e s () , d . s p l i t (1 , 1 , 1)) ;

} else
octant . type = white ;

}

Before generating the second level octree for an individual construction, the domain has to

be specified, and is then recursively split in order to achieve the hierarchical representation.

3.1. Hierarchical Data Representation 33

This domain is usually the bounding box of the structure to be approximated. For the second

level octrees, this domain is enlarged in order to fit the boundary of the closest octants on

the first level octree. The code for generating the coordinates of the enlarged domain is given

in Alg. 4 and works as follows.

Algorithm 4 enlargeSecondLevelOctree

void en largeSecondLeve lOctree (Octree f i r s t L e v e l , Octree secondLeve l){

Point min = secondLeve l . domain () . getMin () ;
Point max = secondLeve l . domain () . getMax () ;

Octant minOct = f i r s t L e v e l . getOctantAt (min) ;
Octant maxOct = f i r s t L e v e l . getOctantAt (max) ;

f i r s t L e v e l . domain () . setMin (minOct . getParent () . domain () . min ()) ;
f i r s t L e v e l . domain () . setMax (maxOct . getParent () . domain () . max ()) ;

}

The boundary box of the construction is known from the metafile format. From the maximal

depth dmax of the first level octree and its bounding box, the size of the finest octants, the leaf

nodes on level dmax can be derived. The edges of the bounding box of the product model are

now expressed in the coordinates of the first level octree. This implies directly that the second

level octree is not aligned to the bounding box of the product model but to the orientation

of the first level octree. The minimal and maximal coordinates of the leaf nodes’ parents of

the first level octree are now used for generating the second level octree. This means that

the computational domain of the second level octree is a multiple of the discretisation of the

first level octree as given in Fig. 3.3.

This is the only effect of the global data set assembly on the individual second level octrees

and ensures a conforming discretisation of the whole data set across the boundaries of the

level of hierarchy.

This also ensures that the Morton Code of a single voxel as seen in Fig. 3.2 from the second

level octree can be extended to the whole domain on the global scale. It is therefore possible

to directly identify the position of all nodes of second level octree representations with respect

to each other and this across the boundaries of the individual product models.

The hierarchical representation can now be computed. The octree holds the vectors of all

triangles of the mesh and the mapping between an individual triangle and the auxiliary

information. The root node holds the indices of all triangles stored in the octree as it covers

the complete model. The recursive construction of the octree starts with a given node,

initially with the root node, and iterates over all triangles. Every triangle is checked to see if

it intersects the domain of the octant. If this is the case, the index of the triangle is stored in

34 3. Framework

Figure 3.3: Based on an independent dual layer hierarchical data structure, the domain of the initial
second level octree in general does not fit the discretisation of the first level tree (left). By increasing
the domain of the second layer octree to a multiple of the width of the deepest level of the first level
octree, a matching intersection is achieved (right).

the octant. If an octant is not intersected by triangles, it is defined as a leaf or a white node

and not further refined. Every node which is intersected by at least one triangle is defined as

a grey node and further refined until the predefined maximal length of the tree is reached. As

is the case with product models, a triangular mesh is the basis of the octree, no octant can

be fully covered by its elements and therefore no black nodes occur in an octree for triangles.

Figure 3.4: For a product model consisting of 84k triangles an octree representation is generated
until a depth of 5 (left). Besides the resolution of the geometric description, auxiliary information is
also mapped to the individual elements (right).

3.1. Hierarchical Data Representation 35

At this point octree representations for all levels of detail of individual product models are

available, see Fig. 3.4. This single octree representation is now completely unknown by its

surrounding and only useful for local operations on an individual model and this is also

desired. The data set will be organised by evaluating the first level octree introduced in

the next chapter. On this first level it is possible to efficiently decompose a request to the

framework to the relevant sub-requests to individual product models. These can then be

directly evaluated on the structure introduced in this section.

3.1.2 Global Scale - Location Awareness

The key contribution of this work is the handling of large amounts of complex data and the

efficient access to and evaluation of these data. Until now, large amounts of complex data

have been introduced. These contain fully detailed product model data of constructions and

built infrastructure, large scale GIS data such as highly resolved terrain descriptions, and

the definition of pipe networks. Furthermore, a city model definition is given which gives

the embedding of individual buildings in the urban context. All these data can be assembled

on a file or entity level to a data set, this assembly until now describing the semantic and

geometric orientation of all individual elements to each other. Put briefly: at the moment

there is a tremendous amount of data with the correct relation to each other distributed over

individual files. This vast set is now ordered and organised in order to ultimately have a

data structure which can quickly and efficiently evaluate almost any requests to these data.

Without this ordering, the data would have to be processed one after another and this would

result in an unnecessary computational effort which makes its evaluation impossible. And

precisely this provides additional insight into the data. The organisation and data fusion

presented mean the insight is greater than the sum of possible insights to every single datum.

This organisation is performed as follows. The assembly algorithm presented in Sec. 2.6 gives

the location of all constructions and built infrastructure. From this, the bounding boxes and

storage information of all product models are available directly. Based on these data, an

octree is generated on the bounding boxes of the models only and for every bounding box the

only information recorded is the storage path, i.e. the location of the file. The algorithm for

generating this octree now relies on the geometric description formed from bounding boxes

and is given in Alg. 5.

The special advantage of this data structure is that the octree based on the bounding boxes

of the product models can contain data even for thousands of constructions and product

models.

Fig. 3.5 shows a snapshot for a couple of buildings with its embedding in the first level octree.

In order to be able to perceive the adaptive resolution of the bounding boxes of the individual

constructions, the depth of the tree in this visualisation is limited to 4.

36 3. Framework

Algorithm 5 generateOctree

Octree o c t r e e = generateOctree (Mesh m, Domain d){

o c t r e e . root = generateOctant (m. quad () , d) ;
}
Octant o = generateOctant (Quad quad [] , Domain d){

int conta ined = 0 ;
int i n t e r s e c t e d = 0 ;
for (int i =0; i<quad . count () ; i++)

i f (d . h a s I n t e r s e c t i o n (quad))
o . quads () . add (quad [i]) ;
i f (quad [i] . c onta in s (d)){

conta ined++;
else

i n t e r s e c t e d ++;
}

}
i f (conta ined == 0 && i n t e r s e c t e d == 0)

o . type = white ;
else i f (conta ined == quad . count ())

o . type = black ;
else {

o . type = grey ;

o . c h i l d r e n [0] = generateOctant (o . quads () , d . s p l i t (0 , 0 , 0)) ;
o . c h i l d r e n [1] = generateOctant (o . quads () , d . s p l i t (0 , 0 , 1)) ;
o . c h i l d r e n [2] = generateOctant (o . quads () , d . s p l i t (0 , 1 , 0)) ;
o . c h i l d r e n [3] = generateOctant (o . quads () , d . s p l i t (0 , 1 , 1)) ;
o . c h i l d r e n [4] = generateOctant (o . quads () , d . s p l i t (1 , 0 , 0)) ;
o . c h i l d r e n [5] = generateOctant (o . quads () , d . s p l i t (1 , 0 , 1)) ;
o . c h i l d r e n [6] = generateOctant (o . quads () , d . s p l i t (1 , 1 , 0)) ;
o . c h i l d r e n [7] = generateOctant (o . quads () , d . s p l i t (1 , 1 , 1)) ;

}

Owing to its relevance for the further presentation, the direct link of the fully detailed product

models to the first level octree is depicted for a 2D view in Fig. 3.6. Even though the first

level octree is based on the bounding boxes and the storage information of the individual

models only, access to the fully detailed information is still safeguarded.

3.2 A Scalable Hybrid Parallel Approach

In this section, the hybrid parallelisation of the framework is introduced. Hybrid paralleli-

sation describes the exploitation of concurrent order execution possibilities on the shared

memory level with multiple cores in a single machine, and on the distributed memory level

over the network of a cluster among the different machines.

3.2. A Scalable Hybrid Parallel Approach 37

Figure 3.5: By computing an octree based on the bounding boxes of all constructions and built
infrastructures, the embedding of the data into the surrounding is structured and the individual
models can be related to each other.

data

data

data
IFC

IFC

IFC

Figure 3.6: The generation of a quad/octree based on the bounding boxes and storage information
of all processed models can be computed quickly and efficiently, but still contains the link to the fully
detailed information.

As the name says, the different approaches originate from the common or separated address

space of the memory of the machines. Shared memory approaches are usually limited to

a single computer, where the cores of the CPU have common access to the main memory.

There are also approaches for a common address space among multiple machines, such as

the recently completed installation of the HLRB2 at Leibniz Rechenzentrum Garching [59],

but these approaches have not been followed up due to the communication overhead between

the individual computers. Shared memory parallelisation is today usually implemented using

the OpenMP standard [60, 61] which provides a tool set for implementing a thread-based

execution and synchronisation of tasks. There are further thread-based execution models

such as Intel Thread Building Blocks (TBB) [62, 63] which have not been investigated further

due to the vendor-specific orientation of the approaches and the universal applicability of the

approach presented.

38 3. Framework

Distributed memory approaches implement the communication of different processors not

by accessing a common address space as in shared memory approaches but by explicitly

performing the communication between processors by sending and receiving data. The

standard for performing distributed memory parallelisation is the Message Passing Inter-

face (MPI) [64, 65, 66]. As MPI itself is a standard for communication and synchronisation,

an MPI implementation or distribution kit has to be chosen. Standard implementations are

the OpenMPI [67] and MPICH [68] libraries. On high-end installations such as supercomput-

ers, MPI versions tailored to the topology and the specifics of the installation are provided

by the vendor and come with the set-up of the machine.

In the following the hybrid parallelisation over the dual layer hierarchical ordering of the

data is presented. In the later sections, a whole field of applications of the framework will be

introduced but for now, an exemplary question from the field of navigation shall function as

an example for the approach of the framework. In navigation and routing applications one of

the central questions is the location of spatial features in a city [69, 70]. Therefore, parallel to

introducing the parallelisation of the framework, the question will be answered as to how this

approach can efficiently deliver the location of specific objects in the city such as the closest

phone box to a given position. It is clear that without any ordering of the data, a brute force

iteration over the complete data set is not feasible. The approach of this framework will be

introduced parallel to answering this question.

3.2.1 Multi-Level Parallelisation

The multi-level parallelisation of the framework follows a hybrid approach with a distributed

memory parallelisation over the first layer for the global assembly of the data set and a shared

memory parallelisation of the product model scale tasks.

Initially, a set of m product models with the specification of their bounding box, position and

orientation in space is available, as introduced in Sec. 2.6. A distribution of the m product

models to n MPI processes is then chosen. The investigation of the efficient distribution

strategies and impact of the choice of distribution will be discussed in Sec. 3.3.3. Fig. 3.7

gives a mapping of 7368 product models to 5 processors.

Having a mapping of product models to processors at hand, the framework is started on a

cluster with n processes. The process with number 0 is defined as the master process and

the remaining n− 1 processes are the slave processes.

The master process builds up the first layer octree, stores for every product model the slave

process it is assigned to - following the distribution strategy given - and sends to each process

the storage information of the product models assigned to it.

3.2. A Scalable Hybrid Parallel Approach 39

Figure 3.7: Based on a given mapping of m product models to n processors, the colour indicates the
distribution of the models over the processors. All models of a processor are depicted with the same
colour.

Each of the n slave processes initially receives the specification of the product models which

are mapped to it and generates an octree representation for every individual model.

Coming back to the example mentioned of the navigation to a phone box, the principle of

the framework becomes clear. In order to identify the closest phone box to a given position,

the master process sends the request to all slaves to identify the closest phone box to this

position. Each of the slave processes queries the hierarchical representations of the product

models which are assigned to it and identifies the closest phone box. Even on the slave level

of processing the hierarchical approach saves computations. As every slave process knows the

domain of every individual product model it processes, it starts investigating the hierarchical

representation of the individual product models in ascending order of their distance to the

given position. As soon as the information is detected, the work of processing the remaining

product models can be saved. The master process now collects the local results for the

position of the closest phone box from each of the slaves and selects the global result.

The scaling of the framework also now becomes clear. By setting the number of processors

n to the number of product models m, every process is assigned to a single product model

only. In that sense, a linear speedup, i.e. the perfect parallel efficiency of response time as a

function of the number of processors, seems achievable.

40 3. Framework

Starting from this brief introduction of the hybrid parallelisation approach, the two levels of

parallelism will now be introduced in detail over the runtime of the framework. The set-up

of the framework is given in Fig. 3.8.

Slave 0

building(0,0)
building(0,1)
...
building(0,m_0)

Master

Slave 1

building(1,0)
building(1,1)
...
building(1,m_1)

Slave n

building(n,0)
building(n,1)
...
building(n,m_n)

Processing

...

Storage
Information

Figure 3.8: The parallelisation of the framework is achieved by a distributed memory approach on
the global scale. One master process contains the assembly of the data basis given by the first layer
octree and the product models are distributed among the remaining n− 1 processes. Shared memory
parallelisation is then performed over the local product model sets of every single process.

3.2.2 Building Up the Framework

The build-up of the framework and the parallelisation strategy are now given in detail. The

execution is started on a cluster with n processes, each process runs on a single machine.

The steps for building up the framework are first the setting up of the one process which is

the master process, and the n − 1 slave processes which hold a set of product models each.

The master process then builds up the first level octree with the global assembly of the data

basis and sends the subset of the product models to each of the slave processes. Each slave

process then receives the product models to process and builds up the second level octrees

for its product models.

At start up of the n processes, initially every process decides on the basis of its ID whether

it is the master process or a slave process. Before defining the MPI communication between

3.2. A Scalable Hybrid Parallel Approach 41

call description

MPI Init(); initialise MPI environment
MPI Comm rank(rank); get Id of process
MPI Comm size(size); get number of processes
MPI send(receiver, type, count, buffer); send count data of type stored in buffer

to receiver
MPI recv(sender, type, count, buffer); receive count data of type from sender

and store it in buffer
MPI Finalize(); close MPI environment

Table 3.1: Basic MPI commands are needed in order to perform the communication between pro-
cessors by exchanging data via MPI.

the master and the slave processes, the basics of the communication with MPI have to be

introduced.

With MPI, the parallelisation is put into practice by starting a set of n processes, usually one

process per machine, but multiple processes can also run on a single machine. MPI provides

an interface for exchanging data between processes. The only identification available to a

processor are its process identifier - the rank - and the total number of running processes - the

size. Basically, there is no information about which machine an individual process runs on

and also the specification of the process with rank 0 as the master process is a not mandatory

convention.

In order to exchange messages between two processes, a send and a receive action with corre-

sponding specifications have to be performed by the processes involved. The specifications for

sending and receiving data are the rank of the sender and the receiver, the basic type of data

to be sent, the amount of data to be sent. Only if a send and a receive of the corresponding

specification are performed are the data transferred between the processes. Besides point to

point data exchange between two processors, collective communication among all processors

is also available such as broadcasting messages to all processes or collecting information from

all processes. The last feature of MPI needed for introducing the parallelisation strategy is

the possibility of synchronous and asynchronous communication. Following a synchronous

communication pattern, the sender and the receiver stop the execution until the data are

transferred, whereas asynchronous communication allows the processes to reserve the mem-

ory for the data it receives and proceed with execution. The process can now perform other

computations and check whether the data have arrived. The communication can thus be

hidden behind computations and there is no blocking of the execution pipeline to slow down

the system.

This is only a brief introduction to communication and synchronisation using MPI, Table 3.1

gives the signature of the MPI functionality used. For a detailed introduction to MPI, the

reader is referred to [65, 66, 64].

42 3. Framework

Having this functionality at hand, the distributed parallel build up of the framework can now

be introduced and is given in Alg. 6 for the master processing and in Alg. 7 for the slave

processing. It should be pointed out that there is only one master process, but n − 1 slave

processes.

Algorithm 6 initMaster

void i n i tMas t e r (Model bu i l d i ng []) {

Vector processModels [] ;
for (int i =0; i<bu i l d i ng . count () ; i ++){

processModels [bu i l d i ng [i] . process ID] . add (bu i l d i ng [i]) ;
}
for (int i =1; i<processModels . count () ; i ++){

int modelCount = processModels [i] . models () . count () ;
MPI Send (i , int , 1 , modelCount) ;
MPI Send (i , byte , s izeof (model) ∗ modelCount , processModels [i]) ;

}
gene ra t eF i r s tLeve lOc t r e e ()

}

Algorithm 7 initSlave

void i n i t S l a v e (Model bu i l d i n g []) {

int countOfModels ;
Model processModels [] ;

MPI Recv (0 , int , 1 , countOfModels) ;
MPI Recv (0 , byte , s izeof (model) ∗ countOfModels , processModels) ;

for (int i =1; i<processModels . count () ; i++)
processModels [i] . generateSecondLeve lOctree ()

}

The next level of parallelisation is now the level per machine i.e. per process. The master

process contains one octree - the first level octree - and the slave processes contain a set of

octrees - one second level octree per product model.

The parallelisation of the generation of the octree is performed using shared memory paral-

lelisation and exploits the available cores of the CPU on which the process runs. Alg. 8 gives

the queue-based parallelisation.

According to the basic principle, the octree checks recursively for every octant as to whether

it is intersected by the approximated object and then splits the child nodes affected. In the

literature, there are many approaches for the parallelisation of the octree generation [71, 72,

73]. In this work, parallelisation is implemented by introducing a process queue. This queue

3.2. A Scalable Hybrid Parallel Approach 43

Algorithm 8 generateParallelOctree

Octree o c t r e e = g e n e r a t e P a r a l l e l O c t r e e (Mesh m, Domain d){

Queue octant s . push (generateOctants (m. t r i a n g l e s () , d)) ;

#pragma omp p a r a l l e l
{

while (! oc tant s . isEmpty ()){

#pragma omp c r i t i c a l
Octant o = octant s . pop () ;

c h i l d r e n = generateOctants (o . t r i a n g l e s , o . domain) ;
i f (c h i l d r e n . count () > 0){

#pragma omp c r i t i c a l
{

for (int i =0; i <8; i++)
octant s . push (c h i l d r e n [i]) ;

}
}

}
}

contains the nodes which have to be processed and is initially filled with the root node. Each

of the threads of the octree generation is parallelised with accesses to the queue, reads an

octant to the process and carries out the intersection check for this individual octant. If the

octant has to be refined, the eight child octants are generated and added to the queue as

single entries. The access to the queue is protected using a mutual exclusion, which ensures

that only one process at a time reads and writes to the queue.

Having the build-up framework at hand, suitable interfaces for a wide set of applications in

computational science and engineering are now introduced. These interfaces range from the

visualisation of the whole data set and the exploration of the data on various levels of detail

to the generation of computational meshes for performing numerical simulations.

3.2.3 Interfacing Multi-Resolution Geometry

In this section, the interface for visualising the whole data set of the framework is introduced.

Visualising the complete data set at the finest level of detail is not feasible nor of interest. The

whole data set consists of thousands of buildings and constructions and each of them has a

geometric representation of hundreds of thousands of primitives. Summing up the primitives

to render the visualisation would end up in billions of triangles and this exceeds even most

modern hardware installations. Besides that, this approach would also try to render details

which are not perceptible.

44 3. Framework

When exploring the whole data set, the location of the camera or the centre of the investiga-

tion is the crucial factor in processing the data. All information close to this point has to be

resolved in full detail, all information further away can be coarsened already and information

still further away can be represented by a single primitive or even be neglected. This view

can also be inspired by having a look at the process of rendering data. In order to render

data, the pixels of the visualisation output to the screen have ultimately to be assigned a

colour value. When the product model is a long way from the camera it will be projected

into a couple of pixels, only a single pixel or not even be visible on the output. The basis for

precisely these coarsened representations have already been introduced in Sec. 2.4 as LoDs

for product model data.

Having this in mind, the interface for accessing a multi-resolution representation of the data

set can be defined as follows:

Given a point P and a definition of the distances di(P) over which distance to P a level of

detail i is to be applied to the product model definition, the framework provides the geometric

representation as a triangular mesh, where each product model is at level of detail i with the

distance d and di−1(P) ≤ d < di(P).

Algorithm 9 processVisualisation

void p r o c e s s V i s u a l i s a t i o n (f loat d [] , Point po i){

ca lculateLoD (f i r s t L e v e l O c t r e e . root , d , po i) ;

models = f i r s t L e v e l O c t r e e . c o l l e t I n v a l i d M o d e l s () ;

for (int i =0; i<p r o c e s s o r s . count () ; i++)

subset = models . s e l e c tMode l sOfProces s (i) ;
sendModelMPItoProcess (i , subset) ;

}

void ca lculateLoD (Octant o , f loat d [] , Point po i){
i f (! o . i s L e a f ())

for (int i =0; i <8; i++)
calculateLoD (o . c h i l d r e n [i] , d , po i) ;

else
for (int i =0; i<o . models . count () ; i ++){

LoD tmp = o . models [i] . LoD () ;

o . models [i] . reso lveGeometryForDistance (d i s tance , po i) ;

i f (o . models [i] . LoD() != tmp)
o . models [i] . i s V a l i d = fa l se ;

}
}

3.2. A Scalable Hybrid Parallel Approach 45

The parallel code for the master processing of this request is given in Alg. 9 and works as

follows: in the initialisation, the master process has di, the scenario specific definition of the

distances at which an LoD is to be applied, and the first level octree. Furthermore, every

product model leaf node has a flag isV alid and this is initialised as false.

In the processV isualisation the first level octree is traversed and the correct level of detail

is determined for every product model in the tree by recursively calling calculateLoD on the

root node. If a node is a leaf node, it calculates the level of detail, otherwise it calls the

calculateLoD on its eight child nodes.

The correct LoDs for all product models are now stored in the tree and the mapping is used

to determine the slave process on which the product model is defined. Using this mapping,

the vector containing the product model identifiers and the LoDs for every single product

model are collected per process and sent using MPI to every process analogous to Alg. 6.

This vector is restricted to the product models whose flag isV alid is set to false.

After sending the vector to the slave processes, the master process starts the MPI reception

from the slave processes and stores the levels of detail of the data which have been sent. For

every LoD the master receives, it sets the isV alid flag of the respective product model to true

and concatenates all geometric representations received to the multi-layer representation of

the whole data basis.

The advantage of introducing the flag isV alid is that, usually, only in the first generation

of the multi-resolution geometry do all levels of detail have to be calculated and transferred

using MPI. When the data are reprocessed and the point P has not changed to any great

extent, most of the levels of detail and therefore their geometric representation are still valid

and do not have to be recalculated and set.

The slave processing for the multi-resolution representation of the data set starts with re-

ceiving the vector with the product models to be processed and their correct levels of detail.

To generate the levels of detail of all product models on a single process, shared memory

parallelisation can again be performed. As the single product models are independent of

each other when performing the LoD calculation, the single calculations can be distributed

to parallel tasks. After calculating the geometric representation of every product model, the

triangular meshes are collected and sent to the master process.

46 3. Framework

3.2.4 Interfacing Auxiliary Information

This section gives the access to the auxiliary information of the data set which gives the

user of the framework the possibility to explore the data for the fine details of individual

construction entities as well. The auxiliary information is all the non-geometric specifications

of product model properties as introduced in Sec. 2.1 to 2.3. They range from the definition

of the roughness of individual pipes in the sewer network received from GIS sources to the

construction detail specifications of the insulation value of windows and doors in a BIM

source, for example.

Again, the parallel hierarchical approach of the framework is the key for efficiently accessing

the data and this access can be performed by allowing two different methods, depending on

the scale of the data exploration. On a local scale, a single product model is investigated

and the auxiliary information for a construction detail is requested. On the global scale,

the user explores the complete data set, and by clicking on a point in the data set the

auxiliary information has to be identified by first finding the product model concerned and

then identifying the respective construction detail.

The local-scale access to a construction detail follows the parallel framework introduced in a

straightforward way. To access the auxiliary information, the identifiers of the product model

and the index in the triangular mesh of the product model are known. On the basis of the

identifier of the product model, the master process identifies the slave process on which this

specific product model is processed. The master then sends the MPI request for retrieving

the specific auxiliary information with the identifiers of the product model and the indexed

triangle to the respective slave process. The slave process accesses the respective product

model, selects the auxiliary information of the specified construction detail and sends it back

to the master process.

Accessing auxiliary information of construction details on the local scale has been straight-

forward as not only the identifier of the product model is known but also the index of the

triangular mesh. As introduced in Sec. 2.5, the metafile format ensures there is direct mapping

of the indices of an individual triangle in the mesh representation to its auxiliary information.

As this approach exploits the mapping of auxiliary information to geometry, only information

with a (triangular) representation are supported. In order to identify the usage of a room,

for example, this is not the case. This information can be stored in IFC with an IFCSPACE

definition and enables the mapping of the bounding wall or window elements, but already

this specification is an ongoing research task [74].

On the global scale, the identifier of the investigated detail is not given directly and only the

point the user clicked on is known. This information is also sufficient to identify the product

model, the construction detail and therefore the auxiliary information as follows.

3.2. A Scalable Hybrid Parallel Approach 47

When exploring the whole data set on the global scale, only the point P the user clicked on

is known together with the directional vector d of its view. The point P and the directional

vector d define a ray which intersects the respective construction detail, and therefore the

product model is intersected as given in Fig. 3.9.

Figure 3.9: The view point and direction of the user define a ray which intersects the requested
construction detail and the product model. An intersection test on the first layer octree in the master
process identifies the product models intersected, and the test on the product models in the slave
processes affected identifies the construction detail.

In order to perform the intersection test, the master process initially recursively checks the

first level octree and identifies the octants intersected by the ray starting with the root node.

If an octant is not a leaf node, it checks which of its octants are intersected by the ray

and calls on the intersection test for the child nodes intersected. In a vector all leaf nodes

intersected and therefore all product models intersected are collected. From the list of the

intersected product models the slave processes affected are identified using the mapping of the

product models to the processors. The master process then sends the request for the auxiliary

information with the point P and the directional vector d to every slave process affected and

requests the auxiliary information. The slave processes also perform the recursive intersection

test on the intersected product models and identify the construction detail requested and

therefore the auxiliary information.

Finally, the master process contains the auxiliary information of all construction details

intersected by the ray along the view of the user. In general, multiple construction details

are projected along d to the same point P . Therefore, the entities whose distance along the

directional vector d is negative are deleted as they lie behind the user and only the entity

with the minimal (positive) distance along d is selected.

48 3. Framework

3.2.5 Interfacing Linearised Octree Representations

This section introduces the linearised representation of the octree and the implementation

over the dual layer hierarchical data structure of the work presented.

Linearising hierarchical data structures [57] is a well-known technique for storing the tree

structure in a simple format such as a stream. Based on this representation, the parent-child

relation between the octants and the values of the leaf nodes are available, can be saved to

disk and be evaluated. By evaluating the linearisation of two octrees, the intersection of the

structures approximated by the octrees can be determined to the accuracy of the resolution

depth of the tree. In Sec. 4.2.3 this technique will be used to perform collision detection

between constructions and built infrastructure.

Algorithm 10 lineariseOctree

char l i n e a r i s a t i o n [] = l i n e a r i s e O c t r e e (Octree o){

Stack l i n e a r i s e d ;

l i n e a r i s a t i o n = l i n e a r i s e O c t a n t (l i n e a r i s e d , o . root) ;

l i n e a r i s a t i o n = l i n e a r i s e d . g e t S t r i n g ()
}
void l i n e a r i s e O c t a n t (Stack l i n e a r i s e d , Octant o){

l i n e a r i s e d . push (o . type) ;

i f (o . type = gray)
for (int i =0; i <8; i++)

l i n e a r i s e O c t a n t (l i n e a r i s e d , o . c h i l d r e n [i]) ;
else

l i n e a r i s e d . push (o . Id) ;
}

The code for generating the linearisation of an octree is given in Alg. 10 and works as follows.

A stream representation of the tree is achieved by traversing the tree in a depth-first manner

and pushing the values of the octants to a stack where 0 indicates that an octant is refined

and 1 that an octant is not refined. If an octant is not refined, it is a leaf node and the value

is pushed to the stack where 0 indicates that the node is a white node, and otherwise the

identifier of the product model is pushed to the stack.

It is essential to keep the octants constantly in a fixed order such as left→right, top→bottom,

front→back in order to identify the correct relation of the child trees. By doing so, the

whole structure of the octree representation can be retrieved and the linearisation as given

in Fig. 3.10 contains the full adaptive approximation of the geometry.

3.2. A Scalable Hybrid Parallel Approach 49

5 1 6 3

3 0

0 1 0

1 4 1 0

Root

Level 1

Level 2

Level 3

Linearisation 103105010603001000110104010000

Figure 3.10: The linearisation of an octree is achieved by concatenating the values of the octants in
a depth-first manner to an array with the 0/1 information if an octant is a leaf node and followed by
the value of the leaf node.

3.2.6 Interfacing Voxel Representation

This section contains the derivation of an equidistant discretisation of the computational

domain which is the basis for performing parallel numerical simulations. The focus of the

work presented is on handling large sets of complex data and one of the applications is

the numerical simulation of physical phenomena. To perform a numerical simulation, the

computational domain has to be discretised and to do so, the computational domain has to

be separated from the outer parts. Therefore, in the following, an equidistant flag field will

be derived which identifies on a regular grid up to a given accuracy for every point whether

it is intersected by structure or not. This flag field is also referred to as voxelisation of the

computational domain. Based on this field, Sec. 5 provides the coupling to the grid-generation

and numerical simulation frameworks.

The generation of the voxelisation can be seen as a request to the parallel framework, in

which for a given computational domain

D = [xmin, xmax]× [ymin, ymax]× [zmin, zmax]

50 3. Framework

and a discretisation width h a matrix V = Vijk with

i ∈ [0..(xmax − xmin)/h]

j ∈ [0..(ymax − ymin)/h]

k ∈ [0..(zmax − zmin)/h]

and the voxel v = vijk with

vijk = [xmin + (xmax − xmin) ∗ i/h, xmin + (xmax − xmin) ∗ (i+ 1)/h[×

[ymin + (ymax − ymin) ∗ j/h, ymin + (ymax − ymin) ∗ (j + 1)/h[×

[zmin + (zmax − zmin) ∗ k/h, zmin + (zmax − zmin) ∗ (k + 1)/h[

resulting in

Vijk = 11{vijk is intersected}

An example for the derived voxelisation of a given computational domain on the local building

scale is depicted in Fig. 3.11.

Figure 3.11: A product model on the local building scale is embedded in its voxelisation with a
discretisation width of 150 × 100 × 100 voxels. For better visibility, only grey leaf nodes, i.e. voxels,
are shown in wire frame mode.

The generation of a voxel representation for a given domain and mesh width directly fol-

lows the hierarchical dual layer approach of the framework presented. The master process

generates the first level octree to the extent of the computational domain specified for the

voxelisation, and the slave processes generate the second level octrees with a mesh conform-

ing to the discretisation of the first level octree. This conforming generation of the first and

second level octrees as described in Sec. 3.1.1 is a crucial element for efficiently deriving the

3.2. A Scalable Hybrid Parallel Approach 51

voxelisation. The indices of the corresponding voxels in the flag field can be derived directly

from the leaf octants of the second level octrees generated by the slave processes.

For every octant the Morton Code gives the path from the root node to the octant. This

address stores the sequence about which parent→child relationship the octants on the path

from the root node to the respective octant are. As the octree performs a bisection along

every axis, the domain of an octant can be derived this way. The length of the address gives

the depth of the octant in the tree. Therefore only the addresses of the grey octants of the

second level octrees have to be communicated to the master process. On the basis of these

addresses, the master process can generate the flag field requested.

The master process allocates a matrix with the size of the flag field and initialises the flag

field to the value 0 - not filled. The master process then sends all slave processes the request

to generate the information about their product models for the local flag field. As the first

level octree covers precisely the computational domain of the voxelisation requested, only

second level octrees which intersect the domain are generated in slave processes. Every slave

process recursively collects the addresses of the grey leaf nodes in a vector and sends the

addresses back to the master process. From the addresses received from the slave processes

the master process derives the indices of the flag field by following the code given in Alg. 11

and sets the corresponding index ranges to 1 - filled.

Algorithm 11 indexRangeOfVoxelAddress

int index [] = indexRangeOfVoxelAddress (char [] address){

Domain d = f i r s t L e v e l O c t r e e . domain () ;
for (int i =0; i<address . l ength () ; i +){

b i t = getBinaryRepresenationOfChar (address [i]) ;

d = d . s p l i t (X, b i t [0] ? lower : upper) ;
d = d . s p l i t (Y, b i t [1] ? lower : upper) ;
d = d . s p l i t (Z , b i t [2] ? lower : upper) ;

}
index = {d . min . x , d . max . x , d . min . y , d . max . y , d . min . z , d . max . z}

}

The algorithm presented focuses on a computational domain which spans multiple product

models. To generate a local-scale voxelisation of a single product model the procedure can be

simplified further. For a single product model voxelisation only one slave process generates

a second level octree for the product model of interest. As introduced in Sec. 3.2.5, the

linearisation of the octree is derived and the addresses of the octants can be calculated. The

rest of the procedure then follows the approach presented even without the communication

between the master and a slave process.

52 3. Framework

It should be pointed out that, from the process of generating the voxelisation, it is clear that

a sparse storage scheme [75, 76] is best suited for storing the flag field in an efficient way. In

a sparse storage scheme only the values which are not 0 are stored in a vector together with

two more vectors, one storing the row indices and one storing the column indices of every

row sequence of the data.

Nevertheless, the dense storage of the data set is also kept, as in Sec. 5 this matrix is processed

further in a way where the memory dense storage of the data is of interest.

3.2.7 Interfacing Voxel Query

Although a voxel representation of a whole computational domain as given in Sec. 3.2.6

has been generated, an interface for querying the status of a single voxel has also been

implemented.

Many grid generation frameworks build up the computational domain in an adaptive way

by iteratively querying parts of the domain if they are completely inside the computational

domain or completely outside of the domain. Parts which are not completely inside and not

completely outside the domain must intersect the boundary and are therefore refined further.

Adaptive mesh refinement during the runtime of the framework can also be performed with

this functionality by iteratively querying the inside/outside status of parts of the domain.

The Peano [77] framework is of such a type and the coupling of the framework presented will

be introduced in Sec. 5.2. The interface for querying the status of a given voxel is given in

Alg. 12 and calculates for a given part of the computational domain whether its status is

filled, empty or not determinable.

For a given query to a part of the domain, the master process calculates the intersection to

the first level octree.

If the intersection is empty, the status of this part can be directly derived as empty. If there is

an intersection with the bounding box of a product model and the queried part is not covered

by this bounding box, all intersected product models are collected and the slave processes

are requested to identify the inside/outside status of the requested part.

If all slave processes identify the requested part as being empty, the status is set to empty,

otherwise to not determinable. The status filled basically cannot occur in the setting of

the framework presented as the fine-scale product model data are described using triangular

meshes and no set of triangles can cover a voxel completely.

3.2. A Scalable Hybrid Parallel Approach 53

Algorithm 12 queryStatusOfVoxel

int s t a t u s = queryStatusOfVoxel (Voxel o){

Process p [] = f i r s t L e v e l O c t r e e . ge t Inte r sec tedMode l sOf (o) . p r o c e s s e s () ;

int s t a t i [] ;
for (int i =0; i<p . count ; i ++){

s t a t i [i] = getSecondLeve lStatus (p [i] , o) ;
}

s t a t u s = s t a t i [0] ;
for (int i =1; i<p . count ; i ++){

i f (s t a t u s != s t a t i [i]) {
s t a t u s = notDeterminable ;
return ;

}
}

}

3.2.8 Communication Protocol of the Framework Access

In the previous sections, multiple interfaces for accessing the framework have been introduced.

Now the organisation of this access is introduced.

As the global-scale parallelisation follows a distributed memory MPI approach, the commu-

nication between processors is performed by sending and receiving messages. As introduced

in Sec. 3.2.2, sending data between two processes can only be performed if one process is

performing a send and the other process is performing a receive call. Furthermore, the data

type, the length of the data and the sender/receiver paring must match. This implies directly

that communication using MPI only works if the participating processes know from which

and to which process data are to be sent, and what the length and type of these data are. In

order to cope with this, a communication protocol between the master and the slave processes

has been developed and works as follows.

After the initialisation of all processes, the build-up of the first level octree, the distribution

of the product models to the slave processes, and the build-up of the second level octrees, all

slave processes perform a blocking receive from the master process for a data set of length 1

and type char. This single char identifies the specific interfaces and requests to be performed

by the slave processes.

For the query of the geometric representation of a product model at a certain level of detail

as introduced in Sec. 2.4, the master process initially sends the identifier G to the slave

process. The slave process receives the single char and calls the sendGeometry routine in

accordance with the protocol. Afterwards, two integers are sent to the slave process: the Id

54 3. Framework

of the product model and the level of detail to apply. The slave process now calculates the

requested level of detail for the given product model and stores the geometric representation

as a triangular mesh in an array. Afterwards, the slave sends the master process one integer

which gives the size in bytes of the triangular mesh generated. Finally, a send/receive is

performed with the size of the triangular mesh and the data are transferred to the master.

Only by defining a protocol with the exact types and sizes of the data to be exchanged does

every processor already know the header of the transfer before it is performed and sending

data using MPI is therefore possible. The implementation of the protocol for organising the

access to the different interfaces of the framework is given for the master in Alg. 13 and for

the slaves in Alg. 14.

Algorithm 13 masterSendRequest

void masterSendRequestGeometryRepresentation (Model m){

Process p = m. proce s s () ;

MPI Send (p . rank , 1 , char , ’G ’) ;
MPI Send (p . rank , 2 , int , [m. id , m. LoD]) ;

MPI Recv (p . rank , 1 , int , count) ;
MPI Recv (p . rank , byte , s izeof (element)∗ count , e lements) ;

void masterSendRequestExit (Model m){

for (each p in proce s s ())
MPI Send (p . rank , 1 , char , ’X ’) ;

e x i t ;
}

3.3 Load Distribution

In this section, the load distribution strategy of the framework is introduced. A good load

distribution strategy ensures that the computational load during the runtime of the framework

is distributed equally over the processes. In the framework presented, the computational load

originates from a request to the framework which is split up into sub-requests on the product

models handled by the slave processes and then the results of the slave processes are combined

by the master processor in order to answer the request. As the master process can only answer

the request when all results of the slave processes have been performed, the longest running

slave determines the duration for answering the request. Therefore, the requirement to find

a good load distribution strategy is equivalent to finding a mapping of product models to

slave processes where the computational load on the slave processes for the different requests

3.3. Load Distribution 55

Algorithm 14 slaveReceiveRequest

void s laveRece iveRequest {

char ac t i on = ’ ’
while (ac t i on != ’X ’){

MPI Recv (0 , 1 , char , a c t i on) ;
s e l e c t (ac t i on)

case ’G ’ :
int id , lod
MPI Recv (0 , 2 , int , [id , lod]) ;
Mesh elemens [] = models [id] . c a l c u l a t e (lod) ;
MPI Send (0 , 1 , int , e lements . count ()) ;
MPI Send (0 , byte , s izeof (element)∗ e lements . count () , e lements) ;
break ;

case ’ ’
. . .
break ;

}
}

to the framework is as equal as possible.

The computational load on a slave process results from the number and the complexity of the

product models assigned to a slave process. Whereas the number of product models per slave

process could be equally balanced over the processes a priori, the complexity of processing a

product model depends on the level of detail it is processed on. As introduced in Sec. 2.4,

the size of the geometric representation at the fully detailed LoD4 is an order of magnitude

higher than in lower levels of detail. Therefore it is crucial to develop a load distribution

strategy which equally distributes the fully detailed product model processing over the slave

processes.

This directly implies two aspects. On the one hand, it depends on the specific request to

the framework which level of detail is to be applied to a product model and this changes

dynamically over the runtime of the framework. On the other hand, the product models

which have to be processed on the highest level of detail are locally clustered to a single

point. For visualisation purposes this is the viewport.

Therefore, the load distribution strategy can be defined as a mapping which distributes the

geometric close assembled product models to different slave processes. More specifically, the

distribution of the product models over the slave processes should be equal for any given sub-

domain of the whole computational domain. In that sense, the demands placed on the load

distribution strategy for the framework presented are complementary to standard strategies

56 3. Framework

as neighbouring relations have to be prevented and not be preserved. In order to achieve

this, two different mappings have been developed and will be introduced in the following.

The load distribution strategy for the framework presented is a mapping M : i → j for

i ∈ [0..m − 1] and j ∈ [1..n − 1] where m is the number of product models and n is the

number of processes of which n− 1 are slave processes and one process is the master process

containing the first level octree and the assembly of the whole data set.

Initially, a probabilistic mapping is introduced which randomly distributes the product models

over the slave processes and therefore tends to an equal distribution. Then, a mapping based

on a modification of the space-filling curve [78] (SFC) approach is introduced which derives

a global distributed order from the local clustered order achieved by SFCs. In the end, the

distribution quality achieved is investigated.

3.3.1 Probabilistic Mapping

A probabilistic mapping is generated by distributing every product model to one of the n−1

slave processes on the basis of an equally distributed random variable with value between

1 and n − 1. In order to generate the random distribution of the product models to the

slave processes, a vector of independent equally distributed random variables of length m is

generated using standard functions.

The distribution of over 7000 product models to 3 slave processes over the domain is given

in Fig. 3.12.

3.3.2 Modified Space Filling Curves

The mapping based on the modification of the Lebesgue curve, also known as Z curve, initially

generates the SFC order on the first level hierarchical order of the complete data basis and

then destructs the locality of the SFC by iteratively distributing the product models to the

slave processes following a round-robin scheme. The pattern of the Lebesgue curve is given

in Fig. 3.13.

In order to build up the ordering, the first level hierarchical data structure over the whole

data set is generated not on the basis of the bounding boxes of the product models but only

on the centre points of the product models. Furthermore, not a three-dimensional octree is

generated but the two-dimensional quadtree based on the projection of the centre points of

the product models along the z-axis as given in Fig. 3.14.

From the quadtree representation of the centre points of the product models, the order

following the Lebesgue curve can be derived directly and is given in Alg. 15.

3.3. Load Distribution 57

Figure 3.12: Following a probabilistic mapping, over 7000 product models are distributed to 3 slave
processes over the domain. The colour value identifies the slave process to which a product model is
assigned.

X = 0 1 2 3 4 5 6 7

Y = 0

Y = 1

Y = 5

Y = 3

Y = 4

Y = 7

Y = 6

Y = 2

 0 1 4 5 16 17 20 21

 2 3 6 7 18 19 22 23

 8 9 12 13 24 25 28 29

 10 11 14 15 26 27 30 31

 32 33 36 37 48 49 52 53

 34 35 38 39 50 51 54 55

 40 41 44 45 56 57 60 61

 42 43 46 47 58 59 62 63

Figure 3.13: The Lebesgue curve orders multi-dimensional data points into a one-dimensional se-
quence. The order is achieved by recursively sorting points following (in 2D) the pattern top-left→top-
right→bottom-left→bottom-right.

The order is derived by recursively adding the nodes of the quadtree following the pattern of

the Lebesgue curve starting with the root node. If a node is not a leaf node, its child nodes

are added instead of adding the node itself. Now the order derived from the Lebesgue curve

58 3. Framework

Figure 3.14: The quadtree representation of the product models is generated on the basis of the
centre points of their bounding boxes projected along the z-axis.

Algorithm 15 generateZcurveOrder

int models [] = generateZcurveOrder (Octree o){

models = addOctant (o . root) ;
}

int models [] = addOctant (Octant o){

i f (o . i s L e a f ()){
models . add (o . models ()) ;

else
for (int i =0; i <8; i++)

models . add (addOctant (o . c h i l d r e n [i]) ;
}

is used for generating the mapping to the m processors by distributing them round-robin

fashion to the n− 1 slave processes.

By doing so, the Lebesgue curve ordering of the whole data set is achieved as given in Fig. 3.15

following the classical sequence-based approach and the modified round-robin approach as

given in Fig. 3.16.

3.3. Load Distribution 59

Figure 3.15: The quadtree representation of the product models’ centre points is ordered following
the pattern of the Lebesgue curve.

Figure 3.16: The quadtree representation of the product models is ordered following the pattern
of the Lebesgue curve in the classical sequence-based approach (left) and the modified round-robin
approach (right).

3.3.3 Distribution Quality

This section presents the quality of the load-distribution strategies implemented. The three

load-distribution strategies investigated are the probabilistic mapping presented in Sec. 3.3.1

60 3. Framework

LoD distance [m]

3 ≤ 100
2 > 100 ≤ 300
0 > 300 ≤ 1200
discard > 1200

Table 3.2: Depending on the distance of the product model to the investigation point the appropriate
level of detail is applied and more distant constructions are discarded.

and the SFC-based approaches presented in Sec. 3.3.2 following the classical sequence ordering

and the modified round-robin distribution of the product models to the slave processes.

The augmented city model introduced in Sec. 2.6 is used as a test scenario, the distances

for applying the respective LoDs are given in Table 3.2. The test scenario with the LoD

application distances depicted is given in Fig. 3.17.

Figure 3.17: The test scenario is depicted together with the application distances for the different
LoDs applied. The colour encodes the processor to which a building is mapped.

The distribution quality is a measure of how equally the triangles to be processed by every

slave process are distributed. The number of triangles a product model is discretised with

results from the level of detail it is processed on and therefore from the distance to the

investigation point. As shown in Fig. 3.18, the round-robin ordered Lebesgue curve approach

ensures there is a good distribution of highly resolved product models over the processors,

not only over the whole computational domain but also locally. The classic Lebesgue curve

3.3. Load Distribution 61

ordered approach tends to cluster the highly detailed product models to a single process,

depending on the point of investigation. Therefore the round-robin ordered Lebesgue curve

approach is used in the work which follows.
Load Distribution per Processor

MPI Processes Classic Round Robin
0 3957368 806576
1 82511 1004531
2 22436 1184652

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 0,5 1 1,5 2 2,5 3 3,5

su
m

m
ed

 up
 n

um
be

r o
f t

ria
ng

les

process

Classic

Round Robin

Figure 3.18: The distribution of the highly detailed product models is given as the summed up
number of triangles to be processed by every process for the classic Lebesgue curve mapping and
the round-robin order, both for the scenario given in Fig. 3.17. The modified round-robin order also
distributes the data locally and therefore achieves an almost equal load on the slave processes.

62 3. Framework

63

Chapter 4

Visualisation and Exploration

In this chapter, the visualisation and exploration of the hierarchically ordered data is intro-

duced. As the focus of this work is on handling large sets of complex product model data and

especially gaining insight from the fused data set and its multi-level information, visualising

and allowing exploration and processing approaches for product model data are investigated.

It will be shown that the hierarchical dual layer approach introduced in Sec. 3 gives an

efficient evaluable structure to the vast set of raw information. This structure makes the visual

exploration from the global scale and the product model scale down to the construction detail

scale possible and still provides the access to the auxiliary information. How this feature-rich

information is stored differentiates the way complex data is handled in the work presented

from that of pure geometry processing. Besides the visualisation, the hierarchical order of

the data enables the extension of complex product model scale exploration and evaluation

approaches to the global scale without a loss of information depth.

This chapter is organised as follows. In Sec. 4.1.1, the efficient visualisation of the multi-

resolution representation of the data basis is presented. In Sec. 4.1.2, the integration of

simulation results originating from parallel numerical simulations is presented. In Sec. 4.1.3,

the visualisation of multi-resolution data developed is extended to complex parallel visuali-

sation environments such as a CAVE.

Following the efficient visualisation of complex environments, the integration of handheld de-

vices is presented in Sec. 4.2.1 in order to cope with the challenge of human-centred immersive

installations. Besides the active navigation using input devices, the indirect navigation due

to the motion of the user in the environment is also covered in Sec. 4.2.2. .

Finally, the exploration of the feature-rich product model auxiliary information, and the

coupling to and extension of complex product model investigation approaches is presented

in Sec. 4.2.3. The potential of hierarchically ordered fully detailed product model definitions

for engineering applications is shown by extending a fine-scale spatial query approach to city-

64 4. Visualisation and Exploration

wide data sets and by providing an efficient collision detection approach for supporting the

urban construction planning of infrastructure projects.

4.1 Visualisation

The first step in investigating large data sets is visualising them. Therefore, visualisation

techniques for complex data are introduced from the algorithmic aspect and their efficient

implementation is given. In order to make it possible to dive into the exploration of the pro-

cessed data, the extension of the visualisation to parallel complex visualisation environments

is provided. Thus the discussion and implementation of parallel rendering to CAVE-like

systems is given.

4.1.1 Visualisation of Hierarchical Ordered Product Model Data

The challenge of visualising large sets of complex product model data is how to extract the

relevant parts at the right resolution and discard parts which are unimportant. Also, the ever-

increasing performance of modern Graphics Processing Units (GPUs) means straightforward

rendering of the whole data basis introduced in Sec. 2.6 is not possible. Therefore, when

visualising a large data set, the invisible parts of it should be discarded and the remaining

primitives have to be coarsened to a resolution which corresponds to the resolution of the

projection on the output device. As a starting point for the tremendous existing work and

results achieved on handling large sets of complex data, the user is referred to [79, 80, 81]

and the references therein. In [82] Reichl et al. apply a multi-resolution multi-block grid for

visualising large sets of particles interactively. Based on the particle distribution the block

distribution is adapted and the particles are resampled.

The main characteristic which distinguishes the setting of the work presented from existing

approaches is the unstructured nature of the data. This is further enforced by the dynamically

changing information depth a single entity has to be processed on. Most approaches for

visualising large data sets focus on structured data. Large data sets such as the results of

numerical simulations or image data have a predefined structure of the data points which

can be exploited. Either they are defined on a regular grid or on static space partitioning

approaches. This is not the case for the data underlying this work.

The visualisation of the fused city model introduced in Sec. 2.6 is implemented using the

open source standard OpenGL [83]. OpenGL is on of the standards for visualising scientific

data and is platform independent. Therefore it has been chosen instead of standards such as

DirectX [84], as OpenGL is generally available in visualisation laboratories.

In order to achieve real time visualisation of such a large data set, the hierarchical ordering

4.1. Visualisation 65

must be exploited on both levels of the data structuring, and the transition between the

different scales must be covered.

Ultimately, a visualisation approach is achieved which makes real-time visualisation of the

whole data set possible, ranging from a flyover exploration of the whole domain with all scales

down to the construction details within buildings.

The greatest distinction of the visualisation technique applied can be derived from the scale

or the focus on which the user explores the data. Either the position of the camera is located

within one (single) building or the location is on the outside of all buildings. These two cases

will be the determination criterion for handling the data and performing the visualisation.

If the camera is located within one building, the visualisation of the whole data set is reduced

to visualising this single building. In that case, the hierarchical ordering of the octree will be

used to efficiently evaluate the parts of the product model which are in the view frustum.

If the camera is on the outside, the visualisation of all product models will be reduced to the

visualisation of their outer shells. For more distant product models even the coarser LoDs

will be used for a larger reduction of the primitives to be rendered.

The render distinction between the inside and the outside of the product models neglects to

a certain degree the influence of glass, windows and doors. It is clearly possible to see the

inside of a product model from a close point on the outside, and from the inside of a product

model the surrounding buildings are visible. Both situations can be covered with minimal

impact. On the one hand, the outer shell of the product models can also be visualised with the

textured surface representation presented in Sec. 2.4.3. On the other hand, the surrounding

buildings can be rendered up to a certain distance in order to visualise the neighbouring

buildings when exploring the interior of a product model.

The determination of whether the visualisation takes place on the inside of a building or not

is performed using the voxel test introduced in Sec. 3.2.7 on the first level octree. Based on

the distinction between indoor and outdoor rendering, the two visualisation algorithms will

now be introduced in detail.

The visualisation of hierarchical ordered data is introduced in the following sections. Com-

puter games and game engines show a tremendous ongoing development in visualising photo

realistic scenes [85, 86]. Therefore the question arises of why this is given within the work

presented. Visualisation in computer games uses instancing in order to reuse complex objects

many times. This is not feasible for complex building descriptions where each building has

to be resolved individually. Furthermore, the navigation possibilities are usually limited to

graphs or can be estimated well in advance. Therefore, game engines can drastically reduce

the amount of primitives to render and pre-fetch data with a very high hit rate. This is not

the case in the proposed application.

66 4. Visualisation and Exploration

Rendering a Single Product Model on the Local Scale

The challenge of rendering a single product model is equivalent to the task of efficiently

selecting those primitives which are in the view frustum of the camera from a large set of

triangles.

This is achieved by generating the second level octree for approximating the triangular mesh of

the product model. The rendering of the triangular mesh is performed using the fixed function

pipeline [87] of OpenGL. Triangular elements are rendered using the glDrawElementRange

as follows. Initially, all triangular elements consisting of the face, vertex, normal and colour

information are uploaded to the GPU as an array of structured data. In every render frame,

the parts of the array which are rendered now have to be specified. The important point now

is how to structure the elements of the triangular mesh in a way that, in every render frame,

the identified visible parts of the mesh can be accessed efficiently in the GPU memory and

can be pushed to the rendering pipeline.

It turns out that the octree representation gives such an efficient ordering of the triangular

mesh. The octree is built up on the basis of the triangular elements of the mesh up to a

certain depth. The leaf nodes of the octree now contain the triangles which are intersected

by the octant. The visibility check of the triangular elements in the view frustum can now

be transferred to evaluating the leaf nodes which intersect the view frustum as depicted in

Fig. 4.1.

Besides the advantage that the visibility check does not have to be performed on the whole

triangular mesh but on the leaf octants, the octree also gives the linear ordering of the

elements. The depth-first order of the leaf nodes and therefore the order of the triangular

mesh directly identifies the order of the sequence in the data array to be uploaded to the

GPU. The triangular elements of every leaf octant are stored as a consecutive array. The

individual arrays are now combined to one array and the offset and the length are stored in

the leaf node of the octant.

A hierarchical structure of the triangular data is now achieved and in every rendering frame

the octants intersected by the view frustum are identified. The intersected octants give the

corresponding parts of the visible triangular mesh in the data array uploaded to the GPU. For

these sequences the glDrawElementRange is called and follows the fixed function pipeline

of OpenGL. Using the fixed function pipeline further acceleration techniques such as back

face culling and Z-buffer testing e.g. [88, 89] can be performed automatically.

4.1. Visualisation 67

Figure 4.1: Based on an octree representation for a product model the identification of the visible
triangles can be transferred to identifying the leaf octants intersected by the view frustum.

Rendering LoD Representations on the Global Scale

Rendering the bird’s eye view of a fully detailed city model is achieved by visualising the

outer shells of all buildings on different levels of detail depending on their distance to the

camera. This is achieved by extending the parallel framework introduced in Sec. 3.2.1 by one

further MPI process for visualisation and querying the dual layer hierarchical data structure

as given in Fig. 4.2.

In the rendering loop, the visualisation process sends the updated position of the camera

to the master process and performs a non-blocking receive to the master process. On the

basis of the camera position, the master process identifies the levels of detail to be applied for

every single product model and requests from the respective slave processes the update of the

geometric representation of the product model with the correct level of detail as introduced

in Sec. 3.2.3. After receiving all geometric updates the master process sends the updates

one by one to the visualisation process. As soon as the visualisation process receives a

geometric representation of a product model it discards the current representation, uploads

the representation received to the GPU and performs the rendering of all available product

models.

68 4. Visualisation and Exploration

Position
update

Data
request

Master

holding global
data assembly

Slave 1

holding
k_1 datasets

Visualiser 1

performing
single viewport
visualisation

Slave k

holding
k_k datasets

Visualiser k

performing
single viewport
visualisation

... ...

Visualisation update

Figure 4.2: The parallel framework is extended by one further process which performs the visuali-
sation. This process asynchronously triggers the adaption of the LoD representation by sending the
updated position of the camera to the master processes. The slave processes affected perform the
changes in geometry and the master sends the update to the visualisation process.

By doing so, the computational load is completely separated from the visualisation process.

The visualisation process holds only a set of geometric representations and sends the updated

position of the camera to the master process every n-th frame. The master process provides

the necessary LoD updates as to which product model has to be rendered on full detail, which

model is coarsened, and which product model is removed from the rendering as it exceeds

the distance of the coarsest level of detail.

As the receive of the product models is performed in a non-blocking fashion by the visual-

isation process, the geometric updates are integrated as soon as they have arrived and the

transfer of the data is hidden behind the visualisation process. The visualisation process

only updates the data set to be rendered based on the updates received from the master and

performs the efficient visualisation of this data set.

In order to save further computations of the GPU, the visualisation process also checks for a

product model if it intersects the view frustum as given in Fig. 4.3.

The visibility check is not performed on the whole triangular geometric representation of the

product model but limited to checking if a product model’s bounding box intersects the view

frustum. By doing so, the efficient visualisation of the whole city model is achieved. Fig. 4.4

illustrates the application of different levels of detail to one specific product model on the

city-wide scale. With increasing distance, the resolution is decreased and the representation

is coarsened. Fig. 4.5 depicts different levels of detail for the embedding of a fully detailed

product model to a coarse polygonal description of its surrounding. The hierarchical level of

detail approach enables real-time visualisation and a frame rate of at least 60fps is achieved.

4.1. Visualisation 69

Figure 4.3: The computational load of rendering the outer shells of product model data on the GPU
is reduced by limiting the visualisation to product models whose bounding boxes intersect the view
frustum.

Figure 4.4: Different levels of detail are visualised for one specific building. With increasing distance,
the level of detail gives a coarser representation of the product model.

Figure 4.5: Different levels of detail are visualised for the embedding of a fully detailed product
model to a coarse polygonal description of its surrounding. The visualisation is given on the city-wide
scale (left) and on the product model scale (right).

70 4. Visualisation and Exploration

4.1.2 Integration of Simulation Data

In this section, the visualisation of simulation results originating from parallel numerical

simulations is introduced. This is achieved by deriving a triangulation of the evaluation

of interest from the simulation results and applying the efficient visualisation technique for

triangular meshes introduced in Sec. 4.1.1.

In this work, urban flooding scenarios are investigated using the three-dimensional free sur-

face simulation of fluid flow and therefore the isosurface calculation of the water front in

urban regions is investigated. This will be performed by applying the Marching Cubes (MC)

algorithm [90] which derives a triangular representation of the isosurface for a given three-

dimensional flow field. In the literature there are many further evaluation techniques for

visualising quantities of interest in the field of Computational Fluid Dynamics (CFD) [91, 92].

Results from CFD are usually stored as a specification of the three-dimensional velocity vector

and scalar quantities such as pressure on a regular grid. In the case of two phase simulations

the concentration of one phase is also given as a so-called alpha value on the regular grid.

For simulation results on axis parallel adaptive grids the regular grid representation can

be retrieved by resolving the adaptive parts to the finest resolution in the mesh. For non-

structured grids the simulation results can be re-sampled and interpolated to a regular grid.

The Marching Cubes algorithm takes a regular grid of scalar data as its input data and

calculates the triangular representation of the isosurface to a given threshold value. The

algorithm generates the triangular mesh by combining the triangular representation of the

partial isosurface on every voxel of the regular grid.

The isosurface on a single voxel can take one of a limited number of cases depending on

the values on the edges of the voxel and the given threshold values. A voxel consists of

six faces, eight vertices and eight edges. The scalar quantity for which the isosurface is

generated is known on all eight vertices. Therefore it can be evaluated along every edge

if the threshold value lies between the values at its vertices. Every edge thus has Boolean

information regardless of whether it is intersected by the isosurface or not. From this an

eight digit binary status of the voxel is derived which describes the intersection status of its

eight edges. These 256 statuses of a voxel can be reduced to 15 different triangulations of a

voxel’s isosurface due to symmetry. These triangulations are available as a Triangle Lookup

Table (TLT) as given in Fig. 4.6.

The generation of the triangular mesh can be trivially parallelised by distributing an equally

large subset of the voxels to each of the n processors, generating the triangulation on every

subset and combining the results as given in Fig. 4.7. By performing the MC algorithm, iso-

surface representation of the three-dimensional free surface simulation of fluid flow is achieved

as given in Fig. 4.7.

4.1. Visualisation 71

Figure 4.6: For every voxel, the MC algorithm identifies the intersection status of the isosurface
along its eight edges. The resulting 256 different cases can be reduced due to symmetry to 15 triangle
templates and are available as a lookup table.

Figure 4.7: For a given flow field the MC algorithm calculates the triangular representation with
colour-encoded velocity of the isosurface to a given threshold value (top). In order to parallelise MC,
the flow field is split into n - here 4 - equal parts (bottom) and the triangulations of the sub domains
are combined to the isosurface of the complete flow field. The colour identifies the processor mapping.

4.1.3 Parallel Visualisation in CAVE-like Environments

In this section, the implementation of the framework presented for parallel multi-screen visu-

alisation environments such as a CAVE is presented. Multi-monitor and CAVE-like installa-

tions [93, 94] give the user of a system the possibility to dive into the data and gain insight on

the simulations explored and performed which is far beyond the investigation on a standard

desktop machine.

72 4. Visualisation and Exploration

In order to perform the visualisation on parallel multi-monitor visualisation installations,

the Equalizer [95] SDK has been coupled to the framework presented. Equalizer is a scalable

parallel rendering framework and provides generic access to various visualisation applications.

It provides an API for implementing the visualisation on a parallel basis and provides the

communication and synchronisation approaches for rendering on a parallel multi-monitor

installation.

In order to estimate the demands of a parallel rendering framework, a six-sided stereo view

CAVE installation shall be investigated. The Cornea@KAUST [96] is such an installation

where each of the six sides of the cave is driven by four Sony 4K projectors as shown in

Fig. 4.8, two for the overlaying tiles on every side and two for the stereoscopic immersion. In

total this sums up to 24 projectors and to a resolution of approximately 200 megapixels. On

every frame 24 images have to be generated for the individual projectors and for real-time

visualisation 50fps should be achieved. This sums up to a theoretical frame rate of 1000fps

to be distributed to the parallel visualisation cluster.

Figure 4.8: The six-sided Corena CAVE@KAUST is driven by four projectors for every side, two
for the vertical tiling and two for the stereoscopic immersion.

In order to achieve the required performance, parallel visualisation by integrating the parallel

dual layer hierarchical framework to the Equalizer framework has been implemented.

The Equalizer supports general types of multi-monitor installations and can be adapted to

almost all visualisation laboratories by configuring the topology of the hardware. Using

the configuration start-up parameters every projection plane of the hardware installation is

specified by three linearly independent points. By specifying the topology of every projection

4.1. Visualisation 73

plane and adapting the eye separation factor for stereoscopic view, Equalizer identifies the

visualisation processes to be started on all rendering clients and adapts the access to the

GPUs as given in Fig. 4.9.

P1 P2

P3

Figure 4.9: Three linearly independent points in every projection plane identify the topology of a
multi-monitor installation.

It can now also be seen that the Equalizer framework is ideal for the parallel access framework

presented. As every projection plane in the visualisation environment is run by a single

parallel process as given in Fig. 4.10 for the Z2@KAUST [97], the visualisation of one frame

on 40 monitors, for example, can be transformed to performing the visualisation of the same

data set on 40 parallel processors.

Figure 4.10: The tiled wall installation Z2@KAUST consists of 40 tiled monitors on a 10 × 4 grid.
The rendering on the whole installation is split into parallel rendering of one process for every single
monitor.

From the configuration of the topology of the installation, Equalizer derives the transfor-

mation of the view and the projection on every monitor. It is therefore sufficient to ren-

74 4. Visualisation and Exploration

der the same data set on every monitor using the visualisation algorithms introduced in

Sec. 4.1.1, 4.1.2.

To sum up, using the Equalizer framework makes it possible to integrate multi-plane visual-

isation environments to the framework presented, if it is possible to provide the visualisation

data to n parallel running visualisation processes, one for every plane of the installation.

This parallel visualisation scenario can be implemented using the hierarchical data access

framework presented as follows. The parallel execution of the framework given in Sec. 3.2.1

is extended by n instead of 1 visualisation processes and results in the configuration given in

Fig. 4.11. One process is defined a priori as the head visualisation process and has additional

functionality to send the updated position of the camera to the master process.

Position
update

Data
request

Master

holding global
data assembly

Processor 1

holding
k_1 datasets

Visualiser 1

performing
single viewport
visualisation

Processor k

holding
k_k datasets

Visualiser k

performing
single viewport
visualisation

... ...

Visualisation update

Figure 4.11: The parallel set-up of a framework in a multi-monitor installation consists of additional
n visualisation processes, one for each projection plane, where one process additionally sends the
camera position updates to the master process.

With this set-up the framework presented has been ported to multiple complex visualisation

environments installed at KAUST VizLab such as the Cornea shown in Fig. 4.12 and the

NEXcave shown in Fig. 4.13. It has been shown that the general parallel access strategy of

the framework allows direct integration of almost any complex visualisation environment.

4.2 Navigation and Data Exploration

Besides the technical challenge of integrating multi-monitor installations, exploiting the po-

tential of immersive environments depends on the intuitive navigation of the exploration and

the integration of investigation possibilities. The whole application will only be of value to

an engineer or scientist if they are able to interact with the system in an intuitive way and

gain insight into the data presented.

4.2. Navigation and Data Exploration 75

Figure 4.12: On the Cornea@KAUST the visualisation of simulation data is performed by following
the parallel visualisation on 24 digital projectors and 6 sides, here with 5 sides due to the opened door
of the CAVE.

Figure 4.13: On the NEXcave@KAUST the visualisation of fully detailed product model data on a
local scale is performed by rendering the outer shell of the constructions on 21 monitors.

Therefore navigation using handheld devices is introduced in Sec. 4.2.1, since the use of

standard keyboard-mouse approaches will focus the user on navigating in the system and

not on gaining insight into the data. Besides the navigation in Sec. 4.2.2 the integration

of tracked interaction systems is presented. This gives the user the possibility to grab and

investigate details of the data as desired. The free navigation in and selection of the details of

interest makes the multi-resolution and in-depth data access provided by the system presented

valuable.

76 4. Visualisation and Exploration

Finally, the extension of complex construction-scale evaluations to the city-wide scale is

introduced in Sec. 4.2.3. There are many approaches for investigating data from construction

and built infrastructure in detail, these techniques will be ported to a global scale while

avoiding the information depth on the fully detailed product model data.

4.2.1 Interacting Handheld Devices

Handheld devices have nowadays become a mature technology [98, 99, 100, 101] and are

commonly available to the users. Hardware driven by iOS [102] and Android [103] combines

sufficient computing power and various input and sensor techniques in a pocket-size format.

In order to exploit this potential, navigation using the gravity sensor of a handheld device

has been developed in order to provide the user with a navigation tool that lets them focus on

exploring the data instead of driving the navigation. Besides the standard gravity sensor, the

Wireless Lan [104] (WLan) and the Hyper Text Transfer Protocol [105] (HTTP) interfaces

provide the technical interfaces needed to navigate in complex visualisation environments.

The structure of handheld navigation is given in Fig. 4.14 and works as follows. The rotational

position in the global coordinate system is determined by means of the gravity sensor of

the device. The acceleration, turning angle and direction are derived from this position.

Using the HTTP protocol, the resulting navigation direction and speed are transferred to the

visualisation system and thus replaces the keyboard-mouse-based navigation with an intuitive

steering.

Vertical
head navigation

Horizontal
head navigation

Figure 4.14: The gravity sensor of a mobile device is used to determine the desired direction, turning
angle and speed of navigating through the data.

The navigation commands derived from the gravity sensor and the interface are now serialised

to a command string. The serialised command contains the communication address and port

of the framework, the rotation angles and speed of navigation, binary parameters such as

wire frame rendering and the checksum and counter for deserialising the request.

4.2. Navigation and Data Exploration 77

In order to perform the communication between the handheld device and the framework a

communication protocol has been implemented as given in Fig 4.15. The framework runs

an HTTP server using the Boost::Asio [106] component supporting asynchronous processing

of incoming HTTP packets. As soon as a serialised command has been transferred to the

framework it is processed in the render loop. In order to cope with the possible imperfect

transfer, the validity of the HTTP request is checked against the received checksum, invalid

requests being discarded.

Requests are only processed in an ascending counter order. In the given scenario the transfer

frequency has been set to 20Hz. As it turned out that individual requests are not received

in the order they are sent from the handheld device, the requests have been assigned a time

stamp by the counter. As soon as a request of a certain counter is processed, older requests

are defined to be outdated and not carried out.

http

XML
process response

send request

receive response

encode request

Framework

Figure 4.15: The communication protocol between the handheld device and the framework transfers
the serialised request to the framework. Besides the navigation parameters, the checksum for evaluat-
ing the correct transfer of the broadcast and the counter for evaluating the order of the requests are
also transferred.

Ultimately, a navigation interface in complex visualisation environments is achieved using

handheld devices as shown in Fig. 4.16 which replaces the unsuitable use of keyboard-mouse

navigation for such installations and uses standard techniques such as WLAN and HTTP

which are generally available in visualisation laboratories.

4.2.2 User Tracking and Tracked Interaction

In the previous sections the extension of the visualisation to multi-monitor immersive envi-

ronments and the navigation within these installations has been introduced. At this point

the concept presented allows the user to explore the data and navigate through them in a

way that lets them dive into it.

78 4. Visualisation and Exploration

Figure 4.16: Handheld devices provide the user with a navigation interface which lets them focus
on exploring the data set instead of handling the input device.

In this section, the focus shifts to the fact that, in immersive environments, users move their

whole body, their arms and their head and have the freedom to navigate and interact with all

these components. Technically this freedom can be formulated as the demand to determine

the position and the direction of different parts within the immersive system. This goal is

achieved by incorporating tracking systems [107].

Marker

Figure 4.17: In a tracked immersive installation the marker’s position and direction is derived by
recording the interior of the installation with multiple cameras for different viewports. From the
differing images of the reflecting parts of the marker the position and direction of the marker and
therefore the part it is attached to can be derived using image processing and linear calculus.

4.2. Navigation and Data Exploration 79

A tracking system consists of a tracked device, the so-called marker, and the tracking cam-

eras as depicted in Fig. 4.17. The marker consists of multiple linearly independent aligned

reflecting spheres attached to a structure and a set of cameras which record the interior of

the immersive environment. Owing to the different reflecting properties of the spheres and

the linearly independent overlapping view directions of the tracking cameras the position and

direction of the marker can be determined.

Having the position and direction of the marker at hand, two basic demands for immersive

installations can be fulfilled. On the one hand, the user moves in the immersive installation

and therefore their viewport in the visualisation changes. This is covered by wearing a hat

with a marker attached to it which is tracked by the installation. The viewport is derived from

the position and view direction of the user’s head and the correct visualisation is computed

as shown for the NEXcave@KAUST in Fig. 4.18.

Figure 4.18: The position and direction of the user’s view is derived from the tracked marker
mounted on their head. From this information the viewport and thus the projection onto the different
planes of the CAVE are derived, here for the NEXcave@KAUST.

On the other hand, the users have their hands free and should be given the possibility to

point at entities. The mouse interaction is therefore replaced by a tracked pointing device as

shown in Fig. 4.19.

The implementation of the tracked interaction of the framework has been performed using the

Dtrack [108] installation of VizLab@KAUST. Dtrack supports multiple tracked devices and

provides the position and direction of the tracked markers using a separate image processing

client. Owing to the integration of the Equalizer framework as introduced in Sec. 4.1.3 tracked

user movement and tracked scene interaction could be achieved in order to allow the user a

seamless interaction with and insight from the data.

80 4. Visualisation and Exploration

Figure 4.19: A tracked pointing device replaces the impractical mouse interaction in immersive
installations and lets the user freely point at the visualised items, here shown in Cornea@KAUST.

4.2.3 Product Model Investigation and Engineering Applications.

In this section, the product model exploration features and the integration of complex con-

struction scale investigation applications are introduced. From the multi-monitor visualisa-

tion and immersive navigation approach introduced in the previous sections a tool is provided

which lets the user visually explore the geometric representation of the multiple resolutions

of the data basis.

Initially, the access of the auxiliary information is presented. The user has thus the possibility

to navigate through the whole data set on a city-wide scale, focus on the exploration of a

single construction and then explore the construction detail information such as the insulation

type of a window or the IP address assigned to a network port as given in Fig. 4.20.

Figure 4.20: The navigation of the whole data set lets the user explore on a city-wide scale (left).
By navigating to the construction details of a product model the full information depth such as the
material parameters of a door installation is achieved (right).

4.2. Navigation and Data Exploration 81

Accessing auxiliary information follows the dual layer access concept of the framework pre-

sented. The position and the direction of the device pointing to a construction detail are

derived from the integration of tracked pointing devices introduced in Sec. 4.2.2. The geo-

metric information of the ray pointing from the input device to the screen is initially evaluated

over the first level octree in order to determine the constructions intersected by the ray and

then to extract the construction details on the second level octree as introduced in Sec. 3.2.4.

This approach now lets the user evaluate the whole data basis on all scales, from the global

scale of the whole data set down to the local scale of construction details. This approach

therefore distinguishes the work presented from pure geometry handling and visualisation

approaches.

Since the approach adopted in this work can bridge the information linkage gap between

large-scale city models, which give the embedding of a whole urban region to its surrounding,

and Building Information Models, the extension of BIM scale applications to the whole city

scale is introduced in the following. The applications introduced cover spatial queries to

product model details and the support of the construction planning of large-scale structures.

Spatial Extension of the Structured Query Language

In this section, the global evaluation of spatial queries for product model details is introduced.

This enables questions of the following type to be answered. What is the capacity regarding

hospital beds within 50km? Where is the closest fire extinguisher? There is in-depth research

on evaluating individual product models originating from BIM and extending this to GIS

sources [109, 110].

In the work presented this approach is extended to taking into account the spatial relation of

all product models to each other. By doing so, the evaluation of the construction details over

the whole domain becomes achievable and queries as given in Alg. 16 become feasible. In

this query, all buildings are identified which have a central air conditioning system installed

and whose floor space exceeds 1000sqft within a diameter of 50.000ft

Algorithm 16 Pseudocode for a query combining spatial and IFC criteria

SELECT ∗
FROM bu i l d in g b
WHERE b . IFC has AC = TRUE
AND SUM(b . I F C f l o o r s p a c e) > 1000
AND DIST(my pos i t ion − b . c en te r) < 50 .000

The processing of such queries is performed by exploiting the hierarchical structure of the

framework as follows. The master process identifies all product models fulfilling the global

82 4. Visualisation and Exploration

distance criterion and from that the respective slave processes. The master process sends

these slave processes the request to evaluate the product model scale part of the query. The

resulting record set is collected by the master and the complete query is processed.

The order set for processing spatial queries has been restricted to distance-based operators

on the global scale and selective operators on the product model scale, but could be extended

by combining the existing work to the spatial query of product models discovered in [111].

Urban Construction Planning and Investigation

The final application for evaluating product model details over their global embedding comes

from the field of urban construction planning and focuses on the planning of large-scale

infrastructure projects. In Fig. 4.21 this question is targeted by evaluating the possible

intersection of the sewer network with existing constructions in the city.

Figure 4.21: The evaluation of possible intersections of a sewer network with existing constructions
in the city is performed by deriving the hierarchical representation of both configurations.

Following the approach of the framework presented this question can be answered using an

octree evaluation called multiplexing [112]. As introduced in Sec. 3.2.5 the tree structure of

an octree can be linearised in a depth-first manner. This linearisation of two octrees is now

concatenated level-wise with the logical AND operator. The resulting stream of the operation

now determines the intersection of non-white parts of the two octrees as given in Fig. 4.22.

4.2. Navigation and Data Exploration 83

100000011010000000000100000001 100000001

Figure 4.22: In order to determine the intersection of non-white parts of the two octrees their
linearisation is concatenated level-wise with the logical AND operator.

This algorithm is now applied to the existing and the planned constructions as follows. The

existing constructions and built infrastructure of the city are resolved up to the accuracy of

their bounding boxes by the first level octree. A separate octree is now generated for the

newly planned construction. By performing multiplexing of both the octrees the intersection

of the planned construction and the existing city data is determined. All intersected parts

of the first level octree directly provide the product models of the existing constructions

intersected. Octrees are now generated for both the bounding boxes of the intersected con-

structions and with the same domain for the planned construction. These octrees are now

pairwise multiplexed against each other and the possible intersections provide the fine-scale

intersections of the planned and the existing constructions over the whole domain.

This approach is based on comparing octree representations. Fig. 4.21 shows the intersection

of the sewer network and a planned construction. As the sewer network is composed of fine

pipe segments which mainly follow a horizontal orientation, the octrees have to be highly

resolved – in this case up to level 13. This induces high computational effort which can be

tackled by performing a multi-level intersection test. Such an approach can determine the

possible intersections of the compared constructions up to a certain resolution depth and

proceed in an iterative way for the identified sub-domains.

84 4. Visualisation and Exploration

85

Chapter 5

Coupling Grid-Generation and

Simulation Frameworks

In this chapter, the coupling of the data access framework to three parallel grid-generation and

numerical simulation frameworks is introduced. It will be shown that the parallel hierarchical

data access concept presented in this work directly integrates into existing grid-generation and

simulations frameworks. Three different interface and coupling approaches follow. Coupling

to third-party frameworks has been developed and implemented due to a variety of reasons.

Having a parallel-access framework at hand provides the data basis for engineering-relevant

applications. Pure data do not provide insight without sophisticated applications based on

these data. Furthermore, this framework enables researchers with a focus which is not on

handling complex data but on the efficient numerical simulation of physical phenomena to

incorporate the data handled by this work.

Moreover, the demands of modern hardware installations and problem-solving paradigms

exceed the capabilities of a single heroic research approach. Focusing on all steps of the

simulation pipeline is simply not possible and therefore the investigation of interfaces between

the different steps of the simulation pipeline and specialisation of different groups on these

steps is imperative. Most parallel solving environments these days are tailored to a single

application and one specific hardware installation. The development of generalised grid-

generation and simulation frameworks, involving new software development paradigms and

code structuring, may overcome these boundaries and lead to applications whose lifetime

does not end together with the respective hardware installation to which they are tailored.

Ultimately, coupling this work to existing approaches and research in progress shows the

applicability of this approach and proves the general interoperability of the framework pre-

sented. Furthermore, the coupled frameworks bring a set of solvers, problem-solving scenarios

and evaluation techniques with them and therefore leverage the value of this work.

86 5. Coupling Grid-Generation and Simulation Frameworks

This chapter is organised as follows. In Sec. 5.1 the Sierpinski [113, 114] framework is cou-

pled which solves two-dimensional hyperbolic problems on full adaptive triangular grids.

In Sec. 5.2 the Peano [77] framework is coupled, a grid-generation framework of three-

dimensional adaptive Cartesian grids. Finally, in Sec. 5.3, the Open Source Field Operation

and Manipulation (OpenFOAM) [115, 116] package is coupled, a package with a large base of

developers and applications from science and industry. With the integration of OpenFOAM

a large community working on all fields of computational science and their scientific impact

is integrated.

In this chapter, the focus is solely on integrating the grid-generation capabilities. The appli-

cations and solving of specific numerical simulation questions will be introduced in Sec. 6, 7.

This separation is inspired by the distinct evaluation of date handling, grid generation and

numerical simulation. It underlines the different possible integration points of the framework

presented in the steps of the simulation pipeline.

5.1 Coupling the Sierpinski Framework

In this section, the coupling of the hierarchical data access framework presented to the Sier-

pinski framework is introduced. The Sierpinski framework is a Generic Framework for Full-

Adaptive 2D-Discontinuous Galerkin Methods based on Sierpinski Space Filling Curve. It is

an open source software package which uses dynamically changing grids to solve hyperbolic

equations in two dimensions.

The grid generation is performed on the basis of triangular elements and implements full

adaptivity, including mesh refinement based on runtime adaptivity criteria. he order of the

elements is kept using the Sierpinski SFC over the spacetree representation of the compu-

tational domain. A novel parallelisation and load balancing strategy is implemented on the

basis of the splitting of the spacetree along the Sierpinski curve. Further properties of the

Sierpinski framework are the interactive simulation in an OpenGL environment, hybrid paral-

lelisation with a shared memory parallelisation using OpenMP and Intel TBB and distributed

memory parallelisation using MPI.

Various solvers can be integrated into the framework utilising an object-oriented kernel-based

approach. Besides a Riemann solver, the GeoClaw [117] package has also been integrated in

order to perform Tsunami simulations. Special focus is put on the cluster-based simulation

and load balancing using data migration in hybrid parallelisation scenarios.

The fluid flow simulations follow a Discontinuous Galerkin [118, 119] approach in order to

solve the two–dimensional Shallow Water Equations with Euler time-stepping and constant

bathymetry. In Fig. 5.1 the simulation of a radial dam break using the Sierpinksi framework

is given.

5.1. Coupling the Sierpinski Framework 87

Figure 5.1: In radial dam break scenarios for the two-dimensional SWE a reservoir of fluid at rest is
initially applied by the boundary conditions. The initial resolution of the triangular mesh is 16× 16
triangles, the resolution depth is limited to 6 levels. The solution at the time-step iteration is given
together with the refined mesh and the colour-encoded height.

The coupling of the Sierpinski to the framework presented can be established by specify-

ing the bathymetry, i.e. the elevation of the ground over which the fluid flow is simulated.

As the framework presented contains a fully detailed three-dimensional data basis, the two-

dimensional mesh has to be derived from the three-dimensional data and this will be in-

troduced in the following. The resulting two-dimensional bathymetry mesh is stored using

netCDF [120], a machine-independent data format for array-oriented scientific data. Sier-

pinski directly supports netCDF so the coupling is established by exporting data from the

framework presented to a valid input file for the Sierpinski framework.

5.1.1 Derivation of the Bathymetry Discretisation

In order to derive a two-dimensional bathymetry discretisation for a specified computational

domain, the three-dimensional description handled by the framework presented has to be

dimensionally reduced. This projection is not loss free in general as it is obvious that not

all three-dimensional information can be expressed in two dimensions. For pure surface

descriptions such as the terrain information derived from GIS as introduced in Sec. 2.3.1,

the two-dimensional mesh can be derived directly as a mesh in the plane with the height

of the terrain at every data point. For complex data such as buildings and constructions

the height value of every point in the plane is not unique. When the doors or windows are

open, for example, it is necessary to specify which value should be the height value. This

can be the height of the door sill or the height of the roof or values at different storeys. The

interpretation of the height depends on the specific scenario of interest. Adjusted definitions

lead to different meshes and therefore to different results for the numerical simulation which

follows.

88 5. Coupling Grid-Generation and Simulation Frameworks

The three-dimensional solid/fluid discretisation can be generated for a computational domain

and a mesh resolution specified by the user as presented in Sec. 3.2.6. Fig. 5.2 gives the

voxelisation derived on the global scale and on the local scale of a building.

Figure 5.2: The three-dimensional voxelisation of the data basis can be derived on the global scale
(top) and on the local scale for a single building (bottom). The height is encoded in the colour.

Based on this three-dimensional discretisation of the solid and the fluid parts of the domain,

the two-dimensional definition of the bathymetry is derived for two different scenarios. The

code for deriving maximal two-dimensional bathymetry mesh from the three-dimensional

solid/fluid discretisation is given in Alg. 17.

The implementation given works as follows. The height of the mesh is defined as the highest

solid value of the data set at that point of the plane. This would be the case for a Tsunami

simulation of the fluid flow where the focus of the investigation is on evaluating the global

behaviour of the flow, and the flow through the buildings and constructions is neglected. The

formula for the two-dimensional bathymetry mesh B = Bij derived from a three-dimensional

voxelisation V = Vijk is given as

5.1. Coupling the Sierpinski Framework 89

Algorithm 17 derive2dMeshAtMaximalElevation

Matrix B = derive2dMeshAtMaximalElevation (Matrix V){

for (int i =0; i<V. lengtX () ; i++)
for (int j =0; j<V. lengtY () ; j++)

for (int k=0; k<V. lengtZ () ; k++)
i f (V(i , j , k) == s o l i d)

B(i , j) = k ;
}

Bij = min
k

{
Vijk|Vijk̂ = fluid ∀ k̂ > k

}
In Fig. 5.3 the two-dimensional mesh derived for the local scale three-dimensional mesh

depicted in Fig. 5.2 is given.

Figure 5.3: From the three-dimensional voxelisation of the computational domain the two-
dimensional bathymetry mesh is derived on the local scale for a single construction. The height
value at every data point is derived as the maximal solid value at that point in the plane.

In the second case, the height of the mesh is defined as the value below the first fluid voxel

of the data set at that point of the plane. This would be the case for an urban heavy rain

scenario where the focus of the investigation is on evaluating the flow through the buildings,

especially open doors or entrances to underground car-parks. The impact of flooding will only

be covered for the first opening of a construction in terms of height. The code for deriving

two-dimensional bathymetry mesh from the three-dimensional solid/fluid discretisation is

given in Alg. 18.

The formula for the two-dimensional bathymetry mesh B = Bij derived from a three-

dimensional voxelisation V = Vijk is given as

Bij = max
k

{
Vijk|Vijk̂ = solid ∀ k̂ ≤ k

}

90 5. Coupling Grid-Generation and Simulation Frameworks

Algorithm 18 derive2dMeshAtFirstFluid

f unc t i on B = der ive2dMeshAtFirstFluid (matrixV){

for (int i =0; i<V. lengtX () ; i ++){
for (int j =0; j<V. lengtY () ; j ++){

bool found = fa l se ;
for (int k=0; k<V. lengtZ () && ! found ; k++){

i f (V(i , j , k) == f l u i d){
found = true ;
B(i , j) = k−1;

}
}

}
}

}

In Fig. 5.4 the two-dimensional mesh derived for the local scale three-dimensional mesh

depicted in Fig 5.2 is given.

Figure 5.4: From the thee-dimensional voxelisation of the computational domain the two-dimensional
bathymetry mesh is derived on the local scale for a single construction. The height value at every
data point is derived as the value below the first fluid voxel at that point in the plane.

With the algorithm given a two-dimensional bathymetry mesh can be derived from the three-

dimensional voxelisation of the computational domain. Two of the many ways for defining

the height value of a point in the plane have been given. This definition has to be adapted

to the respective simulation scenario.

In Fig. 5.2 and 5.3, 5.4, the bathymetry meshes derived are given over the full computational

domain including the surface and the building description. This induces steep gradients on

the intersection of the surface and walls or pillars, for example. These steep gradients have

to be treated by the numerical scheme. There are different approaches such as removing the

buildings from the computational domain and treating the interface as a boundary condition.

These approaches in the scenario of urban flooding focus on investigating the behaviour of

the water front in the streets and neglect the impact to the buildings. In Sec. 7.1 these

5.2. Coupling the Peano Framework 91

approaches are investigated, and this section presents the derivation of the two-dimensional

mesh for coupling the work presented to SWE frameworks.

For a valid numerical simulation the definition of a computational mesh is only one part.

Furthermore, boundary conditions, initial conditions, material parameters and simulation

parameters are required. For boundary conditions not only the discretised definition has to

be provided but also the model of the imposed behaviour. For the simulation of a flooding

following the SWE, material parameters such as the roughness or the Strickler value can be

derived from GIS sources as introduced in Sec. 2.3.1. The parts of the mesh which form the

boundary have to be derived from the extend of the computational domain and the interface

to buildings and constructions. The model which is imposed by the boundary conditions has

to be chosen carefully depending on the specific simulation scenario. If the simplification is

valid, that only the flow around buildings is investigated, for the boundary of the buildings

reflecting behaviour could be assumed. Furthermore, the flooding of a building could be

modelled with an outflow condition, which again has to be adapted to the specific scenario.

The definition of initial conditions in general follows real-world data and the expertise of

engineers. For a flooding induced by an exceeding river, values of measuring stations should

be available. For a rain induced flooding, measurements from meteorological stations have to

be investigated. The proposed framework can provide a basis but obviously many questions

are left open.

5.2 Coupling the Peano Framework

The Peano framework is an open source framework for solving Partial Differential Equations

on adaptive Cartesian grids. Based on the spacetree concept it provides a problem-solving

environment which brings almost any geometry descriptions together with the interface for

solving PDEs [77].

The classical octree concept can be extended to the generalised spacetree approach. Any

discretisation using a spacetree can be expressed as a hierarchical order of Cartesian grids.

By following this approach the iteration over adaptive Cartesian grids is performed as the

element-wise traversal over the spacetree hierarchy following the Peano SFC. This structure

provides node-wise and element-wise access to the derived grid and is therefore the basis for

solving PDEs adaptively.

The Peano framework features dynamic adaptivity in space and time. The geometric multi-

scale representation of the domain is directly achieved by the underlying hierarchical concept.

Owing to the efficient implementation it comes with low memory requirements and cache-

aware behaviour.

92 5. Coupling Grid-Generation and Simulation Frameworks

return function parameters

bool geometry::isCompletelyOutsideNotInverted (Vector x, Vector resolution)
bool geometry::isOutsideClosedDomainNotInverted (Vector x)
bool geometry::isCompletelyInsideNotInverted (Vector x, Vector resolution)

Table 5.1: The Peano geometry interface queries the status of the spacetree nodes during the build
up and the traversal of the grid.

The parallelisation strategy of Peano yields a hybrid approach, enabling distributed memory

parallelisation using MPI and shared memory parallelisation based on OpenMP and Intel

TBB. Load balancing is performed using multiple implemented approaches as shown in [121].

As Peano does not only provide a matrix-free multi-grid solver for CFD applications but is a

generally applicable framework for adaptive mesh refinement (AMR) based grid generation

and traversal, coupling Peano to the work presented opens the door for various existing

and future research projects. Besides the aforementioned adaptive solution of the three-

dimensional Navier-Stokes equations as published in [122], research groups of the Peano

team are working on the solution to engineering-relevant topics in the field of solid mechanics,

Tsunami simulation or the Lattice-Boltzman method (LBM), to name but a few.

The access to the data basis provided by the present work is integrated into the Peano

framework via a slim and efficient interface. During the build-up of the spacetree, Peano

queries the underlying geometry for the status of the spacetree nodes in the computational

domain. In the refinement process there is a check of every node as to whether it is completely

inside or completely outside the computational domain. Nodes which are not completely

inside nor completely outside the domain must belong to the boundary and are refined further.

Following this approach, Peano provides a geometry interface which couples the complete

framework via the implementation of the request if a given cube is completely inside or

completely outside the domain. This request can be processed efficiently by the hierarchical

data access concept presented in this work and will be introduced in the following.

5.2.1 Interfacing the Geometry Description

The coupling of the framework presented to Peano is performed by implementing the geometry

interface of Peano. During the build up and the refinement of the Cartesian grid Peano has

to decide whether a node of the spacetree is in the computational domain or not. If it is part

of the computational domain it is created as a grid cell, otherwise not. This inside/outside

check is the only link between Peano and the underlying shape of the computational domain.

The interface of the methods for implementing the geometry interface of Peano are given in

Table 5.1.

For the implementation of the interface the case for performing a CFD analysis based on

5.2. Coupling the Peano Framework 93

the data access to the framework presented is now introduced. In order to derive the fluid

mesh, the computational domain is the whole domain excluding the parts covered by solid

bodies, i.e. the construction, built infrastructure and the terrain data. The implementation

is only given for the case of deriving a fluid mesh. Other applications, such as a structural

analysis, would require parts of the complement of the fluid mesh, but can be easily derived

by Boolean operations.

The implementation of the interface is performed by using the voxel query interface presented

in Sec. 3.2.7. In order to access the voxel query interface, Peano is started in an additional

MPI process together with the framework’s master process and the n−1 slave process holding

the product models. By doing so, Peano runs in a parallel environment together with the

framework presented as given in Fig. 5.5. This concept was already used in Sec. 4.1.3 for the

coupling of the visualisation as a separate process to the framework, and is a general concept

of this work. By adding additional processes to the framework the data access can be queried

by other applications.

Global
voxel
request

Model
request

Master

holding global
data assembly

Slave 1

holding
k_1 datasets

Peano

performing
grid generation
and traversal

Slave k

holding
k_k datasets

...
response response

Figure 5.5: In order to access the voxel query interface, Peano is started in an additional MPI
process, together with the framework’s master process and the n−1 slave process holding the product
models.

In Fig. 5.5, the framework is started with one MPI process for Peano. As Peano itself provides

parallel access to the geometry interface, the number of Peano processes can be increased

accordingly and multiple processes can perform read access to the voxel query interface. The

code for the implementation of the Peano geometry interface is given in Alg. 19.

For the method isCompletelyOutsideNotInverted the voxel spanned by x−resolution/2 and

x+ resolution/2 is checked to see if it is intersected only by solid parts of the computational

domain by using the voxel query presented in Sec. 3.2.7. For the method isOutsideClosed-

DomainNotInverted the point x is checked to see if it is contained in the first layer octree and

therefore in the computational domain. For the method isCompletelyInsideNotInverted the

voxel spanned by x− resolution/2 and x+ resolution/2 is checked to see if it is intersected

only by fluid parts of the computational domain. Fig. 5.6 gives the return values of the

interface for a specific domain.

94 5. Coupling Grid-Generation and Simulation Frameworks

Algorithm 19 The Peano geometry interface queries the status of the spacetree’s nodes
during the build up and the traversal of the grid.

bool Construct ion : : i sComplete lyOuts ideNotInverted
(Vector x , Vector r e s o l u t i o n) {

return framework . voxelQuery (x , r e s o l u t i o n /2 , s o l i d) ;
}

bool Construct ion : : i sOuts ideClosedDomainNotInverted
(Vector x) {

return ! framework . g l oba lOct r ee . conta in s (x) ;
}

bool Construct ion : : i sComple te ly Ins ideNot Inver ted
(Vector x , Vector r e s o l u t i o n) {

return framework . voxelQuery (x , r e s o l u t i o n /2 , f l u i d) ;
}

Figure 5.6: The Peano interface identifies the computational domain of a sphere as follows. The
white octants give the outside of the domain where isCompletelyOutsideNotInverted returns true,
the dark blue octants form the inner part and here isCompletelyInsideNotInverted returns true. The
light blue depicted octants cover the boundary of the domain and there both methods isCompletely-
OutsideNotInverted and isCompletelyInsideNotInverted return false. This triggers further refine-
ment of the interface.

By implementing this slim and efficient interface, the Peano framework is coupled to the

hierarchically ordered data of the work presented. Fig. 5.7 shows a sample for the fluid mesh

on a local scale for the main building of TUM.

It should not be denied that this approach induces strong simplifications. The application of

boundary conditions in general will be driven by the geometric and semantic information of

buildings and their construction details. As the decomposition with this approach is driven by

5.3. Coupling OpenFOAM 95

the global structure of the domain, the product model data which specify a certain boundary

condition may be spread over multiple processors. In order to cope with this, either the

decomposition strategy has to ensure that one product models is mapped to a single process

or additional communication among the processors has to be introduced which in general

will be expensive. Furthermore, the generated mesh is based on axis-parallel elements and

therefore non-boundary conforming. Fig. 5.6 highlights how serious the errors induced by

this simplification are. The area of a sphere is approximated by an octree with first-order

accuracy only. For the arc-length there is not even convergence. The approximated boundary

delivers the same wrong estimation, independent of the resolution-depth of the tree. These

simplifications do not only propagate to the advanced application of boundary conditions but

also to the evaluation of the simulated quantities. The pressure distribution over the boundary

layer of a cylinder, meshed with an octree, is not evaluable directly over the attaching faces

and cells. This is still an active field of research in Fluid Structure Interaction (FSI). The

adequate and efficient handling of non-boundary conforming meshes and efficient application

of boundary conditions can be tackled by immersed boundary methods [123, 124], which has

not been implemented in this dissertation project but is referred to explicitly.

5.3 Coupling OpenFOAM

The Open Source Field Operation and Manipulation simulation tool OpenFOAM is an open

source software package developed in C++ with the main focus on Computational Fluid

Dynamics (CFD). Besides CFD, OpenFOAM also provides various further application and

investigation scenarios such as electrodynamics or combustion processes, for example.

The main advantage of coupling the work presented to OpenFOAM is the fact that it has a

bright scientific community working on solvers for new applications, increasing the efficiency

and accuracy of existing implementations, and validated and verified numerical solvers exist

for a wide scope of applications, especially on fluid flow. Furthermore, OpenFOAM provides

one common geometry and discretisation interface which is initially independent of the solver

to be applied. By implementing this interface in the framework presented almost any scenario

on the data basis can be expressed as input data for OpenFOAM. Starting from that dis-

cretisation the user can choose the application of interest and prepare numerical simulations

on the data.

It should be pointed out that the experience of engineers is still needed in order to perform

reliable numerical simulations and to interpret the correctness of the results achieved. The

direct coupling of the framework presented to OpenFOAM does not provide a one click

simulation pipeline for numerical analysis but it gives engineers a tool at hand to focus on

their expertise and leverage their work.

96 5. Coupling Grid-Generation and Simulation Frameworks

Figure 5.7: The fluid mesh is built up by the Peano framework and adaptively refined at the
boundary of the domain. The inside/outside check for building up the grid is performed over the dual
layer hierarchical data structure of the work presented.

This section is organised as follows. Sec. 5.3.1 introduces the preprocessing of the solid/fluid

information of the computational domain which was performed. In Sec. 5.3.2 the derivation

of the mesh in OpenFOAM format is presented. In Sec. 5.3.3 the possibility of performing

mesh generation for OpenFOAM in parallel is introduced for achieving a decomposition of

the computational domain.

5.3. Coupling OpenFOAM 97

5.3.1 Preprocessing the Solid/Fluid Discretisation

Based on the extent and the desired accuracy of the resolution specified by the user, a

solid/fluid discretisation of the computational domain can be achieved by using the voxel

representation interface introduced in Sec. 3.2.6.

Based on this discretisation the OpenFOAM mesh can be derived after preprocessing the

solid/fluid field acquired. This field is not yet valid as a computational mesh for fluid flow

as it does not cover the computational domain exactly. This can be seen from the fact that

a highly resolved solid/fluid discretisation of a building will also identify the inner parts of

rooms as fluid, even if all windows and doors are closed. Even if the area within the room

is a fluid domain, it is not connected to the outside and therefore a completely separate

domain. Multiple separate domains are not supported by OpenFOAM and therefore have to

be removed in order to derive the computational domain of interest.

The derivation of the computational domain of interest will be performed by requesting

the user to specify one point within the domain for which they wish to generate the mesh.

Applying a flood fill algorithm will derive the part of the domain which is connected and

contains this so-called seed point. Both parts are valid computational domains, but as they

are not connected they do not influence each other and are to be distinguished. This procedure

also saves computational costs as complex parts of the geometries at the boundary of the

separate domains are not resolved and do not have to be handled by the simulation. There

are approaches [125] which describe how to identify the inner and outer parts of an octree

resolved structure without the computationally expensive flood fill algorithm. The flood fill

algorithm is applied in this work in order to derive a minimally connected domain.

The code for applying the flood fill algorithm to a given solid/fluid matrix is given in Alg. 20

and works as follows.

The algorithm identifies the connected parts of the domain by recursively checking all - in

three dimensions six - neighbours of a given point if they are fluid cells, starting with the

seed point. If a point is fluid the algorithm is called for its eight neighbours. All fluid

points are marked and as soon as the recursion ends the marked points define the connected

computational domain containing the seed point. In the given implementation the recursion

is broken up in order to avoid a call stack overflow. In the worst case such as a channel of

diameter one, the recursion depth is the full size of the matrix dimension. The recursion is

prevented by using a queue for the cells to be processed. The queue is initialised with the

seed point. As long as the queue is not empty a point is removed from the queue and its

neighbours are checked to see if they are part of the computational domain or not. All points

passing this test are pushed to the queue. The algorithm ends as soon as the queue is empty.

98 5. Coupling Grid-Generation and Simulation Frameworks

Algorithm 20 fillMatrix

void f i l l M a t r i x (Point seed){

queue toProces s . push back (s e e d po in t) ;
while (toProces s . s i z e () > 0){

Point tmp = t o p r o c e s s . back () ;
t o p r o c e s s . pop back () ;
i f (x < hX−1) f i l l P o i n t (x+1, y , z) ;
i f (x > 0) f i l l P o i n t (x−1, y , z) ;
i f (y < hY−1) f i l l P o i n t (x , y+1, z) ;
i f (y > 0) f i l l P o i n t (x , y−1, z) ;
i f (z < hZ−1) f i l l P o i n t (x , y , z +1);
i f (z > 0) f i l l P o i n t (x , y , z−1);

}
void f i l l P o i n t (Point p){

i f (! p . v i s i t e d ()){
p . s e t V i s i t e d () ;
t o p r o c e s s . push back (po int) ;

}
}

In Fig. 5.8 the resulting matrix is visualised for a solid/fluid matrix on the local scale of a

building. The seed point is specified on the outside and therefore the separate fluid domain

on the inside of the room is removed.

This preprocessed solid/fluid matrix is now the basis for generating the OpenFOAM mesh. It

describes the one connected computational domain containing the seed point. The interpre-

tation of this solid/fluid matrix as a hex-mesh immediately gives the definition of the cells,

faces, edges and points with their connectivity and the boundary required for a computational

mesh. The derivation of the OpenFOAM mesh is given in the following section.

5.3.2 Mesh Generation

In this section, the computational mesh in OpenFOAM format is derived from the prepro-

cessed solid/fluid discretisation presented in Sec. 5.3.1. This discretisation is specified as a

three-dimensional Boolean matrix with extent nx× ny × nz, describing the solid/fluid status

of every voxel of side length h in the domain spanned by the vectors (xmin, ymin, zmin) and

(xmax, ymax, zmax) with imax = imin + ni · h.

This Boolean matrix with its extent and discretisation width can also be interpreted as a

formulation of the fluid mesh with hexahedral elements. This formulation is now processed

in the OpenFOAM mesh format. Fig. 5.9 shows a two element hexahedral mesh including

the numbering of the cells, elements, faces and vertices.

5.3. Coupling OpenFOAM 99

Figure 5.8: For the original domain (top) the voxelisation is derived. Fluid voxels are depicted
white, solid voxels are blue; this discretisation is calculated in two ways. Without performing the
fill algorithm (middle), fluid parts which are not connected to the seed region are also identified as
computational domain. These parts are removed by performing the fill algorithm (bottom).

100 5. Coupling Grid-Generation and Simulation Frameworks

Figure 5.9: An OpenFOAM mesh of two hexahedral elements consists of 11 faces, 20 edges and 12
vertices.

The mesh given in Fig. 5.9 also covers the different types of faces. The face spanned by

vertices [1, 5, 6, 2] is an interior face, the remaining faces are boundary faces. The type of

condition can be specified for every boundary face. The complete mesh specification of the

two hexahedral mesh elements consists, as does every OpenFOAM mesh, of five different files

which store the mesh and these are given for points in Sec. A.4.1, faces A.4.2, boundary A.4.3,

owner A.4.4, neighbour A.4.5.

Before introducing the five files and the code for their generation in detail, the upper limits

of their storage requirement are given. A single hexahedral element consists of 1 cell, 6 faces

and 8 vertices. For the solid/fluid discretisation of extent nx × ny × nz the following upper

limits can therefore be found.

• nx · ny · nz cells

• 6 · nx · ny · nz faces

• (nx + 1) · (ny + 1) · (nz + 1) vertices

These are not sharp upper bounds as the common faces are neglected. Nevertheless, in order

not to expensively extend the memory allocation for the data during runtime these values

are used in order to allocate the maximal main memory required.

5.3. Coupling OpenFOAM 101

Generation of the Mesh

The mesh is generated by iterating over the entries of the solid/fluid discretisation and inline

filling the arrays of the cells, faces and vertices. The key for storing only the relevant parts

of the mesh lies in building up a linearised index and ordering the elements. The linearised

index defines an injective mapping from the three-dimensional coordinates of the matrix to a

linear sequence. The ordering of the elements provides a surjective function over the indices.

This bijective mapping finally is the basis for writing the mesh specification.

In order to generate the mesh as given in Alg. 21 the algorithm iterates over the solid/fluid

matrix with dimension hX × hY × hZ and processes fluid cells only.

Algorithm 21 iterateAllMeshCells

void i t e r a t e A l l M e s h C e l l s (int hX, int hY, int hZ){
for (int z =0; z<hZ ; z++)

for (int y=0; y<hY; y++)
for (int x=0; x<hX; x++)

i f (i s F l u i d (x , y , z))
p r o c e s s C e l l (x , y , z) ;

}

In the processCell method every cell is now stored together with its vertices and faces as

given in Alg. 22.

Algorithm 22 Pseudocode for a query combining spatial and IFC criteria

void p r o c e s s S i n g l e C e l l (int x , int y , int z){

proce s sPo in t sOfCe l l (x , y , z) ;
p r o c e s s C e l l (x , y , z) ;
p roce s sFacesOfCe l l (x , y , z) ;

}

In the processPointsOfCell method the eight vertices are now stored with their linearised

index i = x̂+ (hX + 1) ∗ ŷ+ (hX + 1) ∗ (hY + 1) ∗ ẑ with î = [i, i+ 1]. By defining this index,

the coordinates of the vertices can be stored in a linear array. Additionally, this linearised

index is identical for the same vertex processed by different cells. This ensures that a unique

vertex is only stored once. In the processCell method, the cells are stored to the array with

their mapping to the ascending index. In the processFacesOfCell method the faces of the

cell are now stored again using the linearised index. In this method the check for the different

boundary types is also performed. Indices with a value of 0 or imax − 1 in one of the three

dimensions are at the boundary and therefore stored as boundary faces. Indices which have

neighbouring non-fluid voxels save the corresponding face in that direction as a boundary

102 5. Coupling Grid-Generation and Simulation Frameworks

too. After processing all elements of the matrices the arrays contain the definition of the

complete computational mesh.

This approach for coupling the work presented to OpenFOAM produces non-boundary con-

forming meshes just as the coupling to Peano. Therefore, it is explicitly referred to the

explained limitations and open questions formulated at the end of Sec. 5.2.

5.3.3 Parallel Mesh Generation and Domain Decomposition

In Sec. 5.3.1 the derivation of the mesh in OpenFOAM format has been introduced using serial

processing. This chapter describes the parallelisation of the mesh generation together with

the domain decomposition. OpenFOAM provides parallel numerical simulation following a

domain decomposition approach in which the computational domain is split up into n non-

overlapping boundary matching sub-domains. The parallel simulation is performed on each

sub-domain in a distributed MPI process. The synchronisation of the simulation is performed

by specifying a special face type of neighbouring elements of different sub-domains.

In Sec. 5.3.2 the boundary and inner face types have been introduced and this is now ex-

tended by the processor face type. Processor faces are defined pair-wise, both describing the

same face on the boundary between two elements on different sub-domains and therefore on

different processors. By doing so, OpenFOAM can identify the synchronisation pattern and

contains the corresponding ghost layers. The identification of matching processor faces is

performed by encoding the IDs of the participating processors in the name. The naming con-

vention follows the pattern proc i to proc j in order to identify the communication between

the processes with the ID i and j. A sample for this process mapping for a computational

domain of two processors is given in Fig. 5.10 together with the corresponding definition in

the face list.

This slim interface for identifying matching processor faces can now be used in order to

parallelise the mesh generation. By doing so, the build up of the complete OpenFOAM

mesh can be prevented. OpenFOAM meshes can easily grow in ASCII storage to file sizes of

hundreds of gigabytes for complex scenarios such as the urban flooding presented in Sec. 7.

Parallel mesh generation can be performed for the preprocessed mesh derived in Sec. 5.3.1

as follows. The matrix is distributed into n non-overlapping sub-matrices, each describing

a connected section of the system matrix. These sub-matrices are indexed with a unique

element of the sequence [0, 1, .., n−1]. Mesh generation is now performed on each of the sub-

matrices independently according to the algorithm introduced in Sec. 5.3.2. The resulting n

meshes are now still completely independent of each other. The decomposition of the domain

is performed on the shape of the global system matrix. Therefore, individual constructions

are intersected by the boundary of the sub-domains and have to be processed on multiple

5.3. Coupling OpenFOAM 103

Figure 5.10: The two sub-domains of a computational domain on the local building scale are coloured
according to their processor location. The processor faces are highlighted and interface the commu-
nication between the processors.

processors. This induces additional computational load, in return a uniform pattern of the

domain decomposition is achieved. From the sequence to which the single sub-matrices are

assigned, the neighbouring sub-domains and their index in the sequence are derived. Finally,

the boundary faces of the independent sub-domain meshes are updated. Boundary elements

which are also on the boundary of the computational domain are left as boundary faces,

boundary elements of the faces which are on the interface of two processors are updated to

processor faces with the identification of the two processors following the naming convention.

Fig. 5.11 shows a block-wise decomposition of 1000×1000×50 sub-domains for 4 processors.

Decomposed meshes are used often due to the simple mapping of the grid points to the

processor block. Nevertheless, a block decomposition does not necessarily give an optimal

distribution. In an optimal decomposition not only the computational work originating from

the number of grid points is balanced, but the communication of the ghost layers of the

processor faces is also minimal.

OpenFOAM provides a set of domain decomposition approaches for initial meshes spanning

the whole computational domain. One of these approaches is the Scotch [126, 127] decom-

position, a graph-partitioning algorithm producing fill-reducing orderings and usually better

meshes than alternative domain decomposition strategies, see [128]. Fig. 5.12 shows the de-

composition of a mesh of resolution 1000 × 1000 × 50 distributed to 8 processors following

the Scotch strategy.

104 5. Coupling Grid-Generation and Simulation Frameworks

Figure 5.11: The decomposition of a 1000× 1000× 50 global-scale domain is given for 4 processors
following a block approach. The mapping of the different sub-domains to the processors is encoded
in the colour.

Figure 5.12: The decomposition of a 1000× 1000× 50 global-scale domain is given for 8 processors
following the Scotch approach. The mapping of the different sub-domains to the processors is encoded
in the colour.

105

Chapter 6

Multi-Resolution Parallel

Numerical Simulation

This chapter introduces the parallel numerical simulation of physical phenomena on the

multi-resolution data basis provided by the framework presented. It will be shown that the

provided interfaces of this framework give users a tool at hand which lets them specify the

extent and the resolution of the discretisation of the computational domain and then perform

the parallel numerical simulation of physical phenomena. The setting up of physically reliable

simulation scenarios, investigating the results obtained and adapting model parameters needs

to be performed by engineers, but the basis for this can be provided by the work presented.

With the application scenarios presented the specialists can focus on their expertise and their

work is supported. This chapter is organised as follows.

Sec. 6.1 introduces the application of different CFD solvers. Based on the specification of the

user, the computational mesh is derived in line with the approaches presented in Sec. 5.3.

With this interface the user can perform parallel numerical simulations at multiple resolutions,

freely adjustable by the user.

In Sec. 6.2 two approaches will be introduced which enable the multi-resolution extension of

the simulation approach. First of all, the projection of coarse simulation results into the initial

conditions of more finely resolved resolution will be presented. This allows a hierarchically

ordered investigation of the domain of interest to be performed with increasing accuracy.

The coupling of different physical phenomena will then be introduced. As a use case, the

propagation of large-scale dimensionally reduced simulation results to the initial condition of

fully dimensionally resolved simulation schemes will be presented.

Sec. 6.3 introduces the efficient investigation of the numerical simulation results achieved

beyond the visualisation of the quantities. As the framework presented provides the complete

106 6. Multi-Resolution Parallel Numerical Simulation

link between all scales of the data, the impact of the simulated quantities on the underlying

product model specification can be explored in full detail. This makes it feasible to use highly

resolved urban flooding scenarios to investigate which rooms of buildings and which technical

installations are affected. Finally, in Sec. 6.4, the performance of the applied solvers on a

cluster computing installation is investigated.

6.1 Fluid Flow Simulation

In this chapter, the application of four different PDE solvers from the field of Computational

Fluid Dynamics is introduced. All simulations rely on the different grid-generation and

simulation frameworks presented in Sec. 5. The domain and the discretisation accuracy are

defined by the user and therefore the computational mesh is generated accordingly.

6.1.1 Three-Dimensional Potential Flow

The simulation of three-dimensional inviscid, frictionless and irrotational flow

∇ · ~v = 0

∆p = 0

is performed by utilising the OpenFOAM solver potentialFoam [129, 130]. Potential flow

describes the simplified external flow around bodies, viscous effects on the boundary layer

are neglected. Fig. 6.1 gives the potential flow through a building on a domain of discretisation

of 450×200×275 voxels. The boundary conditions applied describe an inflow with a constant

velocity of 1m/s on the left side and a free outflow on the right side.

6.1.2 Two-Dimensional Shallow Water Equation

The two-dimensional Shallow-Water-Equations [131, 132] (SWE)

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0

∂(uh)

∂t
+
∂
(
u2h+ 1

2gh
2
)

∂x
+
∂(uvh)

∂y
= 0

∂(vh)

∂t
+
∂(uvh)

∂x
+
∂
(
v2h+ 1

2gh
2
)

∂y
= 0

6.1. Fluid Flow Simulation 107

Figure 6.1: The potential flow through a building’s product model is discretised over 450×200×275
voxels. The boundary conditions applied describe an inflow of constant velocity on the left and a free
outflow on the right side of the domain.

are solved by utilising the OpenFOAM solver shallowFoam developed by Kreuzinger + Man-

hart Turbulenz GmbH and the Chair of Hydromechanics at Technische Universität München.

This solver uses a Finite Volume (FV) discretisation and Euler time stepping, incorporates

wetting and drying of the computational domain and supports extended force descriptions.

Fig. 6.2 shows the flow through the river bed of the Dornbirner Ache [38] with an extent of

7.1km by 8.8km. The domain is discretised with an adaptive triangular mesh of over 100k

triangles. The boundary conditions applied describe a constant inflow on the left-hand side

of the river bed and a free outflow on the right-hand side.

6.1.3 Three-dimensional Incompressible Navier-Stokes Equation

The simulation of three-dimensional single-phase flow is performed by utilising the Peano

CFD solver [122] developed at the Chair of Scientific Computing in Computer Science at

Technische Universität München. The Peano CFD package solves the incompressible Navier-

Stokes equations [131] consisting of the continuity equation ∇ · ~v = 0 and the momentum

equation for the i-th component:

∂vi
∂t

+∇ · (vi~v) = ∇ · (ν∇vi)−
1

ρ
∇ · (p~ei) + bi

where ν = µ/ρ is called the kinematic viscosity. In Fig. 6.3 the fluid flow around a building

is visualised using stream lines with colour-encoded velocity. This simulation neglects turbu-

lence and pretends unrealistically high viscosity. Therefore, this result has to bee seen as a

feasibility study of the coupling instead of a physically reliable result.

108 6. Multi-Resolution Parallel Numerical Simulation

Figure 6.2: The flow of the Dornbirner Ache in Austria is simulated using the Shallow-Water-
Equations. The boundary conditions applied imply a constant inflow of the river on the left-hand side
and a free outflow on the right-hand side. The extruded surface of the fluid is visualised by colour
encoding the velocity of the flow.

Figure 6.3: The three-dimensional Navier-Stokes equations describe the flow of Newtonian fluids.
The flow around a building is simulated for a computational domain of 150× 100× 100 voxels. The
boundary conditions applied imply a constant velocity of 1m/s on the left side and free outflow on
the right.

6.1.4 Three-dimensional Free Surface Simulation

The simulation of three-dimensional free surface flow is performed by utilising the Open-

FOAM solver interFoam. The nomenclature follows [133]. For a given domain Ω ⊂ R3 with

a given boundary Γ, a uniform Cartesian grid discretisation (Ωi)i∈I is given. In order to per-

6.1. Fluid Flow Simulation 109

form a flooding simulation, the three-dimensional incompressible Navier-Stokes-Equations

consisting of the continuity equation ∇ · ~v = 0 and the momentum equation for the i-th

component:
∂vi
∂t

+∇ · (vi~v) = ∇ · (ν∇vi)−
1

ρ
∇ · (p~ei) + bi

where ν = µ/ρ is called the kinematic viscosity are applied. The equations are solved on the

grid (Ωi)i∈I , following a Finite Volume (FV) approach. The interface between the gas-phase

region Rg and the liquid-phase region Rl is tracked by a Volume-of-Fluid (VoF) approach.

Therefore, an indicator function

11(x, t) =

{
1 x ∈ Rl at time t

0 x ∈ Rg at time t

is defined in order to identify whether a point x at time t is in the liquid-phase or in the

gas-phase region. The integral over all cells (Ωi)

γi = γ (xi, t) =
1

|Ωi|

∫
Ωi

11(x, t)dV

gives the liquid fraction field.

Besides the VoF method, there are a variety of approaches for tracking the boundary of multi-

phase flow. The Level Set Method [134] (LSM) uses a level set function which takes negative

values in the one phase and positive values in the other phase. The zero level of the level

set function thus identifies the boundary of the two phases. The LSM has additionally the

advantage that geometric shapes can be used for identification. For a detailed introduction

to free surface approaches, refer to [135, 136, 137].

In Fig 6.4, the free surface simulation is performed on the city-wide scale for a domain with a

resolution of 1000×1000×50 cells. The boundary conditions applied describe free outflow on

the four x/y-normal boundaries. The initial conditions describe a partially flooded domain

with fluid at rest, representing the amount of water flooding the city.

110 6. Multi-Resolution Parallel Numerical Simulation

Figure 6.4: The simulation of urban flooding is performed as a three-dimensional free surface simula-
tion. The surface of the fluid is visualised with colour encoded velocities. The computational domain
is discretised with a grid of 1000 × 1000 × 50 cells. The boundary conditions applied describe a free
outflow on the x/y normal boundaries, the amount of water is imposed by initial conditions for the
fluid at rest.

6.2 Resolution Refinement

In this section, the adaptivity of the parallel numerical simulation is introduced. The ap-

proach presented is adaptive in the sense that, in a one-directional way, the result of a

simulation is used as an initial condition for the simulation of a refined subset.

This approach applies reflecting, potential or transient boundary conditions to the finer re-

solved computational domain. Obviously, this is a scenario-specific modelling question and

limits the achieved results to small time intervals. The application of transient boundary con-

ditions following a derived flow profile is known as passive adaptivity approach [137, 131, 138]

and can be extended to even more computational expensive active adaptivity approaches,

where the coupling at the boundary of the two domains is solved explicitly.

Furthermore, the term adaptivity here has to be seen different from numerical simulations

in which the mesh resolution is locally refined due to geometry or fluid-driven criteria. This

approach has been introduced by the coupling to the Peano framework in Sec. 5.2 or can be

derived as at least a geometry-adaptive mesh from Sec. 3.2.5. Therefore, the term ’adaption’

instead of ’adaptivity’ will be used in the following. This approach focuses on a sequence

of simulations where each simulation is defined on a subset of the preceding computational

6.2. Resolution Refinement 111

domain. The subsequent computational domain has a smaller extent and finer resolution.

The result of the preceding simulation is projected as the initial condition onto the mesh of

the simulation.

A good example is the flooding of an urban region. Starting with the whole extent of a city,

performing three-dimensional free surface simulation of a heavy rain scenario is computation-

ally very expensive and not suitable for a construction-level resolution.

Therefore, the initial simulation can be performed using the dimensionally reduced SWE.

As the SWE are a two-dimensional formulation their application is also feasible at very high

resolutions and gives an approximation of the flow behaviour on the scale of the whole city.

As introduced in Sec. 5.1.1, SWE do not cover the three-dimensional case as is important

for buildings and constructions. Objects such as multiple storeys cannot be covered by a

two-dimensional mesh such as is needed for simulating the SWE. The engineer decides on

the basis of the results of the two-dimensional SWE simulation which buildings or parts of

the simulation he is interested in. These parts can then be initialised with a fully three-

dimensional free surface simulation in order to investigate the impact of the flooding on the

interior of the building. Based on an initial simulation of the whole building and the results

achieved thereby, the resolution adapted approach can then allow the user to decide to refine

a particular part of the building even further. Such a simulation can finally be used to

investigate the impact of the flooding on individual construction details such as electronic

equipment.

It should not be denied that this adaption approach also induces errors, of course. A more

finely resolved domain generally includes parts of the computational domain which have not

been resolved on a coarser level due to the imperfect mesh. Only estimated initial conditions

are available for these values. Furthermore, the global effect may get lost with the adaption

approach. If, for example, the refinement covers a computational domain where the water

immediately approaching a building is included, but a water front which approaches the

building in the next time steps is excluded, this effect will be lost completely by applying

potential or reflecting boundary conditions.

6.2.1 Resolution Adaption

The formulation in this section follows the Finite Volume (FV) discretised multi-phase sim-

ulation with the nomenclature introduced in Sec. 6.1.4. Resolution adaption increases the

accuracy of a numerical simulation by performing a sequence of successively refined simu-

lations where the results on the coarse scales are projected as initial condition to the fine

scales.

112 6. Multi-Resolution Parallel Numerical Simulation

 t
i
 t

i+1
 time

res
olu

tio
n

global domain

local domain

...
...

Figure 6.5: Starting at time step ti, coarse grid computations are performed until ti+1, followed by a
projection from the global to the local domain (vertical arrow). The coarse grid simulation is stopped
at ti+1.

Fig. 6.5 shows the adaption approach for one step of a refinement. The simulation on the

global domain that is performed on the computational domain (Ωi) and starts at ti, is stopped

at a predefined time ti+1. The simulation values that were achieved on the global domain at

time step ti+1 are now used as initial condition for the refined simulation on the local domain.

The computational domain of the local domain is a subset (Ki)i∈J ⊂ (Ωi)i∈I with J ⊂ I of

the global domain and every cell (Ki) is refined with cells (Sij) with
⋃
j (Sij) = (Ki) and

(Sij) ∩ (Sik) = ∅ for j 6= k.

Given the solution ui = (~vi, pi, γi) on the global domain (Ωi)i∈I at time ti+1, the refined

simulation on the local domain (Sij) is initialised with values ũij = ui.

Figure 6.6: A two-phase simulation is performed on the global domain (bottom) and on the refined
subset of the local domain (top). The velocity is colour encoded and the interface is visualised as
the contour of the phase field γ. The mesh generation based on the representation of the data basis
with octrees of different depth achieves conforming meshes over the different scales. This conformity
enables the direct propagation of simulation results to the matching cells of a refined simulation.

Fig. 6.6 shows two conforming computational domains with an adapted resolution that dou-

bles in every dimension. The values of the coarser simulation are projected onto the – in this

6.2. Resolution Refinement 113

case four – corresponding voxels of the finer resolution. Cells of the coarse mesh therefore do

not intersect but completely contain cells of the finer mesh and vice versa, cells of the finer

mesh are mapped to exactly one cell of the coarser mesh.

Figure 6.7: The two dimensional validation area is a slice through the computational domain. The
global domain is coloured in light blue and the local domain is coloured in dark blue.

Special focus has to be put on the boundary conditions applied. In this case, reflecting, poten-

tial or transient boundary conditions are implemented at the inflow and reflecting boundary

conditions at the outflow. Anyhow, the refined computational domain (Ki) has to be chosen

carefully, i. e. it has to be chosen ”slightly” larger than the local domain of interest, thus

the flow profile can evolve without showing artefacts due to the boundary conditions. It is

inevitable, that the applicability of this approach has to be investigated for every simulation

case, as zooming to a subset of the computational domain and applying boundary conditions

changes the characteristics of the flow regime and the physics simulated.

If the fluid flow on the local domain is mainly driven by the flow over the boundary, this

approach will give reasonable results only for very small time ranges (if it does at all). Even

if the flow on the local domain of interest is covered well on the extended local domain, still

the influence of the boundary conditions will propagate through the computational domain,

and limits a reliable analysis to small time steps.

A test case has been set up which brings an insight to the error introduced by the boundary

conditions as well as to the time range that the refined simulation can be expected to deliver

acceptable results. Fig. 6.7 shows the two dimensional validation domain. The global domain

114 6. Multi-Resolution Parallel Numerical Simulation

covers a slice through the investigated building and the surrounding area, the local domain

covers the entrance and main lobby area of that building.

The global domain [−300;−30] × [100; 30] has a resolution of 800 × 120 voxels, the local

domain [−200;−30]× [−50;−5] has a resolution of 300× 50 voxels. In order to estimate the

influence of the boundary conditions only, both domains are resolved with the same mesh

width h = 0.5. The initial conditions on the global domain impose a flooding with a fixed

amount of water. The time step for projecting the simulation values to the local domain is

chosen at t = 10 seconds and given in Fig. 6.8.

Figure 6.8: At time step t = 10 seconds, the simulation results achieved at the global domain are
projected as initial conditions to the local domain.

Fig. 6.9 shows the two simulations on the global and the local domain, both at time step

t = 12.5 seconds and with reflecting, potential and transient boundary conditions applied on

the local domain. Both simulations run in parallel. For reflecting and potential boundary

conditions, both simulations are not coupled any more after projecting the global domain

simulation results as initial conditions to the local domain once at time step t = 10 seconds.

For potential boundary conditions, the values for the pressure and the velocity are fixed at

time step t = 10 seconds. For transient boundary conditions, the simulation on the global

domain is performed for the time interval t = [10..20] seconds. The achieved flow profile

is evaluated over the boundary of the local domain and the values for the pressure and the

velocity are interpolated. A visual comparison shows promising results for the evolution of

the water front, but it also shows already clearly the influence of the reflecting and potential

boundary conditions at the rear part of the wave.

Fig. 6.10 gives the results for the two simulations at time step t = 15 seconds, where still

promising results for capturing the characteristics of the wave front could be achieved. The

effect of the reflecting boundary conditions are at this time step already obvious by a visual

inspection at the rear part of the wave.

6.2. Resolution Refinement 115

Figure 6.9: The simulation on the global domain (top) is compared to the results on the local domain
incorporating reflecting, potential and transient (f.t.t.b) boundary conditions. For the given results
here at time step t = 12.5 seconds, a visual comparison shows promising results for the evolution of
the water front but shows clearly the influence of the reflecting and potential boundary conditions at
the rear part of the wave.

Figure 6.10: Time step t = 15 seconds still shows promising results for capturing the characteristics
of the wave front. The effects of the reflecting and potential boundary conditions are obvious by a
visual inspection at the rear part of the wave.

A better insight to the influence of the boundary conditions over time gives the analysis of

the mismatch between the two simulations on the global and on the local domain. Therefore,

this criterion is defined as the difference of the amount of water over the x-axis d(x, t) defined

116 6. Multi-Resolution Parallel Numerical Simulation

as

d(xi, t) =
1

ni

n∑
j=1

|γi,j − γ̃i,j |

where ni denotes the number of voxels in vertical direction. Fig. 6.11 highlights the difference

of the water height over the x-axis of the local domain for time steps t = 12.5 and t = 15

seconds.

0%

2%

4%

6%

8%

10%

12%

14%

-210 -160 -110 -60

di
ffe

re
nc

e

x coordinate

transient

potential

reflecting

0%

2%

4%

6%

8%

10%

12%

14%

-210 -160 -110 -60

di
ffe

re
nc

e

x coordinate

transient

potential

reflecting

Figure 6.11: The difference d(x, t) of the water height, relative to the height of the computational
domain, over the x-axis of the local domain is given for time steps t = 12.5 (top) and t = 15 (bottom)
seconds. It shows the propagation of the errors induced by the reflecting boundary conditions.

Based on this investigation, the acceptable accuracy of the refinement approach with reflecting

boundary conditions for short and with potential and transient boundary conditions for

medium-sized time intervals is assumed in this precise simulation scenario under certain

conditions. The local domain of interest has to be extended to a sufficiently large domain

which must be able to capture the upstream as well as the downstream behaviour of the flow

in an appropriate manner. Hence, the possible time range depends on the characteristics of

6.3. Postprocessing - Propagation to Product Model Data 117

the flow and the size of the enlarged local domain.

An approach with transient boundary conditions comes with much higher computational

costs than the reflecting or potential boundary conditions. On the one hand, the global

simulation has to be performed over longer time ranges for the derivation of the flow profile,

and on the other hand, the boundary conditions have to be adapted in the time steps of the

simulation on the local domain accordingly.

6.3 Postprocessing - Propagation to Product Model Data

In this chapter, the postprocessing for highly resolved parallel numerical simulations on prod-

uct model data beyond graphics is introduced. After performing parallel numerical simula-

tions as introduced in Sec. 6.1 the quantities of interest are available over the computational

grid. In Sec. 4.1.2 algorithms for the graphical investigation of the results have been intro-

duced. With these, the results are usually investigated with streamlines, isosurfaces, slice

planes, etc. [81].

In the context of the work now presented, the full linkage over the different scales of the

hierarchically ordered data can be used for a much more thorough investigation. It will be

shown that the numerical simulation results can be mapped to the construction details of

buildings and built infrastructure in order to answer question such as: How long have the

concrete walls been in contact with water during the flooding? Has the maintenance room with

the electronic installation been flooded? Which was the maximal power the water exerted on

a certain window?

The key for this insight is the mapping between the mesh generation introduced in Sec. 5.3.2

and the hierarchical dual layer access concept introduced in Sec. 3.1. As depicted in Fig. 6.12,

a boundary face of the computational mesh is a face of a leaf octant of a product model. This

means that the fluid domain is not separated from the structural representation of the product

model data. The opposite is the case. The boundary faces of the computational mesh are a

sharp interface to the finest construction entities of the underlying product model data and

this link is maintained by the hierarchical approach presented.

A typical work flow could look as follows. On the basis of a two-dimensional SWE simulation

a heavy rain fall scenario is simulated over the domain of interest. From these global-scale

results the engineer decides to investigate a certain region further with a highly resolved free

surface simulation. This simulation is initialised with the results of the global simulation and

provides the results on a local building scale. The user now queries all electronic devices using

the spatial query approach or directly selects a construction detail as introduced in Sec. 4.2.3.

From the hierarchical order of the data the common faces of the octree representation derived

in Sec. 3.1.1 can be identified with the boundary faces of the generated computational mesh

118 6. Multi-Resolution Parallel Numerical Simulation

Figure 6.12: The computational mesh of the fluid flow simulation can be mapped to the construction
details of the product model data. The boundary faces of the fluid mesh are shared with the octree
representation of the construction detail. This mapping gives the linkage between simulation results
and construction details affected.

as introduced in Sec. 5.3.2.

By doing so, the user obtains the impact of the fluid flow on the construction details. By

extending this investigation from the results of a single time step to the series of results over

the whole simulation, flooding profiles against a wall or the velocity profile on a window

are derived. It should be pointed out again that this approach assumes the mapping of an

investigated entity to its geometric representation. In order to estimate the flooding of a room,

for example, this relation between the information and geometry is not given directly and

has to be established as described in Sec. 3.2.4. Furthermore, the non-boundary conforming

discretisation requires special focus as described at the end of Sec. 5.2.

The results of this investigation have now been implemented for the finest details of the

product model data. The mapping of the simulation results to the construction details can

also be seen as an enrichment of the product model data. The impact of the fluid flow can

be stored for the construction details as attributes of the measured quantities during the

simulation. This fuses the numerical results with the product model data for that specific

simulation. Starting from this, the level of detail formulations and the hierarchical order also

apply to the data set augmented with the simulation results or, to be more specific, their

influence on the product model data.

6.4. Performance Results 119

6.4 Performance Results

Finally, this chapter presents the performance results for the parallel numerical simulation.

They are investigated in terms of a strong speedup over the parallel processes of the simu-

lation. The strong speedup calculates the performance as the runtime over the number of

processors using a constant input size, i.e. a computational domain of constant size. The

weak speedup, in contrast, describes the performance as the runtime over the number of

processors where the input size is proportional to the number of processors.

Fig. 6.4 presents the scenario for the performance measurement using the interFoam Open-

FOAM package for simulating building scale flooding. The domain of 1000×1000×50 voxels

is decomposed using a block structure for 1 to 64 processors.

The measurement is performed on the Sandstorm cluster, the complete specification of the

machine is given in Sec. A.2. Through the initial conditions 304k of the 29million fluid voxels

are filled with water. The simulation is performed for 1 second of real time. The complete

specification of the OpenFOAM cases simulation parameters is given in Sec. A.5.

MPI Processes achieved linear
1 8850 1 1
2 4664 1,897513 2
4 2419 3,658537 4
8 1604 5,517456 8

16 1421 6,228008 16

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

str
on

g s
pe

ed
up

number of processors

achieved

linear

Figure 6.13: The measurement of the strong speedup for a computational domain of 1000×1000×50
voxels for the interFoam OpenFOAM solver is carried out over 1 to 64 processors.

The scaling in Fig. 6.13 shows the results expected for the given architecture and hardware.

As soon as the number of processors exceeds the directly accessible area of the main memory,

a first drop in parallel efficiency occurs. By exceeding 16 processors, the performance of the

standard network interfaces suffers a further drop in parallel efficiency. From that level of

efficiency the speedup is achieved up to the full 64 processors of the machine. Obviously,

the sustained speedup is not optimal and the parallelisation strategy has to be subject to

120 6. Multi-Resolution Parallel Numerical Simulation

further research. Recent parallel installations come with a high number of nodes and a

parallel efficiency of 35% is unacceptable for 64 parallel processors. Nevertheless, the proposed

framework has not been optimised to an individual installation and the interfaces are of

general type for different computing architectures. Therefore, the results can be seen as

acceptable but extendible.

121

Chapter 7

Urban Flooding Simulation with

Pipe Network Interaction

Urban flooding simulations are of great and increasing interest. The European floods in 2013

and 2002 are examples of the impact on regions, cities, buildings, constructions and, first and

foremost, the people affected by them.

In this chapter, an urban flooding simulation including the interaction of pipe network flow

originating from the sewer system is investigated. This application integrates the interfaces

and approaches of this work into an investigation relevant to engineering and shows the

potential of this approach. Furthermore, it can be seen as a blue print for applying the

work presented to emerging questions. The hierarchical ordering of large data sets from

construction and built infrastructure and the efficient parallel access to it provides the basis

for a broad field of applications in engineering and computational science. This chapter shows

the applicability of the approach and points the way to many future investigations based on

this framework.

The investigation of urban flooding on a highly resolved multi-resolution data basis by per-

forming parallel numerical simulations gives engineers, city planners and crisis management

groups a tool to make decisions on a well-founded basis. By having such a tool at hand,

decisions can be made to divert water to unpopulated areas, a forecast of the impact can be

given, existing installations can be evaluated, or new measures for the future can be planned,

to name just a few.

This point of view evidences the interdisciplinary approach needed for tackling the challenges

of the future. Providing this kind of a tool requires the knowledge of researchers from many

fields. The detailed description of the terrain, the surface and pipe networks requires the

knowledge of geoinformation specialists. Constructions and built infrastructure with their

detailed product modelling require specialists from Building Information Modelling. In order

122 7. Urban Flooding Simulation with Pipe Network Interaction

to perform numerical simulations of highly resolved urban flooding scenarios, modelling spe-

cialists are needed to develop accurate models for the principles of flow in these cases. The

discretisation and solving of these models for large-scale scenarios and accurate simulations

requires the involvement of computational scientists from the field of scientific and high per-

formance computing. The interpretation, the validation and the derivation of the impact of

the results achieved require specialists from hydromechanics and hydraulic engineering. In

short, the challenges of the future demand that the different disciplines team up and find

a common language. The work presented here and this chapter in particular have also to

be seen in the context of this vision. It shows the way for integrating different disciplines

and bringing knowledge together. On this path, urban flooding for a heavy rain scenario

where the water drainage system collapses is investigated. In this scenario, heavy rain floods

a specific part of a city. The large amount of water puts hydrostatic pressure on the sewers

of the drainage system in this region and causes the sewer system to flood parts of the city

where no rain is falling as well. The interaction of the pipe flow through the drainage system

and the surface flow will be simulated in order to gain insight about the effect on buildings,

not only the outside, but also to the equipment and installations inside. Both sources of the

flow, the overground surface flow and the flow in the pipe network, have to be investigated

individually as well as how they interplay.

This chapter is organised as follows. In Sec. 7.1, an investigation of existing research ap-

proaches is given. Starting from existing coupled simulation, a holistic approach for pipe

network and surface flow is introduced in Sec. 7.2. In Sec. 7.3, this approach is put into

practice for a highly resolved configuration of Munich city centre.

7.1 Existing Work

In this chapter, existing literature on the investigation of urban surface flow, flow in wa-

ter drainage systems, run-off of surfaces and roof structures, as well as their interaction

is reviewed. The investigation and simulation of this behaviour is of practical engineering

relevance [139]. In May 2013, the Institution of Civil Engineers (ICE) held the ICE Flood-

ing 2013 [140] in order to bring together scientists and researchers to develop flood resilient

communities.

There are a variety of approaches for the one-dimensional treatment of pipe network flow and

the flow of streets. Urban surface flow is usually simulated using two-dimensional treatments.

The coupling is introduced for 1D, 1D/2D and 2D formulations with separate treatment of

the behaviour and the integration to holistic models.

In [141] Mignot et al. investigate the flood of Richelieu in Nimes, France in 1988 by applying

the two-dimensional SWE with an explicit second order scheme. In [142] Fewtrell et al.

7.1. Existing Work 123

introduce a flood simulation for a hypothetical flooding of Greenfields, Glasgow. As they

assume that the practical investigation of flood scenarios is limited to standard desktop

PCs they investigate the efficiency of a two-dimensional storage cell-type approach on the

basis of GIS digital elevation models. In order to show a time efficient approach with low

hardware requirements, Chen et al. introduce an adapted flat water model in [143]. In [144]

the scenario of Glasgow is investigated for six different hydraulic models, all simulating the

surface flow for the 1.0 × 0.4km spanning site which occurred in July 2002. Also, in [145]

Shahapure et al. focus on the derivation of the elevation plan for GIS-based input data

for Navi Mumbai, in Maharashtra. They introduce a finite element method (FEM) based

approach in order to solve the mass balance equation for the overland flow and the diffusion

wave form of the Saint Vernant equations for the storm water flow. In [146] Bates et al apply

a one-dimensional SWE approach to a two-dimensional storage cell inundation in order to

decouple the two coordinates.

The preface of the special edition of the Journal of Hydrology [147] on urban hydrology intro-

duces several papers on the areas rainfall on the city scale, modelling of rainfall run-off, and

interaction of the flow on the surface and in the pipe network. In [148] Schmitt et al. present

a small case study with formulated demands on the data and verification for one-dimensional

drainage systems. In [149] Carr et al. focus on the effects of the degree of resolution of a

two-dimensional approach. They state that two-dimensional and highly resolved approaches

are necessary in order to make cross and secondary flows become observable. In [150] Mark

et al. compare the one-dimensional treatment of the interaction between the pipe network,

the open channel flow in streets, and areas with fluid at rest. In [151] Bolle et al. focus

on the investigation of sewer network and river flow behaviour. Starting from the different

interaction and influences the two flow regimes have on each other they propose an integrated

treatment of the underlying schemes instead of treating them separately. In [152] Barnard

et al. compare the linking of packages for the one-dimensional formulation of the storm and

waste water systems with the two-dimensional formulation of the free surface flow. It is ap-

plied by Fairfield City Council located in the state of New South Wales, Australia, among

others. UK [153] In [154] Kouyi et al. focus on a one-dimensional linking between run-off of

heavy rainfall and flow originating from river and sewer networks. They state that they have

captured the characteristics of gauged flow well with the calibration of only the proportional

loss of the model parameters. In [155] Gray presents a one- and a two-dimensional coupled

approach for multiple gauged events of hydrological processes originating from the run-off

from surfaces, the flow in the streets, and the input from the house roofs.

It is shown that one-dimensional formulations for the flow in water drainage systems and

two-dimensional treatment of surface flow provide reliable results. In this work, a full three-

dimensional treatment of the data set is introduced in a monolithic approach in order to also

investigate the impact on constructions and built infrastructure. The impact of a collapsing

water drainage system and the flooding of an urban region resulting from the water of the

124 7. Urban Flooding Simulation with Pipe Network Interaction

pipe network is thus investigated. Owing to the three-dimensional multi-scale formulation,

the impact on constructions and the installations within can be investigated together with

the local scale among individual buildings and the global flow behaviour on the city scale.

7.2 A Holistic Pipe Network and Surface Flow Approach

In this section, the holistic approach for simulating urban flooding scenarios originating from

heavy rain events with pipe network and surface flow interaction is introduced. The demands

on such a simulation are as follows.

• The terrain surface of the city and the geometric representation including constructions

and built infrastructure are combined in one model.

• The pipe network of the urban drainage system is directly integrated into that model.

• The numerical simulation applied covers both the three-dimensional free surface flow of

the overground water and the one-dimensional pipe network flow in the sewer system.

• The interplay between the overground and pipe network flow is covered.

• A multi-resolution approach ensures adaptive refinement from a city-wide scale to the

local building scale including the construction details in the interior of the buildings.

• A parallelisation strategy for sufficiently large computer clusters ensures feasible simu-

lation runtime of such a large problem.

• The postprocessing of the simulation results reveals the global flow behaviour on the

city scale and also the impact on constructions and built infrastructure.

The ability of the work presented to cover these demands has been shown for some of these

points. The fusion of the different data from GIS and BIM for the terrain specification,

the constructions and built infrastructure, and the sewer system’s pipe network have been

introduced in Sec. 2.6. The parallel handling and efficient access to the created database

have been introduced in Sec. 3. An interface for generating sufficiently large meshes was

introduced in Sec. 5.3. The resolution adapted approach was introduced in Sec. 6.2.1 and

a multi-scale postprocessing with the evaluation of fluid flow results and their impact on

construction details was introduced in Sec. 6.3.

What is still missing and is introduced in the following sections is the ability to perform both

the overground free surface and the drainage system pipe network flow in one model. It must

be shown that the characteristics of one-dimensional pipe network flow are given by a free

surface flow solver applied to a three-dimensional computation domain. Furthermore, the

7.2. A Holistic Pipe Network and Surface Flow Approach 125

interplay of fluid exchange on the transition from the pipe network to the free surface flow

must be investigated.

It will be shown that, with the integration of the interFoam package, the algorithms presented

in this work fulfill these demands. Before presenting the results of the simulation performed,

the unanswered questions concerning the surface flow and the pipe network flow including

their interplay are discussed in the following sections.

7.2.1 Surface Flow

The investigation of surface flow by incorporating the interFoam package has been extensively

investigated in [133]. interFoam has been validated and verified against standard benchmarks

such as breaking dam scenarios. In order to apply the solver for simulating urban flooding sce-

narios, the city model of Munich city centre has been derived with the outer shell description

of constructions and built infrastructure.

The model spans an area of 2km by 2km. It contains over 3000 buildings and the fluid mesh

is resolved with 1000 × 1000 × 50 voxels. The amount of water is applied by specifying the

inner conditions as the respective amount of water at rest as given in Fig 7.1. Boundary

conditions enforce free outflow of the domain and laminar flow is assumed. The time step

width is dynamically adapted. The detailed specification of the simulation case is given in

Sec. A.5.

Figure 7.1: The amount of water is applied by specifying the initial conditions as the respective
amount of water at rest.

The simulation is performed on the Sandstorm Cluster described in Sec. A.2 with a domain

decomposition to 48 processors. The simulation is performed for 60 seconds in real time and

the results are given in Fig. 7.2.

126 7. Urban Flooding Simulation with Pipe Network Interaction

Figure 7.2: The flooding of the detailed city model is visualised with the contour of free surface
simulation and colour encoded velocities.

7.2. A Holistic Pipe Network and Surface Flow Approach 127

These results are very plausible. Initial conditions apply a partial flooding of the city with

a fluid at rest and as the flow evolves, the flooding propagates along the streets. The water

follows the lower parts of the domain and the main flow progresses around buildings accord-

ingly. For surface flow phenomena a valid simulation can be expected from the inspection

of the results and the investigations performed in the literature showing the validation and

verification of interFoam for benchmark tests.

7.2.2 Pipe Network Flow

In this section, a holistic approach for simulating one-dimensional pipe network flow, three-

dimensional free surface flow as well as their interaction is developed. This will be applied

in order to simulate the flooding of a city due to the collapsing drainage system within one

single computational model. In order to achieve this, the following procedure will be followed.

Initially, the computational mesh for the terrain and the buildings is derived. Afterwards, the

segment-wise axis-aligned discretisation of the pipe network is added to the mesh. Therefore

it has to be shown that a three-dimensional free surface flow solver is capable of capturing

one-dimensional pipe flow characteristics embedded in a three-dimensional computational

domain. By doing so, the computational model of the surface flooding can be extended by

pipe-network characteristics and this is achieved by a straight-forward and minimal extension

of the mesh with the pipe-network discretisation.

For this approach further aspects have to be investigated. The discretisation of the pipe-

network segments follows the coordinate axes; a straight segment will be split up into two

perpendicular axis-aligned segments. Furthermore, the resolution of the computational mesh

in general will be significantly coarser than the diameter of the pipe segments. Additionally,

the voxel-representation induces a rectangular instead of a round shape of the cross section.

One approach for tackling these limitations is to make use of the bi-directional linkage between

the voxel-discretisation and the underlying geometry. The size of the representing voxels

can be modified for every single pipe segment individually. In order to capture a realistic

behaviour, the pressure drop and the flow velocity following the correct shape of every pipe

segment have to be determined and from that the diameter of the discretised approximation

has to be adapted accordingly.

In order to investigate this, a benchmark has been set up for which the characteristics of flow

are known. Two basins are coupled via a single pipe. The two basins are filled with water to

different levels, the pipe is also filled with water. At the beginning of the simulation all fluids

are at rest. This scenario matches the known setting for the behaviour of pipe flow between

two basins of different hydraulic heads. As is known from the basics of hydromechanics for

Newtonian incompressible one-dimensional flow in a pipe [131], the pressure line of the pipe

is linear between the hydraulic head values at the two basins. It thus follows that the velocity

128 7. Urban Flooding Simulation with Pipe Network Interaction

in the pipe is constant over the length.

This scenario is implemented in a three-dimensional benchmark, incorporating one-dimensional

pipe flow. As given in Fig. 7.3, the computational mesh for the two basins and the connecting

pipe is resolved with 100× 100× 50 voxels. The crucial point is now that the pipe is resolved

in the direction orthogonal to the flow with one voxel only.

Figure 7.3: A three-dimensional benchmark of two basins connected with a pipe implies that resolv-
ing the pipe with a single voxel in the orthogonal directions of the flow imposes the characteristic of
one-dimensional flow.

This degenerated resolution of the pipe forces OpenFOAM to perform one-dimensional simu-

lation of the fluid flow in the pipe, embedded to a three-dimensional domain. As OpenFOAM

follows a strictly three-dimensional simulation approach, the specification of boundary condi-

tions enables simulations of lower dimensions. For a two-dimensional simulation OpenFOAM

expects a three-dimensional grid with a fixed resolution of 1 in one dimension. The bound-

ary conditions applied along this dimension enforce two-dimensional simulation of the de-

generated three-dimensional domain. One-dimensional treatment is achieved by performing

boundary conditions accordingly along a second dimension.

From this investigation the results of the embedded one-dimensional flow for the three-

dimensional basin test can now be investigated. Fig. 7.4 shows the pressure line over the

pipe length. As expected, a pressure drop occurs where the pipe enters the basins. For

reasons of completeness the values of the velocity orthogonal to the pipe length are shown in

Fig. 7.5 and are neglected.

Finally, it can be stated that by integrating dimensionally reduced pipe discretisation into a

three-dimensional domain, basic one-dimensional pipe flow can be evaluated using interFoam.

It should be pointed out clearly that this is for laminar flow the case only; turbulent flow

regimes are not covered by this approach. In order to capture the influence of the effects

introduced by pipe roughness in the turbulent case, a more advanced treatment for capturing

the pressure drop induced by the pipes has to be performed.

The discretisation of the pipe with one voxel diameter also follows directly from the approach

of this framework. The data for pipe networks of sewer systems in general are a lower

dimensionality formulation. As derived from the GIS sources in Sec. 2.3.2, the specification

7.2. A Holistic Pipe Network and Surface Flow Approach 129

MPI Processes pressure line
10,5 92630,6

11 92630,7
10 91404,2

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 20 40 60 80 100

p-
rg

h

x coordinate

pressure line

Figure 7.4: The pressure line over the axis along the flow in the direction of the pipe shows that the
one voxel wide discretisation imposes one-dimensional pipe flow in the three-dimensional domain.

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70 80 90 100ve
lo

cit
y

x coordinate

U_y

U_z

Figure 7.5: The velocities orthogonal to the flow in the pipe are depicted but neglected due to the
one-dimensional interpretation.

of the Munich sewer system is available as a graph. From this formulation, a one-dimensional

discretisation of the pipe is already performed because of the octree representation of the

linear pipes derived for the mesh generation.

One aspect which should be mentioned clearly is the influence of the pipe diameter on the

time-step size of the simulation. As the maximal time-step size for a numerical simulation

according to the Courant-Friedrichs-Lewy [131] condition is limited by the minimal mesh

130 7. Urban Flooding Simulation with Pipe Network Interaction

size, having small voxels in a computation also enforces small time steps. On the one hand,

there are local time-stepping approaches [156, 157, 158] which focus on tackling precisely

this challenge; on the other hand, in the simulation applied, the diameter of the pipes is

in the same range of accuracy as the domain resolution. As the computational domain is

resolved with a fine resolution to cover the geometry which matches the resolution of the pipe

diameter, the step-size is not further limited by introducing one-dimensional pipe segments.

7.2.3 Interplay of Surface and Pipe Network Flow

In this section, the interplay of surface and pipe network flow is investigated or, to be more

specific, the question as to which principles the inflow from the surface to the pipe network

follows and vice versa is addressed.

As investigated by existing approaches in Sec. 7.1, both cases should be examined differently.

Whereas the exit of the pipe network flow to the surface and the confluence of different

surface flows is covered by free surface flow formulations such as interFoam, the inflow from

the surface to the pipe network is a highly complex phenomenon and depends on the target

scenario.

For urban flooding events originating from heavy rain scenarios, the velocity of the surface

flow tends to be lower and the hydraulic head over the sewers is utilised as a pressure boundary

condition of the sewer network. For urban flooding events originating from flooding rivers,

the velocity and amount of water impacting on the urban region is usually so high that the

impact of the sewer network on the global behaviour is neglected.

The investigation of the exact inflow of surface flow to a manhole has been examined in [159].

In their work, the authors derive a highly resolved discretisation of a single manhole and

validate their results of the numerical simulation with a 1:1 laboratory test. Their convergence

studies show that the exact geometry has to be resolved accurately in order to cover the

correct behaviour. From these investigations the asymptotic inflow behaviour of surface flow

to the manholes is derived. A direct integration of the exact inflow behaviour of surface flow

to pipe network manholes cannot be achieved with a monolithic approach for an urban flow

investigation if only because of the mesh accuracy required. Nevertheless, in the scenario

investigated the behaviour is not driven mainly by the inflow of the surface flow to the sewer

system but by the flooding of the city due to the collapsing drainage system.

Therefore, the good results shown with the interFoam package for the pipe network flow in

combination with the free surface flow overground justify the application of the approach for

the given scenario.

7.3. The Scenario 131

7.3 The Scenario

This chapter now presents the application scenario of the framework presented. It covers an

urban flooding simulation of a heavy rainfall event where surface flow and pipe network flow

are both investigated including their interplay.

In this scenario, a certain region of the city is affected by heavy rainfall. This causes hy-

drostatic pressure on a part of the rain water drainage system and the sewers in that area.

Because of this hydrostatic pressure, the flow in the pipe network evolves and floods parts of

the city where no rain is falling. The evolution of the flow in the pipe network and on the

surface is investigated and the flooded areas of the city and affected buildings are evaluated.

7.3.1 Data Basis and Discretisation

The data basis covers the city centre of Munich including the terrain description, the mod-

elling of buildings, and the pipe network as derived in Sec. 2.6. Following the approach

introduced in this work, the model is discretised with a resolution of up to 1800×1650×75 =

222.75million voxels. Fig. 7.6 shows the contour of the boundary of the computational domain

both for the global and for the local scale.

7.3.2 Boundary Conditions

In order to impose the scenario of a collapsing rain water drainage system, the sewer network

is given a constant hydrostatic pressure at one of the inlets. This is achieved by placing a

large reservoir of water over one of the inlets as shown in Fig. 7.7. Furthermore, the width

of this inlet and the attaching pipe is 5 meters and the boundary condition is set to slip.

By doing so, a non-physical start-up phase is imposed in order cope with the limitations of

the computational model and let the characteristics of the collapsing drainage system evolve.

The pipe network system is assumed to be already flooded.

The domain boundary conditions are set to free outflow. The complete specification of the

parameters of the simulation is given in Sec. A.5.

7.3.3 Results

The simulation follows the OpenFOAM package interFoam, the definition of the simulation

case is given in Sec. A.5. The simulation is performed with a resolution of up to 222.75million

voxels of the computational domain. In Fig. 7.8 the results of the pipe network and the surface

flow are depicted. For better visibility the constructions are removed. In Fig. 7.9 the results

132 7. Urban Flooding Simulation with Pipe Network Interaction

Figure 7.6: The computational domain is depicted by its 0.5 contour for the global scale (top) and
for the local building scale (bottom). The relative height of the surface is colour encoded.

Figure 7.7: The collapsing drainage water system is modelled by placing a constant hydrostatic
pressure on the inlet of the network. The constant pressure is imposed by placing a sufficiently large
reservoir on the inlet. As an initial condition, the pipe network is already flooded.

7.3. The Scenario 133

of the surface flow are depicted with visualised constructions in order to show the flooding of

the city due to the collapsing water drainage system. A visual inspection of the simulation

results including the canal flow below the complex city structure shows very plausible results.

In Fig. 7.10, the first adapted resolution refinement is given for the flow behaviour on the

local building-scale simulation. In Fig. 7.11 the second adapted resolution refinement is given

for the projection of the local building-scale flow behaviour on the construction detail scale.

All simulations have been performed on the Sandstorm cluster, the complete specification

of the machine is given in Sec. A.2. The simulation of the pipe network and the surface

flow consumed over 5000 core-hours, the adapted simulations of the local building-scale flow

behaviour consumed approximately 400 core-hours each.

134 7. Urban Flooding Simulation with Pipe Network Interaction

Figure 7.8: The results of the pipe network and the surface flow are visualised without the construc-
tions for better visibility.

7.3. The Scenario 135

Figure 7.9: The surface flow is depicted with visualised constructions in order to show the flooding
of the city due to the collapsing water drainage system.

136 7. Urban Flooding Simulation with Pipe Network Interaction

Figure 7.10: The first adapted resolution refinement gives the flow behaviour on the local building-
scale simulation.

7.3. The Scenario 137

Figure 7.11: The second adapted resolution refinement projects the local building-scale flow be-
haviour on the construction detail scale as the initial conditions of the simulation.

138 7. Urban Flooding Simulation with Pipe Network Interaction

139

Chapter 8

Conclusion and Outlook

In this work, techniques from computational science and engineering were applied to the

approaches of civil engineering in order to make a contribution to getting a step closer in

answering the demanding questions and challenges of our cities.

A parallel data access framework with clearly defined and proven interfaces to all parts of

the simulation pipeline such as preprocessing, numerical simulation and postprocessing was

developed. This framework is capable of storing, handling and providing access to large

amounts of highly detailed data from constructions, built infrastructure, geographical data

and infrastructure networks.

The strict usage of parallelisation techniques and efficient algorithms was necessary and

introduced in detail. These techniques made it possible to create a framework which can

provide access to multi-resolution representations of large data sets fast enough to put into

practice a complete exploration and simulation pipeline, which ranges from a multi-monitor

or CAVE-based real-time visualisation to multi-scale simulation scenarios such as flooding of

urban regions.

Finally, the application of an urban flooding simulation with the incorporation of pipe network

interaction was given. The capabilities of the framework allow the coupling of the different

simulations to be handled efficiently and insight is gained over all scales from the global flow

behaviour to the impact on single construction entities.

This work is an interdisciplinary approach which focuses on integrating efficient techniques

from the fields of civil engineering, hydromechanics, visualisation and scientific computing as

depicted in Fig. 8.2. This approach also gives rise to the outlook and potential for future

work, especially the applications from fluid flow and hydromechanics. The complete in-depth

analysis of fluid phenomena cannot be treated in such a work, nor does it claim to do so.

The focus of this work was to show the possible links to engineering approaches and provide

a technical breakthrough for these techniques.

140 8. Conclusion and Outlook

Many questions point the way for future research such as the integration of turbulence mod-

els into the fluid flow simulations performed. The geographical data provide the land usage

description, just as the building product models describe the surface properties of the con-

struction details or the roughness values of the pipes of the drainage system.
Load- and Runtime over Amount of Processors

MPI Processes load run
512 286 794

1024 190 654
2048 285 1508

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

tim
e [

s]

number of processors

load

run

Figure 8.1: The load time of the computational mesh and the run time of the numerical simulation
as function of the number of processors on the Shaheen@KAUST supercomputer shows the demand
for advanced grid generation and load balancing techniques.

Another starting point is the performance of the numerical simulations applied on supercom-

puters. Fig. 8.1 gives the load time of the mesh and the runtime of the numerical simulation

as function of the number of processors on the Shaheen@KAUST A.3 for the free surface

simulation as introduced in Sec. 7, two points are obvious. First, the file-based mesh distri-

bution of the domain decomposition levels off for higher numbers of processors as all data

have to be loaded from the same parallel file system. Second, load distribution is applied in a

preprocessing step and no load balancing is performed during simulation. The computational

load does not only depend on the number of cells per processor but also on fluid flow driven

criteria, such as the handling of the free surface in this case. Thus, the computational load

is not equally distributed over the processors during the simulation because of the commu-

nication, the runtime even increases for high numbers of processors. The results show that

there is still room for improving the efficiency of parallel numerical simulations and adapting

new solvers of fluid phenomena. Moreover, the extension to computational solid mechanics

should be targeted, as fine construction and material parameters are available from the fully

detailed product model descriptions.

Furthermore, the mesh generation in the work introduced is performed on axis parallel Carte-

sian grids. The underlying product model data give a triangular representation of the ge-

141

ometry. Owing to the axis parallelism of the mesh, this geometry is never resolved to full

accuracy. By extending the mesh generation on the level of the leaf nodes to the exact

intersection with the primitives covered, boundary conforming meshes could be generated.

Alternatively, numerical approaches incorporating immersed boundary methods should be

investigated in order to cope with the imperfect mesh generation. Furthermore, the geomet-

ric data basis of the triangular representation can be extended to more advanced descriptions

such as high order or NURBS descriptions.

142 8. Conclusion and Outlook

D
at

a

Fr
am

ew
or

k
H

ie
ra

rc
hy

Pa
ra

ll
el

is
at

io
n

V
is

ua
li

sa
ti

on
E

xp
lo

ra
ti

on
M

es
h

G
en

er
at

io
n

Si
m

ul
at

io
n

A
da

pt
io

n
M

ul
ti

-S
ca

le

Figure 8.2: This work is an interdisciplinary approach which focuses on integrating efficient tech-
niques from the fields of civil engineering, hydromechanics, visualisation and scientific computing.

143

Appendix A

Appendix

A.1 Data Fusion and Set Augmentation

What is crucial for the work presented is the assembly of a large data set which covers a

domain of sufficient size and where all data introduced from the GIS to the BIM scale are

organised. Highly detailed product models of buildings are available but only as an individual

model of one specific building without the assembly in its neighbourhood. City models are

available but the level of detail for individual buildings is only available at LoD1 for many

and at LoD2 for specific regions, see [160]. Approaches exist for extending GIS by BIM

specifications [40] and building up highly detailed city models [161], but there is still no

dataset available which is fully detailed over the scales of a city and its constructions and

built infrastructure.

Therefore an algorithm for enriching a city model with fully detailed product models has

been developed and will be introduced in the following. This algorithm starts from a city

model - here the model of the city centre of Munich [160] - identifies the individual buildings

in this model and replaces each of them by that product model out of a candidate list which

is most similar to the LoD1 description of the building. Replacing in this setting means that

the coarse representation of the building is removed from the city model and the product

model identified is processed instead as an additional individual model.

By doing so, the spatial relation of the individual buildings, which is given by the city model

but lacks the details of the individual buildings, is fused with the highly detailed information

of the building models.

Unfortunately, it is clear that product model descriptions of the buildings are not available

for all buildings in the city centre of Munich or any other city model. Therefore, for build-

ings whose product models are not available, the algorithm chooses a replacement from a

sufficiently large candidate set of synthesised product models.

144 A. Appendix

Figure A.1: The city model of city centre Munich spans an area of 2.8km by 2.3km. For the single
polygonal building descriptions (top) the aligned bounding boxes are calculated (bottom).

The algorithm is given in Alg. 23 and works as follows: For every polygonal description of

a building in the city model the aligned bounding box is calculated. On the basis of the

aligned bounding box, see Fig. A.1, the most similar product model out of the candidate list

is chosen. If the product model is similar enough to the description derived from the city

model, it is replaced. Eventually a data set of the city centre of Munich with fully detailed

construction descriptions is achieved.

Many algorithms are known for calculating the aligned bounding box [162, 163]. In the

approach presented, the polygons out of which the geometry is defined are collected and

their vertices are stored in a set. The bounding box is derived by rotating all vertices of

the polygon for which it is computed around the z- axis with the angles α ∈
[
0..π2

]
. The

axis-aligned bounding box is calculated for each of the rotated sets of points. The angle α̃ for

which the volume of the bounding box is minimal identifies the angle of the non-axis aligned

bounding box. Owing to symmetry it is sufficient to restrict this to the angles between in[
0..π2

]
.

A.1. Data Fusion and Set Augmentation 145

Algorithm 23 augmentPolygonWithBuilding

void augmentPolygonWithBuilding (Object polygon ,
Object bu i ld ingCandidates []) {

f loat ro tat ionAng le ;
f loat projected2dArea ;
for (f loat ang le = 0 ; angle<pi /2 ; ang le+= . 1){
f loat tmpArea = polygon . rotateZ (ang le) . 2 Dproject ionZ () . area () ;
i f (tmpArea < projected2dArea){
ro tat ionAng le = ang le ;
polygon . 2 dArea = tmpArea ;
}
}

Object r e p l a c e B u i l d i n g ;
f loat s imi la r i tyMatch ;
for (each e in bu i ld ingCandidates){
i f (s i m i l a r i t y (polygon . 2 dArea , polygon , e) > s imi la r i tyMatch){

r e p l a c e B u i l d i n g = e ;
s imi la r i tyMatch = s i m i l a r i t y (polygon , e) ;
}
}
i f (s imi la r i tyMatch . isGood ())
polygon . augmentWith (r e p l a c e B u i l d i n g) ;

}

A decision now has to be made for every building as to which product model it is replaced

with. This is done by checking the similarity of the polygonal description with every product

model of the candidate list. Some basic requirements of this similarity criterion are as follows:

If the exact product model for a building is in the candidate list, it should be chosen. The

closer the length and width of the polygonal description and the product model are to each

other, the more similar they are. As it is clear that an optimal replacement is not available

for every building, the following assumptions are made in order to obtain a high replacement

rate and therefore a complex assembly of the models. A product model can be scaled up to

a certain factor ±β% in order to fit the polygonal description. This scaling can also be done

unevenly along the three axes even though this leads to slightly distorted geometries. If a

building is already used as a replacement for many buildings, another not that similar building

should be chosen which is not used that often. Using these criteria, where it is admitted that

there are many reasonable additional criteria conceivable, the following similarity measure of

an aligned bounding box and a product model is defined:

sim(poly, bim) =
(
(poly.width− bim.width)2 + (poly.width− bim.width)2 + f(bim.count)

)

146 A. Appendix

Fig. A.2 depicts the polygonal description of a building, its aligned bounding box and the

fully detailed product model chosen.

Figure A.2: Based on the polygonal description of a building, the aligned bounding box is derived
and replaced by the product model which is most similar.

It should be mentioned that having a sufficiently large set of product models available is not

self evident. The Chair for Computation in Engineering and the Chair of Computational

Modelling and Simulation at Technische Universität München conduct research projects in

order to derive high quality product model definitions. In Finland and Singapore, for example,

it is required to provide the IFC description of public buildings.

Eventually a highly detailed urban data set is achieved. It is fused with the definition of the

pipe network of the sewer system in the city and results in the test data set given in Fig. A.3.

With this data set at hand, the main part of this work can be introduced in the following:

Handling large sets of complex data. The evaluation and investigation of the correctness and

feasibility of the proposed concepts and algorithms would not have been possible without this

work.

A.2 CiE Sandstorm Cluster

http://www.cie.bgu.tum.de

The Sandstorm Cluster is a small 4-node cluster installed in August 2012 at the Chair for

Computation in Engineering at TUM. Each node contains two Intel Xeon E5-2690 CPUs

running at 2.9GHz and 192GB RAM. The network interconnect is based on a one-to-one 1

Gigabit Ethernet connection from every node to every node and a 1 Gigabit connection to

an external switch. The sustained Linpack performance http://www.top500.org/project/

linpack of the system is 1.3 TFLOPS. Hyper-threading capabilities have been deactivated.

http://www.cie.bgu.tum.de
http://www.top500.org/project/linpack
http://www.top500.org/project/linpack

A.3. Shaheen 147

Figure A.3: For Munich city centre, a city model data set is created which fuses the specification of
the terrain with its texture, the building assembly and the underground water drainage system.

A.3 Shaheen

A.3.1 KAUST Blue Gene/P ‘Shaheen’

http://www.hpc.kaust.edu.sa

Shaheen is a 16 rack IBM Blue Gene/P supercomputer, each node is equipped with four 32-

bit, 850 MHz PowerPC-450 cores and 4GB DDR memory. On aggregate, Shaheen has 65,536

processing cores and 64TB of memory. Shaheen provides a three-dimensional point-to-point

Blue Gene/P torus network for general-purpose IPC. Each torus link can transmit up to 425

MBps in each direction, for a total of 5.1GBps bidirectional bandwidth per node.

http://www.hpc.kaust.edu.sa

148 A. Appendix

A.4 OpenFOAM Mesh Specification

A.4.1 points

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class v e c t o r F i e l d ;

l o c a t i o n ” constant /polyMesh” ;

ob j e c t po in t s ;

}

12

(

(−300 −220 100)

(−100 −220 100)

(−100 −20 100)

(−300 −20 100)

(−300 −220 300)

(−100 −220 300)

(−100 −20 300)

(−300 −20 300)

(100 −220 100)

(100 −20 100)

(100 −220 300)

(100 −20 300)

)

A.4.2 faces

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class f a c e L i s t ;

l o c a t i o n ” constant /polyMesh” ;

ob j e c t f a c e s ;

}

11

(

4(1 2 6 5)

4(0 4 7 3)

A.4. OpenFOAM Mesh Specification 149

4(0 1 5 4)

4(1 8 10 5)

4(0 3 2 1)

4(1 2 9 8)

4(8 9 11 10)

4(3 7 6 2)

4(2 6 11 9)

4(4 5 6 7)

4(5 10 11 6)

)

A.4.3 boundary

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class polyBoundaryMesh ;

l o c a t i o n ” constant /polyMesh” ;

ob j e c t polyBoundaryMesh ;

}

6

(

l e f t W a l l

{
type wal l ;

nFaces 1 ;

s ta r tFace 1 ;

}
f rontWal l

{
type wal l ;

nFaces 2 ;

s ta r tFace 2 ;

}
lowerWall

{
type wal l ;

nFaces 2 ;

s ta r tFace 4 ;

}
r ightWal l

{
type wal l ;

150 A. Appendix

nFaces 1 ;

s ta r tFace 6 ;

}
backWall

{
type wal l ;

nFaces 2 ;

s ta r tFace 7 ;

}
atmosphere

{
type patch ;

nFaces 2 ;

s ta r tFace 9 ;

}
)

A.4.4 owner

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class l a b e l L i s t ;

note ” nPoints : 12 nCe l l s : 2 nFaces : 11 nInte rna lFace s : 1” ;

l o c a t i o n ” constant /polyMesh” ;

ob j e c t owner ;

}

11

(

0

0

0

1

0

1

1

0

1

0

1

)

A.4. OpenFOAM Mesh Specification 151

A.4.5 neighbour

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class l a b e l L i s t ;

note ” nPoints : 12 nCe l l s : 2 nFaces : 11 nInte rna lFace s : 1” ;

l o c a t i o n ” constant /polyMesh” ;

ob j e c t neighbour ;

}

1

(

1

)

152 A. Appendix

A.5 OpenFOAM Case Definition

A.5.1 system/controlDict

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class d i c t i o n a r y ;

l o c a t i o n ” system” ;

ob j e c t c o n t r o l D i c t ;

}
// ∗ //

a p p l i c a t i o n interFoam ;

startFrom startTime ;

startTime 0 ;

stopAt endTime ;

endTime 1 ;

deltaT . 0 1 ;

wr i t eContro l adjustableRunTime ;

w r i t e I n t e r v a l . 2 ;

purgeWrite 0 ;

writeFormat binary ;

w r i t e P r e c i s i o n 6 ;

writeCompress ion uncompressed ;

timeFormat gene ra l ;

t imePrec i s i on 6 ;

runTimeModif iable yes ;

A.5. OpenFOAM Case Definition 153

adjustTimeStep yes ;

maxCo 0 . 5 ;

maxAlphaCo 0 . 5 ;

maxDeltaT 1 ;

// ∗∗∗ //

A.5.2 system/decomposeParDict

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class d i c t i o n a r y ;

l o c a t i o n ” system” ;

ob j e c t decomposeParDict ;

}
// ∗ //

numberOfSubdomains 1 ; //2 4 8 16 32 64

method s imple ;

s imp l eCoe f f s

{
n (1 1 1) ; //2 4 8 16 32 64

d e l t a 0 . 0 0 1 ;

}

h i e r a r c h i c a l C o e f f s

{
n (1 1 1) ;

d e l t a 0 . 0 0 1 ;

order xyz ;

}

manualCoeffs

{
dataF i l e ”” ;

}

d i s t r i b u t e d no ;

154 A. Appendix

r oo t s () ;

// ∗∗∗ //

A.5.3 system/fvSchemes

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class d i c t i o n a r y ;

l o c a t i o n ” system” ;

ob j e c t fvSchemes ;

}
// ∗ //

ddtSchemes

{
default Euler ;

}

gradSchemes

{
default Gauss l i n e a r ;

}

divSchemes

{
div (rho∗phi ,U) Gauss l imitedLinearV 1 ;

div (phi , alpha) Gauss vanLeer ;

div (phirb , alpha) Gauss in te r faceCompres s i on ;

}

l ap lac ianSchemes

{
default Gauss l i n e a r c o r r e c t e d ;

}

i n t e rpo la t i onSchemes

{
default l i n e a r ;

}

A.5. OpenFOAM Case Definition 155

snGradSchemes

{
default c o r r e c t e d ;

}

f luxRequ i red

{
default no ;

p rgh ;

pcorr ;

alpha1 ;

}

// ∗∗∗ //

A.5.4 system/fvSolution

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class d i c t i o n a r y ;

l o c a t i o n ” system” ;

ob j e c t f v S o l u t i o n ;

}
// ∗ //

s o l v e r s

{
pcorr

{
s o l v e r PCG;

p r e c o n d i t i o n e r DIC ;

t o l e r a n c e 1e−10;

r e l T o l 0 ;

}

p rgh

{
s o l v e r PCG;

p r e c o n d i t i o n e r DIC ;

t o l e r a n c e 1e−07;

r e l T o l 0 . 0 5 ;

}

156 A. Appendix

p rghFina l

{
\ $p rgh ;

t o l e r a n c e 1e−07;

r e l T o l 0 ;

}

U

{
s o l v e r PBiCG;

p r e c o n d i t i o n e r DILU ;

t o l e r a n c e 1e−06;

r e l T o l 0 ;

}
}

PIMPLE

{
momentumPredictor no ;

nCorrector s 3 ;

nNonOrthogonalCorrectors 0 ;

nAlphaCorr 1 ;

nAlphaSubCycles 2 ;

cAlpha 1 ;

}

// ∗∗∗ //

A.5.5 setFieldsDict

FoamFile

{
v e r s i on 2 . 0 ;

format a s c i i ;

class d i c t i o n a r y ;

l o c a t i o n ” system” ;

ob j e c t s e t F i e l d s D i c t ;

}
// ∗ //

d e f a u l t F i e l d V a l u e s

(

vo lSca l a rF i e ldVa lue alpha1 0

A.5. OpenFOAM Case Definition 157

) ;

r e g i o n s

(

boxToCell

{
box (−1400 −900 −45) (−800 1100 −9);

f i e l d V a l u e s

(

vo lSca l a rF i e ldVa lue alpha1 1

) ;

}
) ;

// ∗∗∗ //

158 A. Appendix

LIST OF FIGURES 159

List of Figures

2.1 IFC product model of the main building of TUM [16]. 7

2.2 CityGML model of Berlin, Germany [22]. 9

2.3 Realistic terrain representation is achieved by mapping the conforming texture

to a surface definition given on a (uniform) grid. 10

2.4 The pipe network of the sewer system in the city centre of Munich, Germany

for a domain of approximately 2 square kilometres. 11

2.5 Two raster data sets describing a surface (top) and the corresponding texture

(bottom), both with a stepwise down sampling for k = [1, 200, 800] (f.l.t.r.).

The dataset is provided by the Chair for Geoinformatics at Technische Uni-

versität München. 13

2.6 A discretised product model representation of an IFC file stores the list of

indexed faces, which give the fully detailed geometry of the model. For every

face, the identifier gives the mapping to the corresponding building element.

Every building element is stored with the full set of its auxiliary information. 14

2.7 The fully detailed geometric representation of a building product model is

coarsened by the set of bounding boxes for each individual building element.

All bounding boxes of the same type of element are grouped and approximated

by their bounding boxes. The bounding box of all groups of element types gives

the bounding box of the product model (f.t.t.b). 16

2.8 After identifying the outer shell of a fully detailed product model, the comple-

ment of the shell with respect to the product model gives the inner structure

of the construction. 17

2.9 The indexed mesh of a product model is rendered with colour-encoded identi-

fiers of the triangles. The frame buffer of the scene rendered contains the colour

value of the visible triangle for every pixel and therefore the information of all

visible triangles for that view. 18

160 LIST OF FIGURES

2.10 The rotation of the product model is discretised over the two rotation angles.

As for every single rotation step the visible triangles are identified and added

to the triangles already found, the number of triangles increases. 19

2.11 On a fully detailed BIM model (left) the outer shell is generated using the

GPU-based algorithm for identifying the visible triangles forming the outside.

In order to gain an insight into the reduction of about 90% from 84578 to 6686

triangles, the wire frame representation is given (right). 20

2.12 In order to derive a textured representation of a product model, the complete

model is approximated by a simplified geometric representation such as its

bounding box or the convex hull. 21

2.13 The bounding box of a product model identifies the - in this case six - projection

planes for the generation of the textures. The projection of the view along the

normal of the face is computed for every face and all textures are combined to

the representation of the model. 21

3.1 The octree representation of a sphere is calculated for a maximal depth dmax =

5, the increasing accuracy is adaptive to the boundary. 31

3.2 The Morton Code of a quadtree, the two-dimensional version of an octree, uses

the bisecting nature of the data structure and the order of the child nodes to

directly identify the address of an octant. 31

3.3 Based on an independent dual layer hierarchical data structure, the domain of

the initial second level octree in general does not fit the discretisation of the

first level tree (left). By increasing the domain of the second layer octree to a

multiple of the width of the deepest level of the first level octree, a matching

intersection is achieved (right). 34

3.4 For a product model consisting of 84k triangles an octree representation is

generated until a depth of 5 (left). Besides the resolution of the geometric

description, auxiliary information is also mapped to the individual elements

(right). 34

3.5 By computing an octree based on the bounding boxes of all constructions

and built infrastructures, the embedding of the data into the surrounding is

structured and the individual models can be related to each other. 37

3.6 The generation of a quad/octree based on the bounding boxes and storage

information of all processed models can be computed quickly and efficiently,

but still contains the link to the fully detailed information. 37

LIST OF FIGURES 161

3.7 Based on a given mapping of m product models to n processors, the colour

indicates the distribution of the models over the processors. All models of a

processor are depicted with the same colour. 39

3.8 The parallelisation of the framework is achieved by a distributed memory ap-

proach on the global scale. One master process contains the assembly of the

data basis given by the first layer octree and the product models are distributed

among the remaining n − 1 processes. Shared memory parallelisation is then

performed over the local product model sets of every single process. 40

3.9 The view point and direction of the user define a ray which intersects the

requested construction detail and the product model. An intersection test

on the first layer octree in the master process identifies the product models

intersected, and the test on the product models in the slave processes affected

identifies the construction detail. 47

3.10 The linearisation of an octree is achieved by concatenating the values of the

octants in a depth-first manner to an array with the 0/1 information if an

octant is a leaf node and followed by the value of the leaf node. 49

3.11 A product model on the local building scale is embedded in its voxelisation

with a discretisation width of 150×100×100 voxels. For better visibility, only

grey leaf nodes, i.e. voxels, are shown in wire frame mode. 50

3.12 Following a probabilistic mapping, over 7000 product models are distributed

to 3 slave processes over the domain. The colour value identifies the slave

process to which a product model is assigned. 57

3.13 The Lebesgue curve orders multi-dimensional data points into a one-dimensional

sequence. The order is achieved by recursively sorting points following (in 2D)

the pattern top-left→top-right→bottom-left→bottom-right. 57

3.14 The quadtree representation of the product models is generated on the basis

of the centre points of their bounding boxes projected along the z-axis. 58

3.15 The quadtree representation of the product models’ centre points is ordered

following the pattern of the Lebesgue curve. 59

3.16 The quadtree representation of the product models is ordered following the

pattern of the Lebesgue curve in the classical sequence-based approach (left)

and the modified round-robin approach (right). 59

3.17 The test scenario is depicted together with the application distances for the

different LoDs applied. The colour encodes the processor to which a building

is mapped. 60

162 LIST OF FIGURES

3.18 The distribution of the highly detailed product models is given as the summed

up number of triangles to be processed by every process for the classic Lebesgue

curve mapping and the round-robin order, both for the scenario given in

Fig. 3.17. The modified round-robin order also distributes the data locally

and therefore achieves an almost equal load on the slave processes. 61

4.1 Based on an octree representation for a product model the identification of the

visible triangles can be transferred to identifying the leaf octants intersected

by the view frustum. 67

4.2 The parallel framework is extended by one further process which performs the

visualisation. This process asynchronously triggers the adaption of the LoD

representation by sending the updated position of the camera to the master

processes. The slave processes affected perform the changes in geometry and

the master sends the update to the visualisation process. 68

4.3 The computational load of rendering the outer shells of product model data

on the GPU is reduced by limiting the visualisation to product models whose

bounding boxes intersect the view frustum. 69

4.4 Different levels of detail are visualised for one specific building. With increasing

distance, the level of detail gives a coarser representation of the product model. 69

4.5 Different levels of detail are visualised for the embedding of a fully detailed

product model to a coarse polygonal description of its surrounding. The visu-

alisation is given on the city-wide scale (left) and on the product model scale

(right). 69

4.6 For every voxel, the MC algorithm identifies the intersection status of the iso-

surface along its eight edges. The resulting 256 different cases can be reduced

due to symmetry to 15 triangle templates and are available as a lookup table. 71

4.7 For a given flow field the MC algorithm calculates the triangular representa-

tion with colour-encoded velocity of the isosurface to a given threshold value

(top). In order to parallelise MC, the flow field is split into n - here 4 - equal

parts (bottom) and the triangulations of the sub domains are combined to

the isosurface of the complete flow field. The colour identifies the processor

mapping. 71

4.8 The six-sided Corena CAVE@KAUST is driven by four projectors for every

side, two for the vertical tiling and two for the stereoscopic immersion. . . . 72

4.9 Three linearly independent points in every projection plane identify the topol-

ogy of a multi-monitor installation. 73

LIST OF FIGURES 163

4.10 The tiled wall installation Z2@KAUST consists of 40 tiled monitors on a 10×4

grid. The rendering on the whole installation is split into parallel rendering of

one process for every single monitor. 73

4.11 The parallel set-up of a framework in a multi-monitor installation consists of

additional n visualisation processes, one for each projection plane, where one

process additionally sends the camera position updates to the master process. 74

4.12 On the Cornea@KAUST the visualisation of simulation data is performed by

following the parallel visualisation on 24 digital projectors and 6 sides, here

with 5 sides due to the opened door of the CAVE. 75

4.13 On the NEXcave@KAUST the visualisation of fully detailed product model

data on a local scale is performed by rendering the outer shell of the construc-

tions on 21 monitors. 75

4.14 The gravity sensor of a mobile device is used to determine the desired direction,

turning angle and speed of navigating through the data. 76

4.15 The communication protocol between the handheld device and the framework

transfers the serialised request to the framework. Besides the navigation pa-

rameters, the checksum for evaluating the correct transfer of the broadcast

and the counter for evaluating the order of the requests are also transferred. . 77

4.16 Handheld devices provide the user with a navigation interface which lets them

focus on exploring the data set instead of handling the input device. 78

4.17 In a tracked immersive installation the marker’s position and direction is de-

rived by recording the interior of the installation with multiple cameras for

different viewports. From the differing images of the reflecting parts of the

marker the position and direction of the marker and therefore the part it is

attached to can be derived using image processing and linear calculus. 78

4.18 The position and direction of the user’s view is derived from the tracked marker

mounted on their head. From this information the viewport and thus the

projection onto the different planes of the CAVE are derived, here for the

NEXcave@KAUST. 79

4.19 A tracked pointing device replaces the impractical mouse interaction in im-

mersive installations and lets the user freely point at the visualised items, here

shown in Cornea@KAUST. 80

164 LIST OF FIGURES

4.20 The navigation of the whole data set lets the user explore on a city-wide scale

(left). By navigating to the construction details of a product model the full

information depth such as the material parameters of a door installation is

achieved (right). 80

4.21 The evaluation of possible intersections of a sewer network with existing con-

structions in the city is performed by deriving the hierarchical representation

of both configurations. 82

4.22 In order to determine the intersection of non-white parts of the two octrees

their linearisation is concatenated level-wise with the logical AND operator. . 83

5.1 In radial dam break scenarios for the two-dimensional SWE a reservoir of fluid

at rest is initially applied by the boundary conditions. The initial resolution

of the triangular mesh is 16 × 16 triangles, the resolution depth is limited to

6 levels. The solution at the time-step iteration is given together with the

refined mesh and the colour-encoded height. 87

5.2 The three-dimensional voxelisation of the data basis can be derived on the

global scale (top) and on the local scale for a single building (bottom). The

height is encoded in the colour. 88

5.3 From the three-dimensional voxelisation of the computational domain the two-

dimensional bathymetry mesh is derived on the local scale for a single construc-

tion. The height value at every data point is derived as the maximal solid value

at that point in the plane. 89

5.4 From the thee-dimensional voxelisation of the computational domain the two-

dimensional bathymetry mesh is derived on the local scale for a single con-

struction. The height value at every data point is derived as the value below

the first fluid voxel at that point in the plane. 90

5.5 In order to access the voxel query interface, Peano is started in an additional

MPI process, together with the framework’s master process and the n−1 slave

process holding the product models. 93

5.6 The Peano interface identifies the computational domain of a sphere as fol-

lows. The white octants give the outside of the domain where isCompletely-

OutsideNotInverted returns true, the dark blue octants form the inner part

and here isCompletelyInsideNotInverted returns true. The light blue de-

picted octants cover the boundary of the domain and there both methods is-

CompletelyOutsideNotInverted and isCompletelyInsideNotInverted return

false. This triggers further refinement of the interface. 94

LIST OF FIGURES 165

5.7 The fluid mesh is built up by the Peano framework and adaptively refined at

the boundary of the domain. The inside/outside check for building up the

grid is performed over the dual layer hierarchical data structure of the work

presented. 96

5.8 For the original domain (top) the voxelisation is derived. Fluid voxels are

depicted white, solid voxels are blue; this discretisation is calculated in two

ways. Without performing the fill algorithm (middle), fluid parts which are

not connected to the seed region are also identified as computational domain.

These parts are removed by performing the fill algorithm (bottom). 99

5.9 An OpenFOAM mesh of two hexahedral elements consists of 11 faces, 20 edges

and 12 vertices. 100

5.10 The two sub-domains of a computational domain on the local building scale

are coloured according to their processor location. The processor faces are

highlighted and interface the communication between the processors. 103

5.11 The decomposition of a 1000 × 1000 × 50 global-scale domain is given for

4 processors following a block approach. The mapping of the different sub-

domains to the processors is encoded in the colour. 104

5.12 The decomposition of a 1000 × 1000 × 50 global-scale domain is given for 8

processors following the Scotch approach. The mapping of the different sub-

domains to the processors is encoded in the colour. 104

6.1 The potential flow through a building’s product model is discretised over

450× 200× 275 voxels. The boundary conditions applied describe an inflow of

constant velocity on the left and a free outflow on the right side of the domain. 107

6.2 The flow of the Dornbirner Ache in Austria is simulated using the Shallow-

Water-Equations. The boundary conditions applied imply a constant inflow of

the river on the left-hand side and a free outflow on the right-hand side. The

extruded surface of the fluid is visualised by colour encoding the velocity of

the flow. 108

6.3 The three-dimensional Navier-Stokes equations describe the flow of Newtonian

fluids. The flow around a building is simulated for a computational domain

of 150× 100× 100 voxels. The boundary conditions applied imply a constant

velocity of 1m/s on the left side and free outflow on the right. 108

166 LIST OF FIGURES

6.4 The simulation of urban flooding is performed as a three-dimensional free

surface simulation. The surface of the fluid is visualised with colour encoded

velocities. The computational domain is discretised with a grid of 1000×1000×
50 cells. The boundary conditions applied describe a free outflow on the x/y

normal boundaries, the amount of water is imposed by initial conditions for

the fluid at rest. 110

6.5 Starting at time step ti, coarse grid computations are performed until ti+1,

followed by a projection from the global to the local domain (vertical arrow).

The coarse grid simulation is stopped at ti+1. 112

6.6 A two-phase simulation is performed on the global domain (bottom) and on the

refined subset of the local domain (top). The velocity is colour encoded and the

interface is visualised as the contour of the phase field γ. The mesh generation

based on the representation of the data basis with octrees of different depth

achieves conforming meshes over the different scales. This conformity enables

the direct propagation of simulation results to the matching cells of a refined

simulation. 112

6.7 The two dimensional validation area is a slice through the computational do-

main. The global domain is coloured in light blue and the local domain is

coloured in dark blue. 113

6.8 At time step t = 10 seconds, the simulation results achieved at the global

domain are projected as initial conditions to the local domain. 114

6.9 The simulation on the global domain (top) is compared to the results on the lo-

cal domain incorporating reflecting, potential and transient (f.t.t.b) boundary

conditions. For the given results here at time step t = 12.5 seconds, a visual

comparison shows promising results for the evolution of the water front but

shows clearly the influence of the reflecting and potential boundary conditions

at the rear part of the wave. 115

6.10 Time step t = 15 seconds still shows promising results for capturing the charac-

teristics of the wave front. The effects of the reflecting and potential boundary

conditions are obvious by a visual inspection at the rear part of the wave. . . 115

6.11 The difference d(x, t) of the water height, relative to the height of the com-

putational domain, over the x-axis of the local domain is given for time steps

t = 12.5 (top) and t = 15 (bottom) seconds. It shows the propagation of the

errors induced by the reflecting boundary conditions. 116

LIST OF FIGURES 167

6.12 The computational mesh of the fluid flow simulation can be mapped to the

construction details of the product model data. The boundary faces of the

fluid mesh are shared with the octree representation of the construction detail.

This mapping gives the linkage between simulation results and construction

details affected. 118

6.13 The measurement of the strong speedup for a computational domain of 1000×
1000× 50 voxels for the interFoam OpenFOAM solver is carried out over 1 to

64 processors. 119

7.1 The amount of water is applied by specifying the initial conditions as the

respective amount of water at rest. 125

7.2 The flooding of the detailed city model is visualised with the contour of free

surface simulation and colour encoded velocities. 126

7.3 A three-dimensional benchmark of two basins connected with a pipe implies

that resolving the pipe with a single voxel in the orthogonal directions of the

flow imposes the characteristic of one-dimensional flow. 128

7.4 The pressure line over the axis along the flow in the direction of the pipe shows

that the one voxel wide discretisation imposes one-dimensional pipe flow in the

three-dimensional domain. 129

7.5 The velocities orthogonal to the flow in the pipe are depicted but neglected

due to the one-dimensional interpretation. 129

7.6 The computational domain is depicted by its 0.5 contour for the global scale

(top) and for the local building scale (bottom). The relative height of the

surface is colour encoded. 132

7.7 The collapsing drainage water system is modelled by placing a constant hydro-

static pressure on the inlet of the network. The constant pressure is imposed

by placing a sufficiently large reservoir on the inlet. As an initial condition,

the pipe network is already flooded. 132

7.8 The results of the pipe network and the surface flow are visualised without the

constructions for better visibility. 134

7.9 The surface flow is depicted with visualised constructions in order to show the

flooding of the city due to the collapsing water drainage system. 135

7.10 The first adapted resolution refinement gives the flow behaviour on the local

building-scale simulation. 136

168 LIST OF FIGURES

7.11 The second adapted resolution refinement projects the local building-scale flow

behaviour on the construction detail scale as the initial conditions of the sim-

ulation. 137

8.1 The load time of the computational mesh and the run time of the numerical

simulation as function of the number of processors on the Shaheen@KAUST

supercomputer shows the demand for advanced grid generation and load bal-

ancing techniques. 140

8.2 This work is an interdisciplinary approach which focuses on integrating efficient

techniques from the fields of civil engineering, hydromechanics, visualisation

and scientific computing. 142

A.1 The city model of city centre Munich spans an area of 2.8km by 2.3km. For

the single polygonal building descriptions (top) the aligned bounding boxes

are calculated (bottom). 144

A.2 Based on the polygonal description of a building, the aligned bounding box is

derived and replaced by the product model which is most similar. 146

A.3 For Munich city centre, a city model data set is created which fuses the spec-

ification of the terrain with its texture, the building assembly and the under-

ground water drainage system. 147

LIST OF TABLES 169

List of Tables

2.1 By performing the stepwise level of detail coarsification presented, the number

of triangles to be processed is reduced iteratively. 17

2.2 By performing outer shell calculation of fully detailed product models, a re-

duction of up to 90%can be achieved. 20

3.1 Basic MPI commands are needed in order to perform the communication be-

tween processors by exchanging data via MPI. 41

3.2 Depending on the distance of the product model to the investigation point

the appropriate level of detail is applied and more distant constructions are

discarded. 60

5.1 The Peano geometry interface queries the status of the spacetree nodes during

the build up and the traversal of the grid. 92

170 LIST OF TABLES

BIBLIOGRAPHY 171

Bibliography

[1] G. Lee, R. Sacks, and C. M. Eastman. Specifying parametric building object behavior

(BOB) for a building information modeling system. Automation in Construction, 15:19,

2006.

[2] C. M. Eastman. BIM handbook: A guide to building information modeling for owners,

managers, designers, engineers and contractors. Wiley, 2008.

[3] R. Howard and B.-C. Björk. Building information modelling - experts’ views on stan-

dardisation and industry deployment. Advanced Engineering Informatics, pages 271–

280, 2008.

[4] C. McGraw-Hill. Building information modeling (BIM) - transforming design and con-

struction to achieve greater industry productivity. SmartMarket Report, page 48, 2008.

[5] C. McGraw-Hill. The business value of BIM - getting building information modeling

to the bottom line. SmartMarket Report, page 52, 2009.

[6] T. M. Froese. The impact of emerging information technology on project management

for construction. Automation in Construction, 19:531–538, 2010.

[7] C. McGraw-Hill. The business value of BIM in europe. SmartMarket Report, page 52,

2010.

[8] M. P. Gallaher and A. C. O’Connor. Cost analysis of inadequate interoperability in the

U.S. capital facilities industry. Proceedings of the CIB W78 2012: 29th International

Conference, Beirut, Lebanon, 17-19 October, 2004.

[9] The American Institute of Architects. Integrated project delivery: A guide. The Amer-

ican Institute of Architects, 1:62, 2007.

[10] Y. Ji, A. Borrmann, J. Beetz, and M. Obergriesser. Exchange of parametric bridge

models using a neutral data format. Journal of Computing in Civil Engineering, 27:593–

606, 2013.

[11] M. Obergriesser, T. Euringer, A. Borrmann, and E. Rank. Integration of geotechnical

design and analysis processes using a parametric and 3D-model based approach. Proc. of

172 BIBLIOGRAPHY

the ASCE International Workshop on Computing in Civil Engineering, Miami, Florida,

USA, 2011, page 8, 2011.

[12] A. Borrmann and K. Heine. Zukunft und Vergangenheit – 4D-Modellierung als

Werkzeug für die Bauplanung und die baugeschichtliche Forschung. Tagungsband Hand-

High III - Von Handaufmass bis High Tech, Cottbus, Germany, 2010, page 8, 2010.

[13] S. Daum and A. Borrmann. Definition and implementation of temporal operators for a

4D query language. Proc. of the ASCE International Workshop on Computing in Civil

Engineering, Los Angeles, CA, USA, 2013, page 8, 2013.

[14] BuildingSMART. http://www.buildingsmart-tech.org/specifications/ifc-releases/ifc4-

release, Last accessed: 2014-01-22.

[15] STEP Application Handbook: ISO 10303. SCRA, 2006.

[16] P. Steger. Erstellen eines 3D-Modells mit ArchiCAD. Bachelorthesis - Chair for Com-

putation in Engineering (TUM), 2009.

[17] A. Monteiro and J.P. Martins. BIM modeling for contractors- improving model takeoffs.

Proc. of the CIB W078 29th International Conference On Applications Of IT In The

AEC Industry, page 10, 2012.

[18] A. Monteiro and J. P. Martins. A survey on modeling guidelines for quantity takeoff-

oriented BIM-based design. Automation in Construction, 35:238–253, 2013.

[19] A. Borrmann, T.H. Kolbe, A. Donaubauer, H. Steuer, and J.R. Jubierre. Transferring

multi-scale approaches from 3D city modeling to IFC-based tunnel modeling. Proc. of

the 3DGeoInfo, 2013.

[20] Y. Ji, A. Borrmann, J. Beetz, and M. Obergrießer. Exchange of parametric bridge

models using a neutral data format. ASCE Journal of Computing in Civil Engi-

neering, Exchange of Parametric Bridge Models using a Neutral Data Format:DOI:

10.1061/(ASCE)CP.1943–5487.0000286, 2013.

[21] T. Pazlar and Z. Turk. Interoperability in practice: geometric data exchance using the

IFC standard. ITcon – Special Issue Case studies of BIM use, 13:362–380, 2008.

[22] Berlin business location center. http://www.businesslocationcenter.de/de/wirtschaftsatlas-

berlin, Last accessed: 2014-01-22.

[23] M. Kada. The 3D Berlin project. Photogrammetric Week 2009, pages 331–340, 2009.

[24] Ordnance survey. http://www.ordnancesurvey.co.uk, Last accessed: 2014-04-03.

BIBLIOGRAPHY 173

[25] T. H. Kolbe, G. Gröger, and L. Plümer. CityGML – interoperable access to 3D city

models. In Proceedings of the First International Symposium on Geo- Information for

Disaster Management (Delft, Netherlands, March 21-23, 2005), page 16, 2005.

[26] T.H. Kolbe. CityGML–3D geospatial and semantic modelling of urban structures.

Presentation on the GITA/OGC Emerging Technologies Summit in Washington on,

page 38, 2007.

[27] G. Gröger, T. H. Kolbe, C. Nagel, and K.-H. Häfele. OGC City Geography Markup

Language (CityGML) encoding standard, v2.0.

http://www.opengeospatial.org/standards/citygml, Last acccessed: 2014-01-22.

[28] OGC Keyhole Markup Language. http://www.opengeospatial.org/standards/kml/, Last

acccessed: 2014-01-22, 2011.

[29] CityGML virtual 3D city models. http://www.citygml.org, Last accessed: 2014-01-22.

[30] B. Mao. Visualisation and Generalisation of 3D City Models. PhD thesis, Royal Insti-

tute of Technology, 2011.

[31] E. Sadek, A. Jamaludin, B. Rosdi, and M. Kadzim. The design and development of

a virtual 3D city model. http://www.hitl.washington.edu/people/bdc/virtualcities.pdf,

Last accessed: 2014-01-22.

[32] Y.Ban. ViSuCity-a visual sustainable city planning tool. Report,

URI:urn:nbn:se:kth:diva-89533, 2008.

[33] L. Tang, C. Chen, H. Huang, and K. Lin. Research on HLA-based forest fire fighting

simulation. Proc. of the 9th AGILE Conference on Geographic Information Science,

2006.

[34] T. H. Kolbe. CityGML tutorial. Institute for Geodesy and Geoinformation Science,

Technische Universität Berlin, page 103, 2007.

[35] P. Bolstad. GIS Fundamentals: A First Text on Geographic Information System. 2005.

[36] A. K. W. Yeung and C. P. Lo. Concepts and techniques of geographic information

systems. Upper Saddle River, NJ, 2002.

[37] N. Schuurman. A short introduction. Malden, 2004.

[38] Das Land Voralberg im Internet. http://www.vorarlberg.at/, Last accessed: 30.01.2014.

[39] Utah AGRC. http://gis.utah.gov/, Last accessed: 2014-01-22.

[40] R. de Laat and L. van Berlo. Integration of BIM and GIS: The development of the

CityGML GeoBIM extension. In Advances in 3D Geo-Information Sciences, pages

211–225. Springer, 2011.

174 BIBLIOGRAPHY

[41] H. Steuer, A. Donaubauer, T.H. Kolbe, M. Flurl, R.-P. Mundani, and E. Rank. Plan-

ning inner-city-railway-tracks: Dynamic integration of geospatial web services in a col-

laborative multi-scale geometry modelling environment. Proc. of the Workshop on

Intelligent Computing in Civil Engineering (EG-ICE), 2013.

[42] B. Hagedorn, M. Trapp, T. Glander, and J. Dollner. Towards an indoor level-of-detail

model for route visualization. In Mobile Data Management: Systems, Services and

Middleware, 2009. MDM’09. Tenth International Conference on, pages 692–697. IEEE,

2009.

[43] C. Dick, J. Krüger, and R. Westermann. GPU-aware hybrid terrain rendering. pages

3–10, 2010.

[44] C. Dick, J. Krüger, and R. Westermann. GPU ray-casting for scalable terrain rendering.

In Proceedings of Eurographics 2009 - Areas Papers, pages 43–50, 2009.

[45] TNO Building and Construction. IFC Engine. http://www.ifcbrowser.com/, Last ac-

cessed: 2014-01-22.

[46] W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual hulls for real-time ren-

dering. Rendering Techniques 2001, Springer, pages 115–125, 2001.

[47] Wirtschaftsatlas Berlin. www.3d-stadtmodell-berlin.de, Last accessed: 2014-01-28.

[48] D. P. Luebke. Level of detail for 3D graphics. Morgan Kaufmann, 2003.

[49] Google Earth. http://earth.google.de/, Last accessed: 2014-03-14.

[50] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,

A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd,

S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-

niak, C. Taylor, R. Wang, , and D. Woodford. Spanner: Google’s globally distributed

database. ACM Transactions on Computer Systems, 31(3), 2013.

[51] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-

terson, A. Rabkin, I. Stoica, and et al. A view of cloud computing. Communications

of the ACM, 53(4):50–58, 2010.

[52] M.-J. Kraak and F. Ormeling. Cartography: visualization of spatial data. Guilford

Press, 2011.

[53] W. Shen, Q. Hao, H. Mak, J. Neelamkavil, H. Xie, J. Dickinson, R.Thomas, A. Par-

dasani, and H. Xue. Systems integration and collaboration in architecture, engineering,

construction, and facilities management: A review. Advanced Engineering Informatics,

24(2):196–207, 2010.

BIBLIOGRAPHY 175

[54] B. Akinci, H. Karimi, A. Pradhan, C.-C. Wu, and G. Fichtl. CAD and GIS interoper-

ability through semantic web services. CAD and GIS Integration, page 199, 2010.

[55] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. Cam-

bridge: MIT press, 2, 2001.

[56] G. M. Morton. A computer oriented geodetic data base; and a new technique in file

sequencing. Technical Report, Ottawa, Canada: IBM Ltd., 1966.

[57] H. Samet. Spatial data structures. Addison-Wesley, 1995.

[58] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient

and robust access method for points and rectangles, volume 19. ACM, 1990.

[59] Leibniz-Rechenzentrum. http://www.lrz.de/services/compute/museum/hlrb2/, Last ac-

cessed: 2014-01-28, 2013.

[60] OpenMP. The OpenMP API specification for parallel programming.

http://openmp.org/, Last accessed: 2014-01-28.

[61] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[62] J. Reinders. Intel Threading Building Blocks: outfitting C++ for multi-core processor

parallelism. O’Reilly Media, Inc., 2010.

[63] A. Kukanov and M. J. Voss. The foundations for scalable multi-core software in Intel

Threading Building Blocks. Intel Technology Journal, 11(4), 2007.

[64] The Message Passing Interface (MPI) standard.

http://www.mcs.anl.gov/research/projects/mpi/, Last accessed: 2014-01-28.

[65] W. D. Gropp, E. L. Lusk, and A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface, volume 1. the MIT Press, 1999.

[66] W. D. Gropp, E. L. Lusk, N. Doss, and A. Skjellum. A high-performance, portable

implementation of the MPI message passing interface standard. Parallel computing,

22(6):789–828, 1996.

[67] Open MPI: Open source high performance computing. http://www.open-mpi.org/, Last

accessed: 2014-01-28.

[68] MPICH. http://www.mpich.org/, Last accessed: 2014-01-28.

[69] A. Dieberger and A. U. Frank. A city metaphor to support navigation in complex

information spaces. Journal of Visual Languages & Computing, 9(6):597–622, 1998.

176 BIBLIOGRAPHY

[70] J. Paay and J. Kjeldskov. Understanding and modelling built environments for mobile

guide interface design. Behaviour & Information Technology, 24(1):21–35, 2005.

[71] T. Tu, D. R. O’Hallaron, and O. Ghattas. Scalable parallel octree meshing for teras-

cale applications. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005

Conference, 2005.

[72] H. Sundar, R. S. Sampath, and G. Biros. Bottom-up construction and 2:1 balance refine-

ment of linear octrees in parallel. SIAM Journal on Scientific Computing, 30(5):2675–

2708, 2008.

[73] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel

adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing,

33(3):1103–1133, 2011.

[74] R. J. Hitchcock and J. Wong. Transforming IFC architectural view BIMs for energy

simulation. Proceedings of Building Simulation, 2011.

[75] S. Pissanetzky. Sparse matrix technology. Academic Press London, 1984.

[76] Y. Saad. Numerical methods for large eigenvalue problems, volume 158. SIAM, 1992.

[77] T. Weinzierl. A framework for parallel PDE solvers on multiscale adaptive cartesian

grids. Verlag Dr. Hut, 2009.

[78] H. Sagan. Space-filling curves, volume 18. Springer-Verlag New York, 1994.

[79] R. Fraedrich, J. Schneider, and R. Westermann. Exploring the millennium run - scalable

rendering of large-scale cosmological datasets. IEEE Transactions on Visualization and

Computer Graphics, 15(6):1251–1258, 2009.

[80] D. Keim, G. Andrienko, F. Gennady, J.-D. Fekete, C. Görg, J. Kohlhammer, and

G. Melançon. Visual analytics: Definition, process, and challenges. Springer, 2008.

[81] C. D. Hansen and C. R. Johnson. The visualization handbook. Elsevier, 2005.

[82] F. Reichl, M. Treib, and R. Westermann. Visualization of big SPH simulations via

compressed octree grids. Proceedings of IEEE Big Data, 2013.

[83] OpenGL the industry’s foundation for high performance graphics.

http://www.opengl.org/, Last accessed: 2014-03-04.

[84] F. D. Luna. Introduction to 3D game programming with DirectX 10. Jones & Bartlett

Publishers, 2008.

[85] D. H. Eberly. 3D game engine design: a practical approach to real-time computer

graphics. CRC Press, 2006.

BIBLIOGRAPHY 177

[86] E. Lengyel. Mathematics for 3d game programming and computer graphics. Cengage

Learning, 2012.

[87] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL programming guide: the official

guide to learning OpenGL, version 1.2. Addison-Wesley Longman Publishing Co., Inc.,

1999.

[88] H.-J. Bungartz, M. Griebel, and C. Zenger. Einführung in die Computergraphik: Grund-

lagen, Geometrische Modellierung, Algorithmen. Vieweg+Teubner Verlag, 2002.

[89] J. D. Foley, A. Van Dam, and S. K. Feiner. Computer graphics: Principles and practice.

2009.

[90] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface con-

struction algorithm. In ACM Siggraph Computer Graphics, volume 21, pages 163–169.

ACM, 1987.

[91] T. A. DeFanti and M. D. Brown. Visualization in scientific computing. Advances in

Computers, 33:247–305, 1991.

[92] G. M. Nielson, H. Hagen, and H. Müller. Scientific visualization. Institute of Electrical

& Electronics Engineers, 1997.

[93] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen projection-based

virtual reality: the design and implementation of the CAVE. In Proceedings of the 20th

annual conference on Computer graphics and interactive techniques, pages 135–142.

ACM, 1993.

[94] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart. The CAVE:

audio visual experience automatic virtual environment. Communications of the ACM,

35(6):64–72, 1992.

[95] S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A scalable parallel rendering

framework. Visualization and Computer Graphics, IEEE Transactions on, 15(3):436–

452, 2009.

[96] CORNEA. http://kvl.kaust.edu.sa/Pages/CORNEA.aspx, Last accessed: 2014-01-28.

[97] KAUST Visualization Core Lab. http://kvl.kaust.edu.sa/Pages/Showcase.aspx, Last

accessed: 2014-01-28.

[98] F. Zhou, H. B.-L. Duh, and M. Billinghurst. Trends in augmented reality tracking,

interaction and display: A review of ten years of ISMAR. In Proceedings of the 7th

IEEE/ACM International Symposium on Mixed and Augmented Reality, pages 193–202.

IEEE Computer Society, 2008.

178 BIBLIOGRAPHY

[99] D. Wagner, T. Pintaric, F. Ledermann, and D. Schmalstieg. Towards massively multi-

user augmented reality on handheld devices. In Pervasive Computing, pages 208–219.

Springer, 2005.

[100] J. Baus, A. Krüger, and W. Wahlster. A resource-adaptive mobile navigation system.

In Proceedings of the 7th international conference on Intelligent user interfaces, pages

15–22. ACM, 2002.

[101] D. W. F. Van Krevelen and R. Poelman. A survey of augmented reality technologies,

applications and limitations. International Journal of Virtual Reality, 9(2):1, 2010.

[102] iOS 7. http://www.apple.com/ios/, Last accessed: 2014-01-28.

[103] Android. http://www.android.com/, Last accessed: 2014-01-28.

[104] 802.11. IEEE.

[105] Network Working Group. RFC 2616.

[106] C. M. Kohlhoff. Boost::Asio: a cross-platform C++ library for network and low-level

I/O programming. Report, 2010.

[107] S. Blackrnan and A. House. Design and analysis of modern tracking systems. Boston,

MA: Artech House, 1999.

[108] ART. http://www.ar-tracking.com, Last accessed: 2014-03-04.

[109] A. Borrmann and E. Rank. Specification and implementation of directional operators

in a 3D spatial query language for building information models. Advanced Engineering

Informatics, 23(1):32–44, 2009.

[110] A. Borrmann. From GIS to BIM and back again–a spatial query language for 3D

building models and 3D city models. In 5th international 3D geoinfo conference, Berlin,

2010.

[111] A. Borrmann, S. Schraufstetter, and E. Rank. Implementing metric operators of a

spatial query language for 3D building models: octree and B-Rep approaches. Journal

of Computing in Civil Engineering, 23(1):34–46, 2009.

[112] R.-P. Mundani, H.-J. Bungartz, E. Rank, R. Romberg, and A. Niggl. Efficient algo-

rithms for octree-based geometric modelling. In Proc. of the Ninth Int. Conf. on Civil

and Structural Engineering Computing, Civil-Comp Press, 2003, 2003.

[113] M. Schreiber, H.-J. Bungartz, and M. Bader. Shared memory parallelization of fully-

adaptive simulations using a dynamic tree-split and -join approach. Proc. of the IEEE

International Conference on High Performance Computing (HiPC), 2012.

BIBLIOGRAPHY 179

[114] M. Schreiber, T. Weinzierl, and H.-J. Bungartz. Cluster optimization and parallelization

of simulations with dynamically adaptive grids. In F. Wolf, B. Mohr, and D. an Mey,

editors, Euro-Par 2013, volume 8097 of Lecture Notes in Computer Science, pages

484–496, Berlin Heidelberg, 2013. Springer-Verlag.

[115] H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ library for complex physics

simulations. In International Workshop on Coupled Methods in Numerical Dynamics,

IUC, Dubrovnik, Croatia, pages 1–20, 2007.

[116] OpenFOAM. http://www.openfoam.com/, Last accessed: 2014-01-28.

[117] M. J. Berger, D. L. George, R. J. LeVeque, and K. T. Mandli. The GeoClaw soft-

ware for depth-averaged flows with adaptive refinement. Advances in Water Resources,

34(9):1195–1206, 2011.

[118] V. Aizinger. A discontinuous Galerkin method for two-dimensional flow and transport

in shallow water. Advances in Water Resources, 25:67–84, 2002.

[119] J.-F. Remacle, S. S. Frazo, X. Li, and M. S. Shephard. An adaptive discretization

of shallow-water equations based on discontinuous Galerkin methods. International

Journal for Numerical Methods in Fluids, 52(8), 2006.

[120] R. Rew and G. Davis. NetCDF: an interface for scientific data access. Computer

Graphics and Applications, IEEE, 10(4):76–82, 1990.

[121] T. Weinzierl. Dynamic load balancing of spacetree grids. Proc. of the International

Conference on Parallel Computing - ParCo, September 2013.

[122] T. Neckel. The PDE framework Peano: an environment for efficient flow simulations.

Verlag Dr. Hut, 2009.

[123] R. Mittal and G. Iaccarino. Immersed boundary method. Annual Review Fluid Me-

chanics, 37:239–260, 2005.

[124] C. Peskin. The immersed boundary method. Acta Numerica, 11:1–39, 2002.

[125] R.-P. Mundani. Hierarchische Geometriemodelle zur Einbettung verteilter Simulation-

saufgaben. Shaker, 2006.

[126] F. Pellegrini. Static mapping by dual recursive bipartitioning of process and architec-

ture graphs. Proc. of the Scalable High-Performance Computing Conference (SHPCC),

IEEE Press, pages 486–493, 1994.

[127] M. Wang, Y. Tang, X. Guo, and X. Ren. Performance analysis of the graph-partitioning

algorithms used in OpenFOAM. Advanced Computational Intelligence (ICACI), 2012

IEEE Fifth International Conference on, pages 99–104, 2012.

180 BIBLIOGRAPHY

[128] N. Selvakkumaran and G. Karypis. Multiobjective hypergraph-partitioning algorithms

for cut and maximum subdomain-degree minimization. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 25(3):504–517, 2006.

[129] potentialFoam. http://openfoamwiki.net/index.php/PotentialFoam, Last accessed:

2014-03-03.

[130] J. Virbulis, , and J. Seņņikovs. Transient modelling of groundwater dynamics in the

Baltic Artesian Basin. Groundwater in Sedimentary Basins, page 15, 2012.

[131] C. Hirsch. Numerical computation of internal and external flows: The fundamentals of

computational fluid dynamics, volume 1. Butterworth-Heinemann, 2007.

[132] Yuri N. Skiba and Denis M. Filatov. On splitting-based mass and total energy conserv-

ing arbitrary order shallow-water schemes. Numerical methods for partial differential

equations, 1992.

[133] S. S. Deshpande, L. Anumolu, and M. F. Trujillo. Evaluating the performance of the

two-phase flow solver interFoam. Computational Science & Discovery, 5(1):014016,

2012.

[134] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Al-

gorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,

79:12–49, 1988.

[135] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incom-

pressible flow of fluid with free surface. Physics of fluids, 8:2182, 1965.

[136] C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free

boundaries. Journal of computational physics, 39(1):201–225, 1981.

[137] J. H. Ferziger and M. Perić. Computational methods for fluid dynamics, volume 3.

Springer Berlin, 1996.

[138] M. Schäfer. Computational engineering – introduction to numerical methods. Springer-

Verlag, 10.1007/3-540-30686-2, 2006.

[139] TEAMPLAN HOLDING AG.

Überflutungsnachweis mit gekoppeltem Oberflächenmodell.

http://www.fischer-teamplan.de/fachbereiche/abwasserableitung/generalentwaesserung/

ueberflutungsnachweis-mit-gekoppeltem-oberflaechenmodell/, Last accessed: 2014-03-

19, 2014.

[140] D. Balmforth and R. Benyon. Developing flood resilient communities. In Proc. of the

ICE Flooding 2013, 2013.

BIBLIOGRAPHY 181

[141] E. Mignot, A. Paquier, and S. Haider. Modeling floods in a dense urban area using 2D

shallow water equations. Journal of Hydrology, 327(1):186–199, 2006.

[142] T. J. Fewtrell, P. D. Bates, M. Horritt, and N. M. Hunter. Evaluating the effect of

scale in flood inundation modelling in urban environments. Hydrological Processes,

22(26):5107–5118, 2008.

[143] J. Chen, A. A. Hill, and L. D. Urbano. A GIS-based model for urban flood inundation.

Journal of Hydrology, 373(1):184–192, 2009.

[144] N. M. Hunter, P. D. Bates, S. Neelz, G. Pender, I. Villanueva, N.G. Wright, D. Liang,

R.A. Falconer, B. Lin, and S. Waller. Benchmarking 2D hydraulic models for urban

flooding. Proceedings of the ICE-Water Management, 161(1):13–30, 2008.

[145] S. S. Shahapure, T. I. Eldho, and E.P. Rao. Coastal urban flood simulation using FEM,

GIS and remote sensing. Water resources management, 24(13):3615–3640, 2010.

[146] P. D. Bates, M. S. Horritt, and T. J. Fewtrell. A simple inertial formulation of the shal-

low water equations for efficient two-dimensional flood inundation modelling. Journal

of Hydrology, 387(1):33–45, 2010.

[147] Introduction to the special issue on urban hydrology. Journal of Hydrology, pages

163–165, 2004.

[148] T. G. Schmitt, M. Thomas, and N. Ettrich. Analysis and modeling of flooding in urban

drainage systems. Journal of Hydrology, 299(3):300–311, 2004.

[149] R. S. Carr and G. P. Smith. Linking of 2D and pipe hydraulic models at fine spa-

tial scales. In 7th International conference on urban drainage modelling and the 4th

international conference on water sensitive urban design, Melbourne, Australia, 2006.

[150] O. Mark, S. Weesakul, C. Apirumanekul, S. B. Aroonnet, and S. Djordjević. Potential

and limitations of 1D modelling of urban flooding. Journal of Hydrology, 299(3):284–

299, 2004.

[151] A. Bolle, A. Demuynck, R. Bouteligier, S. Bosch, A. Verwey, and J. Berlamont. Hy-

draulic modelling of the two-directional interaction between sewer and river systems. In

7th International Conference on Urban Drainage Modelling and the 4th International

Conference on Water Sensitive Urban Design; Book of Proceedings, page 896. Monash

University, 2006.

[152] T. E. Barnard, A. W. Kuch, G. R. Thompson, S. Mudaliar, and B. C. Phillips. Evolution

of an integrated 1D/2D modeling package for urban drainage. Contemporary Modeling

of Urban Water Systems, Monograph, 15, 2007.

182 BIBLIOGRAPHY

[153] J. Leandro, A. S. Chen, S. Djordjević, and D. A. Savić. Comparison of 1D/1D and

1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal

of hydraulic engineering, 135(6):495–504, 2009.

[154] G. L. Kouyi, D. Fraisse, N. Rivière, V. Guinot, and B. Chocat. 1D modelling of the

interactions between heavy rainfall-runoff in urban area and flooding flows from sewer

network and river. Proc. of the 11th International Conference on Urban Drainage, 2008.

[155] N. D. S. Domingo, A. Refsgaard, O. Mark, and B. Paludan. Flood analysis in mixed-

urban areas reflecting interactions with the complete water cycle through coupled

hydrologic–hydraulic modelling. Water Science & Technology, 62(6):1386–1392, 2010.

[156] M. Dumbser, M. Käser, and E. F. Toro. An arbitrary high-order Discontinuous

Galerkin method for elastic waves on unstructured meshes–V. Local time stepping and

p-adaptivity. Geophysical Journal International, 171(2):695–717, 2007.

[157] C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck. A generalized local

time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes.

Microwave Theory and Techniques, IEEE Transactions on, 52(3):1067–1076, 2004.

[158] A. J. Crossley, N. G. Wright, and C. D. Whitlow. Local time stepping for modeling

open channel flows. Journal of Hydraulic Engineering, 129(6):455–462, 2003.

[159] S. Djordjević, A. J. Saul, G. R. Tabor, J. Blanksby, I. Galambos, I. Sabtu, G. Sailor,

et al. Experimental and numerical investigation of interactions between above and

below ground drainage systems. In 12th International Conference on Urban Drainage,

volume 1999, pages 10–15, 2011.

[160] Bayern. Bayerische Vermessungsverwaltung. http://vermessung.bayern.de, Last ac-

cessed: 2014-01-22.

[161] J. Stoter, G. Vosselman, J. Goos, S. Zlatanova, E. Verbree, and R. Klooster. Towards

a national 3D spatial data infrastructure: case of The Netherlands. Photogrammetrie-

Fernerkundung-Geoinformation, 6, 2011.

[162] S. Ding, M. A. Mannan, and A. N. Poo. Oriented bounding box and octree based

global interference detection in 5-axis machining of free-form surfaces. Computer-Aided

Design, 36(13):1281–1294, 2004.

[163] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchical structure for

rapid interference detection. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 171–180. ACM, 1996.

	Introduction
	Motivation
	Goal
	Structure

	Input Data and Preprocessing
	Building Information Modelling
	Industry Foundation Classes
	CAD Data and 3rd Party Building Information Models

	3D City Model
	Geographic Information System
	Terrain Specification
	Pipe and Supply Network Data

	Levels of Detail
	Multi-Resolution Raster Data
	Stepwise Coarsened Product Model Data
	GPU-based Generation of Levels of Detail

	Multi Resolution Meta Format
	Data Fusion and Set Augmentation

	Framework
	Hierarchical Data Representation
	Local Scale - Product Model Details
	Global Scale - Location Awareness

	A Scalable Hybrid Parallel Approach
	Multi-Level Parallelisation
	Building Up the Framework
	Interfacing Multi-Resolution Geometry
	Interfacing Auxiliary Information
	Interfacing Linearised Octree Representations
	Interfacing Voxel Representation
	Interfacing Voxel Query
	Communication Protocol of the Framework Access

	Load Distribution
	Probabilistic Mapping
	Modified Space Filling Curves
	Distribution Quality

	Visualisation and Exploration
	Visualisation
	Visualisation of Hierarchical Ordered Product Model Data
	Integration of Simulation Data
	Parallel Visualisation in CAVE-like Environments

	Navigation and Data Exploration
	Interacting Handheld Devices
	User Tracking and Tracked Interaction
	Product Model Investigation and Engineering Applications.

	Coupling Grid-Generation and Simulation Frameworks
	Coupling the Sierpinski Framework
	Derivation of the Bathymetry Discretisation

	Coupling the Peano Framework
	Interfacing the Geometry Description

	Coupling OpenFOAM
	Preprocessing the Solid/Fluid Discretisation
	Mesh Generation
	Parallel Mesh Generation and Domain Decomposition

	Multi-Resolution Parallel Numerical Simulation
	Fluid Flow Simulation
	Three-Dimensional Potential Flow
	Two-Dimensional Shallow Water Equation
	Three-dimensional Incompressible Navier-Stokes Equation
	Three-dimensional Free Surface Simulation

	Resolution Refinement
	Resolution Adaption

	Postprocessing - Propagation to Product Model Data
	Performance Results

	Urban Flooding Simulation with Pipe Network Interaction
	Existing Work
	A Holistic Pipe Network and Surface Flow Approach
	Surface Flow
	Pipe Network Flow
	Interplay of Surface and Pipe Network Flow

	The Scenario
	Data Basis and Discretisation
	Boundary Conditions
	Results

	Conclusion and Outlook
	Appendix
	Data Fusion and Set Augmentation
	CiE Sandstorm Cluster
	Shaheen
	KAUST Blue Gene/P `Shaheen'

	OpenFOAM Mesh Specification
	points
	faces
	boundary
	owner
	neighbour

	OpenFOAM Case Definition
	system/controlDict
	system/decomposeParDict
	system/fvSchemes
	system/fvSolution
	setFieldsDict

