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Abstract

In recent years, the performance of autonomous systems, such as intelligent robots, has

been greatly improved. Powerful CPUs, bigger RAMs, new sensors and faster data trans-

mission have made many applications possible which seemed to be unrealistic in the past.

However, the performance of such systems tends to become quite limited, as soon as they

leave their carefully engineered operating environments. Here, the primary challenge is to

manage the complexity and uncertainty of the real world, which typically come from the

following sources: the limited measurement accuracy and other limitations of the sensors,

modelling errors and purposefully made simplifications in the system’s internal represen-

tations, unobserved environment dynamics and random effects. On the other hand, people

may ask, why humans can handle highly complex problems with relatively limited com-

putational power (compared with computers). It is obvious that abstraction, semantics

and knowledge together play an important role. Humans understand the world in abstract

terms which are assigned with semantic meanings. Moreover, humans have necessary

knowledge, based on which they can make inference given only partially available data.

In this dissertation, a knowledge-supervised MCMC (KSMCMC) sampling technique is

developed to provide autonomous systems the ability to abstract and to infer based on

given knowledge and data. KSMCMC is realized by combining Markov logic and data

driven MCMC sampling. Based on Markov logic, task-specific context knowledge can be

formulated as descriptive logic rules which help to better explain the data. Using data

driven MCMC, samples can be efficiently drawn from unknown complex distributions. As

a whole, KSMCMC is a new method of finding compact abstract model for input data by

combining high-level knowledge processing with low-level data processing in a systematic

way. We demonstrate the effectiveness of the proposed KSMCMC sampling technique in

two typical tasks in the robotic domain: semantic mapping and scene analysis.

Using KSMCMC, a new system for the automatic generation of semantic maps from

preprocessed sensor data is proposed. This system is realized in the form of a probabilistic

generative model using a Bayesian formulation, in which the generated semantic maps are

aligned with the preprocessed sensor observations that a robot made during an environment

exploration and mapping stage. This introduces a bottom-up path into the approach by

using data driven discriminative environment feature detectors to analyze the continuous

noisy sensor observations. The proposed system differs from previous semantic mapping

approaches that mostly use various classification methods in a pure bottom-up fashion to

label either spatial regions or places based on context or that assign semantic labels directly

to portions of the observations. Instead, the proposed system constructs a parametric,

abstract, semantic and top-down representation of the domain under the consideration:

a classical indoor environment containing several units of different types connected by

doorways. The generated parametric abstract model of the perceived environment not

only accurately represents the environment geometry, it also provides valuable abstract

information. These maps are structured similarly to a scene graph and are well suited for

higher level reasoning and communication purposes.
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In addition, KSMCMC is used to build a system for modelling table-top scenes. The

proposed system demonstrates a probabilistic approach to generate abstract scene graphs

for table-top scenes using object pose estimation as input. This system explicitly makes

use of task-specific context knowledge by defining this knowledge as descriptive logic rules

in Markov logic. Integrating these with a probabilistic sensor model, maximum posterior

estimation of the scene parameters is performed using KSMCMC. The proposed system is

evaluated using real world scenes. Experimental results confirm that this system generates

correct scene graphs which represent the perceived table-top scenes well. By reasoning in

the defined Markov logic network, false estimates of the object poses and hidden objects

of the perceived scenes are correctly inferred.
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Zusammenfassung

In den letzten Jahren hat sich die Leistung von autonomen Systemen, beispielsweise von

intelligenten Robotern, stark verbessert. Leistungsstarke Prozessoren, ausreichende Ar-

beitsspeicher, neue Sensoren und schnelle Datenübertragung haben viele Anwendungen

ermöglicht, die in der Vergangenheit unrealistisch zu sein schienen. Die Flexibilität und

Leistungsfähigkeit solcher Systeme wird dennoch ziemlich begrenzt sein, sobald sie ihre

sorgfältig konstruierten Betriebsumgebungen verlassen. Hier liegt die primäre Heraus-

forderung in der Komplexität und Unsicherheit der realen Welt, die in der Regel folgende

Ursachen haben: die begrenzte Messgenauigkeit und andere Beschränkungen der Sensoren,

Modellierungsfehler und Vereinfachungen der Systemrepresentation, unbeobachtete Umge-

bungsdynamik und zufällige Effekte. Auf der anderen Seite stellt sich die Frage, warum

Menschen hochkomplexe Probleme mit relativ begrenzter Rechenleistung (verglichen mit

Rechnern) lösen können. Es ist offensichtlich, dass Abstraktion, Semantik und Wissen

gemeinsam eine wichtige Rolle spielen. Die Menschen verstehen die Welt in abstrakten Be-

griffen, denen semantische Bedeutungen zugeordnet sind. Darüber hinaus verfügen Men-

schen über das notwendige Hintergrundwissen, auf dessen Grundlage sie auch bei teilweise

unvollständiger Datenlage Schlußfolgerungen machen können.

In dieser Arbeit wird eine Knowledge-Supervised-MCMC (KSMCMC) Samplingtechnik

entwickelt, um autonomen Systemen die Fähigkeit des Abstrahierens und Schließens zu ver-

leihen. KSMCMC ist auf der Basis der Kombination von Markov-Logic und datengetrieben-

em MCMC-Sampling realisiert. Mithilfe von Markov-Logic kann aufgabenspezifisches Kon-

textwissen in der Form deklarativer logischer Regeln formuliert werden, mit deren Hilfe

die einlaufenden Sensordaten besser erklärt werden können. Mit dem datengetriebenen

MCMC-Sampling können effizient Stichproben aus unbekannten komplexen Verteilungen

gezogen werden. Als Ganzes ist KSMCMC eine neue Methode, die systematisch die High-

Level-Wissensverarbeitung mit der Low-Level-Datenverarbeitung kombiniert, um ein kom-

paktes abstraktes Modell für die Eingangsdaten zu finden. Wir demonstrieren die en-

twickelte Methodik und die damit zu erzielenden Ergebnisse anhand zweier klassischer

Robotikaufgabenstellungen: semantisches Mapping und Szenenanalyse.

Mithilfe von KSMCMC schlagen wir ein neues System zur automatischen Generierung

der semantischen Karten aus vorverarbeiteten Sensordaten vor. Dieses System ist in der

Form eines probabilistischen generativen Modells mithilfe einer Bayes-Formulierung real-

isiert, in der die erzeugten semantischen Karten mit den vorverarbeiteten Sensorbeobach-

tungen evaluiert werden. Das System unterscheidet sich von früheren Ansätzen, die das

Problem des semantischen Mappings meist in einem reinen Bottom-Up-Stil durch seman-

tische Annotation räumlicher Strukturen mithilfe der verschiedenensten Klassifikations-

methoden lösen. Stattdessen baut das vorgeschlagene System eine abstrakte, semantische

und Top-Down-Darstellung der Umgebung auf, die explizit das verfügbare Kontextwissen

berücksichtigt: es handelt sich um eine klassische Innenraumumgebung, die sich aus ver-

schiedenen Typen von Räumen zusammensetzt, für deren Komposition bestimmte Regeln

gelten. Das erzeugte parametrische und abstrakte Modell der wahrgenommenen Umgebung
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repräsentiert die Umgebungsgeometrie sehr genau. Außerdem bietet es auch wertvolle ab-

strakte Informationen über die Umgebung. Diese erzeugten semantischen Karten werden

ähnlich wie ein Szenengraph aufgebaut und sind hervorragend für eine Weiterverarbeitung

auf höherer Ebene geeignet.

Außerdem verwenden wir KSMCMC um ein System für die Modellierung von Table-Top-

Szenen zu bauen. Das vorgeschlagene System verwendet einen probabilistischen Ansatz zur

Modellierung von Table-Top-Szenen und erzeugt abstrakte Szenengraphen mit der Objekt-

lageschätzung als Eingabe. Dieses System verwendet ebenso explizit formuliertes, aufgaben-

spezifisches Vorwissen, das deklarativ über logische Regeln in Markov-Logic definiert wird.

Mithilfe eines probabilistischen Sensormodells wird eine Maximum-A-Posteriori Schätzung

der Szenenparameter unter Verwendung von KSMCMC durchgeführt. Das vorgeschlagene

System wird anhand von Experimenten mit realen Szenen evaluiert. Die eperimentellen

Ergebnisse bestätigen, dass dieses System sinnvolle Szenengraphen erzeugt, die die sen-

sorisch wahrgenommenen Table-Top-Szenen korrekt erklären. Mithilfe des resultierenden

Markov-Logic-Netzwerks werden fehlerhafte Lagehypothesen der Objekte verworfen und

die Existenz versteckter Objekte in der wahrgenommenen Szenen richtig erschlossen.
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1 Introduction

In recent years, the performance of autonomous systems, such as intelligent robots, has

been greatly improved. Powerful CPUs, bigger RAMs, new sensors and faster data trans-

mission have made many applications possible which seemed to be unrealistic in the past.

However, the performance of such systems tends to become quite limited, as soon as they

leave their carefully engineered operating environments. Here, the primary challenge is to

manage the complexity and uncertainty of the real world, which typically come from the

following sources: the limited measurement accuracy and other limitations of the sensors,

modelling errors and purposefully made simplifications in the system’s internal represen-

tations, unobserved environment dynamics and random effects.

On the other hand, people may ask, why humans can handle highly complex problems

with relatively limited computational power (compared with computers). It is obvious that

abstraction, semantics and knowledge together play an important role. Humans under-

stand the world in abstract terms which are assigned with semantic meanings. Moreover,

humans have necessary knowledge, based on which they can make inference given only

partially available data. For instance, if a person sees a desk in an office room, instead of

memorizing the world coordinates of all the surface points of the desk, this person will only

notice that there is an object “desk” at a certain position, and even this position is proba-

bly described in abstract terms like “beside the window” or “near to the door”. According

to experience (learned knowledge), this person can make some reasonable assumptions,

such as there could be some “books” in the “drawer” of the desk, instead of some “shoes”

being inside, without opening the drawer. An example of human level inference is depicted

in Fig. 1.1.

The use of abstraction, semantics and knowledge allows to define the system behaviour

on higher levels and independently of the exact setting of the environment and the exact

sensor readings. This abstractly defined behaviour is applicable to a wider range of sit-

uations and thus increases the overall robustness of the system. In our work, we aim to

provide autonomous systems the ability to abstract and to infer based on techniques of

knowledge processing and data processing so that they can better handle the complexity

and uncertainty of the real world.

1.1 Knowledge Processing

Knowledge processing is mainly concerned with representing information about the world

in a form that a computer system can utilize to solve complex tasks. The origin of knowl-

edge processing (also known as knowledge representation and reasoning) dates back to

1



1 Introduction

Fig. 1.1: An example of human level inference.

the 1950s, as several AI pioneers, such as Newell and Simon, attempted to make general

purpose problem solvers that could in theory solve any problem. The system proposed

by Simon et al. was called General Problem Solver (GPS) [99]. As its name, this system

was created as a universal solver machine with the hope that it should solve all formalized

symbolic problems. GPS was implemented in the information processing language (IPL)

[100] and was the first of its kind which separated the knowledge of problems from the

solving strategy. To solve a specific problem, GPS would decompose this problem into

several sub-problems and construct strategies to solve each of these sub-problems. GPS

could indeed solve several simple problems, but it failed to tackle more complex ones due

to the explosion of state space. Despite the limited applicability, GPS was undoubtedly

an important step towards advanced knowledge processing systems.

Through the successful development over the last decades, knowledge processing has

found its applications in more fields: social network analysis [149, 18], expert system

[32, 55], data mining [112, 95], business process management [62, 54], search engine [94,

159] and so on. In recent years, knowledge processing has drawn tremendous interests

in the robotics community as well. Several knowledge representation systems have been

proposed to solve robotic tasks. Tenorth [136] proposed a knowledge representation and

inference system for robot manipulation tasks. This system provides robots necessary

information about the objects and environments that they interact with. In principle,

this system combines different information sources into a big knowledge base, and these

sources include: encyclopedic and common-sense knowledge, such as instructions from the

internet; knowledge about objects and environment models, such as types of objects and

semantic representation of the environment; knowledge about robot actions and processes,

such as properties and effects of the actions that robots can perform; and knowledge about

robots own capabilities, such as dependencies and inter-dependencies on capabilities and

components that are essential for certain robot actions. Robot control decisions can be

made through inference in the defined knowledge base.

2



1.2 Data Processing

1.2 Data Processing

According to [31], data processing refers to the collection and manipulation of items of data

to produce meaningful information. Only after the data has been processed and assigned

certain meanings, it becomes useful information. The form of data is very diverse, and it

could be numbers, text, images, sound, and so forth. Other than knowledge processing,

data processing handles data directly in the continuous domain.

One of the earliest computerized data processing systems was used by the Census Bureau

of Unites States in the 1950s. This system made limited use of electronic computers and

was adopted for the 1950 United States Census [141]. Nowadays, data processing has

found its successful applications throughout all areas of our society, and it involves many

aspects. Some notable examples of these aspects include:

• Data Validation: this process checks for correctness, meaningfulness, and security of

the input data using standardised validation methods. Examples of this process are

code validation [63] and spelling check [82].

• Data Sorting: this process has two fundamental functions. It either arranges items in

a certain sequence, or it groups items with similar properties together. An example

of this process is the RANSAC algorithm [28].

• Data Retrieval: this process extracts the desired data from a database which typically

contains a very large amount of data. An example of this process can be found in

[24].

• Data Aggregation and Fusion: this process combines multiple pieces of data together

which could come at different time steps. An example of this process is the SLAM

process [50] which aggregates laser data that are obtained over time to generate a

consistent representation of the perceived environment.

• Data Modelling: this process defines and analyses data features, and finally creates

a model for the input data. Examples of this process can be found in [123].

1.3 Challenges

Although it would be very helpful to combine knowledge processing with data processing,

this is yet not easy to realize, because they are principally in two different domains which

are the symbolic domain and the continuous domain.

Knowledge processing is one of the core research areas in the field of artificial intelligence

(AI). In principle, knowledge processing belongs to the symbolic domain, where entities,

attributes, formalisms and other components are defined based on meaningful symbols

which do not necessarily have direct associations with data in the continuous domain.

This fact is well reflected in the formalisms that are typically used to build a knowledge

base. These formalisms include “semantic networks” and several “logic-based formalisms”.

3



1 Introduction

Semantic networks [128] use a directed or undirected graph to represent knowledge in

patterns of interconnected nodes and edges. In the graph, nodes and edges indicate the

involved concepts and their relations. In general, semantic networks provide a declarative

graphic formulation for knowledge representation that supports reasoning about the rep-

resented knowledge using automated systems. Semantic networks have several common

versions which share similar graphic structure but have their own emphasis and features,

such as, definitional networks [155], executable networks [92] and learning networks [80].

An example of knowledge representation using semantic networks is WordNet [93] which

is a lexical database for the English language.

Logic-based formalisms include description logic [7], propositional logic [69] and pred-

icate logic [146]. These formalisms share a similar syntax and are formal systems for

knowledge representation. In general, they model logical statements as “axioms”, and in

this way, the underlying symbols and relations are joined together. Description logic is usu-

ally used to model ontologies [48] describing knowledge as a hierarchy of concepts within a

domain, using a shared vocabulary to denote the types, properties and interrelationships

of those concepts [43]. Predicate logic has several variants: first order logic [126], higher

order logic [78] and their extensions, such as Markov logic [117] and Bayesian logic [68].

In predicate logic, “predicates” are used to model features of entities that are represented

by symbols. Logical connectives and quantifiers link the defined predicates together to

formulate knowledge as descriptive rules in the form of logic formulas.

According to the formalisms of knowledge representation, it is obvious that knowledge

processing happens on the symbolic and abstract level and does not necessarily associate

with data sets in the first place. This is totally different from data processing which intends

to extract valuable information directly from certain amount of data that could be very

noisy or even chaotic. Although both of knowledge processing and data processing have

many successful applications in their own domain, the combination of both in a systematic

and theoretically sound manner is rarely seen. The challenge lies in the lack of a well-

defined interface that connects the two domains in such a way, that knowledge processing

and data processing can fully deploy their own strength and work together as a consistent

unity.

1.4 Contributions

In this dissertation, a knowledge-supervised MCMC (KSMCMC) sampling technique is

developed to provide autonomous systems the ability to abstract and to infer based on

given knowledge and data. KSMCMC is a combination of Markov logic [117] and data-

driven MCMC sampling [161]. Based on Markov logic, task-specific context knowledge

can be formulated as descriptive logic rules. These rules define the system behaviour on

higher levels and can be processed by modern knowledge reasoning techniques. Using data-

driven MCMC, samples can be efficiently drawn from unknown complex distributions. As

a whole, KSMCMC is a new method of fitting abstract semantic models to input data by
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Fig. 1.2: a) The occupancy grid for the perceived environment generated by a SLAM process.

b) The parametric semantic map generated by the proposed system. Small triangles,

circles and rectangles show the geometric centres of halls, corridors and rooms. The

environment topology is shown by red dashed lines. c) A direct comparison between

the occupancy grid and the generated semantic map. d) The abstract representation

of the semantic map. Nodes represent space units, with “R”, “C” and “H” indicating

rooms, corridors and halls. Solid edges indicate connection by doors (drawn in cyan

in figure c), and dashed edges indicate connection by walls (drawn in blue in figure

c).

combining high-level knowledge processing with low-level data processing in a probabilistic

and systematic way. We demonstrate the effectiveness of the proposed KSMCMC sampling

technique in two typical tasks in the robotic domain: semantic mapping and scene analysis.

Using KSMCMC, a new system for the automatic generation of semantic maps from

preprocessed sensor data is proposed. This system is realized in the form of a probabilistic

generative model using a Bayesian formulation, in which the generated semantic maps are

aligned with the preprocessed sensor observations that a robot made during an environ-

ment exploration and mapping stage. By defining context knowledge in Markov logic and

reasoning in the defined knowledge base, the whole sampling process is guided to converge

towards the environment representations that comply with the defined knowledge and

match the data well at the same time. Using discriminative feature detectors, the noisy

sensor observations are analysed to provide proposals for the sampling process. This in-

troduces a bottom-up path into the sampling process and increases the convergence speed.

The proposed system differs from previous semantic mapping approaches that mostly use

various classification methods in a pure bottom-up fashion to label either spatial regions

or places based on context or that assign semantic labels directly to portions of the ob-

servations. Instead, the proposed system constructs a parametric, abstract, semantic and
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1 Introduction

Fig. 1.3: a) The input stereo image (only left image is shown). b) Estimated 6D poses. c)

Scene graph generated by the proposed system. Arrows indicate the relation of

stable support (existence of support surface). Undirected lines indicate the relation

of contact. False estimates and objects implying hidden objects are highlighted in red

and cyan respectively. d) Query probabilities on false estimates and hidden objects.

top-down representation of the domain under the consideration: a classical indoor envi-

ronment containing several units of different types connected by doorways. The generated

parametric abstract model of the perceived environment not only accurately represents

the environment geometry, it also provides valuable abstract information. These maps are

structured similarly to a scene graph and are well suited for higher level reasoning and

communication purposes. An example of the proposed system is illustrated in Fig. 1.2.

In addition, the KSMCMC sampling technique is used to build a system for modelling

table-top scenes. The proposed system employs a probabilistic approach to generate ab-

stract scene graphs for table-top scenes using 6D object pose estimation as input. This

system explicitly makes use of context knowledge that describes how such table-top scenes

could be constructed. This knowledge is defined as descriptive logic rules in Markov logic

and is used to calculate the probability of scene graphs. Combining the probability of scene

graphs with a probabilistic sensor model, maximum posterior estimation of the scene pa-

rameters is performed using KSMCMC. The proposed system is evaluated using real world

scenes. Experimental results confirm that this system generates correct scene graphs which

well represent the perceived table-top scenes. These scene graphs explain the composition

of the observed scenes correctly and provide valuable semantic information on the inter-

object relations which is very useful for robot manipulation tasks. By reasoning in the

defined Markov logic network, false estimates of the object poses and hidden objects of the

6
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perceived scenes are correctly inferred. An example of this system is shown in Fig. 1.3.

Fig. 1.4: Outline of the dissertation.

1.5 Outline of the Dissertation

As depicted in Fig. 1.4, the remainder of this dissertation is structured as follows: in

chapter 2, the theory of the proposed knowledge-supervised MCMC sampling technique is

explained. We introduce the mathematical background of this method and discuss the role

of abstraction, semantics and knowledge. In chapter 3, the KSMCMC sampling technique

is used to solve the problem of semantic mapping. Based on KSMCMC, a new system

for generating semantic maps from occupancy grids is proposed. We elaborate on the

realization of this system and evaluate its performance through experiments. In chapter 4,

KSMCMC is employed to tackle another typical challenge in the robotic domain, which is

table-top scene analysis. Using KSMCMC, abstract scene graphs are generated for table-

top scenes. The proposed system is evaluated in various experiments. In chapter 5, we

provide conclusions and give an outlook.
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In this chapter, we introduce a new sampling technique called knowledge-supervised

MCMC (KSMCMC). We propose to realize this KSMCMC sampling technique by com-

bining Markov logic and data-driven MCMC sampling, because the former is a powerful

tool for modelling uncertain knowledge and the latter provides an efficient way of drawing

samples from unknown complex distributions. Based on Markov logic, task-specific con-

text knowledge can be formulated as descriptive logic rules. These rules define the system

behaviour on higher levels, regardless of the exact setting of the environment and the ex-

act sensor readings. This abstractly defined behaviour is applicable to a wider range of

situations and thus increases the overall robustness of the system. As a whole, KSMCMC

is a new method of fitting abstract semantic models to input data by combining high-level

knowledge processing with low-level data processing in a probabilistic and systematic way.

Within the framework of KSMCMC, knowledge processing and data processing can fully

deploy their own strength and work together as a consistent unity.

The remainder of this chapter is structured as follows: in section 2.1, an overview is

provided on commonly used context knowledge. We focus mainly on the approaches that

use context knowledge to analyse and process data. In section 2.2, we introduce some

background knowledge which is essential for understanding the concept of Markov logic

networks. In section 2.3, we elaborate on the theory of KSMCMC and explain how to

apply this technique to solve problems.

2.1 An Overview on Context Knowledge

So far, many approaches have attempted to adopt context knowledge (information) for data

processing. Most of them code such knowledge directly into the continuous domain and

do not take the symbolic domain into account. A common way to use context knowledge

is to formulate it as certain constraints or boundary conditions so as to restrict the system

states to a reasonable small set. This way of utilizing context knowledge can not make

the best use of knowledge processing, because the power and the flexibility of knowledge

representation and reasoning that exist in the symbolic domain are abandoned in this

case. In the following, we provide a systematic overview on the commonly used context

knowledge.

Galleguillos and Belongie [34] provided a survey on context-based object categorization.

They addressed the problem of incorporating different types of contextual information for

robust object categorization in computer vision. Considering the most common levels of

extraction of context, they reviewed different ways of using contextual information for
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object categorization. They first grouped the contextual features into three categories,

which are semantic context, scale context and spatial context. These contextual features

can be any information that is not directly produced by the appearance of the involved

objects and can be obtained from several sources, such as, image tags and presence or

locations of other objects. The five different classes of relations between an object and

its surroundings proposed by Biederman et al. [12] (interposition, support, probability,

position, familiar size) are considered a classical example of contextual features.

The semantic context of an object is defined in terms of its co-occurrence with other

objects and in terms of its occurrence in scenes. It generally indicates what other objects

to expect in a scene given a specific object. Normally, Semantic context can be obtained

from the following sources: expert knowledge [29, 130], annotated databases [157], external

knowledge-bases [114] and learning methods [157, 114]. In [104], it was shown that the

identification of briefly presented drawings of real world objects is influenced by prior

presentation of visual scenes. Experiments indicate that the observers accuracy for object

categorization is improved if the target object is shown to the observer in an appropriate

scene. By contrast, if the target object is shown to the observer in an inappropriate scene,

the accuracy of object categorization declines. Other examples using semantic context can

be found in [138], [147] and [114].

The scale context indicates that objects have a limited set of size relations with other

objects in the scene. An example of scale context is Biederman’s familiar size [12] which is a

contextual relation based on the scales of an object with respect to others. To establish the

scale context, the identification of other objects in the scene must be given. In addition,

some other prerequisites should also be fulfilled before scale context can be used, such

as the specific spatial and depth relations among objects. In [138], a simple framework

is proposed to model the relationship between context and object properties. Object

properties are learned as contextual features based on the correlation between the statistics

of low level features across the entire scene. Scale context is then used for scale selection

in the detection of high level structures as objects. Other examples using scale context

can be found in [85], [140], and [139].

Spatial context can be defined by the likelihood of finding an object in some position

and not others with respect to other objects in the scene. In general, spatial context

represents the co-occurrence of other objects in the scene. Thus it provides qualitative

information about the scene configuration, i.e., where those objects are usually located.

In [9], the consequences of pairwise spatial relations on human performance in recognition

tasks between objects that typically co-occur in the same scene are assessed. This work

indicates that proper spatial relations among objects decreases error rates in the recognition

of individual objects. Other examples using this type of context can be found in [53], [97],

[107] and [118].

In fact, it is very rare to use only a certain kind of these context types in an application.

More commonly, they are combined together to make the best use of context information.

An example of using the three context types is provided in [34] and depicted in Fig.
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Fig. 2.1: An example of using the three context types provided in [34]. The input image is

first labelled by the recognizer. Then the labelling performance is improved using the

three context types.

2.1. Here, an idealized object categorization system incorporating the semantic context,

spatial context and scale context is illustrated. First, the input image is segmented, and

each segment is labelled by the recognizer. Next, different types of context information

are adopted to refine the labelling performance.

2.2 Markov Logic Networks

People use knowledge to express their belief on a certain topic, which is learned from

their daily life. Such knowledge holds for the most cases, nevertheless, there still exit

scenarios where it fails. Thus, it is reasonable to model and use knowledge in the form of

soft rules, which allow the existence of contradiction and retain the flexibility by defining

knowledge as descriptive rules. For this purpose, Markov logic networks (MLNs) [117] are

a good fit, because they combine first-order logic [10] and probabilistic graphical models

[75]. First-order logic is able to compactly present knowledge in formulas (hard rules),

and probabilistic graphical models are good at handling uncertainty. The combination of

both makes it possible to express knowledge as soft rules (formulas attached with weight

indicating uncertainty) in a systematic way.

Although Markov logic networks are a quite new method, invented in 2006, several

MLNs-based approaches have been proposed so far, such as [71], [81], [150] and [101].

Before explaining the theory of Markov logic networks, we first briefly introduce the two

fundamental ingredients of MLNs, which are Markov networks and first-order logic.

2.2.1 Markov Networks

According to [109], a Markov network is a model for representing the joint distribution of a

set of variables X = (X1, X2, . . . , Xn) ∈ X, which constructs an undirected Graph G, with
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each variable represented by a node of the graph. In addition, the model has one potential

function φk for each clique in the graph, which is a non-negative real-valued function of

the state of that clique. Then the joint distribution represented by a Markov network is

calculated as

P (X = x) =
1

Z

∏
k

φk(x{k}), (2.1)

with x{k} representing the state of the variables in the kth clique. The partition function

Z is calculated as

Z =
∑
x∈X

∏
k

φk(x{k}). (2.2)

By replacing each clique potential function with an exponentiated weighted sum of features

of the state, Markov networks are usually used as log-linear models:

P (X = x) =
1

Z
exp

(∑
j

ωjfj(X)

)
, (2.3)

where fj(x) is the feature of the state and it can be any real-valued function. For each

possible state x{k} of each clique, a feature is needed with its weight ωj = log φk(x{k}).

Note that for the use of MLNs only binary features are adopted, fj(x) ∈ {0, 1}. For more

details on Markov networks, we refer to [109].

2.2.2 First-Order Logic

Here we briefly introduce some definitions in first-order logic, which are needed to under-

stand the concept of Markov logic networks, for more details on first-order logic, we refer

to [37].

• Constant symbols: these symbols represent objects of the interest domain.

• Variable symbols: the value of these symbols are the objects represented by the

constant symbols.

• Predicate symbols: these symbols normally describe relations or attributes of objects.

• Function symbols: these symbols map tuples of objects to other objects.

• An atom or atomic formula is a predicate symbol used for a tuple of objects.

• A ground atom is an atom containing no variables.

• A possible world assigns a truth value to each possible ground atom.

• Together with logical connectives and quantifiers, a set of logical formulas can be

constructed based on atoms to build a first-order knowledge base.

12



2.3 Knowledge-Supervised MCMC

2.2.3 MLNs

Unlike first-order knowledge bases, which are represented by a set of hard formulas (con-

straints), Markov logic networks soften the underlying constraints, so that violating a

formula only makes a world less probable, but not impossible. The fewer formulas a world

violates, the more probable it is. In MLNs, each formula is assigned a weight representing

how strong this formula is. According to [117], the formal definition of a MLN is:

A Markov logic network L is a set of pairs (Fi, ωi), where Fi is a formula in first-order

logic and ωi is a real number. Together with a finite set of constants C = {c1, c2, . . . , c|C|},
it defines a Markov network ML,C (equations (2.1) and (2.3)) as follows:

1. ML,C contains one binary node for each possible grounding of each predicate appear-

ing in L. The value of the node is 1 if the ground atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The

value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight

of the feature is the ωi associated with Fi in L.

The probability over possible worlds x specified by the ground Markov network ML,C

is calculated as

P (X = x) =
1

Z
exp

(∑
i

ωini(x)

)
=

1

Z

∏
i

φi(x{i})
ni(x), (2.4)

where ni(x) is the number of true groundings of Fi in x, x{i} is the state (truth values) of

the atoms appearing in Fi, and φi(x{i}) = eωi . Z is a normalization factor which is the

same for all possible worlds with the same number of constants C. For more details on

Markov logic networks, we refer to [117].

2.3 Knowledge-Supervised MCMC

Knowledge-supervised MCMC sampling (KSMCMC) is a probabilistic framework that sys-

tematically combines data processing in the continuous domain with knowledge processing

in the symbolic domain. By establishing this framework, we aim to set up a procedure

that systematically makes use of context knowledge in the form of descriptive logic rules

to fit abstract semantic models to data sets acquired in the continuous domain. In this

way, these data sets are represented by compact abstract models with certain semantic

meanings which are well suited for high-level reasoning and communication purposes.

A main criterion for evaluating how well the abstract semantic model matches with the

data is the posterior probability of the model M conditioned on the data D: p(M |D).

According to Bayes’ theorem, the following equations are derived:
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p(M,D) = p(D|M) · p(M), (2.5)

= p(M |D) · p(D).

Then the posterior probability of the model conditioned on the data, p(M |D), is calcu-

lated as:

p(M |D) =
p(D|M) · p(M)

p(D)
. (2.6)

By ignoring the term p(D) which is the same for all models, p(M |D) is finally calculated

as:

p(M |D) ∝ p(D|M) · p(M). (2.7)

Here, the term p(D|M) is usually called likelihood and indicates how probable the observed

data set is for different settings of the model. Note that the likelihood is not a probability

distribution over the model, and its integral with respect to the model does not (necessarily)

equal one [13]. The term p(M) is called the prior probability and describes what kind of

models are possible at all. Our goal is then to find the model M∗ that best explains

the data and meanwhile has a high prior probability, which leads to the maximum of the

posterior probability:

M∗ = argmax
M∈Ω

p(M |D), (2.8)

where Ω indicates the entire solution space.

In the framework of KSMCMC, M∗ is obtained using a data-driven MCMC sampling

process that is guided by context knowledge defined as descriptive logic rules in Markov

logic networks. Using the defined context knowledge, the prior distribution is shaped in

such a way, that the models that comply with the underlying knowledge base are assigned

a high prior probability, and models that contradict or not fully comply with the knowl-

edge base are given a low prior probability. Multiplying the prior probability of a model

with its corresponding likelihood, which indicates how well data matches with this model,

the posterior probability of this model conditioned on data is calculated. This posterior

probability is then used to evaluate models in the data-driven MCMC sampling.

The general idea of shaping prior distribution is explained in Fig. 2.2, using a one-

dimensional example. The likelihood for different settings of models, which contains three

local optima, is depicted in Fig. 2.2-a. The prior distributions represented by context

knowledge defined in MLNs are shown in Fig. 2.2-b. Different context knowledge bases

(set of rules) represent different prior distributions (green and red). If no context knowledge

is used, it is the same as implementing the context knowledge that represents a uniform

distribution which does not influence the posterior, i.e. posterior is only proportional

to likelihood in this case. The corresponding posterior distributions obtained using the

two prior distributions are demonstrated in Fig. 2.2-c. By shaping prior distribution

using context knowledge, the posterior distribution is influenced so that the number of
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local optima decreases, which means, the models that comply with the defined context

knowledge and match the data well tend to have a high posterior probability. In the

following, the entire modelling and sampling procedures of KSMCMC are explained in

detail.

Fig. 2.2: The general idea of shaping prior distribution illustrated using a one-dimensional

example. a) The likelihood for different settings of models, which contains three

local optima. b) The prior distribution represented by context knowledge defined

in MLNs. Different context knowledge bases (set of rules) represent different prior

distributions (green and red). c) Corresponding posterior distributions obtained using

the two prior distributions shown in figure b.

2.3.1 Model Definition

In general, the semantic abstract model M that is used to represent the data D should be

defined in the following way:

M := {Vc, Va}, (2.9)

where Vc and Va denote the set of the continuous and abstract variables respectively.
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Continuous Variables

As shown in Fig. 2.3, the model definition spans over the continuous and the symbolic

domain. Vc contains necessary variables that are needed to represent the data in the

continuous domain. Based on the variables in Vc, instances of the defined model can

be generated. The model can be evaluated by comparing the generated instances with

the data. This is also a possible way of calculating the likelihood in equation (2.7). In

principle, the set of continuous variables Vc serves as the interface to data processing in

the continuous domain. For example, in the scenario of fitting a line model to point clouds

in the 3D Cartesian space, Vc would be the variables that are needed to formulate the 3D

line equation.

Abstract Variables

Based on the semantics that needs to be encoded into the model, a set of abstract variables

Va can be defined. These abstract variables are highly related to the continuous variables

and describe the semantic features of the data in the symbolic domain. Here semantic

features refer to the task-specific and meaningful definitions that are required to represent

the continuous data on a higher level, i.e. the semantic level. These semantic features do

not come along with the data in the first place, thus they must be manually defined. The

definition of these abstract variables depends mainly on the scenario and the users’ needs.

For instance, abstract variables could be “room”, “corridor” and “hall” for semantic indoor

mapping, or “road”, “traffic flow” and “building” for traffic scene understanding.

Fig. 2.3: The general definition of semantic abstract models. The model contains a set of

continuous and a set of abstract variables. These variables serve as interfaces to the

continuous and symbolic domain. These two sets of variables interrelate with each

other through the encoded semantics, so that the two domains are systematically

joined together.
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Interrelation through Semantics

In principle, the set of abstract variables Va serves as the interface to knowledge processing

in the symbolic domain. Va provides the fundamental elements for expressing knowledge

bases in Markov logic networks. Va interrelates with the set of continuous variables Vc
through the underlying semantics. Va contains semantic features that are abstracted di-

rectly from Vc. These semantic features define the underlying model on a higher level and

enable the use of context knowledge. Through the interrelation between Va and Vc, the

continuous domain and the symbolic domain are systematically joined together. In this

way, data processing and knowledge processing can fully deploy their own strength and

meanwhile act together as a consistent unity.

2.3.2 Knowledge Representation and Reasoning

Having defined the model, the next step is to represent task-specific context knowledge

using Markov logic networks. This involves several intermediate steps which are explained

in the following.

Knowledge in Natural Language

The first step of knowledge representation and reasoning is always to think about what

kind of knowledge needs to be encoded into the knowledge base which is comprised of

several rules. This begins by writing down the rules in the form of natural language. This

is a iterative process: think and rethink which rules are really needed to formulate the

desired knowledge base. To keep the efficiency of knowledge reasoning on a acceptable

level, minimalism should be taken into account: keep only the minimum set of rules that

are needed.

Definition of Logic Rules

After the rules are written down in natural language, we need to transform them into

descriptive logic rules using Markov logic networks (MLNs). Since MLNs use the semantics

of first-order logic (FOL) for logical formulation, we refer to previous literature on FOL

[37] for defining logic rules. In addition to rule definition, another issue is to consider what

kind of uncertainty should be assigned to each rule. In MLNs, the uncertainty of rules is

indicated by the weights of logical formulas. The greater a weight is, the more probably

the corresponding rule holds. The weights can either be learned or manually designed.

Examples can be found in [87], [64], [65] and [66].

Definition of Predicates

In predicate logic, such as FOL, predicates are the basic elements used to formulate logic

rules. As shown in Fig. 2.4, all these predicates are defined in the set of abstract variables

Va of the model. Among the predicates, there exist two main groups which differ from
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each other with respect to their functionalities in logical formulations. These two groups

are evidence predicates and query predicates, and they are explained in the following:

• Evidence predicates: these predicates introduce features of the model (that are orig-

inally defined in the continuous domain) into the symbolic domain and enables the

knowledge reasoning process in general. Truth values of evidence predicates can be

directly extracted from the continuous variables Vc of the model. With respect to

the knowledge reasoning process, evidence predicates are known elements and serve

as inputs.

• Query predicates: truth values of query predicates are unknown in the first place.

In general, they are the answers that the knowledge reasoning process should deliver

given the truth values of evidence predicates. Within model definition, query pred-

icates play a key role in interrelating the set of abstract variables with the set of

continuous variables. They bring the results of knowledge reasoning in the symbolic

domain back into the continuous domain, where these results are used to guide the

processing of continuous data and variables.

Fig. 2.4: The functionality of evidence and query predicates. Truth values of evidence pred-

icates can be directly extracted from the continuous variables of the model. Query

predicates are the answers that the reasoning process should deliver given the truth

values of evidence predicates.

2.3.3 Likelihood Definition

The goal of likelihood definition is to define a function for data-based model evaluation.

In general, likelihood p(D|M) measures how well data D matches to the model M . While
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data is typically a large set of values, a model is usually described by a comparably smaller

set of values (variables). If a model is defined in an analytical closed form, such as a

mathematical equation, likelihood could be simply calculated as the deviation between

data and the model.

However, in many circumstances, the model itself is much more complex and does not

have an analytical formulation. In such cases, it is very difficult to directly compare data

with the model. To realize likelihood p(D|M), a common method is to generate synthetic

data DM using the model M that needs to be evaluated. It should be noted that the

synthetic data DM must be generated in a form that is compatible with the data D that

is used to evaluate the model M . Finally, likelihood is calculated as the result of how well

D matches to DM .

2.3.4 Prior Definition

Principally, prior probability p(M) describes the uncertainty of a model M before any

evidence is taken into account. In other words, it indicates how probable a model M

is, regardless of data D. The definition of prior is often purely subjective. In the case

that no useful information is available about the underlying model, the prior is defined

by assigning equal probabilities to all model settings, i.e. using a uniform distribution as

prior. However, in this way, prior loses its influence on posterior.

Within the framework of KSMCMC, prior is defined with the help of knowledge process-

ing in Markov logic networks. Useful information about the underlying model is specified

by the knowledge base that is defined as descriptive logic rules. Reasoning results of the

defined knowledge base are used to define prior distribution. By doing so, prior distribu-

tion is shaped in such a way that models that comply with the defined knowledge base are

assigned a high prior probability, and accordingly, models that contradict with the defined

knowledge base are given a low prior probability.

Given the model definition

M := {Vc, Va},

prior p(M) is calculated in the following form:

p(M) = p(Vc, Va),

= p(Vc|Va) · p(Va), (2.11)

with Vc being the set of continuous variables, and Va being the set of abstract variables.

p(Va) is the prior probability of the set of abstract variables. p(Vc|Va) is the conditional

probability of the set of continuous variables given the set of abstract variables. Depending

on the viewing angle, p(Vc|Va) and p(Va) can be realized in different ways. The fundamental

idea is to use the results of the knowledge reasoning process to design functions that express

reasonable semantic interrelations between these variables.
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2.3.5 Design of Data-Driven MCMC

After likelihood and prior are defined, the posterior probability p(M |D) is calculated as

their multiplication. The next step is to find the model M∗ that has the maximum posterior

probability (equation (2.8)). Given the high-dimensional and complexly structured solution

space, this is indeed a big challenge. Here, the critical question is how to efficiently search

for M∗ in such a complex solution space. To tackle this challenge, we adopt the data-

driven Markov chain Monte Carlo (DDMCMC) technique [161], which is a modern variant

of Markov chain Monte Carlo (MCMC) methods [98, 13].

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from

probability distributions. In MCMC methods, a Markov chain is constructed, whose equi-

librium distribution is identical with the desired distribution. Here, a Markov chain is a

stochastic process and contains a sequence of random variables which follows the Markov

property. The Markov property states that the next state of the chain depends only on

the current state and not on the sequence of states.

In MCMC methods, the Markov chain is constructed by sequentially executing state

transitions according to a proposal distribution. The state of the chain after certain burn-

in time is then used as a sample of the desired distribution. Burn-in refers to the practise

of throwing away some iterations at the beginning of the MCMC run. States of the

underlying Markov chain during the burn-in time can not yet represent samples of the

desired distribution. According to [144], three criteria should be taken into account while

designing a Markov chain:

• The Markov chain should be ergodic, i.e. from an arbitrary initial state, the Markov

chain should be able to visit any other states in finite time.

• The Markov chain should be aperiodic. A Markov chain is considered to be aperiodic

if every state of this Markov chain is aperiodic.

• The Markov chain should fulfil the condition of detailed balance equations [40]. This

condition requires that every state transition of the Markov chain is reversible.

Data-Driven MCMC

Data-driven MCMC (DDMCMC) [161] is a modern extension of MCMC methods and is

originally proposed for image segmentation purposes. Like traditional MCMC methods,

the DDMCMC method also constructs well-balanced Markov chain dynamics to explore

complex solution spaces. As the term “data-driven” already tells, in DDMCMC, the ex-

tension lies in that DDMCMC adopts data-driven (bottom-up) techniques to propose state

transitions for the Markov chain. By doing so, the Markov chain dynamics is greatly accel-

erated, and the burn-in time is largely reduced, compared to traditional MCMC methods.
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2.3 Knowledge-Supervised MCMC

In DDMCMC, state transitions are proposed based on features that are extracted from

data using bottom-up detectors. As shown in Fig. 2.5, values of the continuous variables

of the underlying model are influenced by these state transitions. In general, the definition

of state transitions is quite subjective. Depending on the use case, state transitions can

have different functionalities. Some typical functionalities include birth/death of certain

components, value changes of certain parameters, merge/split of certain entities and so

on. In principle, it is helpful to arrange these state transitions as reversible pairs, so as to

ensure that the Markov chain fulfils the condition of detailed balance equations.

Fig. 2.5: State transitions are proposed based on extracted data features in DDMCMC. Values

of the continuous variables of the underlying model are influenced by state transitions.

Metropolis-Hastings Algorithm

Among the existing MCMC methods, the Metropolis-Hastings algorithm is a popular

method for obtaining a sequence of random samples from a complex probability distri-

bution. Here we only introduce some basic ideas about the Metropolis-Hastings Algorithm

to help better explain the KSMCMC Framework. For more details on the theory of the

Metropolis-Hastings Algorithm, we refer to [13] and [21].

In the Metropolis-Hastings algorithm, samples are iteratively generated in a random

manner. These samples follow the Markov property, i.e. the next sample is only dependent

on the current sample. In each iteration, a new sample is proposed by a state transition

which follows certain proposal distribution. Then the new sample is either accepted or

rejected. In case of acceptance, the new sample is used in the next iteration. Otherwise,

the current sample is reused in the next iteration, and the new sample is abandoned. As

more and more samples are randomly generated, the distribution of the underlying Markov

chain approximates the desired distribution more accurately.
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2 Knowledge-Supervised MCMC Sampling

In the Metropolis-Hastings algorithm, the newly proposed sample in each iteration is

accepted by the following acceptance probability λ(M,M ′):

λ(M,M ′) = min

(
1,
p(M ′|D) ·Q(M |M ′)
p(M |D) ·Q(M ′|M)

)
, (2.12)

where M is the current sample, and M ′ is the new sample. p(M |D) is the posterior proba-

bility defined in equation (2.7). Q(M ′|M) is the proposal probability of generating M ′ from

M . Accordingly, Q(M |M ′) is the corresponding reverse proposal probability. In a general

problem, it is unclear which proposal distribution should be used to calculate Q(M ′|M)

and Q(M |M ′). The choice of the proposal distribution is a task-specific engineering prob-

lem. Within the framework of DDMCMC, the proposal probability can be calculated with

the help of bottom-up feature detectors that are used to propose state transitions.

The acceptance probability λ(M,M ′) should be interpreted as follows:

• With λ(M,M ′) ≥ 1, the new sample is definitely accepted.

• With λ(M,M ′) < 1, the new sample is accepted only by chance. In this case, the

acceptance probability for the new sample is λ(M,M ′). This is realized by drawing

a random number θ according to the uniform distribution U(0, 1), and comparing θ

with λ(M,M ′):

– With θ ≤ λ(M,M ′), the new sample is accepted.

– With θ > λ(M,M ′), the new sample is rejected.
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3 Use Case: Semantic Indoor Mapping

The primary challenge for any autonomous system operating in realistic, rather uncon-

strained scenarios is to manage the complexity and uncertainty of the real world. In

robotics this holds, as soon as the robots leave the carefully engineered production envi-

ronments in which they have been so successful in the past decades.

The typically high degree of uncertainty in real-world environments, that makes a robot’s

life so hard, comes from the following sources: the limited measurement accuracy and other

limitations of the system sensors, modelling errors and purposefully made simplifications

in the system internal representations, unobserved environment dynamics and random

effects in action execution. While it is unclear how exactly humans and other higher

animals master these problems, it seems evident that abstraction, semantics and knowledge

together play an important role. The use of abstract concepts allows to define the system

behaviour on higher levels and independently of the exact setting of the environment and

the exact sensor readings.

In this chapter we address the first two of the problems mentioned above, in that we

provide the system with a limited capability of abstraction allowing for a higher-level

understanding of its environment. In addition, we directly address the uncertainty related

issues by strictly following a probabilistic approach that explicitly models and keeps track

of the uncertainty associated with any variables of the problem. As a by-product, the

system capability to use predefined concepts will ease cooperation in mixed human-robot

tasks, since a common language used by both the human and the robot is a precondition

for efficient exchange of information between both parties.

To illustrate the general idea, we use an example from an indoor navigation scenario,

namely semantic indoor mapping. The objective of the presented method is to provide

an abstract, semantically annotated but still probabilistic map of the indoor environment.

For this purpose, we first use a robot – equipped with a 2D laser scanner – to build an

occupancy grid of the environment using a simultaneous localization and mapping (SLAM)

method [41, 26, 50, 96] and then employ the procedure described in the remainder of this

chapter to extract the semantic information. To do this, we use our knowledge-supervised

Markov chain Monte Carlo (KSMCMC) sampling technique to generate samples from the

probability density function capturing the distribution of probable worlds the robot could

encounter. The maximum posterior solution could then be used as an estimate of what

the world semantically looks like.
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3.1 Introduction

Fig. 3.1: A typical occupancy grid map of an indoor environment, obtained from the Robotics

Data Set Repository (Radish) [58].

3.1 Introduction

Most of todays’ mapping approaches aim to construct a globally consistent, metric map of

the robot’s operating environments. See Fig. 3.1 for a typical result. Such maps enable the

robot to localize itself with respect to the environment and thus determine its global pose

in an assumed flat world with an accuracy of typically a few centimetres in translation

and below one degree in rotation. Based on this capability, the robot can also plan a

path and navigate towards a goal which is also specified by its metric position in the

global map reference frame. However, the robot does not understand its environment in

terms of typical semantic concepts like rooms, corridors or functionally enriched concepts

like a kitchen or living room. Furthermore, the robot does not understand relations like

adjacency, connectivity via doors, or properties like rectangularity that – if known to be

relevant to the given environment – could help to build the maps in the first place.

Our work aims at extracting such semantic models of the environment from the more

or less raw sensor data. In this context, we assume, that a map, like the one depicted

in Fig. 3.1, was already constructed using one of the proven methods available for this

purpose [41].

Different from metric mapping, semantic mapping aims to construct a semantic map for

the environments that the robots work in. The focus of semantic mapping is to describe

the environments on the semantic/abstract level, so as to provide valuable semantic infor-

mation for higher level applications, such as Human Robot Interaction (HRI) [76, 39, 129].

An example on the comparison between metric and semantic mapping is illustrated in Fig.

3.2.
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3 Use Case: Semantic Indoor Mapping

Fig. 3.2: Metric mapping vs. semantic mapping: a) A 2D metric map (occupancy grid map)

obtained using [41]. Such maps are a big matrix of occupancy values and do not

provide semantic level information. b) The corresponding semantic map generated by

[86]. Basic semantic type “unit” is introduced, which is represented by a rectangle.

Four units are found in the environment. Circles indicate the unit center. Light-gray

shows the door. The topology of the map is demonstrated in dashed lines. c) The

semantic map represented in pure abstract level. Solid lines indicate that two units

are connected by a door, whereas dashed lines connect two neighbour units.

3.2 Related Work

In recent years, semantic mapping has drawn great interest in the academia. In the state of

the art there exist many proposals which can be categorized according to different criteria,

such as 2D/3D, indoor/outdoor and so on. In the following we review these related work

with respect to their output form.

A very big body of literature focuses on semantic place labelling which divides the

environment into several regions and attaches each region a semantic label like “office

room” or “corridor”. Park and Song [108] proposed a hybrid semantic mapping system

for home environments, using explicitly the door information as a key feature. Combining

image segmentation and object recognition, Jebari et al. [70] extended semantic place

labelling with integrated object position. Based on human augmented mapping [137],

rooms and hallways are represented as Gaussians to help robot navigate in [102]. As

shown in Fig. 3.3, Pronobis and Jensfelt [113] integrated multi-modal sensory information,

human intervention and some common-sense knowledge to classify places with semantic

types. Other examples on semantic place labelling can be found in [38], [77] and [125].

Different from place labelling, another big group of work concentrates on labelling dif-

ferent constituents of the perceived environments with semantic tags, such as walls, floors,

ceilings of indoor environments, or buildings, roads, vegetations of outdoor environments.

In [103], a logic-based constraint network describing the relations between different con-

stituents is used for the labelling process in indoor environments. An example of this work

is shown in Fig. 3.4. Persson and Duckett [110] combined range data and omni-directional

images to detect outlines of buildings and nature objects in an outdoor setting. Zhu et al.

[162] implemented a semantic labelling system on a vehicle to classify urban scenes, based

on range image. [111] and [131] show the application of semantic constituent labelling in
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3.2 Related Work

Fig. 3.3: An example of semantic place labelling [113].

underwater scenarios. Other examples in this category can be found in [122], [121], [3] and

[156].

Fig. 3.4: An example of semantic labelling of environment constituents [103].

Another group of related work concentrated on generating topological maps of the en-

vironments traversed by a robot. Blanco et al. [14] proposed a hybrid metric-topological

approach based on Bayesian inference. In addition to traditional metric maps, their ap-

proach was able to reconstruct the path of the robot as a topological map. As shown

in Fig. 3.5, Tao et al. [134] demonstrated a topological SLAM process which used the

saturated generalized Voronoi graph (S-GVG) to represent the topology of an office-like

environment. Based on particle filtering, Werner et al. [153] proposed to build topological

maps for an indoor environment by disambiguating places which appear indistinguishable

using neighbourhood information extracted from a sequence of observations. Other exam-

ples in this group can be found in [5], [27] and [4]. Approaches in this category were mainly

interested in building globally consistent metric maps while providing topology along the

robot path as a by-product. In this sense, they represent the early tries toward semantic
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3 Use Case: Semantic Indoor Mapping

mapping.

Fig. 3.5: An example of topological mapping [134].

A fourth category of literature consists of object-based semantic mapping systems which

use object as basic representation unit of the perceived environment. Such systems usually

adopt point cloud processing (e.g. Point Cloud Library [119]) and image processing (e.g.

OpenCV [16]) techniques to model or detect objects, and object features like appearance,

shape and 3D locations are often used to represent the objects. Rusu et al. [120] proposed

a hybrid semantic object mapping system for household environments (mainly kitchens),

based on 3D point cloud data. Objects modelled in this work are those which perform util-

itarian functions in the kitchen such as kitchen appliances, cupboards, tables, and drawers.

An early example on object-based semantic mapping is shown in [84], where a relational

object map is proposed for laser-based mobile robot 2D mapping, by modelling geometric

primitives like line segments as objects. More examples on object-based semantic mapping

can be found in [115], [23], [105] and [89]. An example of this category is illustrated in

Fig. 3.6.

In addition to the categories mentioned above, there exist also a few systems which

adopt explicitly a compact semantic model to represent the perceived environments. As

shown in Fig. 3.7, Shukor et al. [2] proposed a 3D planar model for indoor environments

based on knowledge of spatial relationship of room surfaces. Geiger et al. [36] introduced a

generative model for explaining urban scenes with semantic types, and realized the entire

system using MCMC sampling.
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3.3 Contributions

Fig. 3.6: An example of object-based semantic mapping [105].

Fig. 3.7: Environment modelling using 3D planar surfaces [2].

3.3 Contributions

Using our knowledge-supervised MCMC sampling approach, we show a new way of au-

tomatically generating semantic maps from preprocessed sensor data. This is done by

means of a probabilistic generative model and MCMC-based reasoning techniques. We

use Bayesian reasoning to build semantic maps, so that they are aligned with the pre-

processed sensor observations, that a robot made during an environment exploration and

mapping stage. This introduces a bottom-up path into the approach and employs data

driven discriminative environment feature detectors to analyze the continuous noisy sensor

observations. In principle, our approach demonstrates a new method of finding compact

abstract model for input data using predefined abstract terms. Based on these abstract

terms, intelligent autonomous systems, such as a robot, should be able to make inference

according to specific knowledge base, so that they can better handle the complexity and
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3 Use Case: Semantic Indoor Mapping

uncertainty of the real world. Based on Markov logic, we formulate task-specific context

knowledge as descriptive logic rules which increase the overall abstraction performance.

Our work differs from previous semantic mapping approaches, that mostly use various

classification methods in a bottom-up fashion to label either spatial regions or places based

on context or that assign semantic labels directly to portions of the observations. Instead,

we construct a parametric, abstract, semantic and top-down representation of the domain

under the consideration: a classical indoor environment containing several units of different

types, that are connected by doorways.

As output, our system returns a parametric abstract model of the perceived environment

that not only accurately represents the environment geometry, but also provides valuable

abstract information. The model that we generate, is structured similarly to a scene graph

and is perfectly suited for any higher level reasoning and communication purposes.

3.4 An Abstract Parametric Model for Occupancy Grids

Here we aim to construct a probabilistic, abstract and parametric model of the world

around the robot, that is essentially based on abstract semantic concepts but at the same

time allows to predict the continuous percepts that the robot obtains via its noisy sensors.

We call an instance of this model a semantic world or a world. This model has a form

similar to a scene graph, a structure which is widely used in computer graphics. The scene

graph (see Fig. 3.8 c) in our case consists of units and doorways connecting the units and

can be visualized as a classical floor plan(see Fig. 3.8 b).

The scene graph and thus also the semantically annotated world state is denoted by a

vector of hidden parameters W specifying the world state, that generated the occupancy

map M we are currently looking at. In the Bayesian framework we can use a maximum

posterior approach to infer the most probable state W ∗ ∈ Ω from the space of probable

worlds Ω given the map M .

W ∗ = argmax
W∈Ω

p(W |M), (3.1)

with

p(W |M) ∝ p(M |W )p(W ). (3.2)

Here p(W |M) is the posterior distribution of W given the known map M and p(W )

is the prior specifying, which worlds W are possible at all. p(M |W ) is the likelihood

function describing how probable the observed map M is, given the different probable

worlds represented by a parameter vector W . The actual model is represented in the

structure of the parameter vector W , while semantically relevant constraints go into the

prior p(W ).

In our case W contains the scene graph, i.e. the parameters of a floor plan: number of

units, their dimensions and connectivity, the location of doorways. Here, units are defined
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3.4 An Abstract Parametric Model for Occupancy Grids

Fig. 3.8: a) A simplified occupancy grid map: Unexplained area is drawn in grey, free space is

drawn in white. Occupied area is drawn in black. b) A possible floor plan represented

as a scene graph (W ): The world (gray=unknown, white=free, solid light-gray=walls,

dashed light-gray=doors) is divided into four units and the corresponding unexplained

area. The connectivity is given by doors and walls. c) The semantic description of

the world in form of the scene graph: Directed links connect nodes. The dashed lines

represent connectivity. Like unit 4, each unit has three child nodes: walls, free space,

and doors. Note that the lowest level of node in the tree structure is the grid cell that

belongs to walls, free space and doors. d) The corresponding abstract model with

solid edges indicating connection by a door and dashed edges indicating connection

by a wall.

as a rectangular space that is enclosed by four walls, and walls are line segments defined

by two end points. Connectivity indicates the spatial relationship of different units. Two

units could be either adjacent (connection by a wall) or connected by a door.

3.4.1 Using Weak Context Knowledge as Prior

Certain a-priori assumptions about some properties of the structured world are made based

on some weak context knowledge as follows:

1) a unit has four walls and possesses a rectangular shape.
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3 Use Case: Semantic Indoor Mapping

2) each cell in the map should only belong to one unit.

These a-priori constraints are enforced by means of the prior p(W ) in our generative

model (3.2) as simple factors. The prior penalizes worlds that are not fully compliant with

the above assumptions:

p(W ) = α1 × α2, (3.3)

where α1 and α2 are the corresponding penalization terms for the point 1) and 2) of the

prior information respectively, and they are defined as follows:

α1 =

{
ψθ1, conflict with point 1),

1, otherwise,
(3.4)

α2 =
∏

c(x,y)∈M

ψ
γ(c(x,y))
2 ,

γ(c(x, y)) =

{
σ(c(x, y))− 1, σ(c(x, y)) > 1,

0, otherwise,
(3.5)

where ψ1 and ψ2 are penalization terms with ψ1, ψ2 ∈ (0, 1). θ is the number of pairs

of adjacent walls whose included angle is not 90 degree (±tolerance). c(x, y) denotes one

grid cell in the map M . σ(c(x, y)) indicates the number of units, to which c(x, y) belongs.

α2 is a cell-wise penalization of the overlap between different units, i.e. if there is no

overlap in one cell c(x, y), then σ(c(x, y)) is smaller than 1, in which case γ(c(x, y)) is 0

(no penalization in cell c(x, y)). Otherwise, if σ(c(x, y)) is bigger than 1, which means the

cell c(x, y) belongs to more than one unit, then γ(c(x, y)) is bigger than 0 (penalization in

cell c(x, y)). Two examples of the functionality of the prior are illustrated in Fig. 3.9 and

Fig. 3.10.

Fig. 3.9: According to the defined weak context knowledge point 1) the unit u1 shown in a)

is only slightly penalized, because u1 is not an exact rectangle. However the unit u2

shown in b) is strongly penalized, because u2 is no more a rectangle.
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3.4 An Abstract Parametric Model for Occupancy Grids

Fig. 3.10: According to the defined weak context knowledge point 2), the world containing

u1 and u2 in a) will be penalized because of the overlap of these two units (shaded

area). In contrast, the world containing u3 and u4 in b) will not be penalized.

According to the defined context knowledge the world shown in b) has a higher

prior probability.

3.4.2 Definition of Likelihood

For our generative model, we need to specify the likelihood function p(M |W ) additionally.

Since M is represented by an occupancy grid with statistically independent grid cells

c ∈M , we only need to come up with a model p(c|W ) for all cells at their locations (x, y)

in the map M:

p(M |W ) =
∏

c(x,y)∈M

p(c(x, y)|W ). (3.6)

For our model p(c(x, y)|W ), we first discretize the cell state M(x, y) by classifying the

occupancy values into three classes “occupied=2”, “unexplained=1” and “free=0” so as

to generate the classified map CM (x, y) according to:

CM (x, y) =


2, 0 ≤M(x, y) ≤ ho,

1, ho < M(x, y) ≤ hu,

0, hu < M(x, y),

(3.7)

where ho and hu are the intensity thresholds for occupied and unexplained grid cells. Based

on our model W we can also predict expected cell states CW (x, y) accordingly:

CW (x, y) =


2, (x, y) ∈ Sw,
1, (x, y) ∈ Su,
0, (x, y) ∈ Sf ,

(3.8)

where Sw, Su and Sf are the set of all the wall cells, unknown cells and free space cells in

the world W respectively. p(c(x, y)|W ) can then be represented in the form of a table.
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3 Use Case: Semantic Indoor Mapping

XXXXXXXXXXXXXCW (x, y)

CM (x, y)
0 (occupied) 1 (unexplained) 2 (free)

0 (wall) 0.8 0.1 0.1

1 (unknown) 0.1 0.8 0.1

2 (free) 0.1 0.1 0.8

Tab. 3.1: The lookup table for p(c(x, y)|W ).

In principle the likelihood p(c(x, y)|W ) plays the role of a sensor model. In our case it

captures the quality of the original mapping algorithm producing the grid map (including

the sensor models for the sensors used during the SLAM process), and could be learned

from labelled training data. In the context of our application, we used some empirically

determined values. An example of the values is given in Table 3.1.

3.5 Searching the Solution Space

For solving equation (3.1) we need to efficiently search the large and complexly structured

solution space Ω. Here we adopt the approach of [161], who propose a data driven Markov

chain Monte Carlo (MCMC) technique for this purpose. The basic idea is to construct

a Markov Chain that generates samples Wi from the solution space Ω according to the

distribution p(W |M) after some initial burn-in time. One popular approach to construct

such a Markov chain is the Metropolis-Hastings (MH) algorithm [13, 21]. In MCMC

techniques the Markov chain is constructed by sequentially executing state transitions

(in our case from a given world state W to another state W ′) according to a transition

distribution Φ(W ′|W ) of the sub-kernels. An example of Φ(W ′|W ) is given in Table 3.2.

In order for the chain to converge to a given distribution, it has to be reversible and

ergodic [13]. The MH algorithm achieves this by generating new samples in three steps:

1. Propose a state transition according to Φ(W ′|W ).

2. Generate a new sample W ′ according to a proposal distribution Q(W ′|W ).

3. Accept this state transition by the following probability:

λ(W,W ′) = min

(
1,
p(W ′|M)Q(W |W ′)
p(W |M)Q(W ′|W )

)
(3.9)

The resulting Markov chain can be shown to converge to p(W |M). However the se-

lection of the proposal distribution is crucial for the convergence rate. Here, we follow

the approach of [161] to propose state transitions for the Markov chain using discrimi-

native methods, which detect relevant environmental features (e.g. walls, doorways) in a

bottom-up manner. An overview of our algorithm is described in Algorithm 1.
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Algorithm 1 Model generation

Require: input map M

while certain accuracy condition not satisfied do

if input map updated then

update the classified map CM (x, y);

generate unit candidates;

end if

denote current world state as W ;

select one sub-kernel according to the transition probabilities Φ(W ′|W );

generate a new world state W ′ through a state transition using the defined discrimi-

native bottom-up feature detectors;

calculate the acceptance probability λ(W,W ′) of the generated state according to the

MH algorithm (3.9);

draw a random float number θ, θ ∈ U [0, 1);

if θ < λ(W,W ′) then

accept;

replace the current world state with W ′, W = W ′;

else

reject;

keep current world state W ;

end if

end while
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3 Use Case: Semantic Indoor Mapping

3.5.1 MCMC Kernels

In order to design the Markov chain in form of the Metropolis-Hastings algorithm, the

kernels that modify the structure of the world are arranged as reversible pairs. Currently,

we use five pairs of kernels, and these include:

• Kernel pair 1: ADD or REMOVE one unit.

– ADD: draw one new unit from certain candidates, then try to add this unit to

the world.

– REMOVE: try to cancel one existing unit from the world.

• Kernel pair 2: SPLIT one unit or MERGE two units.

– SPLIT: try to decompose one existing unit into two units.

– MERGE: try to combine two existing units, and generate one new unit out of

them.

• Kernel pair 3: SHRINK or DILATE one unit.

– SHRINK: try to move one wall of one unit along certain orientation, so that the

unit becomes smaller.

– DILATE: similarly to SHRINK, move one wall of one unit, so that the unit

becomes bigger.

• Kernel pair 4: ALLOCATE or DELETE one door

– ALLOCATE: draw one door from the door candidates that are provided by

door detector, then try to assign it to two existing units.

– DELETE: cancel one assigned door.

• Kernel pair 5: INTERCHANGE two units

– Change the structure of two adjacent units at the same time.

Fig. 3.11 shows an example of the five reversible MCMC kernel pairs, using the same

simplified occupancy grid map as in Fig. 3.8. The world W can transit to W
′
, W

′′
, W

′′′
,

W
′′′′

and W
′′′′′

by applying the sub-kernel REMOVE, MERGE, SHRINK, DELETE and

INTERCHANGE, respectively. By contrast, the world W
′
, W

′′
, W

′′′
, W

′′′′
and W

′′′′′
can

also transit back to W using corresponding reverse sub-kernels.

3.5.2 Discriminative Generation of Chain Transition Proposals

As mentioned above, we use discriminative methods to propose candidates for MCMC

kernels, so as to accelerate the convergence of the Markov chain. In the following, we

define and explain the discriminative methods used with respect to corresponding MCMC

kernels.
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Fig. 3.11: Reversible MCMC kernel pairs: ADD/REMOVE, SPLIT/MERGE,

SHRINK/DILATE, ALLOCATE/DELETE and INTERCHANGE.

ADD

Currently, three unit detectors are adopted to propose unit candidates for ADD: a wall

based unit (WBU) detector, a free space unit (FSU) detector and a robot position based

(RPB) detector.

WBU detector This unit detector makes use of the well known Hough Transform [57] for

edge based wall detection and generates unit candidates using the detected line segments

according to the following procedure: We extend the detected line segments so as to divide

the map into sub-areas, then these sub-areas are recombined to give new units which obey

our prior information. One example of the WBU unit detector is demonstrated in Fig.

3.12. Here, the map is divided into six sub-areas: a1, a2, a3, a4, a5 and a6, and these

sub-areas are recombined to generate 18 unit candidates, which are: a1, a2, a3, a4, a5,

a6, a1a2, a3a4, a5a6, a1a3, a3a5, a2a4, a4a6, a1a3a5, a2a4a6, a1a2a3a4, a3a4a5a6 and

a1a2a3a4a5a6. We sample from the set of all candidate units in a resampling style [74].

Each of the generated unit candidates are weighted according to how well their walls match

the observations provided by the occupancy grid map. The weight of a unit ωr is defined

as the lowest wall weight ωwj among its four walls, where j, j ∈ {r1, r2, r3, r4}, indexes the

wall, with ri, i ∈ {1, 2, 3, 4}, indicating the ith wall of unit r:
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ωr = min
j∈{r1,r2,r3,r4}

ωwj . (3.10)

The wall weight ωwj is calculated as:

ωwj =
n(wj)

l(wj)
, (3.11)

where l(wj) indicates the length of wall wj and can be computed from the coordinates of

its two end points (xwj,1 , ywj,1), (xwj,2 , ywj,2):

l(wj) =
√

(xwj,1 − xwj,2)2 + (ywj,1 − ywj,2)2. (3.12)

The term n(wj) counts the number of wall cells that match with the map:

n(wj) =
∑

(x,y)∈wj

t(x, y), (3.13)

where

t(x, y) =

{
1, CM (x, y) = 0,

0, otherwise.
(3.14)

Having obtained the weights of all the unit candidates, we implement Q(W ′|W ) by

sampling from the candidates according to their cumulative weights Ar. First, we normalize

their weights ωr:

ω
′

r =
ωr∑

r∈B
ωr
, (3.15)

where B indicates the set of all the unit candidates generated by the WBU detector. Then,

we calculate the cumulative weights Ar for unit r:

Ar =

r∑
i=1

ωi. (3.16)

Finally, we can draw a unit candidate n out of B, by generating a random number

k, k ∈ [0, 1),

n = min{i|k ≤ Ai}. (3.17)

FSU detector Sometimes units will be missed by the edge-based procedure mentioned

above. This is often the case for units only partially explored during grid map construction

or when walls have been obstructed by furniture and thus not have been perceived by the

laser scanner. We therefore use an alternative method for unit detection. This detector

works on the basis of connected-components analysis and is referred to as free space unit
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3.5 Searching the Solution Space

(FSU) detector. If there are still regions of the map which are not explained by the world

after many MCMC steps (4000 steps in the experiments), then we try to find them using

the FSU detector as follows: 1) make a copy of the classified map, which we denote as

C ′M ; 2) cancel the regions that are already explained by the current semantic world W

from C ′M , we denote the rest of C ′M as C ′′M ; 3) detect unexplained regions in C ′′M based on

connected-components analysis [19], and generate unit candidates out of them. Fig. 3.13

shows one example of the FSU detector. Here, the world W does not cover the shaded

area in the map, then we detect it using the FSU detector and generate unit candidates

out of it. Having generated the unit candidates, we use the same sampling technique as

done with the WBU detector to propose unit candidates ((3.10) to (3.17)). The number

of MCMC steps after which the FSU detector is activated should be big enough so that

each of the unexplained regions is relatively small and can be easily used to generate new

unit candidates.

Fig. 3.12: The WBU detector. a) A simplified occupancy grid map. b) The line segments

detected by the Hough line detection. c) Divide the map into sub-areas a1, a2, a3,

a4, a5 and a6, by extending the detected lines. Generate unit candidates out of

these sub-areas. The detected line segments are shown in light-gray.

RPB detector In addition to the detectors mentioned above, we can also use the robot

position to generate new units. Following the simple idea that, where the robot currently

is must be free space, we generate a small unit with certain minimum size around the robot

position. This method is only activated for cases in which robot position is available. Fig.

3.14 depicts three examples of this detector.

SPLIT

For SPLIT we again use the Hough transformation based line detection to propose splitting

options. Hough line detection is applied within units that already exist in the world

W (member units of W ). First, a unit r is randomly chosen according to a uniform
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3 Use Case: Semantic Indoor Mapping

Fig. 3.13: The FSU detector. a) A simplified occupancy grid map. b) The current world W :

the shaded area is not explained. c) C ′′M : cancel the already explained regions from

C ′M and detect unexplained regions based on connected-component analysis, then

generate unit candidates out of these detected regions. In this example, a unit

candidate is generated from the shaded area.

Fig. 3.14: The RPB detector. Three examples of generating a small unit of certain minimum

size using robot position as center. Blue rectangles show the generated units, and

the violet points show robot position.

distribution, which means every unit contained in the current world has the same chance

to be chosen. Then, the Hough line detector is applied within the unit r to detect possible

unit splits. Let Er denote the set of the detected line segments within unit r. Each detected

line segment e, e ∈ Er is weighted, using its length l(e):

ωe = l(e), (3.18)

where the length l(e) is similarly calculated as done in (3.12). Then we normalize the

weights and build the cumulative distribution of Er. Furthermore, we draw one line seg-

ment out of Er, as done with the WBU detector ((3.15) to (3.17)).

Once a line segment is chosen, it is extended, so that it intersects with the walls of

the unit. Currently, only the case is accepted that two opposite walls of the unit are

intersected. The case that two neighbour walls are intersected is neglected. With the

extended line segment, we propose to split the unit into two units. The MH algorithm

then decides whether this action is accepted. A typical example of the SPLIT sub-kernel

is shown in Fig. 3.15.
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3.5 Searching the Solution Space

Fig. 3.15: SPLIT sub-kernel. a) The current world W . b) The unit 1 (light-gray dashed

rectangle) is chosen for SPLIT. Two line segments are detected (black thick lines)

as splitting possibilities. One of them is selected and extended to split the unit (the

black thin line). c) After the accepted SPLIT action, the new world W
′

is created.

MERGE

The sub-kernel MERGE is the inverse of SPLIT. It tries to combine two member units of

the current world W , so as to generate a new unit, then the MH algorithm decides whether

the proposed new unit is accepted. To do this, the first unit r is drawn from the set of all

member units RW of world W according to a uniform distribution, which means that each

member unit has the same possibility to be chosen. Additionally, a second unit s needs to

be selected from the rest of the member units, s ∈ RW \ r. For sampling s, we define a

new weight ar(s), which is the reciprocal of the distance d(cr, cs) between the center point

cr of unit r and the center point cs of unit s:

d(cr, cs) =
√

(cr.x− cs.x)2 + (cr.y − cs.y)2, (3.19)

where (cr.x, cr.y) and (cs.x, cs.y) are the grid cell index of the two center points. The

weight ar(s) is calculated as follows:

ar(s) =
1

d(cr, cs)
. (3.20)

Subsequently, we normalize the weights ar(s), calculate the cumulative probability and

draw the second unit, as done in (3.15) to (3.17). Once the two units are obtained, we

try to combine them into one unit. The underlying idea for using ar(s) in the sampling is

that the closer two units are spatially located, the more likely they can be combined. Fig.

3.16 illuminates an example of MERGE.

SHRINK and DILATE

The kernel pair SHRINK/DILATE tries to move a wall wj of a member unit r in the

current world W , so that this unit can better match the map. Here, j, j ∈ {r1, r2, r3, r4},
indexes the wall, with ri, i ∈ {1, 2, 3, 4}, indicating the ith wall of unit r. For selecting the

unit r from the set of all member units RW , we define a new weight br:
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3 Use Case: Semantic Indoor Mapping

Fig. 3.16: MERGE sub-kernel. a) The current world W . b) The unit 6 is selected as the first

unit, the unit 7 is selected as the second unit. Here, unit 7 and unit 5 have better

chance to be chosen as the second unit than unit 1, 2, 3 and 4, because unit 5 and

7 are closer to unit 6. The four vertices of the new unit are surrounded by gray

circles. c) After the accepted MERGE action, the world W
′

is generated.

br =

{
1
ωr
, 1

ωr
≤ hb

hb, otherwise,
(3.21)

where ωr is the unit weight defined in (3.10). hb is a predefined threshold for the weight.

Using br, a unit is drawn according to (3.15) to (3.17). The reason for this is that the

worse a unit matches the map, the more likely it should be changed by SHRINK/DILATE.

Once the unit is selected, one wall wj needs to be drawn from its four walls. Following

the same idea, we define a new weight vwj for sampling the wall:

vwj =

{
1
ωwj

, 1
ωwj
≤ hv

hv, otherwise,
(3.22)

where ωwj is the wall weight defined in (3.11), and hv is a predefined threshold. Again, the

wall is drawn according to vwj , as done in (3.15) to (3.17). After the wall is selected, we try

to shift it parallel to its original orientation using a bias that is drawn from a zero-mean

Gaussian distribution. In principle, the algebraic sign of the selected bias decides whether

a SHRINK or a DILATE is proposed, e.g. if a positive sign proposes a SHRINK, then a

negative sign will propose a DILATE. In general, SHRINK and DILATE sub-kernel have

both 50% chance to be proposed. An example of the SHRINK/DILATE kernel pair is

shown in Fig. 3.17.

ALLOCATE

A door detector which is based on connected-components analysis [19] proposes door can-

didates for the sub-kernel ALLOCATE. We draw one door candidate from the set of all

candidates according to their weights. Here, the weight ωg of a door g is similar to the

weight of walls ωwj that is defined in (3.11):
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3.5 Searching the Solution Space

Fig. 3.17: SHRINK/DILATE kernel pair. a) The current world W . b) The unit 5 is selected.

Here, the two gray walls are more likely to be chosen, because they match the

map worse than the other two black walls. We assume that the left gray wall is

selected for SHRINK/DILATE. The light-gray arrow points to one DILATE possibil-

ity, whereas the black arrow points to a SHRINK possibility. c) After the accepted

DILATE action, the world W
′

is generated.

ωg =
n
′
(g)

l(g)
, (3.23)

where l(g) is calculated the same as in (3.12), and n
′
(g) is computed as follows:

n
′
(g) =

∑
(x,y)∈g

t
′
(x, y), (3.24)

where

t
′
(x, y) =

{
1, CM (x, y) = 2,

0, otherwise.
(3.25)

Using the weight ωg, one door candidate is drawn from the set of all detected candidates,

as done in (3.15) to (3.17). Then, the MH algorithm decides whether this door will be

accepted. In the following, we detail how to detect door candidates.

According to the indisputable fact that doors must be located on walls in the real world,

we search doors along walls in the structured world in the following steps:

1) Expand each wall in its perpendicular direction, so that a rectangular area is created

out of each wall. Note that each wall should be shortened before the expansion, so

that the extended area does not overlap each other within one unit.

2) Detect the overlap of these rectangles using connected-components analysis, because

the overlap area indicates on which wall the potential door candidates can be found.

Localize the wall part that has caused the overlap.

3) Divide the localized wall part averagely into several small segments, so that each

segment is equally long. Because each of these segments could be a part of a door,
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3 Use Case: Semantic Indoor Mapping

we weight them according to (3.23) and try to combine the verified segments to build

a door (we define a segment as a verified segment, if its weight is bigger than certain

weight threshold).

4) Combine the verified segments on each wall, if the distance between them is lower

than certain distance threshold. Find the corresponding part of the combined seg-

ments on both walls and use them as door candidates.

The above process is demonstrated in Fig. 3.18.

Fig. 3.18: ALLOCATE sub-kernel. a) The occupancy grid map. b) The current world W with

no assigned doors. c) Step 1: each wall is shortened and expanded. The expanded

areas are marked by light-gray dashed rectangles. The rectangles filled with gray

show the overlap areas. d) Step 2: the two pairs of walls that have caused the

overlap areas are localized. Note that the black line indicates a pair of overlapping

walls, and the other pair of walls is shown in light-gray. e) Step 3: divide the two

pairs of walls into six segments, using the black lines. Weight each segment accord-

ing to how well they match the map. Verified segments are shown in dashed lines,

other segments are drawn in solid lines. f) Step 4: combine those verified segments,

between which the distance is under certain threshold. Find the corresponding part

of the combined segments and use them as door candidates (light-gray lines). Note,

all the segments on one wall are detected as verified segment in step 3, which means

this whole wall forms a big combined segment, but the final door candidate must

correspond to the door candidate on the other wall. That is the reason why only a

small door candidate is detected on this wall pair.
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3.5 Searching the Solution Space

After a successful ALLOCATE action, one door is assigned to two units, and each

assigned door contains the following information: ID of the two units, ID of the walls on

which the door is located, grid cell indices of the door.

INTERCHANGE

The kernel INTERCHANGE tries to restructure two member units of the current world

W , so as to generate new solutions. The MH algorithm decides then whether the proposed

new solution is accepted. Similar to MERGE, the first unit r is drawn from the set of all

member units RW of world W according to a uniform distribution, which means that each

member unit has the same possibility to be chosen. Additionally, a second unit s needs

to be selected from the rest of the member units, s ∈ RW \ r. For sampling s, we use the

weight ar(s), which is the reciprocal of the distance d(cr, cs) between the center point cr
of unit r and the center point cs of unit s:

d(cr, cs) =
√

(cr.x− cs.x)2 + (cr.y − cs.y)2, (3.26)

where (cr.x, cr.y) and (cs.x, cs.y) are the grid cell index of the two center points. The

weight ar(s) is calculated as follows:

ar(s) =
1

d(cr, cs)
. (3.27)

Subsequently, we normalize the weights ar(s), calculate the cumulative probability and

draw the second unit, as done in (3.15) to (3.17). Once the two units are obtained, we try

to restructure them. The underlying idea for using ar(s) in the sampling is that the closer

two units are spatially located, the more likely they can be restructured together. Fig.

3.19 illuminates an example of INTERCHANGE. Through INTERCHANGE the world W

can transit to W ′ and vice versa.

Fig. 3.19: INTERCHANGE. a) The current world W . b) The units 2 and 3 are selected for

INTERCHANGE. c) Through INTERCHANGE the world W can transit to W ′ (a

→ b → c) and vice versa (c → b → a).
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3 Use Case: Semantic Indoor Mapping

REMOVE and DELETE

The sub-kernel REMOVE and DELETE have similar functionality, which is to cancel one

existing member unit and one assigned door respectively. There are no special discrim-

inative methods used for these two sub-kernels. They just draw one member from the

corresponding set (existing units or assigned doors) and propose to cancel this member,

then the MH algorithm decides whether this proposal is accepted. Following the idea that

the worse a member matches the map, the more likely it should be cancelled, we use the

weight br defined in (3.21) for unit sampling. Similarly, we define a new weight zg for door

sampling:

zg =

{
1
ωg
, 1

ωg
≤ hg

hg, otherwise,
(3.28)

where ωg is the door weight defined in (3.23), and hg is a predefined threshold.

3.5.3 Proposal Probability

The proposal probability Q(W
′|W ) describes how probable it is that the world W transits

to the world W
′
, and by contrast, Q(W |W ′

) is the probability for transiting back to the

worldW , given the worldW
′
. Intuitively, Q(W

′ |W ) is the product of the normalized weight

of the selected elements (unit candidate, splitting line, wall etc.) in the corresponding

MC sub-kernel defined in the previous section. For instance, in the ADD or REMOVE

sub-kernel, Q(W
′|W ) is equal to the corresponding normalized weight of the selected unit

candidate or that of the selected member unit. Q(W
′|W ) in ALLOCATE and DELETE can

be calculated similarly to that in ADD and REMOVE respectively. In SPLIT, Q(W
′|W ) is

the product of the corresponding normalized weight of the selected member unit and that

of the selected splitting line. In SHRINK/DILATE, Q(W
′|W ) is product of three terms:

the corresponding normalized weight of the member unit, that of the selected wall and that

of the generated Gaussian bias. Similarly, Q(W
′ |W ) of MERGE and INTERCHANGE is

calculated as the product of the corresponding normalized weight of the first unit and that

of the second unit.

Compared with Q(W
′ |W ), the calculation of Q(W |W ′

) is less intuitive, because the

back transition is virtual and must be defined. For ADD, Q(W |W ′
) should perform the

same function as the sub-kernel REMOVE, namely, the world W ′ transits back to the world

W by cancelling the unit that is added in the transition from W to W ′, thus Q(W |W ′
)

of ADD should be the normalized weight of the added unit in the sub-kernel REMOVE.

Q(W |W ′
) of REMOVE can also be calculated as the normalized weight of the unit, that is

canceled in the transition from W to W ′, in the sub-kernel ADD. Analogously, Q(W |W ′
)

of SHRINK, DILATE, MERGE, SPLIT, ALLOCATE and DELETE can be calculated in

a style similar to Q(W
′ |W ) in their corresponding reverse sub-kernels. In addition, the

SHRINK/DILATE pair just tries to move one wall of the selected unit using a relatively

small bias, thus the resulting world W ′ is similar to W . For computational simplicity, we
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3.6 Intermediate Results Using Only Weak Context Knowledge as Prior

assume that Q(W
′|W ) and Q(W |W ′

) are equal in the SHRINK/DILATE pair and in the

INTERCHANGE pair.

```````````````̀sub-kernel

iteration β
β ≤1000 1000 < β ≤4000 β >4000

ADD 0.8 0.05 0.05

REMOVE 0.2 0.05 0.05

SPLIT 0 0.15 0.15

MERGE 0 0.15 0.15

SHRINK 0 0.15 0.15

DILATE 0 0.15 0.15

INTERCHANGE 0 0.3 0.2

ALLOCATE 0 0 0.05

DELETE 0 0 0.05

Tab. 3.2: Transition probabilities Φ(W ′|W ) of MC sub-kernels.

3.6 Intermediate Results Using Only Weak Context

Knowledge as Prior

We apply our algorithm to several occupancy grid maps. The selection probabilities of the

MC sub-kernels are listed in Table 3.2. Here, the selection probabilities depend partially

on the iteration index β. At the beginning (β ≤ 1000), the world W does not contain much

information about the map, so we mainly apply ADD to propose new units into the world.

For β > 1000, the selection probability of ADD is set to be very low (0.05), because most

part of the map is already explained during the initial exploration (β ≤ 1000). In addition,

we activate SPLIT, MERGE, SHRINK, DILATE and INTERCHANGE to change the form

of the member units of the world. For β > 4000, we activate ALLOCATE and DELETE,

so that the connectivity information is explored and attached to the world. Moreover, the

FSU detector is also activated for β > 4000 to detect left-over free space regions. Table 3.2

effectively implements a heuristic scheduling policy.

Fig. 3.20 depicts the process of Markov chain convergence by showing the evolution of

the log posterior log(P (W |M)) along the development of the Markov chain on the left side.

In an initial burn-in process the chain quickly approaches its target distribution P (W |M).

This is indicated by the rapid increase of the posterior in the beginning. We can also see

the discontinuities at the iteration 1000 and 4000 which show the effect of the scheduling

policy. The jump at iteration 1000 is a consequence of the activation of new transition

kernels that greatly improve the system capability to structurally adapt the world state W
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Fig. 3.20: The typical development of the posterior probability P (W |M) (left) for the input

map shown in Fig. 3.21 and the acceptance rate of the proposed state transitions

(right) along the Markov chain development in terms of iterations.

to the observations in the map. After the initial phase, the chain samples from P (W |M)

and produces samples that are slight variations of the world W and do not significantly

improve the situation any more.

This convergence process can also be seen by looking at the development of the accep-

tance rate of the Metropolis-Hastings algorithm (see Fig. 3.20, right). In the early phases,

the acceptance rate is comparatively high, which means that most of the transitions pro-

posed by Q(W ′|W ) are accepted, since they correspond to a significantly improved expla-

nation of the map M by the model W ′. Towards the end, the acceptance rate stabilizes

on a low level.

Fig. 3.21 shows a typical result of the overall process. Here, part a) shows an original

input occupancy map M [58]. Part b) shows the classified map CM (x, y) that is defined

in (3.7), with black, gray and white indicating occupied, unexplained and free cells respec-

tively. Part c) visualizes the world state W representing our structured semantic model.

Here black, gray, white and cyan show the wall, unknown, free and door way cells respec-

tively. In part d), walls (blue) and doors (cyan) of the world W are directly plotted onto

the original input map M , so as to give a more intuitive comparison.

Fig. 3.22 depicts an example of the underlying MCMC sampling. The MCMC sampling

starts in Fig. 3.22-a. By applying state transitions realized by the defined kernels shown

in Fig. 3.11, the sampled semantic world is gradually changed with respect to the input

map. Three subsequent intermediate results are illustrated by Fig. 3.22-b, c and d. As

shown in these intermediate results, the semantic world is adapted to better match the

input map.

A result using a different input map [58] is illustrated in Fig. 3.23. Compared with the

map used in Fig. 3.21, this map is relatively simple. Fig. 3.24 shows the progression of

chain convergence in terms of log-posterior and acceptance rates. Again, we can clearly

identify the burn-in phase and the effects of our scheduling policy at iterations 1000 and

4000.

The computational cost strongly depends on the size of the occupancy grid map, and
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Fig. 3.21: Analysis of the “ubremen-cartesium” dataset [58]. a) The occupancy grid map

M . b) The classified map CM (x, y) with three intensity values (black=wall,

grey=unexplained, white=free). c) The analyzed world W (black=wall,

gray=unknown, white=free, cyan=door). d) Walls (blue) and doors (cyan) of the

world W drawn into the original map M .

the major part of the computation is spent in the evaluation of the generative model.

The computation speed of analyzing the map in Fig. 3.21 (size:1237×672) is around 30

iterations per second (ips), and in general it takes about 10000 to 20000 iterations, until the

Markov chain reaches a good state, so the computation time on the current PC is around 5

to 10 minutes. By contrast, the map used in Fig. 3.23 is much smaller (size:556×322), and

the same computer reaches around 140 ips, which leads to an overall computation time of 1

to 2 minutes. Currently, we use a single-threaded implementation, where at each iteration

only one sub-kernel is tested for the sampling. One of the most important features of the

Markov chain is that the current state is only dependent on the previous one, therefore, it

is theoretically possible to do multiple tests using different sub-kernels at each iteration,

then only the successful test results are saved for the sampling. Using today’s powerful

off-the-shelf multi-core CPUs, this idea should lead to a much less computation time.

3.7 The Big Challenge: Topological Defects

So far we effectively produced samples from P (W |M), which represents the distribution of

probable worlds W given the observation M , using MCMC sampling. However, it is not

enough to use weak context knowledge only to define the prior distribution, which simply

describes the very basic features of the environments (rectangularity and overlapping).

In this way, the resulting prior distribution is not peaked enough to provide topological

constraints to the sampling process. Although the obtained worlds provide a good cell-wise
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Fig. 3.22: The process of MCMC sampling starts from a random initial guess (figure a). By

applying the kernels shown in Fig. 3.11, the semantic world model is adapted to

the input map, three subsequent intermediate results are demonstrated in figure b,

c and d.

matchness to input maps, they contain topological defects which look wrong for a human

observer, i.e., as human observers we do not consider these solutions as optimal.

Here we take the sampled worlds of the input map shown in Fig. 3.21 as an example.

Two alternative explanations of this input map are depicted in Fig. 3.25 and Fig. 3.26.

In Fig. 3.27, these two samples are compared with the result shown in Fig. 3.21. The

topological defects are marked by red arrows. Using a more complex understanding of

typical architecture, it is not difficult to identify these topological defects and to sketch

a almost perfect explanation for this input map (see Fig. 3.28). In order to generate

such explanations, we need to extend the abstract parametric model with semantically

meaningful terms, based on which more advanced context knowledge can be applied to

describe the environments more precisely, i.e., rule-based context knowledge.

3.8 Semantic Extension of the Parametric Model

In this section we show in detail how to instantiate and adopt our knowledge-supervised

MCMC for the task “semantic robot indoor mapping”. For this purpose we need to

extend our current parametric model with semantically meaningful, abstract terms. The

extended model provides a semantic level explanation (such as “type” and “relation”) and

geometrical estimation of the perceived environment. Explanation of our model is given

in Fig. 3.29.

Our parametric model explains indoor environments in terms of basic indoor space
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Fig. 3.23: Analysis of the “albert-b-laser” dataset [58]. a) The occupancy grid map. b) The

classified map (black=wall, grey=unexplained, white=free). c) The analyzed world

(black=wall, gray=unknown, white=free, cyan=door). d) Walls (blue) and doors

(cyan) of the world drawn into the original map.

types, such as “room”, “corridor”, “hall” and so on, and we denote it as W :

W := {U, T,R}, (3.29)

where U = {ui|i = 1, . . . , n} represents the set of all n units. Each unit ui has a rectangle

shape, and its geometry (size, position and orientation) is represented by its four vertices.

The four edges of a unit are its walls. Doors are small line segments of free cells that are

located in walls and connect to another unit. Unknown cells of the input map that are

located within a unit are considered as object cells. All cells within a unit that do not belong

to object cells are considered as free space of the unit. T = {ti|i = 1, . . . , n} is the set of

type of each individual unit, with ti ∈ {room,corridor,hall,other}. Here “other” indicates

unit types that are not “room”, “corridor” or “hall”. R = {rp,q|p = 1, . . . , n; q = 1, . . . , n}
is a n × n matrix, whose element rp,q describes the relation between the unit up and the

unit uq, with rp,q = rq,p ∈ {¬adjacent,adjacent}. If two units share a wall, we define

their relation as “adjacent”, otherwise “¬adjacent”. By default, we define a unit up is

not adjacent to itself, i.e. rp,p = ¬adjacent. In the following, we call each instance of the

parametric abstract model a “semantic world” or “world”.

For evaluating how well a semantic world W matches with the input grid map M , we

still use the posterior probability defined in (3.2):

p(W |M) ∝ p(M |W ) · p(W ).
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Fig. 3.24: The typical development of the posterior probability P (W |M) (left) for the input

map shown in Fig. 3.1 and the acceptance rate of the proposed state transitions

(right) along the Markov chain development in terms of iterations.

Fig. 3.25: Alternative explanation 1 of the “ubremen-cartesium” dataset [58].

Here, the term p(M |W ) is usually called likelihood and indicates how probable the input

is for different worlds. The term p(W ) is called prior and describes the belief on which

worlds are possible at all. In the following, we formulate task-specific context knowledge

as descriptive rules in Markov Logic Networks (MLNs) [117] and show how to define the

likelihood and the prior using the inference results of MLNs in a systematic way. For

details on MLNs, we refer to [117].

Fig. 3.26: Alternative explanation 2 of the “ubremen-cartesium” dataset [58].
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3.8 Semantic Extension of the Parametric Model

Fig. 3.27: Topological defects of the solutions for the “ubremen-cartesium” dataset [58].

Fig. 3.28: A almost perfect explanation for the “ubremen-cartesium” dataset [58].

3.8.1 Inference Using Rule-Based Context Knowledge

In general, context knowledge describes our prior belief for a certain domain, such as that

the ground becomes wet after it has rained. Rather than exact quantitative information,

context knowledge provides advisory qualitative information for our judgements. Such in-

formation is very valuable in handling problems of high dimensionality where computation

suffers due to the huge state space. In the domain of robot indoor mapping, we formulate

following context knowledge:

• There are four types of space units: room, corridor, hall and other.

• Two units are either adjacent (neighbours) or not adjacent.

• The type of a unit is dependent on its geometry and size.

• In contrast to rooms, corridors have multiple doors.

• Connecting walls of two adjacent rooms have the same length.
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3 Use Case: Semantic Indoor Mapping

Fig. 3.29: The extended abstract parametric model. a) Input occupancy grid map

(gray=unknown, white=free, black=occupied). b) The corresponding para-

metric model (gray=unknown, white=free, solid light-gray=walls, dashed light-

gray=doors), while assuming the fundamental units have rectangle shape (rep-

resented by their four vertices). The units are explained as room, corridor and hall.

c) The abstract representation. d) The semantic world described as a scene graph.

If two units share a wall, then they are adjacent (e.g. u1 and u3). In addition,

connectivity between two units through a door is also detected. e) Each unit in

the world contains continuous and abstract variables. The four edges of each unit

are its walls. Doors are small line segments comprised of free cells that are located

on walls and connect to another unit. All the cells within a unit are considered to

belong to free space of the unit. Size, position and orientation of each unit are

implicitly represented by its four vertices.
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With the help of MLNs, we formulate our context knowledge as descriptive rules in Table

4.3. Based on these rules, query defined in Table 4.2 can be made given evidence shown in

Table 4.1. Using these rules, we try to formulate the features of certain indoor environments

with rectangular space units. The choice of the rules is a problem-oriented engineering step,

and the rules shown here serve as a good example.

predicate explanation

RoLi(up) Unit up has a room-like geometry.

CoLi(up) Unit up has a corridor-like geometry.

HaLi(up) Unit up has a hall-like geometry.

MulDoor(up) Unit up has multiple doors.

Adj(up, uq) Unit up and uq are adjacent.

Tab. 3.3: Definition of evidence predicates

predicate explanation

Room(up) Unit up has the type of room.

Corr(up) Unit up has the type of corridor.

Hall(up) Unit up has the type of hall.

Other(up) Unit up has the type of other.

SaLe(up, uq) Unit up and uq have each a

wall with the same length.

Tab. 3.4: Definition of query predicates

Before we can make inference in MLNs, the evidence defined in Table 4.1 need be

provided as input for MLNs, which includes geometry evidence, relation evidence and

evidence on doors. To provide the first, we use a classifier that categorizes the geometry of

a unit into “room-like”, “corridor-like” or “hall-like” according to its size and length/width

ratio. The general idea of this classifier is shown in Table 3.6.

Relation evidence is detected based on image processing techniques: we first dilate

all four walls of each unit, and then relation rp,q between the unit up and uq is decided

according to connected-components analysis [19]. An example of relation detection is

depicted in Fig. 3.30, where R is given by

R =

 ¬adj adj ¬adj

adj ¬adj adj

¬adj adj ¬adj

 . (3.31)
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basic features:

Adj(up, uq)→ Adj(uq, up)

SaLe(up, uq)→ SaLe(uq, up)

reasoning on type:

HaLi(up)→ Hall(up)

HaLi(up)→ ¬Room(up)

HaLi(up)→ ¬Corr(up)
HaLi(up)→ ¬Other(up)
RoLi(up)→ ¬Hall(up)
CoLi(up)→ ¬Hall(up)
RoLi(up) ∧ ¬MulDoor(up)→ Room(up)

RoLi(up) ∧ ¬MulDoor(up)→ ¬Corr(up)
RoLi(up) ∧MulDoor(up)→ Other(up)

CoLi(up) ∧ ¬MulDoor(up)→ Other(up)

CoLi(up) ∧MulDoor(up)→ Corr(up)

CoLi(up) ∧MulDoor(up)→ ¬Room(up)

reasoning on SaLe:

¬Adj(uq, up)→ ¬SaLe(up, uq)

Room(up) ∧Room(uq) ∧ Adj(up, uq)→ SaLe(up, uq)

Room(up) ∧Hall(uq) ∧ Adj(up, uq)→ ¬SaLe(up, uq)

Room(up) ∧ Corr(uq) ∧ Adj(up, uq)→ ¬SaLe(up, uq)

Hall(up) ∧ Corr(uq) ∧ Adj(up, uq)→ ¬SaLe(up, uq)

Other(up) ∧Hall(uq) ∧ Adj(up, uq)→ ¬SaLe(up, uq)

Other(up) ∧ Corr(uq) ∧ Adj(up, uq)→ ¬SaLe(up, uq)

Other(up) ∧Room(uq) ∧ Adj(up, uq)→ ¬SaLe(up, uq)

Tab. 3.5: Context knowledge defined as descriptive rules

Similar to relation detection, doors are detected as small open line segments which are

located on the connecting walls of two neighbour space units. Details on door detection

can be found in section 3.5.2.

Given necessary evidence, we can make inference in MLNs and use the inference results

to calculate the prior and likelihood. In this work, we have used the ProbCog Toolbox [67]

to perform MLN inference. Currently, we use hard evidences for knowledge processing,

however, our system is also able to process soft evidences, as long as the evidences are

provided in the soft form.
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3.8 Semantic Extension of the Parametric Model

PPPPPPPPPPsize

ratio
small big

small room-like corridor-like

big hall-like hall-like

Tab. 3.6: The classifier providing geometry evidence.

Fig. 3.30: An example of relation detection. a) A semantic world W containing three units

(black=wall, white=free, gray=unknown). b) All four walls of each unit are dilated,

with dashed rectangles in light-gray representing the dilated walls. The overlap of

the dilated walls is shown in dark-gray which indicates the relation of “adjacent”.

The overlap is detected using connected-components analysis [19]. In this example,

unit 1 and unit 3 are not adjacent; unit 2 and unit 3 are adjacent; unit 1 and unit

2 are adjacent.

3.8.2 Inference-Based Prior and Likelihood Redefinition

Prior

According to the model definition in equation (3.29), the prior p(W ) is given by

p(W ) = p(U, T,R) · α1 · α2

= p(U |T,R) · p(T,R) · α1 · α2. (3.32)

Here, α1 and α2 are the factors describing the very basic environmental features (rectangu-

larity and overlap) defined in equation (3.3). p(U |T,R) can be seen as a factor expressing

the dependency of the geometry parameters of the underlying units (see Fig. 3.29-e) on

the abstract terms in the MLNs. In our case, the geometry (size, position and orientation)

of a unit is described by its four vertices. Furthermore, we define

p(U |T,R) := η
∏

p,q∈[1,2,...,n]

b(up, uq), (3.33)
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with

b(up, uq) =


e−

d2

2σ2 , p(SaLe(up, uq)|evidence) > threshold

and p 6= q,

1, otherwise,

(3.34)

where n is the total number of units, and d represents the length difference of the con-

necting walls of two adjacent units. e−
d2

2σ2 indicates a Gaussian function with mean at

zero. p(SaLe(up, uq)|evidence) is one of the inferences that we can make in MLNs. η is the

normalization factor which ensures that p(U |T,R) integrates to one. At the current stage,

we assume that p(T,R) follows a uniform distribution. However, it is possible to learn this

distribution given proper training data.

So far, the prior p(W ) is defined based on the inference results of MLNs, which enforces

that the semantic worlds that comply with the context knowledge have high prior prob-

ability. Note that the worlds that contradict the context knowledge are not given a zero

prior probability, instead, they become less probable.

Likelihood

Let c(x, y) be the grid cell with the coordinate (x, y) in the input map M , then we define

the likelihood p(M |W ) as follows:

p(M |W ) =
∏

c(x,y)∈M

p(c(x, y)|W ). (3.35)

Here, the term p(c(x, y)|W ) is a sensor model and evaluates the match between the

world W and input map M . Essentially, p(c(x, y)|W ) captures the quality of the original

mapping algorithm producing the grid map which is used as input in our system. For

calculating p(c(x, y)|W ), we discretize the cell state M(x, y) of the input map into three

classes “occupied”, “unknown” and “free”, by thresholding its occupancy values. Our

semantic world W contains also three types of cell states, which are

• “wall”: cells on the four edges of a unit.

• “free”: cells that are located within a unit.

• “unknown”: cells that are located outside all units.

In this way, our sensor model p(c(x, y)|W ) is realized as a “3×3” look-up table. Given the

extended model defined in equation (3.29), the sensor model can be further factorized:

p(c(x, y)|W ) = p(c(x, y)|U, T,R). (3.36)

Here U contains the geometrical parameters of the underlying units. T indicates the

semantic type of the units. U and T strongly influence the values of the sensor model.

58



3.9 Experiments and Discussions

Since R only describes the relation between two individual units, it does not influence the

sensor model. Thus equation (3.36) becomes

p(c(x, y)|W ) = p(c(x, y)|U, T ). (3.37)

In this way, the sensor model turns into a semantic sensor model that is not only dependent

on the geometrical parameters but also on the semantic type of the underlying units which

are inferred in MLNs.

In the real world, it is more likely that rooms and halls contain objects than corridors

do, because the functionality of corridors is connecting other units, rather than placing

objects. Thus, we propose to make the values of our semantic sensor model dependent on

the type (decided based on the inference results in MLNs) of the underlying unit. The

fundamental idea is to set the values of the semantic sensor model in such a way that it

does not strongly penalize the mismatch between the input and the semantic world within

the units of non-corridor types. Thus the existence of false positives (potential object) is

made more probable in the units of non-corridor types. An example of the effect of our

semantic sensor model is depicted in Fig. 3.31.

Fig. 3.31: Effect of our semantic sensor model. a) The input map. b) The highest likelihood

solution for unit 1 and unit 2 if they are of the type “corridor”. c) The highest

likelihood solution for unit 1 and unit 2 if they are of the type “room”. Note that

the type of a unit is decided based on the inference results in MLNs (Table 4.3).

Having redefined the prior and likelihood using inference results of MLNs, a knowledge-

supervised MCMC sampling is formed. This process follows the same procedure as de-

scribed in section 3.5.

3.9 Experiments and Discussions

So far we have extended the parametric model with semantically meaningful, abstract

terms. Based on these terms we defined rule-based context knowledge to describe the

features of indoor environments. Our system, as a whole, is realized as a knowledge-

supervised MCMC sampling. The performance of our system is evaluated using various
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data sets, which include publicly available benchmark data obtained from the Robotics

Data Set Repository (Radish) [58], data acquired using our own mobile robot and simulated

data of open source simulators.

3.9.1 Evaluation Using Publicly Available Benchmark Data

Without loss of generality, we evaluate our system using publicly available benchmark data.

These data are real world data and were acquired with real robots by various researchers.

In the following we show the performance of our system on two data sets obtained from

[58].

Fig. 3.32 shows the performance of our system on a big data set. As input, an occupancy

grid map M (“ubremen-cartesium” dataset [58]) of an entire floor of a building is used.

This map is a big matrix (“1237×672”) containing occupancy values. We classify these

values as {occupied, unknown, free} so as to generate the classified input map CM (Fig.

3.32-b). Starting from a random initial guess, the semantic world W is adapted to better

match the input map M by stochastically applying the defined kernels. After certain burn-

in time, we get the most likely semantic world W ∗ comprised of 17 units (each of which

is represented by a rectangle) as shown in Fig. 3.32-c. The topology of the perceived

environment is generated by connecting the centres of doors with the centres of space

units. Not only does W ∗ accurately represent the geometry of the input map, W ∗ is

also a parametric abstract model (Fig. 3.32-e) of the input map that provides valuable

abstract information, such as type, adjacency and connectivity by doors. In Fig. 3.32-d,

the semantic world is plotted onto the input map to provide a direct comparison. The type

and the ID of each unit are shown in red at its centre. The unknown areas in each unit,

which are generally caused by non-transparent objects like furniture, are highlighted by

the color green. In addition, unexplored areas are also captured by our model (marked by

magenta “N”). These areas are too small to be recognized as space units but are evidence

for physically existing space.

Fig. 3.33 shows the posterior distribution p(W |M) built by 1000 samples after the un-

derlying Markov chain has converged, i.e. W ∗ obtained. In Fig. 3.33-b, we can see that

except some small variations, these 1000 semantic worlds are almost the same, which indi-

cates, that the whole Markov chain stays stable and that the convergence is well retained.

Compared with using weak context knowledge only (section 3.4.1), our current system

employs rule-based context knowledge in a systematic way (in the form of MLNs), so that

the input map is explained according to the underlying model structure. In this way,

the big challenge presented in section 3.7 is solved. A performance comparison between

using weak context knowledge only and using rule-based context knowledge is depicted in

Fig. 3.34. Three high likelihood samples obtained by using weak context knowledge only

are shown in Fig. 3.34-a,b,c. They essentially represent the local maxima of the likelihood

shown in Fig. 2.2. Although all these three results provide good match to the input map (in

terms of high likelihood), they have topological defects (highlighted by magenta circles),

which contradict our knowledge (low prior). In this case, all pairs of connecting walls of
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Fig. 3.32: The performance of our system. a) The original occupancy grid map M ob-

tained from [58]. b) The corresponding classified map CM (black=occupied,

gray=unknown, white=free). c) Our semantic world W ∗ (black=wall,

gray=unknown, white=free). Topology is shown by red lines, with cyan repre-

senting detected doors. Small triangles, circles and rectangles show the geomet-

ric center of hall, corridor and room. d) The semantic world W ∗ plotted onto

the classified map CM (black=occupied, blue=wall, gray=unknown, white=free,

cyan=door, green=unknown cells in units). The type and ID of each unit are

shown at its center (R=room, H=hall, C=corridor, E=other). Unexplored area is

detected using connected-components analysis [19] and is marked by magenta “N”.

e) The corresponding abstract model of W ∗ (ellipse node=space unit with ID, blue

rectangle node=unknown cells within units, magenta rectangle node=unexplored

area with ID, black solid edge=connected by door, black dashed edge=adjacent

without door).
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Fig. 3.33: a) After the underlying Markov chain has converged, the world W ∗ is obtained. Here

we purposefully plot the world using very thin blue lines so that the corresponding

distribution built by multiple worlds can be better seen. b) The posterior distribution

p(W |M) illustrated by 1000 semantic worlds obtained after getting W ∗ (figure a).

Except small variations, these 1000 semantic worlds are almost the same, which

indicates, that the Markov chain stays stable and that the convergence is well

retained.

adjacent rooms that should have the same length are drawn in orange in Fig. 3.34-a,b,c.

The length difference of each pair of these connecting walls results in a penalization in

prior probability (equation (3.34)). By applying our rule-based context knowledge, local

maxima of the likelihood with topological defects are suppressed so that they have a low

posterior probability. In this way a semantic world that has high likelihood and high

prior, i.e. high posterior (Fig. 3.34-d), is obtained by our knowledge-supervised MCMC

sampling. In addition, various poor local matches (highlighted by magenta rectangles in

Fig. 3.34-a,b,c) are corrected by the semantic sensor model used in our system.

Even using the same semantic world (Fig. 3.33-a) as the start state of the Markov

chain, the posterior distribution obtained by using weak context knowledge only and that

obtained by using rule-based context knowledge are different. This effect is illustrated

in Fig. 3.35 by plotting 1000 accepted worlds together. Here we purposefully plot each

sample (world) using very thin lines. We can see that the semantic worlds obtained using

rule-based context knowledge show much smaller variations than the ones obtained using

weak context knowledge only. It is obvious that the underlying Markov chain obtained

using rule-based context knowledge is more stable and converges better (smaller variance).

Fig. 3.36 shows the performance of our system using another data set obtained from

[58]. As can be seen, the obtained semantic world accurately represents the geometry

of the environments captured in the input map and explains the perceived environments

with the correct topology. The corresponding posterior distribution after the convergence

is depicted in Fig. 3.37. Again, we can obviously tell that our system constructs a stable

Markov chain that produces a fine semantic world (abstract model) for the input map

(data).

By setting a proper height to walls and doors, we can generate 3D semantic worlds
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Fig. 3.34: Comparison of the performance between using weak context knowledge only (figure

a, b and c) and using rule-based context knowledge in the form of MLNs (figure

d). Topological defects of the intermediate results are highlighted by magenta

dashed circles. Poor local matches that are improved by semantic sensor model

are highlighted by magenta dashed rectangles. Each pair of connecting walls that

should have the same length are drawn in orange (figure a, b and c). Type of each

unit is shown at its center.

based on our parametric abstract model. These 3D worlds can be well used for simulation

purposes. Two examples are depicted in Fig. 3.38.

The computational cost is strongly dependent on the size of the input map and consists

of two parts, which are MCMC operations and knowledge processing in MLNs. With a

single-threaded implementation on an Intel i7 CPU, the speed of MCMC operations is

around 30 iterations per second for the map shown in Fig. 3.32. The speed of knowledge

processing in MLNs depends on one hand on the tool (the software implementation of

MLNs) that one uses. On the other hand, it depends on the number of optimization

iterations set in the tool. In our case, we could get a satisfactory result in 5-8 seconds

using the tool in [67] per processing. To analyze a grid map, we first start our system

using weak context knowledge only. After enough context is available (e.g. coverage of

the input map greater than 80%), rule-based context knowledge processing is enabled to

help better explain the input map. In this way, we could obtain a good result within a

reasonable processing time, which is, 20 to 25 minutes for the map shown in Fig. 3.32.
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Fig. 3.35: Starting from the world state shown in figure 3.33-a, we plot 1000 accepted samples

obtained by using weak context knowledge only (figure a) and using rule-based con-

text knowledge (figure b) onto the classified map. It is obvious that the underlying

Markov chain converges better using rule-based context knowledge.

3.9.2 Evaluation Using Data Acquired by Our Own Robot

In addition to publicly available benchmark data, we test our system on our own mobile

robot (see Fig. 3.39) as well, which is equipped with three laser scanners, a Kinect camera

and a stereo camera system. In our experiments, we mainly used the two laser scanners

that are situated at the front and the back side of our robot to sense the robot’s operating

environments. While our robot travels in the environment, the obtained laser scans are

fed into the Gmapping algorithm [41] to generate an occupancy grid map of the perceived

environment. Subsequently, the resulting grid map is used as input in our system to

produce the corresponding semantic world. An example of online experiment is depicted in

Fig. 3.40. Here, the violet point shows the robot position. The input map is being updated

while our robot explores the environment. The obtained semantic world is directly plotted
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Fig. 3.36: The performance of our system for another data set from [58]. a) The classified map.

b) The corresponding semantic world. c) The corresponding abstract representation

of the obtained semantic world. d) A direct comparison between the map and the

resulting semantic world.

Fig. 3.37: Posterior distribution (figure b) illustrated by plotting 1000 accepted samples to-

gether after getting the result in figure a.

onto the grid map. Walls and doors of our semantic world are shown in blue and cyan

respectively.

Combining our parametric abstract model with object pose estimation, we obtain a

coherent 3D semantic map of indoor environments. The general principle is illustrated

in Fig. 3.41. 3D objects that are captured by RGB-D images of the Kinect camera are

recognized and localized by the algorithm in [151]. Given such a map, a robot not only

knows the geometry and topology of the environment, it also has a prior belief on the

pose of objects and their belongingness. Furthermore, this map provides robots semantic
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Fig. 3.38: Corresponding 3D semantic worlds of the results shown in Fig. 3.32-c and Fig.

3.36-b. These 3D worlds can be well used for simulation purposes.

Fig. 3.39: Our mobile robot equipped with three laser scanners, a Kinect camera and a stereo

camera system.

understanding of the underlying environment, which can benefit high level robotic appli-

cations. For instance, if a robot needs to plan a path from position A that is located in

space unit R1 to position B in unit R4, instead of a brute-force path planning A → B,

which happens directly on the coordinate level, the robot can plan a path based on the

topology given by the coherent semantic map. As shown in Fig. 3.42, the actual path

planning can be divided into a few parallel steps on the semantic level: A→ door(R1, C3),

door(R1, C3) → door(C3, R4) and door(C3, R4) → B. Since the positions door(R1, C3)

and door(C3, R4) are also given by the semantic map, the above path planning steps can

be easily done using standard methods like the A∗ algorithm [51].

Fig. 3.43 shows the result of our system for an indoor office environment, which contains

five furnished office rooms and a big corridor. In the grid map of this environment (Fig.

3.43-a), we can see that the five office rooms are quite cluttered (because of the existence

of furniture and things). In spite of the clutter, our system still provides a good semantic

66



3.9 Experiments and Discussions

Fig. 3.40: An example of online experiment. Here, the violet point shows the robot position.

The input map is being updated while our robot explores the environment. The

obtained semantic world is directly plotted onto the grid map. Walls and doors of

our semantic world are shown in blue and cyan respectively.

world that correctly explains the environment with six space units (five rooms and one

corridor) and the correct topology, as shown in Fig. 3.43-b and c. By setting a proper

height to walls (blue) and doors (green), we show the 3D parametric model along with the

detected 3D objects in Fig. 3.43-d. Here the table planes, on which the 3D objects are

detected, are shown in cyan. The current robot pose (represented by a cluster of coordinate

systems), the current laser scan (shown by red points) and the current color point cloud

are highlighted by the dashed yellow rectangle. In the direct comparison between the

grid map and the resulting semantic world, as shown in Fig. 3.43-d, it is obvious that

the resulting semantic world accurately approximates the geometry of the grid map which

essentially captures the environment geometry. Fig. 3.43-e depicts the details of object

recognition and localization. In space units R1, R2 and R5, several 3D objects and tables

are recognized and localized regarding their 6D pose (x,y,z,roll,pitch,yaw).

By plotting 1000 samples together we show the resulting posterior distribution in Fig.

3.44. Here each sample is drawn in very thin lines as depicted by Fig. 3.44-a. Again, we

can obviously see that our system constructs a stable Markov chain that well converges to

the goal distribution.

67



3 Use Case: Semantic Indoor Mapping

Fig. 3.41: A coherent 3D semantic map obtained by combining our parametric model with

object pose estimation.

3.9.3 Evaluation Using Simulated Data Obtained from Open Source

Simulators

In addition to the above experiments with real world data, we evaluate our system in

simulation as well. In the real world, we do not encounter so many indoor environments of

different structures, in which we can test our system. Thus it is quite helpful to evaluate

our system in simulation where a big number of different environments can be manually

created. Without loss of generality, we use open source simulators and 3D environment

models for this purpose, which are publicly available in the internet. Here we have used

the ROS [60] integration of the Gazebo simulator [59] to simulate a PR2 robot [35] and
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Fig. 3.42: Path planning on the semantic level. Instead of a brute-force planning from A to

B, the robot can plan a path based on the topology given by the semantic map in

a few parallel steps.

its operating environments. An example of this robot and a simulated 3D environment is

depicted by Fig. 3.45.

Fig. 3.46 to Fig. 3.50 show five simulation results. In these figures, sub-figures a)

show snapshots of the 3D environments simulated by the Gazebo simulator. Sub-figures

b) depict the corresponding grid maps generated by the Gmapping algorithm, after the

simulated robot has perceived the environments. Sub-figures c) illustrate the resulting

semantic worlds with their topology, where the geometric centers of halls, corridors and

rooms are shown by small triangles, circles and rectangles respectively. A direct comparison

is shown in sub-figures d) by plotting the semantic worlds onto the corresponding grid maps.

Finally, the corresponding abstract representation of the semantic worlds are illustrated in

sub-figures e).

We purposefully chose these five environments to test our system, because they represent

several common environment types which are often found in the reality. The environment

shown in Fig. 3.46 represents the type, in which a big hall is surrounded by a lot of satellite

rooms. Fig. 3.47 depicts a complex indoor environment consisting of many space units.

In this environment, rooms are located in a row and are connected by corridors, which

separate halls from rooms. Another environment of this kind is illustrated in Fig. 3.48.

Fig. 3.49 shows a classical office environment, where ten rooms are situated in two rows

and connected by a long corridor. Another environment comprised of three halls and a

corridor, which is like an exhibition centre, is depicted in Fig. 3.50. As we can see, our

system performs very well in all the five environments, i.e. the resulting semantic world

well explains the corresponding environment with a correct number of space units and an

appropriate topology. Moreover, as the quantitative evaluation in the following sub-section

will show, the resulting semantic worlds accurately represent the geometry of the perceived

environments as well.

3.9.4 Quantitative Evaluation

In order to quantitatively evaluate our approach, we compute K(W,M), the cell prediction

rate capturing the predictive power of the semantic world model W with respect to an input
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map M :

K(W,M) =

∑
c(x,y)∈M

l(c(x, y))

tM
,

with

l(c(x, y)) =

{
1, CM (x, y) = CW (x, y),

0, otherwise,
(3.39)

where tM is the number of all grid cells in the map M . c(x, y) indicates one grid cell

located at the position (x, y). CM (x, y) and CW (x, y) are previously defined in equation

(3.7) and (3.8). K(W,M) of the maps shown in this chapter is given in Table 3.7. In this

table, we can see that the K(W,M) for the three real world data sets (Fig. 3.32, Fig.

3.36 and Fig. 3.43) is above 90%. The mismatch is mainly due to the clutter caused by

furniture and things. For the five simulation data sets (Fig. 3.46, Fig. 3.47, Fig. 3.48, Fig.

3.49 and Fig. 3.50), the K(W,M) is above 94%, where the mismatch lies mainly in some

not-fully-explored areas. Such areas are evidences for partially explored space units in

corresponding environments which are too small to be recognized. To sum up, our system

accurately represents the geometry of the perceived environments in all experiments.

Tab. 3.7: Cell prediction rate K(W,M).

Fig. 3.32 Fig. 3.36 Fig. 3.43 Fig. 3.46

Percentage 93.6% 91.0% 90.1% 95.4%

Fig. 3.47 Fig. 3.48 Fig. 3.49 Fig. 3.50

Percentage 96.0% 95.2% 96.3% 94.4%

3.10 Conclusions

In this chapter, we used our knowledge-supervised MCMC sampling approach to solve

the problem of semantic robot mapping. In principle, our approach demonstrates a new

method of finding compact abstract model for input data using predefined abstract terms.

Based on these abstract terms, intelligent autonomous systems, such as a robot, should

be able to make inference according to specific knowledge base, so that they can better

handle the complexity and uncertainty of the real world. Based on Markov logic, we

formulate task-specific context knowledge as descriptive logic rules which increase the

overall abstraction performance.

Using our knowledge-supervised MCMC sampling approach, we showed a new way of

automatically generating semantic maps from preprocessed sensor data. This is done

by means of a probabilistic generative model and MCMC-based reasoning techniques.
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We use Bayesian reasoning to build semantic maps, so that they are aligned with the

preprocessed sensor observations, that a robot made during an environment exploration

and mapping stage. This introduces a bottom-up path into the approach and employs

data driven discriminative environment feature detectors to analyze the continuous noisy

sensor observations.

Our work differs from previous semantic mapping approaches, that mostly use various

classification methods in a bottom-up fashion to label either spatial regions or places based

on context or that assign semantic labels directly to portions of the observations. Instead,

we construct a parametric, abstract, semantic and top-down representation of the domain

under the consideration: a classical indoor environment containing several units of different

types, that are connected by doorways.

As output, our system returns a parametric abstract model of the perceived environ-

ment that not only accurately represents the environment geometry, but also provides

valuable abstract information. The model that we generate, is structured similarly to a

scene graph and is perfectly suited for any higher level reasoning and communication pur-

poses. By constructing the prior distribution of the semantic maps using inference results,

high likelihood results with topological defects (contradiction with context knowledge) are

suppressed. By means of MCMC sampling, such results can be ruled out, as shown in Fig.

3.34. By modelling context knowledge in MLNs, we can assign semantic information, e.g.

the type, to the data. This allows us to use a semantically informed sensor model to better

explain the observations. Experiments using real world data and simulated data showed

promising results and thus confirmed the effectiveness of our approach.

Currently, we assume units having a rectangular shape, which however does not imply

that our approach is restricted to this shape only. The general idea behind this is to

demonstrate the exploitation of abstract (uncertain) rules on how the environment might be

structured. Adhering to these rules helps the robot to interpret the noisy sensor data more

correctly. In fact, units of other shapes can be introduced to the approach in that we update

the prior, add discriminative methods for proposing units of other shapes and implement

functionalities for carrying out new geometrical operations (e.g. for SHRINK/DILATE

and SPLIT/MERGE). However, the general approach will be the same.
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3 Use Case: Semantic Indoor Mapping

Fig. 3.43: A 3D semantic map. a) The resulting grid map of a cluttered office environment.

b) The semantic world produced by our system. c) The abstract representation

of the semantic world. d) By setting a proper height to walls and doors, we plot

the 3D parametric model directly onto the corresponding grid map (blue=walls,

green=doors, cyan=detected tables with 3D objects). The current robot pose

(represented by a cluster of coordinate systems), the current laser scan (shown by

red points) and the current color point cloud are highlighted by the dashed yellow

rectangle. e) Details on 3D object localization.
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Fig. 3.44: a) The same semantic world as shown in Fig. 3.43-b plotted in very thin lines. b)

Posterior distribution built by 1000 samples after the underlying Markov chain has

reached the state in figure a.

Fig. 3.45: An example of the simulated PR2 robot and its operating environment. a) A

simulated 3D environment. b) A simulated PR2 robot.
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Fig. 3.46: Simulation result no. 1. a) A snapshot of the simulated environment in the Gazebo

simulator. b) The corresponding grid map generated by the Gmapping algorithm.

c) The resulting semantic world with its topology obtained by our system. Small

triangles, circles and rectangles show the geometric center of halls, corridors and

rooms. d) A direct comparison between the grid map and the semantic world. e)

The abstract representation of the semantic world.
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Fig. 3.47: Simulation result no. 2. a) A snapshot of the simulated environment in the Gazebo

simulator. b) The corresponding grid map generated by the Gmapping algorithm.

c) The resulting semantic world with its topology obtained by our system. Small

triangles, circles and rectangles show the geometric center of halls, corridors and

rooms. d) A direct comparison between the grid map and the semantic world. e)

The abstract representation of the semantic world.
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Fig. 3.48: Simulation result no. 3. a) A snapshot of the simulated environment in the Gazebo

simulator. b) The corresponding grid map generated by the Gmapping algorithm.

c) The resulting semantic world with its topology obtained by our system. Small

triangles, circles and rectangles show the geometric center of halls, corridors and

rooms. d) A direct comparison between the grid map and the semantic world. e)

The abstract representation of the semantic world.
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Fig. 3.49: Simulation result no. 4. a) A snapshot of the simulated environment in the Gazebo

simulator. b) The corresponding grid map generated by the Gmapping algorithm.

c) The resulting semantic world with its topology obtained by our system. Small

triangles, circles and rectangles show the geometric center of halls, corridors and

rooms. d) A direct comparison between the grid map and the semantic world. e)

The abstract representation of the semantic world.
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Fig. 3.50: Simulation result no. 5. a) A snapshot of the simulated environment in the Gazebo

simulator. b) The corresponding grid map generated by the Gmapping algorithm.

c) The resulting semantic world with its topology obtained by our system. Small

triangles, circles and rectangles show the geometric center of halls, corridors and

rooms. d) A direct comparison between the grid map and the semantic world. e)

The abstract representation of the semantic world.
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So far we have shown how to use our knowledge-supervised MCMC sampling technique

to solve the problem of semantic indoor mapping. Our technique is not restricted to this

use case. It also generalizes over other applications. In the following, we demonstrate the

effectiveness of our knowledge-supervised MCMC sampling technique in another typical

robotic domain, which is table-top scene analysis.

4.1 Introduction

For autonomous robots to successfully perform manipulation tasks, such as cleaning up

and moving things, they need a structural understanding of their environment. It is not

sufficient to provide geometry scene knowledge alone, i.e., the locations of the objects

relevant to the manipulation task. The robots planning components require additional

information about the composition and inter-object relations within the scene. Imagine, a

robot that is asked to fetch one of the objects shown in Fig. 4.1. It is important for the

robot to understand for example that

• to move object #3, object #4 should be moved first, otherwise object #4 will fall

while moving object #3.

• object #6 is a false estimate thus can not be moved.

• there is something hidden under object #5.

In this chapter, we propose a probabilistic method to generate abstract scene graphs

for table-top scenes that can answer such questions. The input to our algorithm is 6D

object poses that are generated using a feature-based pose estimation approach [88, 6, 22].

Object poses can be estimated either from stereo images or from RGBD point clouds. A

typical result of the procedure is shown in Fig. 4.1.

Our scene graph for table-top scenes describes the composition of the perceived scene

and the relations between the objects, such as “support” and “contact”. To efficiently

generate such scene graphs, we explicitly formulate and use context knowledge, which we

encode in logic rules that typically hold for table-top scenes, e.g., “objects do not hover

over the table”, “objects do not intersect with each other” and so on.
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4.1 Introduction

Fig. 4.1: An example output of our system. a) - b) Sensor input for 6D pose estimation: stereo

image (a) or 3D point cloud (b). c) Initial guess of object 6D poses obtained by a

feature-based approach. The three axes of the table coordinate system are shown as

blue, red and green arrows. d) The scene graph generated by our system. Arrows

indicate the relation “stable support”. Undirected lines show the relation “unstable

contact”. Object #5 is considered to have a “hidden object” under it. object #6 is

considered to be a “false estimate”.
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4 Use Case: Table-Top Scene Analysis

Fig. 4.2: An example of the approach proposed in [83]. Ontology schema and the instance

defining where to go to find the cup.

4.2 Related Work

Scene analysis is a big definition and contains several aspects, such as object identification

[132, 25], localization [33, 79, 52], discovery [73, 72, 152] and so on. Literally it means

to analyze a scene which is comprised of different composites. Depending on the context,

each individual scene could be very different. For a table-top scene, the scene may contain

several objects which are commonly found on tables, such as, books and computers. For

a traffic scene, the scene is totally different and normally consists of cars, humans and

other relevant objects. The goal of different applications of scene analysis is not the same

either. Some approaches concentrate on identifying and localizing the involved objects,

while some other approaches try to discover objects in a cluttered environment. In the

following, we provide a short review on existing approaches, and we focus on the ones that

use context knowledge to analyze the perceived scene.

4.2.1 Using Knowledge as Logic Rules

Several previous methods represent context knowledge as descriptive logic rules to help

robots understand the perceived scenes. Using description logic [7, 42, 17], ontologies

[56, 145] are used to encode context about the composition of scenes, such as, a set of

cutlery contains a knife, a fork, a spoon and so on. Using reasoning engines, such as Racer

[49], Pellet [124] and FaCT++ [142], missing or wrong items in the scene can be inferred

so as to give robots higher-level understanding of the perceived scene. In addition, robot
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actions are sometimes also encoded as ontologies. Different steps for performing a certain

task, such as setting up a table, are defined as the composites. Based on inference results

of the defined ontologies, corresponding actions are triggered for the operating robot.

Lim et al. [83] presented an ontology-based knowledge framework, in which they model

robot knowledge as a semantic network. This framework is comprised of two parts: knowl-

edge description and knowledge association. Knowledge description combines knowledge

regarding perceptual features, part objects, metric maps, and primitive behaviours with

knowledge about perceptual concepts, objects, semantic maps, tasks, and contexts. Knowl-

edge association adopts both unidirectional and bidirectional rules to perform logical in-

ference. This framework enabled their robot to complete a “find a cup” task in spite of

hidden or partial data. An example of this approach is depicted in Fig. 4.2.

Fig. 4.3: An example of the approach proposed in [135]: common-sense knowledge about a

dishwasher. The diagram shows some relations, actions, states, and objects that are

closely related with the concept Dishwasher.

Tenorth et al. [135] proposed a system for building environment models for robots by

combining different types of knowledge. Spatial information about objects in the envi-

ronment is combined with encyclopedic knowledge to inform robots about the types and

properties of objects. In addition, common-sense knowledge is used to describe the func-

tionality of the involved objects. Furthermore, by learning statistical relational models,

another type of knowledge is derived from observations of human activities. By providing

robots deeper knowledge about objects, such as their types and their functionalities, this

system helps robots accomplish complex tasks like cleaning dishes. An example describing
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4 Use Case: Table-Top Scene Analysis

a dishwasher presented in this work is shown in Fig. 4.3.

Fig. 4.4: An example of the approach proposed in [106]. a) Correct result for the green

mug. b) Hallucinated red Mug, correctly discarded by the proposed system. c)

Instructions from http://www.wikihow.com/Set-a-Table (set of objects in capital,

spatial relations in bold).

Pangercic et al. [106] proposed a top-down guided 3D model-based vision algorithm

for assistive household environments. They use “how-to” instructions which are parsed

and extracted from the wikihow.com webpage [61] (one of the largest resources of natu-

ral language task descriptions in the world) to shape the top-down guidance. The robots

knowledge base is represented in Description Logics (DL) using the Web Ontology Lan-

guage (OWL) [91]. Based on the knowledge base, inferences are obtained using SWI-Prolog

queries [154]. Using this system, the task “how to set a table” is accomplished, in which

a robot makes a table ready for a meal according to the instructions obtained from the

wikihow webpage. An example of this system is demonstrated in Fig. 4.4.

In addition to ontology-based approaches, some other methods use first-order logic [127,

30] or variants of first-order logic, such as Markov logic networks [117] or Bayesian logic

networks [68], to formulate context knowledge to solve scene analysis. Blodow et al. [15]

use a Markov logic network to address the problem of object identity resolution. Instead
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Fig. 4.5: An example of the approach proposed in [15]. a) Illustration the output of the

proposed system (boxes and teapot clusters detected on a table) over three time steps.

b) An example of inference results. Every square/circle represents an observation that

was made (cluster). Dotted squares/circles are in fact not observed but are shown

in order to illustrate beliefs on unobserved areas.

of generating scene graphs of the perceived scenes, they focus on inferring the temporal

correspondence between observations and entities. By keeping track of where objects of

interest are located, they aim to provide robots environment awareness, so that robots are

able to infer which observations refer to which entities in the real world. An example of

this approach is shown in Fig. 4.5.

The approaches introduced here use knowledge in the form of logic rules for scene

analysis, however, none of them used such knowledge to provide a semantic abstract scene

graph of the perceived scenes. Instead, they apply knowledge for some other purposes,

such as object detection and reasoning about the scenes.

4.2.2 Using Knowledge through HRI

In addition to the approaches, which encode context knowledge as logical knowledge bases,

there exist also methods that exploit context knowledge through human robot interaction

(HRI) [39]. Motivated from psycholinguistic studies, Swadzba et al. [133] proposed a com-

putational model for arranging objects into a set of dependency trees via spatial relations

extracted from human verbal input. Assuming that objects are arranged in a hierarchical

manner, they predict intermediate structures which support other object structures, such

as, “soft toys lie on the table”. The objects at the leaves of the trees are assumed to be

known and used to compute potential planar patches for their parent nodes. The com-

puted patches are adapted to real planar surfaces, so that wrong object assignments are
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Fig. 4.6: An example of the approach proposed in [133]. a) Two typical relations (parallel and

orthogonal) between scene elements described by human verbal input. b) Examples

of the defined tree structure.

corrected. In addition, new object relations which were not given in the verbal descriptions

could also be introduced. In this way, they could generate a model of the scene through

context encoded in the verbal input of human observers. An example of this approach is

depicted in Fig. 4.6. Other examples of this kind of approaches can be found in [160],

[132] and [90]. Such approaches focus mainly on using methods of HRI, such as human

verbal input, to describe a scene or detect objects.

4.2.3 Using Knowledge in Other Form

In addition to the approaches introduced above, a number of approaches analyze scenes us-

ing context knowledge in other form. Grundmann et al. [46] proposed a method to increase

the estimation accuracy of independent sub-state estimation using statistical dependencies

in the prior. The dependencies in the prior are modelled by physical relations. They use

a physics engine to test the validity of the sampled physical relations. Scene models that

fail the validity check of the implemented physics engine are given a probability of zero.

In this way, a better approximation of the joint posterior is achieved. Another example of
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Fig. 4.7: Using a physics engine to check the validity of scene models. a) An example from

the approach presented in [148]. b) Improved estimation (shown by blue) of the joint

posterior from the approach presented in [46].

using physics engines to check scene validity was presented in [148]. Fig. 4.7 illustrates an

example of both approaches.

Fig. 4.8: An example from the approach presented in [8]. If the normal of a plane is n, objects

lying on this plane tend to share the same normal direction n1//n. Objects whose

normal is not parallel to n (e.g. n2 and n3) are unlikely to sit on that supporting

plane.
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By modelling the relations between objects and their supporting surfaces in the image

as a graphical model, Bao et al. [8] formulate the problem of objects detection as an

optimization problem, in which parameters such as the object locations or the focal length

of the camera are optimized. They follow the intuition that objects’ location and pose in

the 3D space are not arbitrarily distributed but rather constrained by the fact that objects

must lie on one or multiple supporting surfaces. Such supporting surfaces are modelled by

means of hidden parameters. The solution to the problem is finding the set of parameters

that maximizes the joint probability. An example of this approach is demonstrated in Fig.

4.8.

Approaches introduced here have in common that they do not use knowledge in the form

of logical knowledge bases, which are a more sophisticated and theoretically sounder way

of applying knowledge. Instead, they encode knowledge as simple factors or constraints

and use these directly in the continuous domain. In addition, none of these approaches

provided a semantic abstract scene graph of the perceived scenes.

4.3 Contributions

Other than the approaches introduced above, we propose a probabilistic approach to gen-

erate abstract scene graphs from uncertain 6D pose estimates. We focus on generating a

semantic understanding of the perceived scenes that well explains the composition of the

scene and the inter-object relations. The proposed system is realized by our knowledge-

supervised MCMC sampling technique. We employ Markov Logic Networks (MLNs) [117]

to encode the underlying context knowledge as descriptive logic rules. In addition, we use

a probabilistic sensor model to encode the fact that measurements are subject to signifi-

cant uncertainty. We integrate the measurements with the uncertain scene graph in a data

driven MCMC process. Our system is fully probabilistic and links the high-level abstract

scene description to uncertain low level measurements. Moreover, false estimates of the

object poses and hidden objects of the perceived scenes can be systematically detected

using the Markov logic inference techniques.

4.4 A Generalizable Knowledge-Supervised MCMC

Sampling Framework

In this chapter, we apply our generalizable knowledge-supervised MCMC (KSMCMC)

sampling framework to interpret table-top scenes. The fundamental idea of our framework

is to define an abstract model M to explain data D with the help of rule-based context

knowledge (defined in MLNs). According to the Bayes’ theorem, a main criterion for

evaluating how well the abstract model M matches the input data D is the posterior

probability of the model conditioned on the data p(M |D) which can be calculated as

follows:

p(M |D) ∝ p(D|M) · p(M). (4.1)
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Here, the term p(D|M) is usually called the likelihood and indicates how probable the

observed data are for different settings of the model. The term p(M) is the prior describing

what kind of models are possible at all. We propose to realize the prior by making use of

context knowledge in the form of descriptive rules, so that the prior distribution is shaped

in such a way that impossible models are ruled out. Calculations of the prior and likelihood

are explained in section 4.7 and section 4.8 respectively.

Starting from an initial guess of the model, we apply a data driven MCMC [143] process

to improve the quality of the abstract model. Our goal is then to find the model M∗ that

best explains the data and meanwhile complies with the prior, which leads to the maximum

of the posterior probability:

M∗ = argmax
M∈Ω

p(M |D), (4.2)

where Ω indicates the entire solution space. Details about this data driven MCMC process

are provided in section 4.9.

4.5 Rule-Based Context Knowledge

Objects on a table-top are not arranged arbitrarily but they follow certain physical con-

straints. In our system, we formulate such constraints as context knowledge using de-

scriptive rules. This knowledge helps to model table-top scenes efficiently by ruling out

impossible scenes. We express physical constraints in a table coordinate system. This

table coordinate system can be efficiently detected from the sensor input, e.g., using the

Point Cloud Library [119]. To apply context knowledge for scene modelling, we transform

the initial guess of the 6D poses of the objects from the sensor coordinate system into the

table coordinate system (see Fig. 4.9).

4.5.1 Evidence Predicates

Evidences are abstract terms that are detected from the perceived scene given the object

poses and models. To formulate the knowledge as descriptive rules, we first define several

evidence predicates that describe the features of table-top scenes. These predicates are

shown in Table 4.1 and have the following meanings:

• stable(object): this predicate indicates that an object has a stable pose, i.e., it stably

lies on a horizontal plane. For instance, objects #1, #2, #3 and #5 in Fig. 4.9-b

have a stable pose. Objects #4 and #6, in contrast, have an unstable pose.

• table(object): this predicate provides the possibility to model tables as objects, so

that we can use it in the reasoning.

• contact(object,object): this predicate indicates whether two objects have contact with

each other. In the scene shown in Fig. 4.9-b, for instance, there exists contact

between object #2 and #4, and between object #3 and #4. By contrast, contact

does not exist between object #4 and #5, or between object #2 and #5.
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Fig. 4.9: a) The object poses are initially calculated in the sensor coordinate system. b) To

Apply context knowledge in a table-top scene, the objects poses are transformed into

the table coordinate system.

• intersect(object,object): this predicate indicates whether two objects intersect with

each other. In the scene shown in Fig. 4.9-b, intersection only exists between object

#1 and #6. The predicates intersect(object,object) and contact(object,object) are

mutually exclusive.

• higher(object,object): this predicate expresses that the position of the first attribute

is higher than that of the second attribute in the table coordinate system. In the

scene shown in Fig. 4.9-b, for instance, this predicate is true for (#5,#2), (#4,#2)

and (#4,#3).

• hover(object): this predicate means that an object does not have any contact with

other objects including the table. In the scene shown in Fig. 4.9-b, this predicate is

true only for object #5.

evidence predicates

stable(object)

table(object)

contact(object,object)

intersect(object,object)

hover(object)

higher(object,object)

Tab. 4.1: Declaration of evidence predicates
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4.5.2 Query Predicates

Having defined the evidence predicates, we formulate context knowledge as descriptive

rules using Markov logic in Table 4.3. Using these rules, query predicates are inferred

given the evidence. In principle, the query predicates represent the questions that Markov

logic can answer given the defined knowledge base. These query predicates are listed in

Table 4.2 and have the following interpretations:

• hidden(object): this predicate expresses that there is an hidden object in the scene

under the object that is represented by the attribute. In the scene shown in Fig.

4.9-b, this predicate is true for object #5.

• false(object): this predicate indicates that the object represented by the attribute is

a false estimate. In the scene shown in Fig. 4.9-b, this predicate is true for object

#6.

• supportive(object): this predicate indicates that the object represented by the at-

tribute physically supports other objects.

• supported(object): this predicate indicates that the object represented by the at-

tribute is physically supported by other objects. supportive(object) and sup-

ported(object) are two auxiliary query predicates which are used to infer about hid-

den(object) and false(object). The meaning of these two predicates will be explained

together with the defined rules in the following section.

query predicates

supported(object)

supportive(object)

hidden(object)

false(object)

Tab. 4.2: Declaration of query predicates

4.5.3 Context Knowledge Defined as Logic Rules

According to the certainty of knowledge, knowledge can be defined as soft rules or hard

rules in Markov logic. Knowledge with great certainty that holds in all cases are defined as

hard rules. Hard rules are assigned a weight of ∞ in Markov logic. By contrast, soft rules

are used to encode uncertain knowledge and are given a probabilistic weight in Markov

logic representing the uncertainty of the corresponding knowledge. Here, we define several

hard and soft rules (see Table 4.3) to model table-top scenes.
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index i weight ωi formula Fi
r1 ∞ !higher(o1,o1)

r2 ∞ !intersect(o1,o1)

r3 ∞ !contact(o1,o1)

r4 ∞ contact(o1,o2) → contact(o2,o1)

r5 ∞ intersect(o1,o2) → intersect(o2,o1)

r6 ∞ higher(o1,o2) → !higher(o2,o1)

r7 ∞ table(o1) → !false(o1)

r8 ∞ table(o1) → !hidden(o1)

r9 ∞ table(o1) → stable(o1)

r10 ∞ stable(o1) ∧ stable(o2) ∧ contact(o1,o2) ∧
higher(o1,o2) → supportive(o2) ∧ supported(o1)

r11 log(0.70/0.30) supported(o1) → !hidden(o1)

r12 log(0.90/0.10) !stable(o1) → !supportive(o1)

r13 log(0.90/0.10) hover(o1) → false(o1) v hidden(o1)

r14 log(0.90/0.10) intersect(o1,o2) → false(o1) v false(o2)

r15 log(0.70/0.30) supportive(o1) → !false(o1)

r16 log(0.90/0.10) stable(o1) → !false(o1)

Tab. 4.3: Declaration of rules

Hard Rules In all, ten hard rules are defined, and they are explained as follows:

r1: This rule expresses the fact that an object cannot be higher than itself.

r2: This rule indicates that an object does not intersect with itself.

r3: This rule encodes the fact that an object does not have contact with itself.

r4: This rule means that the predicate contact(object,object) is commutative, i.e., given

that object o1 has contact with o2, the statement that object o2 has contact with o1

is true.

r5: This rule means that the predicate intersect(object,object) is commutative, i.e., given

that object o1 intersects with o2, the statement that object o2 intersects with o1 is

true.

r6: This rule means that the predicate higher(object,object) is not commutative, i.e.,

given that object o1 is higher than o2, the statement that object o2 is higher than o1

is wrong.

r7: This rule expresses that in a table-top scene, the table (as an object) is not a false

estimate.

r8: This rule expresses that in a table-top scene, the table (as an object) is the lowest

object in the scene and has no hidden object under it.
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r9: This rule expresses that in a table-top scene, the table (as an object) has a stable

pose.

r10: This rule describes “supportive” and “supported” relations between two objects with

a stable pose. These relations do not apply for objects with unstable poses. In the

scene shown in Fig. 4.9-b, for example, this relation holds between the table and

objects #1, #2, and #3 respectively.

Soft Rules In addition to the hard rules, six soft rules are defined, and they are explained

as follows:

r11: This rule encodes the assumption that an object that is already known to be sup-

ported (through rule #10) is not likely to have a hidden object under it.

r12: This rule expresses the assumption that an object with an unstable pose is unlikely

to be supportive.

r13: This rule states the assumption that a hovering object is either a false estimate or

has a hidden support under it.

r14: This rule states the assumption that if two objects intersect, then one of them is

probably a false estimate.

r15: This rule indicates the assumption that a supportive object is unlikely to be a false

estimate.

r16: This rule indicates the assumption that an object with a stable pose is unlikely to

be a false estimate.

The choice of the rules is a problem-oriented engineering step, and the rules given here

serve as an example of how to encode the properties of typical table-top scenes.

4.5.4 Weights in Log-odd Form

Rules #11 to #16 are soft and are therefore given a weight in the log-odd form describing

our belief on how often the corresponding uncertain knowledge holds. A weight in the log-

odd form log(p1/p2) with p1, p2 ∈ (0, 1) and p1 + p2 = 1, means that the corresponding

rule holds with the probability of p1 [117]. These weights can either be learned [87, 64, 65]

or manually designed [66]. In our work, we use two belief levels log(0.90/0.10) (very sure)

and log(0.70/0.30) (relatively sure) to encode the uncertainty of knowledge. Using Markov

Logic inference, we can answer the queries hidden(object) and false(object) in the form of

a probability.

93



4 Use Case: Table-Top Scene Analysis

4.5.5 Evidence Generation

To do inference in MLNs, necessary evidences must be given as input. In this work we focus

on objects with a regular shape, in particular, objects that can be well represented by an

oriented bounding box (OBB) [11]. However, the aforementioned principles generalize over

objects with other shapes, as long as evidences are provided accordingly. In the following

we elaborate on how to generate evidences by analyzing the oriented bounding boxes of

detected objects:

• stable(object): if any edge of an object OBB is parallel to the vertical axis of

the table coordinate system, we define this object to have a stable pose, i.e.,

stable(object)=True. Examples are shown in Fig. 4.10. Here object #0, #1, #3

and #4 have a stable pose. In contrast, object #2 has a unstable pose.

Fig. 4.10: An example scene.

• contact(object,object): to detect whether two objects have contact with each other,

we search for points of intersection between the OBB of these two objects. If two

OBBs contact but do not intersect each other, there are three possible cases:

– There is only one point of intersection, and it coincides with one of the six

vertices of either OBB.

– There are multiple points of intersection and all points are co-linear and lie on

one of the twelve edges of either OBB (for example, the contact between object

#2 and #4 in Fig. 4.10).
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– There are multiple points of intersection and all points are coplanar and lie on

one of the six facets of either OBB (for example, the contact between object #0

and the table in Fig. 4.10).

In each of the above three cases, we set contact(object,object)=True and inter-

sect(object,object)=False.

• intersect(object,object): contact(object,object) and intersect(object,object) are mutu-

ally exclusive, i.e., they can not be true at the same time. If there exist points of

intersection between two OBBs, and none of the above cases applies, or if an OBB

completely contains the other OBB, then we set intersect(object,object)=True. In all

other cases, we set contact(object,object)=False and intersect(object,object)=False.

An example of the case that two objects intersect with each other is depicted by Fig.

4.11. Here intersect(object,object) is true for object #3 and #5. Points of intersection

are shown by gray spheres.

Fig. 4.11: An example of the case that two objects intersect with each other. Points of

intersection are shown by gray spheres.

• hover(object): if an object does not have any contact or intersection with other

objects including the table, then we set hover(object)=True. An example for this

case is the object #3 in Fig. 4.10.

• higher(object,object): if the position of object1 is higher than the position of object2

in the table coordinate system, then we set higher(object1,object2)=True.
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4.6 Estimation of Object Poses

To determine 6D object poses, we apply a pose estimation approach that is similar to the

approach presented by Grundmann et al. [44]. The basic computational steps are given

in Alg. 2. The algorithm is based on Scale-invariant feature transform (SIFT) keypoints

[88] that are extracted from triangulated stereo images or RGBD measurements, e.g., from

the Kinect sensor.

Algorithm 2 6D Object Pose Estimation

Require:
z, input measurement
K, object database

Ensure:
H, set of pose hypotheses

1: extract SIFT keypoints from z
2: match keypoints to database K
3: for all object models k ∈ K do
4: for i iterations do
5: randomly choose three keypoints matched to k
6: compute object pose hypothesis from matches
7: end for
8: cluster pose hypotheses for object k
9: add clustered hypotheses to H

10: end for

In a first step, the SIFT keypoints of the observed objects are matched to a database K

of object models. In our work, we use the object database of the Deutsche Servicerobotik

Initiative (DESIRE) project [1]. The object models are generated by an accurate 3D

modelling device which is equipped with a turn table, a movable stereo camera pair and a

digitizer. The turn table is used to place the object which should be scanned. The stereo

camera pair acquires stereo images of the target object. Since this camera pair is movable,

together with the turn table, stereo images of the target object can be obtained for many

view angles. Mounted at a fixed position, the digitizer provides 3D data using structured

light. The modelling device is well calibrated and can therefore generate an accurate 3D

model of the target object. More details about the hardware setup of this modelling device

can be found in [158]. An example of the modelling process is illustrated in Fig. 4.12.

As shown in Fig. 4.12-a, the stereo camera pair first acquires stereo images of the target

object from all possible view angels. Then 2D SIFT keypoints are extracted from these

stereo images. Through keypoints matching and triangulation, a 3D point cloud (4.12-c)

is generated out of the matched 2D SIFT keypoints. Based on this point cloud and some

further optimization steps, the final object model is generated in the form of a textured
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Fig. 4.12: An example of the modelling process. All sub-figures are obtained from [47]. a)

Camera poses made possible by the turn table and the camera movement. b) A

stereo image pair obtained from the highlighted (magenta) camera pose. c) High

resolution point cloud obtained through triangulation of matched feature points

in stereo images. d) Generated triangle mesh. e) Textured triangle mesh. f) An

overview of the object database.

mesh of 3D SIFT keypoints (4.12-e). In 4.12-f, an overview of the DESIRE object database

which contains 100 house-hold items is demonstrated.

For each object model k ∈ K, a maximum of i hypotheses is generated. To generate
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hypotheses, three keypoints are chosen randomly from the set of keypoints that has been

matched to model k. Here, the keypoints extracted from the stereo images must undergo

a certain matching scheme to check their validity. The matching scheme is depicted in

Fig. 4.13. First of all, the extracted keypoints are checked by stereo matching, i.e., to

check whether a keypoint found in the left image can also be found in the right image, or

vice versa. The keypoints that have survived the stereo matching are matched with the

object database separately. If a keypoint in the left image and its corresponding keypoint

in the right image (that has been matched through stereo matching) refer to the same

point in the object database, then this keypoint is a valid keypoint and can be used for

pose estimation.

Fig. 4.13: Matching scheme for the SIFT keypoints extracted from images.

An object pose hypothesis is then computed from triples of these matched points. Fi-

nally, pose hypotheses are clustered, and outliers are removed using the RANSAC al-

gorithm [28]. An example of pose estimation is depicted in Fig. 4.14. As shown in

Fig. 4.14-a, the SIFT keypoints that are detected in the stereo image are firstly checked

by stereo matching. Matched keypoints pairs are linked by yellow lines. These stereo-

matched keypoints are further compared with the object database. In Fig. 4.14-b and c,

the database-matched keypoints are shown by cyan in the left and the right image. Using

these matched keypoints, pose hypotheses are generated which are shown in Fig. 4.14-d.

Pose estimation is performed for each new scene but is not repeated during scene graph

generation.
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Fig. 4.14: An example of pose estimation. a) Stereo matching of detected SIFT keypoints.

b) Database-matched keypoints of the left image. c) Database-matched keypoints

of the right image. d) Generated pose hypotheses using the matched keypoints.

4.7 Calculation of Prior Probability

Having defined the predicates and the rules, a knowledge base is formulated in the form

of a Markov logic network (MLN). A MLN initializes a ground Markov network [117], if

it is provided with a finite set of constants. In our application, the detected objects and

the table form the set of constants. The probability of a possible world x (a hypothesis

of scene graph) is given by the probability distribution that is represented by this ground

Markov network. As shown in the equation (2.4), this probability is calculated as follows:

P (X = x) =
1

Z
exp

(∑
i

ωini(x)

)
,
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where ni(x) is the number of true groundings of formula Fi in x, and ωi is the weight of

Fi. Z is a normalization factor. As can be seen in the above equation, the probability of a

possible world is equal to the exponentiated sum of weights of formulas that are satisfied

in this possible world divided by the normalization factor Z.

By ignoring the normalization factor Z, which is the same for all possible worlds, the

unnormalized probability is used as the prior probability in equation (4.1):

p(M) = exp

(∑
i

ωini(x)

)
. (4.3)

In this work, we adapt the ProbCog Toolbox [67] to perform MLN inference and to calculate

this unnormalized probability.

4.8 Calculation of Likelihood

To evaluate estimated object poses, we use a Gaussian sensor model as likelihood, which

is similar to the approach proposed by Grundmann et al. [45]. For a pose estimate ψ,

which corresponds to a scene graph M , we first determine the set of keypoints that have

been matched in the object database. Let (xi, yi), i = 1, 2, · · · , n, be the set of 2D image

coordinates of the key points in the stereo image that are matched to the object database.

Using the pin hole camera model [116], we project the model keypoints (xi, yi) into the

image and denote the resulting set of coordinates as (xψi , y
ψ
i ). The likelihood p(D|M) in

equation (4.1) is then calculated as

p(D|M) =

n∏
i

(
1

σx
√

2π
e
− (xi−x

ψ
i

)2

2σ2
x

1

σy
√

2π
e
− (yi−y

ψ
i

)2

2σ2
y

)
, (4.4)

where σx and σy are the standard deviation in x- and y-direction of the image coordinates.

In our experiments, we use a standard deviation of 1 pixel for σx and σy. An illustration is

given in Fig. 4.15. Here a pose hypothesis (shown in red) is evaluated against the database

object pose (shown in blue). Key points in the stereo image that are matched with the

object model are shown in cyan. For clarity, only the left camera image is shown. The

projected model key points are shown in red. The correspondences between projected and

matched key points are shown by yellow lines. The sensor model is calculated based on

such correspondences.

4.9 Data-Driven MCMC

To find the scene graph that best explains the perceived scene, we apply a data driven

MCMC process [143]. In the t-th iteration with scene graph Mt, we generate n new pose

estimates et,i, i = 1, 2, · · · , n, by adding Gaussian noises to the current pose estimate et,0
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a) b)

Fig. 4.15: Evaluation of a pose estimate using the Gaussian sensor model. a) A pose (red)

is evaluated against the database object pose (blue). b) Key points in the stereo

image that are matched with the object model are shown in cyan (for clarity, only

the left camera image is shown). The projected model key points are shown in

red. The correspondences between projected and matched key points are shown by

yellow lines.

and weight them using the sensor model (equation (4.4)).

An example of generating new pose estimates is given in Fig. 4.16. The pose estimate

with the best weight e∗t is used to generate a new scene graph Mt+1. This scene graph is

accepted by the probability λ(Mt,Mt+1), using the Metropolis-Hastings algorithm [20]:

λ(Mt,Mt+1) = min

(
1,
P (Mt+1|D) ·Q(Mt|Mt+1)

P (Mt|D) ·Q(Mt+1|Mt)

)
, (4.5)

where P (Mt|D) is the posterior probability of Mt (equation (4.1)). Q(Mt+1|Mt) is the

proposal probability of generating Mt+1 out of Mt and is calculated as

Q(Mt+1|Mt) =
weight(e∗t )∑n

i weight(et,i) + weight(et,0)
. (4.6)

Similarly, Q(Mt|Mt+1) is computed as

Q(Mt|Mt+1) =
weight(et,0)∑n

i weight(et,i) + weight(et,0)
. (4.7)

Here, weight(et,i) is the sensor model that is calculated using (et,i) as pose estimate (equa-

tion (4.4)).

4.10 Experiments

We conducted numerous real world experiments to evaluate our approach. In each exper-

iment, a number of household objects was placed on a table and a sensor measurement

was taken. We then applied our approach to generate a scene graph and to infer hidden
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Fig. 4.16: Generating new pose estimates (red) by adding Gaussian noises to the current pose

estimate (green).

objects or false estimates.

A selection of typical results is shown in Fig. 4.17 to 4.23. In each figure, the left

camera image of the stereo image, the estimated poses, the resulting scene graph and

the corresponding query probabilities are shown. False estimates and objects implying

the existence of hidden objects are highlighted in red and cyan respectively. It can be

seen, that all the perceived scenes are correctly represented by our scene graphs. Arrows

indicate that an object stably supports another object. Undirected lines mean that two

objects have an unstable contact.

4.10.1 Inference

In our experiments, the defined knowledge base (Table 4.3) is used to reason about false

estimates and hidden objects in the perceived scenes. In all experiments, the false estimates

and hidden objects are correctly inferred. In the used MLN tool [67], the query probabilities

are calculated based on certain sampling methods, and their values v are normalized (v ∈
[0, 1]). We interpret these values as follows:

• If the value is around 0.5, i.e., 0.4 < v < 0.6, the uncertainty of the corresponding

query is the biggest, and we do not make decisions, e.g., false(2) and hidden(0) in

result #3.

• If the value is greater than a given threshold, i.e., v > 0.6, the corresponding query

is considered to be true, e.g., false(5) and hidden(2) in result #7.

• If the value is lower than a given threshold, i.e., v < 0.4, the corresponding query is

considered to be false, e.g., false(0) and hidden(4) in result #1.

We manually labelled 25 complex table-top scenes. Each of the scenes contained several

household objects of various types and had rather complex configurations, similar to those
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shown in Fig. 4.17 to 4.23. The 25 scenes contained in all 10 hidden objects and 5 false

estimates, all of which were correctly inferred.

To check the robustness of our system, all the experiments were carried out 20 times.

The generated scene graphs stay the same. In addition, false estimates and hidden objects

in the scenes are also correctly inferred by the defined MLN in all repeated experiments.

4.10.2 Runtime

In experiments, we have also tested the run time performance of the proposed system. In

each iteration, the run time of our system is mainly spent on MLN reasoning (including

evidence generation) and the MCMC process. With a single-threaded implementation on

an Intel i7 CPU, the average processing time of each iteration for the experiments shown

in this chapter is 2.18 seconds. 68.8% of this processing time is spent on MLN reasoning,

and the other 31.2% is spent on the MCMC process. To get a good scene graph of the

perceived scene, our system needs to perform 10 to 15 iterations.

4.11 Conclusions

In this chapter, we used our knowledge-supervised MCMC sampling technique to model

table-top scenes. Our system, as a whole, demonstrates a probabilistic approach to gener-

ate abstract scene graphs for table-top scenes using object pose estimation as input. Our

approach explicitly makes use of task-specific context knowledge by defining this knowl-

edge as descriptive logic rules in Markov logic. Integrating these with a probabilistic

sensor model, we perform maximum posterior estimation of the scene parameters using

our knowledge-supervised MCMC process.

We evaluated our approach using real world scenes. Experimental results confirm that

our approach generates correct scene graphs which represent the perceived table-top scenes

well. By reasoning in the defined MLN, false estimates of the object poses and hidden

objects of the perceived scenes were correctly inferred.
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Table

0 3 5

2 4 1

false(0)=0.046, hidden(0)=0.424

false(1)=0.070, hidden(1)=0.388

false(2)=0.092, hidden(2)=0.392

false(3)=0.096, hidden(3)=0.398

false(4)=0.142, hidden(4)=0.362

false(5)=0.050, hidden(5)=0.422

Fig. 4.17: Experimental result 1. The input stereo image (upper left), estimated 6D poses

(upper right), the resulting scene graph (lower left) and the query probability (lower

right) are shown. False estimates and objects implying hidden objects are high-

lighted in red and cyan respectively.

Table

0 2 3

4 1

false(0)=0.110, hidden(0)=0.354

false(1)=0.126, hidden(1)=0.794

false(2)=0.120, hidden(2)=0.384

false(3)=0.148, hidden(3)=0.402

false(4)=0.094, hidden(4)=0.410

Fig. 4.18: Experimental result 2. The input stereo image (upper left), estimated 6D poses

(upper right), the resulting scene graph (lower left) and the query probability (lower

right) are shown. False estimates and objects implying hidden objects are high-

lighted in red and cyan respectively.
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Table

0 1 4

2 3

false(0)=0.074, hidden(0)=0.418

false(1)=0.080, hidden(1)=0.376

false(2)=0.518, hidden(2)=0.510

false(3)=0.106, hidden(3)=0.852

false(4)=0.090, hidden(4)=0.350

Fig. 4.19: Experimental result 3. The input stereo image (upper left), estimated 6D poses

(upper right), the resulting scene graph (lower left) and the query probability (lower

right) are shown. False estimates and objects implying hidden objects are high-

lighted in red and cyan respectively.

Table

0 3 1

4 2
5

6

false(0)=0.074, hidden(0)=0.406

false(1)=0.036, hidden(1)=0.424

false(2)=0.092, hidden(2)=0.384

false(3)=0.102, hidden(3)=0.386

false(4)=0.094, hidden(4)=0.400

false(5)=0.130, hidden(5)=0.348

false(6)=0.912, hidden(6)=0.466

Fig. 4.20: Experimental result 4. The input stereo image (upper left), estimated 6D poses

(upper right), the resulting scene graph (lower left) and the query probability (lower

right) are shown. False estimates and objects implying hidden objects are high-

lighted in red and cyan respectively.
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Table

0 4 1

32

false(0)=0.082, hidden(0)=0.428

false(1)=0.044, hidden(1)=0.432

false(2)=0.150, hidden(2)=0.816

false(3)=0.110, hidden(3)=0.382

false(4)=0.496, hidden(4)=0.478

Fig. 4.21: Experimental result 5. The input stereo image (upper left), estimated 6D poses

(upper right), the resulting scene graph (lower left) and the query probability (lower

right) are shown. False estimates and objects implying hidden objects are high-

lighted in red and cyan respectively.

Table

0 1 5

4 3 2

false(0)=0.070, hidden(0)=0.416

false(1)=0.036, hidden(1)=0.454

false(2)=0.158, hidden(2)=0.384

false(3)=0.110, hidden(3)=0.400

false(4)=0.152, hidden(4)=0.374

false(5)=0.074, hidden(5)=0.358

Fig. 4.22: Experimental result 6. The input stereo image (upper left), estimated 6D poses

(upper right), the resulting scene graph (lower left) and the query probability (lower

right) are shown. False estimates and objects implying hidden objects are high-

lighted in red and cyan respectively.
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Table

0 1 3

4 2 5

false(0)=0.096, hidden(0)=0.404

false(1)=0.088, hidden(1)=0.406

false(2)=0.136, hidden(2)=0.808

false(3)=0.138, hidden(3)=0.386

false(4)=0.492, hidden(4)=0.506

false(5)=0.914, hidden(5)=0.460

Fig. 4.23: Experimental result 7. The input stereo image (upper left), estimated 6D poses

(upper right), the resulting scene graph (lower left) and the query probability (lower

right) are shown. False estimates and objects implying hidden objects are high-

lighted in red and cyan respectively.
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5.1 Concluding Remarks

Data processing handles data directly in the continuous domain, and it refers to the collec-

tion and manipulation of items of data to produce meaningful information. By contrast,

knowledge processing is one of the core research fields of Artificial Intelligence, and it

mainly deals with knowledge representation and reasoning in the symbolic domain. Al-

though data processing and knowledge processing have many successful applications in

their own domain, the combination of the both in a systematic and theoretically sound

way is rarely seen. Such a combination is good at handling the complexity and uncertainty

of the real world, and therefore it can help autonomous systems to tackle highly complex

tasks.

In this dissertation, a knowledge-supervised MCMC (KSMCMC) sampling technique is

developed, which provides autonomous systems the ability to abstract and to infer based

on given knowledge and data. Within the framework of KSMCMC, knowledge processing

and data processing can fully deploy their own strength and meanwhile work together as

a consistent unity. We propose to realize the KSMCMC sampling technique by combining

Markov logic and data driven MCMC sampling, because the former is a powerful tool for

modelling uncertain knowledge, and the latter provides an efficient way of drawing samples

from unknown complex distributions.

Based on Markov logic, task-specific context knowledge can be formulated as descriptive

logic rules. These rules define the system behaviour on higher levels, regardless of the exact

setting of the environment and the exact sensor readings. This abstractly defined behaviour

is applicable to a wider range of situations and thus increases the overall robustness of the

system. As a whole, KSMCMC is a new method of fitting abstract semantic models to

input data by combining high-level knowledge processing with low-level data processing in

a probabilistic and systematic way.

The effectiveness of the proposed KSMCMC sampling technique was demonstrated in

two typical tasks in the robotic domain: semantic mapping and scene analysis. In chapter

3, we proposed a new system for semantic indoor mapping based on KSMCMC. This system

takes preprocessed sensor data (in the form of occupancy grids) as input and generates

a parametric, abstract, semantic and top-down representation of the perceived environ-

ments under the consideration: a classical indoor environment containing several units of

different types connected by doorways. The generated parametric abstract models not

only accurately represent the geometry of the perceived environments, they also provide

valuable abstract information which could benefit higher level reasoning and communica-
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tion purposes. Other than previous semantic mapping approaches that mainly focused on

labelling the environments using semantic tags, the proposed system produces parametric

models in a probabilistic generative manner. Task-specific context knowledge is defined as

descriptive logic rules in Markov logic networks and is used to guide the sampling process

to the desired environment representations, i.e. those comply with the defined knowledge,

and at the same time, match the data well.

In chapter 4, the KSMCMC sampling technique was used to build a system for mod-

elling table-top scenes. The proposed system employs a probabilistic approach to generate

abstract scene graphs for table-top scenes using 6D object pose estimation as input. This

system explicitly makes use of context knowledge that describes how such table-top scenes

could be constructed. This knowledge is defined as descriptive logic rules in Markov logic

and is used to calculate the probability of scene graphs. Combining the probability of scene

graphs with a probabilistic sensor model, maximum posterior estimation of the scene pa-

rameters is performed using KSMCMC. The proposed system was evaluated using real

world scenes. Experimental results confirmed that this system generates correct scene

graphs which well represent the perceived table-top scenes. These scene graphs explain

the composition of the observed scenes correctly and provide valuable semantic informa-

tion on the inter-object relations which is very useful for robot manipulation tasks. By

reasoning in the defined Markov logic network, false estimates of the object poses and

hidden objects of the perceived scenes are correctly inferred.

5.2 Future Directions

Combining knowledge processing and data processing into a systematic and consistent

unity is an interdisciplinary task. The work presented in this dissertation demonstrates a

solid contribution in this direction. The ideas discussed in this dissertation also motivate

several interesting future research directions:

• Efficiency of knowledge processing : the run time efficiency of knowledge processing

depends mainly on the size of the represented knowledge base and the effectiveness of

the reasoner (software implementation). In general, the more complex and powerful

a knowledge base is, the less efficient the processing will be. This effect restricts

the use of sophisticated knowledge bases. To fully deploy the power of knowledge

processing, more work should be done to solve the efficiency issue.

• Other knowledge representation formalisms : in this dissertation, we used Markov

logic for knowledge processing. There exist some other formalisms for knowledge

representation, which could also be useful, such as description logic and semantic

network. A future research direction would be to try out and evaluate these for-

malisms or their combinations.

• Application to other tasks : in this dissertation, the proposed KSMCMC sampling

technique was used to handle two typical challenges in robotics, which are semantic
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mapping and scene analysis. However, its usefulness is not restricted to these two

tasks only. This technique can be well used for tasks that are concerned with semantic

and abstract interpretation of data sets. Thus, another line of research work would

be to apply this approach to other tasks.

Regarding the two use cases of the proposed KSMCMC sampling technique, there exist

also some future research directions, as listed in the following:

• Semantic mapping : at the current stage, semantic models are extracted from 2D map

data of indoor environments, an extension to 3D scenarios and outdoor environments

would be an interesting future direction. Another research direction would be the

integration of this type of semantic knowledge into the perception procedures at the

run time of the robot.

• Scene analysis : currently, objects with a regular shape that can be well represented

by an oriented bounding box are used for scene analysis. This box shape is mainly

used to simplify the discriminative evidence generation. A possible future direction

could be the extension to objects with irregular shapes.
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