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Abstract

In an audio conferencing situation a remote conferee often faces difficulties distinguishing
between the other conference participants. As a consequence conference effectiveness
and efficiency are lower than in a conferencing situation where all participants are placed
in one room. In order to reduce the disadvantage of being physically not present in the
conference room, it would be beneficial to provide the remote conferee with a virtually
separated playback of the different conference participants.

In this thesis an immersive audio conferencing system is developed and evaluated which
is able to play back the conference contributions to a remote conferee in a spatially sep-
arated manner. In order to virtually synthesize the conferees to different positions around
the remote conference participant, each participant has to be assigned to an individual
transmission channel. The assignment of the active conferee is accomplished via a sound
acquisition system that is able to fulfill the task of channel assignment by using sound
source localization, sound source separation and online speaker recognition techniques.
Due to a required low mouth to ear delay, the assignment algorithm is restricted to a small
algorithmic latency.

To further improve the head-related transfer function (HRTF) based immersive play-
back of the conference contributions at the remote site, different HRTF individualization
approaches are applied and acoustic measurement approaches are investigated.

Finally, the developed conferencing system is evaluated by numerous listening tests that
are explicitly tailored to the conference situation in order to allow one to draw meaningful
conclusions about the conferencing system’s sound acquisition algorithm and the differ-
ent immersive playback modes of the system. Besides the traditional objective measures,
e.g. signal to noise ratios, and established listening tests, e.g. localization tests for im-
mersive playback, recent evaluation concepts such as quality of experience and cognitive
load are applied. The listening tests demonstrate that the sound acquisition system suc-
ceeds to assign the conferees to individual channels within the required small algorithmic
latency. Furthermore, the listening evaluation unveils that the efficiency and effectiveness
of a conference can be improved significantly by use of the developed conferencing sys-
tem whereas individual acoustically measured or individualized HRTFs do not improve
the subjectively perceived quality of a conference situation compared to a generic set of
dummy-head HRTFs.
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1. Introduction

„Not seeing separates us from things, not hearing separates us from people.“

This quote attributed to Kant suggests that the sense of hearing is essential for us to com-
municate with each other. Recent economic and social developments require more and
more interactive communication using teleconference systems to manage work progress
and projects whose project partners are spread all over the world. Focusing on a profes-
sional sector’s project management, multi-party teleconference meetings certainly can not
replace a real meeting but teleconferencing systems often enable an information exchange
at all, and can therefore have strong influences on the project progress. Nowadays, the
different spatially separated project partners usually conduct acoustic or video teleconfer-
ence meetings to coordinate project progresses. To perform this task, the different groups
within a project are often represented in the teleconference by one person or a group of
conferees which participate in the conference in front of a computer, by using smart phones
or conferencing systems.

1.1. The Perfect Teleconferencing System

The various thinkable teleconferencing situations can be divided into two main groups,
illustrated in Figure 1.1. The first group of teleconference situations consists of hands
free conferencing of more than one conferee within a conference room that is acoustically
equipped with loudspeakers playing back the conference contributions of remote partici-
pants and a microphone system which is shared by the conferees in the conference room.
The second group of teleconference situations consists of conferees which are equipped
with an individual microphone and playback device, e.g. using a head set in combination
with a computer or a smart phone. It is also possible for conferencing to use a laptop’s
microphone for recording of the speech contributions and the laptop’s loudspeaker system
to playback the conference discussions of the other participants.

A perfect teleconferencing system gives the conference participant the feeling of actually
sitting around one conference table with the other remote conferees. In the illustrated
conference room situation, the perfect teleconferencing system reliably determines who is
speaking when without any delay and the system assigns the microphone array recorded
speech contributions of the respective conferee to an individual transmission channel. The
microphone array for the sound acquisition can be placed on a table in the conference room
and is ready to use out of box without the need of any acoustic calibration. Furthermore,
the assignment also works reliably in echoic and noisy environments and the assigned
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1. Introduction

Figure 1.1.: Schematic overview of teleconferencing situations

speech signal is free of echo and noise. Remote conference participants are played back
spatially separated to the conferees in the conference room to ease the differentiation of
the speech contributions of remote conference participants. Of course, the loudspeaker’s
playbacks in the conference room do not have disturbing influences at the remote listener’s
site. The conference room equipment should use standard low-cost hardware which is
easy to deinstall, e.g., to be rebuilt in another room.

The perfect conference contribution playback for the second group at the remote site
would present the conference contributions without any mouth to ear delay in a spatially
distributed manner. The 3D sound synthesis should also incorporate individual differences
of the remote conferees with respect to their individual acoustic perception. Thereby how-
ever, the users shall be spared from extra individualization effort. Comparable to real hear-
ing habits, movements of the remote participants are captured and the sound is adapted
accordingly. The immersive playback is possible with headphones as well as with com-
puter loudspeakers. To achieve the immersive playback for the remote conferee everything
needed should be already available at a standard office workplace.

The different tasks to be solved for the described acoustic teleconference system can
be summarized to sound acquisition for immersive playback, sound transmission and im-
mersive playback.

Beside audio considerations, visual systems capture each conferee and the associated
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1.2. Requirements

nonverbal signals which are transmitted and immersively displayed to the other partici-
pants.

Sound Acquisition
for Immersive Playback

Immersive Playback

Figure 1.2.: Schematic overview of the thesis focus

In this thesis I will focus on a scenario with one or more remote conference participants
equipped with a microphone and stereo headphones. The remote participants conduct
an audio teleconference with a group of conferees placed in a conference room that is
equipped with a microphone system on a table. Within this scenario I will concentrate on
the sound acquisition for immersive playback in the conference room and the immersive
playback at the remote site as schematically illustrated in Figure 1.2.

1.2. Requirements

Based on the considerations about the perfect acoustic teleconferencing system and the
limitation of the whole system regarding sound acquisition for immersive playback in the
conference room and the immersive playback for the remote user, several requirements
can be defined:

Sound Acquisition for Immersive Playback

• The sound acquisition system’s algorithms are supposed to function in a real world
office environment, meaning the presence of reverberation and noise.

• The microphone array is supposed to be placed on a conference table and should
therefore be compact in size.

• The channel assignment algorithms should be able to process the conference con-
tributions without extensive calibration or prior knowledge of acoustic transfer func-
tions.

• The assignment of the speakers to their individual channel should be independent
from the chronology of the contribution of the respective conference participants.

3



1. Introduction

• The assignment of the active conferees has to be achieved on-line.

• The assignment system is text independent, meaning that no prior knowledge about
the conference content is required to fulfill the channel assignment.

• The assignment system adapts to a physical change of a participant’s position within
the conference room.

• The assignment system only needs speaker dependent information which can be
gained in a short introduction round.

Immersive Playback

• The assigned conference participants should be played back at virtually synthesized
positions around the remote listener. Each person in the conference room is al-
ways synthesized to a fixed position, which enables the listener also to differentiate
between the speakers by utilizing the direction of the incoming sound.

• The 3D sound synthesis should be done with an economically justified effort. An
additional user expense in terms of user dependent calibration of the system, e.g.,
by measuring individual head-related transfer functions (HRTFs) is only justified by
a leap in quality of the teleconferencing system.

• The immersive playback should be done with standard office equipment. Therefore,
no custom built hardware should be utilized.

Complete System

• The ITU-T G.114 recommendation [77] provides information about the acceptable
mouth to ear delay of a telecommunication system. According to the recommen-
dation, a user satisfying teleconferencing system should have a mouth to ear delay
of less than approximately 275 ms. Therefore, the algorithmic latency for the sound
acquisition, the sound transmission and the immersive sound playback has to be
considered.

1.3. State of the Art

On the one hand, there has been great progress for conferencing systems concerning the
quality of speech by increasing bandwidth of internet connections and by implementing
capable algorithms to suppress noise. As a simple conference solution, freeware is often
used to conduct software-based teleconferences. One popular teleconferencing freeware
is Skype, using direct peer-to-peer connection between the users. Audio codecs used
by Skype seek to improve speech quality but do not use binaural techniques to generate
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3D sound. Ekiga and Mumble, open source VoIP softwares, were equipped with binaural
sound rendering to make use of the well-known cocktail party effect [7], enabling the user to
virtually differentiate and understand simultaneously talking speakers [70, 136]. Recently,
Symonics presented the idea of an easy to use server-based 3D teleconferencing system.
A similar idea of a server-based 3D sound rendering also was presented in [138]. For
the described software-based binaural approaches, a channel assignment is not required
since the conferees have their own microphone. Therefore, the individual sound streams
can be virtually synthesized at the remote listener’s site.

On the other hand, a popular solution to be installed at the conference room is a confer-
encing telephone that is able to record the participants and transmit the mono recordings
to remote conference attendants without any spatial information. One of the market lead-
ers in this category is Polycom. Beside standard conferencing telephones, high quality but
very expensive solutions for professional teleconferencing are available on the market of-
fered by Cisco or Huawei. At each conference site, a specially equipped conference room
is necessary to record each conferee by an individual camera and microphone. The con-
ferees in one conference room sit on one side of the conference table whereas a screen
and a loudspeaker for each remote conference participant "sit" on the other table side. In
such a way, a high degree of audio immersion is expected to be achieved, because the
audio signals are in fact played back at physically different places in the conference room.

The project 3D VIVANT (3D live immerse video audio interactive multimedia) investi-
gates future 3D audio-visual technologies such as 3D holoscopic content and spatial au-
dio technology to provide the future immersive environment. Within 3D VIVANT, project
MARVIN (Microphone Array for Realtime and Versatile Interpolation) can be considered as
a promising approach to achieve binaural recordings with a spherical microphone array.
The microphone array imitades a head and dependent on the orientation of the listener, a
pair of microphones is chosen for playback. The recordings can then be played back by
a technology called Binaural Sky [109]. MARVINs main application is supposed to be the
recording of sound for immersive 3D video and audio experiences, which is comparable to
teleconferencing systems.

In robotic applications, high fidelity telepresence also is investigated. In order to improve
interactions between the human (operator) and the robot (teleoperator) in human centered
robotic systems, it is important to equip the robotic platform with multimodal human-like
sensing, e.g. vision, haptic and audition [86]. The scenario of a robot that is equipped with
microphones and an operator who should be capable to pick up the teleoperators auditory
scene resembles an acoustic teleconference scenario and should therefore be mentioned
in this section.
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1.4. Limitations of Existing Teleconferencing Systems

The existing acoustic conferencing solutions do not fully meet the requirements for the
defined conference scenario where a group of participants in a conference room are in
discussion with one or more remote conferees that are equipped with headphones.

Many VoIP based systems like Skype do not offer binaural 3D sound synthesis at all
or work with a static set of transfer functions disregarding the users individual acoustic
perception that is also influenced by the users unique geometric features (Ekiga, Mumble,
Symonics). Furthermore these systems do not address the sound acquisition require-
ments in scenarios where a group of conferees is placed in one conference room.

The widespread conference telephones, e.g. by Polycom, do not assign the active con-
feree to the respective transmission channel. Consequently, a spatial separated playback
of the different conference room participants is not possible.

MARVIN does also not assign the conference room participants to individual channels
since the spatially separated playback at the remote site is done by direct playback of the
binaural recordings of the array. This also makes it difficult to automatically respond to a
conferee position change during the teleconference.

The telepresence systems by Cisco and Huawei are very expensive and require huge
installation efforts. Moreover, each remote conference participant has to also be equipped
with such a system to benefit from the systems technical capabilities.

The afore mentioned telepresence system for robotic applications [86] can be applied to
teleconference situations. Instead of being installed on a teleoperator, the compact sound
acquisition module can be installed into a conference room and the immersive playback
system at the operators site can be adapted for the remote teleconference participant.
However, the system described in [86] is not capable of the channel assignment since the
system only works with localization data for direct virtual playback of the robots surrounding
sounds.

1.5. Formulation of the Research Problem

Inspired by my work on the project "Acoustic Telepresence: Binaural Directional Hear-
ing and Immersive Audio" within the collaborative research center SFB-453 "High Fidelity
Telepresence and Teleaction" and based on the defined requirements of the targeted tele-
conference scenario I address the following research questions, illustrated in Figure 1.3 at
the system level:

• Sound acquisition: Is it possible to construct a sound acquisition for the teleconfer-
encing system that reliably assigns each conferee in the echoic conference room to
an individual channel and thus enable spatial separated playback of the conference
participants at the remote site?
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Sound Acquisition
for Immersive Playback

Immersive Playback

System Evaluation

Figure 1.3.: Schematic overview of the research problem

• Immersive playback: Is it possible to improve the remote conferee’s head-related
transfer function (HRTF) based virtual playback of the assigned conference partic-
ipant’s contributions by using individual or customized HRTF datasets with respect
to the user?

• Evaluation: How can the quality of the developed sound acquisition and immersive
playback approaches be evaluated with respect to the conferencing system?

In order to answer the research questions at the system level of the aspired teleconferenc-
ing system, I first have to construct the teleconferencing system with modules that consists
of eligible algorithms that are chosen by maximizing local cost functions for the respective
modules.

Facing the research efforts in the individual modules of the teleconferencing system, I
propose the hypothesis that it is possible to construct a sound acquisition for the telecon-
ferencing system that fulfills the afore stated requirements defined in Section 1.2. Fur-
thermore, I assume that individual or customized HRTF datasets offer a better playback
impression of conference contributions compared to a non-individualized HRTF dataset.

Method Description

As illustrated in Figure 1.4, I divided the teleconferencing system into two parts, namely,
the sound acquisition and the immersive playback.

The sound acquisition part starts with a review of related work to achieve the channel
assignment for the teleconferencing system. Based on the findings, I develop a chan-
nel assignment algorithm for the teleconferencing system that consists of a sound source

7
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Part I: Sound Acquisition for Immersive Playback

Array
De-
sign

Localization

Separation

Speaker
Recognition

Channel
Assignment

Part II: Immersive Playback

KEMAR-HRTF

Selection-HRTF

Regression-HRTF

Individual-HRTF

Part III: System Evaluation

Quality of Experience Cognitive LoadSound Localization Test

Figure 1.4.: Schematic overview of the modules for the sound acquisition, the immersive playback
and the system evaluation

localization, a sound source separation and a speaker recognition module. For each mod-
ule another literature review is made to choose the most appropriate algorithms for the
modules. The sound source localization and separation algorithms are benchmarked by
extensive experiments in anechoic and echoic environment with different teleconferencing
microphone array prototypes that are constructed with respect to the utilized localization
and separation algorithm’s properties. The evaluation of the algorithms is done by ob-
jective measurements that are frequently utilized in the respective research communities.
In order to find parameters such that the speaker recognition system meets the telecon-
ference requirements, extensive simulations with a publicly available meeting corpus are
conducted. Finally, the chosen localization, separation and speaker recognition algorithms
are combined to a channel assignment system. Different reproducible teleconference sit-
uations are designed to have a realistic objective evaluation of the channel assignment
system.

In the immersive playback part, I identified three individualization approaches to choose
the HRTFs for immersive conference contribution playbacks at the remote site, namely
the selection, the regression and the individual measurement approach. For each ap-
proach, different algorithms are evaluated by typical measurements of the respective re-
search communities.

Finally, in the evaluation part of my thesis, I identified and conducted three subjective
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evaluation methods that are appropriate to judge the performance of the teleconferencing
system in terms of quality of experience, cognitive load and sound localization accuracy.

1.6. Contributions

The research questions defined in Section 1.5 are answered in this thesis by the following
contributions:

Sound acquisition

• I identify and implement eligible state of the art approaches for sound source local-
ization, separation and speaker recognition and adjust the algorithms to the con-
structed teleconference microphone array prototype.

• I develop a channel assignment algorithm which meet the requirements to be em-
ployed in a teleconference system.

• The algorithms of the sound acquisition system are extensively evaluated by objec-
tive measures, that are typical for the respective research community.

Immersive playback

• I identify and implement HRTF individualization and acoustic HRTF measurements
methods which allow for different degrees of individualization.

• I develop regression-based HRTF customization algorithms using multiway array
feature extraction methods.

• I develop a method to fairly compare acoustically measured HRTFs obtained by
different measurement approaches.

• The different HRTF individualization methods are evaluated and measurement re-
sults, typical for the respective community, were obtained.

Evaluation

• I have planned and constructed a well-equipped semi-anechoic audio laboratory at
the Institute for Data Processing (LDV) to evaluate the sound acquisition algorithms
in both, anechoic and echoic condition.

• I set up the conditions to acoustically measure individual HRTFs in the audio labo-
ratory at the Institute for Data Processing and succeed to construct the LDV HRTF
database that consists of 35 subjects.

9



1. Introduction

• My research team and I identify, develop, conduct and evaluated listening tests to
evaluate the listeners sound localization accuracy, the quality of experience and the
cognitive load of the developed teleconferencing system.

• The listening tests unveil that the developed channel assignment algorithm works
audibly well.

• The listening tests unveil that the test subjects prefer spatial separated playback of
the remote conferees.

• The listening tests unveil that individualized or even acoustically measured sets of
HRTFs of the probands do not increased the perceived quality of experience of the
teleconferencing system.

• The cognitive load listening tests unveil, that HRTF-based playback of conference
contributions improve effectiveness and efficiency of a teleconference.

10
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Figure 1.5.: System overview of the modeling parameters of the teleconference system
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1.7. Overview

The organization of the thesis follows the signal flow of the aspired teleconferencing sys-
tem. A schematic overview of the modules of the system is illustrated in Figure 1.5.

Part I of the thesis takes place in the conference room. The speech contributions of
the conferees in the conference room are recorded by microphone array prototypes which
are designed in Chapter 2 with respect to the evaluated localization algorithms, also pre-
sented in Chapter 2. Two different localization algorithms are considered in the thesis,
namely the steered response power phase transform (SRP-PHAT) localization algorithm
and a transfer function based sound localization approach (TF-based). Two of the three
evaluated sound source separation approaches, the geometric source separation (GSS)
and binary masking, overviewed in Chapter 3, use the localization information to separate
sound mixtures, e.g., in situations where conference participants in the conference room
are simultaneously talking. The third separation algorithm, called independent vector anal-
ysis (IVA) works without any localization information. The localized and separated signals
are then passed to the speaker recognition system presented in Chapter 4 which decides
who actually is speaking based on voice features. In Chapter 5, the findings of the sound
source localization, the sound source separation and speaker recognition experiments are
combined to an algorithm that successfully accomplishes the channel assignment.

Part II takes place at the remote conferee’s site. The channel assigned conference
contributions of the conference room are virtually synthesized to the remote participant
by using HRTF-based sound rendering. The choice of the utilized HRTF dataset for 3D
playback can be made on the basis of a costbenefit analysis: The playback without any
extra effort by the conferee can be done with a non-individual KEMAR dummy head HRTF.
With little extra effort, the listener can achieve an individualization by selecting an appro-
priate HRTF dataset within an HRTF database. Two related HRTF selection approaches
are presented in Chapter 6. A higher degree of individualization can be achieved by ap-
plying regression techniques, presented in Chapter 7, to generate an individual set of
HRTFs. The regression method is connected to a higher effort than the selection method,
since the regression method requires some anthropometric measures. The most individ-
ual HRTF, however, can be achieved by acoustically measure the conferees head-related
transfer function. In Chapter 8 a method is presented and compared to other approaches
to efficiently obtain an acoustically measured set of HRTFs for the remote listener of the
teleconference.

Finally, Part III of the thesis gives an overview of three different methods to evaluate
the modules and the combination of the modules of the developed teleconference system
with respect to the listener and with respect to the task of teleconferencing. Of course,
there are already experiments for the respective modules of the system, e.g. determin-
ing the diarization error rate for the assignment algorithms, but the objective criteria that
were used to judge the single modules and algorithms of the system are in my opinion
not suited to evaluate the teleconference system. Therefore, more meaningful evaluation
concepts are introduced and applied to the teleconferencing system in Part III of this the-
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sis. One frequently used method to evaluate the performance of a set of HRTFs is the
sound source localization ability of a listener. The precise determination of the proband’s
sound source localization performance itself is a challenging task and requires a complex
measurement setup which is developed in the respective section of the thesis. Measur-
ing the sound source localization accuracy of a proband allows for the evaluation of the
different playback options, but does not include the sound acquisition of the developed
system. Moreover, the pure sound localization accuracy of the played back conference
contributions might be not an appropriate measure to quantify the benefit of the devel-
oped teleconferencing system. Thus, the quality of experience concept is applied to also
evaluate the whole interaction of the different modules for the task of teleconferencing
and to identify the playback options that provide the best cost-benefit-ratio for the aspired
teleconferencing scenario. This playback options are finally applied for a cognitive load
evaluation of the teleconferencing system to determine the effectiveness and efficiency of
the developed teleconference system.

This thesis can be regarded as an executive summary of the conferencing system de-
velopment. In each chapter, I summarize the essential aspects of the respective modules
and the achieved results are presented. My research team and I provide more in-depth
informations about each chapter in corresponding publications.
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Sound Acquisition for Immersive
Playback
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The cocktail-party effect [41] describes the human ability to understand one particular
speaker, even if there are simultaneously active speakers. My goal is to develop a system
that allows to exploit this ability for teleconferencing. The basis for this system is to develop
a sound acquisition system that automatically detects the identity of the active conference
contributor and assigns the speech contributions to individual audio channels, which can
be virtually synthesized at the remote conference participant site to different positions.

The problem of channel assignment can be straightforwardly solved by equipping each
conferee with a close-talking microphone that captures the respective conference contribu-
tion [8]. The identification of the conference participants and consequently the assignment
is done by the microphone ID that is characteristic for each conferee.

A tabletop microphone array can be regarded as an alternative to the close-talking mi-
crophones. However, extra effort has to be spent to assign the conferees to their individual
transmission channel, e.g., using sound source localization or speaker recognition algo-
rithms. Sound source localization detects the position of an active conference participant,
which can be used to assign the conference contribution on the basis of the localization
information at each time instance. The assignment is therefore not conducted by the active
conferee’s voice, but rather based on the conferee’s position. An example for a localization
driven diarization of conferences is given in [5]. Furthermore, localization in conjunction
with a tracking approach and clustering of the known position of the conference partici-
pants [155] can be applied to solve the assignment of the active speaker.

Besides sound source localization, speaker recognition approaches are available for the
assignment of the conference participants in the conference room. Compared to sound lo-
calization driven approaches exploiting the sound source position for assignment, speaker
recognition algorithms seek to identify the conferee by individual voice features.

The problem of channel assignment can also be solved with speaker diarization sys-
tems that detect who is speaking when in a conference by using all possible information
within the audio recordings, e.g. voice features and direction of arrival of the voice source.
Speaker diarization approaches usually work on the recordings of the whole conference
to classify and cluster the conference contributions [166] and to reach better assignment
results than online speaker recognition algorithms but the offline processing requirement
renders diarization systems useless for teleconferencing applications.

Another class of approaches for channel assignment is to combine audio information
with camera information, e.g., to monitor meeting participants [26] or to apply reinforce-
ment learning for speaker recognition, as I proposed in [132].

In the first part of my thesis, methods to achieve the channel assignment are presented,
eligible algorithms for channel assignment are chosen and adjusted or developed and fi-
nally evaluated by real world experiments in a semi anechoic environment and in echoic
environments. Furthermore, my research team and I construct hardware prototypes tak-
ing the aspired conference scenario and the chosen algorithms’ properties into account.
Among the afore mentioned classes of approaches for channel assignment, I decided to
develop a combination of sound source localization, separation and speaker recognition
in order to reach the requirements for my teleconferencing system and to combine the
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advantages of the respective algorithms for channel assignment in a meaningful way. In
Chapter 2 two robotic sound source localization algorithms are introduced and evaluated.
The first algorithm utilizes a Steered Response Power - Phase Transform (SRP-PHAT)
sound localization and has been proven of value in the field of robotic sound localization
using microphone arrays. The second algorithm follows the lead of human hearing and
exploits spectral cues to localize sound sources with two microphones. The algorithm is
extended to be used with a teleconferencing prototype array that consists of eight micro-
phones. Extensive experiments are conducted with different microphone array prototypes
to find an eligible localization algorithm to be used in the channel assignment system. In
Chapter 3 three different sound source separation algorithms are presented and evalu-
ated regarding the task of teleconference channel assignment. The first algorithm is a
blind sound source separation algorithm, called Independent Vector Analysis (IVA) which
separates the sound mixtures by statistical models without any localization information of
the sound source. The second algorithm is named Geometric Source Separation (GSS)
and additionally uses localization data to improve the sound source separation. The third
algorithm is called binary masking and separates the mixtures solely by localization data.
Chapter 4 introduces a speaker recognition system and the parameters of this system for
the task of teleconferencing are determined by numerous experiments. Finally, an assign-
ment system is constructed and evaluated in Chapter 5 with the chosen sound source
localization, sound source separation and speaker recognition algorithms.
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2. Sound Source Localization

Sound source localization (SSL) algorithms using microphone arrays are the standard
approaches to detect sound sources in various fields of application, e.g., robotic sound
source localization. According to [22] microphone array based sound localization algo-
rithms can be classified into three groups, namely, time delay of arrival (TDOA) based
approaches, high-resolution subspace techniques (HRST) and steered response power
(SRP) beamforming algorithms.

The TDOA based SSL approaches localize a sound source by exploiting the time dif-
ferences of the impinging sound waves between the array’s microphones [37, 150]. By
knowing the microphone coordinates, one can estimate areas of possible sound source
locations, which are refined by an increasing number of different microphone pair’s time
delays. Usually, the generalized cross-correlation method [90] is applied to compute the
TDOAs between the pairs of microphones. Regarding echoic environments or scenarios
with more than one simultaneously active sound source in an echoic environment, evalu-
ating the TDOAs of the cross-correlation estimation is a challenging task [149].

HRST methods are also named spectral-estimation-based locators and make use of the
so-called cross-sensor covariance matrix. The cross-sensor covariance matrix is a correla-
tion matrix computed across the spatially distributed microphones and is used to estimate
parameters that influence the microphone recordings. One popular HRST method is the
multiple signal classification (MUSIC) method [151]. The basic idea of MUSIC is the as-
sumption that the recording of each microphone is a linear combination of a sound source
and disturbing noise. A principal component analysis on the covariance matrix computes
the disjoint signal subspace and noise subspace. MUSIC also estimates the most likely
sound source directions by omnidirectional distance evaluation of the array’s steering vec-
tors and the noise subspace. Another example for HRST methods is ESPRIT [146]. The
restrictions for applying HRST methods in a teleconference system are the computation-
ally expensive calculations for the principle component analysis and the requirement of a
higher number of microphones than the number of sound sources including echoes and
noise sources.

Beamforming is a frequently used microphone array sound localization technique to add
a directivity to the microphone array. Therefore, the array that consists of omnidirectional
microphones can intensify sound signals from a certain direction by so-called constructive
interferences and suppresses noise and echoes from other directions by destructive inter-
ferences. The interferences are generated by processing each microphone’s recording by
time shifts according to the physical microphone array setup and according to the steering
angle. The time shifted versions of the recordings are then summed up to an output signal
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2. Sound Source Localization

and constitute constructive and destructive interferences. This technique is denoted as
delay-and-sum beamformer [22]. Additional frequency dependent weighting is applied in a
filter-and-sum beamformer to the time shifted microphone recordings. A SRP beamformer
localizes a sound source by steering the directivity such that the highest output power of
the beamformer is reached among predefined search positions around the microphone
array [21].

The transfer function based approach can be regarded as an alternative approach to
microphone arrays. The idea is to exploit the human cues for SSL, which can be adapted
for the teleconferencing system. According to human-like HRTF-based sound localization,
sound waves approaching the microphone array are diffracted and reflected of the array’s
shape such that direction dependent spectral changes can be observed. Furthermore,
microphones also offer direction dependent transfer behavior denoted by acoustic transfer
functions (ATF), which can be roughly compared to HRTFs. Teleconference systems could
benefit from a human-like sound localization approach because of the ability to localize
sound sources in a three-dimensional environment with only two microphones in a com-
pact manner. Recently, ATF-based sound localization algorithms have been developed to
enable mobile robotic platforms to localize sound sources. In [44, 86, 104] sound source
localization algorithms based on HRTFs have proved to be accurate and robust to noise.

2.1. Teleconference Sound Localization

In my opinion the SRP sound localization method or the ATF-based sound source local-
ization method are beneficial to be employed in a teleconferencing system since the algo-
rithms have proved valuable in robotic sound source localization applications. After briefly
summarizing the algorithms, extensive experiments are designed, conducted and evalu-
ated to choose the most promising approach for the final teleconferencing system.

Steered Response Power (SRP) Localization

This section describes our adaption of localizing and separating sound sources, based on
[170, 172].

The SRP-PHAT algorithm [39] can be regarded as one promising approach to localize
one or multiple simultaneously active sound sources in an echoic and noisy environment.
The SRP-PHAT algorithm is therefore also utilized for robotic sound source localization
in [170, 172]. SRP-PHAT estimates the TDOA by determining and aligning the cross-
correlation functions of the microphone signals of the array according to pre-computed
delays and the PHAT weighting function. The SRP P impinging from a certain azimuth
angle ϕ and elevation angle θ of the filter-sum beamformer is computed by

Pϕ,θ =
N∑

l=1

N∑
k=1

∫ +∞

−∞
Ψlk (f )xl (f )x∗k (f )ej2πf (τk−τl )df , (2.1)
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2.1. Teleconference Sound Localization

where

Ψlk (f ) =
1

|xl (f )x∗k (f )|
(2.2)

is the PHAT weighting and τk and τl are the (ϕ, θ)-dependent delays between a pair of
microphone signals xl (f ), xk (f ) at a sampling point of the search region [39]. The search
region of the localizer can be described as a grid of points that covers preselected possible
directions of arrival. Pϕ,θ has to be computed between each microphone pair and sampling
point. The summation of the possible Pϕ,θ results in an energy map that has peaks at
those positions, where sound sources are expected. Since we focus on teleconferencing
applications with the microphone array placed on a conference table, we restrict the search
region to the upper hemisphere.

Transfer Function Based Sound Localization

The transfer function (TF) based sound source localization algorithms returns the azimuth
angle ϕ and the elevation angle θ of the sound source using the recorded microphone
signals and a stored database of the microphone array’s acoustic transfer functions (ATFs).
The unknown signal s emitted from a sound source is convolved by the corresponding
ATFs denoted by ai ,ϕ0,θ0 before being captured by the microphones of the microphone
array, i.e.,

xi = ai ,ϕ0,θ0 ∗ s, (2.3)

where ϕ0 and θ0 denote the azimuth and elevation angle corresponding to the direction of
the sound source s and ∗ is the convolution operator.

One technique is based on the fact that filtering xi with the inverse of the correct ATFs
a−1

i ,ϕ0,θ0
yields identical signals s̃i ,ϕ,θ.

In order to avoid inversion caused instabilities [86, 104], the cross-convolution approach
exploits the associative property of the convolution operator [104, 139, 169] by

ŝ1,ϕ,θ = a2,ϕ,θ ∗ x1 (2.4)

and
ŝ2,ϕ,θ = a1,ϕ,θ ∗ x2, (2.5)

which turn to be identical at the correct source position for the ideal case, i.e.,

ŝ1,ϕ,θ = ŝ2,ϕ,θ ⇐⇒ (ϕ, θ) = (ϕ0, θ0). (2.6)

The source can be localized in real applications by

argmax
ϕ,θ

{ŝ2,ϕ,θ ⊕ ŝ1,ϕ,θ} , (2.7)

where ⊕ denotes a cross-correlation operation. In [44] the cross convolution based sound
localization approach using measured transfer functions for a pair of microphones is ex-
tended to multiple active sound sources. The approach exploits disjoint sets of Fourier
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2. Sound Source Localization

transform supports since the W-disjoint orthogonality [128] of different simultaneously ac-
tive sound sources, that are assumed to be sparse in some transform domain, can be
utilized. Therefore, only one active source at each time-frequency bin can be observed at
each time-frequency point after a Fourier transform. Comparable to the cross convolution
algorithm, a similarity is computed for each frequency bin. The most likely transfer function
indices for each frequency bin are stored and weighted resulting in a histogram, where the
peaks correspond to the position of the active sound sources.

The TF-based algorithm works basically on the pairwise comparison of two micro-
phone’s recordings. To exploit redundant recording information of all eligible microphones
of the teleconferencing array, subgroups of two microphones out of the eight microphones
of the array can be utilized for SSL. Finally, histograms of each microphone pair are fused
to one compound histogram.

Particle Filtering

The stand alone SRP-PHAT localizer and the TF-based approach produce instable sound
localization results, including localization of noise sources and echoes. To overcome this
problem, a particle filter is integrated [73] for temporal smoothing of noisy measurements.
Every possible sound source is therefore considered to be a set of particles, where each
particle is assigned to a distinct position in space, velocity and weighting. The sound
localization estimations of the localization algorithms are then used to update the particle
positions, directions and weightings, resulting in a permanently updated probability density
function (PDF) of the estimated sound sources. By computing the mean value of the PDF,
a stable sound source localization can be achieved.

2.2. Design of the Array

Several information cues, such as time delay of arrival (TDOA), need to be considered
in designing the physical setting of the arrays [21]. In microphone array-based sound
localization approaches, the size of microphone arrays varies drastically. Some designs
are compact [99, 171], others yet are cumbersomely large. Some of the investigated
microphone arrays have several meters in diameter [164] and would be too big for our
aspired scenario. It is also vital to carefully determine the bandwidth requirements to
design the hardware geometry [40, 47]. Choosing a microphone array geometry depends
primarily on the intended spatial coverage. In literature, there exist various frequently used
geometries of arrays, such as linear, square [171], circular [163] and spherical [47] arrays.
Some applications, such as a teleconference system, that is placed on a table, may only
need to define the direction in the upper hemisphere, which allow for a simpler geometry
than an microphone array requiring full unambiguous determination of a sound source’s
azimuth and elevation. The number of used microphones scales spatial resolution and
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2.2. Design of the Array

noise robustness. Likewise, arrays that are equipped with a huge number of microphones
may result in high accuracy of localization, however, they require extensive calibration and
high-speed dedicated multi-channel hardware capable of handling high data throughput.

The distance between the array’s microphones also is an issue due to the aliasing prob-
lem. To avoid spatial aliasing, the distance between the microphones should be smaller
than half of the minimum wavelength of the incoming sound signal. In [50] we overview
possible array configurations for our teleconferencing system, e.g., harmonically nested
subarrays, linear arrays, planar arrays and volumetric arrays. With regard to our telecon-
ference scenario, a circular microphone array design consisting of eight microphones was
selected. The localization accuracy experiments that we did, revealed that a planar ge-
ometry has no significant disadvantages in our scenario compared to a volumetric circular
array configuration. Based on the wooden circular microphone prototype in [50], my re-
search team and me designed and constructed three plastic microphone arrays, each of
them consists of eight low budget microphones [58].

One planar array, illustrated in Figure 2.1, is constructed to fit the SRP beamformer. The
microphones have a direct line of sight to each other, therefore, time delays can directly be
estimated by knowing the microphone positions.

Figure 2.1.: Microphone Array 1: The planar shape of the array is constructed with respect to the
SRP-PHAT algorithm

Figure 2.2 shows the second prototype which is constructed to fit the TF-based ap-
proach. The TF-based approach utilizes spectral direction dependent differences to lo-
calize sound sources. So far, a human-like head, shoulder, torso and pinna shape was
required in order to use the TF-based approach [43]. To meet the algorithm’s requirement
of direction dependent features in our teleconference scenario, we construct a microphone
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2. Sound Source Localization

array with a conchiform sound reflector for each microphone of the array. The concha is
constructed as suggested in [100]. By a cutout of an Archimedean spiral, the reflector
behind the microphone has different distances of the microphone for every angle, conse-
quently the reflections caused by the concha are direction dependent. The resulting direc-
tion dependent peaks and notches in the spectrum are beneficial for the transfer function
based localization algorithm. Finally, a third array, illustrated in Figure 2.3, is built that in-

Figure 2.2.: Microphone Array 2: The array shape is constructed with regard to the TF-based
localization approach

troduces a level difference between the microphone recordings, which might be useful for
the transfer function based approach and for the sound separation process. The design of
the third microphone is less obtrusive than the concha design of the second array.

Figure 2.3.: Microphone Array 3: The array shape reinforces a level difference between the micro-
phone recordings
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2.3. Sound Source Localization: Experiment

Sound sources KS digital C5 tiny
Microphones CUI CMB-6544PF
Microphone preamplifiers Focusrite Sapphire Pro 40
Sound card RME Multiface II
Anechoic room dimensions 4.7 m x 3.7 m x 2.84 m
Echoic room dimensions 6.3 m x 4.0 m x 2.8 m
Anechoic room noise level (A-weighted) 16.3 dB
Echoic room noise level (A-weighted) 20.9 dB
Anechoic room reverberation time t60 0.08 s
Echoic room reverberation time t60 0.23 s

Table 2.1.: Information about the equipment and the environment used in our localization
experiments.

2.3. Sound Source Localization: Experiment

In this section, we apply the SRP-PHAT and the TF-based sound source localization al-
gorithm to a conference situation based sound localization problem. The localization algo-
rithms are extensively evaluated by real world recordings in a semi anechoic chamber and
by real world recordings in an echoic environment.

Sound Source Localization: Experimental Settings

Two different scenarios for the experiments are considered for the three microphone array
prototypes. In the first scenario, the sound source localization algorithms are tested by
conducting a conference in the semi anechoic audiolab. Then the same experiments are
held in an echoic environment.

To guarantee a fair comparison among different algorithms and settings, sound scenes
are prerecorded. Therefore, instead of human conference participants, loudspeakers are
placed in a distance of 1.3 m at three different angles (45◦, 135◦ and 225◦) around the
conference table. The microphone array is placed in the center of the table. Speech
contributions (10 s) of eight male and four female speakers were recorded and played back
in different settings with the loudspeakers. In sum, 1008 different recording situations are
covered for the anechoic and echoic scenario. The room characteristics and information
about the equipment used in the localization experiments are given in Table 2.1.

Sound Source Localization: Experimental Results

In each experiment, the localization performance of the two sound source localization algo-
rithms is evaluated for the three teleconferencing system prototypes by the mean angular
error (MAE) and the localization success rate within a tolerance region of 5◦ (TOL). The lo-

25



2. Sound Source Localization

calization success rate is computed by the ratio between the number of localization results
within the tolerance region and the total number of frames.

Transfer Function Based Sound Localization (TF)

As we know, the TF-based approach requires measured transfer functions of each pos-
sible location of a sound source. Therefore, we feed the localization algorithm with pre-
measured transfer functions of the anechoic room and utilize the database of transfer func-
tions for the anechoic and echoic conference recordings. Tables 2.2, 2.3 and 2.4 give an
overview about the localization performance of the TF-based sound localization approach.

For Array 1 the TF-based localization algorithm achieves good localization performance.
The localization accuracy in azimuth at elevation 10◦ for one active sound source is
TOLaz = 98.2% with a MAEaz = 0.7◦ in the anechoic environment. Adding a second
active sound source, the localization accuracy and the MAE for both sources is slightly
lower. In the elevation 20◦ plane, the TF-based approach suffers higher inaccuracies, re-
vealing that the direction-dependent spectral differences for the elevation 20◦ plane are
lower than in the elevation 10◦ plane of Array 1.

Array 2 is constructed to add direction-dependent spectral differences in the audio
recordings of the array. In the elevation 10◦ plane the MAEel values are better than for the
Array 1 recordings as seen in Table 2.3. In the elevation 20◦ plane the localization perfor-
mance in both, elevation and azimuth is very good, denoting that the concha-applications
improve the performance of the TF-based approach, especially for the elevation 20◦ plane.
Array 3 does not have any further advantages for the TF-based localization approach,
which can be seen in Table 2.4.

It is worth mentioning that the localization performance of the TF-based approach in
the echoic environment is still remarkable, regarding the fact that the acoustic transfer
functions are measured in the anechoic environment.

Steered Response Power (SRP) Localization

Table 2.2 gives an overview of the localization performance of the SRP-PHAT sound local-
ization approach for Array 1. The localization accuracy in azimuth at elevation 10◦ for one
active sound source is TOLaz = 99.3% with a MAEaz = 0.22◦ in the anechoic environment.
Regarding more than one simultaneously active sound source and echoic environment
recordings, the localization performance of the SRP-PHAT sound localization algorithm is
still excellent for Array 1.

The concha-applications of Array 2 influence the localization performance of the SRP-
based sound localization algorithm to a huge extent, as illustrated in Table 2.3. For exam-
ple, the MAEaz for the elevation 10◦ in the anechoic room deteriorates to MAEaz = 4.2◦

compared to a MAEaz = 0.22◦ for Array 1. The reason for the performance decrease
may be the direction dependent path differences between the microphone introduced by
the concha application which cause time delays of impinging sound waves that are not
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considered in the SRP algorithm that localizes sound sources by exploitation of the time
delays assumed by the microphone position. As seen in Table 2.4, Array 3 introduces
elevation localization inaccuracies due to the shadowing effects of the construction, while
azimuth localization performance is not harmed by the introduced level difference between
microphone recordings of Array 3.

2.4. Concluding Remarks: Sound Source Localization

Regarding the audio conferencing scenario, the SRP-PHAT algorithm has the advantage
of working without pre-measured acoustic transfer functions and only requires the position
data of the microphones. However, the TF-based localization approach performs well in
echoic environment with pre-measured acoustic transfer functions of the anechoic envi-
ronment, which would be an acceptable compromise for the real-world application of the
teleconference microphone array.

The choice of the sound localization algorithm and the microphone array shape that
is further used in our prototype is consequently made on the basis of the localization
performance. With respect to the sound acquisition scenario, I regard the localization
performance in azimuth as a proper criterion, because the azimuth position of a conference
participant is a more critical factor for the channel assignment and the following immersive
playback than the elevation position. The main difference between conference participants,
besides voice features, is their location in azimuth. Therefore, the TOLaz is a fair evaluation
criterion to choose the sound localization algorithm for the conferencing system. In terms
of TOLaz , the SRP-PHAT approach outperforms the TF-based approach in the majority
of the localization experiments. Hence, I decide to use the SRP-PHAT sound localization
approach in combination with Array 1 which provides the best localization performance for
the SRP-PHAT approach and furthermore, is the most unobtrusive construction among
the array shapes. My research team and I provide more information about the localization
algorithms and further experiments in [50, 58, 134, 138].
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Algorithm
Anechoic Echoic

MAEaz MAEel TOLaz TOLel MAEaz MAEel TOLaz TOLel

Elevation: 10◦

one source
TF-based 0.7◦ 1.4◦ 98.2% 91.4% 1.3◦ 6.6◦ 96.6% 32.2%
SRP-PHAT 0.22◦ 4.3◦ 99.3% 84.9% 1.0◦ 4.6◦ 97.6% 74.9%
two sources
TF-based 1.8◦ 2.8◦ 95.6% 74.5% 6.8◦ 7.7◦ 90.8% 21.7%
SRP-PHAT 0.3◦ 3.8◦ 95.2% 82.3% 0.5◦ 4.1◦ 93.5% 74.5%

Elevation: 20◦

one source
TF-based 1.1◦ 1.5◦ 96.2% 89.6% 1.7◦ 6.9◦ 94.1% 44.6%
SRP-PHAT 0.8◦ 2.5◦ 97.1% 96.5% 0.8◦ 2.3◦ 98.1% 97.1%
two sources
TF-based 11.5◦ 3.0◦ 87.3% 77.9% 10.7◦ 10.9◦ 88.0% 30.9%
SRP-PHAT 0.6◦ 2.5◦ 94.4% 90.3% 0.6◦ 2.3◦ 92.7% 89.3%

Table 2.2.: Array 1: Comparison of the different localization approaches with recordings from the
planar array [58]. TOLaz and TOLel describe the elevation and azimuth localization success rate
within a tolerance region of 5◦. MAEaz and MAEel are the respective mean angular errors.

Algorithm
Anechoic Echoic

MAEaz MAEel TOLaz TOLel MAEaz MAEel TOLaz TOLel

Elevation: 10◦

one source
TF-based 2.2◦ 0.9◦ 87.0% 95.7% 11.7◦ 4.3◦ 77.9% 59.6%
SRP-PHAT 4.2◦ 12.1◦ 65.4% 12.9% 6.4◦ 9.7◦ 47.1% 20.9%
two sources
TF-based 7.3◦ 1.9◦ 74.1% 83.7% 50.7◦ 5.2◦ 46.4% 52.4%
SRP-PHAT 6.0◦ 10.0◦ 39.8% 18.7% 6.0◦ 9.1◦ 40.9% 21.3%

Elevation: 20◦

one source
TF-based 0.7◦ 0.6◦ 97.9% 97.9% 1.1◦ 0.7◦ 97.3% 97.9%
SRP-PHAT 3.9◦ 20.2◦ 85.2% 0.39% 4.3◦ 19.1◦ 74.3% 2.5%
two sources
TF-based 0.8◦ 0.7◦ 95.6% 95.6% 7.0◦ 1.3◦ 88.4% 92.6%
SRP-PHAT 4.0◦ 18.6◦ 63.2% 2.8% 5.1◦ 17.2◦ 45.5% 4.5%

Table 2.3.: Array 2: Comparison of the different localization approaches with recordings from the
concha-microphone array [58]. TOLaz and TOLel describe the elevation and azimuth localization
success rate within a tolerance region of 5◦. MAEaz and MAEel are the respective mean angular
errors.
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Algorithm
Anechoic Echoic

MAEaz MAEel TOLaz TOLel MAEaz MAEel TOLaz TOLel

Elevation: 10◦

one source

TF-based 2.1◦ 3.8◦ 87.9% 64.5% 9.6◦ 8.6◦ 85.0% 12.5%
SRP-PHAT 0.2◦ 5.6◦ 99.3% 44.8% 1.8◦ 7.2◦ 96.4% 15.0%
two sources
TF-based 13.6◦ 3.6◦ 73.3% 66.9% 16.5◦ 8.8◦ 77.9% 11.4%
SRP-PHAT 0.6◦ 6.4◦ 95.2% 31.2% 0.8◦ 7.0◦ 91.9% 14.6%

Elevation: 20◦

one source
TF-based 1.1◦ 1.7◦ 94.9% 88.1% 9.4◦ 7.9◦ 85.5% 41.6%
SRP-PHAT 2.1◦ 16.3◦ 96.9% 0.47% 1.6◦ 16.2◦ 97.7% 0.57%
two sources
TF-based 4.7◦ 3.0◦ 94.2% 82.1% 9.7◦ 10.2◦ 83.6% 39.5%
SRP-PHAT 1.0◦ 17.3◦ 95.4% 0.1% 1.2◦ 17.2◦ 93.8% 0.1%

Table 2.4.: Array 3: Comparison of the different localization approaches with recordings from the
shield-microphone array [58]. TOLaz and TOLel describe the elevation and azimuth localization
success rate within a tolerance region of 5◦. MAEaz and MAEel are the respective mean angular
errors.
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3. Sound Source Separation

To enable a technical system to focus on one specific sound source within a mixture,
source separation techniques are required that process the observed mixture into its un-
derlying signal parts. The term blind source separation (BSS) that is often mentioned in
sound source separation scenarios, refers to methods for the estimation of source signals
using only information acquired by the analysis of recorded mixtures. This excludes prior
information, for example, about the frequency characteristics, the location or the mixing
process. Yet some information like the location of the sound source can be obtained by
sound source localization and be used to improve the performance of separation algo-
rithms. Up to now, numerous algorithms for the separation problem have continuously
evolved. These algorithms can be divided into two groups: The first group uses spatial
information, the second group statistical information of the signals to achieve separation.

Beamforming for example applies a spatial filter to separate signals which originate from
different locations by linearly combining spatially sampled time series of the sensor data
[173]. Beamforming can be combined with direction of arrival (DOA) estimation algorithms
like MUSIC [151] or ESPRIT [146] to attain segregated signals. Another algorithm that
exploits spatial information is applying spatial spectral masking. Spatial spectral masking
first finds the DOA for different sources for each frequency. Afterwards, a spatial filter in
the frequency domain is applied [102].

Besides the algorithms that use spatial information, there are methods based on the
evaluation of the signals’ statistics. Independent component analysis (ICA) [36, 71] is
one of the most popular approach of this group of algorithms that successfully perform
the BSS for instantaneous mixtures. However, ICA cannot separate convolutive mixtures.
To overcome this problem, statistical separation methods that are based on ICA extend
its capabilities to tackle convolutive mixtures. This is usually done by transforming the
convolutive mixture into the frequency domain, which results in an instantaneous mixture
model per frequency bin. Due to the inherent ambiguity of ICA, namely permutations and
scalings, frequency domain based ICA ends up with misalignment between frequency bins.

To sort out these misalignments, algorithms like multidimensional independent com-
ponent analysis (MICA) [30] or independent subspace analysis (ISA) [32] seek to group
dependent scalar mixtures and thus achieve the desired separated signals.

When using these algorithms for speech separation, several problems arise. First, the
mixing model of ISA and MICA is not designed to fit realistic mixing conditions for speech
signals in reverberant environments. For speech mixtures, the assumption holds that only
signal parts within the same frequency interval are mixed due to the signal propagation in
real environments which usually do not alter the frequency of certain signal parts. There-
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fore, the mixing model of MICA/ISA does not perfectly fit for speech separation, as it allows
for both arbitrary mixing of frequencies and different numbers of scalar variables within the
outcomes. MICA/ISA is actually designed to have one large mixing layer for all frequen-
cies, i.e. the highest frequencies are allowed to mix with the lowest frequencies. Second,
due to these extensive mixture models, MICA and ISA are complex and computationally
expensive algorithms.

Recently, a promising approach called independent vector analysis (IVA) has been pro-
posed to inherently solve the permutation problem [94]. Although the basic ideas behind
IVA resemble MICA and ISA, its mixing model is designed especially for the task of audio
source separation, grouping dependent frequencies of sources together within the sepa-
ration step. Also, IVA is not as computationally expensive as MICA or ISA, as the mixing
model is simpler allowing for fast computation of the outcomes.

If confronted with a situation where there are more sources than microphones, i.e.,
the underdetermined case, the general model of ICA and IVA needs adjustments, refined
assumptions of the underlying model, or preprocessing to work [175]. Popular algorithms
for the underdetermined case assume W-disjoint orthogonality, meaning that sources do
not or do rarely overlap in the time-frequency domain. With this assumption, methods like
DUET and its expansions achieve underdetermined source separation [110]. DUET-based
algorithms first filter out sources by their DOA until a determined problem is reached and
then estimate a demixing matrix by the DOA to separate the signals. The requirement
of W-disjoint orthogonality is relaxed if a method like TIFROM is used where only small
time and frequency segments are used for the estimation of the demixing matrix, whereas
DUET operates over the complete time-frequency plane [1].

3.1. Teleconference Sound Source Separation

For the teleconference scenario with a tabletop microphone array that consists of eight
microphones, we assume that we have to deal with the overdetermined sound source
separation since the array’s microphones outnumber the simultaneously active conference
participants in one conference room.

In the following, three representatives of different sound source separation techniques
are tested for their appropriateness in the conferencing prototype. The first candidate is
the afore mentioned IVA, a representative of the separation algorithms that use statistical
information without any knowledge of the location of the sound sources.

Beside statistical information, spatial information of the sound sources, provided by the
SRP-PHAT localization, can be exploited to separate the mixture. The second algorithm is
based on the assumption of sparsity of the signal spectra and uses localization information
to mask the individual sound sources out of the mixture. Therefore the algorithm is called
binary masking. The third observed algorithm, namely geometric source separation (GSS),
seeks to combine benefits of BSS and available location information.
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3.1. Teleconference Sound Source Separation

Sound Mixing Model

For a scenario of N active sound sources s1(t), ... , sN (t) and j microphones that capture
the mixtures x1(t), ... , xj (t), the most intuitive mixture model is the instantaneous mixture
model,

xj (t) =
N∑

i=1

aij · si (t), (3.1)

where, aij describes an attenuation factor due to different volumes of the sources at each
microphone. This instantaneous mixture model is one of the basic models used for inde-
pendent component analysis (ICA). For these instantaneous mixtures, a huge variety of
separation algorithms exist, for example FastICA. An overview can be found in [71] and
[31].

For audio signals however, there are better mixing models that take physical proper-
ties of sound and the environment into account. Besides the afore mentioned volume
differences, it is advantageous to also exploit time lags within the recordings, which occur
between the microphones. Furthermore, reverberant rooms often render instantaneous
mixture models useless because of time-delayed and scaled versions (echoes) in the mi-
crophone recordings. Scaling, time-delay and echoes can be altogether described as a
linear filter which is applied to the sound source. Applying a filter mathematically means
convolving the original sound source with the corresponding impulse response that is de-
pendent on the position of the sound source and the microphone within a reverberant room.
According to the previous instantaneous mixing model, the filter functions are denoted by
aij (t). For microphone j , the recorded signal is the superposition of the filtered sources,
computed by

xj (t) =
N∑

i=1

aij (t) ∗ si (t), (3.2)

where ∗ denotes the convolution operation. In literature, this model is called the convolutive
mixture model. The convolutive mixture model allows for a better description of the mixing
process for sound sources and consequently enables us to reach better sound source
separation results.

There are a number of algorithms that perform separation on the mixtures directly [106]
which are computationally expensive. To circumvent this problem, the convolutive mixture
model can be transformed to frequency domain, where the convolution operation is de-
scribed by a multiplication and consequently a convolutive mixture model (3.2) turns into
an instantaneous mixture model

xj (f ) = a1j (f ) · s1(f ) + · · · + aNj (f ) · sN (f ), (3.3)

which is similar to Equation (3.1). In contrast to the time domain instantaneous ICA model,
the mixing coefficients are also dependent on the frequency variable, which renders the
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direct use of instantaneous mixture algorithms such as FastICA useless. The frequency
domain representation of the model can be described by

x(f ) = A(f ) · s(f ). (3.4)

It is obvious that Equation (3.4) indeed corresponds to the instantaneous mixture model
with the flaw that there is not one mixing matrix A, but one for each frequency bin A(f ).

Independent Vector Analysis (IVA)

In contrast to solve the permutation problem after demixing, IVA seeks to avoid the permu-
tation problem within the separation process itself by the assumptions that the components
of a source over all frequency bins are dependent and the different source’s components
within one frequency bin are independent. Therefore, IVA is capable of solving the permu-
tation problem inherently [94]. Taking this into account with a suitable cost function, the
IVA algorithm manages to identify the dependent frequency components of each source.

Prior to the separation process, the frequency bin mixtures are whitened, i.e. they are
transformed to uncorrelated mixtures and the bins are assigned to the same variance
(power) [71].

In order to apply IVA, certain source priors, called probability distributions pi (si ) have to
be assumed. The spherically symmetric Laplacian distribution is proposed as source prior.
It was shown in [95] that the distribution allows for good approximation of speech and is
capable of modeling dependencies among frequencies.

The source priors are then utilized to construct a likelihood-maximizing cost function. It
is assumed that the whitened mixtures x0(f ) are separated by a demixing matrix W (f ) to
yield the estimates ŷ (f ) for each frequency bin, computed by

ŷ (f ) = W (f )x0(f ) (3.5)

and the estimates ŷ (f ) are combined to ŷi .
IVA seeks to compute a set of demixing matrices W (1)....W (F ) that separate the mix-

tures according to the distribution of the source prior. By maximizing the likelihood L of the
estimates ŷi of the source distribution, i.e.,

argmax
W (1),...,W (F )

L(W (1), ..., W (F )) = argmax
W (1),...,W (F )

N∑
i=1

ln(p(ŷi )) s.t. W (f )W H (f ) = I ∀f (3.6)

a function that measures the “quality" (in terms of likelihood) of the separation matrices is
derived, which is only dependent on the observed mixtures and the separation matrices.
Finally, a spectral compensation according to [62] reverses the whitening process and a
transformation of the separated mixtures from frequency domain to time domain concludes
the blind source separation via IVA. For a more detailed description of applying IVA for
robotic and conferencing sound source separation, please refer to our work in [133, 168].
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Geometric Source Separation (GSS)

GSS [119] seeks to combine benefits of blind source separation and beamforming by fus-
ing cross-power minimization of convolutive mixtures with geometric information provided
by sound localization. In accordance with [119, 170], the cross-talk is minimized by cost
functions, given by

J1(W (f ) = ‖Ryy (t , τ )− diag(Ryy (t , τ )‖2 (3.7)

and
J2(W (f )) = ‖W (f )A(f )− I‖2, (3.8)

where J1(W (f )) expresses the cross-talk minimization of the output signals y (t) and
J2(W (f )) is the geometric constraint containing the estimated linear transfer functions A(f )
between the sources and the microphones. The entries of A(f ) are determined by using the
sound localization information of the localizer. With J1(W (f )) and J2(W (f )) the separation
matrix W n(f ) is updated by

W n+1(f ) = W n(f )− µ
[
α(f ) δJ1(W (f ))

δW∗(f )) + δJ2(W (f ))
δW∗(f ))

]
, (3.9)

where µ is the adaptation rate and α(f ) = ‖Rxx (t , τ )‖−2 is an energy normalization fac-
tor. Finally, the separated output y (f ) can be computed by y (f ) = W (f )x(f ), where x(f )
describes the microphone input signals, i.e. the mixtures.

Binary Masking

Beside independent vector analysis that seeks to separate sound mixtures by statistical as-
sumptions and geometric source separation that additionally includes location information
of the sound sources, binary masking, as used in [43], seeks to separate signals solely
on the location information and the assumption that human speech is sparse in Fourier
domain. Furthermore, it is supposed that different speech sources dominate different fre-
quency bins. Therefore, binary masking seeks to separate dominant sound sources at the
respective dominant frequency bins.

A binary mask M filters the frequencies attributed to an azimuth angle θ(f , m) and its
circumjacent values and forces the other frequencies to zero for a time point m by

M(f , m) =
{

1, ∀ θ(f , m) | θmin ≤ θ(f , m) ≤ θmax

0, otherwise.
(3.10)

For each localized sound source, the binary mask can be applied and the separated signal
ŷ can be retrieved from a mixture x by

ŷ (f , m) = M(f , m) x(f , m). (3.11)
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Figure 3.1.: Schematic illustration of the sound source separation using binary masking

Figure 3.1 schematically illustrates the separation of one speech source. After local-
ization a binary mask separates the speech source at a certain azimuth region. One
advantage of binary masking is the ability to work also for the underdetermined case and
the low computational complexity.

3.2. Sound Source Separation: Experiment

According to the sound source localization algorithms, the sound source separation al-
gorithms, namely, IVA, GSS, and binary masking, are applied to a conference situation
motivated sound source separation problem.

Sound Source Separation: Experimental Settings

In accordance to the sound source localization experiments, two experiments are con-
ducted to compare the separation performance. The experimental setting is identical to
the sound source localization experiments of Section 2.3. In the first experiment, the two
or three simultaneously active loudspeakers play back the conference contribution in the
anechoic environment [145]. In the second experiment, the same procedure is repeated
in an echoic environment.

Recordings of eight male and four female human speakers are used for the experiment.
In sum, 432 sound mixtures are evaluated in the anechoic environment and in the echoic
environment, respectively. Contrary to binary masking and GSS, IVA does not use direc-
tion information to separate the sound sources and works stand alone without prior knowl-
edge of the sound source locations. In order to evaluate the separation performance of the
algorithms, binary masking and GSS are equipped with the correct localization information
to evaluate the pure separation performance of the algorithms.

After choosing a suitable separation algorithm, a third experiment is conducted to eval-
uate the separation performance in combination with the localization performance of the
chosen algorithm.
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Sound Source Separation: Experimental Results

The BSS EVAL toolbox [174] is a frequently utilized toolbox to evaluate source separa-
tion algorithms. The BSS EVAL toolbox is also used by the signal separation evaluation
campaign [6] and is therefore regarded as an adequate means of judging the separation
performance of the afore mentioned sound source separation algorithms. The BSS EVAL
toolbox decomposes an estimated source signal into three signals, namely, starget, einterf

and eartif. The starget can be described as the signal part that can be obtained by a con-
volved version of the original sound source. The einterf can be explained by convolved
versions of interfering original sound sources and eartif is the signal part which can not
originate from the original sound sources. The BSS EVAL toolbox then computes three
measures to compare separation results, namely, the signal to distortion ratio (SDR), the
signal to interference ratio (SIR) and the signal to artifact ratio (SAR). The SDR is com-
puted by

SDR = 10 log10
||starget||2

||einterf||2 + ||eartif|2
(3.12)

and is a measure of the amount of arbitrary distortions, i.e. interference from other sources
and artificial noise in the sound signals after applying the separation algorithms. The SIR,
given by

SIR = 10 log10
||starget||2

||einterf||2
(3.13)

serves as a measure of interfering sound sources. Analogously, the SAR value, calculated
by

SAR = 10 log10
||starget||2 + ||einterf||2

||eartif||2
(3.14)

gives a judgment of artificial noise that is present in the separated signals. In other words,
the higher the SIR value, the less interference of other sources are left in the separated
sound signal and the higher the SAR value, the less artificial noise is introduced by the sep-
aration algorithm. Consequently, the higher the SDR, the less interferences and artificial
noises are left in the separated signals.

Binary Masking

The separation performance of the binary masking approach is given in Tables 3.1, 3.2
and 3.3. The separation performance deteriorates if echoes are present in the recorded
mixtures. This can be observed by comparing the anechoic audiolab experiments with the
echoic experiments. Furthermore, the separation results depend on the number of sound
sources in the mixture. The results in separating two simultaneously active sound sources
are better than processing three simultaneously active sources.

The array geometry does not influence the separation performance significantly, which
can be seen by comparing the separation results based on the recordings of Array 1, Array
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2 and Array 3. The dependency of the echoes and of the number of sound sources can be
described by Figure 3.1: the more echoes and the more sound sources the more overlap
between the spectra of the single sound sources can be observed. Consequently, a mask
that seeks to separate one sound source also contains overlapping snippets of other sound
sources which causes lower SIR, SAR and SDR values in such a scenario.

Independent Vector Analysis

IVA demands at least as many microphone recordings as simultaneously active sound
sources. Extensive experiments of my research team were conducted to evaluate the IVA
method with different subsets of microphones and the subspace method [9] in different
environments [168]. The experiments showed that the best results can be expected by
utilizing all of the microphone array’s microphones. Therefore, the presented results are
based on IVA-separation that include eight microphone signals.

Tables 3.1, 3.2 and 3.3 give an overview of the separation performance that is achieved
by IVA. Similar to binary masking, the separation performance is best for two simulta-
neously active sound sources in an anechoic environment. Separation in terms of SDR
values for IVA separated mixture based on the Array 2 recordings are slightly better than
for Array 1 recordings. Separation values based on IVA and Array 3 recordings are com-
parable to Array 1 recordings. The reason for the small separation differences between
Array 2 and the other two arrays might be the shadowing effect of the concha applications
of Array 2 leading to higher level differences of the microphone recordings which positively
influence the IVA separation algorithm.

Geometric Source Separation

The separation performance of GSS for the different microphone arrays is presented in Ta-
bles 3.1, 3.2 and 3.3. According to IVA and binary masking separation, the best separation
values are achieved in the anechoic environment with two simultaneously active speech
sources. Between the different array configurations, there are no significant separation
performance variations.

Binary Masking vs. IVA vs. GSS

According to the SIR, SAR and SDR values, binary masking can be excluded for further
considerations since the separation performance by binary masking in the teleconference
scenario is not competitive to IVA and GSS. The objective BSS EVAL toolbox evaluation
results are further confirmed by listening to the separated results.

Regarding the SIR, SAR and SDR values, GSS outperforms IVA in the different array
configurations and in both the anechoic and the echoic environment. However, one has to
keep in mind that GSS uses extra localization information which was correctly provided for
the sole comparison of the different separation algorithms.
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For fair comparison of IVA and GSS, the real-world localization process for the GSS
sound separation has to be included. Therefore, another experiment is conducted which
applies GSS in combination with the SRP-PHAT localization algorithm. As seen in Table
3.4 the separation performance of the GSS decreases if real sound source localization
replaces the ideal localization assumption. However, GSS is still competitive to IVA and
even outperforms the IVA for Array 1. IVA has slight separation evaluation advantages for
Array 2. For Array 3 there is no winner between IVA and GSS.

3.3. Concluding Remarks: Sound Source Separation

Extensive separation experiments show that the GSS separation outperforms the binary
masking algorithm and IVA sound source separation in terms of SIR, SAR and SDR values
for the three microphone arrangements and in the anechoic and the echoic condition, if
correct localization values are assumed.

If the localization precondition for the GSS separation is fulfilled by realistic sound source
localization that is done by the SRP-PHAT algorithm, the difference between GSS separa-
tion and IVA separation decreases. Consequently, there is no overall clear winner among
IVA and GSS in terms of SIR, SAR and SDR values.

Concerning the teleconferencing scenario, I prefer the combination of GSS separation
and SRP-PHAT sound localization since the localization results can be additionally used
for the problem of speaker assignment. Furthermore, I decide to use the microphone array
configuration Array 1 for further experiments since the SRP-PHAT localization performance
in combination with Array 1 outperforms the other array configurations.

The BSS EVAL toolbox determined separation performance of SRP-PHAT in combina-
tion with GSS for Array 1 is better than using IVA in combination with Array 1 and the
separation performance of SRP-PHAT in combination with GSS is competitive to the best
IVA separation performances that are achieved with Array 2.
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Algorithm
Anechoic Echoic

SDR SIR SAR SDR SIR SAR

Elevation: 10◦: two sources
GSS 12.1 15.7 15.0 4.2 12.1 5.3
IVA 5.3 11.6 8.5 -0.7 7.8 1.4
Binary Masking 3.2 14.6 3.9 -1.9 12.4 5.5
Elevation: 10◦: three sources
GSS 9.8 13.4 12.9 2.9 9.8 4.5
IVA 4.4 9.2 8.0 -1.7 4.9 1.4
Binary Masking 0.3 10.4 1.3 -3.7 8.4 -2.4

Elevation: 20◦: two sources
GSS 10.8 13.6 14.5 4.7 11.9 6.0
IVA 5.2 10.6 8.1 0.0 8.3 2.0
Binary Masking 3.0 14.5 3.6 -1.0 12.8 -0.4
Elevation: 20◦: three sources
GSS 8.7 11.4 13.0 3.3 10.0 5.0
IVA 3.7 8.6 7.7 -1.0 5.7 1.8
Binary Masking 0.2 10.5 1.2 -3.1 8.5 -1.8

Table 3.1.: Array 1: Comparison of the different sound separation approaches with recordings from
the planar array [58]. All values are given in dB.

Algorithm
Anechoic Echoic

SDR SIR SAR SDR SIR SAR

Elevation: 10◦: two sources
GSS 12.0 15.2 15.1 5.0 12.2 6.3
IVA 6.9 14.6 9.4 0.8 9.5 2.9
Binary Masking 3.8 15.6 4.4 -0.4 13.6 0.2
Elevation: 10◦: three sources
GSS 9.1 11.6 13.2 3.4 9.2 5.3
IVA 5.5 11.1 8.6 -0.1 7.1 2.4
Binary Masking 0.6 10.9 1.6 -2.7 8.9 -1.5

Elevation: 20◦: two sources
GSS 11.5 14.7 14.8 5.7 12.9 6.9
IVA 6.0 11.9 8.6 1.3 9.7 3.3
Binary Masking 2.9 14.3 3.6 -0.6 12.5 0.1
Elevation: 20◦: three sources
GSS 9.2 11.7 13.1 3.9 10.0 5.7
IVA 6.8 12.8 9.4 1.3 9.2 3.2
Binary Masking -0.2 9.9 1.0 -2.9 8.2 -1.5

Table 3.2.: Array 2: Comparison of the different sound separation approaches with recordings from
the concha-microphone array [58]. All values are given in dB.
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Algorithm
Anechoic Echoic

SDR SIR SAR SDR SIR SAR

Elevation: 10◦: two sources
GSS 11.1 15.1 13.8 4.0 11.9 5.1
IVA 6.0 13.7 8.7 -0.6 8.1 1.6
Binary Masking 2.8 14.0 3.6 -2.1 11.8 -1.3
Elevation: 10◦: three sources
GSS 9.0 12.3 12.2 2.9 9.7 4.5
IVA 4.0 9.1 8.0 -1.9 4.8 1.3
Binary Masking -0.1 9.9 1.1 -4.1 7.6 -2.6

Elevation: 20◦: two sources
GSS 10.9 14.6 13.6 4.7 12.4 5.9
IVA 4.5 10.3 7.7 -0.2 8.2 2.1
Binary Masking 2.4 13.6 3.2 -1.6 11.7 -0.8
Elevation: 20◦: three sources
GSS 8.9 12.1 12.2 3.3 10.1 4.9
IVA 4.8 11.1 7.9 -0.1 8.0 2.0
Binary Masking -0.6 9.6 0.7 -3.8 7.7 -2.3

Table 3.3.: Array 3: Comparison of the different sound separation approaches with recordings from
the shield-microphone array [58]. All values are given in dB.

SRP and GSS
Anechoic Echoic

SDR SIR SAR SDR SIR SAR

Elevation: 10◦: two sources
Array 1 7.7 15.0 9.1 2.4 11.7 3.4
Array 2 5.8 14.3 6.8 1.9 11.5 2.8
Array 3 7.8 14.5 9.4 2.3 11.4 3.4
Elevation: 10◦: three sources
Array 1 2.2 11.3 3.3 -1.0 8.4 0.2
Array 2 0.5 8.8 2.0 -2.1 6.6 -0.3
Array 3 2.3 10.2 3.7 -1.3 7.4 0.3

Elevation: 20◦: two sources
Array 1 7.3 12.9 9.3 2.7 11.4 3.8
Array 2 5.8 13.7 6.9 2.6 12.3 3.4
Array 3 8.0 14.1 9.7 3.1 12.0 4.1
Elevation 20◦: three sources
Array 1 1.0 8.7 2.8 -1.7 7.4 -0.1
Array 2 0.5 9.0 2.0 -1.8 7.0 -0.1
Array 3 2.5 10.7 3.7 -0.7 8.4 0.7

Table 3.4.: Separation performance of the GSS algorithm fed with the localization data from the
SRP-PHAT sound localization algorithm [58]. All values are given in dB.
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The identification of a conferee by the individual voice features can be considered as a use-
ful advancement to assign conference participants to their individual transmission chan-
nels, compared to the assignment using the localization data. For example, the change of
the position while conducting a conference can be properly handled by a speaker recogni-
tion system while the position change can not be detected by a localization based channel
assignment.

The key requirements of a speaker recognition algorithm for the teleconferencing sys-
tem are that the system is capable of online processing and text independent speaker
identification. The online requirement means that the identification of the respective ac-
tive speaker should be done as fast as possible to assign the speech contribution to the
speaker’s individual audio channel without audible delay. Since a system for conference
applications has no prior knowledge about the user’s speech contributions, the speaker
recognition needs also to be text independent.

One way to identify an active speaker is to construct models by short term spectral
features of each conference participant. A likelihood score between the model and an ac-
tive speaker decides which particular person is speaking. The speaker dependent features
should be robust against the conference participant’s variability in mood or health condition
during a meeting and among different conference meetings since it is extremely difficult to
reach exactly the same emotional state or health state in different meetings [74]. In ac-
cordance with [85], the chosen speaker features should have a large variability between
different speakers and a small variability given for the same conferee, even if the conferee
is in different moods or a different status of health. Furthermore, the speaker dependent
features should be robust against noise and should frequently appear in conference con-
tributions.

The most common short term spectral features are the Mel frequency cepstrum coef-
ficients (MFCCs) [125], which have been well proven and which are hard to beat in real
world applications [85]. Besides the MFCCs there are different speaker dependent short
term spectral features like Mel frequency discrete wavelet coefficients that apply a discrete
wavelet transform instead of the MFCC’s cosine transformation in order to improve recog-
nition especially in noisy environments [14]. Spectral subband centroids [165] is another
spectral feature that seeks to improve speaker recognition in noisy environments. To save
computational costs, linear predictive cepstral coefficients [178] can be applied in place of
MFCCs. Instead of computing the short term spectral features by the magnitude spectrum,
modified group delay features are derived from the phase spectrum. In [65] it is claimed
that group delay features allow for similar recognition performance as using MFCCs.
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Besides short term spectral features, voice source features can be applied for speaker
recognition. Voice source features are based on the assumption that the glottal source and
the vocal tract source are independent of each other. Therefore, the vocal source features
can be computed by filtering the recorded signal with an inverse vocal tract filter. The
voice source features like glottal flow derivate waveform [118], wavelet octave coefficients
of residues [186] or voice source cepstrum coefficients [60] can be used to improve short
term spectral features.

Another group of features are the prosodic features like intonation patterns, speaking
rate and speaking rhythm [14]. However, prosodic features are derived over a period of
time which renders this approach useless for online speaker recognition in a teleconfer-
ence situation. The same applies for high-level features, for example speaker dependent
words like "hmm" or the usage of a speaker specific sequence of words in a sentence.

The speaker dependent features of a teleconference introduction round can be used to
construct a speaker model for each conference participant. During the conferences the
features, obtained by online feature extraction, are compared with the speaker model of
each participant to recognize the active conferee. Approaches to construct the speaker
models are vector quantization techniques [65] and support vector machines [29]. Another
frequently used approach to obtain speaker models are Gaussian mixture models (GMMs)
that can be considered as an extension of the vector quantization method [88].

4.1. Teleconference Online Speaker Recognition Algorithm

In my teleconferencing system, the speaker recognition task is based on GMMs due to the
required low computational complexity of applying GMMs. A universal background model
(UBM) in combination with maximum a posteriori (MAP) adaptation, proposed in [126],
lead to a very fast generation of speaker-dependent GMMs, while only few training data
is needed. In [56] it is shown that this system approach is capable of performing online
speaker recognition.

MFCC Features are extracted from the incoming audio stream, constituting a likelihood
score for every model and thus identifying the active conference participant. The recog-
nizer is not only capable of online speaker recognition but also continuously improving
recognition performance by online adaptation of the speaker models.

Preprocessing and MFCC Extraction

To extract a speech signal’s spectral features, the incoming audio stream is divided into
frames by a hamming window. A voice activity detection (VAD) locates frames that contain
speech contributions by comparing the frame energy to a threshold. Silent frames are
consequently discarded in a similar way to the segmentation method in [56].

Then, a sequence of feature vectors is generated that represents speaker-dependent
information in every speech frame of the preprocessed signal. To represent the charac-
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teristics of individual voices, the MFCCs have proven meaningful as spectral features for
speaker recognition tasks [125]. In our system approach we calculate MFCCs for each
speech frame. In addition, we use the spectral frame energy as feature. The feature vec-
tor is extended by the respective first- and second-order delta regression coefficients to
incorporate dynamic information.

Gaussian Mixture Models

In our system approach, Gaussian mixture models are considered to model different
speakers. Let the feature vector z ∈ Rn be modelled as an n-dimensional random vector,
then the Gaussian mixture density is defined by

p(z | λ) =
K∑

k=1

mk N (z | µk ,Σk ), (4.1)

where N (z | µk ,Σk ) is a unimodal Gaussian density, parametrized by a mean vector µk ,
and a covariance matrix Σk . Therefore, the mixture density is a weighted linear combina-
tion of K Gaussian densities with mixture weights mk , that satisfy the constraint

K∑
k=1

mk = 1 ; 0 ≤ mk ≤ 1. (4.2)

Collectively, the parameters of the density model are denoted by λ = {mk ,µk ,Σk}. The
GMM for speaker modeling was introduced in [127] and has proven to be efficient and
effective for text-independent speaker recognition tasks.

Given a collection of training vectors, the model parameters λ are estimated using the
iterative expectation-maximization (EM) algorithm [38]. The EM algorithm iteratively refines
the model parameters to increase the likelihood of the model for the training data. The log-
likelihood

ln p(Z | m,µ,Σ) =
N∑

n=1

ln {
K∑

k=1

mk N (zn | µk ,Σk )}. (4.3)

provides a score, measuring the match between a collection of feature vectors Z of ana-
lyzed speech and speaker GMMs. A speaker is assigned to the analyzed data by picking
the GMM with the highest score.

Universal Background Model and MAP Adaptation

The teleconferencing system approach uses a universal background model (UBM). A UBM
is a single GMM that is trained on speech samples from a large number of representative
speakers. The main advantage is that the UBM has to be trained only once, which can be
computed in advance for a wide variety of possible speakers. Then, the specific speaker
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models for a conference are derived from this UBM by individually adapting it. This leads
to a time efficient creation of speaker-dependent GMMs, benefiting the user comfort and
practicability, and it has been shown that GMMs adapted from a well-trained UBM yield
high speaker recognition rates [126].

The adaptation in our system is done by maximum a posteriori (MAP) estimation which
is also known as Bayesian adaptation [42]. In order to create a new model for a certain
speaker, the UBM is taken and adapted with the training data of this speaker. MAP adap-
tation is used to adapt only the means of the speaker GMM, which is saving computational
cost and increases the speaker recognition performance [126].

Besides generating speaker models, we also use in the teleconferencing system MAP
adaption for online improvement of already generated models, while the speaker recog-
nition is running. Since the training material for building up models is limited and may
not adequately characterize the range of conference conditions, speaker models can be
improved by adapting them with already processed test data as shown in [56]. This on-
line adaptation leads to more comprehensive models, mitigating the effects of changes
in conference situation or speaker condition. The adaption of the speaker models in the
teleconference system is only conducted if the localization data fits the recognition data to
avoid an adaption with a falsely recognized conferee [161].

4.2. Online Speaker Recognition: Experiment

In this section, the speaker recognition is applied to the so-called AMI meeting corpus [4]
to evaluate the performance of the online speaker recognition system with different sets of
parameters. Furthermore, an offline speaker diarization system is applied to the meeting
corpus to explore improvements that could be reached by processing the whole audio
recording after the conference was held.

Online Speaker Recognition: Experimental Settings

Two scenarios are considered in the experiments. First, the online scenario, where meet-
ing recordings are evaluated to test the parameter setting for the speaker recognition task.
Second, the speaker diarization scenario where a MFCC and GMM based speaker di-
arization system [181], the winner of the 2007 NIST evaluation [55], is applied to the AMI-
meeting corpus to get an impression for the upper possible bound of a speaker recognition
system if online-constraint is not an issue.

The speaker recognition experiments are conducted with the AMI meeting corpus which
is divided into different sub corpora. In the speaker recognition experiments, the Edinburgh
meeting compilation (ES2009 to ES2016) is chosen as task for the speaker recognition
system. Each meeting consists of four parts. One part is used to train the UBM and the
remaining parts are used to evaluate the speaker recognition. Similar to an introduction

46



4.2. Online Speaker Recognition: Experiment

round, a 10 s part of each conference participant is used to train the speaker models. The
AMI-meeting corpus provides a ground truth for the diarization error rate (DER) calculation.

The DER is obtained by calculating the sum of different error components by

DER = δmiss−error + δfalse−alarm + δspeaker−error , (4.4)

where δmiss−error describes the conference contributions that are not identified as speech
by the system and δfalse−alarm is the detection of speech by the system within conference
time slots where actually no speech contributions are existent. The δspeaker−error denotes
wrongly identified speakers. The lower the DER, the better the speaker recognition perfor-
mance.

The most important parameters for the teleconferencing system’s online speaker recog-
nition are the

• frame length of the processed sound streams (tf ),

• number of utilized GMM components (nGMM ),

• number of used MFCCs (nMFCC).

For more information about parametrization of the online speaker recognition approach,
refer to an exhaustive evaluation of my research team in [91, 161].

Online Speaker Recognition: Experimental Results

In this section, the speaker recognition results for the AMI meeting corpus evaluation are
presented. The first experiment investigates the influence of the frame length on the
speaker recognition performance. The second and third experiments seek to quantify the
benefits of using a high number of MFCCs and GMMs. Finally, a fourth experiment shows
the difference between the online speaker recognition and an offline speaker diarization
approach.

Influence of the frame length

In Table 4.1 it can be seen that the performance of the online speaker recognition strongly
depends on the allowed frame length upon which the algorithm has to decide which con-
feree is talking. The frame length in this work can be considered as an upper boundary
of the input signal for the speaker recognition system. It is worth mentioning that the ac-
tual frame length is slightly smaller, depending on the sample rate of the audio interface
and the used block size. With the used block size of 1024 samples and a sample rate of
48 kHz, the actual frame length for an upper bound of 0.1 s is 0.085 s, which corresponds
to a frame that consists of four blocks. For a frame length of 0.1 s a DER of 54.6 % is
reached in meeting ES2009, whereas the DER for a frame length of 1.0 s leads to a DER
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Meeting ES20xx 09 10 11 12 13 14 15 16

Frame length (tf )
0.1 s 54.6 68.6 67.4 52.1 63.8 54.4 61.2 61.8
0.25 s 40.4 59.0 57.5 40.3 52.0 44.5 50.4 50.5
0.5 s 33.2 53.4 50.7 33.4 44.6 38.9 45.0 43.3
1.0 s 31.8 51.6 47.0 28.5 38.9 36.9 42.9 38.5

Table 4.1.: Speaker recognition performance of the online speaker recognition system in terms of
DER [%] (nGMM = 128, nMFCC = 12).

of 31.8 %. Obviously, the frame with a length of 1.0 s contains more speaker-dependent
information than a frame with a length of 0.1 s, which improves the DER.

As seen in Table 4.1, there are also DER-variations between the meetings
(ES2009..ES2016), which may be caused by quality differences of the headset con-
ference recordings, varying conference participants with diverse voices and different
meeting dynamics resulting in various overlaps of conference participants, which influence
the speaker recognition system performance and consequently the DER.

Influence of the Number of GMM Components

Meeting ES20xx 09 10 11 12 13 14 15 16

Number of GMM components (nGMM )
16 57.6 68.2 68.6 59.9 70.8 61.8 68.4 68.7
32 54.7 65.3 66.4 57.6 68.2 60.6 66.4 66.0
64 56.6 69.0 68.7 53.8 65.7 56.4 63.5 62.9
128 54.6 68.6 67.4 52.1 63.8 54.4 61.2 61.8
256 48.1 70.8 62.5 47.4 65.9 50.9 58.8 57.1

Table 4.2.: Speaker recognition performance of the online speaker recognition system in terms of
DER [%] (tf = 0.1 s, nMFCC = 12).

The variation of DER for different numbers of GMM components are not as big as the
DER variations concerning different frame lengths. As illustrated in Table 4.2, the online
speaker recognition DER in meeting ES2009 for nGMM = 16 is 57.6 %, whereas the DER
for nGMM = 256 is 48.1 %.

In meeting ES2010 the DER does not improve when using a higher number of GMM
components, e.g., the DER for nGMM = 16 is slightly better than the DER for nGMM = 256.
Except meeting ES2010 and ES2013 the DER is best when using nGMM = 256. Thus,
a higher number of GMM-components seems to allow for a more differentiated speaker
model that improves online speaker recognition.
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Influence of the Number of MFCCs

Meeting ES20xx 09 10 11 12 13 14 15 16

Number of MFCCs (nMFCC)
8 52.3 72.6 65.9 54.6 67.9 53.3 62.4 61.7
12 54.6 68.6 67.3 52.1 63.8 54.4 61.2 61.8
16 46.7 68.9 63.4 47.2 66.5 50.9 59.4 57.7
20 46.7 67.8 60.1 46.7 66.2 51.0 58.5 56.1

Table 4.3.: Speaker recognition performance of the online speaker recognition system in terms of
DER [%] (nGMM = 128, tf = 0.1 s).

Table 4.3 unveils slight DER variations for the online speaker recognition algorithm with
different numbers of MFCCs. The DER differences between nMFCC = 8 and nMFCC = 20
for the meetings are between 2.3 % in ES2014 and 7.9 % in ES2012. According to the
number of GMM components, the online speaker recognition performs better with a higher
number of MFCCs that allows for a better representation of the conference participant’s
voice.

Offline Speaker Diarization

Meeting ES20xx 09 10 11 12 13 14 15 16

offline diarization 20.4 33.8 39.7 33.2 37.5 34.7 32.0 41.0

Table 4.4.: Speaker recognition performance of the online speaker diarization system [181] in
terms of DER [%].

In this experiment, we apply a speaker diarization system [181] to the meeting cor-
pus recordings. The speaker diarization algorithm segments and resegments the meeting
recordings such that an optimal clustering of speech contributions and silence is possible.
Furthermore, there is no frame length constraint, therefore, an online processing is not
possible with the speaker diarization system.

The results of the speaker diarization system are illustrated in Table 4.4. It can clearly
be seen that most of the achieved DERs are lower than the DERs of the proposed online
speaker recognition system. However, it also can be observed that the differences of the
DERs between the diarization system and the online recognition system are small if the
online speaker recognition is allowed to work on frame lengths of tf = 1.0 s. For meetings
ES2012 and ES 2016 the online speaker recognition algorithm even outperforms the offline
speaker diarization system and the DER differences are marginal for meeting ES2013 and
ES2014.
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4.3. Concluding Remarks: Online Speaker Recognition

Both, our online speaker recognition approach and the speaker diarization system are
tested for the AMI meeting corpus recordings. The online approach’s overall DERs are
slightly worse than the DERs achieved with the diarization system, but the online speaker
recognition approach is more appropriate to assign speech contributions to individual
transmission channels in a teleconference scenario due to the fact that the diarization
system requires the whole conference recording in advance.

It is worth mentioning that the high DERs of the online speaker recognition approach
illustrated in Tables 4.2 and 4.3 can be explained by the small frame length that is used for
the online speaker recognition experiment. However, the stand alone speaker recognition
system does not fulfill the requirements for reliable channel assignment in a teleconference
situation due to high DERs for frame lengths of tf = 0.1 s. The small frame length, however,
is essential due to the required low mouth to ear delay, which renders frame lengths of
more than 0.1 s useless.

If we insist on a frame length of tf = 0.1 s, the remaining parameters found by the
AMI-meeting corpus experiments [161] for the online speaker recognition approach are as
follows:

• Number of MFCCs nMFCC = 20

• Number of GMM components nGMM = 256

The itemized parameters are used in Chapter 5 for the channel assignment task.
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5. Channel Assignment

In this chapter the findings of the sound source localization, separation and online speaker
recognition, presented in Chapters 2, 3 and 4 are applied to assign the conferees in the
conference room to individual transmission channels. In order to fulfill the low mouth to ear
delay requirements, the different algorithms are restricted to a delay of maximum td = 0.1 s.

5.1. Channel Assignment Algorithms

In this section, three channel assignment algorithms are presented. The first algorithm is
based on the online speaker recognition system, whereas the second algorithm uses the
localization data to assign the active conference participant. The third algorithm seeks to
combine the benefits of the sound source localization and the online speaker recognition.

Assignment by Speaker Recognition (ASR)

The ASR algorithm decides which conference participant is active by using the afore men-
tioned online speaker recognition system (tf = 0.085 s, nMFCC = 20, nGMM = 256). The
online speaker recognition system is fed with the GSS-separated sound sources as we
suggested in [138]. The algorithmic signal processing delay is mainly caused by the block
size of the inputs for the localization, separation and online speaker recognition unit, which
is 1024 samples in this work. With a sample rate of rs = 48000 samples

s the algorithmic
signal processing delay for the localization and separation unit is tdloc,sep = 0.021 s, and for
the speaker recognition system tdrec = 0.085 s. Consequently, the ASR algorithm has an
algorithmic signal processing delay of td = 0.106 s.

The advantage of this algorithm is the detection of the active conference participants
solely on the characteristics of the voice. Thus, the position of the conference attendants
can vary during the conference.

Assignment by Localization (AL)

The second algorithm performs the assignment of the active speaker solely based on the
localization of the respective positions of the conference participants around the confer-
ence table. The sound source localization and separation is done by the SRP-PHAT and
the GSS algorithm, respectively, which were selected by numerous experiments as men-
tioned in Sections 2 and 3.
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Due to the precise and robust performance results of the SRP-PHAT localization al-
gorithm, this approach of assigning the conference participants to individual channels
promises low DERs with a low algorithmic delay of tdloc,sep = 0.021 s. One drawback of
the AL assignment algorithm is the lack of the ability to compensate if conferees change
their position during the conference since the AL algorithm does not take individual voice
features into consideration.

Assignment by Localization, Controlled by Online Speaker Recognition (ALSR)

The third algorithm seeks to combine the advantage of fast and robust assignment by
localization data and the usage of voice features to also add flexibility to position changes
of the conference participants during the conference by parallel usage of the localization
and online speaker recognition approach.

The assignment is done by comparing the detected localization of an active conference
participant with the localization information obtained by an introduction round at the be-
ginning of the conference. If the localized speaker position is within the corridor of an
attendant, the sound segment is assigned to this individual transmission channel. At the
same time, the voice features found in the sound frame are evaluated by the online speaker
recognition algorithm. If there is a discrepancy between the localization information and
the results of the speaker recognition, the conference participant has changed the position
and the algorithm’s knowledge about the position change is updated. My research team I
provide more detailed information about the ALSR algorithm and the position change de-
tection in [161] and [123]. The algorithmic mouth to ear delay of the ALSR algorithm is in
accordance with the AL algorithm tdloc,sep = 0.021 s, since the initial assignment is done by
the AL algorithm.

5.2. Channel Assignment: Experiment

In order to investigate the performance of the three algorithms for channel assignment in
the teleconference system, extensive real world experiments are conducted in an anechoic
and an echoic environment.

Channel Assignment: Experimental Settings

Similar to the sound source localization experiment in Chapter 2 and the sound separation
evaluation in Chapter 3, the channel assignment experiments are conducted in echoic and
anechoic environments. Again, for the sake of reproducibility of the experiments in echoic
and anechoic environments, we record speech contributions of eight male and four female
conference participants. Each conferee has a speech contribution of five minutes which is
spread over the whole conference. Additionally, we record for each conferee 10 s of extra
speech that can be used to train the conferee’s speaker models. The recorded conference
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Figure 5.1.: Recording setting of the channel assignment experiment in the echoic environment

contributions are then arranged to a reproducible conference meeting that can be played
back with loudspeakers placed around the conference table. The distance of the speak-
ers from the center of the microphone array is 1.3 m and the elevation angle between the
loudspeakers and the array is 20◦ which correspond to dimensions of a real conference
meeting. Figure 5.1 illustrates the recording setup for the channel assignment experiment
in echoic condition. The experiment environment and the experiment equipment is sum-
marized in Table 2.1.

The conferences are arranged to fulfill the findings in [33], where it is found that during 26
different meetings, in 88% of the meeting time, only one conference participant is active, in
11% two speech contributions and in 1% three speech contributions are overlapping. We
record the different conferences in the anechoic room and the echoic conference room.
Furthermore, two combinations of possible conference participant’s placement around the
conference table are considered, refered to as placement 1 and placement 2 as illustrated
in Figure 5.2.

In sum, 12 different conferences each with four participants are recorded. Each confer-
ence lasts about 19 min. The used training data to train the speaker models for the online
speaker recognition system have a length of 10 s for each conference participant.

Channel Assigment: Experimental Results

The channel assignment by ASR, AL and ALSR is evaluated for the different conference
recordings and placements of the conference participants. For each experiment, the DER
is computed.

The achieved results of the respective algorithms can be observed in Table 5.1. The
ASR algorithm that is doing the assignment solely on the online speaker recognition sys-
tem results the worst DERs for the different conference situations. As already observed in
Chapter 4, the small frame length of tf = 0.085 s does not allow a reliable decision of the
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Figure 5.2.: Schematc overview of the conferee’s placements in the experiments

Algorithm
Anechoic Echoic

placement 1 placement 2 placement 1 placement2

Conference 1

ASR 38.9 35.8 40.8 40.6
AL 17.1 18.1 20.0 21.1
ALSR 17.0 16.9 19.7 20.7

Conference 2

ASR 38.1 34.2 37.5 35.6
AL 20.7 17.4 23.2 23.4
ALSR 20.8 17.4 22.4 22.8

Conference 3

ASR 40.3 37.2 37.4 37.9
AL 18.9 16.8 23.4 24.4
ALSR 18.9 18.1 22.7 23.2

Table 5.1.: Speaker assignment results in terms of DER [%].

online speaker recognition system between the different conferees. However, the small
frame length is a precondition to fulfill the delay requirement of the whole system. It is
worth mentioning that the silent parts of the meeting usually also contribute to the DER
due to the fact that the time slots without any active conference participant are assigned to
an arbitrary audio channel. However, regarding the immersive playback, the assignment of
silent parts has no influence to the listener. Therefore, the assignment of silent conference
parts do not contribute to misleading playbacks of the falsely assigned channel or have
any audible artifacts. If this fact is considered, the "true" DERs will be approximately 10 %
lower than the DER values presented in Table 5.1.

Figure 5.3 shows an extract of a conference. The thin lines with the bright waveforms
indicate the ground truth of the respective conference contributions. The dark lines in the
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ground truth streams of the conferees denote the decision of the ALSR algorithm which
conference participant is active at the respective time instances. The dark waveforms, de-
noted by "Thomas assigned" , "Kathrin assigned", "Jonas assigned" and "Alex assigned"
represent the audio signal outputs of the individual channels of the conferees that can be
used to feed the immersive playback system. It can be seen, e.g. in the "Jonas assigned"
that there are some falsely assigned time instances besides the correctly detected con-
ference participant which can cause small peaks in the assigned channels. However, the
assignment failures are not audible due to the very short duration of the misassignments.

The vertical gray line in Figure 5.3 indicates an exchange of positions between Jonas
and Kathrin. It can be observed that initially, Jonas is falsely assigned to Kathrin’s channel,
since the new location of Jonas is Kathrin’s former position. But the contradiction between
the localization information and the voice features of Jonas are corrected by the speaker
recognition algorithm such that Jonas is assigned correctly to his former channel after
approximately four seconds.

5.3. Concluding Remarks: Channel Assignment

Three algorithms are tested for several realistic conference situations. The stand alone on-
line speaker recognition approach (ASR) is not applicable in teleconferences due to worse
assignment results which are mainly caused by the restricted algorithmic latency of the
assignment task. The assignment by the localization information (AL) has a low algorith-
mic latency and low DERs. However, a position change of the conference participants is
not detected by this approach. To overcome these problems, I suggest to combine the
sound source localization assignment and the speaker recognition assignment (ALSR),
that proved to achieve precise and robust assignment results within a realistic conferenc-
ing scenario. Furthermore, experiments show that the position change of conferees can
be detected with the ALSR algorithm. So far, the ALSR algorithm is implemented and
tested offline but a low algorithmic delay is an important prerequesite to adapt the ALSR
algorithm to an online implementation. The algorithmic delay of the ALSR algorithm is
tdALSR = 0.021 s and in [138, 142], I found that a 3D-sound synthesis that is processed by
a central conference server needs tdtrans = 0.178 s for the transmission and the 3D HRTF-
based sound synthesis. In sum, a complete delay of ttotal = 0.199 s can be achieved for
the complete conferencing system which is described as very user satisfying according to
the ITU G.114 recommendation [77]. Due to the experimental results, I decide that the
ALSR algorithm is applied in the developed conferencing system to assign the conference
participants to their individual channel.
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Figure 5.3.: Conference extract with four participants and a position change of two conferees, denoted by a gray vertical line [123]
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Immersive Playback
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The second part of the thesis is about the immersive playback of the conference room
contributions to a remote listener. My aim is to give the remote participant the acoustic im-
pression of actually sitting at one conference table with all conference participants without
being forced to use expensive extra hardware. In this work, I focus on 3D sound synthesis
using head-related transfer functions (HRTFs).

HRTFs describe spectral changes of sound waves caused by diffraction and reflection
off the human body, e.g. the head, shoulders, torso and ears [16]. In the last decades,
HRTF-based techniques have become prominent in acoustic signal processing for various
telepresence applications, e.g. binaural sound localization and synthesis [177] and binau-
ral robotic sound source localization [44]. As each individual has, in general, a unique body
geometry, the corresponding HRTFs are naturally different from person to person. Usu-
ally, HRTFs are obtained from recorded head-related impulse responses (HRIRs), which
are the time domain representations of the HRTFs. 3D sound synthesis of the separated
and assigned conference sound streams can be achieved by convolving a monophonic
sound signal with HRIRs of the left and right ear that correspond to a certain direction.
The convolved signal then can be played back via headphones or a specially adjusted
loudspeaker assembly [179]. Regarding the teleconference scenario, headphone based
playback seems to be the most appropriate approach of sound playback.

In order to achieve optimal sound synthesis for the headphone wearing remote conferee,
I focus on differently obtained HRTF datasets:

• KEMAR HRTF Dataset:

The KEMAR HRTF dataset describes a database that has been measured for a
mannequin [54]. The database can be used for binaural sound synthesis without
paying attention to the individual geometric features of the listener.

• HRTF Selection Method:

The HRTF selection method describes an approach that selects the best possible
HRTF data set among a HRTF database by playing back a sound that should move
around a listener’s head or should appear at a certain direction. The user then
decides which data set produces the most immersive impression or the best direction
accordance [81, 154]. This way, a data set of another person can be chosen for
the sound synthesis by a procedure that is applicable in teleconference systems.
This approach only allows for an approximation and does not generate an individual
HRTF set with respect to the user’s unique torso, head and pinna geometry.

• HRTF Regression Method:

In contrast to the selection of a complete data set, regression methods can be uti-
lized to generate an individual HRTF data set by using several acoustically measured
HRTF training sets with the knowledge of the corresponding anthropometric data of
the measured person. A regression model is constructed between the features of
measured HRTFs and the anthropometry of the corresponding people. Finally, by
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knowing the anthropometry of a new person, one can generate its HRTFs by regres-
sion [135].

• Individual Acoustic HRTF Measurement:

The most individual HRTFs for 3D sound synthesis applications, however, are ob-
tained by acoustic measurement of the user. Usually, the acoustic measurement of
HRTFs is done in an anechoic or semi-anechoic chamber.

The four alternatives of selecting a HRTF database describe a tradeoff between the
degree of individualization and the effort (time, equipment) to be invested for the respective
method. The most straightforward way to provide the remote listener HRTF-based sound
synthesis is to use a standard HRTF dataset, e.g. the KEMAR dataset. With this approach
the user does not have to adjust the playback system. The HRTF selection approach
also does not require any extra hardware or acoustic measurement. The listener chooses
among several datasets by a once-only procedure. This way, the degree of individualization
is increased at the expense of time needed for the selection procedure. With the regression
method, the degree of individualization is higher than for the selection method, because
the listeners individual geometry is incorporated. Therefore, the anthropometric data has
to be determined, i.e., an extra anthropometry measurement process is needed, making
the regression method slightly more complex than the HRTF selection approach. Usually,
the measurement of the required anthropometry requires much less effort than acoustically
determining the HRIRs. Developments in the field of 3D scanners that I proposed in [137]
or scanning software in combination with hardware, like the Microsoft Kinect, even improve
the availability of anthropometric data for HRTF customization using regression.

The HRTF selection method, the HRTF regression method or the usage of KEMAR
HRTFs are just approximations of the actual individual HRTFs of a listener. Therefore,
the most individual HRTFs for 3D sound synthesis are achieved by acoustic measurement
of the user, which is the most exhaustive way to generate a customized set of HRTFs.
Usually, an anechoic or semi-anechoic chamber in combination with expensive hard- and
software is needed for acoustic HRTF measurement. Furthermore, the listener has to be
present for the whole measurement procedure, which can last for several hours, depending
on the density of the spatial sampling grid and the chosen measurement approach.

In the second part of this thesis, I want to provide approaches to obtain HRTF datasets
for 3D sound synthesis with respect to the geometric features of the remote listener of
a teleconference. Different degrees of individualization are provided depending on the
possibilities of the listener to access a recording environment or anthropometric data.
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The HRTF-customization by selection describes an approach to provide a listener with an
individualized set of HRFTs for the sound synthesis without requiring any physical mea-
surements. The listener himself chooses a set of HRTFs among different people’s HRTFs
within a listening test procedure. In this chapter, two related HRTF selection approaches
are described and compared by preliminary listening tests.

Seeber-Fastl Method (SF)

In [154] a subjective selection method is presented where the authors suggest a two-stage
selection method. In the first stage, a rough preselection reduces the number of possible
eligible HRTF datasets from twelve to five. The second stage finally chooses the most
fitting set of HRTFs by a more refined questionnaire.

In the first stage, the listeners are confronted with a test sound (five pulses of white
noise) that is virtually synthesized to five positions in the frontal horizontal plane (-40◦,
-20◦, 0◦, +20◦, +40◦) by each of the twelve HRTF datasets. According to the best spatial
perception, the listener preselects five datasets for the second stage.

In the second stage, the five top ranked HRTF sets of the first stage are used to again
virtually synthesize the afore mentioned test sounds. Now, the listener should evaluate
the datasets by refined criteria. The first criterion is that the perceived direction of the
sounds should correspond to the synthesized sound sources. The second and third criteria
ask the listeners if there are changes in elevation and distance during playback of the
synthesized test signals. Ideally, such changes should not occur. The last criterion requires
the synthesized sound source to be perceived at some distance and not in the head.

One key feature during this selection process is the self-determination of the user within
one stage, meaning that the listener can choose the order of the possible HRTF datasets
on his own. Also the user is allowed to listen to the datasets as often as required to make
a descision.

DOMISO

Beside the SF approach, another similar approach, called determination method of opti-
mum impulse-resonse by sound orientation (DOMISO) [81], seeks to select a proper set
of HRTFs by a listening procedure.
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The main difference to the afore mentioned approach is the selection by a Swiss-style
tournament listening test where the listeners have no influence on the order of the played
back test sounds. In each round, the listener has to choose between two test sounds and
the tournament rules decide the final ranking of the corresponding HRTFs. In contrast
to the SF approach, the DOMISO approach’s test sounds (pink noise, duration: 1 s) are
virtually synthesized around the listener in the horizontal plane.

6.1. Preliminary Listening Experiment

In this section, we apply the SF method and the DOMISO method to select a dataset from
a number of presented HRTF datasets in order to decide which selection method is further
utilized for the conferencing system.

Experimental Setting

In the experiment, the CIPIC database [3] is used for the HRTF selection methods. The
database contains 35 human left and right ear HRIR tensors. We segmented the HRTF
sets of the CIPIC database by the interaural time delay (ITD) into twelve groups. Each
group consists of HRTFs with similar ITDs. One representative of each group is picked
for the selection procedures. This way, we enable the listener to choose among HRTF
datasets that cover the maximum of ITD variety within the dataset. The listening exper-
iments are conducted in the institute’s semi-anechoic room [145] to guarantee constant
listening conditions.

We compare the ordering of the chosen datasets by the listeners for the different se-
lection methods as well as the localization accuracy achieved with the respective favorite
dataset. The localization tests are conducted by playing back test signals (white noise) vir-
tually synthesized to 14 different directions around the listener in the elevation zero plane.
Each direction is randomly played back five times. Consequently, there are in sum 210
test sounds played back for the SF method, the DOMISO method and for a KEMAR HRTF
dataset that serves as non individualized reference.

Experimental Results

Two experiments with twelve test subjects are conducted. In the first experiment, the SF
method is presented to the listener. In the second experiment, the HRTF selection is done
according to the DOMISO approach. Finally, the Seeber-Fastl method and the DOMISO
method are compared by direction localization tests with the listener’s previously chosen
favorite HRTF datasets. Besides the localization accuracy of the winner-database a rank-
ing of the five favorite datasets for each listener is observed. The mean angular error
(MAE) of the twelve test subjects for the KEMAR reference database is 37.43◦, for the SF
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6.2. Concluding Remarks: HRTF Customization by Selection

method selected winner 35.51◦ and for the DOMISO selection 33.49◦. Therefore, aver-
aged over the twelve test subjects, both selection methods slightly improve the proband’s
localization accuracy compared to the KEMAR dataset.

Exemplarily, I choose "Listener 10" to illustrate the sound localization results with the
SF and DOMISO selected dataset. Out of the twelve eligible HRTF datasets, the proband
has chosen the eleventh dataset for the DOMISO method and the tenth HRTF set for the
SF method, meaning that the test subject prefers datasets with higher ITDs. The selection
process lasts 961 s for the DOMISO method and 928 s for the SF method. According to
the listening tests, both selection methods slightly improved the localization accuracy of the
test subjects compared with the localization accuracy achieved with the KEMAR reference
database.

Table 6.1 shows an overview of the results for the different selection approaches. Be-
sides the mean localization error, the number of the respective winning dataset is given.
Among the twelve probands, six listeners slightly improve the localization accuracy com-
pared with the KEMAR-database for both selection methods. The SF method achieves for
four test subjects better localization results than the DOMISO method. For eight people,
the SF method selected dataset performs better than the reference KEMAR database. For
the DOMISO selected database, ten probands achieve an improvement of the localiza-
tion accuracy compared with the KEMAR database. Interestingly, three out of the twelve
eligible HRTF databases were never chosen by any selection method and another two
datasets were only chosen once. My research team and I provide further experiments and
information for the HRTF selection approach in [57].

6.2. Concluding Remarks: HRTF Customization by Selection

According to preliminary listening tests, both selection methods can slightly improve the
choice of the HRTF dataset in terms of the proband’s sound localization accuracy. Based
on the comparable results of the listening tests and due to the fact that less instruction
is required, I decide the DOMISO method to be applied for further tests of the selection
method’s individualized HRTF datasets for the developed teleconferencing system. The
method does not need any further equipment and can be done at an office workplace
meaning that the remote listener in the conference scenario can autonomously conduct
the individualization. However, the fact whether localization accuracy can be regarded as
a sole element of judging the quality of an HRTF dataset in the context of teleconferencing
is questionable. Therefore, a framework of comprehensive tests is conducted in Part III of
this thesis.
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DOMISO SF KEMAR

Listener 1 11 6 -
MAE 32.2◦ 33.6◦ 38.3◦

Listener 2 9 10 -
MAE 39.0◦ 42.2◦ 41.4◦

Listener 3 4 11 -
MAE 45.3◦ 40.6◦ 40.2◦

Listener 4 11 1 -
MAE 14.4◦ 36.7◦ 15.4◦

Listener 5 4 5 -
MAE 45.1◦ 46.1◦ 47.4◦

Listener 6 7 1 -
MAE 50.9◦ 42.9◦ 51.9◦

Listener 7 11 11 -
MAE 20.6◦ 18.0◦ 25.6◦

Listener 8 10 8 -
MAE 28.9◦ 36.8◦ 36.8◦

Listener 9 1 9 -
MAE 32.8◦ 44.2◦ 40.1◦

Listener 10 11 10 -
MAE 19.2◦ 19.1◦ 30.5◦

Listener 11 5 10 -
MAE 43.3◦ 39.8◦ 41.2◦

Listener 12 11 5 -
MAE 30.1◦ 26.1◦ 40.3◦

Table 6.1.: Results of the preliminary listening tests to evaluate the DOMISO and the SF selection
methods [57]. In the first line in the listener’s results the number of the winning HRTF set is given
and in the second line, the mean angular localization error (MAE) is presented.
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7. HRTF Customization by Regression

Beside the HRTF selection (Chapter 6), another possibility to personalize HRTFs is to con-
struct regression models between anthropometric data and direction-dependent features
of HRTFs. The HRTF customization by using regression techniques allows to compute an
individual set of HRTFs for each listener. Due to the generation of a new dataset for each
user, I consider the regression method to deliver a higher degree of customization than the
HRTF selection method. However, the regression method requires a set of anthropometric
data of the respective listener, meaning that the effort needed for the regression method
is slightly higher than the required effort for the selection method. The anthropometric
data can be obtained by determining measurements of the listener with a caliper or, more
advanced, with a 3D laser scanner as I proposed in [137].

There are already research efforts in customization of HRTFs, which aim to estimate
HRTFs based only on geometric information of the listener without acoustically measuring
their HRIRs [69, 117]. Such a process requires usually a collection of HRTF datasets of
various subjects, which result in huge amount of data. Since the pioneering work [89],
principal component analysis (PCA) has become a popular tool for HRTF reduction [111].
The application of PCA in HRTF customization [69, 117], which reduces the dimension
of the original dataset before customization, has demonstrated promising performance.
A collection of different proband’s HRTFs can be considered as a three-way data array,
whose three directions represent subject, location and frequency, respectively. Applying
PCA to HRTF datasets requires in general a vectorization process of the original dataset.
As a consequence, some useful information within the structure of the HRTF dataset might
be disregarded. To avoid such limits, the so-called tensor singular value decomposition (T-
SVD) method, which was originally introduced in the community of multiway array analysis
[93], has been recently applied into HRTF customization successfully [59].

In the community of image processing, two recent techniques of multiway array analysis
are proposed in competition with the standard PCA. The two dimensional PCA (2DPCA),
originally a direct generalization of PCA for image analysis, and the so-called generalized
low rank approximations of matrices (GLRAM) [183], a further generalized form of 2DPCA.
I have demonstrated that GLRAM and T-SVD outperform the standard PCA in the task
of dimensionality reduction of HRTFs [140], which can be considered as a sign that the
methods successfully detect the direction dependent features in the HRTF datasets.

In this chapter, we study GLRAM, 2DPCA and Tensor-SVD methods for the purpose
of customizing HRTF datasets and compare their performance with the standard PCA.
Furthermore, partial least squares regression (PLSR) [180] is applied to construct a cus-
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7. HRTF Customization by Regression

tomized HRTF dataset and PLSR results are compared to the afore mentioned multiway
principal components regression methods.

7.1. HRTF Customization

Given a set of measured HRTFs of different people, a multiple linear regression seeks to
match a set of anthropometric parameters to the characteristics of the individual’s transfer
functions. In general, a collection of HRTFs can be represented as a three-way array
H ∈ RNd×Nf×Np , where the dimensions Nd is the spatial resolution of directions, Nf the
frequency sample size and Np is the number of people in the training dataset. For the sake
of simplicity, we adapt a Matlab-style notation in this section, e.g.,H(i , j , k ) ∈ R is denoted
the (i , j , k )-th entry of H, H(l , m, :) ∈ RNp the vector with a fixed pair of (l , m) of H and
H(l , :, :) ∈ RNf×Np the l-th slide (matrix) of H along the direction-dimension.

In order to receive only the direction dependent information between the different individ-
uals, the mean of the subject’s average log-HRTFs is subtracted from each log-HRTF [89].
It results in an interindividual direction transfer functions between the subjects, denoted by
D ∈ RNd×Nf×Np , whose (i , j , k )-th entry is computed by

D(i , j , k )=20 log10|H(i , j , k )|− 1
Np

Np∑
k=1

20 log10|H(i , j , k )| . (7.1)

An idea of customizing unknown HRTFs is to first extract certain direction dependent main
features out of the directional transfer functions D, then to construct a multiple linear re-
gression model between anthropometric features of subjects and the extracted directional
dependent features. Let K = [k1, ... , kNp ] ∈ Rrp×Np be a set of rp chosen directional de-
pendent features and O = [o1, ... , oNp ] ∈ RNo×Np be a collection of No anthropometric
features of test subjects. For the k -th subject, a multiple linear regression model between
anthropometric parameters and direction dependent features can be constructed as

kk = Bõk + ε, (7.2)

where B ∈ Rrp×(No+1), õk = [1 o>k ]> ∈ RNo+1, and ε ∈ Rrp is the estimation error vector.
Let us denote 1 ∈ RNp the vector with all entries equal to one, and construct Õ = [1 O>] ∈
RNp×(No+1). It is known that Np is usually greater than No. We assume that matrix Õ is full
rank. Then, in terms of minimization of the error ε by least squares method, the regression
coefficient matrix B in model (7.2) is computed by

B = K Õ(Õ>Õ)−1. (7.3)

Finally, given the anthropometric data onew ∈ RNo of a person not in the training set, its
transfer function features knew can be constructed by

knew = Bõnew ∈ Rrp , (7.4)
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where õnew = [1 o>new ]> ∈ RNo+1. In this work, we choose the set of anthropometric param-
eters for multilinear regression in accordance with [69], where anthropometric parameters
are selected by applying correlation analysis.

7.2. HRTF Customization Methods

This section briefly overviews three techniques of feature extraction methods for the
dataset D, namely, 2DPCA, GLRAM and Tensor-SVD. Moreover, the PLSR method is
briefly described.

Customization Using 2DPCA

Similar to the popular approach of customizing HRTFs by using PCA, 2DPCA based HRTF
customization can be described as follows. First of all, the so-called scatter matrix Sp ∈
RNp×Np , given by

Sp =
1

Nd

Nd∑
i=1

D(i , :, :)>D(i , :, :), (7.5)

is calculated. Then rp eigenvectors K = [k1, ... , krp ] ∈ RNp×rp corresponding to the rp

largest eigenvalues are computed. The so-called principal components of 2DPCA for the
i-th slides of D are calculated by

D̂(i , :, :) = D(i , :, :)K . (7.6)

The direction dependent regression coefficient matrix B is then constructed as given in
Equation (7.3). A set of customized direction transfer functions Dnew ∈ RNd×Nf for an
unknown person is obtained with its i-th slide given by

Dnew (i , :) = D̂(i , :, :)k>new , (7.7)

where knew is computed in accordance with Equation (7.4). I refer to [82] for further infor-
mation on PCA and to [182] for further discussions on 2DPCA.

Customization Using Tensor-SVD

Unlike customization using PCA, Tensor-SVD keeps the structure of the original 3D dataset
intact and computes the customized dataset for every direction at once. Given a dataset
D ∈ RNd×Nf×Np , Tensor-SVD computes its best multilinear rank− (rd , rf , rp) approximation
D̂ ∈ RNd×Nf×Np [93]. The rank − (rd , rf , rp) tensor D̂ can be decomposed as a trilinear
multiplication of a rank − (rd , rf , rp) core tensor C ∈ Rrd×rf×rp with three full-rank matrices
U = (uij ) ∈ RNd×rd , V = (vij ) ∈ RNf×rf and K = (kij ) ∈ RNp×rp , which is defined by

D̂ = (U, V , K ) · C, (7.8)

67



7. HRTF Customization by Regression

where the (i , j , k )-th entry of D̂ is computed by

D̂(i , j , k ) =
rd∑
α=1

rf∑
β=1

rp∑
γ=1

uiαvjβkkγC(α,β, γ). (7.9)

Finally, with the regression model built in (7.3) and (7.4), a new set of direction transfer
functions can be retrieved by

Dnew = (U, V , k>new ) · C ∈ RNd×Nf (7.10)

Refer to [148] for Tensor-SVD algorithms and further discussions.

Customization Using GLRAM

Similar to Tensor-SVD, GLRAM methods do not require the destruction of 3D tensors. In-
stead of reducing the datasetD along all three directions as Tensor-SVD, GLRAM methods
work with two pre-selected directions of a 3D data array. Given a dataset D ∈ RNd×Nf×Np ,
the task of GLRAM is to approximate matrices D(:, i , :), for i = 1, ... , Nf of D along the sec-
ond direction by a set of low rank matrices {UGiK>} ⊂ RNd×Np , for i = 1, ... , Nf , where
the matrices U ∈ RNd×rd and K ∈ RNp×rp are of full rank.

Similar to the 2DPCA and the Tensor-SVD method, a new set of direction transfer func-
tions can be retrieved by

Dnew (:, i , :) = UG(:, i , :)knew . (7.11)

Further details on GLRAM algorithms can be found in [183].

Customization Using PLSR

While PCA, 2DPCA, GLRAM and TSVD based decomposition of the HRTFs seek to mini-
mize the reconstruction error of the datasets, PLS regression method seeks to find regres-
sion weights with respect to the covariance ofD and O [180]. Simultaneous to the multiple
linear regression model of Equation (7.2) the idea of customizing unknown HRTFs by the
use of PLSR is based on the assumption to express the direction transfer functions by
dk = Qõk + ε.

According to [180] the PLSR finds variables T that are predictors for D, which also
describe O meaning that D and O are partly modelled by the same features. The an-
thropometric data O and the transfer function for each direction D(i , :, :) ∈ RNf×Np can
be decomposed to O = TP> and D(i , :, :) = IC>, where T , I are the features of O and
D(i , :, :), respectively. P and C are the corresponding weights. Assuming the features of O
partly model D(i , :, :), the direction transfer function for each direction i can be described
by D(i , :, :) = TC>. With T = OK>, D(i , :, :) is defined by

D(i , :, :) = OK>C> + F = OQ + F , (7.12)
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where F is the estimation error matrix.
Finally, the regression coefficient matrix can be computed by

Q = K>C> (7.13)

and given the anthropometric data onew ∈ RNo of a person not in the training set, its
transfer function Dnew ∈ RNd×Nf can be constructed by

Dnew (i , :) = Qõnew . (7.14)

Refer to [108] and [180] for further information about PLSR.

7.3. HRTF Customization: Experiment

In this section, we apply PCA, 2DPCA, GLRAM, Tensor-SVD and PLSR to compute the
individual HRTFs with regression. The performance of the different HRTF customization
approaches is investigated and discussed.

Experimental Setting

In the experiment, the CIPIC database [3] is used for the HRTF customization application.
The database contains 35 human HRIR tensors with the corresponding anthropometric
data for both left and right ears. The CIPIC HRIRs are recorded in spatial resolution of
Nd = 1250 points (Ne = 50 in elevation and Na = 25 in azimuth), spaced uniformely
around the head, with Nt = 200 time samples. To obtain the HRTFs, the discrete fourier
transformation (DFT) was applied on each HRIR.

We use cross validation to compare the different methods. The cross validation method
takes the direction transfer functions D of the people within the CIPIC dataset, together
with their anthropometry as a training set to conduct the customization by regression, as
explained in Section 7.1. The person to be reconstructed is not part of the training set.
The customization procedure is repeated for each person of the training set in order to
compare the regression performance for each subject.

For the regression model (7.2), we select the anthropometric parameters in accordance
to [69]. It is demonstrated that eight selected parameters out of 27 from the original CIPIC
database cover most of the variance of the dataset and provide good regression perfor-
mance with minimal measurement efforts for the anthropometric data. These eight param-
eters are: head width, head depth, shoulder width, cavum concha height, cavum concha
width, fossa height, pinna height and pinna width. The feature extraction parameters for
the different regression methods are chosen based on exhaustive simulations in [92].
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7. HRTF Customization by Regression

Experimental Results

In each experiment, we construct a new set of HRTFs for the person not in the training
set with one of the introduced feature extraction methods. To investigate the performance
of the different feature extraction approaches in a HRTF customization application, the
spectral distortion for every angle over the whole frequency spectrum is computed. The
spectral distortion SD is defined by

SD =

√√√√ 1
Nf

Nf∑
i=1

(
20 log10

|Hi |
|Hnewi |

)2

, (7.15)

where Hi is the magnitude of the CIPIC-measured HRTF in the dataset and Hnewi is the
magnitude of the HRTF constructed via regression at the i-th frequency. Nf is the number
of frequency samples for each HRTF (200 in this case).

First of all, PCA with rd = 10 dominant eigenvectors is applied to the task. We use that
as a reference for comparison with the other three multilinear methods. Table 7.1 sum-
marizes the average spectral distortion values for the estimation of the left ear HRTFs. It
can be seen that the customization procedure leads to different spectral distortion values
from subject to subject. For subject 30 and subject 33, the estimation of the HRTF works
quite well in comparison with subject 29. This might be caused by the possibility, that there
exists a subject in the training set that is physically similar to these two subjects. Further-
more, it indicates that the precise determination of anthropometric parameters as well as
the measurement of HRIRs is sensitive to many other parameters, e.g. the placement of
the microphones or head movements during the measurement process. Such inconsisten-
cies in the training set can consequently lead to different estimation values due to varying
precisions of the regression models.

The direction dependency of the estimated HRTFs can be seen in Figure 7.1. For dif-
ferent directions, the estimation quality of the individual HRTFs slightly varies in terms of
spectral distortion. Extractions of the direction dependent features with PCA disregard
similarities between neighbouring angles. To also take the 3D structure of the dataset into
account, 2DPCA is applied also using rd = 10 eigenvectors. SD results of HRTF cus-
tomizations at two particular planes, shown in Figure 7.1, indicate that 2DPCA extracted
features lead to a better estimation of the HRTFs than PCA. Lower SD values suggest that
the log-magnitude response of the estimated HRTF is closer to the CIPIC-measured one
than the PCA estimated one.

Finally, GLRAM (rp = 10, rf = 200, rd = 100) and Tensor-SVD (rp = 36, rf = 36,
rd = 36) are applied to estimate the individual HRTFs of the test subjects. The achieved SD
results are similar to the 2DPCA regression results . Using PLSR does not further improve
the regression SD results compared to 2DPCA, GLRAM and Tensor-SVD methods. My
research team and I provide further information about HRTF regression in [92, 135, 143].
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Figure 7.1.: SD values for Subject 30 in the horizontal plane

7.4. Concluding Remarks: HRTF Customiation by Regression

Our experiments demonstrate that multiway regression models, namely 2DPCA, Tensor-
SVD and GLRAM outperform the standard PCA approach with respect to the spectral
distortion values. SD values achieved by using PLSR are better than the PCA achieved
SDs but inferior to the multiway array methods. The regression methods do not require
individual acoustic measurements to obtain a customized dataset, however, the result of
the regression method is strongly dependent on the measurement accuracy of the training
set and the determination of the anthropometric data. Due to the fact that we can avoid
acoustic measurement for HRTF customization, the regression methods seem to offer
a promising approach in the teleconferencing scenario to improve immersive playback
of conference contributions. Therefore, I choose a subset of the regression approaches
(2DPCA, GLRAM, PLSR) to be evaluated in the listening tests in Part III of this thesis.
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Person PCA 2DPCA GLRAM TSVD PLSR

Subject 1 6.86 5.68 5.34 5.72 6.27
Subject 2 6.81 5.50 5.37 5.96 6.36
Subject 3 7.95 6.77 6.54 6.70 7.01
Subject 4 6.88 5.66 5.55 5.86 6.26
Subject 5 6.96 5.48 5.37 5.62 5.86
Subject 6 7.29 6.17 5.95 6.40 6.85
Subject 7 7.81 6.54 6.22 6.57 6.96
Subject 8 6.60 5.61 5.39 5.70 5.96
Subject 9 7.00 5.93 5.85 5.85 5.92
Subject 10 6.89 5.60 5.52 5.80 6.14
Subject 11 8.74 6.72 6.49 7.08 7.73
Subject 12 6.77 5.65 5.56 5.83 6.04
Subject 13 6.81 5.36 5.31 5.36 5.47
Subject 14 7.00 5.94 5.89 6.23 6.53
Subject 15 7.27 6.13 6.09 6.18 6.29
Subject 16 7.79 6.74 6.66 6.70 6.85
Subject 17 6.65 5.75 5.60 5.69 5.95
Subject 18 6.61 5.42 5.31 5.44 5.68
Subject 19 6.17 4.92 4.75 4.92 5.21
Subject 20 7.12 5.75 5.60 5.81 6.12
Subject 21 7.48 7.14 7.12 7.28 7.49
Subject 22 7.26 5.73 5.65 5.76 6.07
Subject 23 7.08 5.90 5.81 6.12 6.45
Subject 24 6.33 4.98 4.96 5.12 5.34
Subject 25 6.52 5.74 5.69 5.85 6.11
Subject 26 9.10 7.44 7.41 7.71 7.98
Subject 27 6.54 5.73 5.61 5.71 5.85
Subject 28 7.41 6.01 5.99 6.04 6.14
Subject 29 7.54 7.18 7.18 7.20 7.24
Subject 30 5.71 4.39 4.36 4.48 4.59
Subject 31 7.06 5.68 5.41 5.87 6.41
Subject 32 6.22 5.25 5.15 5.19 5.41
Subject 33 6.17 5.04 4.89 5.20 5.45
Subject 34 7.47 6.13 6.01 6.38 6.66
Subject 35 6.49 5.33 5.18 5.58 5.91
mean 7.04 5.86 5.74 5.97 6.25

Table 7.1.: Average spectral distortion (SD) values for the different people in terms of dB.
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The selection methods presented in Chapter 6 and the regression methods described
in Chapter 7 offer the chance to efficiently obtain individual HRTF datasets for the tele-
conferencing system. However, the most individual HRTF-based sound synthesis can be
achieved by acoustically measuring the subjects actual head-related transfer function. In
order to enable a remote listener to use an individual acoustically measured set of HRTFs,
the user usually has to attend a cumbersome measurement procedure in advance.

There are various HRTF measuring techniques that compute the HRTF by recording
the excitation signal (e.g. maximum length sequences, sine sweeps) for each spatial sam-
pling point. One major problem is the huge amount of time that is needed to generate
an individual, dense HRTF data set that is sufficient for immersive 3D sound synthesis,
e.g. in order to synthesize moving sound sources or to enable the use of head tracking
for dynamic sound synthesis. Another problem is that the person to be measured must
not move during the recording procedure. This can be difficult if the subject is sitting on
a turntable that accelerates and stops between the recordings. There are attempts to
ensure good-quality HRTF databases by detecting head movements during the measure-
ments via optical tracking systems [72]. However, the recordings during which the user
moved, have to be repeated which in turn prolongs the recording procedure. To tackle
these two drawbacks of conventional HRTF measurement approaches, a recent approach
uses normalized least mean square (NLMS) adaptive filters to compute the HRIRs from
the recorded excitation signals. Adaptive filters [66] are capable of estimating impulse
responses and are able to handle defined movements of the subjects during the record-
ing procedure. Therefore, it is possible to make measurements with continuous rotation,
which reduces the recording time independently from the desired spatial resolution. With
the NLMS method, it is possible to generate continuous HRTFs in azimuth without inter-
polation [46]. A generalization to multiple-elevation continuous-azimuth HRTF acquisition
was also reported in [45].

The NLMS method could also be beneficial for loudspeaker-based 3D sound synthesis
applications using crosstalk cancellation and head-tracking [159] to efficiently measure the
required dense transfer function database.

In this chapter I study the well-established static HRTF measurement approaches us-
ing maximum length sequences (MLS) and sine sweeps and compare the methods with
a HRTF estimation approach using normalized least mean square (NLMS) adaptive fil-
ters under the same lab conditions [141]. The different approaches are implemented and
experimentally compared by objective and subjective evaluation.
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8.1. HRIR Measurement Approaches

In this section, an overview of HRIR estimation approaches, namely, maximum length
sequences (MLS), exponential sine sweeps, and NLMS adaptive filters is presented.

Maximum Length Sequence (MLS)

For the MLS-method [131, 152], a pseudo-random excitation signal with an impulse-like
autocorrelation is used. The amplitude of the impulse depends on the variance and length
of the excitation signal. The head-related impulse response h then can be computed by

h =
g ? x
∞∑

m=−∞
g[m]2

, (8.1)

where g is the excitation signal, x is the signal recorded with the ear microphones and
? denotes the cross-correlation operation. One major advantage of the MLS method is
that it is robust against transient noise because the energy of the disturbance is uniformly
distributed along the impulse response [84]. We use a periodic MLS excitation signal which
results in a periodic response of the system and average the result over two repetitions.

Exponential Sine Sweeps

The exponential sine sweeps method [48] avoids deconvolution instability by mathemati-
cally computing the inverse of the excitation signal. An exponential sine sweep excitation
signal with a length of T which is covering the bandwidth from f1 to f2 can be computed by

g(t) = sin

[
2πf1

T

ln( f2
f1

)
exp

(
t
T

ln
(

f2
f1

)
− 1
)]

. (8.2)

The main advantage of the exponential sine sweeps method is the fact that one can avoid
inversion instabilities by computing the inverse of the excitation signal by

ginv(t) = g(T − t) exp
(
−t
T

ln
(

f2
f1

))
(8.3)

and the impulse response h is obtained by h = x ∗ ginv, where ∗ denotes the convolution
operation. Furthermore, exponential sine sweeps consist of only one frequency at one
time instance, therefore non-linear distortions can be identified and removed.

HRIR Measurement Using NLMS-Type Adaptive Filters

In order to determine individual HRIRs with the MLS and exponential sine sweeps meth-
ods, it is necessary to predefine the resolution of the desired HRIR grid.
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Sound source KS digital C5 tiny
KEMAR microphones with GRAS-Type 40AG, RA0045
IEC 60711 Coupler
Preamp GRAS-Type 26AC
Sound card RME Multiface II
Lab dimensions 4.7 m x 3.7 m x 2.84 m
Lab noise level 16.3 dB
A-weighted
Lab reverberation time t60 0.08 s

Table 8.1.: Information about the equipment used in the HRIR measurement experiment.

Using the NLMS-type adaptive filters approach, it is possible to define the resolution of
the HRIR grid after the measurement process. The basic idea of this approach is to track
the system’s true impulse response vector h by the estimated impulse response vector ĥ.

First, a prediction x̂ [k ] of the in-ear recordings x [k ] at discrete time k is computed by
convolving the excitation signal g[k ] with the estimated impulse response ĥ[θk ] ∈ RN as
x̂ [k ] = gT [k ] · ĥ[θk ], where N describes the length of the impulse response and g[k ] ∈ RN

is defined as the section of g containing the current and the N − 1 preceding samples of
g at time instance k . The prediction error e[k ] is then computed as e[k ] = x [k ]− x̂ [k ] and
the estimated impulse response is updated by

ĥ[θk+1] = ĥ[θk ] + µ · e[k ] · g[k ]
||g[k ]||22

, (8.4)

where θ is the direction of the corresponding impulse response and µ is the step size,
which is an important parameter for the NLMS HRIR estimation approach. The choice of µ
can be considered as a trade-off between fast accommodation and noise-robustness. We
refer to Haykin [66] and Enzner [46] for detailed information about the choice of the step
size µ.

8.2. HRTF Measurement: Experiment

In this section, we compare the different methods of estimating HRIRs. To guarantee
a fair comparison, a new evaluation method, called SNRT is introduced beside the also
conducted comparison by established evaluation criteria.

Experimental Setting

In the following, the experimental settings are described in detail. A KEMAR mannequin
is placed on a turntable with a stepper motor in the institute’s semi-anechoic chamber.
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8. HRTF Measurement

A loudspeaker in a distance of 2 m of the KEMAR plays the excitation signals which are
recorded by the KEMAR’s in-ear microphones. Table 8.1 gives an overview of the equip-
ment we used in the experiments. The length of the HRIRs is 1024 samples and the
sample rate is 48 kHz.

In the first experiment, the excitation signals for each method of HRIR estimation are
recorded in discrete 5◦ azimuth-steps ("static"). In the second experiment a continu-
ous azimuth-rotation ("dynamic") recording is conducted for the NLMS-type adaptive filter
method. One rotation in the dynamic measurement approach lasts 98 s.

The estimated HRIRs of each method using static recordings of the first experiment are
compared by different evaluation criteria. Finally, we compare the HRIRs generated by
the dynamic recording with the spatially-discrete impulse responses by several instrumen-
tal evaluation criteria. Furthermore, the dynamic and the static measured responses are
compared by a linstening test.

Objective Evaluation Methods

The fact that the different measurement approaches employ different kinds of excitation
signals makes it difficult to find fair criteria to compare the HRIRs generated by the di-
verse measurement approaches. In addition to traditional ways of judging the quality of
HRIR measurement environments (SNRY1 , SNRY2) and measurement approaches (SNRI,
SNRE), we propose a new evaluation method that is suitable to compare different HRIR
estimation approaches, named "Test of HRIR Signal to Noise Ratio" (SNRT).

An important issue for HRIR measurement is the laboratory environment. In the fol-
lowing, two characteristic values, namely, SNRY1 and SNRY2 are given that describe the
institute’s laboratory environment for HRIR measurement. The signal-to-noise ratio of the
recordings is labelled SNRY1 and SNRY2 in this work. It is computed by

SNRY1 = 10 log10

(
Psignal

Pnoise

)
, (8.5)

where Psignal is the power of the recorded excitation signal and Pnoise is the noise power of
the recording system. All excitation signals were normalized to the same Psignal. SNRY2 is
computed by

SNRY2 = 10 log10

(
PHRIRt

PHRIRl − PHRIRt

)
, (8.6)

where PHRIRl is the power of a long HRIR (in our case 6000 samples), and PHRIRt is the
power of the target sized HRIR (1024 samples).

SNRY1 is a descriptor of ambient and sensory noises in the lab environment, whereas
SNRY2 describes the effect of reverberation in the lab room. Our semi-anechoic chamber
[145] does not inhibit all low frequency reflections, which explains the relevance of SNRY2 .

Besides the SNRY1 and SNRY2 values which describe the laboratory environment, the
performance of the different HRIR measurement approaches is compared by SNRI, SNRE

and SNRT.
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8.2. HRTF Measurement: Experiment

SNRI compares the power of the first samples of the HRIR to its maximum amplitude.
The first samples of the estimated impulse response are expected to be zero, caused by
delay due to sound propagation from loudspeaker to microphone. All deviations from zero
in the first samples are therefore considered as noise of the HRIR measurement. SNRI

can be calculated by

SNRI = 10 log10

(
1

N−K

∑N
i=K +1 h[i ]2

1
K

∑K
i=1 h[i ]2

)
(8.7)

where K describes the number of samples before the first wavefront hits the microphone
and N describes the total length of the estimated HRIR. The SNRI is also used as an
algorithmic quantity in the context of step-size control of NLMS-type adaptive filters [66].

Our goal is to improve sound synthesis by an individual set of impulse responses. There-
fore, the main purpose of our HRIR measurement lies in the rendering of an input sound
signal s to a position in 3D space by convolving s with the corresponding set of HRIRs
and playing back the resulting signal x ′ via headphones to the user. Beside the recorded
excitation signals xe from the different HRIR measurement approaches, we record further
test signals xt with the KEMAR’s microphones. The recordings xe and xt include the KE-
MAR’s real physical transfer function and serve as a reference for the virtually synthesized
3D sound x ′. The SNRE that compares the HRIR-convolved signal with the recorded exci-
tation signal xe is given by

SNRE = 10 log10

( ∑
i xe[i ]2∑

i (x ′[i ]− xe[i ])2

)
. (8.8)

Enzner [46] uses SNRE to evaluate the quality of dynamically measured HRIRs, due to
direct relationship of SNRE with the prediction error in the NLMS algorithm. One disad-
vantage of SNRE is that it uses the method’s excitation signal itself to compute the SNRE,
which makes it difficult to fairly compare different HRIR estimation methods. To achieve a
fair comparison, SNRT, calculated by

SNRT = 10 log10

( ∑
i xt [i ]2∑

i (x ′[i ]− xt [i ])2

)
(8.9)

uses independently recorded test signals xt . White Gaussian noise serves as the HRIR
input signal.

Objective Evaluation Results

The lab environment is characterized by SNRY1 and SNRY2 . The SNRY1 values for the
horizontal plane are given in Table 8.2. It can be observed that the static methods have
better SNRY1 values due to the fact that the turntable’s stepper motor causes noise in the
dynamic measurements. The mean SNRY2 is 37.1 dB for an HRIR-length of 1024 samples.
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Figure 8.1.: Left ear SNRT values for the different HRIR estimation approaches in the horizontal
plane

SNRY1 [dB] SNRE [dB] SNRT [dB] SNRI [dB]
Static NLMS 42.50 35.58 35.20 50.83

MLS 43.81 32.87 32.63 43.42
Sweep 41.51 27.23 32.42 40.43

Dynamic NLMS 31.26 28.49 30.01 35.06

Table 8.2.: Mean SNR values of the different HRIR estimation methods.
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The unique feature of the adaptive filter method among the HRIR estimation methods is
the ability to handle dynamic recordings with movements of the KEMAR during the record-
ing procedure. For fair comparison of static and dynamic methods, two problems have to
be tackled. The first problem is connected to the ability to precisely determine the position
of the HRIRs. In the static case, our turntable is moved to a certain azimuth angle by a
stepper motor with a built-in rotary encoder and the corresponding HRIR can be assigned
to that azimuth position. Using the dynamic recording method, one has to compute the
actual position of the determined HRIR using the turning speed of the turntable and the
elapsed turning time. The second problem regarding the comparison of the static and the
dynamic methods is the influence of the step size, affecting convergence speed and noise
rejection rate. We solve these problems by choosing the dynamically generated impulse
responses with the highest SNRT for every azimuth position to ensure the best possible
selection. This way, we can exactly compare the HRIRs generated by dynamic and static
measurement methods. Figure 8.1 illustrates the SNRT values in the horizontal plane. Us-
ing the MLS and exponential sine sweep technique signal to noise ratios (SNR) between
26 dB and 37 dB are reached. The SNR values are slightly lower for the azimuth angles
between 0◦ and 180◦, which can be explained by the fact that this is the contralateral side
and consequently the excitation signal energy is lower than the excitation signal energy at
the ipsilateral side. Beside MLS and exponential sine sweeps, static measurements were
conducted using the NLMS adaptive filter method. The SNRT values for the NLMS method
are slightly better than the MLS method. Using the dynamic measurement method, the
SNRT values are slightly worse, especially at the contralateral side. This is due to the fact,
that the turntable’s stepper motor causes noise during the dynamic measurement while
turning. The ratio of the noise at the contralateral side is greater due to the shadowing
effects of the KEMAR’s head, consequently reducing the power of the excitation signal. At
the ipsilateral side, the ratio between excitation signal and the turntable’s noise is higher
resulting in better SNRT values.

Listening Tests

As illustrated in Figure 8.1, the SNRT values for the static estimation approaches are higher
than the dynamic ones. We aim at acoustic teleconferencing applications, therefore, the
most important question is whether subjects can distinguish between test signals filtered
with different sets of HRTFs generated by the afore mentioned dynamic and static transfer
function estimation approaches in listening tests. To answer this question, we apply an
ABX double blind test [18].

Four sets of HRIRs, generated by static MLS, static sweep, static NLMS and dynamic
NLMS, respectively, are used to virtually synthesize a noise burst sequence to move
around a listener in the elevation zero plane.

According to the test guidelines in [18, 75], a fifth test signal is generated and serves
as a hidden reference in order to ensure if the test subjects are watchful along the test
procedure. Each static test signal was compared 16 times to the dynamic ones played back
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8. HRTF Measurement

MLS Static NLMS Sweep Dummy
correct answers 0.48 0.47 0.49 0.95

Table 8.3.: ABX test results: The test listeners could not hear differences between the test signals
that are synthesized with the differently measured HRIR databases.

to the 21 listeners with Beyerdynamic DT 990 Pro headphones in our audio laboratory.
The test subjects were introduced to the test setting according to the test guidelines. In
each test round, the listener has to decide whether the presented signal X is identical to a
presented signal A or signal B. In each round, X is actually a copy of randomly played back
A or B. According to Table 8.3, no one of the test listeners could reliably hear any difference
between the dynamic NLMS, static MLS, static sweep and static NLMS generated 3D test
signals (with a confidence of 95 %). Three participants were excluded due to the fact that
the hidden reference was not assigned properly.

8.3. Concluding Remarks: HRTF Measurement

In this chapter, I address the problem of acoustic HRIR measurement. We compare three
static HRIR measurement methods, namely exponential sine sweep, MLS and the static
NLMS method with the dynamic NLMS method by different objective and subjective eval-
uation criteria. The different SNR values of the dynamic NLMS method are slightly worse
than the SNR values of the static methods. However, listeners could not differentiate be-
tween the differently measured HRIR databases in listening tests. Since a discrete HRIR
measurement with 1◦ resolution in the horizontal plane typically lasts about 50 min in our
lab, whereas a dynamic NLMS-based measurement with quasi-infinite resolution takes
only 2 min, the dynamic measurement is a promising new alternative to static approaches.
Therefore, I decide to use the dynamic measurement approach to set up a LDV HRTF
database for further investigations on immersive playback of teleconference speech con-
tributions.
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Part III.

System Evaluation
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To finalize the conference system modeling I quantify the benefit of the speaker assign-
ment and immersive playback efforts that were made to enable the remote listener’s virtual
audio participation of conferences.

The individual components of the whole teleconferencing system are evaluated by the
typical characteristics of the subproblems to be solved to achieve an immersive telecon-
ferencing system. In Part I of the thesis, the problem of channel assignment is solved by
sound source localization, separation and speaker recognition. The possible sound source
localization approaches for the developed microphone array prototypes are judged by ex-
periments that determine the localization success rate and the mean angular error of the
localization approaches. The sound source separation algorithm’s signal to distortion, sig-
nal to interference and signal to artifacts ratios then assess the separation performance.
The diarization error rate finally judge the speaker recognition and the developed channel
assignment approaches. Part II of the thesis presents various methods to achieve immer-
sive playback at the remote site of the conference with respect to the listener’s individual
HRTFs. The quality of a HRTF database for virtual playback is often identified by listening
experiments that determine the localization error, e.g., to choose among two HRTF selec-
tion methods in Chapter 6. In the field of generating individualized HRTFs by regression
methods as described in Chapter 7, the spectral distortion is a frequently used measure to
compare computed HRTFs with the ground truth. In order to compare various approaches
of acoustic measurements of HRTFs, we successfully developed different signal to noise
ratios [141] that are presented in Chapter 8.

Each of the respective evaluation methods of the teleconferencing system’s subprob-
lems has its justification to describe the quality of solving the particular subproblems. How-
ever, the individual key figures do not adequately describe the whole system. Therefore,
the final part of my thesis deals with the evaluation of the speaker assignment algorithm
in combination with different methods of immersive playback to answer the following ques-
tions:

• How do remote teleconference participants judge the possibility of spatialized play-
back of conference contributions?

• Does the speaker assignment algorithm introduce annoying artifacts that render the
achieved immersive playback useless?

• Do the channel assignment and immersive playback improve the perceived quality
of experience (QoE)?

• Do the channel assignment and immersive playback improve the efficiency of tele-
conferencing?

• Is the effort of measuring individual HRTFs justified for the teleconference scenario
compared to HRTF selection, regression or standard KEMAR HRTFs?

• Is it worth to further investigate high accuracy head-tracking for teleconferencing?
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• How does the introduced channel assignment algorithm perform compared to per-
fectly separated conference contributions?

I decide to divide the evaluation of the developed system into two main criteria, namely, the
quality of experience (QoE) and the cognitive load (CL) for the teleconference system. Be-
sides QoE and CL, a listening test is made to judge the subject’s localization performance
of the different HRIR databases.
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In this chapter, three concepts of evaluating the speaker assignment and immersive play-
back are introduced, namely, the quality of experience concept, the cognitive load concept
and the sound localization performance.

9.1. Sound Localization Performance

A frequently used method to judge the performance of a HRTF dataset for synthesizing
sound sources is to conduct subjective sound localization (SL) listening tests. Therefore, I
decide to also evaluate the SL performance of probands with the different HRTF datasets
that are considered to be deployed in the developed teleconference system. There are
different methods seeking to reliably measure the SL performance of listeners in hearing
tests.

One method is the so-called identification method, described in [112, 113]. The pos-
sible sound sources are represented by real speakers at predefined positions in the test
environment. Then the test subjects listen to the playback of the loudspeakers as well as
to the virtually synthesized sound image and mark the supposed sound source position
on a form where the predefined positions are documented. Thus, the method is intuitive
and there are no confusions due to proprioception of the listeners. However, the proband
rather has to decide among the predefined sound source positions than to actually localize
the virtual sound source.

Another method to conduct SL listening tests is to ask the probands to tell the perceived
azimuth and elevation angles of a virtual sound image to the experimenter or to mark
it on a coordinate system on a questionnaire. Therefore, the probands have to localize
the sound source and then map the perceived direction to coordinates of the written or
digital form [13, 34]. The drawback of this method is that listeners have individual scales
of transforming the perceived direction information to azimuth and elevation coordinates
unless the test listeners are trained to correctly map the perceived direction to azimuth
and elevation coordinates.

The direction of a perceived sound source can also be detected by tracking methods
such as head tracking and eye tracking. The eye tracking method seeks to measure the
saccadic eye movements that are supposed to hint towards the perceived direction of the
sound source. The reliable detection of the eye movements can be done with optical
tracking or, if a shaded test environment is required, with magnetic detection of a scleral
search coil in the proband’s eye [52, 68]. Besides the elaborate of the eye tracking, the
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listener’s head has to be fixed during the tests to exclude false directions caused by head
movements. Due to technical reasons, only directions in the front hemisphere can be
evaluated.

The head tracking method [107] to detect the direction of a sound source in listening
tests is similar to the idea of the eye tracking method. In the head tracking method, the
orientation of the proband’s head is detected which should indicate the perceived direction
of the sound image. However, the orientation of the head does not necessarily correlate to
the perceived direction of a sound source, e.g., when the proband does not look straight
ahead.

To overcome the problem of reliably capturing the probands direction impression, the
optical pointer method is invented where the test subject uses a device, e.g., a track ball to
direct a laser pointer that is detected with preinstalled sensors on a discrete grid to unveil
the position of the virtual sound source [98, 153]. The indirect control of the laser pointer
by an input device decouples the localization task from the human’s motor function to avoid
proprioceptive effects that could disturb the localization capturing task. The optical pointer
method only allows direct testing of virtual sound sources at predefined locations in the
frontal hemisphere due to the experimental design.

A further development of the optical pointer method is the laser pointing method. Con-
trary to the optical pointer method, the proband intuitively points at the supposed sound
source and gets optical feedback by a laser dot. The direction of the gesture then can be
determined by tracking markers fixed at the laser pointer [122]. This way, all azimuth and
elevation angles at a constant radius can be chosen by the proband. One drawback of this
method could be that the listener’s movement influences the direction choice.

The SL performance gives feedback of the ability of the proposed HRTF datasets to
virtually add direction information and the SL listening experiment only covers the playback
aspect of the developed immersive 3D teleconferencing system without regarding the data
acquisition aspect. Moreover, it is questionable, if the pure localization error consideration
actually reflects a fair evaluation of a teleconferencing system and thus, further evaluation
concepts need to discussed to evaluate the teleconferencing system.

9.2. Quality of Experience

The perceived quality of a teleconference system user is one of the most important as-
pects to judge the performance of my ideas to achieve an immersive 3D teleconference for
a remote conference participant. In contrast to objective evaluation criteria like the local-
ization success rate for the sound source localization, the SIR, SAR and SDR values for
the sound source separation, or the DER for the speaker recognition, the measurement of
the perceived user quality of experience QoE is not straightforward.

First of all, the expression "quality" can be interpreted differently. Pioneering attempts
to define "quality" were made in chemometrics and are overviewed by [108], where four
different aspects of quality are considered:
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• Qualitas: Quality due to objective characteristic properties, e.g., color or material of
a device.

• Excellence: Quality due to subjective intuitive judgement of a device.

• Standards: Quality defined by the degree of achieving predefined requirements of
a device.

• Quality as an Event: Quality defined by the subjective impression by using a device.

The first two quality aspects are either objective or subjective criteria. The third definition
seeks to combine the first two aspects by finding criteria that reflect the subjective judgment
of characteristic properties of using a device. The definition of quality as an event describes
the usage of a device with a certain quality by a subject that feels a certain excellence of
usage.

Concerning the teleconference application, the fourth definition "Quality as an Event"
provides a good concept that includes all components of the developed conferencing sys-
tem that finally lead to the chance of immersive playback of the conference contributions.
The concept further can be specified with respect to sound quality. According to [97],
sound quality can be assessed by presenting auditory images to subjects that judge the
sound samples by their degree of satisfaction, compared to other presented auditory im-
ages. Furthermore, it is suggested to evaluate the sound quality by parametrizing the au-
ditory image in order to take the multidimensional character of sound events into account
[15, 147].

However, evaluating different parameters of an auditory image could result in discrep-
ancies between an expert listening test designer and naive probands. Therefore, it could
be beneficial to elaborate a test vocabulary together with the test subjects, which addi-
tionally causes huge efforts in advance of the actual listening test. For further information
regarding trainings in advance of the listening tests refer to [101].

In contrast to the direct questioning of test subjects, a further approach is to conduct
psychoacoustic experiments in order to obtain characteristics that are connected to phys-
ical measurements [49]. Another approach to evaluate the HRTF-based sound synthesis
of the teleconferencing system is to evaluate the quality of the HRTFs by the key property
of the HRTFs, the direction dependency of the transfer functions. Therefore, the quality
determination of the HRTFs is often based on listening tests that seek to evaluate the lo-
calization ability of the probands with the respective HRTF datasets [13]. Section 9.1 gives
a detailed overview about this issue. Moreover, speech comprehensibility [24, 41], speaker
identification [17] or task performance [83] can be a measure of quality for a teleconfer-
encing system.

The most utilized concept to evaluate an acoustic teleconference system seeks to quan-
tify the quality by the degree of achieving predefined standards. This concept is referred
to as quality of service (QoS). In [76] the ITU defined criteria that are mainly related to the
performance of a system, e.g. packet loss or mouth to ear delay. Furthermore, a concept
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and thus can be called a quality event. This event happens however inside the human user and relevant 
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Figure 1 Quality formation process  
Figure 9.1.: Schematic overview about the proband’s QoE decision-making process [28]

.

of quality of service experienced by customer (QoSE) is mentioned in [76] that incorpo-
rates the subjective user opinion that is connected to criteria such as the speech quality
[78] or the mean opinion score (MOS) according to [80]. The idea of QoSE to evaluate our
system is connected to the concept of evaluating the system by its QoE.

The QoE concept of evaluating our system is related to the idea of considering quality
as an event [108]. In [28], it is attempted to define the QoE by describing the meaning
of experience and quality in the context of evaluating a system. In contrast to the QoS,
important factors are the subjective perception and judgement of a user and the compar-
ison of the quality by references. The QoE decision-making process is shown in Figure
9.1. During the QoE evaluation, the probands judge the perceived quality by an individual,
internal parametrization process, the QoE factors illustrated in Figure 9.1, which rather
correspond to a customer’s quality judgement than an evaluation of different parameters
by expert listeners. In accordance with [28], the QoE is defined as

„ (...) the degree of delight or annoyance of the user of an application or
service. It results from the fulfillment of his or her expectations with respect
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to the utility and/or enjoyment of the application or service in the light of the
users personality and current state.“

9.3. Cognitive Load

Besides the afore discussed SL and QoE concepts, another idea of evaluating our tele-
conferencing system is the so-called usability of the system. The usability describes the
degree to which the use of a device fulfills predefined requirements regarding satisfaction,
effectiveness and efficiency [115].

The usability concept has an overlap with the QoE concept, especially in the satisfac-
tion dimension. However, the QoE is the result of a judgement process, without taking
subconscious processes into account, e.g., the effectiveness. An example for the effec-
tiveness in the context of a teleconferencing system is the amount of content that can be
remembered by the participants after the conference. The efficiency of a teleconference
system describes the resources that have to be invested to reach a certain goal, e.g., the
amount of concentration to follow the conference. The terms effectiveness and efficiency
can be summarized to the terms mental workload or cognitive load (CL). There are two
different disciplines to analyze mental workload: the ergonomic analysis and the cognitive
load theory.

The ergonomic analysis considers teleconferencing as work activity, therefore, a tele-
conference system can be regarded as a tool. The ergonomic analysis seeks to design
tasks, as far as technically and organizationally possible, with respect to physical and men-
tal workload considerations [167]. Besides usability, an ergonomic teleconference system
should also keep the mental burden as low as possible. If the physical and mental bur-
den during performing a task is too high, different compensation activities are activated,
e.g., exhaustion, monotony, stress and mental satiation [167]. All mentioned compensation
activities are thinkable during a teleconference, but especially the mental exhaustion is a
factor that can be tackled with advanced teleconferencing technology such as immersive
playback of the conference participants.

According to [156], the CL theory describes a model of human information processing
and learning theory and how cognitive capabilities enable or restrict learning processes.
One key assumption is the restricted capacity of the human’s working memory. The CL-
theory then derives recommendations from the restricted working memory capacity to de-
sign learning situations that do not overload the working memory. The working memory
can further be divided into three parts [10]: the attentional control, the buffer memory for
speech and acoustical information and the buffer memory for visual and spatial informa-
tion. According to [11] the separated individual buffer memory sections for speech and
spatial information can be a explanation for the advantages of binaural sound synthesis,
e.g., in teleconferencing systems.

In order to measure the mental workload, the measurement process can be divided into
three categories:
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• Somatic: Measuring the physiological reaction of the subjects body.

• Subjective estimation: Measuring the perceived mental workload.

• Performance: Measuring the task performance of the subjects.

The physiological reaction in an experiment, e.g., a teleconference scenario, to evaluate
the mental workload can include, the measurement of the heart rate and respiration rate,
the blood pressure and electrical resistance of the skin [160, 167]. One advantage to use
the physiological reaction to determine the mental workload is that a prior training of the
test subjects is not required. Furthermore, the measurement process can deliver contin-
uous and objective data during the experiment. However, according to [105], measuring
the physiological reactions of a subject can hardly be applied for hearing tests. Moreover,
the interpretation of measured physiological reactions is very difficult and the results can
vary due to many different reasons such as the proband’s age, health condition or coffee
consumption.

Due to the fact that probands usually are aware of the mental workload, one of the
most commonly used methods to determine the mental load of a subject in a certain task
is to use questioning methods. Therefore, there are several well established guidelines
to design a questionnaire to determine the mental load. The ITU developed recommen-
dations to conduct subjective quality evaluation tests, including a discrete listening effort
scale [80]. In [157], evaluations about hearing constraints in 3D teleconferencing were
conducted, where the scale of the questionnaire are extended at the scale’s edge [115]
to avoid contraction bias [187]. Another possibility is to use the NASA Task Load Index
(NASA-TLX) [63, 64], which seeks to determine different dimensions of effort. The dif-
ferent dimensions are then merged by an individual weighting. Therefore, an additional
effort is necessary after the actual questioning to determine the weighting. Moreover, the
probands have to be familiar with the test scale, which requires extra training in advance
of the questioning.

The third category of measuring mental workload, is to measure the task performance
of the probands in a teleconferencing situation. The task performance can be divided
into a primary task, e.g., remembering the content of a conference, and into a secondary
task, e.g., the multitasking ability in a conference. In this work, I want to focus on the
hearing process within a teleconference situation rather than on the conversation aspect.
Identified primary tasks in the teleconference scenario are the speech comprehensibility
and the speech comprehension.

To determine the speech comprehensibility, isolated words [23] or sentences [41] are
played back to a listener in order to measure the speech reception threshold. In the military
sector, another method was developed to measure the speech comprehensibility, called
coordinate response measure [19], where the proband has to detect an individual call sign
in an audio stream. The comprehensibility depends on the response time and correct
answer of asked content-questions on the played back audio signal.
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The speech comprehension describes the amount of conversation information that can
be memorized by a conference participant, including the conference content and the con-
feree who contributed the respective conference content [115]. Speech comprehension
evaluations were already conducted in 3D teleconferencing systems. The probands in
such tests had to remember which conference participant contributed a certain information
and should write down the respective viewpoints of the conference participants [87, 157].
Testing the memorized contents of a teleconference is a useful objective measure, how-
ever, it is found that the standalone measurement of the recall performance is unsatisfac-
tory due to the fact that stressful situation can be compensated with higher efforts [27].

In order to detect these compensation efforts, one can introduce a secondary task to
describe the mental workload of a teleconference user. The secondary task is an additional
artificial task that has to be processed simultaneously to the primary task to tackle the
problem of temporary higher compensation efforts of the test subject.
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In this chapter, the complete system is evaluated extensively by the afore mentioned cri-
teria, namely, the quality of experience (QoE), the cognitive Load (CL) and the sound
localization (SL) performance of the test subjects.

10.1. Overall Experimental Settings

This section gives an overview of the Institute for Data Processing (LDV) audio laboratory
and the LDV HRTF database which are used in the SL, the QoE and the CL listening
experiments.

LDV Audio Laboratory

In order to quantify the benefit of the immersive, HRTF-based playback approaches of the
assigned audio channels within a teleconference scenario, I have constructed an audio
laboratory at the Institute for Data Processing (LDV) that enables us to measure individual
head-related impulse responses. Construction considerations to achieve a good compro-
mise between costs, required space and anechoic conditions are described in detail in
[145].

For the listening experiments, we recorded the LDV-HRIR databases of 35 human sub-
jects in our laboratory environment. Each person’s database was recorded for six different
elevation planes with an azimuth resolution of 1◦.

Figure 10.1 shows the semi-anechoic chamber at our institute. The purpose of the
chamber is to terminate acoustic reflexions and diffractions in the room as well as noise
around our institute to evaluate algorithms and techniques for channel assignment. Next,
the lab is equipped and used for the measurement of HRTFs. Moreover, listening ex-
periments are conducted in the semi-anechoic chamber to guarantee identical acoustic
conditions for the test subjects.

The reverberation time of the LDV audio lab is t60 = 0.08 s and the lower cut-off fre-
quency is 160 Hz within a distance of 1.3 m from the laboratory’s center. Due to the direc-
tional characteristics of our sound source, only frequencies from 80 Hz...200 Hz could be
considered in accordance with ISO 3745. Analogous to [53, 184, 185] we expect higher
frequencies to meet the ISO 3745 norm, too.
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Figure 10.1.: Audiolab at the Institute for Data Processing

HRTF Measurement of a Listener

In Chapter 8 several HRTF estimation approaches are analyzed. To time-efficiently obtain
an individual dense HRTF dataset for the users of the developed conferencing system, I
suggest the dynamic approach using NLMS type adaptive filters. In order to generate indi-
vidual sets of HRIRs with the dynamic approach, several tasks have to be accomplished.

Listener Measurement Position

To guarantee reproducible and interpersonal comparable measurements, the listeners
have to be fixed to a certain position. The measurement positioning has to be achieved
with slender devices that do not disturb the sound field and consequently degrade the
HRTFs of the listener. In literature, there are a number of fixation suggestions, e.g.:

• The listener has to stand upright on a turntable during the measurement, fixed by a
back rest [116].

• The listener sits on the floor and the loudspeaker moves around the listener [162].

• The listener is fixed to a turnable chair [2, 96].

Any movement of the listener’s head changes the direction dependent reflexions and
diffractions off the head and torso and consequently take effect on the measured head-
related impulse response [130]. To overcome the problem of head movements during
measurement, there are approaches to transfer the responsibility for the head positioning
to the listener by providing a camera, a screen and an automatic release for the test subject
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[96] or to attach markers to the test subject in combination with a control screen [116]. In
[96, 121] the influence of the back rest and head rest is observed and reflexions of the
measurement construction are observable but accepted.

Microphone Measurement Position

Besides the test subject’s position, the position of the microphone during the measure-
ments plays an important role. The most prominent microphone positions for HRTF mea-
surement are in the ear canal, at the entrance of the ear canal and at the blocked entrance
of the ear canal [61, 67]. The blocked ear canal method for individual HRTF measure-
ment is attractive, because the direction dependency of the transfer functions is included
[3, 61, 72] and the fixation of the microphones is easier to arrange and reproducible without
the risk of harming the ear drum. Furthermore, the response of the ear canal is listener
dependent, but not direction dependent [61, 67].

In [129] the positions of the microphones are studied. It is found, that transfer functions,
measured at neighboring microphone positions in 2 mm distance, show considerable trans-
fer function differences. Besides the variation in positioning the microphones, there also
exists a variety of utilized microphone types. Sennheiser KE 4-211-2 microphones are
used in [116], Bruel and Kjaer 4182 probe microphones in [116], Etymotic ER-7C probe
microphones in [3] and Knowles FG3329 are utilized for the IRCAM database [72].

LDV-Database Measurement Conditions

Figure 10.2.: The Figure shows the measurement position in the LDV lab (left) and the ear plugs
with fixed microphones (right)

For the subjects’ acoustic measurement position, we decided to construct a turntable
with a seat and a thin back and neck rest that enables the listener to hold still in an un-
stressed position during the measurement process which is illustrated in Figure 10.2. The
sitting position enables us to cover a variety of elevation positions (−50◦ to 230◦) at con-
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stant speaker distance (130 cm) in our lab. Furthermore, the sitting position during the
measurement is the most likely teleconference user position. Besides technical aspects,
we think that we reach the most immersive impression in a teleconference scenario by
choosing the described measurement position for the listener. The constructed turntable
with a stepper motor allows for continuous azimuth rotation, appropriate for the chosen
dynamic NLMS HRTF measurement approach. To automatically adjust the elevation po-
sitions of the speaker, we constructed a metallic arch with a diameter of three meters,
where the loudspeaker is placed on a movable carriage. The carriage with the speaker
can remotely and automatically be moved with the arch’s stepper motor.

To ensure reproducibility and interpersonal comparability to a maximum possible extent,
we decided to block the ear canal with silicone plugs, illustrated in Figure 10.2, that are
custom made for each listener as suggested in [72]. As it has similarly been performed in
[72], we choose the Knowles FG3329 microphones because of the space-saving design
and the applicability in combination with the silicone ear plugs.

At the end of each measurement session, an extra measurement was conducted to ob-
tain the compensation impulse response (cIR). For this purpose, the microphones were
fixed at the center of the hoop and the impulse response was measured by the MLS
method. To overcome inversion instabilities of the cIRs, a frequency-dependent regular-
ization was applied, where only small filter coefficients are regularized while stable filter
coefficients remain unaffected [35]. A detailed description of the LDV Database can be
found in [144].

10.2. Sound Localization Evaluation

The first part of the evaluation campaign consists of SL listening tests to determine the
ability of the different datasets to virtually synthesize sound sources at certain directions
around the listeners.

Experimental Settings: SL

In Section 9.1 different methods to experimentally determine the SL performance in listen-
ing tests are introduced. In this work, the listening test is conducted in accordance with the
laser pointing method. The laser pointing method is characterized by a self describing, in-
tuitive handling without the need for the proband to project the listening results to different
coordinate systems on a evaluation sheet. Furthermore, the method allows for automatic
testing of the front and back hemisphere.

Laser Pointing Method Setup

Different stimuli are virtually synthesized by a convolution engine that is fed with the differ-
ent HRTF datasets. The stimuli then are played back to the listeners with headphones. A
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10.2. Sound Localization Evaluation

laptop computer serves as an evaluation interface that collects the directional estimations
of the probands which are captured by pointing a wireless presenter towards an estimated
sound direction and confirming the choice by pushing the wireless presenter’s buttons.
The presenter is equipped with a laser pointer that is reflected by a fleece that forms a
cylinder with a diameter of 2.5 m around the listener. Tracking markers allow us to com-
pute the azimuth and elevation information that is automatically captured by the evaluation
interface. Figure 10.3 shows the test setup and a proband doing the listening test.

Figure 10.3.: The Figure shows the SL experimental setup in the LDV lab (left) and a proband
during the SL listening tests (right)

Playback System Variations

There are different components of the convolution engine at the remote listeners site that
can be varied:

• High Quality Head Tracking (HQHT):

To enable dynamic sound synthesis with respect to the listener’s head movement,
head tracking is required. In the HQHT-scenario, the head rotation of the listener
is captured by a professional tracking system built by Advanced Realtime Tracking
(ART). The audiolab ART-installation consists of three infrared cameras that enable
us to track reflecting tracking bodies that are fixed at the headphones with 6 degrees
of freedom at a frame rate of 30 Hz to precisely determine the head pose of the
listener.

• No Head Tracking (NHT):

In order to quantify the benefit of head tracking in the teleconferencing scenario,
I decide to also evaluate a teleconferencing situation with a static sound field that
does not take the user’s head movements into account.
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• Non-Individual HRTF Database (K-DB):

In the K-DB case, the convolution engine is fed with the KEMAR HRTF dataset for
each listener. The K-DB database is measured in the institute’s audio laboratory. In-
stead of listeners, a widely used KEMAR mannequin by G.R.A.S. Sound & Vibration
is used to generate a set of HRTFs. One major advantage of utilizing the K-DB for
the immersive playback of a teleconferencing system is the simple use of just one
dataset. Therefore, there is no further effort required by the listener to configure the
playback system or to upload customized sets of HRTFs. The trade-off that comes
with this usability advantage is the non-individual nature of the sound synthesis,
which is often considered as the major drawback of the K-DB.

• Selection HRTF Database (S-DB):

In the S-DB case, an individually chosen HRTF database is used for sound syn-
thesis. The selection process, described in Chapter 6, consists of a swiss style
tournament listening test to select the most appropriate HRTF dataset for each lis-
tener in accordance with [81]. For fair comparison, the listeners have to choose
among twelve subject’s HRTF datasets of the LDV-DB that serve as selection pool.
The subjects that are in the selection pool are excluded from further experiments.
The advantage of the S-DB is that one can offer customized HRTF-based sound
rendering without acoustical measurements.

• Regression-Generated Databases (R-DB):

A customized set of HRTFs can be generated by measuring certain anthropometric
data of the listener which are used to compute an individual HRTF dataset for the
conferee. In this work, listening tests with three different regression options are con-
ducted, namely, the 2DPCA, the PLSR and the GLRAM, specified in Chapter 7. For
each proband, a customized HRTF dataset is computed using of the anthropometric
data and the LDV-DB that serves as a training set for the regression. Of course, the
proband’s actual measured dataset is not part of the training set.

• Individually Measured HRTF Database (I-DB):

In the I-DB case, the convolution engine is fed with the acoustically measured HRTFs
of the proband.

Experimental Design

The sound localization listening experiments consist of two parts, session L1 and session
L2, which are conducted in separate evaluation sessions. The two sessions are performed
by a different group of probands in order to avoid learning effects. In L1 the test listeners
determine the perceived direction of the incoming sound with the tracking options HQHT
and NHT which are combined with the K-DB, S-DB and I-DB. On the basis of the L1
results, the probands are confronted with one stimulus in session L2 and the two head
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10.2. Sound Localization Evaluation

Test sound Stimulus 1 Stimulus 2
Head tracking HQHT NHT HQHT NHT
HRTF-DB K S I K S I K S I K S I

Table 10.1.: SL(L1): Schematic overview about the different stimulus treatments for listening test
part 1.

Head tracking HQHT NHT
HRTF-DB K R (2DPCA, PLSR, GLRAM) K R(2DPCA, PLSR, GLRAM)

Table 10.2.: SL(L2): Schematic overview about the different stimulus treatments for listening test
part 2.

tracking options in combination with the afore mentioned R-DBs (2DPCA, GLRAM, PLSR)
and the K-DB that serves as a common reference in L1 and L2.

Stimulus Treatments

Table 10.1 illustrates the twelve possible stimulus treatments for L1 and the eight stimulus
treatments for L2, which are tested in a full factorial, within-subject design. Full factorial
experiment design specifies a listening test, where each proband is confronted with all
possible stimulus treatments and within-subject design describes that each proband listen
to each variation within the stimulus treatments [12].

L1 confronts the listeners with different measured HRTF-datasets that are used to virtu-
ally synthesize the stimuli to different positions around the listener. In the L2-session, cus-
tomized HRTF-datasets computed by regression methods are utilized to generate HRTF-
based 3D sound. Both sessions include the K-DB that serves as a reference in order to
enable us to draw conclusions based on the results of the two sessions.

Stimuli

In the sound localization listening experiments, two kinds of stimuli with a length of 2 s
are used: A noise burst stimulus (stimulus 1) and a male speech stimulus (stimulus 2).
Broadband-noise stimuli are often used for listening tests since they contain energy in
every frequency band. Therefore, all possible frequency dependent cues of the human
listening system can be addressed, e.g., high frequency dependencies of monaural cues
[16].

We additionally apply a speech stimulus that was recorded in the LDV audiolab as an
alternative to the noise bursts in order to also present a speech stimulus in the listening
experiments that is representative for a teleconferencing situation.
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Stimuli Presentation Sequence

The stimulus treatments illustrated in Table 10.1 can be segmented into four stimulus treat-
ment groups: The HQHT-stimulus 1 group, the HQHT-stimulus 2 group, the NHT-stimulus
1 group and the NHT-stimulus 2 group. The probands are also divided into four groups and
the different stimuli within a group are tested group by group meaning, that the different
datasets and directions are tested with one head tracking option and one stimulus. Then,
the datasets and directions are tested within the next group of tracking and stimulus option.

In order to avoid listening test results that are dependent on the stimuli presentation
sequence, a balanced latin square design [20] of the groups is applied to determine the
stimuli presentation sequence of the groups and of the subjacent HRTF datasets. Thus,
each of the four groups of test subject is listening to a different stimuli sequence, moreover,
it is ensured that succeeding stimuli treatments are never presented in the same order to
different probands.

SL: Experimental Procedure

The SL listening experiment is conducted in the LDV audiolab [145]. The probands sit in
front of an evaluation interface that we programmed for the SL evaluation campaign. The
different stimuli are played back with Beyerdynamic DT 990 Pro headphones with attached
tracking markers of the HQHT system. The proband navigates through the test procedure
using a presenter with mounted tracking markers to determine the listeners choice of the
perceived direction of the virtually synthesized sound source which is played back by a
Roland UA 25 EX audio interface. An oral introduction of the evaluation supervisor and a
demonstration scenario makes the listeners acquainted with the laser pointing method and
the test procedure. For each stimulus treatment, 40 different angles around the listener are
rendered, eight different azimuth angles and five elevation angles, arranged in accordance
with [122]. Each proband has to pass the four different stimulus treatment groups in L1
with a listening pause of several hours after the first two groups. The determination of
each listener’s I-DB was done in a separate measurement meeting several weeks before
the actual SL evaluation. The individual selection of the S-DB was also made several days
in advance of the actual SL evaluation sessions.

In L2, another group of test subjects conducts the listening tests with the stimulus treat-
ments illustrated in Table 10.2. The regression generated HRTF databases are computed
before the listening tests by using a set of anthropometric parameters of the probands.
Contrary to L1, only speech stimuli are used.

Experimental Results: SL

The SL listening experiments were conducted with 40 probands divided into two subgroups
for L1 and L2, respectively.
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Figure 10.4.: SL (L1) evaluation of different stimuli

In the SL listening experiments the localization error is used to objectively quantify the
performance of the different playback options of the developed teleconferencing system.

One way to illustrate the SL results is to use Boxplots and the statistical analysis by a so-
called ANOVA (analysis of variance) suggested by [12]. In this work, we consider results
with p-values of lower than p = 0.05 as statistically significant. An example for Boxplots
can be seen in Figure 10.4. The horizontal blue line in the Boxplots denote the median of
the listeners SL judgements, the box represents the 25th and 75th percentile, respectively.
The box’s notch represents the 95 % confidence interval and the judgements outside the
whiskers are considered as outliers. The arithmetic mean of the judgements is illustrated
by a red diamond shape.

Listening Test L1

In the first SL-evaluation campaign, the 20 probands are confronted with stimulus treat-
ments summarized in Table 10.1.

SL(L1): Stimulus

The stimuli are compared as shown in Figure 10.4. The listening test results show that
there are no statistically significant differences between the localization experiments using
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Figure 10.5.: SL (L1) evaluation of the different head tracking options HQHT and NHT

noise bursts and speech. The mean angular error for noise bursts and speech are 26.32◦

and 26.18◦, respectively. The amount of front-back and back-front confusions in the noise
burst scenario is 15.1 % compared to 22.8 % in the speech scenario.

SL(L1): Head Tracking

Figure 10.5 illustrates the difference in localization performance using HQHT or NHT. Obvi-
ously, the localization error is statistically significant lower (p < 0.01) if the proband’s head
movements are reliably captured and included in the sound synthesis, even if the stimulus
length of 2 s does not allow the listener to strategically use movements to face the sound
sources.

The mean angular error using HQHT is 15.82◦ and 36.68◦ using the NHT playback
option. Furthermore, the amount of front-back and back-front confusions can be reduced
from 20.8 % to 4.5 % in the HQHT option compared to the NHT option.

The results show that it is advantageous to enable head tracking in combination with the
different HRTF databases that we generated by the afore mentioned approaches.
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Figure 10.6.: SL (L1) evaluation of different sets of HRTFs without head tracking (NHT)

SL(L1): HRTF Dataset

An interesting question is whether the K-DB, the S-DB and the I-DB lead to different sound
source localization results of the listeners. Due to the huge influence of the head tracking
option, I split the presentation of the dataset comparison into two parts. The first part
presents the results of the NHT option and the second part deals with the HQHT option of
the playback system.

Figure 10.6 illustrates the result of the listening experiment with disabled head tracking
(NHT option). The I-DB performs best with a mean azimuth error of 32.49◦ and a percent-
age of front-back and back-front confusions of 17.9 %. The S-DB is ranked second with
a mean azimuth error of 36.52◦ and a confusion rate of 19.9 %. The K-DB is ranked last
with a confusion rate of 24.5 % and a mean azimuth error of 41.02◦. The differences of
the I-DB and the K-DB are statistically significant (p < 0.01) as well as the differences
between K-DB and S-DB (p < 0.01). The customized (S-DB) and the individual HRTF
database (I-DB) show advantages regarding the sound localization ability of the probands
in our SL test setup. Obviously the better representation of the HRTF’s interaural time dif-
ferences, level differences and spectral properties have significant influences of the sound
localization performance in the NHT scenario. However, it is worth mentioning that the SL
performance improvement of the S-DB and I-DB are achieved by extra effort for a previous
selection or measurement process.
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Figure 10.7.: SL (L1) evaluation of of different sets of HRTFs with enabled head tracking (HQHT)

The results with enabled head tracking (HQHT) are shown in Figure 10.7. The overall
sound localization performance of the probands is dramatically better, considered that
only little head movements of the listeners are possible due to the restricted length of the
stimuli ( 2 s). The restricted stimuli lengths, however, are sufficient to decrease the number
of front-back and back-front confusions to a big extent. The improved accuracy in terms of
mean angular error of the sound source localization with HQHT is therefore mainly caused
by a lower number of confusions, independent of the utilized HRTF dataset. The mean
angular error for the I-DB is 15.89◦ and the percentage of confusions is 4.6 %. The S-DB
reaches a mean angular error of 15.44◦ and a confusion rate of 4.2 %. The non-individual
K-DB achieves a mean angular error of 16.14◦ with a confusion rate of 4.6 %. Interestingly,
the sound localization differences between the non-individual K-DB, the customized S-DB
and the individual I-DB vanish if head tracking is enabled. Thus, the minor differences in
the SL results are not statistically significant.

Listening Test L2

In listening test L2 a second group of probands is confronted with the sound localization
experiment. Besides the K-DB that is already used in L1, the conferees in L2 listen to
stimuli that are virtually synthesized by use of the regression generated HRIR datasets
(R-DBs). Since the L1 evaluation session unveiled that there are no significant differences
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Figure 10.8.: SL (L2) evaluation of different sets of HRTFs without head tracking

between the noise burst and speech stimuli, we only use the speech stimulus in the L2
campaign, which reduces the time needed for the listening tests. The speech stimulus is
also more representative for the teleconferencing scenario.

Figure 10.8 shows the evaluation results for the different regression generated HRTF
datasets in NHT mode and 10.9 illustrates the results of the HQHT mode. As already
observed in L1, there also is a huge difference in L2 between the HQHT-mode results
and the NHT-mode performance, e.g., the mean angular error difference between the L2-
session K-DB in NHT and the K-DB in HQHT is 27.43◦. In the L1-session, the difference
between HQHT and NHT with the K-DB is 24.88◦ which can be considered as a similar
difference concerning the tracking options in both sessions.

For both tracking modes in L2, there are no statistically significant differences between
the K-DB and the three regression computed datasets, namely, the GLRAM, the PLSR and
the 2DPCA dataset. Taking the performance of the K-DB in L1 into account, the regression
generated datasets can be considered slightly worse compared to the I-DB and the S-DB
for the NHT mode and as good as the other datasets in the HQHT mode.

SL: Concluding Remarks

The sound localization (SL) campaign gives a first impression about the possible immer-
sive playback options for a remote listener of the developed teleconferencing system. The
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Figure 10.9.: SL (L2) evaluation of of different sets of HRTFs with enabled head tracking

enabled high quality head tracking (HQHT) has a big influence on the proband’s localiza-
tion performance and reduces the amount of front-back and back-front confusions signifi-
cantly, compared to the disabled head tracking mode (NHT). The different datasets achieve
similar performances in the HQHT mode which is expressed by the absence of any sta-
tistically significant difference between the dataset’s evaluation results. In the NHT mode,
statistically significant differences between the K-DB and the S-DB and between the K-
DB and the I-DB can be observed, which indicates that the individual measured datasets
and the selection process can improve the localization performance of the probands. The
customization by regression does not indicate an improvement of localization accuracy
compared to the usage of the K-DB. My research team and I provide a detailed description
of the SL listening campaign and further results in [120].

The sound localization task is a frequently used measurement to judge the immersive
sound presentation performance of HRTF datasets. However, the sound localization per-
formance of a remote conferee does in my opinion not allow to draw conclusions about the
user experienced performance of the developed teleconference system.

In the next chapter, an alternative concept, called Quality of Experience (QoE) is used
to evaluate the sound acquisition of the teleconferencing system as well as the playback
options of the developed system.
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10.3. Quality of Experience Evaluation

After the SL experiments, the thesis proceeds with a more task-specific evaluation cam-
paign of the developed teleconferencing system, the QoE evaluation.

Experimental Settings: QoE

The developed immersive teleconferencing system prototype consists of a microphone ar-
ray that is placed on a conference table. The recorded speech contributions of the different
conference participants are assigned to individual audio channels by the ALSR algorithm,
described in Chapter 5.1. The assigned audio signals are finally virtually synthesized and
played back to the experimentees via headphones.

Playback System Variations

Motivated by the findings of the SL evaluation a third head tracking option was developed
and tested in the QoE listening tests. Since the HQHT mode significantly improved the
SL results, I consider the use of head tracking desirable for the teleconferencing system.
However, an expensive HQHT system is not available for many remote users of the tele-
conferencing system. Therefore, a low budget, low-quality head tracking (LQHT) is devel-
oped at the institute for data processing that seeks to enable dynamic sound synthesis by
the use of a standard webcam [25] which is usually accessible for remote conferees. The
utilized algorithm detects features (mouth, nose and eyes) in the listener’s face and esti-
mates the head pose of the remote conference participant. The drawbacks of the LQHT
compared to the HQHT are illumination dependencies of the pose estimation, a restricted
range in which the feature points of the face can be detected due to the direct line of sight
requirement between the feature points and the webcam. The system recognizes azimuth
angles between −35◦ and 35◦ and elevation angles between −10◦ and 40◦ at a frame
rate of 23 fps [25].

Besides the LQHT, the SL playback system variations are used, namely, HQHT, NHT,
K-DB, S-DB, I-DB and R-DBs.

Experimental Design

Similar to the SL evaluation, the QoE listening experiments consist of two parts, Q1 and
Q2 which are conducted in separate sessions by two different groups of probands.

In Q1, the QoE evaluation listening experiments consist of channel assigned record-
ings of real world conference situations that are played back to the user with the afore
mentioned options, namely, HQHT, LQHT and NHT in combination with K-DB, S-DB and
I-DB.

In order to judge the assignment algorithm, there are two types of conference situations
that are assigned and evaluated individually. The first situation denoted as CI consists of
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Assignment ALSR HS
Head tracking HQHT LQHT NHT HQHT LQHT NHT
HRTF-DB K S I K S I K S I K S I K S I K S I

Table 10.3.: Q1, CI: Schematic overview of the different stimulus treatments for conference situa-
tion CI.

a common teleconference situation whereas the second situation, CII, describes a discus-
sion with simultaneously active participants resulting in chaotic discussions.

An ideally assigned conference situation served as a reference for the channel assign-
ment system, which can also be considered to be a realistic special case of our teleconfer-
ence scenario. This special case can be achieved if all conference participants communi-
cate via headsets, resulting in perfectly separated and assigned conference contributions.
Therefore, this case will be referred to as headset scenario (HS). We avoid to present
mono playback to serve as lower limit due to possible desensitization effects of the test
subjects [79].

In Q2 another group of listeners has to judge the QoE of the teleconferencing system
using the regression generated (R-DB) HRTF datasets for conferencing situation CI.

Stimulus Treatments

As illustrated in Table 10.3, there are 18 possible stimulus treatments for situation CI, which
are tested in a full factorial, within-subject design, which is the same stimulus treatment
method as in the SL evaluation.

For conference situation CII a subset of possible playback combinations is evaluated in
order to quantify the benefit of spatially separated playback even if the assignment includes
artifacts. Table 10.4 gives an overview about the stimulus treatments for CII. In addition
to the stimulus treatments of CI, the virtual conferee placement is tested for CII. The vir-
tual conferee placement denotes the spatial placement of the conference participants, 3D
virtual conferee placement means that the four conference participants are virtually synthe-
sized to four different positions, whereas Mono (M) conference conferee placement results
in the virtual placement of all conference participants to one position in order to estimate
the benefit of differently HRTF-synthesized playback positions compared to a mono-like
conference playback.

Table 10.5 shows the stimulus treatments for Q2 for situation CI, where. The K-DB
serves as a reference to indirectly compare the results, achieved with the regression
HRTFs with the results of Q1 for situation CI.
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Head tracking HQHT
HRTF-DB K-DB
Assignment. ALSR HS
Virtual conferee placement 3D M 3D M

Table 10.4.: Q1, CII: Schematic overview of the different stimulus treatments for conference situa-
tion CII.

Assignment ALSR HS
Head tracking HQHT NHT HQHT NHT
HRTF-DB K R K R K R K R

Table 10.5.: Q2, CI: Schematic overview of the different stimulus treatments for conference situa-
tion CI. The HRTF-DB denoted by "R" consists of the regression generated 2DPCA, GLRAM and
PLSR dataset.

Stimuli

To evaluate our teleconferencing system, speech sources serve as stimuli, which is also
suggested in [124]. Furthermore, the tests are conducted by use of a meeting corpus that
is designed for the purpose of evaluating teleconferencing situations [158].

The conference sound acquisition system is installed in accordance with the channel
assignment evaluation experiment in echoic conditions as described in Section 5.2, where
the conference participants of the conference corpus [158] are played back via four differ-
ent loudspeakers in order to have reproducible recording sessions. The microphone array
recordings are then processed by the ALSR channel assignment algorithm.

Each conference listening stimulus is further processed with the different stimulus treat-
ments and has a length of 58 s which gives the test listeners enough time to put themselves
into the conferencing participant position. The conference consists of four actively partic-
ipating conferees. The ALSR algorithm is trained with a 10 s-introduction round which is
consequently not part of the actual test material.

Stimuli Presentation Sequence and Scale

In order to avoid listening test results that are dependent on the stimuli presentation order,
a balanced latin square design is applied to determine the stimuli presentation sequence.

The listeners can express their opinion about the presented stimulus with the Bodden
Jekosch scale in accordance with [114] and [124]. The scale is extended at the scale’s
edges to avoid contraction bias as mentioned in Section 9.3.
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Figure 10.10.: A listener conducts the QoE evaluation in the LDV audiolab

QoE: Experimental Procedure

The QoE listening experiment is conducted at the LDV audiolab [145]. The HQHT and
the LQHT determine the head movements simultaneously such that the proband can not
differentiate between these tracking options besides the listening experience. We imple-
ment an interface to collect the listener’s judgements. Figure 10.10 illustrates the test
setup with the LQHT using the webcam and the HQHT using the markers that are fixed at
the Beyerdynamic DT 990 Pro headphones. The laptop serves as an evaluation interface
allowing the listener to conveniently judge the respective QoE. The laptop furthermore pro-
cesses the sound samples and the head rotation according to the corresponding stimulus
treatment. The stimuli are played back by a Roland UA 25 EX audio interface. Besides
practical use, the experimental settings represent a tradeoff between reproducible listening
test requirements and the teleconferencing scenario of a remote listener.

The determination of each listener’s I-DB was done in a separate measurement meeting
several weeks before the actual QoE evaluation. The individual selection of the S-DB was
also made several days in advance of the actual QoE sessions.

At the beginning of the QoE tests, each proband receives a written briefing about the
following training and test procedure. The training makes the proband familiar with the
QoE test by presenting the key functionalities of the teleconferencing QoE test platform
as follows. First, we seek to sensitize the probands to virtually synthesized playback of
conferees by short conferencing examples. Second, the probands should get used to
dynamic sound synthesis, therefore, a training example of a conference is presented by
using HRTF-based sound synthesis in the HQHT mode. Third, the listener should listen
to possible artifacts caused by the ALSR algorithm. Fourth, the graphical user interface
and its handling to judge the QoE results of the listening tests is described. Please refer to
[176] to access the written briefing for the QoE evaluation and for determining the S-DB.

110



10.3. Quality of Experience Evaluation

bad

poor

fair

good

excellent

ALSR HS

Figure 10.11.: QoE (Q1, CI) evaluation of ALSR assigned conference contributions compared to
the ideally headset (HS) assigned conference

Experimental Results: QoE

This section presents the results of the QoE listening experiments that were conducted
with 20 subjects. Similar to the SL evaluation, the results are presented with Boxplots and
the statistical analysis is done by an analysis of variance (ANOVA). Again, we consider
results with p-values lower than p = 0.05 as statistically significant.

QoE Q1: Conference Situation CI

The first part of the listening experiment presents the probands conference situation CI
with different stimulus treatments summarized in Table 10.3.

Q1, CI: Assignment

Figure 10.11 illustrates the results of the conference recordings that are assigned with the
ALSR algorithm compared to the ideal headset speaker assignment (HS). Of course, the
ideally assigned HS stimuli yield better QoE judgements than the assignment of the micro-
phone array recordings that are processed with the ALSR algorithm. The ANOVA provides
a statistically significant QoE difference between the ALSR and HS assignment, expressed
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Figure 10.12.: QoE (Q1, CI) evaluation of the different head tracking options HQHT, LQHT and
NHT.

by p < 0.01. Remarkably, the QoE-difference between the both entirely different assign-
ment conditions is little, meaning that the developed microphone array in combination with
the ALSR channel assignment works audibly well under realistic conference conditions in
an echoic environment.

Q1, CI: Head Tracking

Another important question for the proposed teleconferencing system is whether it is valu-
able for the perceived QoE to equip the remote conferee with head tracking in order to
enable dynamic sound synthesis. As illustrated in Figure 10.12, the conference presen-
tation with the HQHT is superior to the NHT stimulus treatments. However, the LQHT is
perceived worse than the NHT option. Due to p < 0.01 of the ANOVA, the differences are
likely to be statistically significant. The thereupon conducted least significant difference
(LSD) method [51] for pairwise comparison of the results eventually confirms the statistical
significance of the perceived QoE differences with respect to the tracking options.
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Figure 10.13.: QoE (Q1, C1) evaluation of the different HRTF datasets and disabled head tracking
(NHT)

Q1, CI: HRTF Database

Finally, the user’s QoE impression of the different available HRTF datasets, namely the
K-DB, the S-DB and the I-DB, is analyzed in dependence of the head tracking mode for
conference situation CI.

Figure 10.13 pictures the QoE judgements if the head tracking is disabled which results
in a static HRTF-based synthesis of the conferee’s contributions. According to the ANOVA,
there is no significant difference between the different datasets that are used for the virtual
placement of the conference participants. Surprisingly, the listeners do not clearly prefer
their own I-DB. Moreover, there is a slight tendency toward the K-DB which is the only
non-individual HRTF dataset in the tests, whereas the I-DB and the S-DB seek to address
the different geometric features of the listeners.

In Figure 10.14 the listening test results for the dynamic conference sound synthesis
using LQHT are illustrated. According to the ANOVA analysis, there is no significant differ-
ence between the stimuli generated by the different HRTF datasets. As already discussed,
the perceived QoE is higher for the NHT system than for the LQHT system, which can also
be observed by comparing the QoE judgements in Figures 10.13 and 10.14. Interestingly,
the ranking of the different HRTF databases changes, though, not statistically significant.
The QoE of the S-DB stimuli nearly stays at the same level for NHT and LQHT, whereas
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Figure 10.14.: QoE (Q1, CI) evaluation of the different HRTF datasets and enabled head tracking
(LQHT)

the QoE of the I-DB marginally decreases and the K-DB suffers huge loss in the user’s
perceived QoE. Consequently, the S-DB performs best in the LQHT setup.

Besides the NHT and the LQHT, the HQHT option has been subject to QoE testing.
The QoE results with HQHT are illustrated in Figure 10.15. According to the ANOVA and
LSD analysis, there exists a statistically significant difference between the I-DB and the
S-DB. The differences between the I-DB and K-DB as well as between the K-DB and S-
DB are not statistically significant. In the HQHT setup, the teleconference situation with
the individually measured I-DB that is obtained by a cumbersome and time-consuming
procedure (Section 10.1) is ranked first by the probands followed by the K-DB and the
S-DB.

Contrary to my expectation that the I-DB would be preferred by most probands, the QoE
evaluation reveals three different rankings of the available HRTF datasets in dependence
of the head tracking mode of the teleconferencing system. In the NHT system, the K-DB
performes best according to the listener’s judgement. The S-DB was the probands favorite
in the LQHT scenario and the I-DB was the users first choice in the HQHT mode. The
listening experiment revealed only minor differences among the eligible HRTF datasets.
Interestingly, the head tracking option has an influence not only on the overall quality opin-
ion but also on the ranking of the HRTF datasets. Furthermore, it is noticeable that with
a more realistic head tracking option, the QoE impression using the I-DB improves com-
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Figure 10.15.: QoE (Q1, CI) evaluation of the different HRTF datasets and enabled head tracking
(HQHT)

pared to the two other datasets. It might be that the probands indeed prefer their own I-DB,
provided that the head rotation can be precisely and quickly determined.

Our QoE results indicate that it might be even counterproductive to utilize I-DBs with-
out head tracking or in combination with low quality head tracking for the virtual place-
ment of conferees. Possibly the discrepancy between highly accurate head tracking and
non-individual HRTFs produce slight confusions where the test subjects tend to rate the
perceived QoE lower than for the HQHT and I-DB combination of the test set.

The same applies vice versa to the NHT and LQHT modes combined with the I-DB,
where the realistic individually measured HRTF dataset does not fit to the non-realistic
feeling of the LQHT or the NHT modes.

QoE, Q1: Conference Situation CII

The second part of the teleconferencing system QoE evaluation deals with conference sit-
uation CII. The conference situation is designed to state the worst case of a conference
for the ALSR algorithm with simultaneously speaking conferees which causes channel as-
signment errors and separation artifacts. Table 10.4 gives an overview about the stimulus
treatments for conference situation CII.

Figure 10.16 illustrates the listener’s QoE judgment for conference situation CII. The
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Figure 10.16.: QoE (Q1, CII) evaluation of the worst case scenario with simultaneously talking con-
ferees. HS(3D) denotes a virtual separated placement of perfectly headset assigned conference
participants, HS(M) describes a mono-like playback of perfectly assigned conferees. The ALSR
option denotes an assignment of the microphone array recordings with the ALSR algorithm.

ANOVA and LSD analysis of the listening test results confirm a statistically significant dif-
ference between the HS/3D combination and the other three playback combinations. It is
obvious that the ideally assigned and HRTF-synthesized separated speech contributions
of the HS scenario outperform the other three options.

The distinctions of the other three stimulus treatments are not statistically significant
according to the LSD analysis and have to be considered as tendencies. Interestingly, the
probands still prefer HRTF-synthesized separated conferees that are assigned with the
ALSR algorithm to the not separated conference placement stimuli. Due to the challenging
conference situation, the ALSR algorithm does not perfectly assign the simultaneously
active conferees resulting in audible artifacts. However, the virtual conferee placement to
different separated positions is still favored to the mono-like non-separated placement.

QoE, Q2: Conference Situation CI

After session Q1, another group of test subjects judges the QoE of the regression-
generated HRIRs for virtual playback within a teleconference. Based on the findings in
Q1, we resign the LQHT option and conference situation CII in the Q2 scenario in order to
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Figure 10.17.: QoE (Q2, CI) evaluation of the conference situation CI with disabled head tracking
(NHT)

concentrate on the differences within the regression datasets (2DPCA, PLSR, GLRAM).
Besides the regression datasets, the acoustically measured K-DB is also used in the ex-
periment which allows an indirect comparison of the I-DB and the S-DB of Q1 with the
results that the regression datasets yield in Q2.

Figure 10.17 shows the QoE evaluation results for the different regression-generated
datasets. As already mentioned, the listener’s regression datasets are computed based
on a few anthropometric measurements. Using the NHT option, there is no statistically
significant difference between the regression datasets, denoting that the minor spectral
distortion (SD) differences listed in Section 7.3 do not result in QoE distinctions.

The same applies to the Q2 evaluation with enabled HQHT. There are no statistically
significant differences between the regression-generated individual datasets, as seen in
Figure 10.18. Similar to session Q1, the overall QoE-ratings with enabled HQHT are higher
than with disabled head tracking and the overall ratings in Q2 are similar to the Q1, C1
session looking at the K-DB results. In both tracking options, the non-individual K-DB does
not show worse QoE results than the computed individual regression generated datasets.
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Figure 10.18.: QoE (Q2, CI) evaluation of the conference situation CI with enabled high quality
head tracking (HQHT)

QoE: Concluding Remarks

The QoE listening campaign offers valuable clues to the benefits of the different applied
techniques to achieve an immersive teleconference impression for a remote conferee. Es-
pecially the different possible sound synthesis options that have evolved as part of this
work have been tested in detail for the teleconference scenario.

It has been shown that the users of our teleconferencing system appreciate dynamic
sound synthesis, provided that the applied head tracking is of high quality. Even if not
consciously perceived by the probands, a webcam based low quality head tracking solution
is judged worse than the static playback of the conference contribution without the use of
head tracking.

Moreover, the listening tests unveil that an individually measured HRTF database does
not add a leap in QoE in the context of teleconferencing. There are tendencies that individ-
ually measured HRTF databases are preferred in combination with HQHT, but without head
tracking, the non-individual K-DB performs even slightly better as the costly measured I-
DB. The regression-computed datasets based on individual anthropometric measurement
do also show no significant QoE-improvement compared to the K-DB in the teleconference
scenario.

Furthermore, it has been shown that the developed ALSR algorithm for channel assign-
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ment works audibly well for the processing of the microphone array recordings in realistic
and echoic conference conditions. In addition, immersive playback of conferees is pre-
ferred even if the sound acquisition and speaker assignment system produces artifacts
due to simultaneously active conference participants.

Unfortunately, a HQHT system is nowadays not accessible to the most remote telecon-
ference participants using smartphones or a standard computer and the listening exper-
iment showed that the developed LQHT is not an adequate substitute for the HQHT in
terms of QoE. Therefore, I choose to use the NHT option for further cognitive load (CL)
investigations. Also, the QoE judgements do not clearly favor any certain HRTF dataset.
Consequently, using the K-DB seems appropriate to me due to the good QoE results and
the fact that the K-DB is straightforwardly accessible to any remote teleconference partici-
pant in contrast to the other QoE-tested HRTF datasets. My research team and I provide
more detailed information about the QoE campaign in [176].
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10.4. Cognitive Load Evaluation

In this section, the cognitive load (CL) expended by the teleconference participants is
evaluated while using the developed teleconferencing system.

Experimental Settings: CL

The CL-evaluations are conducted in the same setup as the QoE tests. The microphone
array records conference speech contributions presented by loudspeakers in an echoic
environment and the ALSR algorithm assigns the speech contributions to individual chan-
nels that are presented to the proband via headphones. Due to the findings in the previous
QoE-evaluation campaign, the K-DB and the NHT option was used in the CL-tests.

To benchmark the benefit of binaural playback (CL-B) in our teleconference system,
we extend the stimulus treatments by also presenting the conferences in mono (CL-M) to
the test listeners. The stimuli presentation sequence (latin square) and the utilized scale
(Bodden Jekosch scale) are in accordance with the QoE tests.

The used speech contributions played back with the different loudspeakers around
the system’s microphone array are the conferences which were carefully designed and
recorded by the Telekom Innovation Laboratories [158]. In contrast to the QoE tests, the
CL investigation demands different conferences each with the same level of difficulty re-
garding the conference contents, since the probands of the CL evaluation must not have
any learning effect between the different presented stimulus treatments. The utilized con-
ference corpus [158] is designed to fulfill this requirement.

CL: Experimental Procedure

After an introduction, the probands are confronted with six different conferences out of
the conference corpus. Three conferences are held by three conferees and three confer-
ences consist of four contributing participants. Each proband has to listen to three mono
recordings of the conference and three HRTF-synthesized conference recordings which
are recorded with the afore mentioned microphone array and processed by the ALSR al-
gorithm. The presentation sequence, the binaural and mono layout of the conferences is
different for each proband according to a latin square design. The conferences last be-
tween five and nine minutes. Directly after listening to each of the six conferences, the
probands have to complete questions regarding the conference content, e.g., answer a
question who contributed a certain information during the conference. Furthermore, the
listeners have to judge the experienced level of assurance for each answer. Moreover, the
probands have to estimate the amount of listening effort needed to follow the conference
and the degree of difficulty in identifying the talking person within a conference.
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Figure 10.19.: CL evaluation of the memorized conference contents with three and four conference
participants [103]

Experimental Results: CL

The CL listening experiments are conducted with 21 probands. In accordance with the
QoE evaluation in Section 10.3 the ANOVA is applied to determine statistically significant
differences between the stimulus treatments.

Memorizing Conference Contents

The most objective criterion to evaluate different playback options in the conference sce-
nario is to ask conferees questions about the facts discussed in a conference meeting.
Therefore, after each conference session the probands answer 16 questions which seek
to determine the amount of memorized conference content.

Figure 10.19 illustrates the amount of correct answers for the different stimulus treat-
ments. For conferences consisting of three conferees, there is no significant difference
between the virtually HRTF-synthesized binaural playback (CL-B) and the mono option
(CL-M). Slightly more than 80 % of questions were answered correctly. For conferences
with four participants, a significant difference with a p = 0.011 between the CL-B and
CL-M playback can be observed. Using the binaural playback the percentage of correctly
answered questions is 8.2 % higher than for the mono conference scenario.
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Figure 10.20.: CL evaluation of the perceived assurance regarding the answered teleconference
questions [103]

The evaluation results show that the user of the developed immersive teleconference
system objectively benefits from a higher rate of memorized conference content for four
conferees. Therefore, the aim of effective communication with a teleconferencing system is
supported by the possibility to offer 3D playback of conference contributions which requires
a preceding channel assignment.

Assurance

Besides the objective determination of the memorized conference contents, the probands
are asked about the degree of assurance of their answers in the memorizing task. Fig-
ure 10.20 shows that the CL-B scenario is superior to the CL-M scenario. Both p-values
indicate a statistical significance between Cl-M and Cl-B, however, it is worth mention-
ing that the probands are instructed to truly mark a certainty level of zero if they do not
have any idea about the true answer which possibly influences the assumption of nor-
mally distributed answers. Again the difference between CL-M and CL-B is higher for the
conference with four participants than the conference with three participants.

This second CL experiment unveils that not only the percentage of correct answers is
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Figure 10.21.: CL evaluation of the subjectively perceived effort to concentrate on the teleconfer-
ence situation [103]

higher in the CL-B situation but also the proband’s certainty about the given answers is
higher in the CL-B conferences compared to the CL-M scenario.

Listening Effort

Another question besides the effectiveness of conferences, pictured by the memorized
content and the corresponding degree of assurance, is the efficiency of a conference dis-
cussion, e.g. given by the amount of concentration that is needed to follow a conference
conversation. Therefore, the probands are asked to estimate the amount of listening ef-
fort that was needed to follow the conference. The evaluation results are illustrated in
Figure 10.21, where a significant difference between the mono and binaural playback is
observed with statistically significant p-values of p < 0.01 for the three conferee scenario
and p = 0.029 for the conference held by four participants.

In sum, the probands indicate that a higher amount of effort is needed to follow a confer-
ence consisting of four conferees and the listening effort is always lower in the CL-B con-
ference than in the CL-M conference. It is worth mentioning that with the CL-B technique,
the additional conference participant in the four conferee scenario can be compensated
compared to the three conferee scenario.
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Figure 10.22.: CL evaluation of the subjectively perceived effort to identify the active conferee [103]

Speaker Identification Effort

Finally, the probands subjectively judge the effort needed to identify the active conferee.
Figure 10.22 shows that the speech signal and the additionally available direction informa-
tion in the CL-B playbacks greatly improve the proband’s judgement about their ability to
differentiate between the conference participants. The improved ability to identify the active
conference participant when using the CL-B option could also influence the memorization
task in a positive way.

CL: Concluding remarks

Besides the QoE, the cognitive load was identified to serve as a quality criterion for the
developed teleconferencing system. The CL-listening test unveils objective and subjective
differences between an immersive (CL-B) and a conventionally (CL-M) conducted telecon-
ference for a remote participant.

The evaluation campaign shows that the developed immersive teleconferencing system
allows a better performance in memorization of conference contents, which states a huge
success for the developed system since the memorization of information exchange during
a conference is the most primary reason to conduct conferences. The advantage of the
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memorization task concerning the CL-B playback is significant for four conferees whereas
there are small differences between CL-B and CL-M for three participants.

Besides the objective task of keeping conference discussion facts in mind, the assurance
level of the probands in the immersive scenario is higher than in the CL-M scenario. Fur-
thermore, test participants feel that the required amount of listening effort and the speaker
identification effort to follow the immersive CL-B conferences is less than in the CL-M sce-
nario. In [103], we provide detailed information about the cognitive load listening tests.
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11. Conclusion

In this thesis, I presented the development of an audio conferencing system with respect
to a number of requirements. In the beginning of this work three issues at the system level,
concerning the sound acquisition, the immersive playback and the system evaluation, were
raised which were answered by numerous experiments and listening tests.

At the sound acquisition site, various sound source localization and sound source sep-
aration algorithms were benchmarked for differently shaped microphone array prototypes
that were designed with respect to the different algorithms. The comprehensive exper-
iments in echoic and anechoic environments suggested that a sound source localization
algorithm, called steered response power - phase transform (SRP-PHAT) algorithm in com-
bination with the geometric source separation (GSS) algorithm, provides a promising basis
for the sound acquisition system. Beside sound source localization and separation, an on-
line speaker recognition algorithm based on Gaussian mixture models, was investigated to
additionally include the conferee’s voice features into the assignment considerations. The
complementary strengths and drawbacks of the localization and separation algorithm on
the one hand, and the speaker recognition algorithm on the other hand, are finally com-
bined to a sound acquisition system that fulfills the stated requirements for the conference
system’s sound acquisition. Experiments showed that the assignment algorithm is able to
reliably assign the active conferee to the individual channel, even in the case when two
participants of the conference swap places.

At the immersive playback site, three different methods to enable a user-specific cus-
tomizeable HRTF-based sound synthesis were investigated, namely the selection, the re-
gression and the acoustic measurement method. The three methods offer a different de-
gree of HRTF-individualization which is achieved by different levels of effort. For each
method, several specific approaches were experimentally benchmarked.

To compare the different individualization methods for the immersive conference play-
back by listening tests, it was necessary to set up a whole HRTF database with anthro-
pometric data which also includes the HRTFs of the test subjects. Among the different
acoustic measurement approaches, a recent approach using a continuous recording of
the excitation signal provides the best cost-benefit-ratio in the experiments and was there-
fore used to set up the LDV HRTF database.

Finally, an extensive evaluation of the developed conferencing system was conducted.
Three evaluation concepts were identified to rate the different modules and playback op-
tions of the conferencing system: the sound localization, the quality of experience and the
cognitive load concept. For each concept, an appropriate test environment was built and
in sum 126 hours of listening tests were conducted.
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11. Conclusion

The sound localization tests unveil that the different HRTF datasets passed the listening
tests almost equally with slight advantages for the acoustically measured individual dataset
if head tracking was disabled. The quality of experience evaluation, which is more appro-
priate to the conferencing scenario, showed that the channel assignment algorithm works
audibly well and that no statistically significant differences exist between the perceived
quality of experience for the individualized datasets compared to the non-individualized
set of HRTFs. The cognitive load evaluation finally proved that the developed assignment
system, in combination with the non-individualized immersive playback system, increases
the effectiveness of a conference. This is expressed by a higher amount of memorized
conference content compared to the traditional mono playback of the conference. Further-
more, efficiency is increased denoted by a subjectively judged lower effort to identify the
active conferee and a higher assurance level about answered questions after the confer-
ence.
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