Recent developments in mixed integer linear programming formulations for the resource-constrained project scheduling problem

Christian Artigues

LAAS - CNRS & Université de Toulouse, France

artigues@laas.fr

PMS 2014 - München

Christian Artigues

RCPSP and MILP

PMS 2014, Munich 1 / 59

Outline

2 MILP for RCPSP

- 3) Standard and novel MILP formulations
 - Pseudo-polynomial time-indexed formulations
 - Extended time-indexed formulations and valid inequalities
 - Compact sequencing and natural date variable formulations
 - Compact event-based formulations
- 4 Synthesis of theoretical and experimental results
- 5 Perspectives
- 6 References

・ロト ・四ト ・ヨト ・ヨト

The Resource-Constrained Project Scheduling Problem (RCPSP)

- A central problem in many industrial applications
 - Project management, manufacturing, process industry, parallel processor architectures
- The "standard" RCPSP : An NP-hard problem posing a computational challenge since the the eighties
 - Benchmark instances [Patterson 1984], [Alvarez-Valdes and Tamarit 1989], [Kolisch, Sprecher and Drexl 1995,1997] (PSPLIB), [Baptiste and Le Pape 2000], [Carlier and Néron 2003].
 - 686 citations on PSPLIP (Google Scholar) 1/1/2014
 - 48 (out of 480) still open instances with 60 activities and 4 resources from PSPLIB

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The RCPSP : data

- *R* set of resources, limited constant availability $B_k \ge 0$,
- A set of activities, duration p_i ≥ 0, resource requirement b_{ik} ≥ 0 on each resource k,
- E set of precedence constraints (i, j), $i, j \in A$, i < j
- \mathcal{T} time interval (scheduling horizon)

The RCPSP : variables, objective and constraints

- $S_i \ge 0$ start time of activity i
- C_{\max} makespan or total project duration

RCPSP (conceptual formulation)min $C_{max} = \max_{i \in A} S_i + p_i$ s.t. $\begin{cases} S_j \ge S_i + p_i & (i,j) \in E & Precedence constraints \\ \sum_{i \in A(t)} b_{ik} \le B_k & t \in T, k \in R & Resource constraints \\ S_j \ge 0 & i \in A \end{cases}$

where $A(t) = \{j \in A | t \in [S_j, S_j + p_j)\}$, $\forall t \in \mathcal{T}$

RCPSP

The RCPSP : solution example

$$|R| = 1, B = 4, T = [0, 30)$$

< 4 → <

Christian Artigues

The RCPSP : complexity, variants and methods

- Strongly NP-hard
- Generalizes single/parallel machine, X-shop problems
- Many relevant variants
 - Other objectives : min $\sum_{i \in A} w_i(S_i + p_i)$
 - Generalized precedence constraints $S_j \ge S_i + I_{ij}$
 - Setup times, multiple modes, non renewable resources, ...
 - Uncertainty $p_i \in [p_i^{\min}, p_i^{\max}]$, $p_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$
- Exact and heuristic Methods
 - Heuristics and metaheuristics
 - Dedicated branch and bound methods
 - Specific lower bounds
 - Constraint programming (CP) or hybrid SAT/CP
 - Mixed Integer Linear Programming (MILP)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

RCPSP

The RCPSP : pre-processing and trivial bounds

- \bullet Upper bounds $|\mathcal{T}|$: parallel or serial list scheduling heuristics
- CPM lower bound : longest 0-n+1 path (16)
- Resource lower bound $\max_{k \in R} \sum_{i \in A} b_{ik} * p_i / B_k$ (16.5 \rightarrow 17)
- Reduce time windows [ES_i, LS_i] by constraint propagation :

8 / 59

Outline

1 RCPSP

2 MILP for RCPSP

Standard and novel MILP formulations

• Pseudo-polynomial time-indexed formulations

- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
- Synthesis of theoretical and experimental results
- 5 Perspectives
- 6 References

・ロト ・四ト ・ヨト ・ヨト

The scheduling polyhedron

Example (release dates r_i , deadlines d_i)

$$|A| = 2, |R| = 1, b_1 = b_2 = B = 1$$

 $p_1 = 3, p_2 = 2, r_1 = 0, r_2 = 1, \tilde{d}_1 = 9, \tilde{d}_2 = 7$).
Objective function $f(S) = S_1 + S_2 + p_1 + p_2$.

Christian Artigues

MILP for RCPSP : principle

- Let **S**, **c S** and S denote the start time vector, the linear objective and the feasible set of the RCPSP.
- Let **x** denote a vector of additional *p* binary variables.
- The MILP $\min_{\mathbf{S}, \mathbf{x}} \{ \mathbf{c} \, \mathbf{S} | \mathbf{M} \, \mathbf{S} + \mathbf{N} \, \mathbf{x} \le \mathbf{q}, \mathbf{S} \ge \mathbf{0}, \mathbf{x} \in \{0, 1\}^{p} \}$ is a correct formulation for the RCPSP if we have

$$\mathcal{S} = \{ \mathbf{S} \geq \mathbf{0} | \exists \mathbf{x} \in \{0,1\}^{\rho}, \mathbf{M} \, \mathbf{S} + \mathbf{N} \, \mathbf{x} \leq \mathbf{q} \}$$

- \mathcal{S} can be searched by branch and bound (and cut)
 - Branching : tree search on x
 - Bounding : solve at each node the LP relaxation by considering unfixed x_q ∈ [0, 1] (and possibly incorporating valid inequalities)

The bound is tight if the relaxed set

 $ilde{\mathcal{S}} = \{ \mathbf{S} \ge \mathbf{0} | \exists \mathbf{x} \in [0,1]^p, \mathsf{M}\,\mathsf{S} + \mathsf{N}\,\mathsf{x} \le \mathsf{q} \} \text{ is close to } conv(\mathcal{S}) .$

• Design a MIP formulation for the scheduling problem

RCPSP and MILP

• Solve by branch-and-bound

•	Þ.	• 67	•	1	•	C E	•	₹.	50	20
			PM	S 2	014,	Mu	nich		12 /	59

• Design a MIP formulation for the scheduling problem

• Solve by branch-and-bound

$$(P)\min S_1 + S_2 + 5$$

$$S_1 \ge 0$$

$$S_2 \ge 1$$

$$S_1 \le 6$$

$$S_2 \le 5$$

$$S_2 - S_1 + 8x \ge 3$$

$$S_1 - S_2 + 7(1 - x) \ge 2$$

$$x \in \{0, 1\}$$

The projection of the MILP feasible set on \boldsymbol{S} maps $\boldsymbol{\mathcal{S}}$

< □ > < □ > < □ > < □ > < □ > < □ >

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

< □ > < □ > < □ > < □ > < □ > < □ >

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

Left node x = 1, obj=9

< □ > < □ > < □ > < □ > < □ > < □ >

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

< ロ > < 同 > < 回 > < 回 > < 回 > <

MILP for RCPSP : tradeoffs

- Designing pseudo-polynomial or extended formulations
 - Pros : obtain better LP relaxations, early node pruning in the search tree
 - Cons : increase of the MILP size (number of binary variables, constraints) towards pseudo-polynomial and even exponential sizes (need of column and cut generation techniques)
- Design compact formulations (polynomial size)
 - Pros : fast node evaluation, mode nodes explored
 - Cons : need to generate cuts

MILP for RCPSP : families of formulations

[Queyranne and Schulz 1994] classify the scheduling MILP for scheduling according to the type of decision variables, each yielding different families of valid inequalities.

 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28 \ 29 \ 30$

- Time-indexed variables
- ② Linear-ordering variables ightarrow Strict-order or sequencing variables
- Ositional dates and assignment variables → Event-based formulations

Outline

1 RCPSP

2 MILP for RCPSP

- Standard and novel MILP formulations
 - Pseudo-polynomial time-indexed formulations
 - Extended time-indexed formulations and valid inequalities
 - Compact sequencing and natural date variable formulations
 - Compact event-based formulations

Synthesis of theoretical and experimental results

5 Perspectives

6 References

Outline

1 RCPSP

2 MILP for RCPSP

Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations

Synthesis of theoretical and experimental results

5 Perspectives

6 References

Time-indexed pulse variables

- For integer data, ${\cal S}$ can be restricted to its integer vectors ${\cal S}^{\rm int}.$
- "Pulse" binary variable $x_{it} = 1 \Leftrightarrow S_i = t$, for $t \in T = T \cap \mathbb{N}$
- Pseudo-polynomial number of variables |A||T|

The aggregated time-indexed formulation

•
$$S_i = \sum_{t \in T} t x_{it}$$

• $A(t) = \{i \in A | \exists \tau \in \{t - p_i + 1, \dots, t\}, x_{i\tau} = 1\}$

$$(DT) \operatorname{Min.} \sum_{t \in T} tx_{n+1,t}$$

s.t.
$$\sum_{t \in T} tx_{jt} - \sum_{t \in H} tx_{it} \ge p_i \quad (i,j) \in E$$
$$\sum_{i \in V} \sum_{\tau=t-p_i+1}^t b_{ik} x_{i\tau} \le B_k \quad t \in T; \ k \in \mathcal{R}$$
$$\sum_{t \in T} x_{it} = 1 \quad i \in A$$
$$x_{it} \in \{0,1\} \quad i \in A$$

[Pritsker et al. 1969]

Christian Artigues

3 > 4 3

Pseudo-polynomial time-indexed formulations

Back to the small example : a better relaxation...

$$(P) \min S_{1} + S_{2} + 5$$

$$S_{1} = x_{1,1} + 2x_{1,2} + 3x_{1,3} + 4x_{1,4} + 5x_{1,5} + 6x_{1,6}$$

$$S_{2} = x_{2,1} + 2x_{2,2} + 3x_{2,3} + 4x_{2,4} + 5x_{2,5}$$

$$x_{1,0} + x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} + x_{1,5} + x_{1,6} = 1$$

$$x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} + x_{2,5} = 1$$

$$x_{1,0} + x_{1,1} + x_{2,1} \leq 1$$

$$x_{2,1} + x_{2,2} + x_{1,0} + x_{1,1} + x_{1,2} \leq 1$$

$$x_{2,2} + x_{2,3} + x_{1,1} + x_{1,2} + x_{1,3} \leq 1$$

$$x_{2,3} + x_{2,4} + x_{1,2} + x_{1,3} + x_{1,4} \leq 1$$

$$x_{2,4} + x_{2,5} + x_{1,3} + x_{1,4} + x_{1,5} \leq 1$$

$$x_{2,5} + x_{1,4} + x_{1,5} + x_{1,6} \leq 1$$

$$x_{1,t} \in \{0,1\} \quad t \in \{0,\dots,6\}$$

$$x_{2,t} \in \{0,1\} \quad t \in \{1,\dots,5\}$$

3

ヨト イヨト

Image: A matrix and a matrix

 S_1

Back to the small example : a better relaxation...

In this example $\tilde{S} = conv(S)$ and the relaxation is tight...

ヘロト 不得 トイヨト イヨト 二日

Back to the small example : a better relaxation...

In this example $\hat{S} = conv(S)$ and the relaxation is tight... ... but we need 11 binary variables for a 2-task example $\hat{S} = \hat{S} = \hat{S}$

Christian Artigues

RCPSP and MILP

PMS 2014, Munich 19 / 59

... but not so good in general

Christian Artigues

$$|R| = 1, B = 4, T = [0, 30)$$

$$|\overline{1 + 3 + 2}| = 2, 5 + 3, 3 + 3, 4 + 3, 3 + 4, 3 + 3, 4 + 3, 3 + 4, 3 + 3, 4 + 3, 3 + 4, 3 + 3, 4 + 3, 4 + 3, 3 + 5, 5 + 2, 7, 5 + 3, 8 + 6, 1, 9 + 4, 1 + 1, 10 + 1, 10$$

RCPSP and MILP

PMS 2014, Munich

20 / 59

The disaggregated time-indexed formulation (DDT)

The model can be reinforced by disaggregation of the precedence constraints, i.e. replacing precedence constraints by

$$\sum_{ au=0}^{t-p_i} x_{i au} - \sum_{ au=0}^t x_{j au} \ge 0 \quad (i,j) \in E; \ t \in T$$

[Christofides et al. 1997]

- Modeling the logical relation : $S_j \leq t \Rightarrow S_i \leq t p_i$
- The constraint matrix without resource constraints is totally unimodular.
- Total unimodularity preserved by lagrangean relaxation of the resource constraints Also efficiently computable by a max flow algorithm [Möhring *et al.* 2003]

Christian Artigues

RCPSP and MILP

PMS 2014, Munich 21 / 59

DDT : relaxation quality

Bound = 17.14 (18) Strictly better than trivial bounds

Christian Artigues

PMS 2014, Munich 22 / 59

Time-indexed step variables

- "Step" binary variable $\xi_{it} = 1 \Leftrightarrow S_i \leq t$, for $t \in T$
- Introduced by [Pritsker and Watters 1968] rediscovered several times... [citations removed]

3

Time-indexed formulations with step variables

• The time-indexed formulation with step variable (SDDT) can be obtained by (DDT) by the following transformation :

$$\xi_{it} = \sum_{\tau=0}^{t} x_{it}$$

• Conversely,
$$x_{it} = \xi_{it} - \xi_{it-1}$$

- This is a non-singular transformation (NST)
- Formulations that can be obtained from each other by a NST are strictly equivalent. They have the same \tilde{S} and the same relaxation value.
- [Bianco and Caramia 2013] present a variant of the step formulation based on variables $\xi'_{it} = 1 \Leftrightarrow S_i + p_i \leq t$. We can shown that it is equivalent to (SDDT) by NST [A. 2013].

On/off time-indexed step variables

• "On/off" binary variable

$$\mu_{it} = 1 \Leftrightarrow t \in [S_i, S_i + p_i]$$

• Introduced by [Lawler 1964, Kaplan 1998] for preemptive problems and [Klein, 2000] for the RCPSP

Time-indexed formulations with on/off variables

Consider the following non singular transformation :

- $\mu_{it} = \sum_{\tau=t-p_i+1}^t x_{i\tau}$
- $x_{it} = \sum_{k=0}^{\lfloor t/p_i \rfloor} \mu_{i,t-kp_i} \sum_{k=0}^{\lfloor (t-1)/p_i \rfloor} \mu_{i,t-kp_i-1}$
- [A. 2013] Applying the transformation yields a time-indexed formulations with on/off variables OODDT equivalent to DDT and tighter than that of [Klein 2000].
- Many "new" formulations presented in the litterature are in fact weaker than or equivalent to DDT.
- Need to be distinguished from actual cutting planes or extended formulations

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Outline

2 MILP for RCPSP

Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
- 4 Synthesis of theoretical and experimental results
- 5 Perspectives
- 6 References

Extended formulations

- Formulation having better relaxations...
- ... with an exponential number of constraints and/or variables
- Need to use cut and/or column generation techniques

Small example again. S^{E} dominant set of earliest schedules Let $x_{s} = 1$ iff schedule $S^s = S^E$ is selected. $S_i = \sum_{s \in S^E} S_i^s x_s$

Forbidden sets

• Minimal forbidden set (MFS) *F* : a minimal set of activities that cannot be scheduled in parallel :

 $\sum_{i\in F} b_{ik} > B_k$ and $\forall j \in C, \sum_{i\in F\setminus\{j\}} b_{ik} \leq B_k$

$$\mathcal{F} = \{\{1,2\},\{1,3\},\{2,3\},\ldots,\{7,8,9\},\ldots\}$$

- There is in general an exponential number of MFS.
- Can be reduced by excluding MFS having two activities with a precedence relation or non intersecting time windows.

- 4 回 ト - 4 三 ト

Valid inequalities

- Forbidden set-based valid inequalities [Hardin et al 2008]
 - Basic inequality : ∑_{i∈A} ∑_{s=t-pi+1}^t x_{is} ≤ |F| 1, ∀F ∈ F The resource constraints can be replaced by this set of inequalities → extended formulation
 - A more general family of inequalities : extension to an interval of length \boldsymbol{v}

$$\sum_{i \in F \setminus \{j\}} \sum_{s=t-p_i+1+\nu}^t x_{is} + \sum_{s=t-p_j+1}^{t+\nu} x_{js} \le |F| - 1 \quad \forall F \in \mathcal{F}$$

- Lifting procedure and separation heuristic
- other valid inequalities [Christofides et al. 1987, de Sousa and Wolsey 1997, Cavalcante et al. 2001, Baptiste and Demassey 2004, Demassey *et al* 2005]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Feasible subsets

• Feasible subset *P* : a set of activities that can be scheduled in parallel :

 $\sum_{i \in P} b_{ik} \leq B_k \text{ and } (i,j) \notin TA \text{ and } [ES_i, LS_i + p_i] \cap [ES_j, LS_j + p_j] \neq \emptyset$

 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28 \ 29 \ 30$

$$\mathcal{P} = \{\{1\}, \{2\}, ..., \{10\}, \{1, 5\}, \{2, 4\}, \dots, \}$$

• There is in general an exponential number of FS.

• a schedule : an assignment of feasible subset to each time period 1-2 : {1}; 3-5 : {2,4}; 6,7 : {2}; 8 : {3}; 9,10 : {5,6}; ...

The feasible subset-based formulation (FS)

obtained from (DDT) by replacing the resource constraints by

s.t.
$$\sum_{P \in \mathcal{P}_i} \sum_{t \in T} y_{Pt} = p_i \quad i \in A, \ p_i \ge 1$$
$$\sum_{P \in \overline{\mathcal{P}}} y_{Pt} \le 1 \quad t \in T$$
$$x_i^t - \sum_{P \in \mathcal{P}_i} y_{Pt} - \sum_{P \in \mathcal{P}_i} y_{P,t-1} \ge 0 \quad i \in A; \ t \in T$$
$$y_{At} \in \{0,1\} \quad P \in \mathcal{P}; \ t \in \cap_{i \in P} \{ES_i, \dots, LS_i\}$$

where $\mathcal{P}_i \subset \mathcal{P}$ is the set of all feasible subsets that contain activity *i*. [Mingozzi et al 1998]

Lower bounds based on the feasible subset-based formulation

- Weighted Node packing combinatorial bound issued from the dual of the preemptive relaxation [Mingozzi *et al.* 1998]
- Destructive preemptive relaxation solved by constraint propagation and column generation or lagrangian relaxation [Brucker and Knust 2000, Demassey *et al* 2004, Baptiste and Demassey 2004]
- Preemptive FS solved by branch and price. [Moukrim et al. 2013]

Limits of time-indexed formulations

- Equivalent relaxations does not mean equivalent behaviour of the MILP solver for obtaining solutions
 - [Bianco and Caramia 2013] show that the ξ'_{it} formulation outperforms others in terms of integer solving
- Is Even weaker relaxations may yield better integer solutions
 - Well-known that (DT) formulation may also perform better than (DDT) formulation for integer solving.
- Time-indexed formulation cannot be used for problems where large horizons are needed
 - Some examples with 15 activities are out of reach of time-indexed formulaiton [Kone *et al.* 2011]
- Need of compact and/or hybrid formulations

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Outline

2 MILP for RCPSP

Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
- Synthesis of theoretical and experimental results
- 5 Perspectives
- 6 References

Sequencing or strict ordering variable

- Principle : adding precedence constraints such that all resource conflicts are resolved
- Any schedule satisfying these new precedence constraints is feasible
- Sequencing variable $z_{ij} = 1 \Leftrightarrow S_j \ge S_i + p_i$

Sequencing or strict ordering variable

- Principle : adding precedence constraints such that all resource conflicts are resolved
- Any schedule satisfying these new precedence constraints is feasible
- Sequencing variable $z_{ij} = 1 \Leftrightarrow S_j \ge S_i + p_i$

Sequencing or strict ordering variable

- Principle : adding precedence constraints such that all resource conflicts are resolved
- Any schedule satisfying these new precedence constraints is feasible
- Sequencing variable $z_{ij} = 1 \Leftrightarrow S_j \ge S_i + p_i$

A first formulation based on forbidden sets

The set of additional precedence constraints has to "destroy" all forbidden sets.

[Alvarez-Valdés and Tamarit 1993]

Extension of the disjunctive formulation for the job-shop problem [Balas 1985] with an exponential number of constraints

Christian Artigues

RCPSP and MILP

PMS 2014, Munich 37 / 59

Resource flow variables

 $\phi_{ij}^k \geq 0$: numbers of units of resource k transferred from i to j

Resource flow variables

 $\phi_{ij}^k \geq 0$: numbers of units of resource k transferred from i to j

Resource flow variables

 $\phi_{ij}^k \ge 0$: numbers of units of resource k transferred from i to j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Enforcing sequencing variables to be compatible with the flow $\phi^k_{ij} > 0 \Rightarrow z_{ij} = 1$

A formulation based on resource flows

• Replace the forbidden set constraints by the following flow constraints

$$\begin{split} \phi_{ij}^{k} &-\min(\tilde{r}_{ik}, \tilde{r}_{jk}) z_{ij} \leq 0 \quad (i, j \in V, \ i \neq j, \ \forall k \in \mathcal{R}) \\ &\sum_{j \in V \setminus \{i\}} \phi_{ij}^{k} = \tilde{r}_{ik} \quad (i \in V \setminus \{n+1\}) \\ &\sum_{i \in V \setminus \{j\}} \phi_{ij}^{k} = \tilde{r}_{jk} \quad (j \in V \setminus \{0\}) \\ &0 \leq \phi_{ij}^{k} \leq \min(\tilde{r}_{ik}, \tilde{r}_{jk}) \quad (i, j \in V, \ i \neq n+1, \ j \neq 0, \ i \neq j; \ k \in \mathcal{R}) \end{split}$$

- $O(|A|^2R)$ additional continuous variables
- FB : A compact formulation. [A. et al 2003]

Valid inequalities for sequencing formulations

- Relaxation of poor quality, need to generate valid inequalities
- Example 1 : Extension of valid inequalities by [Balas 85,Applegate & Cook 1991,Dyer & Wolsey 1990] for the disjunctive formulation of the job-shop (half-cuts, late job cuts...)

- Example 2 : constraint propagation-based cutting planes [Demassey *et al* 2005]
 - Compute conditional distances $d_{ij}^{k \prec l}$, $d_{ij}^{l \prec k}$ and $d_{ij}^{k|l}$ by CP
 - Lifted distance inequalities

$$S_j - S_i \geq d_{ij}^{h||I} + (d_{ij}^{h\prec I} - d_{ij}^{h||I})z_{hl} + (d_{ij}^{I\prec h} - d_{ij}^{h||I})z_{lh}$$

40 / 59

Outline

1 RCPSP

2 MILP for RCPSP

Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations

Synthesis of theoretical and experimental results

5 Perspectives

6 References

~ .				
(k	rict	inn.	Art	201101
		. an		IE UCS
				0

Start and End Event variables

- \mathcal{E} : set of remarkable events.
- t_e ≥ 0 : event date : representing the start and end of at least one activity
- Start binary assignment variables $a_{ie}^- = 1 \leftrightarrow S_i = t_e$
- End binary assignment variables $a_{ie}^+ = 1 \leftrightarrow S_i + p_i = t_e$
- Maximum n+1 events $\implies 2(n+1)|\mathcal{E}|$ binary variables.

 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28 \ 29 \ 30$

Extension of models proposed for machine scheduling [Lasserre and Queyranne 1994,Dauzère-Pérès and Lasserre 1995], widely used also in the process scheduling industry [Pinto and Grossmann 1995, Zapata *et al* 2008].

Christian Artigues

Start and End Event variables

- \mathcal{E} : set of remarkable events.
- t_e ≥ 0 : event date : representing the start and end of at least one activity
- Start binary assignment variables $a_{ie}^- = 1 \leftrightarrow S_i = t_e$
- End binary assignment variables $a_{ie}^+ = 1 \leftrightarrow S_i + p_i = t_e$
- Maximum n+1 events $\implies 2(n+1)|\mathcal{E}|$ binary variables.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Extension of models proposed for machine scheduling [Lasserre and Queyranne 1994,Dauzère-Pérès and Lasserre 1995], widely used also in the process scheduling industry [Pinto and Grossmann 1995, Zapata *et al* 2008].

On/Off Event variables

- \mathcal{E} : set of remarkable events.
- $t_e \ge 0$: event date : representing the start of at least one activity
- On/off binary variable $aie = 1 \Leftrightarrow [S_i, S_i + p_i] \cap [t_e, t_e + 1] \neq \emptyset$
- Each activity such that $a_{ie} = 1$ can be assumed of length $[t_e, t_e + 1]$
- $n|\mathcal{E}|$ binary variables

(OOE) Min. C_{max}

s.t.
$$C_{\max} \ge t_e + (\overline{a}_{ie} - \overline{a}_{i(e-1)})p_i$$
 $(e \in \mathcal{E}; i \in A)$
 $t_0 = 0$
 $t_{e+1} \ge t_e$ $(e \neq n-1 \in \mathcal{E})$
 $t_f \ge t_e + (\overline{a}_{ie} - \overline{a}_{i,e-1} - \overline{a}_{if} + \overline{a}_{i,f-1} - 1)p_i$ $((e, f, i) \in \mathcal{E}^2 \times A, f > e \neq 0)$
 $\sum_{e'=0}^{e-1} \overline{a}_{ie'} \ge e(1 - \overline{a}_{ie} + \overline{a}_{i,e-1}))$ $(i \in A; e \neq 0 \in \mathcal{E})$
 $\sum_{e'=e}^{n-1} \overline{a}_{ie'} \ge e(1 + \overline{a}_{ie} - \overline{a}_{i,e-1})$ $(i \in A; e \neq 0 \in \mathcal{E})$
 $\sum_{e \in \mathcal{E}} \overline{a}_{ie} \ge 1$ $(i \in A)$
 $\overline{a}_{ie} + \sum_{e'=0}^{e} \overline{a}_{je'} \le 1 + (1 - \overline{a}_{ie})e$ $(e \in \mathcal{E}; (i, j) \in E)$
 $\sum_{i=0}^{n-1} r_{ik}\overline{a}_{ie} \le R_k$ $(e \in \mathcal{E}; k \in \mathcal{R})$
 $t_e \ge 0$ $(e \in \mathcal{E})$
 $\overline{a}_{ie} \in \{0, 1\}$ $(i \in A; e \in \mathcal{E})$ [Koné et al. 2011] $\Rightarrow e^{-1} = e^{-1} = e^{-1}$

Valid inequalities for event-based formulations

• Wanted ! !

Done for the one machine problem in [Della croce et al 2014]

Outline

- 1 RCPSP
- 2 MILP for RCPSP
- 3 Standard and novel MILP formulations
 - Pseudo-polynomial time-indexed formulations
 - Extended time-indexed formulations and valid inequalities
 - Compact sequencing and natural date variable formulations
 - Compact event-based formulations

Synthesis of theoretical and experimental results

5 Perspectives

6 References

Comparison of formulations : LB

instance	LCG12	%RDDT	%DDT(1h)	PFS(3h)	instance	LCG12	%RDDT	%DDT(1h)	PFS13(3h
j609_1	85	17.65%	2.35%		j6029_1	98	19.39%	3.06%	
j609_3	99	17.17%	9.09%		j6029_2	123	17.89%	7.32%	-3.25%
j609_5	81	14.81%	3.70%		j6029_3	114	19.30%	1.75%	-3.51%
j609_6	105	11.43%	4.76%		j6029_4	126	15.87%	7.14%	-3.17%
j609_7	105	18.10%	2.86%		j6029_5	102	12.75%	3.92%	-2.94%
j609_8	95	18.95%	7.37%		j6029_6	144	17.36%	9.03%	-1.39%
j609_9	99	12.12%	7.07%		j6029_7	117	19.66%	4.27%	
j609_10	90	15.56%	3.33%		j6029_8	98	13.27%	2.04%	-9.18%
j6013_1	105	16.19%	1.90%	-1.90%	j6029_9	105	18.10%	4.76%	
j6013_2	103	20.39%	1.94%		j6029_10	111	20.72%	1.80%	
j6013_3	84	19.05%	1.19%		j6030_2	69	4.35%	1.45%	
j6013_4	98	20.41%	3.06%		j6041_3	90	16.67%	4.44%	
j6013_5	92	21.74%	1.09%		j6041_5	109	20.18%	7.34%	
j6013_6	91	16.48%	1.10%		j6041_10	108	12.04%	2.78%	
j6013_7	83	19.28%	3.61%		j6045_1	90	12.22%	4.44%	-1.11%
j6013_8	115	20.00%	3.48%		j6045_2	134	20.90%	11.94%	-2.99%
j6013_9	97	16.49%	2.06%		j6045_3	133	13.53%	6.02%	-3.76%
j6013_10	114	24.56%	0.88%		j6045_4	101	15.84%	4.95%	-1.98%
j6025_2	95	14.74%	5.26%		j6045_5	99	21.21%	3.03%	-2.02%
j6025_4	106	18.87%	8.49%		j6045_6	132	21.97%	21.21%	-3.79%
j6025_6	105	14.29%	4.76%		j6045_7	113	19.47%	5.31%	-3.54%
j6025_7	88	15.91%	6.82%		j6045_8	119	15.13%	5.04%	-3.36%
j6025_8	95	22.11%	5.26%		j6045_9	114	16.67%	5.26%	-4.39%
j6025_10	107	15.89%	6.54%		j6045_10	102	16.67%	3.92%	-4.90%

LCG12 : [Schutt *et al* 2013] (hybrid CP/SAT method : Lazy clause generation) PFS13 : [Moukrim *et al* 2013] Preemptive feasible subset formulation solved by B&P

Christian Artigues

Comparison of formulations : exact solving

Instances	Formulations	%Integer	%Opt	%Gap	%∆ФМ	Time Op
KSD 30	DDT	91	82	0.47	8.91	10.45
	DT	86	78	0.55	6.74	12.76
	FCT	67	62	0.16	3.76	22.66
	OOE_Prec	46	30	1.69	13.65	52,31
	OOE	33	24	1.22	7.00	112.62
	SEE	3.1	2,9	0.24	0.61	123.62
	MCS	-	97	0.00	11,48	7,39
DACK	DDT	05	76	1.09	100.02	62.20
FACK	DDI	55		1.00	199.02	40.24
	DI	85	55	0,49	203.58	48,24
	OUE_Prec	55	5	3.25	227,19	18,92
	DOE	49	9	2,89	231,29	61.78
	CEE	2	0	1.20	14,49	-
	SEE	U	25	-	-	-
	MCS	-	25	0.00	145,61	115.66
BL	DDT	100	100	0.00	32.40	13.68
	DT	100	100	0.00	32.40	37,93
	OOE_Prec	54	0	7.26	40,30	-
	OOE	49	0	7.90	41.65	-
	FCT	21	3	6.14	30.64	310.58
	SEE	8	0	12.81	29,96	-
	MCS	-	100	0.00	32.40	3,29
KSD15 d	OFF Prec	00.8	86	0.00	10.02	6.49
K3D15_0	ECT.	00	0/	0.00	0.02	12.06
	OFF	00	02	0.02	10.14	4.69
	SEE	99	76	0.01	0.86	13.04
	DT	55	54	0.15	431	12.10
	DDT	1	1	0.00	2.63	3 34
	MCS	2	100	0.00	10.18	0.07
PACK_d	OEE	60	18	1.26	120.13	75.58
	OOE_Prec	60	14	1.62	117,56	54,35
	FCT	7	7	0.00	0.00	60.88
	SEE	4	4	0.00	0.00	215.08
	DT	0	0		-	-
	DDT	0	0		-	-
	MCS	-	38	0.00	50,59	72,34

MCS [Laborie 2005] (MFS-based CP)
LCG [Schutt *et al* 2013]

	KSD30	PACK	BL	KSD15_d	PACK_d
LCG	100	70.91	100	100	67.27
MCS	82	25	100	100	38
MIP	97	76	100	94	18
	(DDT)	(DDT)	(DDT)	(FB)	(OOE)

- KSD30 "highly disjunctive" instances
- PACK,BL "highly cumulative" instances
- KSD15_d : first 15 activities of KSD30 with modified durations
- PACK_d : PACK instances with modified durations

PMS 2014, Munich

48 / 59

Synthesis of theoretical and experimental results

- Time indexed formulations have the best LP relaxations with $\mathsf{FS}{\succ}\mathsf{DDT}{\succ}\mathsf{DT}$
- Compact formulations have poor relaxation but can be the only alternative for large scheduling horizons
 - Highly disjunctive instances : flow-based models
 - Highly cumulative instances : event-based models
 - Valid inequalities stricly necessary
- MILP vs Lazy Clause Generation
 - MILP outperformed by LCG for exact solving disjunctive instances
 - Competitive with LCG for lower bounds based on preemptive exact solving of FS through B&P.
 - Competitive with LCG for exact highly cumulative instances

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 RCPSP

- 2 MILP for RCPSP
- 3 Standard and novel MILP formulations
 - Pseudo-polynomial time-indexed formulations
 - Extended time-indexed formulations and valid inequalities
 - Compact sequencing and natural date variable formulations
 - Compact event-based formulations
 - Synthesis of theoretical and experimental results

Perspectives

6 References

(日)

Perspectives

- Time aggregation / energetic reasoning / dual feasible functions [Carlier and Néron 2000, Kooli 2012]
- Mixed continuous/discrete models [Haït and A. 2012]
- Preprocessing [Baptiste et al 2010]
- B&P for the non-preemptive feasible set formulations
- CG for chain decomposition models [Kimms 2001,Van den Akker *et al.* 2005
- Matheuristics [Palpant *et al.* 2004,Della croce *et al* 2014]
- Hybrid SAT/CP/MILP

Outline

1 RCPSP

- 2 MILP for RCPSP
- 3 Standard and novel MILP formulations
 - Pseudo-polynomial time-indexed formulations
 - Extended time-indexed formulations and valid inequalities
 - Compact sequencing and natural date variable formulations
 - Compact event-based formulations
- 4 Synthesis of theoretical and experimental results

5 Perspectives

Christian Artigues

・ロト ・四ト ・ヨト ・ヨト

In order of appearance 1/6

[Patterson 1984] Patterson J. H., A comparison of exact approaches for solving the multiple constrained resource project scheduling problem, Management Science, vol. 30, num. 7, p. 854–867, 1984

[Alvarez-Valdes and Tamarit, 1989] Alvarez-Valdéz R., Tamarit J. M., Heuristic algorithms for resource-constrained project scheduling : A review and an empirical analysis, Slowinski R., Weglarz J., Eds., Advances in project scheduling, p. 113–134, Elsevier, 1989.

[Kolisch, Sprecher and Drexl 1995] R Kolisch, A Sprecher, A Drexl, Characterization and generation of a general class of resource-constrainted project scheduling problems Management science 41 (10), 1693-1703, 1995.

[Kolisch and Sprecher 1997] Kolisch R., Sprecher A., PSPLIB – A project scheduling library, European Journal of Operational Research, vol. 96, num. 1, p. 205–216, 1997.

[Baptiste and Le Pape 2000] Baptiste P., Le Pape C., Constraint propagation and decomposition techniques for highly disjunctive and highly cumulative project scheduling problems, Constraints, vol. 5, num. 1–2, p. 119–139, 2000.

[Carlier and Néron 2000] Carlier J., NÉRON E., On Linear Lower Bounds for the Resource Constrained Project Scheduling Problem, European Journal of Operational Research, vol. 149, p. 314–324, 2003.

[Queyranne and Shulz 1994] Queyranne M., Schulz A., Polyhedral approaches to machine scheduling, Report num. 408/1994, Technischen Universität Berlin, 1994.

[Pritsker et al. 1969] Pritsker A. A., Watters L. J., Wolfe P. M., Multi-project scheduling with limited resources : a zero-one programming approach, Management Science, vol. 16, p. 93–108, 1969.

In order of appearance 2/6

[Christofides et al. 1987] Christofides N., Alvarez-Valdéz R., Tamarit J. M., Project scheduling with resource constraints : a branch and bound approach, European Journal of Operational Research, vol. 29, num. 3, p. 262–273, 1987.

[Möhring et al. 2003] Möhring R., Schulz A., Stork F., Uetz M., Solving project scheduling problems by minimum cut computations, Management Science, vol. 49, num. 3, p. 330–350, 2003.

[Pritsker and Watters 1968] Pritsker A, Watters L. A zero-one programming approach to scheduling with limited resources. The RAND Corporation, RM-5561-PR, 1968.

[Bianco and Caramia 2013] Bianco L and Caramia M. A new formulation for the project scheduling problem under limited resources. Flexible Services and Manufacturing Journal 25 :6–24, 2013.

[A. 2013] C. Artigues. A note on time-indexed formulations for the resource-constrained project scheduling problem. LAAS report 13206, Toulouse, France, 2013.

[Lawler 1964] E. L. Lawler. On scheduling problems with deferral costs. Management Science, 11 :280–288, 1964.

[Kaplan 1998] Kaplan LA. Resource-constrained project scheduling with preemption of jobs. Unpublished PhD Dissertation, University of Michigan, Kapur, KC, 1998.

[Klein 2000] Klein R. Scheduling of resource-constrained projects. Kluwer Academic Publishers, Dordrecht. 2000.

[Hardin et al. 2008] Hardin JR, Nemhauser GL and Savelsbergh MW. Strong valid inequalities for the resource-constrained scheduling problem with uniform resource requirements. Discrete Optimization 5(1) :19–35, 2008.

In order of appearance 3/6

[de Sousa and Wolsey 1997] de Souza CC, Wolsey LA. Scheduling projects with labour constraints. Relatório Técnico IC-P7-22. Instituto de Computação, Universidade Estadual de Campinas, 1997.

[Cavalcante et al. 2001] Cavalcante CCB, de Souza CC, Savelsbergh MWP, Wang Y, Wolsey LA. Scheduling projects with labor constraints. Discrete Applied Mathematics 112(1–3) :27–52, 2001.

[Baptiste and Demassey 2004] Baptiste P, Demassey S. Tight LP bounds for resource constrained project scheduling. OR Spectrum 26 (2), 251–262, 2004.

[Demassey et al. 2005] Demassey S, Artigues C, Michelon P. Constraint propagation-based cutting planes : An application to the resource-constrained project scheduling problem. INFORMS Journal on Computing 17(1) :52–65, 2005.

[Mingozzi et al. 1998] Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L. An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Manage Science 44 :714–729, 1998.

[Brucker and Knust 2000] Brucker P., Knust S. A linear programming and constraint propagation-based lower bound for the RCPSP, European Journal of Operational Research, vol. 127, p. 355–362, 2000.

[Demassey et al. 2004] S. Demassey, C. Artigues, P. Baptiste, and P. Michelon. Lagrangean relaxation-based lower bounds for the RCPSP. In 8th International Workshop on Project Management and Scheduling, pages 76-79, Nancy, France, 2004.

[Moukrim et al 2013] A Moukrim, A Quilliot, H Toussaint : Branch and Price for Preemptive Resource Constrained Project Scheduling Problem Based on Interval Orders in Precedence Graphs. FedCSIS 2013 : 321-328, 2013.

In order of appearance 4/6

[Koné et al 2011] O. Koné, C. Artigues, P. Lopez, and M. Mongeau. Event-based MILP models for resource-constrained project scheduling problems. Computers and Operations Research, 38(1) :3–13, 2011.

[Alvarez-Valdés and Tamarit 1993] Alvarez-Valdéz R., Tamarit J. M., The project scheduling polyhedron : dimension, facets and lifting theorems, European Journal of Operational Research, vol. 67, num. 2, p. 204–220, 1993.

[Balas 1985] Balas E., On the facial structure of scheduling polyhedra, Mathematical Programming Study, vol. 24, p. 179–218, 1985.

[A. et al 2003] C. Artigues, P. Michelon, and S. Reusser. Insertion techniques for static and dynamic resource constrained project scheduling. European Journal of Operational Research, 149(2) :249-267, 2003.

[Applegate and Cook 1991] Applegate D., Cook W., A computational study of job-shop scheduling, ORSA Journal on Computing, vol. 3, num. 2, p. 149–156, 1991.

[Dyer and Wolsey 1990] Dyer M. E., Wolsey L. A., Formulating the single machine sequencing problem with release dates as a mixed integer program, Discrete Applied Mathematics, vol. 26, p. 255–270, 1990.

[Lasserre and Queyranne 1992] J.-B. Lasserre and M. Queyranne. Generic scheduling polyhedra and a new mixed-integer formulation for single-machine scheduling. In E. Balas, G. Cornuéjols, and R. Kannan, editors, Integer Programming and Combinatorial Optimization, pages 136–149. Carnegie Mellon University, 1992. Proceedings of the 2nd International IPCO Conference.

In order of appearance 5/6

[Dauzère-Pérès and Lasserre 1995] S. Dauzeère-Pérès and J.-B. Lasserre. A new mixed-integer formulation of the flow-shop sequencing problem. Paper presented at the Second Workshop on Models and Algorithms for Planning and Scheduling Problems, Wernigerode, Germany, May 1995.

[Pinto and Grossmann 1995] Pinto, J. M.; Grossmann, I. E. A. Continuous time mixed integer linear programming model for short-term scheduling of multistage batch plants. Industrial & Engineering Chemistry Research 34 (9), 3037–3051, 1995.

[Zapata el al 2008] J. C. Zapata, B. M. Hodge, and G. V. Reklaitis. The multimode resource constrained multiproject scheduling problem : Alternative formulations, AIChE Journal, 54(8) : 2101–2119, 2008.

[Della Croce et al 2014] F Della Croce, F Salassa, V T'Kindt. A hybrid heuristic approach for single machine scheduling with release times. Computers & OR 45 : 7–11, 2014.

[Schutt et al 2013] A. Schutt, T. Feydy, P. J. Stuckey. Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint. CPAIOR, 234–250, 2013

[Laborie 2005] Laborie P., Complete MCS-Based Search : Application to Resource Constrained Project Scheduling. IJCAI,181–186, 2005.

[Kooli 2012] Kooli A., Exact and Heuristic Methods for the Resource Constrained Project Scheduling Problem, PhD thesis, Unversity of Tunis, 2012.

[Haït and A. 2011] A. Haït and C. Artigues. A hybrid CP/MILP method for scheduling with energy costs. European Journal of Industrial Engineering, 5(4) :471-489, 2011

[Baptiste *et al* 2010] P. Baptiste, Federico Della Croce, Andrea Grosso, Vincent T'Kindt : Sequencing a single machine with due dates and deadlines : an ILP-based approach to solve very large instances. J. Scheduling 13(1) : 39-47, 2010.

In order of appearance 6/6

[Kimms 2001] A Kimms Mathematical programming and financial objectives for scheduling projects. Kluwer Academic Publishers, Dordrecht
[van den Akker et al 2007] J. M. van den Akker, Guido Diepen, J. A. Hoogeveen : A Column Generation Based Destructive Lower Bound for Resource Constrained Project Scheduling Problems. CPAIOR, 376–390, 2007
[Palpant et al 2004] M Palpant, C Artigues, P Michelon. LSSPER : Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search. Annals OR 131(1–4), 237–257, 2004