Recent developments in mixed integer linear programming formulations for the resource-constrained project scheduling problem

Christian Artigues

LAAS - CNRS \& Université de Toulouse, France artigues@laas.fr

PMS 2014 - München

Outline

(1) RCPSP

(2) MILP for RCPSP
(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations

4) Synthesis of theoretical and experimental results
(5) Perspectives
(6) References

The Resource-Constrained Project Scheduling Problem (RCPSP)

- A central problem in many industrial applications
- Project management, manufacturing, process industry, parallel processor architectures
- The "standard" RCPSP : An NP-hard problem posing a computational challenge since the the eighties
- Benchmark instances [Patterson 1984], [Alvarez-Valdes and Tamarit 1989], [Kolisch, Sprecher and Drexl 1995,1997] (PSPLIB), [Baptiste and Le Pape 2000], [Carlier and Néron 2003].
- 686 citations on PSPLIP (Google Scholar) 1/1/2014
- 48 (out of 480) still open instances with 60 activities and 4 resources from PSPLIB

The RCPSP : data

- R set of resources, limited constant availability $B_{k} \geq 0$,
- A set of activities, duration $p_{i} \geq 0$, resource requirement $b_{i k} \geq 0$ on each resource k,
- E set of precedence constraints $(i, j), i, j \in A, i<j$
- \mathcal{T} time interval (scheduling horizon)

$$
|R|=
$$

The RCPSP : variables, objective and constraints

- $S_{i} \geq 0$ start time of activity i
- $C_{\text {max }}$ makespan or total project duration

RCPSP (conceptual formulation)
$\min C_{\max }=\max _{i \in A} S_{i}+p_{i}$
s.t. $\left\{\begin{array}{lll}S_{j} \geq S_{i}+p_{i} & (i, j) \in E & \text { Precedence constraints } \\ \sum_{i \in A(t)} b_{i k} \leq B_{k} & t \in \mathcal{T}, k \in R & \text { Resource constraints } \\ S_{j} \geq 0 & i \in A & \end{array}\right.$
where $A(t)=\left\{j \in A \mid t \in\left[S_{j}, S_{j}+p_{j}\right)\right\}, \forall t \in \mathcal{T}$

The RCPSP : solution example

$$
|R|=1, B=4, \mathcal{T}=[0,30)
$$

i	p_{i}	b_{i}
1	3	2
2	5	3
3	1	3
4	3	1
5	2	1
6	4	2
7	5	3
8	6	1
9	4	1
10	4	1

The RCPSP : complexity, variants and methods

- Strongly NP-hard
- Generalizes single/parallel machine, X-shop problems
- Many relevant variants
- Other objectives : min $\sum_{i \in A} w_{i}\left(S_{i}+p_{i}\right)$
- Generalized precedence constraints $S_{j} \geq S_{i}+l_{i j}$
- Setup times, multiple modes, non renewable resources, ...
- Uncertainty $p_{i} \in\left[p_{i}^{\min }, p_{i}^{\max }\right], p_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$
- Exact and heuristic Methods
- Heuristics and metaheuristics
- Dedicated branch and bound methods
- Specific lower bounds
- Constraint programming (CP) or hybrid SAT/CP
- Mixed Integer Linear Programming (MILP)

The RCPSP : pre-processing and trivial bounds

- Upper bounds $|T|$: parallel or serial list scheduling heuristics
- CPM lower bound : longest $0-n+1$ path (16)
- Resource lower bound $\max _{k \in R} \sum_{i \in A} b_{i k} * p_{i} / B_{k}(16.5 \rightarrow 17)$
- Reduce time windows $\left[E S_{i}, L S_{i}\right]$ by constraint propagation :

UB $=24$ (parallel SGS / Min LFT rule)				
i	p_{i}	b_{i}	$T W$	$T W^{+}$
1	3	2	$[0,10]$	$[0,10]$
2	5	3	$[0,8]$	$[0,6]$
3	1	3	$[0,12]$	$[0,12]$
4	3	1	$[3,13]$	$[3,13]$
5	2	1	$[5,13]$	$[6,13]$
6	4	2	$[6,16]$	$[8,16]$
7	5	3	$[7,15]$	$[9,15]$
8	6	1	$[7,18]$	$[8,18]$
9	4	1	$[7,20]$	$[8,20]$
10	4	1	$[12,20]$	$[18,20]$
11	0	0	$[16,24]$	$[22,24]$

Outline

1) RCPSP

(2) MILP for RCPSP

(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
- Synthesis of theoretical and experimental results
(5) Perspectives

3. References

The scheduling polyhedron

Example (release dates r_{i}, deadlines \tilde{d}_{i})
$|A|=2,|R|=1, b_{1}=b_{2}=B=1$
$p_{1}=3, p_{2}=2, r_{1}=0, r_{2}=1, \tilde{d}_{1}=9, \tilde{d}_{2}=7$).
Objective function $f(S)=S_{1}+S_{2}+p_{1}+p_{2}$.

$$
S_{1}
$$

(P) can be solved by LP on $\operatorname{conv}(\mathcal{S})$

$$
\begin{aligned}
& S_{1} \geq 0 \\
& S_{2} \geq 1 \\
& S_{1} \leq 6 \\
& S_{2} \leq 5 \\
& S_{2} \geq S_{1}+3 \vee S_{1} \geq S_{2}+2
\end{aligned}
$$

MILP for RCPSP : principle

- Let $\mathbf{S}, \mathbf{c} \mathbf{S}$ and \mathcal{S} denote the start time vector, the linear objective and the feasible set of the RCPSP.
- Let \mathbf{x} denote a vector of additional p binary variables.
- The MILP $\min _{\mathbf{s}, \mathbf{x}}\left\{\mathbf{c} \mathbf{S} \mid \mathbf{M} \mathbf{S}+\mathbf{N} \mathbf{x} \leq \mathbf{q}, \mathbf{S} \geq \mathbf{0}, \mathbf{x} \in\{0,1\}^{p}\right\}$ is a correct formulation for the RCPSP if we have

$$
\mathcal{S}=\left\{\mathbf{S} \geq \mathbf{0} \mid \exists \mathbf{x} \in\{0,1\}^{p}, \mathbf{M} \mathbf{S}+\mathbf{N} \mathbf{x} \leq \mathbf{q}\right\}
$$

- \mathcal{S} can be searched by branch and bound (and cut)
- Branching : tree search on \mathbf{x}
- Bounding : solve at each node the LP relaxation by considering unfixed $x_{q} \in[0,1]$ (and possibly incorporating valid inequalities)

The bound is tight if the relaxed set
$\tilde{\mathcal{S}}=\left\{\mathbf{S} \geq \mathbf{0} \mid \exists \mathbf{x} \in[0,1]^{p}, \mathbf{M} \mathbf{S}+\mathbf{N} \mathbf{x} \leq \mathbf{q}\right\}$ is close to $\operatorname{conv}(\mathcal{S})$.

MILP for RCPSP : example and issues

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

MILP for RCPSP : example and issues

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound
$(P) \min S_{1}+S_{2}+5$
$S_{1} \geq 0$
$S_{2} \geq 1$
$S_{1} \leq 6$
$S_{2} \leq 5$
$S_{2}-S_{1}+8 x \geq 3$
$S_{1}-S_{2}+7(1-x) \geq 2$
$x \in\{0,1\}$

The projection of the MILP feasible set on \mathbf{S} maps \mathcal{S}

MILP for RCPSP : example and issues

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

$$
\begin{aligned}
(P) \min S_{1}+S_{2} & +5 \\
S_{1} & \geq 0 \\
S_{2} & \geq 1 \\
S_{1} & \leq 6 \\
S_{2} & \leq 5 \\
S_{2}-S_{1}+8 x & \geq 3 \\
S_{1}-S_{2}+7(1-x) & \geq 2 \\
x & \in\{0,1\}
\end{aligned}
$$

MILP for RCPSP : example and issues

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

$$
\begin{aligned}
(P) \min S_{1}+S_{2} & +5 \\
S_{1} & \geq 0 \\
S_{2} & \geq 1 \\
S_{1} & \leq 6 \\
S_{2} & \leq 5 \\
S_{2}-S_{1}+8 x & \geq 3 \\
S_{1}-S_{2}+7(1-x) & \geq 2 \\
x & \in\{0,1\}
\end{aligned}
$$

Root node LB=6
issue $x=0.5$ always feasible

MILP for RCPSP : example and issues

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

$$
\begin{aligned}
(P) \min S_{1}+S_{2} & +5 \\
S_{1} & \geq 0 \\
S_{2} & \geq 1 \\
S_{1} & \leq 6 \\
S_{2} & \leq 5 \\
S_{2}-S_{1}+8 x & \geq 3 \\
S_{1}-S_{2}+7(1-x) & \geq 2 \\
x & \in\{0,1\}
\end{aligned}
$$

Left node $x=1$, obj=9

MILP for RCPSP : example and issues

- Design a MIP formulation for the scheduling problem
- Solve by branch-and-bound

$$
\begin{aligned}
(P) \min S_{1}+S_{2} & +5 \\
S_{1} & \geq 0 \\
S_{2} & \geq 1 \\
S_{1} & \leq 6 \\
S_{2} & \leq 5 \\
S_{2}-S_{1}+8 x & \geq 3 \\
S_{1}-S_{2}+7(1-x) & \geq 2 \\
x & \in\{0,1\}
\end{aligned}
$$

Right node $x=0, o b j=8$

MILP for RCPSP : tradeoffs

- Designing pseudo-polynomial or extended formulations
- Pros : obtain better LP relaxations, early node pruning in the search tree
- Cons : increase of the MILP size (number of binary variables, constraints) towards pseudo-polynomial and even exponential sizes (need of column and cut generation techniques)
- Design compact formulations (polynomial size)
- Pros : fast node evaluation, mode nodes explored
- Cons : need to generate cuts

MILP for RCPSP : families of formulations

[Queyranne and Schulz 1994] classify the scheduling MILP for scheduling according to the type of decision variables, each yielding different families of valid inequalities.

$0 \begin{array}{llllllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415161718192021222324252627282930\end{array}$
(1) Time-indexed variables
(2) Linear-ordering variables \rightarrow Strict-order or sequencing variables
(3) Positional dates and assignment variables \rightarrow Event-based formulations

Outline

(2) MILP for RCPSP
(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations

4 Synthesis of theoretical and experimental results
(5) Perspectives
6. References

Outline

3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
(4) Synthesis of theoretical and experimental results
(5) Perspectives
(2) References

Time-indexed pulse variables

- For integer data, \mathcal{S} can be restricted to its integer vectors $\mathcal{S}^{\mathrm{int}}$.
- "Pulse" binary variable $x_{i t}=1 \Leftrightarrow S_{i}=t$, for $t \in T=\mathcal{T} \cap \mathbb{N}$
- Pseudo-polynomial number of variables $|A||T|$

The aggregated time-indexed formulation

- $S_{i}=\sum_{t \in T} t x_{i t}$
- $A(t)=\left\{i \in A \mid \exists \tau \in\left\{t-p_{i}+1, \ldots, t\right\}, x_{i \tau}=1\right\}$

$$
\begin{aligned}
\text { (DT) Min. } & \sum_{t \in T} t x_{n+1, t} \\
\text { s.t. } & \sum_{t \in T} t x_{j t}-\sum_{t \in H} t x_{i t} \geq p_{i} \quad(i, j) \in E \\
& \sum_{i \in V} \sum_{\tau=t-p_{i}+1}^{t} b_{i k} x_{i \tau} \leq B_{k} \quad t \in T ; k \in \mathcal{R} \\
& \sum_{t \in T} x_{i t}=1 \quad i \in A \\
& x_{i t} \in\{0,1\} \quad i \in A
\end{aligned}
$$

[Pritsker et al. 1969]

Back to the small example : a better relaxation...

$$
\begin{array}{r}
(P) \min S_{1}+S_{2}+5 \\
S_{1}=x_{1,1}+2 x_{1,2}+3 x_{1,3}+4 x_{1,4}+5 x_{1,5}+6 x_{1,6} \\
S_{2}=x_{2,1}+2 x_{2,2}+3 x_{2,3}+4 x_{2,4}+5 x_{2,5} \\
x_{1,0}+x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}=1 \\
x_{2,1}+x_{2,2}+x_{2,3}+x_{2,4}+x_{2,5}=1 \\
x_{1,0}+x_{1,1}+x_{2,1} \leq 1 \\
x_{2,1}+x_{2,2}+x_{1,0}+x_{1,1}+x_{1,2} \leq 1 \\
x_{2,2}+x_{2,3}+x_{1,1}+x_{1,2}+x_{1,3} \leq 1 \\
x_{2,3}+x_{2,4}+x_{1,2}+x_{1,3}+x_{1,4} \leq 1 \\
x_{2,4}+x_{2,5}+x_{1,3}+x_{1,4}+x_{1,5} \leq 1 \\
x_{2,5}+x_{1,4}+x_{1,5}+x_{1,6} \leq 1
\end{array}
$$

$$
S_{2}
$$

- $\mathcal{S}^{\text {int }}$
$\square \mathcal{S}$

Back to the small example : a better relaxation...

$$
\begin{aligned}
& \text { (P) } \min S_{1}+S_{2}+5 \\
& S_{1}=x_{1,1}+2 x_{1,2}+3 x_{1,3}+4 x_{1,4}+5 x_{1,5}+6 x_{1,6} \\
& S_{2}=x_{2,1}+2 x_{2,2}+3 x_{2,3}+4 x_{2,4}+5 x_{2,5} \\
& x_{1,0}+x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}=1 \\
& x_{2,1}+x_{2,2}+x_{2,3}+x_{2,4}+x_{2,5}=1 \\
& x_{1,0}+x_{1,1}+x_{2,1} \leq 1 \\
& x_{2,1}+x_{2,2}+x_{1,0}+x_{1,1}+x_{1,2} \leq 1 \\
& x_{2,2}+x_{2,3}+x_{1,1}+x_{1,2}+x_{1,3} \leq 1 \\
& x_{2,3}+x_{2,4}+x_{1,2}+x_{1,3}+x_{1,4} \leq 1 \\
& x_{2,4}+x_{2,5}+x_{1,3}+x_{1,4}+x_{1,5} \leq 1 \\
& x_{2,5}+x_{1,4}+x_{1,5}+x_{1,6} \leq 1 \\
& x_{1, t} \in\{0,1\} \quad t \in\{0, \ldots, 6\} \\
& x_{2, t} \in\{0,1\} \quad t \in\{1, \ldots, 5\}
\end{aligned}
$$

In this example $\tilde{\mathcal{S}}=\operatorname{conv}(\mathcal{S})$ and the relaxation is tight...

Back to the small example : a better relaxation...

$$
\begin{array}{r}
(P) \min S_{1}+S_{2}+5 \\
S_{1}=x_{1,1}+2 x_{1,2}+3 x_{1,3}+4 x_{1,4}+5 x_{1,5}+6 x_{1,6} \\
S_{2}=x_{2,1}+2 x_{2,2}+3 x_{2,3}+4 x_{2,4}+5 x_{2,5} \\
x_{1,0}+x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}=1 \\
x_{2,1}+x_{2,2}+x_{2,3}+x_{2,4}+x_{2,5}=1 \\
x_{1,0}+x_{1,1}+x_{2,1} \leq 1 \\
x_{2,1}+x_{2,2}+x_{1,0}+x_{1,1}+x_{1,2} \leq 1 \\
x_{2,2}+x_{2,3}+x_{1,1}+x_{1,2}+x_{1,3} \leq 1 \\
x_{2,3}+x_{2,4}+x_{1,2}+x_{1,3}+x_{1,4} \leq 1 \\
x_{2,4}+x_{2,5}+x_{1,3}+x_{1,4}+x_{1,5} \leq 1 \\
x_{2,5}+x_{1,4}+x_{1,5}+x_{1,6} \leq 1 \\
x_{1, t} \in\{0,1\} \quad t \in\{0, \ldots, 6\} \\
x_{2, t} \in\{0,1\} \quad t \in\{1, \ldots, 5\}
\end{array}
$$

In this example $\tilde{\mathcal{S}}=\operatorname{conv}(\mathcal{S})$ and the relaxation is tight...
... but we need 11 binary variables for a 2 -task example
... but not so good in general

$$
|R|=1, B=4, \mathcal{T}=[0,30)
$$

i	p_{i}	b_{i}
1	3	2
2	5	3
3	1	3
4	3	1
5	2	1
6	4	2
7	5	3
8	6	1
9	4	1
10	4	1

Bound $=16.46$ (17) (not better than trivial Res. Bount)

The disaggregated time-indexed formulation (DDT)

The model can be reinforced by disaggregation of the precedence constraints, i.e. replacing precedence constraints by

$$
\sum_{\tau=0}^{t-p_{i}} x_{i \tau}-\sum_{\tau=0}^{t} x_{j \tau} \geq 0 \quad(i, j) \in E ; t \in T
$$

[Christofides et al. 1997]

- Modeling the logical relation : $S_{j} \leq t \Rightarrow S_{i} \leq t-p_{i}$
- The constraint matrix without resource constraints is totally unimodular.
- Total unimodularity preserved by lagrangean relaxation of the resource constraints Also efficiently computable by a max flow algorithm [Möhring et al. 2003]

DDT : relaxation quality

$$
|R|=1, B=4, \mathcal{T}=[0,30)
$$

i	p_{i}	b_{i}
1	3	2
2	5	3
3	1	3
4	3	1
5	2	1
6	4	2
7	5	3
8	6	1
9	4	1
10	4	1

Bound $=17.14$ (18) Strictly better than trivial bounds

Time-indexed step variables

- "Step" binary variable $\xi_{i t}=1 \Leftrightarrow S_{i} \leq t$, for $t \in T$
- Introduced by [Pritsker and Watters 1968] rediscovered several times... [citations removed]

Time-indexed formulations with step variables

- The time-indexed formulation with step variable (SDDT) can be obtained by (DDT) by the following transformation :

$$
\xi_{i t}=\sum_{\tau=0}^{t} x_{i t}
$$

- Conversely, $x_{i t}=\xi_{i t}-\xi_{i t-1}$
- This is a non-singular transformation (NST)
- Formulations that can be obtained from each other by a NST are strictly equivalent. They have the same $\tilde{\mathcal{S}}$ and the same relaxation value.
- [Bianco and Caramia 2013] present a variant of the step formulation based on variables $\xi_{i t}^{\prime}=1 \Leftrightarrow S_{i}+p_{i} \leq t$. We can shown that it is equivalent to (SDDT) by NST [A. 2013|.

On/off time-indexed step variables

- "On/off" binary variable

$$
\mu_{i t}=1 \Leftrightarrow t \in\left[S_{i}, S_{i}+p_{i}[\right.
$$

- Introduced by [Lawler 1964, Kaplan 1998] for preemptive problems and [Klein, 2000] for the RCPSP

Time-indexed formulations with on/off variables

Consider the following non singular transformation :

- $\mu_{i t}=\sum_{\tau=t-p_{i}+1}^{t} x_{i \tau}$
- $x_{i t}=\sum_{k=0}^{\left\lfloor t / p_{i}\right\rfloor} \mu_{i, t-k p_{i}}-\sum_{k=0}^{\left\lfloor(t-1) / p_{i}\right\rfloor} \mu_{i, t-k p_{i}-1}$
- [A. 2013] Applying the transformation yields a time-indexed formulations with on/off variables OODDT equivalent to DDT and tighter than that of [Klein 2000].
- Many "new" formulations presented in the litterature are in fact weaker than or equivalent to DDT.
- Need to be distinguished from actual cutting planes or extended formulations

Outline

(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
(9) Synthesis of theoretical and experimental results
(5) Perspectives
(3) References

Extended formulations

- Formulation having better relaxations...
- ... with an exponential number of constraints and/or variables
- Need to use cut and/or column generation techniques

Small example again. \mathcal{S}^{E} dominant set of earliest schedules Let $x_{s}=1$ iff schedule $S^{s}=\mathcal{S}^{E}$ is selected. $S_{i}=\sum_{s \in \mathcal{S}^{E}} S_{i}^{S} x_{s}$

Forbidden sets

- Minimal forbidden set (MFS) F : a minimal set of activities that cannot be scheduled in parallel :

$$
\sum_{i \in F} b_{i k}>B_{k} \text { and } \forall j \in C, \sum_{i \in F \backslash\{j\}} b_{i k} \leq B_{k}
$$

$0 \begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1012131415161718192021222324252627282930\end{array}$

$$
\mathcal{F}=\{\{1,2\},\{1,3\},\{2,3\}, \ldots,\{7,8,9\}, \ldots\}
$$

- There is in general an exponential number of MFS.
- Can be reduced by excluding MFS having two activities with a precedence relation or non intersecting time windows.

Valid inequalities

- Forbidden set-based valid inequalities [Hardin et al 2008]
- Basic inequality : $\sum_{i \in A} \sum_{s=t-p_{i}+1}^{t} x_{i s} \leq|F|-1, \quad \forall F \in \mathcal{F}$ The resource constraints can be replaced by this set of inequalities \rightarrow extended formulation
- A more general family of inequalities : extension to an interval of length v

$$
\sum_{i \in F \backslash\{j\}} \sum_{s=t-p_{i}+1+v}^{t} x_{i s}+\sum_{s=t-p_{j}+1}^{t+v} x_{j s} \leq|F|-1 \quad \forall F \in \mathcal{F}
$$

- Lifting procedure and separation heuristic
- other valid inequalities [Christofides et al. 1987, de Sousa and Wolsey 1997, Cavalcante et al. 2001, Baptiste and Demassey 2004, Demassey et al 2005]

Feasible subsets

- Feasible subset P : a set of activities that can be scheduled in parallel :
$\sum_{i \in P} b_{i k} \leq B_{k}$ and $(i, j) \notin T A$ and
$\left[E S_{i}, L S_{i}+p_{i}\right] \cap\left[E S_{j}, L S_{j}+p_{j}\right] \neq \emptyset$

01223456789101112131415161718192021222324252627282930
$\mathcal{P}=\{\{1\},\{2\}, \ldots,\{10\},\{1,5\},\{2,4\}, \ldots$,

- There is in general an exponential number of FS.
- a schedule : an assignment of feasible subset to each time period $1-2:\{1\} ; 3-5:\{2,4\} ; 6,7:\{2\} ; 8:\{3\} ; 9,10:\{5,6\} ; \ldots$

The feasible subset-based formulation (FS)

- obtained from (DDT) by replacing the resource constraints by

$$
\begin{aligned}
\text { s.t. } & \sum_{P \in \mathcal{P}_{i}} \sum_{t \in T} y_{P t}=p_{i} \quad i \in A, p_{i} \geq 1 \\
& \sum_{P \in \overline{\mathcal{P}}} y_{P t} \leq 1 \quad t \in T \\
& x_{i}^{t}-\sum_{P \in \mathcal{P}_{i}} y_{P t}-\sum_{P \in \mathcal{P}_{i}} y_{P, t-1} \geq 0 \quad i \in A ; t \in T \\
& y_{A t} \in\{0,1\} \quad P \in \mathcal{P} ; t \in \cap_{i \in P}\left\{E S_{i}, \ldots, L S_{i}\right\}
\end{aligned}
$$

where $\mathcal{P}_{i} \subseteq \mathcal{P}$ is the set of all feasible subsets that contain activity i.
[Mingozzi et al 1998]

Lower bounds based on the feasible subset-based formulation

- Weighted Node packing combinatorial bound issued from the dual of the preemptive relaxation [Mingozzi et al. 1998]
- Destructive preemptive relaxation solved by constraint propagation and column generation or lagrangian relaxation [Brucker and Knust 2000, Demassey et al 2004, Baptiste and Demassey 2004]
- Preemptive FS solved by branch and price. [Moukrim et al. 2013]

Limits of time-indexed formulations

(1) Equivalent relaxations does not mean equivalent behaviour of the MILP solver for obtaining solutions

- [Bianco and Caramia 2013] show that the $\xi_{i t}^{\prime}$ formulation outperforms others in terms of integer solving
(2) Even weaker relaxations may yield better integer solutions
- Well-known that (DT) formulation may also perform better than (DDT) formulation for integer solving.
(3) Time-indexed formulation cannot be used for problems where large horizons are needed
- Some examples with 15 activities are out of reach of time-indexed formulaiton [Kone et al. 2011]

Need of compact and/or hybrid formulations

Outline

(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
(4) Synthesis of theoretical and experimental results
(3) Perspectives
(6) References

Sequencing or strict ordering variable

- Principle : adding precedence constraints such that all resource conflicts are resolved
- Any schedule satisfying these new precedence constraints is feasible
- Sequencing variable $z_{i j}=1 \Leftrightarrow S_{j} \geq S_{i}+p_{i}$

Sequencing or strict ordering variable

- Principle : adding precedence constraints such that all resource conflicts are resolved
- Any schedule satisfying these new precedence constraints is feasible
- Sequencing variable $z_{i j}=1 \Leftrightarrow S_{j} \geq S_{i}+p_{i}$

Sequencing or strict ordering variable

- Principle : adding precedence constraints such that all resource conflicts are resolved
- Any schedule satisfying these new precedence constraints is feasible
- Sequencing variable $z_{i j}=1 \Leftrightarrow S_{j} \geq S_{i}+p_{i}$

$0 \begin{array}{lllllllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415161718192021222324252627282930\end{array}$

A first formulation based on forbidden sets

The set of additional precedence constraints has to "destroy" all forbidden sets.

Min. S_{n+1}

$$
\begin{array}{ll}
\text { s.t. } & z_{i j}+z_{j i} \leq 1 \quad i, j \in V, i<j \\
& \left.z_{i j}+z_{j h}-z_{i h} \leq 1 \quad i, j, h \in V, i \neq j \neq h\right) \\
& z_{i j}=1 \quad(i, j) \in E \\
& S_{j}-S_{i}+\left(1-M_{i j}\right) z_{i j} \geq p_{i} \quad i, j \in V, i \neq j \\
& \sum_{i, j \in F, i \neq j} z_{i j} \geq 1 \quad F \in \mathcal{F} \\
& z_{i j} \in\{0,1\} \quad i, j \in V, i \neq j
\end{array}
$$

[Alvarez-Valdés and Tamarit 1993]
Extension of the disjunctive formulation for the job-shop problem [Balas 1985] with an exponential number of constraints

Resource flow variables

$\phi_{i j}^{k} \geq 0$: numbers of units of resource k transferred from i to j

Resource flow variables

$\phi_{i j}^{k} \geq 0$: numbers of units of resource k transferred from i to j

Resource flow variables

$\phi_{i j}^{k} \geq 0$: numbers of units of resource k transferred from i to j

Enforcing sequencing variables to be compatible with the flow $\phi_{i j}^{k}>0 \Rightarrow z_{i j}=1$

A formulation based on resource flows

- Replace the forbidden set constraints by the following flow constraints

$$
\begin{aligned}
& \phi_{i j}^{k}-\min \left(\tilde{r}_{i k}, \tilde{r}_{j k}\right) z_{i j} \leq 0 \quad(i, j \in V, i \neq j, \quad \forall k \in \mathcal{R}) \\
& \sum_{j \in V \backslash\{i\}} \phi_{i j}^{k}=\tilde{r}_{i k} \quad(i \in V \backslash\{n+1\}) \\
& \sum_{i \in V \backslash\{j\}} \phi_{i j}^{k}=\tilde{r}_{j k} \quad(j \in V \backslash\{0\}) \\
& 0 \leq \phi_{i j}^{k} \leq \min \left(\tilde{r}_{i k}, \tilde{r}_{j k}\right) \quad(i, j \in V, \quad i \neq n+1, \quad j \neq 0, \quad i \neq j ; \quad k \in \mathcal{R})
\end{aligned}
$$

- $O\left(|A|^{2} R\right)$ additional continuous variables
- FB : A compact formulation. [A. et al 2003]

Valid inequalities for sequencing formulations

- Relaxation of poor quality, need to generate valid inequalities
- Example 1 : Extension of valid inequalities by [Balas 85,Applegate \& Cook 1991,Dyer \& Wolsey 1990] for the disjunctive formulation of the job-shop (half-cuts, late job cuts...)

$2 S_{1}+3 S_{2} \geq 9$
- Example 2 : constraint propagation-based cutting planes [Demassey et al 2005]
- Compute conditional distances $d_{i j}^{k<1}, d_{i j}^{\mid<k}$ and $d_{i j}^{k| | l}$ by CP
- Lifted distance inequalities

$$
S_{j}-S_{i} \geq d_{i j}^{h| | I}+\left(d_{i j}^{h</}-d_{i j}^{h| |}\right) z_{h l}+\left(d_{i j}^{l<h}-d_{i j}^{h| |}\right) z_{\mid h}
$$

Outline

(2) MILP for RCPSP
(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
(4) Synthesis of theoretical and experimental results
(5) Perspectives
(3) References

Start and End Event variables

- \mathcal{E} : set of remarkable events.
- $t_{e} \geq 0$: event date : representing the start and end of at least one activity
- Start binary assignment variables $a_{i e}^{-}=1 \leftrightarrow S_{i}=t_{e}$
- End binary assignment variables $a_{i e}^{+}=1 \leftrightarrow S_{i}+p_{i}=t_{e}$
- Maximum $n+1$ events $\Longrightarrow 2(n+1)|\mathcal{E}|$ binary variables.

Extension of models proposed for machine scheduling [Lasserre and Queyranne 1994,Dauzère-Pérès and Lasserre 1995], widely used also in the process scheduling industry [Pinto and Grossmann 1995, Zapata et al 2008].

Start and End Event variables

- \mathcal{E} : set of remarkable events.
- $t_{e} \geq 0$: event date : representing the start and end of at least one activity
- Start binary assignment variables $a_{i e}^{-}=1 \leftrightarrow S_{i}=t_{e}$
- End binary assignment variables $a_{i e}^{+}=1 \leftrightarrow S_{i}+p_{i}=t_{e}$
- Maximum $n+1$ events $\Longrightarrow 2(n+1)|\mathcal{E}|$ binary variables.

Extension of models proposed for machine scheduling [Lasserre and Queyranne 1994,Dauzère-Pérès and Lasserre 1995], widely used also in the process scheduling industry [Pinto and Grossmann 1995, Zapata et al 2008].

On/Off Event variables

- \mathcal{E} : set of remarkable events.
- $t_{e} \geq 0$: event date : representing the start of at least one activity
- On/off binary variable aie $=1 \Leftrightarrow\left[S_{i}, S_{i}+p_{i}\right] \cap\left[t_{e}, t_{e}+1\right] \neq \emptyset$
- Each activity such that $a_{i e}=1$ can be assumed of length $\left[t_{e}, t_{e}+1\right]$
- $n|\mathcal{E}|$ binary variables

(OOE) Min. $C_{\text {max }}$
s. t. $\quad C_{\text {max }} \geq t_{e}+\left(\bar{a}_{i e}-\bar{a}_{i(e-1)}\right) p_{i} \quad(e \in \mathcal{E} ; i \in A)$

$$
t_{0}=0
$$

$$
t_{e+1} \geq t_{e} \quad(e \neq n-1 \in \mathcal{E})
$$

$$
t_{f} \geq t_{e}+\left(\bar{a}_{i e}-\bar{a}_{i, e-1}-\bar{a}_{i f}+\bar{a}_{i, f-1}-1\right) p_{i} \quad\left((e, f, i) \in \mathcal{E}^{2} \times A, f>e \neq 0\right)
$$

$$
\left.\sum_{e^{\prime}=0}^{e-1} \bar{a}_{i e^{\prime}} \geq e\left(1-\bar{a}_{i e}+\bar{a}_{i, e-1}\right)\right) \quad(i \in A ; e \neq 0 \in \mathcal{E})
$$

$$
\sum_{e^{\prime}=e}^{n-1} \bar{a}_{i e^{\prime}} \geq e\left(1+\bar{a}_{i e}-\bar{a}_{i, e-1}\right) \quad(i \in A ; e \neq 0 \in \mathcal{E})
$$

$$
\sum_{e \in \mathcal{E}} \overline{\mathrm{a}}_{i e} \geq 1 \quad(i \in A)
$$

$$
\bar{a}_{i e}+\sum_{e^{\prime}=0}^{e} \bar{a}_{j e^{\prime}} \leq 1+\left(1-\bar{a}_{i e}\right) e \quad(e \in \mathcal{E} ;(i, j) \in E)
$$

$$
\sum_{i=0}^{n-1} r_{i k} \bar{a}_{i e} \leq R_{k} \quad(e \in \mathcal{E} ; k \in \mathcal{R})
$$

$$
t_{e} \geq 0 \quad(e \in \mathcal{E})
$$

$$
\bar{a}_{i e} \in\{0,1\} \quad(i \in A ; e \in \mathcal{E}) \quad[\text { Koné et al. 2011] }
$$

Valid inequalities for event-based formulations

- Wanted!!

Done for the one machine problem in [Della croce et al 2014]

Outline

(2) MILP for RCPSP
(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations

4. Synthesis of theoretical and experimental results
(5) Perspectives
(6) References

Comparison of formulations : LB

instance	LCG12	\%RDDT	\%DDT(1h)	PFS(3h)	instance	LCG12	\%RDDT	\%DDT(1h)	PFS13(3h
j609_1	85	17.65\%	2.35\%		j6029_1	98	19.39\%	3.06\%	
j609_3	99	17.17\%	9.09\%		j6029_2	123	17.89\%	7.32\%	-3.25\%
j609_5	81	14.81\%	3.70\%		j6029_3	114	19.30\%	1.75\%	-3.51\%
j609_6	105	11.43\%	4.76\%		j6029_4	126	15.87\%	7.14\%	-3.17\%
j609_7	105	18.10\%	2.86\%		j6029_5	102	12.75\%	3.92\%	-2.94\%
j609_8	95	18.95\%	7.37\%		j6029_6	144	17.36\%	9.03\%	-1.39\%
j609_9	99	12.12\%	7.07\%		j6029_7	117	19.66\%	4.27\%	
j609_10	90	15.56\%	3.33\%		j6029_8	98	13.27\%	2.04\%	-9.18\%
j6013_1	105	16.19\%	1.90\%	-1.90\%	j6029_9	105	18.10\%	4.76\%	
j6013_2	103	20.39\%	1.94\%		j6029_10	111	20.72\%	1.80\%	
j6013_3	84	19.05\%	1.19\%		j6030_2	69	4.35\%	1.45\%	
j6013_4	98	20.41\%	3.06\%		j6041_3	90	16.67\%	4.44\%	
j6013_5	92	21.74\%	1.09\%		j6041_5	109	20.18\%	7.34\%	
j6013_6	91	16.48\%	1.10\%		j6041_10	108	12.04\%	2.78\%	
j6013_7	83	19.28\%	3.61\%		j6045_1	90	12.22\%	4.44\%	-1.11\%
j6013_8	115	20.00\%	3.48\%		j6045_2	134	20.90\%	11.94\%	-2.99\%
j6013_9	97	16.49\%	2.06\%		j6045_3	133	13.53\%	6.02\%	-3.76\%
j6013_10	114	24.56\%	0.88\%		j6045_4	101	15.84\%	4.95\%	-1.98\%
j6025_2	95	14.74\%	5.26\%		j6045_5	99	21.21\%	3.03\%	-2.02\%
j6025_4	106	18.87\%	8.49\%		j6045_6	132	21.97\%	21.21\%	-3.79\%
j6025_6	105	14.29\%	4.76\%		j6045_7	113	19.47\%	5.31\%	-3.54\%
j6025_7	88	15.91\%	6.82\%		j6045_8	119	15.13\%	5.04\%	-3.36\%
j6025_8	95	22.11\%	5.26\%		j6045_9	114	16.67\%	5.26\%	-4.39\%
j6025_10	107	15.89\%	6.54\%		j6045_10	102	16.67\%	3.92\%	-4.90\%

LCG12 : [Schutt et al 2013] (hybrid CP/SAT method : Lazy clause generation)
PFS13 : [Moukrim et al 2013] Preemptive feasible subset formulation solved by B\&P

Comparison of formulations : exact solving

Synthesis of theoretical and experimental results

- Time indexed formulations have the best LP relaxations with FS \succ DDT \succ DT
- Compact formulations have poor relaxation but can be the only alternative for large scheduling horizons
- Highly disjunctive instances : flow-based models
- Highly cumulative instances : event-based models
- Valid inequalities stricly necessary
- MILP vs Lazy Clause Generation
- MILP outperformed by LCG for exact solving disjunctive instances
- Competitive with LCG for lower bounds based on preemptive exact solving of FS through B\&P.
- Competitive with LCG for exact highly cumulative instances

Outline

(2) MILP for RCPSP
(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
(4) Synthesis of theoretical and experimental results
(5) Perspectives
(6) References
- Time aggregation / energetic reasoning / dual feasible functions [Carlier and Néron 2000, Kooli 2012]
- Mixed continuous/discrete models [Haït and A. 2012]
- Preprocessing [Baptiste et al 2010]
- B\&P for the non-preemptive feasible set formulations
- CG for chain decomposition models [Kimms 2001,Van den Akker et al. 2005
- Matheuristics [Palpant et al. 2004,Della croce et al 2014]
- Hybrid SAT/CP/MILP

Find x

s.t.
$\sum_{l \in I i} x_{j l}=p_{j}, \quad \forall j \in \mathcal{A}$
$x_{j l} \leq \Delta_{l}, \quad \forall j \in \mathcal{A}, \forall l \in \mathcal{I}^{j}$
$\sum_{j \in \mathcal{A}^{l}} b_{j k} x_{j l} \leq B_{k} \Delta_{l}, \quad \forall k \in \mathcal{R}, \forall l \in \mathcal{L}$

$$
\sum_{s \in \mathcal{I}^{i} / s \leq l} \frac{x_{i s}}{p_{i}} \geq \sum_{s=\tau / t_{\tau}=r_{j}}^{l} \frac{x_{j s}}{p_{j}}, \quad \forall(i, j) \in A, \forall l \in \mathcal{I}_{i}^{j}
$$

$$
x_{j l} \geq 0, \quad \forall j \in \mathcal{A}, \forall l \in \mathcal{I}^{j}
$$

Outline

(1) RCPSP
(2) MILP for RCPSP
(3) Standard and novel MILP formulations

- Pseudo-polynomial time-indexed formulations
- Extended time-indexed formulations and valid inequalities
- Compact sequencing and natural date variable formulations
- Compact event-based formulations
(9) Synthesis of theoretical and experimental results
(5) Perspectives
(6) References

In order of appearance 1/6

[Patterson 1984] Patterson J. H., A comparison of exact approaches for solving the multiple constrained resource project scheduling problem, Management Science, vol. 30, num. 7, p. 854-867, 1984
[Alvarez-Valdes and Tamarit, 1989] Alvarez-Valdéz R., Tamarit J. M., Heuristic algorithms for resource-constrained project scheduling : A review and an empirical analysis, Slowinski R., Weglarz J., Eds., Advances in project scheduling, p. 113-134, Elsevier, 1989.
[Kolisch, Sprecher and Drexl 1995] R Kolisch, A Sprecher, A Drexl, Characterization and generation of a general class of resource-constrainted project scheduling problems Management science 41 (10), 1693-1703, 1995.
[Kolisch and Sprecher 1997] Kolisch R., Sprecher A., PSPLIB - A project scheduling library, European Journal of Operational Research, vol. 96, num. 1, p. 205-216, 1997.
[Baptiste and Le Pape 2000] Baptiste P., Le Pape C., Constraint propagation and decomposition techniques for highly disjunctive and highly cumulative project scheduling problems, Constraints, vol. 5, num. 1-2, p. 119-139, 2000.
[Carlier and Néron 2000] Carlier J., NÉRON E., On Linear Lower Bounds for the Resource Constrained Project Scheduling Problem, European Journal of Operational Research, vol. 149, p. 314-324, 2003.
[Queyranne and Shulz 1994] Queyranne M., Schulz A., Polyhedral approaches to machine scheduling, Report num. 408/1994, Technischen Universität Berlin, 1994.
[Pritsker et al. 1969] Pritsker A. A., Watters L. J., Wolfe P. M., Multi-project scheduling with limited resources : a zero-one programming approach, Management Science, vol. 16, p. 93-108, 1969.

In order of appearance 2/6

[Christofides et al. 1987] Christofides N., Alvarez-Valdéz R., Tamarit J. M., Project scheduling with resource constraints : a branch and bound approach, European Journal of Operational Research, vol. 29, num. 3, p. 262-273, 1987.
[Möhring et al. 2003] Möhring R., Schulz A., Stork F., Uetz M., Solving project scheduling problems by minimum cut computations, Management Science, vol. 49, num. 3, p. 330-350, 2003.
[Pritsker and Watters 1968] Pritsker A, Watters L. A zero-one programming approach to scheduling with limited resources. The RAND Corporation, RM-5561-PR, 1968.
[Bianco and Caramia 2013] Bianco L and Caramia M. A new formulation for the project scheduling problem under limited resources. Flexible Services and Manufacturing Journal 25 :6-24, 2013.
[A. 2013] C. Artigues. A note on time-indexed formulations for the resource-constrained project scheduling problem. LAAS report 13206, Toulouse, France, 2013.
[Lawler 1964] E. L. Lawler. On scheduling problems with deferral costs. Management Science, 11 :280-288, 1964.
[Kaplan 1998] Kaplan LA. Resource-constrained project scheduling with preemption of jobs.
Unpublished PhD Dissertation, University of Michigan, Kapur, KC, 1998.
[Klein 2000] Klein R. Scheduling of resource-constrained projects. Kluwer Academic Publishers, Dordrecht. 2000.
[Hardin et al. 2008] Hardin JR, Nemhauser GL and Savelsbergh MW. Strong valid inequalities for the resource-constrained scheduling problem with uniform resource requirements. Discrete Optimization 5(1) :19-35, 2008.

In order of appearance 3/6

[de Sousa and Wolsey 1997] de Souza CC, Wolsey LA. Scheduling projects with labour constraints. Relatório Técnico IC-P7-22. Instituto de Computação, Universidade Estadual de Campinas, 1997.
[Cavalcante et al. 2001] Cavalcante CCB, de Souza CC , Savelsbergh MWP, Wang Y, Wolsey
LA. Scheduling projects with labor constraints. Discrete Applied Mathematics 112(1-3) :27-52, 2001.
[Baptiste and Demassey 2004] Baptiste P, Demassey S. Tight LP bounds for resource constrained project scheduling. OR Spectrum 26 (2), 251-262, 2004.
[Demassey et al. 2005] Demassey S, Artigues C, Michelon P. Constraint propagation-based cutting planes : An application to the resource-constrained project scheduling problem.
INFORMS Journal on Computing 17(1) :52-65, 2005.
[Mingozzi et al. 1998] Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L. An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation.
Manage Science 44 :714-729, 1998.
[Brucker and Knust 2000] Brucker P., Knust S. A linear programming and constraint propagation-based lower bound for the RCPSP, European Journal of Operational Research, vol. 127, p. 355-362, 2000.
[Demassey et al. 2004] S. Demassey, C. Artigues, P. Baptiste, and P. Michelon. Lagrangean relaxation-based lower bounds for the RCPSP. In 8th International Workshop on Project Management and Scheduling, pages 76-79, Nancy, France, 2004.
[Moukrim et al 2013] A Moukrim, A Quilliot, H Toussaint : Branch and Price for Preemptive
Resource Constrained Project Scheduling Problem Based on Interval Orders in Precedence Graphs. FedCSIS 2013: 321-328, 2013.

In order of appearance 4/6

[Koné et al 2011] O. Koné, C. Artigues, P. Lopez, and M. Mongeau. Event-based MILP models for resource-constrained project scheduling problems. Computers and Operations Research, 38(1) :3-13, 2011.
[Alvarez-Valdés and Tamarit 1993] Alvarez-Valdéz R., Tamarit J. M., The project scheduling polyhedron : dimension, facets and lifting theorems, European Journal of Operational Research, vol. 67, num. 2, p. 204-220, 1993.
[Balas 1985] Balas E., On the facial structure of scheduling polyhedra, Mathematical Programming Study, vol. 24, p. 179-218, 1985.
[A. et al 2003] C. Artigues, P. Michelon, and S. Reusser. Insertion techniques for static and dynamic resource constrained project scheduling. European Journal of Operational Research, 149(2) :249-267, 2003.
[Applegate and Cook 1991] Applegate D., Cook W., A computational study of job-shop scheduling, ORSA Journal on Computing, vol. 3, num. 2, p. 149-156, 1991.
[Dyer and Wolsey 1990] Dyer M. E., Wolsey L. A., Formulating the single machine sequencing problem with release dates as a mixed integer program, Discrete Applied Mathematics, vol. 26, p. 255-270, 1990.
[Lasserre and Queyranne 1992] J.-B. Lasserre and M. Queyranne. Generic scheduling polyhedra and a new mixed-integer formulation for single-machine scheduling. In E. Balas, G. Cornuéjols, and R. Kannan, editors, Integer Programming and Combinatorial Optimization, pages 136-149. Carnegie Mellon University, 1992. Proceedings of the 2nd International IPCO Conference.

In order of appearance 5/6

[Dauzère-Pérès and Lasserre 1995] S. Dauzeère-Pérès and J.-B. Lasserre. A new mixed-integer formulation of the flow-shop sequencing problem. Paper presented at the Second Workshop on Models and Algorithms for Planning and Scheduling Problems, Wernigerode, Germany, May 1995.
[Pinto and Grossmann 1995] Pinto, J. M. ; Grossmann, I. E. A. Continuous time mixed integer linear programming model for short-term scheduling of multistage batch plants. Industrial \& Engineering Chemistry Research 34 (9), 3037-3051, 1995.
[Zapata el al 2008] J. C. Zapata, B. M. Hodge, and G. V. Reklaitis. The multimode resource constrained multiproject scheduling problem : Alternative formulations, AIChE Journal, 54(8) : 2101-2119, 2008.
[Della Croce et al 2014] F Della Croce, F Salassa, V T'Kindt. A hybrid heuristic approach for single machine scheduling with release times. Computers \& OR 45:7-11, 2014. [Schutt et al 2013] A. Schutt, T. Feydy, P. J. Stuckey. Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint. CPAIOR, 234-250, 2013 [Laborie 2005] Laborie P., Complete MCS-Based Search : Application to Resource Constrained Project Scheduling. IJCAI,181-186, 2005.
[Kooli 2012] Kooli A., Exact and Heuristic Methods for the Resource Constrained Project Scheduling Problem, PhD thesis, Unversity of Tunis, 2012.
[Haït and A. 2011] A. Haït and C. Artigues. A hybrid CP/MILP method for scheduling with energy costs. European Journal of Industrial Engineering, 5(4) :471-489, 2011
[Baptiste et al 2010] P. Baptiste, Federico Della Croce, Andrea Grosso, Vincent T'Kindt : Sequencing a single machine with due dates and deadlines : an ILP-based approach to solve very large instances. J. Scheduling 13(1) : 39-47, 2010.

In order of appearance 6/6

[Kimms 2001] A Kimms Mathematical programming and financial objectives for scheduling projects. Kluwer Academic Publishers, Dordrecht
[van den Akker et al 2007] J. M. van den Akker, Guido Diepen, J. A. Hoogeveen : A Column Generation Based Destructive Lower Bound for Resource Constrained Project Scheduling Problems. CPAIOR, 376-390, 2007
[Palpant et al 2004] M Palpant, C Artigues, P Michelon. LSSPER: Solving the
Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search. Annals OR 131(1-4), 237-257, 2004

