
Recent developments in mixed integer linear
programming formulations for the

resource-constrained project scheduling problem

Christian Artigues

LAAS - CNRS & Université de Toulouse, France

artigues@laas.fr

PMS 2014 - München

Christian Artigues RCPSP and MILP PMS 2014, Munich 1 / 59



RCPSP

Outline

1 RCPSP

2 MILP for RCPSP

3 Standard and novel MILP formulations
Pseudo-polynomial time-indexed formulations
Extended time-indexed formulations and valid inequalities
Compact sequencing and natural date variable formulations
Compact event-based formulations

4 Synthesis of theoretical and experimental results

5 Perspectives

6 References

Christian Artigues RCPSP and MILP PMS 2014, Munich 2 / 59



RCPSP

The Resource-Constrained Project Scheduling
Problem (RCPSP)

A central problem in many industrial applications
Project management, manufacturing, process industry, parallel
processor architectures

The “standard” RCPSP : An NP-hard problem posing a
computational challenge since the the eighties

Benchmark instances [Patterson 1984], [Alvarez-Valdes and
Tamarit 1989], [Kolisch, Sprecher and Drexl 1995,1997]
(PSPLIB), [Baptiste and Le Pape 2000], [Carlier and Néron
2003].
686 citations on PSPLIP (Google Scholar) 1/1/2014
48 (out of 480) still open instances with 60 activities and 4
resources from PSPLIB
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RCPSP

The RCPSP : data
R set of resources, limited constant availability Bk ≥ 0,

A set of activities, duration pi ≥ 0, resource requirement bik ≥ 0 on
each resource k,

E set of precedence constraints (i , j), i , j ∈ A, i < j

T time interval (scheduling horizon)
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|R| = 1,B = 4, T = [0, 30)
i pi bi
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1
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RCPSP

The RCPSP : variables, objective and constraints

Si ≥ 0 start time of activity i
Cmax makespan or total project duration

RCPSP (conceptual formulation)
minCmax = max

i∈A
Si + pi

s.t.



Sj ≥ Si + pi (i , j) ∈ E Precedence constraints
∑

i∈A(t)
bik ≤ Bk t ∈ T , k ∈ R Resource constraints

Sj ≥ 0 i ∈ A

where A(t) = {j ∈ A|t ∈ [Sj , Sj + pj)}, ∀t ∈ T
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RCPSP

The RCPSP : solution example
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|R| = 1,B = 4, T = [0, 30)

i pi bi
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1
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RCPSP

The RCPSP : complexity, variants and methods

Strongly NP-hard
Generalizes single/parallel machine, X-shop problems
Many relevant variants

Other objectives : min
∑

i∈A wi(Si + pi)
Generalized precedence constraints Sj ≥ Si + lij
Setup times, multiple modes, non renewable resources, . . .
Uncertainty pi ∈ [pmin

i , pmax
i ], pi ∼ N (µi , σ

2
i )

Exact and heuristic Methods
Heuristics and metaheuristics
Dedicated branch and bound methods
Specific lower bounds
Constraint programming (CP) or hybrid SAT/CP
Mixed Integer Linear Programming (MILP)

Christian Artigues RCPSP and MILP PMS 2014, Munich 7 / 59



RCPSP

The RCPSP : pre-processing and trivial bounds

Upper bounds |T | : parallel or serial list scheduling heuristics
CPM lower bound : longest 0–n + 1 path (16)
Resource lower bound maxk∈R

∑
i∈A bik ∗ pi/Bk (16.5 → 17)

Reduce time windows [ESi , LSi ] by constraint propagation :
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Temporal constraint
propagation TW
Temporal + Resource
constraint propagation TW+

UB = 24 (parallel SGS / Min LFT rule)
i pi bi TW TW+

1 3 2 [0, 10] [0, 10]
2 5 3 [0, 8] [0, 6]
3 1 3 [0, 12] [0, 12]
4 3 1 [3, 13] [3, 13]
5 2 1 [5, 13] [6, 13]
6 4 2 [6, 16] [8, 16]
7 5 3 [7, 15] [9, 15]
8 6 1 [7, 18] [8, 18]
9 4 1 [7, 20] [8, 20]
10 4 1 [12, 20] [18, 20]
11 0 0 [16, 24] [22, 24]
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MILP for RCPSP

The scheduling polyhedron

Example (release dates ri , deadlines d̃i)
|A| = 2, |R| = 1, b1 = b2 = B = 1
p1 = 3, p2 = 2, r1 = 0, r2 = 1, d̃1 = 9, d̃2 = 7).
Objective function f (S) = S1 + S2 + p1 + p2.

S1

S2 S
conv(S)

(P) can be solved by LP on conv(S)

(P)minS1 + S2+5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 ≥ S1 + 3 ∨ S1 ≥ S2 + 2

0 1 2 3 4 5 6

J1 J2
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MILP for RCPSP

MILP for RCPSP : principle

Let S, c S and S denote the start time vector,the linear objective and
the feasible set of the RCPSP.

Let x denote a vector of additional p binary variables.

The MILP minS,x{c S|M S + N x ≤ q,S ≥ 0, x ∈ {0, 1}p}
is a correct formulation for the RCPSP if we have

S = {S ≥ 0|∃x ∈ {0, 1}p,M S + N x ≤ q}

S can be searched by branch and bound (and cut)
Branching : tree search on x
Bounding : solve at each node the LP relaxation by considering
unfixed xq ∈ [0, 1] (and possibly incorporating valid inequalities)

The bound is tight if the relaxed set
S̃ = {S ≥ 0|∃x ∈ [0, 1]p,M S + N x ≤ q} is close to conv(S) .
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MILP for RCPSP

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P)min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}

S1

S2 S

S̃
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MILP for RCPSP

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound
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S2 ≤ 5

S2 − S1 + 8x ≥ 3
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S1

S2 S

S̃

The projection of the MILP
feasible set on S maps S
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MILP for RCPSP

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P)min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}

S1

S2 S
S̃

Root node LB=6
issue x = 0.5 always feasible
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MILP for RCPSP

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P)min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}
S1

S2 S
S̃

Left node x = 1, obj=9
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MILP for RCPSP

MILP for RCPSP : example and issues

Design a MIP formulation for the scheduling problem
Solve by branch-and-bound

(P)min S1 + S2 + 5
S1 ≥ 0
S2 ≥ 1
S1 ≤ 6
S2 ≤ 5

S2 − S1 + 8x ≥ 3
S1 − S2 + 7(1− x) ≥ 2

x ∈ {0, 1}
S1

S2 S
S̃

Right node x = 0, obj=8
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MILP for RCPSP

MILP for RCPSP : tradeoffs

Designing pseudo-polynomial or extended formulations
Pros : obtain better LP relaxations, early node pruning in the
search tree
Cons : increase of the MILP size (number of binary variables,
constraints) towards pseudo-polynomial and even exponential
sizes (need of column and cut generation techniques)

Design compact formulations (polynomial size)
Pros : fast node evaluation, mode nodes explored
Cons : need to generate cuts
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MILP for RCPSP

MILP for RCPSP : families of formulations

[Queyranne and Schulz 1994] classify the scheduling MILP for
scheduling according to the type of decision variables, each yielding
different families of valid inequalities.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3
4

5
6 7

8

9 10

1 Time-indexed variables
2 Linear-ordering variables → Strict-order or sequencing variables
3 Positional dates and assignment variables → Event-based

formulations
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

Time-indexed pulse variables

For integer data, S can be restricted to its integer vectors S int.

“Pulse” binary variable xit = 1⇔ Si = t, for t ∈ T = T ∩ N

Pseudo-polynomial number of variables |A||T |
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

The aggregated time-indexed formulation
Si =

∑
t∈T t xit

A(t) = {i ∈ A|∃τ ∈ {t − pi + 1, . . . , t}, xiτ = 1}

(DT )Min.
∑
t∈T

txn+1,t

s. t.
∑
t∈T

txjt −
∑
t∈H

txit ≥ pi (i , j) ∈ E

∑
i∈V

t∑
τ=t−pi+1

bikxiτ ≤ Bk t ∈ T ; k ∈ R
∑
t∈T

xit = 1 i ∈ A

xit ∈ {0, 1} i ∈ A

[Pritsker et al. 1969]
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

Back to the small example : a better relaxation...
(P)minS1 + S2 + 5

S1 = x1,1 + 2x1,2 + 3x1,3 + 4x1,4 + 5x1,5 + 6x1,6

S2 = x2,1 + 2x2,2 + 3x2,3 + 4x2,4 + 5x2,5

x1,0 + x1,1 + x1,2 + x1,3 + x1,4 + x1,5 + x1,6 = 1
x2,1 + x2,2 + x2,3 + x2,4 + x2,5 = 1

x1,0 + x1,1 + x2,1 ≤ 1
x2,1 + x2,2 + x1,0 + x1,1 + x1,2 ≤ 1
x2,2 + x2,3 + x1,1 + x1,2 + x1,3 ≤ 1
x2,3 + x2,4 + x1,2 + x1,3 + x1,4 ≤ 1
x2,4 + x2,5 + x1,3 + x1,4 + x1,5 ≤ 1

x2,5 + x1,4 + x1,5 + x1,6 ≤ 1
x1,t ∈ {0, 1} t ∈ {0, . . ., 6}
x2,t ∈ {0, 1} t ∈ {1, . . ., 5}

S1

S2 S
Sint

S̃

In this example S̃ = conv(S) and the relaxation is tight...
... but we need 11 binary variables for a 2-task example

Christian Artigues RCPSP and MILP PMS 2014, Munich 19 / 59



Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

Back to the small example : a better relaxation...
(P)minS1 + S2 + 5

S1 = x1,1 + 2x1,2 + 3x1,3 + 4x1,4 + 5x1,5 + 6x1,6

S2 = x2,1 + 2x2,2 + 3x2,3 + 4x2,4 + 5x2,5

x1,0 + x1,1 + x1,2 + x1,3 + x1,4 + x1,5 + x1,6 = 1
x2,1 + x2,2 + x2,3 + x2,4 + x2,5 = 1

x1,0 + x1,1 + x2,1 ≤ 1
x2,1 + x2,2 + x1,0 + x1,1 + x1,2 ≤ 1
x2,2 + x2,3 + x1,1 + x1,2 + x1,3 ≤ 1
x2,3 + x2,4 + x1,2 + x1,3 + x1,4 ≤ 1
x2,4 + x2,5 + x1,3 + x1,4 + x1,5 ≤ 1

x2,5 + x1,4 + x1,5 + x1,6 ≤ 1
x1,t ∈ {0, 1} t ∈ {0, . . ., 6}
x2,t ∈ {0, 1} t ∈ {1, . . ., 5}

S1

S2 S
Sint

S̃

In this example S̃ = conv(S) and the relaxation is tight...

... but we need 11 binary variables for a 2-task example

Christian Artigues RCPSP and MILP PMS 2014, Munich 19 / 59
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

... but not so good in general
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|R| = 1,B = 4, T = [0, 30)

i pi bi
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bound = 16.46 (17) (not better than trivial Res. Bount)
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

The disaggregated time-indexed formulation
(DDT)
The model can be reinforced by disaggregation of the precedence
constraints, i.e. replacing precedence constraints by

t−pi∑
τ=0

xiτ −
t∑

τ=0
xjτ ≥ 0 (i , j) ∈ E ; t ∈ T

[Christofides et al. 1997]
Modeling the logical relation : Sj ≤ t ⇒ Si ≤ t − pi

The constraint matrix without resource constraints is totally
unimodular.
Total unimodularity preserved by lagrangean relaxation of the
resource constraints Also efficiently computable by a max flow
algorithm [Möhring et al. 2003]
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

DDT : relaxation quality
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|R| = 1,B = 4, T = [0, 30)

i pi bi
1 3 2
2 5 3
3 1 3
4 3 1
5 2 1
6 4 2
7 5 3
8 6 1
9 4 1
10 4 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bound = 17.14 (18) Strictly better than trivial bounds
Christian Artigues RCPSP and MILP PMS 2014, Munich 22 / 59



Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

Time-indexed step variables

“Step” binary variable ξit = 1⇔ Si ≤ t, for t ∈ T

Introduced by [Pritsker and Watters 1968] rediscovered several
times... [citations removed]
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

Time-indexed formulations with step variables
The time-indexed formulation with step variable (SDDT) can be
obtained by (DDT) by the following transformation :

ξit =
t∑

τ=0
xit

Conversely, xit = ξit − ξit−1

This is a non-singular transformation (NST)
Formulations that can be obtained from each other by a NST
are strictly equivalent. They have the same S̃ and the same
relaxation value.
[Bianco and Caramia 2013] present a variant of the step
formulation based on variables ξ′it = 1⇔ Si + pi ≤ t. We can
shown that it is equivalent to (SDDT) by NST [A. 2013|.
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

On/off time-indexed step variables
“On/off” binary variable

µit = 1⇔ t ∈ [Si , Si + pi [

Introduced by [Lawler 1964, Kaplan 1998] for preemptive problems
and [Klein, 2000] for the RCPSP
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Standard and novel MILP formulations Pseudo-polynomial time-indexed formulations

Time-indexed formulations with on/off variables

Consider the following non singular transformation :
µit =

∑t
τ=t−pi+1 xiτ

xit =
∑bt/pic

k=0 µi ,t−kpi −
∑b(t−1)/pic

k=0 µi ,t−kpi−1

[A. 2013] Applying the transformation yields a time-indexed
formulations with on/off variables OODDT equivalent to DDT
and tighter than that of [Klein 2000].
Many “new” formulations presented in the litterature are in fact
weaker than or equivalent to DDT.
Need to be distinguished from actual cutting planes or extended
formulations
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities

Extended formulations

Formulation having better relaxations...
... with an exponential number of constraints and/or variables
Need to use cut and/or column generation techniques

Small example again. SE dominant set of earliest schedules Let xs = 1 iff
schedule Ss = SE is selected. Si =

∑
s∈SE Ss

i xs

0 1 2 3 4 5 6 0 1 2 3 4 5 6
1 2

∑
Ci = 8 2 1

∑
Ci = 9S1 S2

minS1 + S2 + 5
S1 = 3x2

S2 = 3x1 + x2
x1 + x2 = 1

x1, x2 ∈ {0, 1}

S1

S2 S
S̃
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities

Forbidden sets

Minimal forbidden set (MFS) F : a minimal set of activities that
cannot be scheduled in parallel :∑

i∈F bik > Bk and ∀j ∈ C ,∑i∈F\{j} bik ≤ Bk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3
4

5
6 7

8

9 10

F = {{1, 2}, {1, 3}, {2, 3}, . . . , {7, 8, 9}, . . .}
There is in general an exponential number of MFS.
Can be reduced by excluding MFS having two activities with a
precedence relation or non intersecting time windows.
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities

Valid inequalities

Forbidden set-based valid inequalities [Hardin et al 2008]
Basic inequality :

∑
i∈A

∑t
s=t−pi+1 xis ≤ |F | − 1, ∀F ∈ F

The resource constraints can be replaced by this set of
inequalities → extended formulation
A more general family of inequalities : extension to an interval
of length v

∑
i∈F\{j}

t∑
s=t−pi+1+v

xis +
t+v∑

s=t−pj+1
xjs ≤ |F | − 1 ∀F ∈ F

Lifting procedure and separation heuristic

other valid inequalities [Christofides et al. 1987, de Sousa and Wolsey
1997, Cavalcante et al. 2001, Baptiste and Demassey 2004,
Demassey et al 2005]
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities

Feasible subsets

Feasible subset P : a set of activities that can be scheduled in
parallel :∑

i∈P bik ≤ Bk and (i , j) 6∈ TA and
[ESi , LSi + pi ] ∩ [ESj , LSj + pj ] 6= ∅

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3
4
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6 7
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9 10

P = {{1}, {2}, ..., {10}, {1, 5}, {2, 4}, . . . , }
There is in general an exponential number of FS.
a schedule : an assignment of feasible subset to each time period
1–2 : {1} ; 3–5 : {2, 4} ; 6,7 : {2} ; 8 : {3} ; 9,10 : {5, 6} ; . . .
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities

The feasible subset-based formulation (FS)

obtained from (DDT) by replacing the resource constraints by

s. t.
∑

P∈Pi

∑
t∈T

yPt = pi i ∈ A, pi ≥ 1
∑
P∈P

yPt ≤ 1 t ∈ T

x t
i −

∑
P∈Pi

yPt −
∑

P∈Pi

yP,t−1 ≥ 0 i ∈ A; t ∈ T

yAt ∈ {0, 1} P ∈ P ; t ∈ ∩i∈P{ESi , . . . , LSi}

where Pi ⊆ P is the set of all feasible subsets that contain
activity i .
[Mingozzi et al 1998]
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities

Lower bounds based on the feasible subset-based
formulation

Weighted Node packing combinatorial bound issued from the
dual of the preemptive relaxation [Mingozzi et al. 1998]
Destructive preemptive relaxation solved by constraint
propagation and column generation or lagrangian relaxation
[Brucker and Knust 2000, Demassey et al 2004, Baptiste and
Demassey 2004]
Preemptive FS solved by branch and price. [Moukrim et al. 2013]
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Standard and novel MILP formulations Extended time-indexed formulations and valid inequalities

Limits of time-indexed formulations

1 Equivalent relaxations does not mean equivalent behaviour of
the MILP solver for obtaining solutions

[Bianco and Caramia 2013] show that the ξ′it formulation
outperforms others in terms of integer solving

2 Even weaker relaxations may yield better integer solutions
Well-known that (DT) formulation may also perform better
than (DDT) formulation for integer solving.

3 Time-indexed formulation cannot be used for problems where
large horizons are needed

Some examples with 15 activities are out of reach of
time-indexed formulaiton [Kone et al. 2011]

Need of compact and/or hybrid formulations
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Standard and novel MILP formulations Compact sequencing and natural date variable formulations

Sequencing or strict ordering variable
Principle : adding precedence constraints such that all resource
conflicts are resolved
Any schedule satisfying these new precedence constraints is
feasible
Sequencing variable zij = 1⇔ Sj ≥ Si + pi
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Standard and novel MILP formulations Compact sequencing and natural date variable formulations

A first formulation based on forbidden sets
The set of additional precedence constraints has to “destroy” all forbidden
sets.

Min. Sn+1

s. t. zij + zji ≤ 1 i , j ∈ V , i < j
zij + zjh − zih ≤ 1 i , j , h ∈ V , i 6= j 6= h)
zij = 1 (i , j) ∈ E
Sj − Si + (1−Mij)zij ≥ pi i , j ∈ V , i 6= j∑
i ,j∈F ,i 6=j

zij ≥ 1 F ∈ F

zij ∈ {0, 1} i , j ∈ V , i 6= j

[Alvarez-Valdés and Tamarit 1993]
Extension of the disjunctive formulation for the job-shop problem [Balas
1985] with an exponential number of constraints
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Resource flow variables
φk

ij ≥ 0 : numbers of units of resource k transferred from i to j
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Standard and novel MILP formulations Compact sequencing and natural date variable formulations

A formulation based on resource flows

Replace the forbidden set constraints by the following flow
constraints

φk
ij −min(r̃ik , r̃jk)zij ≤ 0 (i , j ∈ V , i 6= j , ∀k ∈ R)∑

j∈V\{i}
φk

ij = r̃ik (i ∈ V \ {n + 1})
∑

i∈V\{j}
φk

ij = r̃jk (j ∈ V \ {0})

0 ≤ φk
ij ≤ min(r̃ik , r̃jk) (i , j ∈ V , i 6=n+1, j 6=0, i 6= j ; k ∈ R)

O(|A|2R) additional continuous variables
FB : A compact formulation. [A. et al 2003]

Christian Artigues RCPSP and MILP PMS 2014, Munich 39 / 59



Standard and novel MILP formulations Compact sequencing and natural date variable formulations

Valid inequalities for sequencing formulations

Relaxation of poor quality, need to generate
valid inequalities
Example 1 : Extension of valid inequalities
by [Balas 85,Applegate & Cook 1991,Dyer &
Wolsey 1990] for the disjunctive formulation
of the job-shop (half-cuts, late job cuts...)

S1

S2

2S1 + 3S2 ≥ 9

Example 2 : constraint propagation-based cutting planes
[Demassey et al 2005]

Compute conditional distances dk≺l
ij , d l≺k

ij and dk||l
ij by CP

Lifted distance inequalities

Sj − Si ≥ dh||l
ij + (dh≺l

ij − dh||l
ij )zhl + (d l≺h

ij − dh||l
ij )zlh
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Standard and novel MILP formulations Compact event-based formulations

Start and End Event variables
E : set of remarkable events.
te ≥ 0 : event date : representing the start and end of at least
one activity
Start binary assignment variables a−ie = 1↔ Si = te
End binary assignment variables a+

ie = 1↔ Si + pi = te
Maximum n + 1 events =⇒ 2(n + 1)|E| binary variables.
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Extension of models proposed for machine scheduling [Lasserre and
Queyranne 1994,Dauzère-Pérès and Lasserre 1995], widely used also in
the process scheduling industry [Pinto and Grossmann 1995, Zapata et
al 2008].
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Standard and novel MILP formulations Compact event-based formulations

On/Off Event variables

E : set of remarkable events.
te ≥ 0 : event date : representing the start of at least one activity
On/off binary variable aie = 1⇔ [Si , Si + pi ] ∩ [te, te + 1] 6= ∅
Each activity such that aie = 1 can be assumed of length
[te, te + 1]
n|E| binary variables
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Standard and novel MILP formulations Compact event-based formulations

(OOE) Min. Cmax

s. t. Cmax ≥ te + (aie − ai(e−1))pi (e ∈ E; i ∈ A)

t0 = 0
te+1 ≥ te (e 6= n − 1 ∈ E)

tf ≥ te + (aie − ai,e−1 − aif + ai,f−1 − 1)pi ((e, f , i) ∈ E2 × A, f > e 6= 0)
e−1∑
e′=0

aie′ ≥ e(1− aie + ai,e−1)) (i ∈ A; e 6= 0 ∈ E)

n−1∑
e′=e

aie′ ≥ e(1+ aie − ai,e−1) (i ∈ A; e 6= 0 ∈ E)∑
e∈E

aie ≥ 1 (i ∈ A)

aie +

e∑
e′=0

aje′ ≤ 1+ (1− aie)e (e ∈ E; (i , j) ∈ E)

n−1∑
i=0

rikaie ≤ Rk (e ∈ E; k ∈ R)

te ≥ 0 (e ∈ E)
aie ∈ {0, 1} (i ∈ A; e ∈ E) [Koné et al. 2011]
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Valid inequalities for event-based formulations

Wanted ! !
Done for the one machine problem in [Della croce et al 2014]
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Synthesis of theoretical and experimental results

Comparison of formulations : LB
instance LCG12 %RDDT %DDT(1h) PFS(3h)
j609_1 85 17.65% 2.35%
j609_3 99 17.17% 9.09%
j609_5 81 14.81% 3.70%
j609_6 105 11.43% 4.76%
j609_7 105 18.10% 2.86%
j609_8 95 18.95% 7.37%
j609_9 99 12.12% 7.07%
j609_10 90 15.56% 3.33%
j6013_1 105 16.19% 1.90% -1.90%
j6013_2 103 20.39% 1.94%
j6013_3 84 19.05% 1.19%
j6013_4 98 20.41% 3.06%
j6013_5 92 21.74% 1.09%
j6013_6 91 16.48% 1.10%
j6013_7 83 19.28% 3.61%
j6013_8 115 20.00% 3.48%
j6013_9 97 16.49% 2.06%
j6013_10 114 24.56% 0.88%
j6025_2 95 14.74% 5.26%
j6025_4 106 18.87% 8.49%
j6025_6 105 14.29% 4.76%
j6025_7 88 15.91% 6.82%
j6025_8 95 22.11% 5.26%
j6025_10 107 15.89% 6.54%

instance LCG12 %RDDT %DDT(1h) PFS13(3h)
j6029_1 98 19.39% 3.06%
j6029_2 123 17.89% 7.32% -3.25%
j6029_3 114 19.30% 1.75% -3.51%
j6029_4 126 15.87% 7.14% -3.17%
j6029_5 102 12.75% 3.92% -2.94%
j6029_6 144 17.36% 9.03% -1.39%
j6029_7 117 19.66% 4.27%
j6029_8 98 13.27% 2.04% -9.18%
j6029_9 105 18.10% 4.76%
j6029_10 111 20.72% 1.80%
j6030_2 69 4.35% 1.45%
j6041_3 90 16.67% 4.44%
j6041_5 109 20.18% 7.34%
j6041_10 108 12.04% 2.78%
j6045_1 90 12.22% 4.44% -1.11%
j6045_2 134 20.90% 11.94% -2.99%
j6045_3 133 13.53% 6.02% -3.76%
j6045_4 101 15.84% 4.95% -1.98%
j6045_5 99 21.21% 3.03% -2.02%
j6045_6 132 21.97% 21.21% -3.79%
j6045_7 113 19.47% 5.31% -3.54%
j6045_8 119 15.13% 5.04% -3.36%
j6045_9 114 16.67% 5.26% -4.39%
j6045_10 102 16.67% 3.92% -4.90%

LCG12 : [Schutt et al 2013] (hybrid CP/SAT method : Lazy clause generation)

PFS13 : [Moukrim et al 2013] Preemptive feasible subset formulation solved by B&P
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Comparison of formulations : exact solving

MCS [Laborie 2005] (MFS-based CP)

LCG [Schutt et al 2013]

KSD30 PACK BL KSD15_d PACK_d
LCG 100 70.91 100 100 67.27
MCS 82 25 100 100 38
MIP 97 76 100 94 18

(DDT) (DDT) (DDT) (FB) (OOE)

KSD30 “highly disjunctive” instances
PACK,BL “highly cumulative” instances
KSD15_d : first 15 activities of KSD30 with
modified durations
PACK_d : PACK instances with modified durations
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Synthesis of theoretical and experimental results

Synthesis of theoretical and experimental results

Time indexed formulations have the best LP relaxations with
FS�DDT�DT
Compact formulations have poor relaxation but can be the only
alternative for large scheduling horizons

Highly disjunctive instances : flow-based models
Highly cumulative instances : event-based models
Valid inequalities stricly necessary

MILP vs Lazy Clause Generation
MILP outperformed by LCG for exact solving disjunctive
instances
Competitive with LCG for lower bounds based on preemptive
exact solving of FS through B&P.
Competitive with LCG for exact highly cumulative instances
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Perspectives

Time aggregation / energetic reasoning
/ dual feasible functions [Carlier and
Néron 2000, Kooli 2012]

Mixed continuous/discrete models
[Haït and A. 2012]

Preprocessing [Baptiste et al 2010]

B&P for the non-preemptive feasible
set formulations

CG for chain decomposition models
[Kimms 2001,Van den Akker et al.
2005

Matheuristics [Palpant et al.
2004,Della croce et al 2014]

Hybrid SAT/CP/MILP
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