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Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Wolfram Volk
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Der höchste Lohn für unsere Bemühungen ist nicht das,

was wir dafür bekommen, sondern das, was wir dadurch werden.

The highest reward for man’s toil is not what he gets for it,

but what he becomes by it.

John Ruskin (1819-1900)





Abstract

Thermodynamics is a fundamental discipline of science and engineering, where the relation

and interaction between the deformation of a body and the corresponding temperature state are

investigated. The target application to rocket nozzles describes a complex thermo-fluid-structure

interaction (TFSI) problem. Challenging features of this particular problem type concern extreme

temperatures and temperature gradients which are introduced into the very thin structure of the

rocket nozzle due to combustion and cooling. Furthermore, high Mach and Reynolds numbers

as well as complex shock-boundary-layer interactions have to be considered. As a consequence

of cyclic loading, creep and chemical damage, the so-called dog-house effect can occur. The

dog-house effect is a complex cracking phenomenon which is deemed responsible for control

loss and therefore failure of an Ariane 5 ECA launcher in the year 2002.

For advanced design of future rocket nozzles, improved understanding of the TFSI problem

is essential. Since it is extremely complicated to reproduce the actual environment of a rocket in

an experimental setup, computer simulations play an important role.

To enable a realistic description of the deformation behaviour in the flexible rocket nozzle

structure under large deformations and the aforementioned thermomechanical loadings, in this

thesis, a comprehensive numerical model for the analysis of the challenging volume-coupled

problem of thermo-structure interaction (TSI) is developed. Since the simulation approach can

only be verified with experiments of model scenarios and since it is a priori not clear what prop-

erty is relevant, the present TSI computational approach is aimed at avoiding all simplifications

and assumptions which are not mandatory and whose influence is not completely clear with re-

spect to the target application. Thus, full coupling is taken into account, i.e. the solution of the

displacement field depends on the temperature field and vice versa. Additionally, all coupling

terms arising in the target system are considered.

The proposed volume-coupled TSI model is based on the finite element method for structural

and thermal field, yielding separate discretisations. Various temperature-dependent, isotropic,

elastic as well as elastoplastic material models for small and finite strains can be applied, which

are capable of incorporating the effect of the highly elevated temperatures predominating in

rocket nozzles. Furthermore, first steps towards including ductile damage into the computational

model are accomplished using Lemaitre’s material model.

To solve fully coupled thermomechanical systems, both partitioned and monolithic coupling

algorithms are conceivable. In the literature, usually partitioned algorithms are considered, hence

in this thesis different loosely and strongly coupled partitioned schemes, possibly including ac-

celeration techniques, as e.g. the Aitken ∆2 method, are established. Moreover, motivated by

the excellent performance of monolithic schemes for fluid-structure interaction problems in Gee

et al. [47], a novel monolithic Newton-Krylov scheme with problem-specific block Gauss-Seidel

preconditioner and algebraic multigrid methods is developed for the TSI problem. It is shown

that both partitioned and monolithic algorithms provide a solution for TSI problems. However,

for several problem configurations, monolithic schemes exhibit improved robustness compared

to partitioned schemes and enable the handling of a broader spectrum of physical parameters.

The proposed model is tested for various meaningful numerical examples. They demonstrate

that the computational method is robust and provides accurate results. Among others, realis-

tic configurations with complex three-dimensional geometries and large numbers of degrees of

freedom are presented.
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In summary, the developed computational model enables an efficient and robust solution of a

wide range of TSI applications and establishes an important, reliable and well-validated building

block for complex multiphysics simulations, such as the overall TFSI model.
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Deutsche Zusammenfassung

Thermomechanische Systeme findet man in einer Vielfalt von alltäglichen und technischen An-

wendungen. Hierbei liegt der Fokus auf den Wechselwirkungen zwischen der Deformation und

der Temperatur, wie z.B. bei dem hier betrachtete Problem der komplexen Thermo-Fluid-Struk-

tur-Interaktionen (TFSI) in Raketendüsen. Dieses anspruchsvolle gekoppelte TFSI-Problem kann

beispielsweise anhand der Schubkammer des Vulcain-Triebwerks demonstriert werden. Auf-

grund der Verbrennung wird die sehr dünne Düsenstruktur mit extremen Temperaturen und

Temperaturgradienten belastet (d.h. Verbrennungstemperaturen von ca. 3600 K und Kühlmittel-

temperaturen von ca. 73 K), die besonders an der Wand zwischen Heißgas und Kühlmittel zu sehr

großen Wärmeflüssen und thermischen Spannungen führen. Durch die extremen Belastungen

treten plastische Deformationen in der Düse auf, die die Lebenszeit des Triebwerks und somit

der ganzen Trägerrakete stark begrenzen können. Zusätzlich tritt infolge Kriechen, zyklischer

Belastungen und chemischer Schädigung, der sogenannte “dog-house effect” auf, der ein kom-

plexes Versagensphänomen beschreibt. So ist der Verlust der Ariane 5 ECA Trägerrakete der

ESA im Jahr 2002 vermutlich auf den “dog-house effect” zurückzuführen. Abgesehen von den

komplexen Phänomen in der Düsenstruktur wird das TFSI-Problem durch ein anspruchsvolles

Strömungsproblem vervollständigt, bei dem hohe Mach- und Reynoldszahlen sowie komplexe

Schock-Grenzschicht-Wechselwirkungen auftreten.

Für die Entwicklung von zukünftigen Raketensystemen ist es wichtig, das gegebene kom-

plexe TFSI-Problem vollständig abzubilden. Da es schwierig oder gar unmöglich ist, die TFSI

und somit die Funktionsweisen einer Rakete, auf der Erde und im Weltall, in einem Experi-

ment realistisch nachzubilden, kommen immer mehr mathematische Modelle und numerische

Simulationen zum Einsatz.

Um das Verhalten der flexiblen Düsenstruktur unter Berücksichtigung großer Deformationen

und den genannten thermomechanischen Belastungen realistisch darzustellen, wird in der vorlie-

genden Arbeit ein umfassendes numerisches Modell entwickelt, welches das volumengekoppelte

Problem der Thermo-Struktur-Interaktion (TSI) vollständig beschreiben kann. Dieses Modell

trägt zur Verbesserung des Verständnisses der physikalischen Vorgänge in der Struktur der Rake-

tendüse bei und ermöglicht somit die Entwicklung von verbesserten Triebwerkskomponenten.

Für die Simulation in der Strukturmechanik hat sich die Finite-Element-Methode (FEM) als

eine hervorragend geeignete numerische Approximationsmethode bewährt. Daher wird die FEM

ausschließlich für das vorliegende TSI-Problem verwendet. Ansätze in der Literatur basieren oft

auf kleinen Verzerrungen oder vereinfachten Kopplungstermen oder vernachlässigen diese sogar.

Im Gegensatz dazu berücksichtigt das vorliegende Modell alle Kopplungsterme und enthält

sowohl einfachere als auch komplexere Modellierungsansätze, wie z.B. kleine und große Verzer-

rungen oder thermoelastische und thermoplastiche Materialmodelle. Dies ist für die Abbildung

des realen Düsenverhaltens wichtig, da der benötigte Komplexitätsgrad sowie die relevanten

Eigenschaften und Lastzustände, die zur Abbildung des realen Düsenverhaltens nötig sind, nicht

a priori bekannt sind.

Zur Lösung eines thermomechanischen Problems werden in der Literatur üblicherweise parti-

tionierte Ansätze verwendet. Aus diesem Grund werden in dieser Arbeit verschiedene schwach
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und stark koppelnde partitionierte Ansätze implementiert, die auch Konvergenzbeschleunigungs-

methoden wie z.B. die Aitken ∆2 Methode beinhalten. Darüber hinaus wird ein neues, sehr effi-

zientes, monolithisches Newton-Krylov-Verfahren etabliert, das auf problemspezifischen Block-

Gauss-Seidel-Vorkonditionierern mit Algebraischen Mehrgitter-Verfahren basiert. Während par-

titionierte und monolithische Ansätze für die Lösung von TSI-Problemen verwendet werden

können, ermöglicht das hier entwickelte monolithische Verfahren oft eine robustere und effizi-

entere Lösung und ist nicht begrenzt auf bestimmte Materialparameter. Weiter wird gezeigt, dass

Lösungen oft einzig mit diesem monolithischen Ansatz erzielt werden können.

Langfristiges Ziel ist es, das in der vorliegenden Arbeit entwickelte TSI-Modell mit einem

kompressiblen, turbulenten Strömungslöser zu einem vollständigen TFSI-Modell zu verbinden.

Somit wird es erstmals möglich sein, das gegebene TFSI-Problem in der Raketendüse räum-

lich und zeitlich vollständig aufzulösen. Erste Schritte wurden bereits in Hammerl et al. [53]

and Grilli et al. [52] umgesetzt. Darüber hinaus, kann das entwickelte TSI-Modell auf weitere

Mehrfeldprobleme angewendet werden, wie z.B. nichtlineare thermomechanische Kontaktpro-

bleme, siehe Gitterle [49].

Die vorliegende Arbeit gliedert sich wie folgt. In Kapitel 2 werden die Grundlagen der

nichtlinearen Kontinuumsthermodynamik präsentiert und die kinematischen Beziehungen sowie

die Bilanzgleichungen diskutiert. Im Anschluß wird auf die Konstitutivtheorie im Allgemeinen

eingegangen, die als Grundlage für die Ableitung der Spannungen und der Kopplungsterme

des TSI-Problems dient. In Kapitel 3 und Kapitel 4 werden die notwendigen Gleichungen

für das Strukturfeld bzw. das Temperaturfeld zusammengefasst. Hierbei wird auf die schwache

Formulierung der jeweiligen Bilanzgleichungen eingegangen, sowie deren räumliche und zeit-

liche Diskretisierung mit der FEM bzw. finiten Differenzen präsentiert. Um das Einzelfeld-

problem zu vervollständigen, werden verschiedene Konstitutivgesetze herausgestellt. Für ein

nichtlineares rein strukturmechanisches Problem werden verschiedene Konstitutivgesetze un-

terschieden, während für das thermische Problem ausschließlich das Fourier Gesetz der Wärme-

leitung gewählt wird. Kapitel 5 verbindet die zuvor einzeln betrachteten Felder Struktur und

Temperatur zu einem volumengekoppelten TSI-Problem. Hierbei werden besonders die durch

die Kopplung sich verändernden Terme sowie zusätzlich auftretenden Terme herausgestellt. Die

Wärmekonvektionsrandbedingungen benötigen im Rahmen der TSI mit großen Deformationen

spezielle Ansätze, welche hier präsentiert werden. Außerdem wird das zu lösende voll diskrete

TSI-Gleichungssystem angegeben, das aus den kontinuierlichen Gleichungen der Einzelfelder

erhalten wird. Das darauf folgende Kapitel 6 stellt zu Beginn die verschiedenen Lösungsver-

fahren für ein TSI-Problem vor. Besonderes Augenmerk liegt dabei auf den partitionierten und

monolithischen Verfahren, die im Rahmen dieser Arbeit untersucht werden. In Kapitel 7 wer-

den anschließend aussagekräftige numerische Beispiele vorgestellt. Unter anderem werden re-

alistische Probleme mit komplexen dreidimensionalen Geometrien betrachten. Die Beispiele

demonstrieren, dass das vorgestellte TSI-Berechnungsverfahren robust ist und korrekte Ergeb-

nisse liefert. Abweichende Ergebnisse von anderen numerischen Ergebnissen aus der Literatur

werden an den entsprechenden Stellen diskutiert und können dabei auf abweichende Model-

lierungsannahmen zurückgeführt werden. Abschließende Bemerkungen und eine kurze Diskus-

sion der Ergebnisse sowie mögliche zukünftige Forschungsschwerpunkte werden in Kapitel 8

erörtert. Zusätzliche nützliche Beziehungen werden im Anhang zusammengefasst.
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Nomenclature

Representation of scalars, tensors and other quantities

q, Q Scalar quantity

q Vector

Q Second-order tensor

QQQ Higher-order tensor

q Discrete vector

Q Discrete matrix, Voigt notation of second-order tensor

Operators and Symbols

(·)T Transpose of a tensor

(·)−1
Inverse of a tensor or mapping

(·)−T
Transpose of the inverse of a tensor

(̂·) Prescribed quantity
˙(·), (̈·) First and second time derivative at a fixed reference position

(̌·) Modified or transformed quantity

I Identity tensor

0 Zero tensor or matrix

det Determinant

tr Trace operator

ln Natural logarithm

Grad Material gradient operator

Div Material divergence operator

grad Spatial gradient operator

div Spatial divergence operator

Lin Linearisation operator

sym Symmetric part of (·)
dev Deviator

sign Signum function

∆(·) Increment, change of (·) within a time step

exp Exponential function

× Cross product

⊗ Dyadic product

⊙ Specific tensor product

E Levi-Civita symbol

δjk Kronecker delta

|| · || Vector norm
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Nomenclature

Superscripts and Subscripts

(·)(e) Element

(·)h Discretised in space with the FEM

(·)trial Trial

(·)gp Gauss point

(·)int Internal

(·)ext External

(·)kin Kinetic

(·)cond Conductivity

(·)S Structural field

(·)T Thermo field

Mappings

ϕ Mapping between reference and current configuration

ζ Mapping between reference configuration and parameter space

J̌ Jacobian of mapping ϕ ◦ ζ

Domains and boundaries

Ω0 Reference (material) configuration

Ω Current (spatial) configuration

∂Ω0 Boundary in reference configuration

∂Ω Boundary in current configuration

Γ0;D Dirichlet partition of boundary in reference configuration

ΓD Dirichlet partition of boundary in current configuration

Γ0;N Neumann partition of boundary in reference configuration

ΓN Neumann partition of boundary in current configuration

Γ0;C Heat convection boundary belonging to Γ0;N

ΓC Heat convection boundary belonging to ΓN

Kinematics

X , x Position in reference and current configuration

u Displacement

u̇ Velocity

ü Acceleration

F Deformation gradient

F̃ , Fv Isochoric and volumetric part of F

F e, F p, F t Elastic, plastic, and thermal part of F

J (Jacobi) determinant of F

Je, Jp, J t Elastic, plastic, and thermal part of J
V0, V Reference and current volume

A0, A Reference and current surface area

g0, g Basis vectors in reference and current configuration

xii



Nomenclature

n0,n Unit normal vector in reference and current configuration

R,U ,V Rotation tensor, material and spatial stretch tensors

C Right Cauchy-Green deformation tensor

C̃ Isochoric part of C

B Left Cauchy-Green deformation tensor

B̃ Isochoric part of B

EGL Green-Lagrange strain tensor

EEA Euler-Almansi strain tensor

ε Linearised strain tensor

εe, εp, εt Elastic, plastic, and thermal part of ε

ĖGL Material strain rate tensor

L,D Spatial velocity gradient and its symmetric equivalent

Lt Lie-derivative

ε̇ Linearised strain rate tensor

Stresses

σ Cauchy stress tensor

τ Kirchhoff stress tensor

P First Piola-Kirchhoff stress tensor

S Second Piola-Kirchhoff stress tensor

p Pressure

s Deviatoric stress component

σlin Linearised stress tensor

Constitutive laws

Pint Internal power

Ψ Strain energy density function

CCC mat Constitutive tensor and matrix

CT Thermal constitutive tensor and matrix

λ, µ Lamé parameters

E Young’s modulus

ν Poisson’s ratio

K Bulk modulus

e Internal energy

ζ Gibbs free energy

ψ Helmholtz free energy

η Entropy

k0, k Reference and current heat conductivity

CV Specific heat capacity at constant volume

αT Coefficient of thermal expansion

He, Hep Thermoelastic and thermo-elasto-plastic heating term
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Nomenclature

Plastic constitutive laws

αk Generic set of internal (state) variables

Ak Generic set of thermodynamical forces

Φ Yield function

γ̇, ∆γ Time continuous and incremental plastic multiplier
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1 Introduction

This chapter motivates the scientific interest of thermo-structure interaction (TSI) in general and

for the target application in rocket nozzles in particular, and addresses the need for a comprehen-

sive and complete numerical TSI model. The first section 1.1 will be dedicated to the relevance of

thermomechanics for real application and will motivate the necessity for a numerical approach.

In the second section 1.2, the research objectives of the present work will be summarized and the

individual components for an efficient and robust numerical approach for TSI are highlighted.

Finally, to conclude the chapter, the outline of this thesis will be stated in section 1.3.

1.1 Motivation

In various engineering applications, the temperature can be assumed to be constant and only

negligible temperature changes occur, so that an isothermal, purely mechanical analysis fully

capture the behaviour which is aimed to be modelled. Exemplarily, biomechanical applications,

as e.g. fluid-structure interaction (FSI) in lung mechanics or in abdominal aortic aneurysm can

be mentioned in this context (see e.g. Wiechert [143], Yoshihara et al. [148] or Maier et al. [83]).

For instance during breathing, the lung tissue deforms mechanically and interactions between

the air and the lung tissue takes place, while the temperature remains nearly constant, namely at

human body temperature of about 37 ◦C = 310 K. Hence, for this problem temperature changes

are small and the isothermal analysis is a valid assumption.

However, the target of this thesis is on problems where an isothermal, purely mechanical

analysis is not able to reproduce the real behaviour satisfactory. Hence, the focus of this study

is on the volume-coupled problem of TSI in solid bodies. Here, the relation and interaction be-

tween the deformation of a body (i.e. the mechanics) and the corresponding temperature state

is investigated which equivalently can be summarized in the common, more general term ther-

momechanics. This coupled thermomechanical problem can be found in everyday life as well

as in engineering applications. A very common and simple example, where thermomechanics

can be observed in everyday life, is the cyclic bending of a paper clip until it breaks. It can

be observed that the clip is heated up in the failure zone until it breaks due to dissipated plas-

tic work in the material. Hence, the paper clip describes a coupled thermomechanical problem,

where the deformation interacts with the temperature and vice versa. To correctly describe this

problem, not only the deformation but also its temperature evolution need to be considered. In

engineering applications as life prediction, fatigue induced by cyclic loading, rubber friction,

crash tests, forming processes, combustion processes, etc., the coupled thermomechanical anal-

ysis is inevitable. Furthermore, various engineering applications exist, in which especially the

interaction between deformation and temperature is consciously exploited. One very famous ex-

ample is a crash test in automotive engineering: when a car hits a stationary, immovable object

(e.g. a tree or a wall), the crunching chassis converts the kinetic energy of the car moving into
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thermal energy due to bending of the chassis material, thereby protecting the passenger inside

the car. Another example concerns a forming process: herein, the metal workpiece is heated to

facilitate the forming process.

Apart from the aforementioned examples, the present thesis aims at optimizing the design of

future rockets by improving the understanding of the complex problem of thermo-fluid-structure

interaction (TFSI) in rocket nozzles. Challenging features of this particular problem type can

be demonstrated when considering the thrust chamber of the Ariane 5 main engine “Vulcain”

(depicted in Figure 1.1). Elevated temperatures (combustion temperature up to 3, 600 K) with

Figure 1.1: Regeneratively cooled thrust chamber of the main engine “Vulcain 2” utilised

in the Ariane 5 launcher of the European Space Agency (ESA) (from

http://www.capcomespace.net/dossiers/espace europeen/ariane/ariane5/) (left) and

cooling channel structure in a cryogenic rocket combustion chamber and the dog-

house-like deformation of the hot wall (from Schwarz et al. [114]) (right top) and the

dog-house effect and typical failure of a combustion chamber wall (from Riccius and

Zametaev [109]) (right bottom).

high temperature gradients (coolant fluid inlet temperature approximately 73 K), high wall heat

fluxes (of about 120 MW
m2 ), very thin structures, high Mach and Reynolds numbers, and complex

shock-boundary-layer interactions have to be considered in the target system of such a rocket

nozzle (see e.g. Kuhl et al. [69] and Riccius and Zametaev [109]). Due to the combustion of the

propellant, high thermal and mechanical loads evolve which decisively influence the behaviour

of the rocket structure. To reduce the applied loadings, on the one hand the structure is cooled

by introducing a cooling medium into the cooling channels, which on the other hand introduces

enormous temperature gradients, yielding large heat fluxes and large thermal stresses. Further

challenges are the consequences of unsteady flow separation or reattachment of the supersonic

flow within the nozzle, which can result in often dangerous side loads. These unsymmetrical

side loads, which occur mainly during the transient start-up phase, can negatively influence the

behaviour or damage the nozzle itself, as shown e.g. in Baars et al. [12], Frey and Hagemann

[43], Grilli et al. [52] and Östlund et al. [102]. In Brown et al. [20], the side loads are specified
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for the Apollo Saturn V rocket to reach extreme magnitudes of about 103 kN. Moreover, the

material modelling of the rocket structure is challenging. As a consequence of cyclic loading,

creep, and chemical damage, the so-called dog-house effect can occur (see Figure 1.1 (right) and,

e.g. Schwarz et al. [114] for a material model considering these effects). The dog-house effect

is a complex cracking phenomenon which is deemed responsible for control loss and therefore

failure of an Ariane 5 ECA launcher of the European Space Agency in the year 2002.

The focus of this study is set on a realistic description of the deformation behaviour in the

flexible rocket nozzle structure under the aforementioned thermomechanical loadings, i.e. on the

challenging volume-coupled problem of thermo-structure interaction (TSI). For correctly rep-

resenting deformations in rocket nozzles due to hot gases, both the displacement field and the

temperature field need to be considered in the target TSI model. The resulting thermomechanical

system is a fully coupled problem, that is, the solution of the temperature field depends on the

displacement field and vice versa. Additional strong nonlinearities can further be introduced into

the thermomechanical system via inclusion of large deformations, dynamics, plasticity or dam-

age. Altogether, the challenges and difficulties of mathematically describing and solving these

thermomechanical problems become obvious, even if the given problem setup is quite simple.

Due to this complexity, only very few thermomechanical problems exist, where analytical solu-

tion techniques are actually applicable. Analytical solutions exist, for instance for the solution

of free cooling of a specimen from a prescribed temperature difference to surrounding tempera-

ture assuming a linear analysis and constant material parameters or for uniaxial tensile tests with

constant temperatures, see e.g. Hartmann [54]. Nowadays, analytical solution techniques are still

utilised for validation purposes of numerical models, such as e.g. in Hartmann [54] and Erbts

and Düster [38].

The thesis aims at general nonlinear thermomechanical solid problems, thus for mathematical

analyses experimental procedure and numerical modelling attract increasing interest. Physical

experiments are commonly utilised to gain information about certain aspects, however, for the

whole range of applications, experimental procedures are limited or practically impossible. For

instance, experiments investigating crucial phenomena of a rocket nozzle are expensive and ex-

tremely complicated among others because of the difficulty to get measurements at the important

interfaces of this multi-coupled problem and since the actual environment is impossible to be re-

alised in a lab on earth. Hence, combining the aforementioned arguments, it becomes obvious

that there is a high and ever-growing demand for powerful numerical modelling and simulation

techniques which enable accurate, efficient, and robust computer simulations for thermome-

chanical applications, even for problems where no analytical solutions exist or which are at least

difficult to solve.

1.2 Research objective

The work described in this thesis is part of a Collaborative Research Centre SFB/TRR 40 “Fun-

damental Technologies for the Development of Future Space-Transport-System Components

under High Thermal and Mechanical Loads” of the German Research Foundation (Deutsche

Forschungsgemeinschaft - DFG). The long-term perspective of this project is to couple the de-

veloped TSI model to a large-eddy simulation (LES) approach to turbulent flow, including shock-

boundary-layer interactions. First steps in direction of TFSI can be found in Hammerl et al. [53]

3



1 Introduction

and Grilli et al. [52]. The complete TFSI model is intended to account for all working stages

of a rocket nozzle while resolving effects on all spatial and temporal scales. Consequently, the

model is intended to improve the design and prediction of future rocket nozzles by showing

its functionality not only on earth but also in space. Since no detailed experimental data will be

available for rocket nozzles in flight conditions, an accurate and reliable computational approach

is essential which is composed of well-validated, reliable, efficient and robust building blocks

such as the TSI model developed in this work.

Since the present TSI approach can only be verified with experiments of model scenarios,

the simulation approach is aimed at avoiding all simplifications and assumptions which are not

mandatory and whose influence is not completely clear with respect to the target application. A

flexible approach is realized which enables to switch between simpler and more complex mod-

elling approaches such as geometrically linear and nonlinear analysis, monolithic or partitioned

solution strategy, and elastic or plastic material modelling.

All governing equations of TSI are exclusively expressed with respect to the finite element

method (FEM). The variety of textbooks about general FEM is enormous, exemplarily the

reader is referred to Bathe [15], Zienkiewicz and Taylor [149], and Zienkiewicz et al. [150].

Over the last decades, the FEM has been successfully established as a flexible, robust and ac-

curate discretisation approach for the solution of partial differential equations (PDEs) within

various classes of problems. Particularly within solid mechanics, contact mechanics, computa-

tional fluid dynamics, or in coupled problems as electrochemistry, FSI, or TSI, the FEM has

performed excellently. For the sake of completeness alternative approaches to the FEM exist,

as e.g. the boundary element method (BEM), the finite difference method (FDM), or the finite

volume method (FVM). Since possibly nonlinear kinematics, nonlinear material behaviour, thin

structures, etc. may be included, the FEM is the method of choice for this thesis. The FEM is

applied to both structural and thermal field, yielding separate discretisations such that a con-

forming finite element (FE) approach is constructed. Furthermore, there is an increasing interest

of combining TSI with other physical phenomena, such as contact mechanics, theory of porous

media (TPM) or FSI which are commonly also based on finite elements (FEs). First steps in

coupling the present TSI model with contact mechanics are realised, e.g. in Gitterle [49]. For the

purpose of universality, the model includes different first- and second-order FE interpolations

for full three dimensions.

To solve fully coupled thermomechanical systems, both partitioned and monolithic coupling

algorithms are basically conceivable (for a detailed overview on existing coupling algorithms

for TSI, the reader is referred to the introduction of chapter 6). In current literature, usually par-

titioned algorithms are chosen, where loosely and strongly coupled partitioned algorithms can

be distinguished. Partitioned algorithms are very flexible with respect to the formulation and the

solution methods of the individual fields, but a significant problem of them is either their condi-

tional stability (for loosely coupled schemes) or their potentially very slow convergence or even

divergence (for strongly coupled schemes). To circumvent these drawbacks, various stabilisation

techniques have been proposed to retain unconditional stability properties and acceleration tech-

niques to improve convergence behaviour, respectively. However, in the context of the surface-

coupled problem of FSI, it was recently pointed out, e.g. in Gee et al. [47] and Klöppel et al. [67]

that well-designed monolithic algorithms are superior to strongly coupled partitioned schemes,

even if acceleration procedures are utilised in the latter. Based on the excellent performance of

monolithic algorithms in FSI, in this work a novel monolithic Newton-Krylov approach to TSI
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is established using block Gauss-Seidel (BGS) preconditioners and algebraic multigrid (AMG)

methods for the approximation of the field inverses. For the sake of completeness, different

loosely and strongly coupled partitioned schemes are further established since they represent the

default coupling strategy in literature for TSI problems. All presented TSI approaches feature

bi-directional coupling, i.e. the influence of temperature on the mechanical side as well as the

influence of deformation on the thermal side is considered, including all coupling terms.

An efficient and robust solution even for large problem sizes is enabled by integrating all

proposed methods into a high performance computing (HPC) framework which allows fully

parallel multiprocessor computations utilising direct solvers as well as iterative solvers with cor-

responding preconditioning techniques. Consequently, the target of the present thesis is on a

universal fully coupled nonlinear thermomechanical solid model which can be used like a black

box including different materials, different time integrators, different coupling strategies, differ-

ent solvers, etc., and which furthermore enables efficient and robust solutions even if expensive

physical effects as plasticity in nonlinear dynamics are considered.

All numerical methods and models are implemented in our in-house FE software package

BACI (see Wall and Gee [142]) jointly developed at the Institute of Computational Mechanics

and the Mechanics & High Performance Computing Group at Technische Universität München.

BACI represents a multiphysics multi-purpose parallel research code which is written in C++

and utilises powerful open-source libraries developed by Sandia National Laboratories, as e.g.

the Trilinos Project (Heroux et al. [56]). Consequently, the present model is based on existing

features in BACI such as different FE formulations and time integration schemes for the struc-

ture or direct and iterative solver techniques, which are reused for this thesis and moreover are

supplemented with various new algorithmic extensions and code modules.

1.3 Outline

The present thesis is divided into eight chapters. Chapter 2 will cover the fundamentals of non-

linear continuum thermodynamics. In this chapter, the basic kinematical relations, the mechan-

ical as well as the thermodynamical balance relations, as well as the basics of the constitutive

theory will be reviewed. Chapter 3 will outline the relevant governing equations of nonlinear

solid mechanics, the basic concepts of weak formulations, FE discretisation, time discretisation,

and different constitutive laws for purely mechanical analyses. Current rocket nozzles are mainly

made of metals, hence the constitutive will be based on isotropic ductile material behaviour. With

regard to irreversible deformations, for instance von Mises plasticity will be chosen. In addition,

nonlinear and linear solution techniques will be summarized in a general way. While Chapter 3

will be devoted to the structural field, i.e. isothermal solid mechanics, Chapter 4 will present the

corresponding equations for the thermal field. Herein, the instationary heat conduction equation

will be establish in a strong and a weak form. The fully discrete thermo equations will be derived

and Fourier’s law will be used as the constitutive law for the heat flux. Chapter 5 will combine

the aforementioned relations of the single fields structure and thermo to the volume-coupled

problem of TSI to enable the description of fully nonlinear non-isothermal solid mechanics.

Herein, the coupled balance relations and the corresponding coupled constitutive laws will be

reviewed as an extension of the equations of the single fields. Moreover, additional dependen-

cies arising due to the coupling will be outlined and the special treatment of so-called nonlinear
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heat convection boundary conditions within large deformation TSI will be specified. In Chap-

ter 6, first a detailed overview on different existing solution strategies for TSI in literature will be

given. Subsequently, partitioned and monolithic solution algorithms utilised in this work for TSI

problems will be presented. While different loosely and strongly coupled partitioned algorithms

will be distinguished, the monolithic TSI algorithm will be based on BGS preconditioners with

AMG methods.

Chapter 7 will present six meaningful numerical examples, where the first examples will

be considered for validating the different (thermo-)elastoplastic material models for small and

finite strains, followed by the so-called second Danilovskaya problem, which will be used for

validation of the TSI algorithms. In the last example of a fully three-dimensional rocket nozzle,

various aspects such as solution strategy, material modelling, time integration, high performance

computing with large numbers of degrees of freedom will be tested in one complex simulation.

Finally, in Chapter 8 the most important results will be briefly summarized and discussed, and

a short outlook to possible and necessary enhancements of the present model will be provided.

Herein, several improvements and extensions will be suggested, so that TSI problems can be

computed even more efficiently and hence a larger area of TSI applications can be covered.

Further useful relations in the context of tensor notation, linearisation and physical measures in

conjunction with the used units are summarized in Appendix A-C. Moreover, additional details

with respect to material modelling, such as the full Lemaitre material model and the finite strain

thermo-hyperelasto-plastic material model are established in Appendix D.
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2 Nonlinear continuum

thermodynamics

In this chapter, the basic concepts of nonlinear continuum thermodynamics are reviewed for

the later application to the three different problems, namely the single field problem of solid

dynamics, the single field problem of thermal dynamics, and finally the coupled field problem

of thermo-structure interaction (TSI). The term continuum thermodynamics combines the the-

ory of continuum mechanics and thermodynamics. While continuum mechanics considers the

kinematics and the mechanical behaviour of continuously distributed media, thermodynamics

originates from the words “therm” and “dynamics” which mean heat and power, respectively.

Thermodynamics comprises the theory of energy and heat which is used to describe processes

that involve changes in temperature, transformation of energy, and the relation between heat and

work. It considers energy conversion between mechanical work and heat, and the macroscopic

variables such as temperature, volume, and pressure. More extensive reviews on nonlinear con-

tinuum thermodynamics can be found in the literature, as e.g. in the basic textbooks Bonet and

Wood [17], Holzapfel [58], Lemaitre and Chaboche [78], Maugin et al. [85], and Truesdell and

Noll [136], or especially for plasticity in de Souza Neto et al. [33] and Simo and Hughes [120].

This chapter will first review relevant continuum mechanical equations and the balance re-

lations, before the relevant theory of thermodynamics will be discussed which is utilised to

describe a problem in a thermodynamically consistent way.

2.1 Kinematics

2.1.1 Kinematics of a three-dimensional continuum body

The following sections offer a brief overview of the required kinematical relations to describe

nonlinear deformation processes of a homogeneous, continuous body for the target application

of TSI. In the present context, the term kinematics is defined as the mathematical description of

the motion and deformation of a body. The present work exclusively uses the total Lagrangian

formulation which is convenient for solids since the initial state of the solid is fully known.

Furthermore, a common Cartesian coordinate system is assumed for all configurations. In this

case, as shown in Figure 2.1, the initial, material, or reference configuration Ω0 describes the

undeformed and stress-free body at time t0 = 0 which is occupied by material points P whose

position is described by X . In contrast, the current configuration Ω describes the current de-

formed position x at an arbitrary time t. The nonlinear map

ϕ :

{
Ω0 7→ Ω
X 7→ x(X, t)

(2.1)
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Figure 2.1: Motion of a continuum body in Lagrangian description.

describes the motion from the reference to the current configuration, which also allows to write

the unique motions as x = ϕ(X, t) and X = ϕ−1(x, t), respectively. The absolute displace-

ment (as depicted in Figure 2.1) of a material point reads

u(X, t) = x(X, t) − X . (2.2)

As mentioned previously, the total Lagrangian description is employed in this work. Conse-

quently, all kinematic quantities are expressed with respect to material points in the reference

configuration, i.e. the initial position X represents an independent variable, whereas the defor-

mation ϕ(X, t) or u(X, t) describes the unknown field which needs to be solved. However, to

describe the volume or shape changes of the body, the deformation ϕ(X, t) or u(X, t) are not

appropriate. For this reason, the deformation gradient F is introduced. The deformation gradient

F is defined as

F =
∂x(X, t)

∂X
=

∂u(X, t)

∂X
+ I , (2.3)

with the second-order identity tensor I . Note that F represents a so-called two-point tensor, i.e.

one basis lies in the reference and one in the current configuration, which can be emphasized

using the index notation of F , so that

FiI =
∂xi
∂XI

=
∂ui
∂XI

+ IiI , (2.4)

where I and i correspond to the reference and the current configuration, respectively. Further-

more, F can be interpreted as the mapping of a material line element dX in the undeformed

reference domain Ω0 to its current position dx in the current domain Ω, i.e.

dx = F · dX , (2.5)

often denoted as push-forward operation. Assuming unique motions ϕ and ϕ−1, the inverse map-

ping or pull-back operation

F−1 =
∂X

∂x
(2.6)
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only exists if the determinant of F (or Jacobi-determinant of the deformation) is non-singular

and positive, i.e.

J := det F > 0 . (2.7)

Furthermore, the Jacobi-determinant links infinitesimal volume elements of both configurations:

dV = J dV0 (2.8)

with the reference and the current volume element, dV0 and dV , respectively. In contrast, an

oriented material surface element dA0 can be mapped to the current configuration, yielding

dA = dx1 × dx2 = J F−T dA0 , (2.9)

which is known as Nanson’s formula and alternatively can be expressed as

n dA = J F−Tn0 dA0 , (2.10)

where n0 and n denote the outward unit normal vectors in the reference and the current con-

figuration, and dA0 and dA are the scalar physical area of the infinitesimal area element in the

reference and the current configuration, respectively. Mapping the square of material line ele-

ments dX to the current configuration including (2.5) yields

dx · dx = (F dX) · (F dX) = dX · (F T · F ) dX =: dX ·C dX (2.11)

with the right Cauchy-Green deformation tensor

C = F T · F , (2.12)

describing a material single field tensor. In addition, via pull-back of the square of current line

elements dx, it follows

dX · dX = (F−1 dx) · (F−1 dx) = dx · (F−T · F−1) dx =: dx ·B−1 dx , (2.13)

where the left Cauchy-Green deformation tensor B can be defined as

B = F · F T , (2.14)

describing a spatial single field tensor. The deformation gradient F can be split into a rotational

part R and a material or spatial stretch tensor, U or V , as

F = R ·U = V ·R . (2.15)

Herein, R represents an (proper) orthogonal tensor obeying the following relations R−1 = RT

and det R = 1, whereas U and V are symmetric tensors (i.e. U = UT and V = V T).

Consequently, the deformation gradient F is not invariant with respect to rigid body rotations.

However, equations (2.12) and (2.14) can be reformulated, yielding

C = U ·U , B = V · V , (2.16)
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i.e. C and B are invariant with respect to rigid body rotations and motions, so that they can be

called objective deformation measures: at any rigid body motion the current deformation state

remains constant.

In contrast to the deformation tensors, a strain measure describes the relative change of the de-

formation with respect to a chosen initial state. Consequently, different strain measures exist. For

instance, computing the difference of the squared length of line elements (2.11) and expressing

them with respect to the reference configuration, the well-known Green-Lagrange strain tensor

EGL, defined as

EGL =
1

2
(C − I) , (2.17)

is introduced. The Green-Lagrange strain tensor is invariant with respect to rigid body motions

and vanishes for undeformed bodies (F ≡ I). Using (2.13), a strain measure with respect to

the current configuration can be introduced, denoting the Euler-Almansi strain tensor

EEA =
1

2
(I − B−1) . (2.18)

Via push-forward and pull-back operation these two measures correlate:

dX ·C dX − dX ·dX =: dX ·2EGL dX = dx·dx− dx·B−1 dx =: dx·2EEA dx . (2.19)

The Green-Lagrange and the Euler-Almansi strain tensors, EGL and EEA, respectively, are suit-

able for large deformations but only for moderate strains during compression or extensions. In

case of finite strain application, as e.g. finite strain plasticity, the logarithmic strain tensor is a

further suitable measure.

For solid dynamical problems, material time differentiation of the deformation and the strain

measures need to be introduced. The first and second derivative of the displacement field u(X, t),
i.e. the material velocity and acceleration, u̇ and ü, respectively, result in

u̇(X, t) =
du(X, t)

dt
=

∂u(X, t)

∂t

∣
∣
∣
∣
X

, (2.20)

ü(X, t) =
du̇(X, t)

dt
=

d2u(X, t)

dt2
=

∂2u(X, t)

∂t2

∣
∣
∣
∣
X

, (2.21)

where (2.2) can be used to show that due to the constant initial position X

ẋ(X, t) ≡ u̇(X, t) . (2.22)

According to (2.3), the material velocity gradient results in

Ḟ =
dḞ

dt
=

∂ẋ

∂t
=

∂u̇

∂t
=: Grad ẋ = Grad u̇ , (2.23)

with the material gradient operator Grad (·). Equation (2.23) can be reformulated, yielding the

spatial velocity gradient

L = Ḟ · F −1 , (2.24)

and its symmetric part

D =
1

2
(L + LT) . (2.25)
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2.1 Kinematics

The rate of the Green-Lagrange strain tensor results in the material strain rate tensor

ĖGL =
1

2
Ċ = F T ·D · F , (2.26)

which can be expressed as pull-back of the symmetric spatial strain rate tensor D. Via the Lie-

derivative or Oldroyd-Lie derivative of the Euler-Almansi strain tensor Lt[EEA], which repre-

sents an objective material time derivative, a relation to the rate of the Euler-Almansi strain

tensor is achieved as

Lt[EEA] = ϕ

[
d

dt

(

ϕ−1[EEA]
)]

= D = F −T · ĖGL · F−1 . (2.27)

Moreover, the rate of volume changes is described by J̇ and can be expressed through

J̇ = J trD . (2.28)

2.1.2 Kinematics of curved surfaces

For the computation of convective thermal heat boundary conditions in large deformation TSI

problems (see chapter 5), the characterization of the surface will be essential. The derivations

are based on Wiechert [143]. In the following, surface areas, their corresponding normal vectors,

and the corresponding mapping will be derived.

ξ1

ξ2

ϕ ◦ ζ

t0

ξ3

g0;2

n0

P g0;1

ϕ

t

ζ

X3
, x3

X2
, x2

O

X1
, x1

P
n

g1

dA0

g2

dA

Figure 2.2: Mapping of a curvilinear surface.

As depicted in Figure 2.2, a material point P on a surface can be expressed by the tangent

space with its covariant basis vectors

g0;a =
∂X

∂ξa
, (2.29)

ga =
∂x

∂ξa
(2.30)
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2 Nonlinear continuum thermodynamics

in the reference and the current configuration, respectively. Here, ξa represents the curvilinear

coordinates with a ∈ 1, 2, 3 for a general three-dimensional problem. The infinitesimal oriented

surface area in the current configuration dA is spanned by two in-plane basis vector g1 and g2.

It follows

dA = g1 dξ
1 × g2 dξ

2 = ňdξ1 dξ2 (2.31)

with the surface normal ň defined as

ň =












∂x2

∂ξ1
∂x3

∂ξ2
− ∂x2

∂ξ2
∂x3

∂ξ1

∂x3

∂ξ1
∂x1

∂ξ2
− ∂x3

∂ξ2
∂x1

∂ξ1

∂x1

∂ξ1
∂x2

∂ξ2
− ∂x1

∂ξ2
∂x2

∂ξ1












=
1

det J̃
g3 , (2.32)

including the contravariant basis vector g3 pointing in the direction of the surface normal ň.

Furthermore, as shown in Figure 2.2, the Jacobian of the mapping ϕ ◦ ζ is defined as

J̌ =












∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ3
∂x3

∂ξ3












=





g1

g2

g3



 , (2.33)

with the tangential (covariant) basis vector ga. Subsequently, the scalar-valued physical area of

the infinitesimal surface is obtained as absolute value of (2.31), yielding

dA = |ň| dξ1 dξ2 . (2.34)

The present concept of curvilinear coordinates is generally valid. For instance, by interpreting

the curvilinear coordinates as a parameter space with linear coordinates, the present concept can

be applied in the context of spatial discretisation within the finite element method (FEM).

2.1.3 Split of the deformation

Since various materials behave differently in bulk and shear, it is common in material mod-

elling to split the deformation into a volumetric (volume-changing) and an isochoric (volume-

preserving) contribution, see e.g. Holzapfel [58] and Ogden [100] for finite strain elasticity and,

e.g. Simo et al. [124] and Stainier and Ortiz [128] for finite strain (visco-)elastoplasticity which is

based on the work of Lee [73]. Consequently, in the finite strain regime the deformation gradient

is multiplicatively split into

F = Fv · F̃ = F̃ · Fv , (2.35)

where F̃ and Fv denote the isochoric and the volumetric part of F defined as

F̃ = J− 1
3 · F , Fv = J

1
3 I , (2.36)
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2.2 Stress measures

respectively. Furthermore, for the isochoric contribution

J̃ = det(F̃ ) = 1 . (2.37)

Correspondingly, for the right Cauchy-Green deformation tensor follows

C = Cv · C̃ (2.38)

with the isochoric and the volumetric counterparts defined as

C̃ = J− 2
3 ·C , Cv = J

2
3 I , (2.39)

respectively. Accordingly, J̃ = (det C̃)
1
2 = 1.

2.2 Stress measures

The deformation of a body is always linked with a resistance. A possibility to measure this

resistance is by introducing the stress, which is defined as force per unit area. Hence, different

stress measures can be introduced according to the configuration in which force and area are

defined. For instance, the traction vector t in the current configuration is introduced as

t(x,n, t) = lim
∆A→0

∆f

∆A
, (2.40)

which describes the limit value of a force f at a material point P on an element surface ∆A,

where the latter is characterized by the spatial unit normal vector n. Via Cauchy’s theorem a

relation between the stresses and the traction vector t in the current configuration can be stated

as

σ(x, t) · n = t(x,n, t) . (2.41)

Herein, the symmetric Cauchy stress tensor σ describes the true stress state of a body with

respect to an a priori unknown configuration. Instead of relating the current force f to the current

surface A, f can be expressed with respect to the undeformed material area A0, i.e.

t0 =
dA

dA0
t , (2.42)

including dA0 = dA0 n0. This defines the so-called pseudo traction vector t0 which can be

described as

t0 = P · n0 , (2.43)

where n0 and P denote the material unit normal vector and the first Piola-Kirchhoff stress tensor,

respectively. Furthermore, P can be stated as

P = J σ · F−T , (2.44)

using Cauchy stresses (2.41) and Nanson’s formula (2.10). As P has been introduced as the map

of the current traction with respect to the material area, the first Piola-Kirchhoff stress tensor

13



2 Nonlinear continuum thermodynamics

represents a two-point tensor. Moreover, the Kirchhoff stress and the second Piola-Kirchhoff

stress tensor, τ and S, respectively, are introduced as

τ = J σ , (2.45)

S = F−1 ·P = J F−1 · σ · F−T , (2.46)

where τ is a symmetric two-point tensor also known as weighted Cauchy stresses, and S is a

symmetric, purely material, one-field tensor obtained from P by transforming also the resultant

force to the material configuration.

Finally, it can be concluded that any of the mentioned stress and strain measures can be used.

However, if a certain stress measure is chosen, the corresponding strain measure cannot be se-

lected arbitrarily. The scalar-valued internal stress power Pint is frame-invariant, i.e. objective.

Hence, Pint can be used to correlate certain stress-strain pairs in an objective manner, viz.

Pint =

∫

Ω0

S : ĖGL dA0 =

∫

Ω0

P : Ḟ dA0 =

∫

Ω

σ : D dA , (2.47)

defining so-called energy-conjugated pairs {S,EGL}, {P ,F }, and {σ,EEA}, where (2.27) has

been used for the latter pair.

In the purpose of constitutive modelling, it is common to split the stress tensor, e.g. the Cauchy

stress tensor, into a deviatoric and a volumetric part (see Appendix B.3)

σ = s + p I , (2.48)

where the stress deviator and the scalar-valued hydrostatic pressure are introduced as

s := devσ = σ − 1

3
trσ I , (2.49)

p :=
1

3
trσ , (2.50)

respectively. This split will be used for constitutive modelling of solid materials, e.g. in sec-

tion 3.4.

2.3 Balance relations

In this section the fundamental laws of thermodynamics are summarized via stating the bal-

ance relations which are valid for any continuum body regardless of its material. Apart from

kinematics and stresses, mechanical systems are characterized by balance relations or balance

equations for mass, linear and angular momentum, respectively, energy, and entropy.

2.3.1 Master balance relations

As a basis of the balance relations, the so-called master balance relations can be stated for arbi-

trary volume-specific physical quantities. Hereby, scalar-valued and vector-valued (volumetric)
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2.3 Balance relations

mechanical quantities, χ and χ, respectively, are differentiated which are balanced over the cur-

rent volume V and time t. As examples for a scalar-valued quantity of a volume element dV , the

density ρ, the internal energy ρ e, and the entropy ρ η can be stated. As vector-valued quantities

the momentum or the moment of momentum, ρ ẋ or x × (ρ ẋ) can be mentioned, where ×
describes the cross product between two vectors. The master balance can be written for both χ
and χ as

d

dt

∫

Ω

χ dV =

∫

∂Ω

φ · n dA +

∫

Ω

σ dV +

∫

Ω

χ̂ dV ,

d

dt

∫

Ω

χ dV =

∫

∂Ω

Φ · n dA +

∫

Ω

σ dV +

∫

Ω

χ̂ dV .

(2.51)

The first term on the right hand side, i.e. φ : n or Φ ·n using the outward pointing unit surface

normal vector n, is identified as the outflow over the surface ∂Ω or the so-called close-up effect.

The second term σ or σ describes the supply or the long-distance effect, and the third term a

possible production of the chosen mechanical quantity. In case of open or multiphase systems,

the production term, χ̂ or χ̂, is unequal to zero due to loss or source in open systems or phase

changes in multiphase systems. In contrast, for closed systems and especially for single-phase

quantities such as considered in the present work, the production term is equal to zero, i.e. χ̂ ≡ 0
and χ̂ ≡ 0, respectively. To balance a chosen quantity, each term of the master balance has to be

specified according to classical continuum mechanics. Equation (2.51) balances the mechanical

quantity for the whole body. In contrast, the integral form can be transformed into a local form

which balances the quantity locally, i.e. at a specific material point P . The local form is achieved

by assuming steady and steady differentiable integrands, by applying a material time derivative

to the left hand side, and by rewriting the surface integrals of the right-hand side using Gauss

divergence theorem. The corresponding local form of the master balance equations (2.51) then

results in:

χ̇ + χ div ẋ = divφ + σ + χ̂ ,

χ̇ + χ div ẋ = divΦ + σ + χ̂ .

(2.52)

Herein, the spatial divergence operator div (·) is used. In the following sections, the master bal-

ance relations (2.51) and (2.52) are specified for different mechanical quantities.

2.3.2 Conservation laws

The master balance equations (2.51) and (2.52) are defined in the current configuration. In addi-

tion, material versions are obtained by transformation and mapping of the integrals from current

to reference configuration and by introduction of material quantities. For the application to struc-

tural dynamics, the material version is the common way so that this approach is adopted here

exclusively. It is worth noting, that the material versions still describe equilibrium in the de-

formed configuration. However, for the sake of a complete overview, the balance equations are

expressed in both, material and spatial description.
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2 Nonlinear continuum thermodynamics

Conservation of mass

The conservation of mass states, that in a closed system the mass m of a body is constant, i.e.

ṁ =
d

dt

∫

Ω

ρ dV =

∫

Ω

(ρ̇ + ρ div u̇) dV = 0 . (2.53)

Herein, Reynold’s transport theorem (see e.g. Belytschko et al. [16]) and the velocity u̇ (2.22)

are used. Introducing the reference mass density

ρ0 = J ρ (2.54)

and the reference domain Ω0, the balance equation in material description reads

d

dt

∫

Ω0

ρ0 dV0 = 0 . (2.55)

Since the reference domain Ω0 is independent of time, the global form of the conservation of

mass in material description simplifies to

∫

Ω0

dρ0
dt

dV0 =

∫

Ω0

ρ̇0 dV0 = 0 . (2.56)

According to section 2.3.1, the local form, which has to be fulfilled at any material point P , can

be established for spatial and material description as

ρ̇ + ρ div u̇ = 0 , (2.57)

ρ̇0 = 0 . (2.58)

Conservation of linear momentum

The conservation of linear momentum states, that the temporal change of the body momentum

equals the sum of forces acting on the body at the vicinity and from a distance, i.e.

d

dt

∫

Ω

ρ u̇ dV =

∫

∂Ω

σ · n dA +

∫

Ω

b̂ dV . (2.59)

The outflow over the surface described by σ ·n can be summarized to the external traction vector

t, see (2.40). The vector field b̂ is introduced as the spatial body force where the superimposed

hat identifies a prescribed quantity. After application of Reynold’s theorem and integrating the

conservation of mass (2.53) to the left-hand side, and using (2.41), an alternative version of the

balance of linear momentum in spatial description can be achieved as

∫

Ω

ρ ü dV =

∫

∂Ω

t dA +

∫

Ω

b̂dV . (2.60)
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2.3 Balance relations

Similarly, the material version of (2.60) is determined by

∫

Ω0

ρ0 üdV0 =

∫

∂Ω0

t0 dA0 +

∫

Ω0

b̂0 dV0 , (2.61)

where the pseudo traction vector t0 (2.43) and the external body force vector on the reference do-

main b̂0 = J b̂ are used. Furthermore, (2.61) can be reformulated by applying Gauss divergence

theorem (see e.g. Holzapfel [58]) and inserting the first Piola-Kirchhoff stress tensor according

to (2.43), yielding
∫

Ω0

ρ0 ü dV0 =

∫

Ω0

DivP dV0 +

∫

Ω0

b̂0 dV0 , (2.62)

where the material divergence operator Div (·) is used. The corresponding local form of (2.62)

and the corresponding spatial form are given by

ρ0 ü = DivP + b̂0 , (2.63)

ρ ü = divσ + b̂ . (2.64)

Conservation of angular momentum

The conservation of angular momentum states, that the temporal change of an angular momen-

tum with respect to an arbitrary fixed point equals the sum of all external moments acting on the

body. It reads

d

dt

∫

Ω

(x× ρ u̇) dV =

∫

∂Ω

(x× t) dA +

∫

Ω

(x× b̂) dV . (2.65)

Transforming (2.65) to the reference domain yields the material version of the balance of angular

momentum

d

dt

∫

Ω0

(x× ρ0 u̇) dV0 =

∫

∂Ω0

(x× t0) dA0 +

∫

Ω0

(x× b̂0) dV0 . (2.66)

According to the previous balance equations, the balance of angular momentum can also be re-

formulated by applying Gauss divergence theorem to the boundary terms in (2.65) and (2.66),

and by transforming the resulting equations to their local forms. In contrast to the previous bal-

ance equations, this balance equation does not enter the initial boundary value problem (IBVP)

as independent equation, but reduces the number of unknowns by demanding a symmetric stress

tensor in spatial and material description. The Cauchy and the second Piola-Kirchhoff stresses,

respectively, are symmetric, i.e.

σ = σT , S = ST , (2.67)

hence these two stress measures are applicable for the given IBVP.
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2 Nonlinear continuum thermodynamics

Conservation of energy

The conservation of energy also known as balance of energy or the first law of thermodynamics

states, that the sum of temporal changes of internal and kinetic energy of a body equals the sum

of external mechanical and non-mechanical, thermal powers as

d

dt

∫

Ω

(ρ e + ρ u̇ · u̇) dV =

∫

∂Ω

(u̇ · t − q · n) dA +

∫

Ω

(ρ u̇ · b̂ + ρ r) dV (2.68)

with the vector field q introduced as the spatial heat flux and the scalar field r introduced as the

external heat source. Equation (2.68) can be reformulated, assuming mass conservation (2.57),

equilibrium of forces and momentum, (2.65) and (2.66), respectively, introducing the symmetric

rate of the deformation tensor D (2.25), and applying Gauss divergence theorem. Consequently,

the local form is achieved as

ρ ė = σ : D − div q + ρ r . (2.69)

The material version of (2.69) is achieved as

ρ0 ė = S : ĖGL − DivQ + ρ0 r , (2.70)

where the temporal rate of Green-Lagrange strain tensor ĖGL defined in (2.26) and the material

heat flux Q are used.

2.3.3 Second law of thermodynamics

The second law of thermodynamics also known as the balance of entropy states, that the temporal

change of the entropy of a body equals the sum of external entropy changes at the vicinity and

from a distance, and the internal entropy production. Thus, it follows

Ḣ =
d

dt

∫

Ω

ρ η dV =

∫

∂Ω

q · n
T

dA +

∫

Ω

ρ r

T
dV +

∫

Ω

η̂ dV (2.71)

with the absolute temperature T , the specific entropy η of a mass element dm = ρ dV resulting in

the entropy H of the body, and the entropy production η̂. In this respect, the entropy production

is never negative. Furthermore, the balance of entropy states that heat always flows from the

warmer to the colder region of a body.

In contrast to the balance equations in section 2.3.2, which represent conservation laws, the

second law of thermodynamics does not describe a balance principle and the entropy is not

conserved either (see e.g. Holzapfel [58]). The entropy is a not-measurable physical quantity

and represents a measure of the disorder and the distribution of energy of a system. Hence, only

changes of entropy can be captured. The entropy is used to describe heat transfer and irreversible

processes. Besides the temperature, the entropy represents the most important measure of the

theory of heat.
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2.3 Balance relations

As for the balance relations, (2.71) can be reformulated using the balance principles of sec-

tion 2.3.2, defining the local form of the entropy balance as

ρ η̇ = −div
( q

T

)

+
(ρ r

T

)

+ η̂ . (2.72)

Considering the axiom that for a physically admissible process the entropy production can never

adopt a negative value, i.e.

η̂ ≥ 0 , (2.73)

equations (2.72) and (2.73) are used to derive an inequality

ρ η̇ ≥ −div
( q

T

)

+
(ρ r

T

)

, (2.74)

which always has to be satisfied for all possible processes. According to the previous subsections,

a material version of the local form (2.74) can be achieved as

ρ0 η̇ ≥ −Div
(Q

T

)

+
(ρ0 r

T

)

. (2.75)

In the following, only the spatial form of the entropy balance equation, e.g. (2.74), is used

for further investigations. As a next step, the divergence term of the right-hand side can be

reformulated, yielding

div
( q

T

)

=
1

T
div q − 1

T 2
q · gradT , (2.76)

where the spatial gradient operator grad (·) is used. Inserting (2.76) and (2.69) into (2.74) results

in

ρ η̇ ≥ − 1

T

(

σ : D + ρ r − ρ ė
)

+
1

T 2
q · gradT +

(ρ r

T

)

, (2.77)

which can be summarized to

ρ (T η̇ − ė) ≥ −σ : D +
q

T
· gradT , (2.78)

or expressed in the Helmholtz free energy ψ as

−ρ (ψ̇ + Ṫ η) ≥ −σ : D +
q

T
· gradT , (2.79)

which is known as the Clausius-Duhem dissipation inequality. In equation (2.79), the Helmholtz

free energy and its time derivative, ψ and ψ̇, respectively, are used. This energy ψ can be defined

using the so-called Legendre transformation as

ψ := e − T η (2.80)

and its time derivative follows as

ψ̇ = ė − Ṫ η − T η̇ . (2.81)

The Clausius-Duhem inequality (2.79) is alternatively called reduced dissipation inequality, as

e.g. in André [5], Glaser [50], Ibrahimbegovic and Chorfi [61], and Montáns and Bathe [95]. Fur-

thermore, two special forms of the second law of thermodynamics are commonly differentiated

in literature, namely the Clausius-Duhem and the Clausius-Planck inequality. In the following,

these two forms are compared with each other.
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2 Nonlinear continuum thermodynamics

Clausius-Duhem inequality vs. Clausius-Planck inequality

As a starting point, (2.79) can be reformulated and split into two terms yielding

σ : D − ρ (ψ̇ + Ṫ η)
︸ ︷︷ ︸

Dmech

− q

T
· gradT

︸ ︷︷ ︸

Dcond

≥ 0 (2.82)

with the mechanical internal dissipation Dmech and the dissipation due to heat conduction Dcond.

The so-called Clausius-Planck inequality is achieved by neglecting Dcond, leading to

Dmech = σ : D − ρ (ψ̇ + Ṫ η) ≥ 0 . (2.83)

For the isothermal, purely structural case, i.e. T = const., the Clausius-Duhem and the Clausius-

Planck inequality are identical and are described by

Dmech = σ : D − ρ ψ̇ ≥ 0 . (2.84)

In case the entropy balance is equal to zero (i.e. Dmech ≡ 0), a perfect elastic material is de-

scribed, where all processes are fully reversible. In case of irreversible processes, e.g. plasticity,

the entropy balance is larger than zero (i.e. Dmech > 0). Consequently, within continuum me-

chanics, the second law of thermodynamics can be used to derive restrictions with respect to the

constitutive relations and the dissipation behaviour, i.e. will be later used to specify the material

behaviour.

2.4 Constitutive theory

For a complete physical description of a body, the kinematical relations and the balance rela-

tions, presented in section 2.1 and 2.3, respectively, do not provide sufficient information to

fully describe the system. Consequently, to close the problem, additional constitutive equations

are required.

Balance equations are generally valid, i.e. independent of the material behaviour. In contrast,

constitutive equations are not unique, but can be chosen arbitrarily, while they must fulfil the

second law of thermodynamics. Several choices of constitutive equations are conceivable, con-

cerning the independent and dependent variables also known as state variables which can either

be mechanical or non-mechanical quantities. Thus, constitutive equations introduce the material

behaviour into the problem at hand.

A continuum mechanical theory is assumed, i.e. the complete movement is known. Hence, all

unknown quantities adjust in the way that the balance equations together with the constitutive

equations are fulfilled.

2.4.1 Thermodynamical principles

The basic physical principles of thermodynamics for constitutive modelling have to be consid-

ered, which were proposed by Coleman and Noll [26], Noll [98, 99], Truesdell [135], and Trues-

dell and Noll [136]. Thus, determinism, equipresence, local action, material frame indifference
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2.4 Constitutive theory

or objectivity, material symmetry, and universal dissipation are specified. To achieve a thermo-

dynamically consistent formulation, all these basic principles have to be fulfilled.

In the following, a short overview of the basic principles is given. For further details, the

interested reader is referred to the literature mentioned above, or to de Souza Neto et al. [33] and

Karajan [65]. The principle of determinism states that all constitutive quantities of a body at time

t, summarized in a response functions R, are uniquely determined by the history of the motion

and the temperature state up to the current time t. For a thermodynamical system, R yields

R = {ψ,σ, η, q} , (2.85)

while assuming that b̂ and r are determined by the balance of linear momentum and the balance

of energy, respectively. The principle of equipresence (see Truesdell [135]) implies, that in gen-

eral each component of R may depend on each thermodynamic state variable. Subsequently, the

principle of material frame indifference or material objectivity introduced by Noll [98] states,

that a material response is independent of the observer, which can mathematically be expressed

by a constitutive equation which is invariant to rigid body rotations of the current configuration.

Based on rotated current line elements, a rotated current configuration is given by

x∗ = Q · x , (2.86)

where the (·)∗ indicates rotated quantities and Q denotes a (proper) orthogonal rotation tensor.

Thus, a rotated deformation gradient follows as

F ∗ = Q · F . (2.87)

Since material quantities satisfy a priori the principle of frame indifference, the initial position

X and the Green-Lagrange strain tensor EGL fulfil this principle. In contrast, considering (2.87),

the deformation gradient F is not invariant under rigid body rotations, i.e. F is not an appropri-

ate measure. It can be shown that the velocity tensor D also fulfils the principle. The principle

of universal dissipation, see Coleman and Noll [26] or Truesdell and Noll [136] says, that an

admissible thermodynamic process has to fulfil the Clausius-Duhem inequality (2.79). Hence,

according to section 2.3.3, (2.79) can be used to reduce the number of unknowns due to the fact

that each term of (2.79) has to be equal to or greater than zero. Next, the principle of mate-

rial symmetry (see Coleman and Noll [26]) comprises, that different reference configurations at

the same time lead to the same physical response, e.g. the same microscopic structure may be

observed at different referential positions so that a deformation leads to the same results.

In the present thesis, isotropic materials are exclusively considered, i.e. there is no favoured

direction in which the body deforms. Thus, the validity of the principle of material symmetry

is guaranteed. Finally, the principle of local action, invented in Noll [99], establishes that the

behaviour of a material point P is determined by the values of chosen variables at this point or

its direct neighbourhood, whereas the values are insensitive to what happens in the distance.

2.4.2 State variables

In the context of the principle of local action, a material point P is influenced by so-called exter-

nal and internal variables. On the one hand, these state variables or thermodynamic, independent
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2 Nonlinear continuum thermodynamics

variables are observable, external variables which can be observed from outside, as e.g. the dis-

placement u or the temperature T . On the other hand, the state variables are the internal variables

which are not prescribed from outside, nor can explicitly be observed during the process. They

do not appear in the balance relations, but are developed within the process using so-called evo-

lution equations. The internal variables, summarized in αk, describe the internal change of a

load state.

The success of a constitutive model which shall describe a particular realistic material be-

haviour depends critically on the choice of the state variables. The choice of the state variables is

very important (see e.g. Lemaitre and Chaboche [78] or de Souza Neto et al. [33]) and according

to Lemaitre and Chaboche [78] further defines the weakness and the richness of the so-called

phenomenological thermodynamics: weakness because the choice is subjective and influences

decisively the results of the model, richness because different physical effects can be treated

separately or can be coupled easily with another effect.

The importance of the correct choice of state variables to account for the requirements of

a considered material can be emphasized by a simple example of a steel bar: when the bar is

subjected to a small axial strain at room temperature, the bar can be modelled with the linear

elasticity theory. If strain becomes larger, the assumption of linear elasticity is no longer a good

approximation. Instead, finite strain elasticity or plasticity may be a better choice. By further

increasing the load, it may be necessary to also include damage into the model. Hence, the

number of internal variables may be steadily increasing. Apart from very large loads and large

axial strains, i.e. a nonlinear deformation state, the temperature can vary from a constant room

temperature. Even at small strains, linear elasticity may not capture correctly the behaviour of the

steel bar. In this case thermoelasticity may be more appropriate. For instance, in thermoelasticity,

the temperatures T and the total strains ε can be used to fully describe a process at time t. For

plasticity, these observable variables T and ε are not sufficient to describe the complete process,

because the current state of the body also depends on the deformation history. To include the

history, internal variables are introduced, e.g. for small strain plasticity in form of plastic strains

(i.e αk ≡ εp). In case of finite strain plasticity, the multiplicative split of F into an elastic and a

plastic contribution has to be considered, which was first introduced by Lee [73]. Consequently,

it is very important to choose an appropriate constitutive theory for a given problem with the

appropriate set of variables.

After having defined a set of state variables, a thermodynamic potential has to be defined

which is used to determine all associated state variables describing each a certain thermodynamic

state. As shown in (2.82), two thermodynamic potentials are required for a general solid: firstly, a

potential which characterizes all thermodynamical properties, secondly, a potential which char-

acterizes the heat flux. In the present work, only associative thermodynamic potentials are used.

Thus, the Helmholtz free energy ψ which is defined per unit reference volume is assumed. Ho-

mogeneous materials are exclusively investigated, so that the associative function is independent

of the position in the medium. Based on a chosen Helmholtz free energy for a given process, the

physical quantities associated to the state variables (as e.g. the stress tensor σ associated to the

strain tensor ε) can directly be identified as a consequence of the restrictions derived from the

second law of thermodynamics. In the following section, the choice of a potential with the state

variables and their associated counterparts are discussed based on a general thermomechanical

problem.
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2.4 Constitutive theory

2.4.3 General nonlinear thermomechanical problem

A general thermomechanical problem for arbitrary time t is expressed by the following general

set of state variables:

{F , T, gradT, αk, X} , (2.88)

where αk denotes a set of internal variables, which can describe tensor-valued, vector-valued,

and scalar-valued quantities. Exemplarily,αk can represent the tensor-valued plastic deformation

gradient F p, the strain-like tensor Z associated with kinematic hardening, or the scalar-valued

accumulated plastic strain ε̄p associated to isotropic hardening. Further details on internal vari-

ables will be drawn in section 3.4.2. Defining the thermodynamic potential ψ in the variables

(2.88) yields

ψ(F , T, gradT,αk,X) (2.89)

and its time derivative gives

ψ̇ =
∂ψ

∂F
: Ḟ +

∂ψ

∂T
Ṫ +

∂ψ

∂gradT
· (gradT )· + ∂ψ

∂αk

⋆ α̇k +
∂ψ

∂X
· Ẋ , (2.90)

where the ’⋆’ is used as appropriate scalar product operation dependent on the order of αk. As

the initial position X is constant, the time derivative Ẋ vanishes. Hence, this term is dropped in

the following. Inserting (2.90) into (2.82) yields

σ : D − ρ
( ∂ψ

∂F
: Ḟ +

∂ψ

∂T
Ṫ +

∂ψ

∂gradT
· (gradT )· + ∂ψ

∂αk

⋆ α̇k + Ṫ η
)

− q

T
· gradT ≥ 0 ,

(2.91)

which can be reordered to

(

σ · F−T − ρ
∂ψ

∂F

)

: Ḟ − ρ
(∂ψ

∂T
+ η

)

Ṫ − ρ
∂ψ

∂grad T
· (gradT )·−

− ρ
∂ψ

∂αk

⋆ α̇k − q

T
· gradT ≥ 0

(2.92)

using the corresponding relation for the stress power

σ : D = σ · F−T : Ḟ . (2.93)

A material version of (2.92) follows as

(

P − ρ0
∂ψ

∂F

)

: Ḟ − ρ0

(∂ψ

∂T
+ η

)

Ṫ − ρ0
∂ψ

∂GradT
· (GradT )·−

− ρ0
∂ψ

∂αk

⋆ α̇k − Q

T
·GradT ≥ 0 .

(2.94)

The Clausius-Duhem inequality (2.92) or (2.94) has to be fulfilled for an admissible thermody-

namical process, that is, each component has to fulfil the equation. Hence, e.g. (2.94) can be

used to define constraints for the problem. It is assumed that (2.94) must be valid for any pair

of functions Ḟ (t) and Ṫ (t). Thus, the term in parenthesis in front of the deformation rate (here
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described via Ḟ ) must vanish. Subsequently, this term in parenthesis is used to determine the

stress via

P = ρ0
∂ψ

∂F
. (2.95)

Furthermore, (2.95) can be used to derive equations for other stress measures introduced in

section 2.2. Subsequently, the different stresses can be determined via

S = ρ0 F
−1 · ∂ψ

∂F
= ρ0

∂ψ

∂EGL

= 2 ρ0
∂ψ

∂C
, (2.96)

σ = ρ0 J
∂ψ

∂F
· F T = ρ

∂ψ

∂F
· F T = ρF · ∂ψ

∂EGL

· F T = 2 ρF · ∂ψ
∂C

· F T = ρ
∂ψ

∂EEA

, (2.97)

τ = ρ0
∂ψ

∂F
· F T = ρ0 F · ∂ψ

∂EGL

· F T = 2 ρ0
∂ψ

∂B
·B = ρ0

∂ψ

∂EEA

, (2.98)

where appropriate push-forward and pull-back operations, as well as (2.54) have been used. With

arbitrary temperature rate Ṫ , the well-known relation between entropy η and temperature T is

achieved as

η = −∂ψ
∂T

, (2.99)

hence {T, η} defines a so-called thermal energy-conjugated pair analogously to the mechani-

cal pairs introduced in section 2.47, as for instance {S,EGL}. Furthermore, as a result of the

equipresence (see section 2.4.1), the rates of the temperature gradient Grad Ṫ are arbitrary, so

that

ρ0
∂ψ

∂GradT
= 0 . (2.100)

According to the energy-conjugated stress-strain pairs in (2.47), a thermodynamic force Ak is

defined as

Ak := ρ0
∂ψ

∂αk

, (2.101)

which is conjugated to the internal variable αk. Finally, by inserting all aforementioned relations

(2.95) to (2.101), the Clausius-Duhem inequality reduces to the dissipation inequality

−Ak ⋆ α̇k − Q

T
·GradT ≥ 0 . (2.102)

2.4.4 Dissipation, complementary laws

The thermodynamic potential introduced in the previous section allows to write relations be-

tween the observable state variables (e.g. displacement, temperature) and their associated vari-

ables (e.g. stress, entropy). However, for the internal variables αk, the potential defines only the

associated variables of αk, i.e. Ak (see (2.101)).

To describe the dissipation process, i.e. the evolution of the internal variables α̇k, a comple-

mentary formalism is needed. Dissipation potentials aim to be complementary to thermodynamic

potentials. Subsequently, based on (2.102) a dissipation potential φ is assumed, which depends

on the products of thermodynamical force variables or dual variables (e.g. Ak, GradT ) with their
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corresponding flux variables (e.g. α̇k,
Q

T
), as well as possibly on the state variables. According

to (2.102), it can result in

φ = φ(α̇k,
Q

T
) := −Ak ⋆ α̇k − Q

T
·GradT ≥ 0 . (2.103)

Equation (2.103) can be split into two sub-potentials

φmech = −Ak ⋆ α̇k ≥ 0 , φcond = −Q

T
·GradT ≥ 0 , (2.104)

where φmech denotes the intrinsic or mechanical dissipation, which describes the plastic dissipa-

tion and the dissipation associated with the evolution of the internal variables, and φcond is the

thermal dissipation, which describes the thermal dissipation due to the conduction of heat. Com-

monly, dissipated mechanical energy is converted into heat, which cannot be converted back into

mechanical energy.

It can be shown, see Lemaitre and Chaboche [78], that a dual potential φ∗ = φ∗(Ak,GradT )
exists, which is defined in the dual variables and which can be used to define the complementary

evolution laws for the internal variables as

α̇k = − ∂φ∗

∂Ak

,
Q

T
= − ∂φ∗

∂Grad T
, (2.105)

where the so-called normal dissipativity or normality property is assumed. Normal dissipativity

means, that the thermodynamical forces (Ak, GradT ) are interpreted as the components of the

vector gradφ∗. This vector gradφ∗ is assumed to be normal to the surface (φ∗ = const.) in

the space of the flux variables (α̇k,
Q

T
). To satisfy the second law of thermodynamics, φ and

φ∗ are assumed to be positive, continuous, convex with respect to the dual variables, scalar-

valued and zero at the origin (i.e. {Ak,GradT} = {0, 0}). If the normality rule is ensured,

the second law of thermodynamics is a priori satisfied. Furthermore, the additive split of φ is

transferred to φ∗, hence separate potentials for the mechanical and the thermal contributions,

φ∗
mech and φ∗

cond, respectively, can be assumed. While the physics of the two sub-potentials are

still coupled, φ∗
mech is assumed to depend solely on the mechanical variables, whereas φ∗

cond is

assumed to depend on the thermal gradients only. Moreover, to be thermodynamically consistent

each sub-potential has to fulfil its inequality given each in (2.104). For a detailed description on

dissipation potentials, complementary laws and the derivations of them, the interested reader is

referred to the literature, such as Armero and Simo [7], de Souza Neto et al. [33], Lemaitre and

Chaboche [78], and Maugin [84].

2.5 Special case of small strains

Since some of the present applications can be described based on small strains, subsequently the

resulting simplifications are briefly summarized. In case the body undergoes small deformations,

i.e.
x ≈ X ,
F ≈ I ,

divu ≈ Divu ,
gradu ≈ Gradu .

(2.106)

25



2 Nonlinear continuum thermodynamics

Moreover, starting from small strains, linearised quantities have to be considered for the stress

and the strain tensors, recovering the linearised strain tensor

ε =
1

2
(gradu + gradT u) (2.107)

and hence the linearised stress tensor σlin = σ(ε) is obtained. Furthermore, F can be replaced

by the linearised strain tensor ε, as e.g. in (2.88) and the velocity gradient D by the linearised

strain rate tensor ε̇, as e.g. in (2.93).

The infinitesimal elastic strains are additively split into isochoric deviatoric and volumetric

contributions, εed and εev, respectively, yielding

εe = εed + εev , (2.108)

where the two contributions can be further specified to

εev =
1

3
εev I =

1

3
(εe : I) I =

1

3
tr εe I ,

εed = εe − εev ,

(2.109)

with εev = tr εe and tr εed = 0.
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3 Structural field

In the present chapter, the necessary fundamentals for solid mechanics, i.e. the general thermo-

dynamical problem introduced in section 2 will be specified to a purely mechanical analysis

whilst thermal terms will be neglected. For a more comprehensive and extensive review on solid

mechanics, the interested reader is referred to the corresponding literature, e.g. Belytschko et al.

[16], Bonet and Wood [17], Holzapfel [58], Lemaitre and Chaboche [78], and Zienkiewicz and

Taylor [149]. The chapter starts by presenting the balance equation for the structural field in

strong and weak form. Then, the target initial boundary value problem (IBVP) will be presented,

followed by the solution techniques, which will be applied for the solution of this IBVP. An

overview of the discretisation techniques is given, which focuses on the finite element method

(FEM) for spatial discretisation and the finite difference method for time discretisation. At this

point all equations will be available so that, by specifying the constitutive laws, the structural

problem can be closed. Herein, elastic and elastoplastic material models will be distinguished.

Subsequently, the structural problem is fully determined, so that solution techniques for this

nonlinear system of equations in form of a Newton-Raphson scheme will be presented. In this

context, direct and iterative solvers will be established to enable a robust and efficient solution

of the resulting linear system of equation.

3.1 Governing equations

The structural field is assumed to be governed by the local material form of the balance of linear

momentum introduced in (2.63), i.e.

ρ0 ü = DivP + b̂0 in Ω0 . (3.1)

For the sake of convenience, the structural field is exclusively formulated with respect to the ref-

erence configuration Ω0. Again, it is worth noting, that (3.1) still characterizes equilibrium in the

current configuration, although all quantities are expressed with respect to the reference configu-

ration. Moreover, to describe a purely mechanical, isothermal solid (with a constant temperature

T = const.), the second law of thermodynamics in the form of the Clausius-Planck inequal-

ity (2.84) has to be fulfilled to obtain a consistent formulation. Since the first Piola-Kirchhoff

stresses P in (3.1) are unknown, a thermodynamic potential in the form of the Helmholtz free

energy ψ, need to be chosen. Based on ψ, (2.84) defines constraints for the problem which will

be used to determine for instance the stresses.

3.2 Finite element formulation and solution schemes

The IBVP of nonlinear solid mechanics is described via a nonlinear coupled system of partial

differential equations (PDEs) including (3.1), combined with the previously presented kinematic
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relations (see section 2.1), a chosen constitutive model which will be specified later on in sec-

tion 3.4, and a set of initial conditions and boundary conditions, respectively. The boundary ∂Ω0

is divided into a Dirichlet and a Neumann boundary, Γ0;D;S and Γ0;N;S, respectively, where the

index S represents the boundary of the structural problem. On the Dirichlet boundary Γ0;D;S, the

displacements are prescribed, whereas on the Neumann boundary Γ0;N;S the traction vector is

prescribed. Thus, the following conditions

u = û on Γ0;D;S , (3.2)

P · n0 = t̂0 on Γ0;N;S (3.3)

need to be satisfied. The superimposed hat in (3.2) and (3.3) identifies prescribed quantities, as

already used for the prescribed body force b̂0 in (3.1). It is noted that the boundary ∂Ω0 is divided

into pairwise disjoint partitions, i.e.

∂Ω0 = Γ0;D;S ∪ Γ0;N;S , Γ0;D;S ∩ Γ0;N;S = ∅ . (3.4)

As (3.1) describes a second-order PDE in time, initial conditions for both displacements u and

velocities u̇ need to be specified at time t = 0 following

u0 = u(X, t = 0) = û0 on Ω0 , (3.5)

u̇0 = u̇(X, t = 0) = ˆ̇u0 on Ω0 . (3.6)

The above system of PDEs defines the so-called strong form of nonlinear solid mechanics

problems, i.e. the IBVP is satisfied in a strong, pointwise manner. As an analytical solution to this

class of IBVP is possible only for very simple cases, e.g. small deformations, simple geometries,

etc., an alternative solution approach is required. Hence, numerical (discretisation) techniques

are used instead. The IBVP contains PDEs in space and time, thus a full discretisation, i.e. in

space and time, is needed. For space discretisation the finite element method (FEM) and for

temporal discretisation the finite difference method is used. Basis for the FEM is the conversion

of the problem from the strong to the so-called weak form. In contrast to the strong form, which

fulfils the equations at each point, the weak form fulfils the equations only in an integral sense. To

derive a weak form, the principle of virtual work (PVW) is utilised, which is based on the method

of weighted residuals. The method of weighted residuals is applied to the balance equation (3.1)

and the traction boundary condition (3.3), yielding

∫

Ω0

(ρ0 ü − DivP − b̂0)
︸ ︷︷ ︸

rBE

·w dV0 +

∫

Γ0;N;S

(P · n0 − t̂0)
︸ ︷︷ ︸

rTBC

·w dA0 = 0 , (3.7)

where rBE and rTBC denote the residual of (3.1) and (3.3), respectively, and w denotes a weight-

ing function vector, which satisfies

w = 0 on Γ0;D;S (3.8)

and which can be interpreted as virtual displacements in solid mechanics, i.e.

w = δu . (3.9)
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Finally, the weak form of (3.7) is obtained by integration by parts of the divergence theorem and

insertion of (2.46) and (3.9), that is

∫

Ω0

ρ0 ü ·δu dV0 +

∫

Ω0

(Grad δu)T : (F ·S) dV0 −
∫

Ω0

b̂0 ·δu dV0 −
∫

Γ0;N;S

t̂0 ·δu dA0 = 0 , (3.10)

which can be further simplified to

∫

Ω0

ρ0 ü · δu dV0

︸ ︷︷ ︸

−δWkin

+

∫

Ω0

δET
GL : S dV0

︸ ︷︷ ︸

−δWint

−
∫

Ω0

b̂0 · δu dV0 −
∫

Γ0;N;S

t̂0 · δu dA0

︸ ︷︷ ︸

−δWext

= 0 . (3.11)

Herein, the kinetic, the internal and the external virtual works, δWkin, δWint, and δWext, are

distinguished respectively. Furthermore, the symmetric second Piola-Kirchhoff stress S and the

total variation of the Green-Lagrange strain tensor (2.17) given by

δEGL =
1

2

(

(F T ·Grad δu)T + F T ·Grad δu
)

(3.12)

are used.

An alternative approach to the weak formulation is obtained by the variation of an assumed

energy potential W which yields the so-called principle of minimum of total potential energy

(PMTPE). As W does not generally exist, the PMTPE is not generally valid either. Consequently,

the PVW is utilised here exclusively.

3.2.1 Space discretisation

3.2.1.1 Basics

As stated in the previous section, the FEM is used here for the numerical solution of the given

IBVP. As a detailed introduction of the FEM is beyond the scope of the present explanations, the

reader is referred to numerous textbooks, as e.g. Belytschko et al. [16], Hughes [60], Zienkiewicz

et al. [150], and Zienkiewicz and Taylor [149]. Instead, the explanations are restricted to the basic

notations.

The basic idea of the FEM is to replace the continuous solution of the problem on a continuous

domain Ω0 by the solution at discrete points, the so-called nodes, while the solution remains

continuous in time. The nodes are further connected to form elements so that the domain Ω0 is

partitioned into a finite number of nele elements, viz.

Ω0 ≈ Ωh0 =
nele⋃

e=1

Ω
(e)
0 . (3.13)

The finite elements (FE) approximate the continuous domain Ω0 via smaller, non-overlapping

subdomains Ω
(e)
0 which can be summarized in the discrete domain Ωh0 . Introduction of the shape
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functions Ň and the nodal displacement vector d enables the approximation of the continuous

displacements within an element by

u(e)(X, t) ≈ u(e);h(X, t) =
nnod∑

I=1

ŇI(X) dI(t) , (3.14)

where I and nnod denote the current node and the total number of nodes per element, respec-

tively. As the shape function Ň depends only on the position X , the time dependency is decou-

pled from them and is found only in the nodal displacement vector d. The accelerations ü, the

virtual displacements δu, and the element geometry in the reference and the current configura-

tion, X and x, respectively, are discretised equally. This leads to the well-known isoparametric

concept. Moreover, as same shape functions are used for the primary variable u and its virtual

counterpart δu, the present approach is further known as Bubnov-Galerkin approach, in con-

trast to the Petrov-Galerkin approach, where different shape functions are used for u and δu.

Furthermore, it is common to use polynomials for the shape functions whose order is chosen

according to the requirements of the weak form. Depending on the number of nodes and the

order of the polynomial, different finite element shapes are obtained, as for instance for three-

dimensions eight-noded hexahedral elements (named Hex8), four-noded tetrahedral elements

(named Tet4), or 27-noded hexaeder elements (named Hex27). While Hex8 and Tet4 elements

use linear polynomials in each direction, i.e. (tri-)linear shape functions, Hex27 elements use

quadratic polynomials.

For evaluating the weak form (3.11), a numerical integration technique such as the Gauss

quadrature is used. Following this, the element is expressed in local coordinates ξ which is

achieved by mapping the global quantities to a reference geometry, known as parameter space.

Hence, for instance the reference position follows as

ζ : ξ 7→ X(e);h(ξ) =

nnod∑

I=1

NI(ξ)XI , (3.15)

where N defines the shape functions in the parameter space. Thereby, e.g. for Hex8 elements,

the reference geometry is described by a normalized cube [−1; 1] × [−1; 1] × [−1; 1], which is

used to determine the Jacobian matrix

J(e) =
∂X(e)

∂ξ
. (3.16)

An important advantage of the FEM is that any integral over the domain Ω0 can be written as

sum of elementwise integrals, i.e. assembled, which reads

∫

Ω0

(·) dV0 =

nele∑

e=1

∫

Ω
(e);h
0

(·) dV0 , (3.17)

indicating that the integration requires only the knowledge of the corresponding elementwise

values. Finally, all elementwise contributions are assembled leading to the semi-discrete (i.e.

discrete in space but still continuous in time) weak form of the balance of linear momentum by

δd [Md̈ + f int;S(d) − fext;S] = 0 (3.18)
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with the mass matrix M, the internal force vector f int;S, the external force vector fext;S, the glob-

ally virtual displacement vector δd, and the global acceleration and displacement vector, d̈ and

d, respectively. For simplicity, the external forces fext;S are assumed to be independent of the

unknown displacements d. The index S represent the structural problem. By assuming arbitrary

virtual displacements δd, (3.18) can further be rewritten to

Md̈ + f int;S(d) − fext;S = 0 . (3.19)

For completeness, viscous damping can be considered, so that (3.19) results in

Md̈ + D ḋ + f int;S(d) − fext;S = 0 , (3.20)

where the damping matrix D and the global velocity vector ḋ are inserted. Exemplarily, D is

given as

D = cMM + cKK
0
S (3.21)

with free parameters cM and ck, and the initial tangential stiffness matrix K0
S, which will be

specified in section 3.3. This procedure is known as the Rayleigh ansatz.

3.2.1.2 F-bar element technology

It is common to use low-order displacement-based elements, as e.g. Hex8 elements which utilise

linear polynomials in each direction for the shape functions in (3.14) to approximate the displace-

ments. Since they are simple, cheap, and fast, they are the element of choice in most applications.

Issues arise for problems near the incompressibility, for instance for plasticity or rubber elasticity

where spurious volumetric locking occurs, resulting in too small deformations. For an overview

on different locking effects, the reader is referred to Klöppel [66] and the references therein. In

metal plasticity, which is one target application of the present thesis, the deformation is assumed

to be isochoric at each point (e.g. in finite strain plasticity detF p = 1, see section 3.4.2.5) while

the compressible part of the deformation, resulting from elasticity, is rather small. In rubber

elasticity, the ratio between bulk modulusK and Poisson’s ratio ν is very large, i.e. alternatively

isochoric deformations are characterizes by K → ∞ and ν → 0.5. Since volume-preserving

displacements fields cannot be correctly represented by standard linear displacement-based el-

ements, these elements are not applicable for isochoric deformations. To overcome volumetric

locking issues, either linear displacement-based finite elements in conjunction with element tech-

nology or higher-order elements are conceivable. While locking effects for higher-order elements

are decisively smaller, they can be used with the expense of cheapness and velocity. For linear

displacement-based elements several approaches have been established to overcome the volu-

metric locking issues, such as selective reduced integration (SRI), e.g. in Doll et al. [36], mixed

finite elements based on mixed variational formulations, see e.g. Simo and Miehe [122], Simo

et al. [124], and Zienkiewicz and Taylor [149], and assumed strain methods, such as the enhanced

assumed strain (EAS) method (applied for instance in Simo and Armero [119] and Adam and

Ponthot [1]) or F-bar methods (see e.g. de Souza Neto et al. [31, 32, 33]). For an overview on

different element technologies, the reader is referred, e.g. to Doll et al. [36] and the references

therein.
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In the present work, quadratic Hex27 elements will be applied for the small strain plasticity

models of sections 3.4.2.3 and 3.4.2.4 as well as sections 5.3.2.1 and 5.3.2.2. However, to cir-

cumvent volumetric locking in the range of finite strain plasticity applications, a F-bar method

will be applied to the Hex8 elements.

The F-bar method postulates that in the context of an arbitrary potential (2.89) the deformation

gradient F is replaced with a modified equivalent F̄ . To get the modified deformation gradient

F̄ , the current deformation gradient F is first split into volumetric and isochoric parts, Fv and

F̃ , respectively, according to (2.35). Volumetric locking is caused by parasitic stresses arising in

the element, so that a too stiff response is obtained. These stresses are linear within the element,

i.e. they are zero at the element centre. Hence, to circumvent volumetric locking, the incom-

pressibility constraint is weakened by replacing Fv at each Gauss point of an element with the

volumetric deformation gradient at the centre of the element F0, where these parasitic stresses

vanish. Subsequently, employing F0 for all Gauss points of an element, F̄ follows as

F̄ := F0;v · F̃ =
(detF0

detF

) 1
3
F , (3.22)

so that, for instance according to (2.97), the Cauchy stresses result in

σ̄ = σ̌(ψ(F̄ )) . (3.23)

Via pull-back of (3.23) using (2.46), the Cauchy and the second Piola-Kirchhoff stresses are

related, so that

σ̄ =
1

det F̄
F̄ · S̄ · F̄ T . (3.24)

Subsequently, (3.24) is inserted into the weak form (3.11) which yields after reformulations a

modified semi-discrete element internal force vector

f̄
(e)
int;S =

∫

Ω
(e)
0

(detF0

detF

)− 1
3
δET S̄ dV0 (3.25)

in combination with the standard virtual strain tensor δET. As volumetric locking arises only

due to the incompressibility condition which is assumed for the plastic behaviour within the

constitutive theory, F̄ is only applied for the stress function while the strain state remains un-

changed, see de Souza Neto et al. [33]. Consequently, the weak form (3.11), including standard

displacement-based elements only differs in the application of the modified stresses (3.24), while

all other terms remain unaltered. Thus, the benefit of the F-bar method becomes obvious, namely

only small changes in comparison with standard FE-formulations. In contrast, for instance EAS

involves large changes, as e.g. static condensation of internal degrees of freedom (DOFs) at

element level which need to be performed in every iteration. Moreover, the F-bar element tech-

nology can be extended to two-dimensional four-noded quadrilateral elements and, as shown in

de Souza Neto et al. [32], to two-dimensional triangular or three-dimensional tetrahedral ele-

ments.
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3.2.2 Time discretisation

Equation (3.20) is still continuous with respect to time t, thus time discretisation of the semi-

discrete equations is performed in the following to reach the fully discrete structural equations.

In literature, commonly finite difference methods are utilised for time differentiation by replac-

ing continuous time derivatives with difference quotients. Defining the time step size ∆t, the

time interval [t0, tmax] is partitioned into time intervals [tn, tn+1] where n denotes the time step

index and tn+1 denotes the unknown searched point in time. Implicit and explicit schemes are

distinguished. While for explicit time integration schemes the new unknown displacements dn+1

are directly extrapolated, implicit schemes require the solution of a system of ndof nonlinear

fully discrete equations for dn+1. Here, ndof defines the number of unknown DOFs.

For the final target application to thermo-fluid-structure interaction (TFSI), where the present

thermo-structure interaction (TSI) model is coupled to a compressible high Mach turbulent flow

solver, see e.g. Hammerl et al. [53], explicit schemes are applicable due to the very small time

step required in the fluid field, for instance as a result of the utilised turbulence model. In contrast,

for the simulation of solids with low frequency response, which are the focus of the present

work, implicit schemes are the method of choice, since they are more stable and allow larger

time steps. Unfortunately, it is more challenging to include them in the FE formulation, because

the nonlinear solution method requires a full linearisation of the given problem. To conclude, as

the present work aims at pure TSI, implicit schemes are only utilised, and in the following two

different schemes will be presented.

3.2.2.1 Generalised-α time integration

A widely used implicit method is the so-called generalised-α method, proposed by Chung and

Hulbert [25], which is based on Newmark’s method (see Newmark [97]). Newmark’s method

looks for equilibrium at the end of the time step tn+1. Hence, the endpoint solutions for velocity

ḋn+1 and acceleration d̈n+1 at tn+1 can be expressed using dn+1 as

ḋn+1(dn+1) ≈ vn+1(dn+1) =
γ

β∆t
(dn+1 − dn) − γ − β

β
vn − γ − 2 β

2 β
∆t an , (3.26)

d̈n+1(dn+1) ≈ an+1(dn+1) =
1

β∆t2
(dn+1 − dn) − 1

β∆t
vn − 1 − 2 β

2 β
an , (3.27)

where the approximation of the velocity and the acceleration is based on known quantities at

tn with the exception of the unknown primary variable dn+1. As parameters β ∈ [0, 0.5] and

γ ∈ [0, 1.0] are used. Inserting these quantities into (3.20) would yield a solution of the bal-

ance of linear momentum at the end of the discrete time step n + 1. Newmark’s method shows

unstable behaviour in nonlinear dynamics, thus an improved version, namely the generalised-α
method established by Chung and Hulbert [25] is proposed, which is robust even in nonlinear

dynamics and, for an appropriate choice of the parameters, in addition stable. The generalised-α
method uses (3.26) and (3.27) for the new solution of the velocities and the accelerations, re-

spectively, but shifts the evaluation point from tn+1 to general mid-points tn+1−αm
and tn+1−αf

,

respectively. Thus, corresponding approximations for displacements, velocities, accelerations,
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and the external force vector follow as

dn+1−αf
= (1 − αf) dn+1 + αf dn , (3.28)

vn+1−αf
= (1 − αf) vn+1 + αf vn , (3.29)

an+1−αm
= (1 − αm) an+1 + αm an , (3.30)

fext;S;n+1−αf
= (1 − αf) fext;S;n+1 + αf fext;S;n (3.31)

with the two additional generalised-α parameters αm ∈ [0, 1] and αf ∈ [0, 1]. For the approx-

imation of the force vector f int;S;n+1−αf
a so-called tr-like approach is chosen, i.e. the internal

force vector is interpolated between solutions at tn and tn+1

f int;S;n+1−αf
= (1 − αf) f int;S;n+1 + αf f int;S;n
= (1 − αf) f int;S(dn+1) + αf f int;S(dn)

(3.32)

using a trapezoidal rule (tr). In contrast, the so-called imr-like (implicit midpoint rule) approxi-

mation exists, however, this approach is not pursued in the present work. The big advantage of

the present generalised-α method is the inclusion of controllable numerical dissipation into the

system of equations while second-order accuracy and stability remain valid. Hence, the spectral

radius ρ is introduced which accommodates higher numerical dissipation or numerical damping

with smaller values of ρ. In practice, damping is desirable in the spurious high frequency regime,

whereas it should be as small as possible in the low frequency regime, see e.g. Mok [93] and the

references therein for further explanations. Consequently, with increasing frequency the values

of ρ should decrease. To summarize all the requirements, ρ∞ is introduced as the maximal spec-

tral radius for high frequencies. Subsequently, ρ∞ represents the sole free parameter, which can

be used to get optimal values of the four generalised-α parameters:

αf =
ρ∞

ρ∞ + 1
, αm =

2 ρ∞ − 1

ρ∞ + 1
, (3.33)

β =
1

4
(1 − αm + αf)

2 , γ =
1

2
− αm + αf . (3.34)

Integration of all aforementioned results into (3.20) gives the fully discrete structural equation

by

Man+1−αm
+ Dvn+1−αf

+ f int;S(dn+1−αf
) − fext;S;n+1−αf

= 0 . (3.35)

Finally, Newmark’s method can be recovered as special case of the generalised-α method for

the choice αm = αf = 0. Furthermore, by neglecting the inertia effect, Ma ≈ 0, a quasi-static

formulation is obtained which is widely used in structural mechanics. In this case, t plays the

role of a pseudo-time, i.e. a sequence of static equilibrium states is computed.

3.2.2.2 One-step-θ time integration

The generalised trapezoidal (or one-step-θ) scheme can be applied as an alternative time integra-

tion approach to the generalised-α method. It is a linear combination of forward and backward

Euler time integration schemes. According to (3.26) and (3.27), the corresponding values are

34
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approximated for the one-step-θ scheme by

ḋn+1(dn+1) ≈ vn+1(dn+1) =
1

θ∆t
(dn+1 − dn) − 1 − θ

θ
vn , (3.36)

d̈n+1(dn+1) ≈ an+1(dn+1) =
1

θ2∆t2
(dn+1 − dn) − 1

θ2∆t
vn − 1 − θ

θ
an , (3.37)

where θ represents the sole parameter of this time integration method. Subsequently, the accel-

erations are approximated using a finite difference scheme, i.e.

vn+1 − vn

∆t
= θ an+1 + (1 − θ) an+1 . (3.38)

Including (3.38) into (3.20), the fully discrete equation reads

M
vn+1 − vn

∆t
+ θ

[

Dvn+1 + f int;S(dn+1) − fext;S;n+1

]

+ (1 − θ)
[

Dvn + f int;S(dn) − fext;S;n

]

= 0 ,

(3.39)

which can be transformed to a more common form expressed only in current displacements dn+1,

leading to

[ 1

θ∆t2
M +

1

∆t
D
]

dn+1 + θ f int;S(dn+1) −
[ 1

θ∆t2
M +

1

∆t
D
]

dn+

+ (1 − θ) f int;S(dn) + θ fext;S;n+1 + (1 − θ) fext;S;n + M
vn

θ∆t
= 0 .

(3.40)

For θ = 0.5, the so-called Crank-Nicolson scheme is obtained and a quasi-static formulation is

recovered by neglecting the first term in (3.39).

3.3 Linearisation and solution techniques for nonlinear

equations

Equation (3.35) or (3.40) describe both a system of nonlinear algebraic equations which is solved

iteratively by applying a Newton-Raphson method. Hence, the residual of the fully discrete bal-

ance of linear momentum, e.g. in form of (3.35) is defined for an iteration step i as

rS(d
i
n+1) = Main+1−αm

+ Dvin+1−αf
+ f int;S(d

i
n+1−αf

) − fext;S;n+1−αf
. (3.41)

A Taylor expansion around the current solution din+1 is performed which is truncated after the

linear term, yielding the linearised form of (3.41) by

Lin rS(d
i
n+1) = rS(d

i
n+1) +

∂rS(dn+1)

∂dn+1

∣
∣
∣
∣

i

︸ ︷︷ ︸

KSS(d
i
n+1)

∆di+1
n+1 , (3.42)
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with the dynamic effective tangential stiffness matrix KSS(d
i
n+1). The linearisation of the internal

forces included in KSS is known as the tangential stiffness matrix K, which is defined as

Ki
S =

∂f int;S(dn+1−αf
)

∂dn+1

∣
∣
∣
∣

i

. (3.43)

Equilibrium is achieved if

Lin rS(d
i
n+1)

!
= 0 , (3.44)

so that a linear system of equation is given by

KSS(d
i
n+1)∆di+1

n+1 = −rS(d
i
n+1) . (3.45)

Thus, a new solution of the displacement increment ∆di+1
n+1 for current iteration step i + 1 is

determined, and the final displacement solution of time step n+ 1 is obtained via updating

di+1
n+1 = din+1 + ∆di+1

n+1 . (3.46)

A solution of tn+1 is found, i.e. an equilibrium state is reached and dn+1 = di+1
n+1, if prescribed,

user-defined convergence criteria are fulfilled. Hence, the calculation of (3.45) and (3.46) is

repeated until the following conditions are fulfilled, i.e.

||rS(di+1
n+1)|| < ǫtol;r , ||di+1

n+1 − din+1|| = ||∆di+1
n+1|| < ǫtol;d , (3.47)

where ǫtol;r and ǫtol;d are the user-defined convergence tolerances for the residual and the displace-

ment increment, respectively. Commonly, a L2-norm is chosen for convergence, but in general

the criteria have to be chosen for each problem separately. For instance, it can be more appropri-

ate to use a L1 or a L∞-norm, or to choose relative norms, as e.g. a relative norm for the residual

with respect to the initial residual of step i = 0, i.e.

||rS(di+1
n+1)||

||rS(di=0
n+1)||

< ǫtol;r . (3.48)

It is worth noting, that the convergence criterion is an important task. Exemplarily, for a given

problem, it can be sufficient to reduce relatively the residual by six order of magnitude, i.e.

in (3.48) ǫtol;r = 10−6. In contrast, other problems exist where the converged state utilising

this relative criterion cannot be identified with an equilibrium state, so that an absolute crite-

rion, as e.g. (3.47)1 is more appropriate. Moreover, in case of very small initial norms (e.g.

||rS(di=0
n+1)|| = 10−8), relative reduction by six order of magnitude cannot be reached, because

current computers can handle in total only 16 numbers of decimal places. Consequently, before

starting a simulation the convergence criteria should be treated very carefully.

For the application of exact Newton methods in conjunction with a consistent linearisation

and good initial estimates chosen sufficiently close to the actual solution, the method converges

quadratically. Consistent linearisation comprises the calculation of the tangential stiffness matrix

in each iteration step as shown in (3.45) which can possibly leads to expensive simulations with

high computational costs especially for large systems of equations with large numbers of DOFs.

Hence, various alternative approaches exist, as e.g. quasi-Newton methods or modified Newton
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methods, which are based on cheaper approximations of the stiffness matrix with the expense of

the quadratic convergence behaviour. Beyond, strategies to enlarge the convergence radius are

invented as the pseudo-transient continuation (ψTC) strategy for structural dynamics, see Gee

et al. [46], which aims at higher robustness and possibly larger time steps compared to the exact

Newton method with the expense of velocity. In summary, to achieve optimal convergence in a

relative short time, exact Newton methods are exclusively applied in the present work.

3.4 Constitutive laws for the structural field

Previously, all basics for solving nonlinear structural dynamics with the FEM and a Newton-

Raphson scheme have been presented. The only remaining open issue is the determination of

the stresses to close the given structural problem. Hence, in the following, constitutive laws

for isotropic, elastic as well as elastoplastic solids will be presented. Due to the exclusive use

of isotropic materials, the thermodynamic principle of material symmetry is fulfilled, see sec-

tion 2.4.1. Newton’s method is utilised, thus the consistent linearisation of the stresses has to be

performed and the so-called fourth-order material tangent CCC mat is obtained. Exemplarily, based

on the second Piola-Kirchhoff stress tensor (2.96), the material tangent follows by

CCC mat =
∂S

∂EGL

= ρ0
∂2ψ

∂EGL ∂EGL

= 2 ρ0
∂2ψ

∂C ∂C
. (3.49)

Subsequently, stresses and their corresponding material tangent are specified for the two cases

of elastic and elastoplastic materials, respectively.

3.4.1 Elasticity

Perfect elastic materials are described by (2.84) for the case that the inequation is equal to zero,

i.e. the material version of (2.84) leads to

Dmech = S : ĖGL − ρ0 ψ̇ = S :
1

2
Ċ − ρ0 ψ̇ = 0 , (3.50)

where the existence of the thermodynamic potential ψ per unit reference volume is assumed.

Consequently, so-called green-elastic or hyperelastic materials are presented, where a strain en-

ergy density function (SEF) Ψ is introduced by Ψ := ρ0 ψ. For further details on SEF, the reader

is referred, e.g. to Holzapfel [58] and Doll and Schweizerhof [35]. Exemplarily, two isotropic

elastic constitutive models are presented, namely the Saint Venant-Kirchhoff (abbreviated to

SVK) material and a compressible hyperelastic material model according to Simo and Miehe

[122] (abbreviated to ESIMO). The SVK material is an isotropic, hyperelastic model based on

the Helmholtz free energy

ρ0 ψSVK(EGL) = ΨSVK(EGL) = µEGL : EGL +
λ

2
(trEGL)

2 (3.51)

with the Lamé constants λ and µ, which can be expressed by

µ =
E

2 (1 + ν)
, λ =

E ν

(1 + ν) (1 − 2 ν)
(3.52)
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using Young’s modulus and Poisson’s ratio, E and ν, respectively. In contrast, the ESIMO ma-

terial is an isotropic, hyperelastic model which is based on the Helmholtz free energy

ρ0 ψESIMO(C) = ΨESIMO(B) =
K

2

(1

2
(J2 − 1) − lnJ

)

+
µ

2
(tr B̃ − 3) . (3.53)

It is noted, that in contrast to Simo and Miehe [122], in the present work the pre-factor of the first

term in (3.53) is assumed to K
2

. Thus, for an one-dimensional analysis Hooke’s law is recovered,

which will be shown in section 7.1.1. Inserting the time derivation of (3.51) or (3.53) into (3.50)

and assuming strain rates unequal to zero, (2.96) is recovered. Since (3.53) is described in the

current deformation tensor B, the Kirchhoff-stresses τESIMO are determined by

τESIMO = 2 ρ0
∂ψ

∂B
=

K

2
(J2 − 1) I + µ dev B̃ , (3.54)

where (2.98) and (B.28) are used. Via pull-back of (3.54) the second Piola-Kirchhoff stresses

are obtained. Consequently, the second Piola-Kirchhoff stresses are given for the two material

models by:

SSVK = 2µEGL + λ trEGL I , (3.55)

SESIMO = F−1 · τESIMO · F−T =
K

2
(J2 − 1)C−1 + µF−1 · (dev B̃) · F −T . (3.56)

Equation (3.55) shows that for the SVK material the second Piola-Kirchhoff stress depends

linearly on the Green-Lagrange strain. In contrast, the Simo material (3.56) describes a nonlinear

relation between stress and strain.

According to section 2.1.3, the deformation gradient F and the right Cauchy-Green deforma-

tion tensor C can be multiplicatively split, see (2.35) and (2.38). Similarly, e.g. for the Simo

material, the potential (3.53) can also be split into these two contributions, yielding

ψESIMO(C) = ψESIMO;iso(C̃)
︸ ︷︷ ︸

1
ρ0

Ŵ(C̃)

+ ψESIMO;v(J)
︸ ︷︷ ︸

1
ρ0

Û(J)

, (3.57)

where Û and Ŵ are the volumetric and isochoric SEFs, respectively, for hyperelastic materials.

Moreover, isochoric, deviatoric stresses and volumetric stresses follow as

SESIMO = SESIMO;iso(C̃) + SESIMO;v(J) , (3.58)

and finally, the material tangent CCC mat is obtained equally.

3.4.2 Elastoplasticity

In section 2.4.2, the motivation for the constitutive theory has been drawn using the simple

example of a steel bar subjected to an axial load. If the bar has been subjected to a larger axial

strain and does not reach its initial state after unloading, the elasticity theory does no longer

capture the observed deformation behaviour. Consequently, plasticity has to be included. In a

first step, small strain elastoplasticity will be presented. For this case, the basic concepts of
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plasticity will be explained. Subsequently, this small strain elastoplastic material is extended to

continuum damage mechanics (CDM) and finally, a finite strain elastoplastic material model will

be established.

In the context of plasticity, the second law of thermodynamics is no longer described by an

equation (3.50), but via an inequality, e.g. in form of the material Clausius-Planck inequality

obtained as pull-back of (2.84), yielding

Dmech = S : Ė − ρ0 ψ̇ ≥ 0 . (3.59)

3.4.2.1 Theory of plasticity

This section introduces the theory of plasticity. Following Hill [57], the theory of plasticity is

defined as the mathematical study of stress and strain in plastically deformed solids, especially

metals. Metals are part of crystalline materials, hence in a microscopic approach plasticity is

caused by dislocations or movements of atomic layers relatively to each other, as depicted in

Figure 3.1 for infinitesimal deformations. Here, the initially unloaded state is described by a

ε = 0 ε = εpε = εe + εpε = εe c)b)a) d)

Figure 3.1: Dislocation of atomic layers for infinitesimal strains.

strain state ε = 0. Due to an applied load, the body deforms with an elastic strain εe. This load

state is fully reversible, so that after unloading, the initial state ε = 0 is recovered. If a certain

limit is exceeded, plastic deformations start to arise which is described by εe + εp and shown in

the Figure 3.1 c). If the body is unloaded at this point, the initial state ε = 0 is not recovered. In

contrast, the plastic strains εp describe the remaining, irreversible deformation of the body, see

Figure 3.1 d).

One-dimensional small strain elastoplastic model

In the present thesis, however, in contrast to a microscopic approach a continuum macroscopic

(phenomenological) approach is pursued. Following the macroscopic procedure, internal vari-

ables are introduced to model the plasticity. To introduce the macroscopic procedure, a typical

stress-strain curve of a steel bar under uniaxial tension is depicted in Figure 3.2. Due to the

uniaxial load, it is allowed to reduce the fully three-dimensional problem to an one-dimensional

one, where the scalar-valued strain and stress, ε and σ, respectively, are introduced. To restrict the

introduction to the essential features of plasticity, the simple infinitesimal theory, i.e. the special

case of small strains (see section 2.5) is assumed. Subsequently, in the infinitesimal strain case,

the infinitesimal strain tensor ε replaces the deformation gradient F and the linearised stress

tensor σlin = σ(ε) replaces the first Piola-Kirchhoff tensor P . For the sake of lucidity, the index

lin is omitted in the linearised stress tensor. The bar is subjected to an increasing load, so that

the stress-free initial configuration (i.e. σ = ε = 0) is deformed. The behaviour can be described

with linear elasticity until the stress σy;0 is reached, which is known as initial yield stress, and

which marks the elastic limit. Further increase of load can be realized by plastic deformations
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ε

σ

σm

σf

σy

σy,0

εp
εe

ε

Figure 3.2: Characteristic stress-strain curve of steel bar.

εp, and material hardening possibly starts. The load can be increased until a maximal stress is

reached, the so-called maximal tensile strength σm. Although stretching of the bar is still pos-

sible (ε is still increasing), softening takes place, i.e. the stress decreases, which is observable

in experiments by necking of the steel bar. Softening occurs until a maximal strain εf is reaches

and the bar fails. The stress at the failure point is denoted the failure stress σf .
Unloading of the bar during hardening shows elastic behaviour, which is depicted in Figure 3.2

by the two small lines indicating parallel elastic branches. As soon as the body is fully unloaded,

the remaining strains εp are the permanent, irreversible part of the deformation. Motivated by

Figure 3.2, the total strain ε can be additively split into fully reversible, elastic and irreversible,

plastic strains, εe and εp, respectively, as

ε = εe + εp . (3.60)

Following the well-known elastic uniaxial constitutive relation (Hooke’s law), the stress can be

expressed as

σ = E εe = E (ε − εp) , (3.61)

where the additive split (3.60) and Young’s modulus E are used. In order to define a constitutive

model, phenomenological aspects need to be mathematically introduced into the model by ap-

propriate equations. Previously, in the context of Figure 3.2, the existence of an elastic domain

has been postulated which is delimited by the yield stress σy. With the introduction of the yield

function Φ of the form

Φ(σ, σy) = |σ| − σy , (3.62)

the elastic domain can be defined for one-dimensional elastoplasticity by

E = {σ |Φ(σ, σy) < 0} (3.63)

with the boundary of the surface (Φ = 0) denoted the so-called yield surface. It should be noted

here, that a stress state above the current yield stress is plastically not admissible, i.e. stress states

which lie inside the elastic domain (Φ < 0) or on the boundary (Φ = 0) are only admissible.

Thus, the following restriction

Φ(σ, σy) ≤ 0 (3.64)
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has to be satisfied. For a current stress state below the yield stress, which lies within the elastic

domain, the plastic load state does not change, which can be expressed by

Φ(σ, σy) < 0 for ε̇p = 0 , (3.65)

i.e. only elastic strains arise. The other plastically admissible load state is described by Φ = 0,

i.e. a stress state on the boundary, which can either describe elastic unloading and neutral loading

or plastic loading. Hence, according to (3.65) this postulates

Φ(σ, σy) = 0 for

{
ε̇p = 0 : elastic unloading, neutral loading

ε̇p 6= 0 : plastic loading
. (3.66)

Equations (3.65) and (3.66) define the so-called yield criterion, because they define conditions

when plastic straining occurs, i.e. ε̇p 6= 0. Assuming that under tension ε̇p is positive and under

compression negative, the so-called plastic flow rule can be established as

ε̇p = γ̇ sign(σ) , (3.67)

where sign denotes the signum function

sign(σ) =

{
+1 if σ ≥ 0
−1 if σ < 0

, (3.68)

and γ̇ denotes the plastic multiplier. The plastic multiplier is non-negative, has to obey

γ̇ ≤ 0 , (3.69)

and has to satisfy the so-called complimentary equation Φ̇ γ̇ = 0, which implies under plastic

yielding (i.e. γ̇ > 0), the consistency condition

Φ̇ = 0 . (3.70)

The consistency condition guarantees, that in a plastic load step the stress state persists on the

boundary of the yield surface. Consequently, equations (3.67), (3.69), (3.70) are used to define

the loading/unloading conditions of an elastoplastic model also known as the Kuhn-Tucker con-

ditions

Φ ≤ 0 , γ̇ ≥ 0 , Φ γ̇ = 0 . (3.71)

Finally, to complete the basics of an uniaxial elastoplastic model, a hardening law has to be

introduced, as shown in Figure 3.2: the yield stress σy is steadily increasing with the applied load

from the initial value σy;0. Hence, so-called isotropic hardening occurs, which is expressed by an

increasing yield stress while plastic strains evolve, i.e.

σy = σy(ε̄
p) := σy;0 + κ(ε̄p) , (3.72)

where, according to (2.101), the scalar-valued thermodynamic force associated to isotropic hard-

ening denotes κ and the scalar-valued internal variable is the accumulated plastic strain ε̄p. To

fulfil the consistency condition (3.70), the derivative of the yield function (3.62) is taken as

Φ̇ = sign(σ) σ̇ − H iso ˙̄εp (3.73)
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with the rate of the accumulated plastic strain ˙̄εp, the isotropic hardening modulus H iso, and the

stress rate σ̇, which are introduced by

˙̄εp = γ̇ , (3.74)

H iso = H iso(ε̄p) =
dσy
dε̄p

, (3.75)

σ̇ = E (ε̇ − ε̇p) =: Eep ε̇ , (3.76)

respectively. In (3.76), Eep is the elastoplastic tangent modulus which relates the total strain

rates ε̇ with the total stress rate σ̇ and which describes the slope of the stress-strain curve, e.g.

in Figure 3.2. Since Eep follows from the time continuous settings, it is frequently referred to

as the continuum elastoplastic tangent modulus. Using the aforementioned relations, the plastic

multiplier is determined by

γ̇ =
E

E + H iso
sign(σ) ε̇ =

E

E + H iso
|ε̇| , (3.77)

where use has been made of (3.67), (3.68), and (3.74). Combining (3.76) and (3.77), the elasto-

plastic tangent is specified to

Eep =
EH iso

E + H iso
. (3.78)

So-called isotropic strain hardening can easily be included in the model by replacing, e.g. in

(3.62) the constant value σy with σy(ε̄
p). In contrast, isotropic work hardening exists which will

not be used in the present work. For further insight, see e.g. de Souza Neto et al. [33].

Three-dimensional small strain elastoplastic model

The plasticity theory derived previously for the one-dimensional case can directly be extended

to the general three-dimensional case. First, the scalar-valued strain ε is replaced with the total

strain tensor ε, see (2.107). According to (3.60), ε can be additively split into elastic and plastic

strains as

ε = εe + εp . (3.79)

In compliance with (2.108) and (2.109), the infinitesimal elastic strains εe are additively split

into isochoric deviatoric and volumetric contributions, εed and εev, respectively. A thermodynamic

potential ψ is assumed, based on section 2.4.4 and (2.89), to

ψ(ε, εp, ε̄p) , (3.80)

where the general internal variables are specified to

αk = {εp, ε̄p} . (3.81)

Moreover, it is common to assume that

ψ = ψe(εe) + ψp(αk) , (3.82)
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motivated, e.g. by (3.57) or (3.79), i.e. the elastic contribution ψe depends only on the elas-

tic strains, whereas the internal variables appear only in the plastic part ψp. Subsequently, the

potential is inserted into (2.92) including (2.101), (3.79), (3.81), and (3.82), yielding

(

σ − ρ0
∂ψe

∂εe

)

: ε̇e + σ : ε̇p − κ ˙̄εp ≥ 0 . (3.83)

Herein, based on (2.108), the strain rate is split additively, i.e.

ε̇ = ε̇e + ε̇p , (3.84)

so that, as in (2.97), the stress is determined by

σ = ρ0
∂ψ

∂εe
= ρ0

∂ψe

∂εe
. (3.85)

Furthermore, the general thermodynamic forces (2.101) are specified to

Ak = {−σ, κ} , (3.86)

where −σ and κ denote the thermodynamical forces conjugate to εp and ε̄p, respectively, so that

the dissipation inequality (2.102) or for the present case (3.83) reduces to

σ : ε̇p − κ ˙̄εp ≥ 0 . (3.87)

Moreover, the yield function (3.62) is extended to the general three-dimensional case

Φ(σ,Ak) , (3.88)

now depending on the stress tensor σ and the set of forces Ak associated to αk. The Kuhn-

Tucker conditions (3.71) remains valid for the three-dimensional case and the elastic domain

(3.63) is extended to

E = {σ |Φ(σ,Ak) < 0} , (3.89)

where the yield surface describes the boundary of E via Φ(σ,Ak) = 0. To determine the internal

variables, evolution equations are required, see (2.105)1. The existence of the complementary

dissipation potential φ∗ is postulated to φ∗ = φ∗(σ,Ak). Since for the present work associative

plasticity is assumed, the yield function and the dissipation potential coincide, i.e.

φ∗ = φ∗(σ,Ak) ≡ Φ(σ,Ak) . (3.90)

Associative plasticity is a valid assumption for various plasticity models and especially for the

application to metals, as stated, e.g. in de Souza Neto et al. [33], Hill [57], and Simo and Hughes

[120]. In contrast, non-associative plasticity models assume the dissipation potential to be un-

equal to the yield function, i.e. φ∗ 6= Φ. For instance, associative plasticity guarantees that the

plastic strain rate tensor ε̇p is normal to the yield surface in the stress space, see section 2.4.4

and depicted later on in Figure 3.3 (right). Furthermore, it can be shown, that associative laws

can be derived from the so-called principle of maximum plastic dissipation. It postulates that a

given state described by (σ,Ak) maximises the dissipation function (2.103) or (3.87) for given

rates of internal variables.
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Based on (3.90), the plastic flow rule (3.67) and analogously the evolution equations for the

internal variables for fully three-dimensions follow as

ε̇p = γ̇N , (3.91)

α̇k = γ̇H , (3.92)

where the flow vector N and the general hardening modulus H are defined by

N = N(σ,Ak) :=
∂Φ

∂σ
, (3.93)

H = H(σ,Ak) := − ∂Φ

∂Ak

, (3.94)

respectively. Specifying (3.92) for the internal variable ˙̄εp, the evolution equation yields ˙̄εp = γ̇,

i.e. (3.74) is recovered. Based on (3.76), the rate equation for the three-dimensional case reads

σ̇ = CCC
ep
mat;c : ε̇ , (3.95)

where the three-dimensional continuum elastoplastic tangent modulus CCC
ep
mat;c is included. Since

CCC
ep
mat;c is achieved from the time-continuum settings, the index c emphasizes the time-continuum

tangent, in contrast to the consistent tangent operator which will be derived in section 3.4.2.2

based on the fully discretised equations.

Von Mises plasticity

Various approaches to model a phenomenological yield criterion in metal plasticity are available

in literature, e.g. Drucker and Prager [37], Tresca [134], von Mises [140], or the Mohr-Coulomb

model, see e.g. Crisfield [27]. Due to its simplicity, the so-called von Mises model, proposed by

von Mises [140], is very common and hence will be applied in this work. Based on observed

deformation behaviour of most metals whose volume remains constant during plastic yielding,

the von Mises yield criterion assumes that plastic yielding depends only on the deviatoric part of

the stress. This can be expressed with the second invariant of the stress deviator J2 (see (B.23))

and the yield criterion is specified to

Φ =
√

3 J2(s) − σy =

√

3

2
(s : s) − σy =

√

3

2
||s|| − σy , (3.96)

where || · || denotes the L2-norm and s denotes the stress deviator (2.49). Accordingly, the von

Mises yield criterion is also known as J2-plasticity. The equivalent von Mises stress can be

defined as

q =

√

3

2
||s|| . (3.97)

As plastic yielding is independent of the hydrostatic stresses, i.e. pressure-insensitive, plasticity

depends only on the isochoric part of the deformation, so that

tr ε̇p = 0 . (3.98)
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As a consequence of isochoric plasticity, it is common to split the potential into an elastic and

a plastic part, compare (3.82). Subsequently, equations (3.82), (3.96), and (3.98) define the con-

ditions of the so-called plastic incompressibility. For isotropic materials, the yield function can

be stated in principle stresses denoted by σ1, σ2, σ3. Thus, in the principle stress space the von

Mises yield surface represents a circular cylinder with the hydrostatic axis σ1 = σ2 = σ3 as its

centre and the radius r =
√

2
3
σy, see Figure 3.3. Moreover, due to the pressure-insensitivity, the

r =

√

2

3
σy

σ2

σ3

σ1

π-plane

σ2

σ1

hydrostati
 axis

π-plane

σ3

N

Figure 3.3: Von Mises yield surface in π-plane (left) and in principle stress space (right).

yield surface can be described by a deviatoric plane, the so-called π-plane, a plane perpendicular

on the hydrostatic axis. In the π-plane, the von Mises yield surface is again represented by a

circle. Hence, the advantage for computational plasticity arises because the yield surface of the

von Mises criterion is smooth at each point which is, e.g. not valid for the Tresca model.

Exemplarily, the flow vector (3.93) is determined assuming the von Mises yield criterion

(3.96), using (C.5)2, by

N(σ,Ak) ≡
∂Φ

∂σ
=

∂

∂σ

[√

3 J2(s)
]

=

√

3

2

s

||s|| , (3.99)

which is denoted the Prandtl-Reuss flow rule. This flow vector is said to be coaxial to the stress

tensor σ, i.e. the principle directions of N and σ coincide.

As mentioned previously in (3.72), the yield surface Φ is generally not constant, but can de-

pend on the plastic history, i.e. hardens. Two types of hardening can be distinguished as depict

in Figure 3.4: isotropic hardening and kinematic hardening. Isotropic hardening describes an

extension of the yield surface, while kinematic hardening describes a translation of the yield sur-

face. Furthermore, kinematic hardening is known as Bauschinger effect and is observed in cyclic

loadings. While isotropic hardening is described by the scalar-valued thermodynamic conjugate

variable κ, see (3.86), kinematic hardening is described by the tensor-valued symmetric devia-

toric (stress-like) back stress β. According to the geometric interpretation of the translation of

the yield surface, β defines the translation of the centre of the yield surface. Finally, to conclude,

in real experiments a mixture of both hardening effects occurs named mixed hardening. Apart

from the two presented hardening types, a further load state is conceivable which is known as

perfect plasticity. Perfect plasticity is described by a material model where the yield stress is in-

dependent of the plastic deformations and no hardening takes place. Consequently, the limit load
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σ3

hardened yield surfa
e

σ3

initial yield surfa
e

σ2 σ2σ1 σ1

Figure 3.4: Representation of isotropic (left) and kinematic (right) hardening.

is constant and is characterized by σy;0. According to Figure 3.4, perfect plasticity is described

by a fixed initial yield surface, or in Figure 3.2, by a horizontal stress-strain curve after passing

the elastic limit.

3.4.2.2 Solution techniques for path-dependent materials

Constitutive initial value problem

In section 3.2, the continuous IBVP has been proposed which has been discretised in space

and time to achieve the fully discrete equations of motion, e.g. given in terms of the one-step-θ
scheme by (3.40). In case of plasticity, the deformation history further enters the IBVP. Thus,

for path-dependent materials, as the present elastoplastic materials, the stress is no longer a

function of the current strains only. Instead, the stress depends on the history of the strains to

which the solid has been subjected. The history is introduced via the evolution equations (3.93)

representing PDEs in time. Consequently, initial conditions for (3.93) are required

αk(t = 0) = αk;0 = α̂k;0 in Ω0 . (3.100)

As mentioned in section 3.2.2, the time continuous equations are partitioned into time intervals

[tn, tn+1]. Equivalently, for a given time interval [tn, tn+1] and a given set of interval variables

αk;n at the known time tn, the current strain tensor εn+1 is used to determine the current stress

tensor σn+1 through an integration algorithm, as e.g. the Newton-Raphson scheme. For a discrete

time step, the current solution σn+1 is approximated using an incremental function σ̌n+1

σn+1 = σ̌n+1(εn+1,αk;n) . (3.101)

Hence, for infinitesimal strain increments, the solution converges to the exact solution. In gen-

eral, the stresses are nonlinear, whereas they can be assumed as path-independent within one

time increment, because to determine σn+1 the current strain state εn+1 and the old solution of

the internal variables αk;n are used.

As for the stress, the internal variables are achieved incrementally via

αk;n+1 = α̌k;n+1(εn+1,αk;n) . (3.102)
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Introduction of the incremental functions into the element internal force vector for the infinites-

imal case yields

f
(e)
int;S;n+1 =

∫

Ω
(e)
0

δεTn+1 : σ̌n+1(εn+1,αk;n) dV0 . (3.103)

For time discretisation of the rate quantities, included in the evolution equations (3.91) and

(3.92), an implicit (backward) Euler scheme is chosen in this thesis leading to incremental quan-

tities. Consequently, the incremental plastic multiplier ∆γ follows as

γ̇(t) =
∆γ

∆t
, (3.104)

which is inserted into the incremental evolution equations. Subsequently, time-discrete equations

are established to determine the new unknown solution of the internal variables at time tn+1 by

ε
p
n+1 = εpn + ∆γN(σn+1,Ak;n+1) , (3.105)

αk;n+1 = αk;n + ∆γH(σn+1,Ak;n+1) . (3.106)

Furthermore, the Kuhn-Tucker conditions in their incremental form read

Φ(σn+1,Ak;n+1) ≤ 0 ,
∆γ

∆t
≥ 0 , Φ(σn+1,Ak;n+1)

∆γ

∆t
= 0 , (3.107)

and the thermodynamical forces are given by

σn+1 = ρ0
∂ψ

∂εe

∣
∣
∣
∣
n+1

, Ak;n+1 = ρ0
∂ψ

∂αk

∣
∣
∣
∣
n+1

. (3.108)

Subsequently, using the relations above and (3.101), the associated discrete consistent material

tangent is achieved as

CCC mat = CCC
ep
mat ≡ ∂σ̌n+1

∂εn+1

∣
∣
∣
∣
αk;n

. (3.109)

To obtain good convergence behaviour and to preserve the quadratic rate of convergence of

Newton’s method, the consistent tangent operator (see Simo and Taylor [123]) is utilised based

on the fully discretised incremental equations, in contrast to the continuum tangent operator

CCC
ep
mat;c (3.95), which is achieved from the time-continuum settings. The only difference between

the two tangents lies in the terms with the incremental plastic multiplier ∆γ, see de Souza Neto

et al. [33], which emerge in the consistent tangent CCC
ep
mat. Especially, for large time steps with

large values of the plastic multiplier ∆γ, i.e. big differences between continuum and consistent

tangent, computational time can be decisively reduced using CCC
ep
mat due to a substantially faster

convergence of the global Newton scheme.

Elastic predictor/plastic corrector algorithm

Due to the constraints (3.107), the solution of the incremental elastoplastic problem (3.104)-

(3.108) cannot directly follow from the standard approach for IBVP. Instead a two-step algo-

rithm, namely an elastic predictor/plastic corrector algorithm is applied, which is also known as
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radial return-mapping method, originally invented by Wilkins [144] for perfect plasticity. The

return-mapping algorithm is widely used in literature for elastoplasticity, see e.g. Armero and

Simo [7], Caminero et al. [21], de Souza Neto et al. [33], Montáns and Bathe [95], Ortiz and

Simo [101], Peric and de Souza Neto [104], Simo [118], and Simo and Taylor [123].

According to (3.107)2, two values are admissible for the plastic multiplier, that is ∆γ = 0 and

∆γ > 0. A time interval [tn, tn+1] is given and all values at time tn are known. Subsequently,

in a first step, which is named elastic trial step, the plastic multiplier is assumed to be equal

to zero (∆γ ≡ 0), which significates that the load step is assumed to be completely elastic,

and neither plastic flow (∆εp ≡ 0) nor evolution of internal variables (∆αk ≡ 0) take place.

Within the incremental equations, the rate quantities are transformed to increments, thus ∆(·) =
(·)n+1 − (·)n. For the determination of the trial elastic strains and the trial interval variables

follows

ε
e;trial
n+1 = εen + ∆ε , (3.110)

ε
p;trial
n+1 = εpn , (3.111)

αtrial
k;n+1 = αk;n , (3.112)

where the total strain increment for tn+1 is assumed to

∆ε = εn+1 − εn . (3.113)

Hence, in the trial elastic step the stress and the thermodynamic force yield

σtrial
n+1 = ρ0

∂ψ

∂εe

∣
∣
∣
∣

trial

n+1

, Atrial
k;n+1 = ρ0

∂ψ

∂αk

∣
∣
∣
∣

trial

n+1

. (3.114)

It is noted, that the present trial state is only the actual solution if the Kuhn-Tucker condition

(3.107)1 holds, i.e.

Φtrial
n+1 ≡ Φ(σtrial

n+1,A
trial
k;n+1) ≤ 0 , (3.115)

so that the stress state lies within the yield surface or on its boundary. In this case, the trial values

are updated to the new values

(·)n+1 := (·)trialn+1 . (3.116)

In contrast, if (3.107)1 or (3.115) is violated, i.e. Φtrial
n+1 > 0, the current load step is not admissi-

ble and the second, so-called plastic corrector step or return-mapping algorithm is performed. For

the return-mapping algorithm, the plastic multiplier is assumed to be greater than zero (∆γ > 0),

so that plastic flow occurs and the interval variables change. Based on (3.105), (3.106) and the

trial values (3.110)-(3.112), admissible final values at the end of the time step are computed for

∆γ > 0 by

εen+1 = ε
e;trial
n+1 − ∆γN(σn+1,Ak;n+1) , (3.117)

ε
p
n+1 = ε

p;trial
n+1 + ∆γN(σn+1,Ak;n+1) , (3.118)

αk;n+1 = αtrial
k;n + ∆γH(σn+1,Ak;n+1) , (3.119)

where the only possible value of the yield surface arises to be

Φ(σn+1,Ak;n+1) = 0 (3.120)
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for meeting the Kuhn-Tucker conditions.

To conclude, a solution of the overall elastoplastic problem is achieved, if the system of equa-

tions composed by (3.117)-(3.120) is solved. As stresses and state variables are computed at each

Gauss point, an efficient solution strategy is required to circumvent high computational costs.

3.4.2.3 Small strain elastoplasticity

In the previous sections 3.4.2.1-3.4.2.2, the basics for an elastoplastic material have been intro-

duced. In the following, a small strain elastoplastic material with mixed hardening, i.e. nonlinear

isotropic and linear kinematic hardening, is presented which is based on the following potential

ρ0 ψ(ε
e, ε̄p,Z) = ρ0 ψ

e(ε − εp) + ρ0 ψ
p(ε̄p,Z) = ρ0 ψ

e(εe) + ρ0 ψ
p(ε̄p,Z) , (3.121)

where Z is a second-order tensor-valued internal variable associated to the back stress β that

models the kinematic hardening, while ε̄p models the isotropic hardening. Hence, the internal

variables and their conjugated thermodynamic forces are summarized by

αk = {εp,Z, ε̄p} , Ak = {−σ,β, κ} . (3.122)

The potentials in (3.121) are specified for the present model to

ψe(εe) = ψed(ε
e
d) + ψev(ε

e
v) = 2G εed : ε

e
d + K εev : ε

e
v , (3.123)

ψp(Z, ε̄p) =
1

3
HkinZ : Z +

1

2
H iso ε̄p2 , (3.124)

where K and G denote the bulk and the shear modulus, respectively, and εed and εev are the

deviatoric and the volumetric elastic strains, respectively, introduced in (2.109). Furthermore,

the shear modulus is identical to the second Lamé constants µ (see (3.52)), i.e. G ≡ µ. As for

the Lamé constants (3.52), the bulk modulus can be expressed in E and ν as

K =
E

3 (1 − 2 ν)
. (3.125)

In (3.123), the elastic potential ψe is split into an elastic deviatoric and an elastic volumetric con-

tribution according to (2.108) and (3.57). Hence, according to (3.85) using (2.48), the deviatoric

stress and the hydrostatic pressure follow as

s = 2G εed , p = K εev . (3.126)

To approximate the nonlinear isotropic hardening, piecewise linear isotropic hardening is as-

sumed. This means that any (arbitrary) nonlinear hardening curve can be approximated by choos-

ing a sufficiently large number of sampling pairs (ε̄p, σy) with linear interpolation between adja-

cent pairs. Subsequently, for a given load step the isotropic hardening slop reads

H iso :=
dσy
dε̄p

∣
∣
∣
∣
ε̄pn+∆γ

. (3.127)

The yield function is determined by

Φ(σ,β, σy) =

√

3

2
||(s − β)|| − σy =

√

3

2
||η|| − σy(ε̄

p) = q̌ − σy(ε̄
p) ≤ 0 , (3.128)
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where the relative stress tensor η and based on (3.97), the relative effective equivalent von Mises

yield stress q̌ are used. Herein,

η = s − β (3.129)

is deviatoric by definition, and q̌ =
√

3
2
||η||. To satisfy the plastic consistency condition (3.70)

for the yield surface (3.128), the time derivative is given by

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂β
: β̇ +

∂Φ

∂ε̄p
: ˙̄εp = 0 , (3.130)

i.e. due to the second term, an evolution equation for the back stress β is required. In the present

model, so-called Prager-Ziegler’s linear kinematic hardening law is used, which is defined as

β̇ =
2

3
Hkin γ̇ Ň (3.131)

with the constant linear kinematic hardening modulus Hkin and the unit flow vector Ň = η

||η||
.

According to (3.131), the evolution law for the internal variable Z reduces to (3.91).

As explained in section 3.4.2.2, the two-step algorithm is used for the solution of the initial

value problem at hand. Hence, the evolution equations have to be stated in incremental form

according to (3.105) and (3.106). Moreover, the current back stresses βn+1 are determined using

the incremental form of (3.131), leading to

βn+1 = βn +
2

3
Hkin∆γ Ňn+1 (3.132)

with the unit flow vector

Ňn+1 =
ηtrial
n+1

||ηtrial
n+1||

(3.133)

and the flow vector Nn+1 =
√

3
2
Ňn+1. The present small strain elastoplastic model can be

solved very efficiently. Instead of solving a system of equations in the return-mapping algorithm,

the solution can be reduced to the evaluation of one single equation to determine the sole free

parameter ∆γ. For details, the interested reader is referred to, e.g. de Souza Neto et al. [33]. To

determine ∆γ, the consistency condition needs to be fulfilled for an admissible plastic state, i.e.

at the end of the time step the stress state is returned to the yield surface, i.e.

Φ(∆γ) =

√

3

2
||ηtrial

n+1|| − ∆γ [3G + Hkin] − σy(ε̄
p
n + ∆γ)

!
= 0 , (3.134)

where the accumulated plastic strains ε̄p (3.74) are discretised using (3.104), yielding

ε̄pn+1 = ε̄pn + ∆γ . (3.135)

Since (3.134) is nonlinear, a Newton-Raphson method, often denoted local Newton method, is

utilised to determine ∆γ, which is described in Algorithm 1. Based on the solution∆γ computed

within the local Newton, see Algorithm 1, all remaining quantities (i.e. e.g. κn+1, βn+1, σn+1)
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Algorithm 1 Local Newton-Raphson iteration algorithm for solution of the return-mapping

equation of the von Mises model.

# Initialise iteration index m := 0, set initial guess for ∆γ
Predictor ∆γm=0 := 0
# Calculate initial residual (yield function)

rm=0
Φ := Φ(∆γ = 0) =

√
3
2
||ηtrial

n+1|| + [3G + Hkin] − σy(ε̄
p
n)

# Perform local Newton

for each iteration step m = 0, ...,maxlociter
# Check for convergence of the local Newton

if |rmΦ | ≤ ǫtol;p
finish local Newton with solution ∆γ = ∆γm

Calculate tangent/residual derivative: Km :=
drmΦ
d∆γm

Update plastic multiplier: ∆γm+1 := ∆γm − rmΦ
Km

Update accumulated plastic strain: ε̄pn+1 = ε̄pn + ∆γm+1

# Calculate updated residual

rm+1
Φ =

√
3
2
||ηtrial

n+1|| − ∆γm+1 [3G + Hkin] − σy(ε̄
p
n+1)

Update local Newton-Raphson iteration step m = m+ 1

are updated to the final quantities at tn+1. For instance the final result of stresses σn+1 is based

on the final deviatoric stresses, which are computed according to

sn+1 = strialn+1 − 2G∆γNn+1 , (3.136)

based on (2.108), (3.117), and (3.126). The hydrostatic pressure is not influenced by plastic

deformations, i.e. pn+1 = ptrialn+1, thus the final stresses follow as

σn+1 = sn+1 + pn+1 I . (3.137)

In Algorithm 2, the implicit elastic predictor/return-mapping algorithm for the present linear

elastoplastic material model is presented. Subsequently, as stated at the beginning of section 3.4,

the material tangent (3.49) has to be computed. For the given small strain elastoplastic material

model, an incremental function of the stress is considered, as stated in de Souza Neto et al. [33]:

σn+1 =
[

CCC
e
mat − Ĥ(Φtrial

n+1)
∆γ 6G2

q̌trialn+1

III d

]

: εe,trialn+1 + Ĥ(Φtrial
n+1)

∆γ 3G

q̌trialn+1

βn , (3.138)

where intermediate solutions of the elastic trial step (·)trial, the back stresses of the old time βn,

and the deviatoric symmetric fourth-order identity tensor III d (B.30)1 are used to describe the

current stresses σn+1, see (3.101). Moreover, CCC e
mat is the standard elastic tangent which is based

on (3.61)1. Since for the solution of the plasticity, the elastic predictor/plastic corrector scheme
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Algorithm 2 Fully implicit elastic predictor/plastic corrector (return-mapping) algorithm for the

von Mises model.

For time tn+1 a strain increment ∆ε (3.113) is given, as well as the state variables at tn

# Elastic predictor

Evaluate the elastic trial state (3.110)-(3.112) using (3.126) and (2.108):

Evaluate strains

ε
e;trial
n+1 = εen + ∆ε , ε

p;trial
n+1 = εpn , ε̄p;trialn+1 = ε̄p;trialn

Evaluate stresses

strialn+1 = 2G ε
e;trial
d;n+1 , ptrialn+1 = K εe;trialv;n+1,

βtrial
n+1 = βn

# Check plastic admissibility

if Φtrial
n+1 =

√
3
2
||(strialn+1 − βtrial

n+1)|| − σtrial
y;n+1 ≤ 0

set (·)n+1 = (·)trial and finish material call

# Return-mapping

Solve consistency condition (3.134) according to local Newton (Algorithm 1) for ∆γ

Calculate flow vector Nn+1 =
√

3
2

ηtrialn+1

||ηtrialn+1||

Update state variables

Update stresses

sn+1 = strialn+1 − 2G∆γNn+1, pn+1 = ptrialn+1, σn+1 = sn+1 + pn+1 I

βn+1 = βtrial
n+1 + 2

3
Hkin∆γNn+1

Update strains

εen+1 = ε
e;trial
n+1 − ∆γNn+1 , ε

p
n+1 = ε

p;trial
n+1 + ∆γNn+1 , ε̄p;trialn+1 = ε̄p;trialn + ∆γ

# Finish material call

is used, the stresses are naturally formulated in the elastic trial strain measures ε
e;trial
n+1 . In this

context, the relation

ε
e;trial
n+1 = εn+1 − εpn (3.139)

is used for the general elastoplastic tangent modulus (3.109). Hence, the elastoplastic material

tangent is determined by consistent linearisation of the stresses (3.138) with respect to ε
e,trial
n+1 in-

stead of the total strains as included in (3.109). Subsequently, the consistent elastoplastic tangent

reads

CCC
ep
mat = CCC

e
mat + Ĥ(Φtrial

n+1)
[

− ∆γ 6G2

q̌trialn+1

III d +

+6G2
( ∆γ

q̌trialn+1

− 1

3G + H iso + Hkin

)

Ňn+1 ⊗ Ňn+1

]

,

(3.140)

which depends on the old values of the internal variables. The Heaviside function

Ĥ(Φtrial
n+1) =

{
1 if Φtrial

n+1 > 0
0 if Φtrial

n+1 ≤ 0
(3.141)
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3.4 Constitutive laws for the structural field

is introduced to differentiate between an elastic or neutral load step, i.e. Ĥ(Φtrial
n+1) = 0, and a

plastic load step, i.e. Ĥ(Φtrial
n+1) = 1. For an elastic unloading step (Ĥ = 0), the elastoplastic

tangent modulus reduces to the elastic tangent modulus, so that CCC mat := CCC e
mat. For a plastic

load step (Ĥ = 1), additional linearisations have to be considered for the tangent, leading to

CCC mat := CCC
ep
mat. In summary, a solution of the material model is found applying the Algorithm 2

with the local Newton in Algorithm 1.

3.4.2.4 Small strain elastoplasticity with ductile damage

The present material model is based on the continuum damage mechanics (CDM) concept, see

for instance Lemaitre [75], where an internal damage variable D is introduced which describes

the effective stress density of microvoids, microcavities and microcracks. The stresses are com-

puted according to the concept of effective stresses (see e.g. Kachanov [64]). The concept is

motivated by the damage behaviour in an uniaxial tensile test: the body is loaded by a tensile

force f . If a certain load limit is passed, the body starts to damage which can be observed via

microvoids, mircocracks or microcavities. The stress σ characterizes a load state of the body

which is defined as the ratio between applied load f and total surface A. As soon as damage

evolves, the so-called damaged area AD can be defined, which corresponds to the part of the

area A which includes, e.g. microcracks. Thus, the scalar-valued damage variable is defined as

D =
AD
A

. (3.142)

The effective stress then follows as the ratio between applied force and load-bearing, effective

area Aeff , i.e.

σeff =
f

A − AD
=

f

Aeff

. (3.143)

The concept of effective stress can be easily extended to the fully three-dimensional test. Since

isotropic behaviour is assumed, damage evolves in each direction equally. The resulting effective,

undamaged stress tensor σeff is defined as the stress of the remaining area where the damaged

area is subtracted, hence using (3.142), σeff results in

σeff =
σ

1 − D
. (3.144)

In contrast, for anisotropic damage, the damage is modelled via a higher-order, i.e. either a

second-order or a fourth-order, damage tensor D.

Based on de Souza Neto [30], Doghri [34], and Lemaitre and Desmorat [79], the present

material model is understood as an extension of the elastoplastic material model presented in

section 3.4.2.3 to include CDM. Hence, in the following a ductile isotropic damage model, the

so-called Lemaitre ductile damage model according to Lemaitre [75, 76, 77] and Lemaitre and

Desmorat [79] is presented.

It is common to rephrase the linear elasticity (3.61) when damage is included, so that

σ = (1 − D)CCC e
mat : ε

e , (3.145)

53



3 Structural field

which can be split including (2.48) and (3.126) for the damaged case into

s = (1 − D) 2G εed , p = (1 − D)K εev . (3.146)

The Lemaitre model is assumed to be defined in the following internal variables and their corre-

sponding thermodynamic forces

αk = {εp, R,D} , Ak = {−σ, κ,−Y } , (3.147)

respectively. Herein, R denotes the scalar-valued internal variable and the conjugated scalar-

valued thermodynamic force is κ which describes isotropic hardening. Furthermore, the damage

is introduced into the model via the scalar variable D which is related to the damage energy

release rate Y . Exemplarily, the thermodynamic potential in form of the Helmholtz free energy

postulates

ρ0 ψ(ε
e, R,D) = ρ0 ψ

ed(εe, D) + ρ0 ψ
p(R) (3.148)

with the elastic damaged and the plastic potential,

ρ0 ψ
ed(εe, D) =

1

2
εe : [(1 − D)CCC e

mat] : ε
e , (3.149)

ρ0 ψ
p(R) =

1

2
H isoR2 , (3.150)

respectively. As for the purely elastoplastic model in section 3.4.2.3, nonlinear isotropic hard-

ening is approximated by assuming piecewise linear isotropic hardening. Thus, sampling pairs

(R, σy) are chosen with sufficiently large number of pairs for a correct interpolation of the real

nonlinear hardening behaviour. Moreover, a relation for the variables R, γ̇ and ε̄p is drawn by

R = γ̇ = (1 − D) ε̄p (3.151)

with R = γ̇ = ε̄p for an undamaged load step, i.e. D ≡ 0. Subsequently, the von Mises yield

function is assumed to

Φ =

√

3

2
||seff || − σy(R) = qeff − σy(R) ≤ 0 , (3.152)

where based on (3.144), the effective deviatoric stress and the effective von Mises equivalent

stress follow as

seff =
1

1 − D
s , qeff =

√

3

2
||seff || , (3.153)

respectively, and based on (3.72) the yield stress is computed by

σy(R) = σy;0 + κ(R) . (3.154)

Moreover, the flow vector (3.93) yields

N =
∂Φ

∂σeff

=

√

3

2

seff

||seff ||
, (3.155)
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3.4 Constitutive laws for the structural field

which is inserted, e.g. into (3.105) to compute the plastic strains. In addition to the elastoplastic

material presented in section 3.4.2.3, an evolution equation for the damage variable is introduced

by

Ḋ = γ̇
Ĥ(ε̄p − ε̄pD)

1 − D

(−Y
r

)S

, (3.156)

where r, S are experimentally determined material parameters and the energy-release rate Y is

defined as

Y = ρ0
∂ψed

∂D
=

−1

2 (1 − D)2
σ : CCC e−1

mat : σ =
−q2

6G (1 − D)2
+

−p2
2K (1 − D)2

. (3.157)

As shown in (3.156), the present model includes a so-called damage threshold ε̄pD. In experiments

it can be observed that a body can bear a certain amount of plastic strains in which no damage

is observed (described by Ĥ = 0 for ε̄p ≤ ε̄pD). Passing this limit, i.e. ε̄p > ε̄pD, damage evolves

and the Heaviside function follows as Ĥ = 1.

Summarizing, a solution for the given damage material is obtained, if the discretised consti-

tutive initial value problem using a backward Euler time integration scheme, see section 3.4.2.2,

satisfies all equations. This comprises the Kuhn-Tucker conditions (3.107) with the yield surface

(3.152) and the evolution equations (3.151) and (3.156) utilising the two-step algorithm of sec-

tion 3.4.2.2 for the given set of equations. Since the present model neglects kinematic hardening

(β = 0), the so-called simplified Lemaitre material model is considered which enables a very

efficient solution approach. For this model, the number of equations can be reduced to one single

equation. For details on the derivation of the one-equation return-mapping, the reader is referred

to de Souza Neto et al. [33]. Subsequently, according to the Algorithm 2 for the undamaged

elastoplastic materials, a solution of the damage material is achieved equally. Herein, in case of

inadmissible values of Φtrial
n+1, a return-mapping algorithm is applied in the plastic corrector step

by solving solely

rΦ;D(∆γ) ≡ ωD(∆γ) − ωD;n +
∆γ

ωD(∆γ)

(−Y (∆γ)

r

)S

= 0 (3.158)

to obtain a solution for ∆γ. For convenience, the material integrity ωD is introduced as ωD :=
1 − D. Since (3.158) describes a nonlinear equation, a local Newton is applied according to

Algorithm 1 for the residual rΦ;D. In this context it is noted, that the inclusion of damage into the

material model worsens the convergence of Newton’s method (for details see e.g. de Souza Neto

et al. [33]). For this reason the initial guess or predictor ∆γm=0 plays an important role. In

de Souza Neto et al. [33], the authors showed that an initial guess

∆γm=0 =
qtrialn+1 − σy(Rn)ωD;n

3G
(3.159)

leads to improved convergence compared to the default initial guess of ∆γm=0 = 0. Thus,

this predictor is adopted in the present work as well. Subsequently, with the solution ∆γ, all

remaining quantities, such as κn+1, Dn+1, σn+1, can be updated equivalently to Algorithm 2.
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Finally, the material tangent is required, which results in the damaged elastoplastic tangent

CCC
edp
mat =

2GωD σy(R)

qtrialeff

III d + 2G
[

a1H
iso ωD + a4 σy(R) − ωD σy(R)

qtrialeff

]

Ň ⊗ Ň +

+K

√

2

3
[a2H

iso ωD + a3 σy(R)] Ň ⊗ I +

+2G

√

3

2
peff a4 I ⊗ Ň + K (ωD + a3 peff) I ⊗ I

(3.160)

withH iso defined in (3.75), the unit flow vector Ň =
√

2
3
N based on (3.155), and the coefficient

a1 − a4 which are given as

a1 =
(drΦ;D

d∆γ

)−1 [ ωD

qtrialeff − σy(R)
− 1

3G

(−Y
r

)S ]

, (3.161)

a2 = −S peff (q
trial
eff − σy(R))

3GrK
drΦ;D

d∆γ

(−Y
r

)S−1

, (3.162)

a3 = a2
dωD

d∆γ
, (3.163)

a4 = a1
dωD

d∆γ
− ωD

qtrialeff − σy(R)
. (3.164)

Herein, the derivation of (3.158)
drΦ;D

d∆γ
and the derivative of the integrity

dωD

d∆γ
with respect to the

plastic multiplier are included. The latter yields

dωD

d∆γ
=

3G + ωDH
iso

qtrialeff − σy(R)
. (3.165)

For the sake of lucidity, the index n + 1 has been omitted in CCC
edp
mat. As the coefficients of Ň ⊗ I

and I ⊗ Ň in (3.160) are different, the resulting material tangent CCC
edp
mat is unsymmetric. The full

Lemaitre model is obtained by introducing the back stress into the system which is presented in

the appendix D.1.

3.4.2.5 Finite strain elastoplasticity

The present model is based on Simo and Miehe [122] and represents an extension of the hy-

perelastic material model presented in section 3.4.1. As it describes the elastoplastic extension

it is named “EPSIMO”. It represents a common finite strain hyperelastoplastic material model

with J2-plasticity which is utilised in various publications, as e.g. Simo and Hughes [120] and

de Souza Neto et al. [33].

As usual in finite elastoplasticity, the solid kinematics is constitutively based on a multiplica-

tive split of the deformation gradient

F = F e · F p , (3.166)
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3.4 Constitutive laws for the structural field

where F e and F p denote elastic and plastic contributions, respectively. Herein, F e can be under-

stood as an external variable, whereas F p has the character of an internal variable, which cannot

be determined from the overall process but has to be determined within the process via addi-

tional evolution equations. The intermediate configuration Ω̌, depicted in Figure 3.5, describes

t0

O

P

P

Γ0 F e

X x
Ω0 Ω

Γ

t

P

F p

F

Ω̌

Figure 3.5: Reference, intermediate and current configuration.

a stress-free locally-unloaded configuration which is connected to the reference configuration

Ω0 via the plastic deformation F p and to the current configuration Ω via the elastic deformation

F e, respectively. The split can further be interpreted from a micromechanical point of view. As

shown in Figure 3.5, F p is related to the slip of atomic layers and F e to the lattice distortion.

The parts F e and F p can no longer be referred to the gradient of the displacement field (2.3). In

contrast, they rather describe a local, pointwise partition of F . According to (2.12), (2.14) and

(3.166), the elastic right and left Cauchy-Green deformation tensors as well as the plastic right

Cauchy-Green deformation tensors are given by

Če = F eT · F e , (3.167)

Be = F e · F eT , (3.168)

Cp = F pT · F p . (3.169)

Since J2-plasticity comprises isochoric plastic deformations (i.e. detF p = 1), the Jacobi deter-

minant postulates

det F = J = det(F e · F p) = detF e detF p = detF e , (3.170)

so that the total and the elastic Jacobi determinants, J and Je, respectively, coincide. Thus, ap-

plying (2.35) to (3.168) and considering (3.170), subsequently the tensor Be is multiplicatively

split into

Be = Be
v · B̃

e
, (3.171)

leading to volumetric and isochoric contributions, Be
v = (J

2
3 I) and

B̃
e
= J− 2

3 F e · F eT = J− 2
3 Be , (3.172)
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respectively. Moreover, for the present finite strain elastoplastic material the internal variables

are specified to

αk = {F p, ε̄p} . (3.173)

Via

F p = F e−1 · F , (3.174)

the plastic deformation gradient F p can be computed from the total and the elastic deformation

gradient. Hence, the Helmholtz free energy (2.89) reduces form ψ(F e,F p, ε̄p) to ψ(F e, ε̄p).
Based on the hyperelastic version (3.53), the present hyperelasto-plastic potential is postulated

with the elastic left Cauchy-Green deformation tensor Be (3.168) instead of the deformation

gradient. Subsequently, the potential per unit reference volume reads

ρ0 ψEPSIMO(B
e, ε̄p) := Û(J) + Ŵ(B̃e)

︸ ︷︷ ︸

ρ0 ψe
EPSIMO

(J,B̃e)

+ K̂(ε̄p)
︸ ︷︷ ︸

ρ0 ψ
p
EPSIMO

(ε̄p)

=
K

2

[1

2
(J2 − 1)− ln J

]

︸ ︷︷ ︸

Û(J)

+
1

2
µ
[

tr B̃e − 3
]

︸ ︷︷ ︸

Ŵ(B̃e)

+

+
1

2
H iso ε̄p 2 + (σy;∞ − σy;0) Ĥ(ε̄p)

︸ ︷︷ ︸

K̂(ε̄p)

,

(3.175)

where the constant material parameters for isotropic hardening H iso, saturation hardening stress

σy;∞, and initial yield stress σy;0 are used. The hardening potential is further specified to

Ĥ(ε̄p) =







ε̄p −
[

1 − exp(−δ ε̄p)
] 1

δ

0

for
δ 6= 0

δ = 0
(3.176)

with the hardening exponent δ. The split (3.171) is employed in (3.175) so that Û(J) and Ŵ(B̃e)
can be identified with the hyperelastic volumetric and isochoric SEF, respectively. The isotropic

hardening potential K̂(ε̄p) enables to show exponential isotropic hardening as well as linear

softening. As usual, the second law of thermodynamics has to be satisfied. Hence, according

to the previous approaches, the time derivative of (3.175) is inserted into the Clausius-Planck

inequality (2.84). Herein, the rate of Be evolves, which is defined as

Ḃe = BeT L + BeLT + Lt(Be) (3.177)

with the spatial velocity gradient L (2.24) and the objective material time derivative of Be (see

(2.27)) given by

Lt(Be) = F · Ċp−1 · F T , (3.178)

i.e. as the push-forward of the rate of the inverse plastic right Cauchy-Green deformation tensor

Ċp−1, based on (3.169). Furthermore, including (2.25) as well as the assumption of isotropy

∂ψEPSIMO

∂Be
: Ḃe =

∂ψEPSIMO

∂Be
·Be :

[

2D + Lt(Be) ·Be−1
]

= Be · ∂ψEPSIMO

∂Be
:
[

2D + Lt(Be) ·Be−1
]

,

(3.179)
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obtaining the constraints for the given problem. For instance, the Kirchhoff stresses yield

τ = 2 ρ0
∂ψEPSIMO

∂Be
·Be . (3.180)

Finally, including (3.175) and (3.180), the Kirchhoff and the Cauchy stresses are expressed as

τ =
K

2
(J2 − 1)

︸ ︷︷ ︸

τv

+ µ devB̃
e

︸ ︷︷ ︸

τ̃

= J σ , (3.181)

where according to (3.58), volumetric and isochoric parts of the Kirchhoff stress tensor, τv and

τ̃ , respectively, are distinguished. Consequently, including all previous relations into the second

law of thermodynamics (3.59), the dissipation inequality reads

Dmech := τ :
(

− 1

2
Lt(Be)

)

·Be−1 − κ(ε̄p) · ˙̄εp ≥ 0 , (3.182)

where the thermodynamic force associated to isotropic hardening according to (2.101) reads

κ(ε̄p) = ρ0
∂ψ

∂ε̄p
= Hiso ε̄

p + [σy;∞ − σy;0] [1 − exp(−δ ε̄p)] . (3.183)

According to (3.89), the elastic domain follows as

E = {τ | Φ̌(τ , κ) < 0} , (3.184)

where the von Mises yield criterion is assumed to

Φ̌ := ||s|| −
√

2

3
σy(ε̄

p) ≤ 0 (3.185)

with the yield surface Φ̌, the deviator of the Kirchhoff stress based on (3.180)

s := dev τ = τ̃ , (3.186)

and the yield stress σy corresponding to (3.72), i.e. σy = σy;0 + κ(ε̄p). The present yield criterion

(3.185) represents a common alternative but equivalent form of (3.96). Based on (3.185) and

(3.92), the accumulated plastic strain is defined as

˙̄εp =

√

2

3
γ̇ . (3.187)

According to (3.91), a plastic flow rule is required for the present finite strain material material,

yielding

−1

2
Lt(Be) = γ̇

∂Φ̌

∂τ
·Be = γ̇Ncur ·Be , (3.188)

where the spatial flow vector

Ncur =
∂Φ̌

∂τ
=

s

||s|| (3.189)

59



3 Structural field

is introduced. The index (·)cur indicates that the quantity is expressed with respect to the current

configuration. As stated in Glaser [51], Miehe [88], and Simo and Miehe [122], (3.188) can be

simplified for the application to metals. Thus, in a first step Be is replaced with its corresponding

isochoric, volumetric counterparts according to (3.171). Subsequently, the isochoric part of Be

is split into its deviatoric and volumetric or spherical parts according to (B.16), so that (3.188)

results in

LtB
e = −2 γ̇Ncur J

2
3 B̃e = −2 γ̇ J

2
3

s

||s||
(

dev B̃e +
1

3
tr B̃e I

)

. (3.190)

Introducing τ̃ (3.181) and reformulating (3.190) yields

Lt B
e = −2 γ̇ J

2
3

(

Ncur

s

µ
+

s

||s||
1

3
tr B̃e · I

)

= −2 γ̇ J
2
3

(

N 2
cur

||s||
µ

+
s

||s||
1

3
tr B̃e · I

)

.

(3.191)

For instance in Miehe [88] and Simo and Miehe [122], the second term of (3.191) is assumed to
||s ||
µ0

∼= 10−3, hence for most metals this term can be neglected.

As the material or total Lagrangian formulation is chosen, the aforementioned relations are

expressed in the following with respect to the reference configuration. Consequently, instead of

the elastic left Cauchy-Green deformation tensor Be the inverse of the plastic right Cauchy-

Green deformation tensor Cp−1 (3.169) is used which is the material equivalent to Be or the

pull-back of Be, i.e.

Cp−1 = F−1 ·Be · F−T . (3.192)

Furthermore, by including all aforementioned relations and transforming (3.191) to the reference

configuration using (3.178), the flow rule is finally reduced to

Ċp−1 = −2 J
2
3 γ̇

1

3
tr B̃eF−1 ·Ncur · F−T = −2 J

2
3 γ̇

1

3
tr B̃eN , (3.193)

where via pull-back of Ncur the material flow vector N is introduced. Moreover, using (2.46),

(3.192), (3.193), the material expression of the dissipation (3.182) follows as

Dmech := C · S :
(

− 1

2
Ċp−1

)

·Cp − κ(ε̄p) ˙̄εp ≥ 0 . (3.194)

An admissible plastic load step is characterized by Φ̌ = 0, see e.g. (3.71)3. Thus, it is valid to

write

||s|| =
√

2

3
σy(ε̄

p) . (3.195)

The stress term of the dissipation inequality (3.194) can be expressed by

C · S :
(

− 1

2
Ċp−1

)

·Cp = τ :
(

− 1

2
Lt(Be)

)

·Be−1 = τ : (γ̇Ncur) . (3.196)

Since Ncur is purely deviatoric, the Kirchhoff stress τ in the dot product (3.196) reduces to the

deviatoric component s. Moreover, s and Ncur are collinear and the flow vector is a normalized

vector, so that

s : γ̇Ncur = γ̇ s :
s

||s|| = γ̇ ||s|| ||Ncur||
︸ ︷︷ ︸

=1

= γ̇ ||s|| . (3.197)
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Subsequently, using (3.197) and integrating (3.195) therein, the dissipation can be reduced to

Dmech = γ̇
(

||s|| −
√

2

3
κ(ε̄p)

)

= γ̇
(
√

2

3
σy(ε̄

p) −
√

2

3
κ(ε̄p)

)

= γ̇
[
√

2

3

(

σy;0 + κ(ε̄p)
)

−
√

2

3
κ(ε̄p)

]

,

(3.198)

which finally results in

Dmech = γ̇

√

2

3
σy;0 , (3.199)

i.e. Dmech follows to depend only on the plastic multiplier γ̇ and the initial yield stress σy;0.
All required relations are specified for the given material. Thus, as a next step, the evolution

equations are discretised in time using a backward Euler time integration which are then solved

with a return-mapping algorithm, see section 3.4.2.2. The return-mapping algorithm was first

established for finite strains elastoplasticity in Simo [125, 126] and still represents the default

solution strategy in the literature. For more details on return-mapping within the finite strain

regime, the interested reader is referred to the literature, as e.g. de Souza Neto et al. [33], Simo

and Hughes [120] and Simo [125, 126]. Since the procedure for setting up the final discrete

equations is equal to the small strain case, the detailed derivations are spared here.

Subsequently, the consistent material tangent is established. The representation is restricted

to the important results, because full derivations of the material tangent CCC mat are reported in

the literature, as e.g. in Holzapfel [58], Simo and Hughes [120], and Simo and Miehe [122].

For more details, the interested reader is referred to these publications. The present material

model is described in a spatial approach using Kirchhoff stresses τ . Hence, the Kirchhoff stresses

are linearised with respect to a spatial deformation measure. As proposed in Simo [125], the

linearisations of the Kirchhoff stresses are performed with respect to the Euler-Almansi strain

tensor EEA (2.18) leading to a spatial tangent modulus cepmat;ijkl. Via pull-back, the spatial tangent

can be transformed to the material tangent, which yields the well-known relation

Cmat;IJKL = FIi FJj FKk FLl

( ∂τij
∂EEA;kl

)

= FIi FJj FKk FLl cmat;ijkl (3.200)

given in index notation. Based on the volumetric-isochoric split (3.181), the material tangent

CCC mat also consists of two terms, i.e.

CCC
ep
mat = CCC

e
mat;v + C̃CC

ep

mat , (3.201)

where CCC e
mat;v is the volumetric and C̃CC

ep

mat is the isochoric tangent. The elastic volumetric tangent

follows as

CCC
e
mat;v = K J2 (C−1 ⊗C−1) − K (J2 − 1) (C−1 ⊙C−1) , (3.202)

where ⊙, ⊗ are tensor products according to (B.33) and (B.34). The isochoric part C̃CC
ep

mat is

computed within the return-mapping algorithm in a plastic load step. To determine C̃CC
ep

mat, first

the final solution of the deviatoric stresses at tn+1 is utilised which is computed according to

Algorithm 2 using (3.189) and (3.190) by

sn+1 = strialn+1 − 2 µ̃∆γNcur (3.203)
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with

µ̃ =
1

3
µ tr B̃

e;trial
, Ncur =

strialn+1

||strialn+1||
. (3.204)

Linearising (3.203) and applying the product rule, then postulates the isochoric tangent as pull-

back, i.e.

C̃CC
ep

mat = C̃CC
e;trial

mat + C̃CC
p

mat (3.205)

with the trial elastic and the plastic tangents, C̃CC
e;trial

mat and C̃CC
p

mat, respectively. Herein, the elastic

trial material tangent follows as a result of the linearisation of the trial stresses with respect to

the deformation by

C̃CC
e;trial

mat = 2 µ̃ (C−1⊙C−1 − 1

3
C−1⊗C−1) − 2

3
||strialn+1|| (C−1⊗N + C−1⊗N) . (3.206)

The plastic corrector tangent C̃CC
p

mat is obtained as pull-back of c̃pmat;ijkl. Based on (3.203), the

following linearisations

[ ∂||strialn+1||
∂EEA;n+1

]

= 2 µ̃Ncur + 2 ||strialn+1|| dev[N 2
cur] , (3.207)

[ ∂µ̃

∂EEA;n+1

]

=
2

3
||strialn+1||Ncur , (3.208)

[ ∂∆γ

∂EEA;n+1

]

=
1

β0

[(

1 − 2 ||strialn+1||∆γ
3 µ̃

)

Ncur +
||strialn+1||
µ̃

dev[N 2
cur]

]

, (3.209)

[ ∂Ncur

∂EEA;n+1

]

=
1

||strialn+1||
{

c̃cce;trialmat − Ncur ⊗
[

2 µ̃Ncur + 2 ||strialn+1|| dev[N 2
cur]

]}

, (3.210)

respectively, arise within the return-mapping algorithm. In (3.210), the spatial trial elastic mate-

rial tangent c̃cce;trialmat is included which is the push-forward of (3.206). Subsequently, C̃CC
p

mat is given

as

C̃CC
p

mat = −2∆γ
2

3
||strialn+1||N ⊗N −

−2 µ̃
1

β0

[(

1 − 2 ||strialn+1||∆γ
3 µ̃

)

N +

+
||strialn+1||
µ̃

F−1 · dev[N 2
cur] · F−T

]

⊗N −

−2 µ̃∆γ
( 1

||strialn+1||
{

C̃CC
e;trial

mat −

−N ⊗
[

2 µ̃N + 2 ||strialn+1||F−1 · dev[N 2
cur] · F−T

]})

.

(3.211)
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Finally, the elastoplastic isochoric tangent is obtained via reformulations of (3.206) and (3.211),

so that

C̃CC
ep

mat =
(

1 − Ĥ(Φ̌trial
n+1) β1

)[

2 µ̃ (C−1 ⊙C−1 − 1

3
C−1 ⊗C−1)−

− 2

3
||strialn+1|| (C−1 ⊗N + C−1 ⊗N)

]

− Ĥ(Φ̌trial
n+1) 2 µ̃ β3N ⊗N −

− Ĥ(Φ̌trial
n+1) 2 µ̃ β4N ⊗

(

F−1 · dev[N 2
cur] · F−T

)

,

(3.212)

where Ĥ(Φ̌trial
n+1) is the Heaviside function (3.141) and the scaling factors βi are assumed as

β0 = 1 +
1

3 µ̃

∂κn+1

∂ε̄pn+1

, (3.213)

β1 =
2 µ̃

||strialn+1||
∆γ , (3.214)

β2 =
2

3

∆γ

µ̃
||strialn+1||

(

1 − 1

β0

)

, (3.215)

β3 =
( 1

β0
− β1 + β2

)

, (3.216)

β4 =
( 1

β0
− β1

) ||strialn+1||
µ̃

. (3.217)

For β0 the derivative of κn+1 with respect to ε̄pn+1 is included, which results in

∂κ(ε̄pn+1)

∂ε̄pn+1

= H iso + [σy;∞ − σy;0] [− exp(−δ ε̄pn+1) (−δ)] . (3.218)

Finally, according to (3.201), the complete material tangent CCC mat follows as sum of the elastic

volumetric and the isochoric part (3.202) and (3.212), respectively. Further derivations about this

material model are summarized in the Appendix D.2.

3.5 Solution techniques for linear equations

Inserting one of the previously presented constitutive laws of section 3.4 into (3.45), the system

is closed and hence a solution can be computed with the Newton-Raphson method. One impor-

tant aspect of the Newton-Raphson method is an efficient and robust solution approach of the

linear system (3.45). Especially for large finite element models (with large numbers of DOFs),

the solution of the linear system may represent for a time step n the computationally most ex-

pensive part of the whole solution procedure. Thus, in the following, the focus is set on solution

techniques for linear systems which are abstractly assumed to

Ax = b (3.219)

with the matrix A, the unknown solution vector x, and the right-hand side vector b, respectively.
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A good overview on the topic of solution strategies of linear systems can be found in Küttler

[70] and the references therein, as e.g. Quarteroni et al. [107]. For the solution of linear systems

two different approaches are distinguished: direct and iterative solvers. Direct linear solvers, e.g.

based on a LU-decomposition of the matrix A, are suitable for small linear system of equations

but loose their efficiency for large and sparse linear system of equations. For instance, within the

Gauss-elimination the sparsity pattern gets lost, because the zero-entries are filled leading to a

full matrix, which consumes high memory and which is computationally very costly due to the

increased number of calculations. Moreover, parallelization of direct solvers can be realised but

is complicated and demands high communication between the processors. In contrast, for large

and sparse system of equations, iterative solvers are commonly utilised which enable an efficient

solution at the expense of exactness of the obtained solution. Starting from an initial guess x0,

the exact solution

x = A−1 b (3.220)

is approximated iteratively until a prescribed user-defined convergence criterion ǫlin is fulfilled

for the residual rj , i.e.

||rjlin|| = ||b − A−1 xj|| ≤ ǫlin (3.221)

with the iteration index of the linear solver denoted by j.
For the present thesis, a Krylov subspace method in the form of the generalised minimum

residual (GMRES) approach with preconditioning is used. For a detailed description on GMRES

methods, the interested reader is referred particularly to Saad and Schultz [113]. In the present

thesis, the GMRES provided by the open-source package AZTEC (see Tuminaro et al. [138]) is

employed.

As preconditioning is very important, the condition number of a matrix is introduced here,

which is defined as the ratio of the largest to the smallest eigenvalue of A. Small condition num-

bers refer to a fast convergence, whereas high condition numbers signify slow convergence or

even no solution of the linear system. Thus, preconditioning strategies are employed to improve

the convergence behaviour by reducing the condition number of the matrix. For instance, scaling

of (3.219) with a preconditioning matrix MR yields

AM−1
R MR x

︸ ︷︷ ︸

x̌

= b , (3.222)

where the index (·)R indicates the use of a right preconditioning matrix and x̌ is the intermediate

solution vector. Right preconditioning is used exclusively in this thesis, because the right-hand

side or residual vector b, which is used for convergence checking among other things, is not

scaled (see (3.222)) as compared with left preconditioning (i.e. M−1
L Ax = M−1

L b). This sim-

plifies the convergence check, because the convergence of the given problem can be directly

evaluated by checking the norm of the residual (3.47) or (3.221) without additional computa-

tions. To determine the solution x, first the intermediate system

AM−1
R x̌ = b (3.223)

is solved iteratively with the GMRES. This solution method aims at minimizing for every itera-

tion j the norm of the residual vector ||rjlin|| over the Krylov subspaces given by

Kk(A, r0lin) = span (r0lin,A r0lin,A
2 r0lin, ...,A

k−1 r0lin) , (3.224)
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where r0lin is the initial residual. Subsequently, the original solution is computed via

x = M−1
R x̌ . (3.225)

Hence, the solution process involves the application of the inverse preconditioner on different

vectors y, representing either a vector of the Krylov space or the intermediate solution vector,

which is used to determine the arbitrary solution vector z. Instead of solving any matrix-vector

products, e.g. (3.225), the corresponding linear system

MR z = y (3.226)

is computed iteratively using, e.g. a stationary Richardson iteration. Solving (3.226) circum-

vents the inverting of MR. As (3.226) can be called solution of the corresponding linear system,

see e.g. Wiechert [143], the distinction between “solver” and “preconditioner” is generally not

straightforward. While the preconditioner can be interpreted as the solver, the Krylov method

accelerates the method only.

Subsequently, within an effective and efficient preconditioning process, the condition number

should be reduced to accelerate the convergence, and moreover, the preconditioning matrix MR

should approximate the matrix of the target problem well (MR ≈ A), while being invertible

with as little effort as possible. Consequently, standard preconditioner, as e.g. Jacobi and Gauss-

Seidel methods, or algebraic multigrid (AMG) methods, can be used. However, for an efficient

solution, problem-specific preconditioners are required. For instance, in Küttler [70] or Wiechert

[143], special preconditioners are presented for the surface-coupled problem of fluid-structure

interaction problem. Further details on special preconditioners for the target TSI problem within

a monolithic framework will be presented in section 6.3.
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4 Thermo field

For the development of the thermomechanical models, appropriate for the target application to

rocket nozzles, the temperature field needs to be considered. This section provides an overview

of the governing equations required to describe a temperature field with the finite element

method (FEM). A more detailed representation on this topic can be found in the literature, e.g.

in Holzapfel [58], Lemaitre and Chaboche [78], and Polifke and Kopitz [105]. The procedure to

establish a fully discrete system of equations for the thermal field is comparable to the one for

the structural field in chapter 3. Moreover, the basics of nonlinear continuum thermodynamics

have already been featured in chapter 2. Consequently, the detailed derivation are skipped in this

chapter.

In a first step, the balance equations for the thermal field will be established. Then, in a second

step the thermal initial boundary value problem (IBVP) will be presented followed by the nu-

merical solution technique. Latter requires a weak form of the thermal balance equation which

will be fully discretised using the FEM for space discretisation and the finite difference method

for time discretisation. To finish, the residual and the tangential system matrix will be introduced

to enable the application of a Newton-Raphson method.

4.1 Governing equations

Based on the general model presented in section 2.4.3, the balance equations for the temperature

field are obtained as special case by neglecting all mechanical terms, which finally leads to the

instationary heat conduction equation. Hence, the energy balance (2.70) reduces to

ρ0 (ψ̇ + Ṫ η + T η̇) = −DivQ + ρ0 r in Ω0 , (4.1)

where all mechanical terms are neglected and the rate of the internal energy ė is replaced using

(2.81). The target application of the present thesis is on coupled generally nonlinear thermo-

structure interaction (TSI) problems, where the initial and the current domains are not equal,

i.e. Ω0 6= Ω. Thus, for the sake of simplicity and in view of the later coupled TSI problem, all

following relations are expressed in material quantities.

A purely thermal analysis is independent of the deformation, so that reference and current

configuration are identical and the domain remains constant, i.e. Ω0 ≡ Ω. Consequently, for a

purely thermal analysis, the equations can be treated similar to a geometrically linear analysis,

where e.g. the deformation gradient F reduces to the identity tensor I so that F ≡ I . As a next

step, the general potential (2.88) is reduced to the thermal terms, resulting in

ψ(T,GradT ) , (4.2)

where the potential ψ depends only on the temperatures T and the temperature gradients GradT .

To describe thermodynamically admissible processes, the second law of thermodynamics, for
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instance in form (2.94), neglecting again all mechanical terms, has to be satisfied. Subsequently,

time derivation of (4.2) reads

ψ̇ =
∂ψ

∂T
Ṫ +

∂ψ

∂GradT
· (GradT )· . (4.3)

Introducing (4.3) into the reduced form of (2.94) then yields

− ρ0

(∂ψ

∂T
+ η

)

Ṫ − ρ0
∂ψ

∂GradT
· (GradT )· − 1

T
Q ·GradT ≥ 0 , (4.4)

where the entropy η is defined by the first term of (4.4) or by (2.99). In contrast to the purely

mechanical theory in chapter 3, the entropy η cannot be neglected for the thermal field but

represents a variable of the problem at hand. Moreover, the second term of (4.4) is determined

according to (2.100). Hence, the entropy inequality reduces to the heat conduction dissipation

Dcond introduced in its spatial version in (2.82). Accordingly, the material version follows as

Dcond =: − 1

T
Q ·GradT ≥ 0 . (4.5)

Next, the specific heat CV is established and is defined according to the thermodynamical prin-

ciples as the amount of heat required to change a unit mass of a substance by one degree in

temperature, i.e.

CV =
∂e

∂T
. (4.6)

The index (·)V denotes that CV is measured at constant volume. Using the International System

of Units (SI), CV is expressed in joules per kelvin. Substituting the internal energy using the

Legendre transformation (2.80) and (2.99), the specific heat at constant volume follows as

CV = −∂
2ψ

∂T 2
T =

∂η

∂T
T . (4.7)

Exemplarily, the Helmholtz free energy (4.2) per unit reference volume is chosen to

ρ0 ψ(T ) = −ρ0 CV

[

(T − T0) − T ln
( T

T0

)]

, (4.8)

where T0 and CV denote the constant initial temperature and the constant specific heat, respec-

tively. In general, the heat capacity depends on the deformation and on the temperature. However,

for the application to elastomers, see for instance Netz [96], the heat capacity CV can be assumed

to depend only on the temperature. Furthermore, for the application to metals, a constant spe-

cific heat capacity (i.e. CV = const.) is a valid assumption, utilised e.g. in Adam and Ponthot

[1], Ghadiani [48], Ibrahimbegovic and Chorfi [61], and Simo and Miehe [122]. Accordingly,

the heat capacity is also assumed to be constant (i.e. CV = const.), since focus in this work is

on the application to metals. Subsequently, the entropy and its time derivative yield

η(T ) = −∂ψ
∂T

= CV ln
( T

T0

)

, (4.9)

η̇(T ) =
∂η

∂T
Ṫ = −∂

2ψ

∂T 2
Ṫ = CV

1

T
Ṫ . (4.10)
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Including (4.2)-(4.10) into (4.1) and reformulating, postulates the strong form of the instationary

heat equation via

ρ0 CV Ṫ = −DivQ + ρ0 r in Ω0 . (4.11)

As previously mentioned, in a purely thermal analysis the deformation is neglected, consequently

the material and spatial heat flux coincide, that is Q ≡ q, which is also valid for the material

and spatial gradient, hence GradT ≡ gradT . Subsequently, to satisfy (4.5), a constitutive law

for the heat flux has to be chosen associating the heat flux q with its dual variable gradT and the

temperature T . Accordingly, so-called Fourier’s law proposed by Fourier [41], which is linear

and isotropic is utilised, which is defined as

q = −k gradT . (4.12)

Herein, the thermal conductivity k is assumed constant and positive that is k ≥ 0. Thus, heat

is conducted in the direction of decreasing temperatures. Apart from Fourier’s law, different

constitutive laws for the heat flux are available in the literature, as e.g. Duhamel’s law of heat

conduction (see e.g. Holzapfel [58]) which uses a positive semi-definite second-order tensor

k instead of the constant conductivity k. If Duhamel’s law is restricted to thermally isotropic

behaviour (i.e. no preferred direction), the conductivity tensor reduces to k = k I . If a constant

heat conductivity k = const. is assumed, Fourier’s law is recovered as a special form of

Duhamel’s law. Moreover, e.g. in Holzapfel and Simo [59] and Sherief and Abd El-Latief [117],

a variable conductivity (k 6= const.) is assumed in the context of elastomers. In Bargmann and

Steinmann [13] and Bargmann et al. [14], three different constitutive laws for the heat flux q are

proposed based on the Green-Naghdi’s non-classical theory. Nevertheless, for the present work

Fourier’s law as stated in (4.12) yields physical results and hence is exclusively considered in

this thesis.

4.2 Finite element formulation and solution schemes

The IBVP of the thermal field is described by the equations (4.11) and (4.12) combined with

the kinematic relations presented in section 2.1, as well as with a set of initial conditions and

boundary conditions. The boundary ∂Ω0 is divided into pairwise disjoint boundary parts ∂Ω0 =
Γ0;D;T ∪ Γ0;N;T where the index T represents the boundary of the thermo problem. Dirichlet and

Neumann boundary conditions are prescribed on Γ0;D;T and Γ0;N;T, respectively, as follows:

T = T̂ on Γ0;D;T , (4.13)

−Q · n0 = Q̂ on Γ0;N;T . (4.14)

Herein, Q̂ is defined as the heat flux in opposite or negative direction of the outward normal

vector indicated by the negative value of −Q · n0, i.e. inflow into the body is postulated to be

positive. On a specific part Γ0;C;T of the Neumann boundary Γ0;N;T, a heat flux according to New-

ton’s law of heat dissipation, so-called heat convection boundary conditions, can be prescribed

in the following form:

−Q · n0 = −(−kGradT ) · n0 =: Q̂C = h (T − T∞) on Γ0;C;T (4.15)
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with linear heat transfer coefficient h and ambient temperature T∞ of the surrounding. Given the

initial temperature field T0, the initial condition at t = 0 reads

T0 = T (X, t = 0) = T̂0 in Ω0 . (4.16)

A weak form of the instationary heat conduction equation is obtained by multiplication of

(4.11) and (4.14) with the virtual temperatures δT followed by integration by parts as

∫

Ω0

ρ0 CV Ṫ δT dV0 −
∫

Ω0

Q ·Grad δT dV0

−
∫

Γ0;N;T\Γ0;C;T

Q̂ δT dA0 −
∫

Γ0;C;T

Q̂C δT dA0 −
∫

Ω0

ρ0 r δT dV0 = 0 ,
(4.17)

where the virtual temperatures δT are assumed to δT = 0 on Γ0;D;T. In contrast to the weak form

of the structural field (3.11) which describes virtual works δW , the weak form of the thermal

field (4.17) describes the rate of virtual work, i.e. a virtual power δP .

4.2.1 Space discretisation

The FEM is applied for spatial discretisation of the thermal equation (4.17). The present deriva-

tions are based on the corresponding explanations for the structural field, see section 3.2.1.1.

Thus, as for the structural field, the isoparametric concept is applied for the thermal field as well.

In accordance with (3.14) for the displacements, the discrete temperatures for an element e are

introduced by

T (e)(X, t) ≈ T (e);h(X, t) =

nnod∑

I=1

ŇI(X)TI(t) , (4.18)

where I and nnod are the current node and the total number of nodes per elements, respectively.

The shape function denotes Ň and T is the nodal temperature vector. The temperature rates Ṫ
and the virtual temperatures δT are discretised equally. The Bubnov-Galerkin approach is used

for the thermo field as well, thus the same shape functions for the temperature T and its virtual

counterpart δT are used. Furthermore, polynomials are used for the shape functions. Depending

on the number of nodes and the order of the polynomial, different finite element shapes are

constructed. Exemplarily, for three-dimensions eight-noded hexahedral elements (named Hex8),

or 27-noded hexahedral elements (named Hex27) can be mentioned. While Hex8 elements use

linear polynomials in each direction, Hex27 use quadratic polynomials in each direction.

For evaluation of the weak form (4.17), the Gauss quadrature is used as numerical integration

technique. Consequently, the element is expressed in local coordinates ξ by mapping the global

quantities into the parameter space, see (3.15), yielding for the temperatures

T (e);h(ξ, t) =

nnod∑

I=1

NI(ξ)TI(t) , (4.19)

where N defines the shape functions in the parameter space. Subsequently, based on (3.17), all

elementwise contributions are assembled, which leads to the semi-discrete weak form of the
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instationary heat conduction equation

δT [CṪ + f int;T(T) − fext;T(T)] = 0 , (4.20)

with the capacity matrix C, the internal force vector f int;T, the external force vector fext;T, and the

global vectors of virtual temperatures δT, temperature rates Ṫ, and temperatures T, respectively.

It is noted here, that the heat convection boundary term (4.15), which depends on the current

temperature T , is part of the external force vector, hence fext;T(T) depends on the solution vector

T. By assuming arbitrary virtual temperatures δT, (4.20) can equivalently be rewritten to

C Ṫ + f int;T(T) − fext;T(T) = 0 . (4.21)

Equation (4.21) describes the semi-discrete thermal system of equation. Since it is still continu-

ous in time, in the following time discretisation is performed.

4.2.2 Time discretisation

The fully discrete thermal equation is obtained by applying a finite difference scheme to (4.21).

As for the structural field, different time integration schemes are available for the thermal field:

explicit schemes in the form of a forward Euler time integration and implicit schemes, as e.g.

the generalised-α method and the one-step-θ method. For the target application to thermo-fluid-

structure interaction (TFSI), explicit schemes are applicable due to very small time steps required

in the flow solver. For details on the present TFSI approach, see e.g. Hammerl et al. [53]. The

present thesis aims at pure TSI, thus implicit schemes are the method of choice due to improved

stability behaviour and due to allowing larger time steps. Moreover, according to the structural

field, a quasi-static approach for the thermal field can be realised by neglecting the capacity term

(CṪ). However, in contrast to the structural field, this represents a special rare case.

In the following, the presentation is restricted to the generalised-α method, because the one-

step-θ scheme can be derived as a special case of it. For the thermal field, the method is based

on the work of Jansen et al. [63]. Following the approach for the second-order structural system

of equation in Chung and Hulbert [25] (see section 3.2.2.1), they developed the generalised-α
method for first-order systems of equations, such as the Navier-Stokes equation in fluid dynamics

or the present thermo field. Equivalently to (3.26), the endpoint solutions for the temperature

rates at tn+1 can be expressed as

Ṫn+1 ≈ tn+1 =
Tn+1 − Tn

γT∆t
− 1 − γT

γT
Ṫn (4.22)

introducing the approximated thermal rate vector tn+1 and using the unknown primary variable

Tn+1, known quantities at tn, and the algorithmic parameter γT ∈ [0, 1]. Subsequently, utilising

the generalised-α method, the evaluation point of the first-order thermal equation is shifted from

tn+1 to the generalised mid-points tn+αm;T
and tn+αf;T

(in contrast to the generalised midpoints of

the structural equation tn+1−αm
and tn+1−αf

). Herein, the index T emphasizes the thermal field.

Thus, the discrete quantities for temperatures and temperature rates follow as

Tn+αf;T
= αf;TTn+1 + (1 − αf;T)Tn , (4.23)

tn+αm;T
= αm;T tn+1 + (1 − αm;T) tn , (4.24)
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4 Thermo field

respectively, with the two additional generalised-α parameters αm;T ∈ [0, 1] and αf;T ∈ [0, 1].
Corresponding values at the end of the time interval tn+1 are expressed by a linear interpolation

Tn+1 = Tn + ∆t
[

γT tn+1 + (1 − γT) tn

]

. (4.25)

Moreover, according to Jansen et al. [63], an optimal set of parameter is given by

γT = 0.5 + αm;T − αf;T , αm;T ≥ αf;T ≥ 0.5 , (4.26)

which defines a stable and second-order accurate time integration scheme. The maximal spectral

radius ρ∞;T can be used as sole free algorithmic parameter, equivalent to (3.33), (3.34), and to

Jansen et al. [63]. Hence, a second-order accurate scheme is given by the three generalised-α
parameters

αf;T =
1

ρ∞;T + 1
, αm;T =

1

2

3 − ρ∞;T

ρ∞;T + 1
, γT =

1

2
+ αm;T − αf;T . (4.27)

For the approximation of the force vectors f int;T;n+αf;T
and fext;T;n+αf;T

, a so-called tr-like ap-

proach is chosen as in (3.32). Thus, exemplarily the internal force vector is interpolated between

solutions at tn and tn+1

f int;T;n+αf
= αf;T f int;T;n+1 + (1 − αf;T) f int;T;n
= αf;T f int;T(Tn+1) + (1 − αf;T) f int;T(Tn) .

(4.28)

The external force vector is interpolated equivalently. By including the results of this subsection

into (4.21), the fully discrete equation of heat conduction is obtained as

C tn+αm;T
+ f int;T(Tn+αf;T

) − fext;T(Tn+αf;T
) = 0 . (4.29)

Furthermore, for θT := γT and αm;T = αf;T = 1, the so-called generalised trapezoidal rule (or

one-step-θ scheme) is obtained as a special case of the generalised-α method. Unconditionally

stable fully implicit schemes of the one-step-θ time integration, as desired in this work, can only

be realised for parameter θT ∈ [0.5, 1]. Subsequently, the corresponding fully discrete thermo

equation applying an one-step-θ scheme follows as

C
Tn+1 − Tn

∆t
+ θT

[

f int;T(Tn+1) − fext;T(Tn+1)
]

+

+ (1− θT)
[

f int;T(Tn) − fext;T(Tn)
]

= 0 ,
(4.30)

which corresponds to the structural form (3.39).

4.3 Linearisation and solution techniques for nonlinear

equations

The fully discrete instationary heat conduction equation (4.29) describes a linear system of equa-

tions. However, due to the coupling terms emerging in the final TSI framework (see chapter 5),
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the target TSI system of equation will be nonlinear, so that the solution will require an iterative

method as the Newton-Raphson iteration scheme.

To provide the thermal field as general as possible, even the pure thermo problem is rewritten

in incremental form. Subsequently, the residual is defined for a given Newton iteration step i as

rT(T
i
n+1) = Ctin+αm;T

+ f int;T(T
i
n+αf;T

) − fext;T(T
i
n+αf;T

) . (4.31)

Based on the structural linear system (3.45) and the thermal residual (4.31), the thermal linear

system yields

KTT(T
i
n+1)∆Ti+1

n+1 = −rT(T
i
n+1) , (4.32)

where KTT and ∆Ti+1
n+1 denote the thermal dynamic effective tangential matrix and the incre-

mental temperature vector, respectively. The temperature vector can be updated via

Ti+1
n+1 = Ti

n+1 + ∆Ti+1
n+1 . (4.33)

The Newton loop is aborted if prescribed user-defined convergence criteria for solution vector

and residual, see (3.47) and (3.48), are fulfilled. Hence, the temperature solution Tn+1 = Ti+1
n+1

is found. Since the present purely thermal problem is linear, a solution of (4.32) is achieved for

∆Ti+1
n+1 after one single iteration.

In the context of heat convection boundary condition it is noted, that two versions exist for

the heat convection boundary conditions Q̂C. Based on (4.15), Q̂C can either be discretised using

the old converged solution Tn or the current temperatures Tn+1. The first simplified version

Q̂C(Tn) does not contribute to the linearisation, whereas the second version Q̂C(Tn+1) requires

linearisation with respect to Tn+1 so that terms for KTT arise. Subsequently, in case of heat

convection boundary conditions, the full version, i.e. Q̂C(Tn+1) is utilised.

4.4 Solution techniques for linear equations

Finally, a solver has to be chosen for the solution of thermal linear system (4.32). According to

section 3.5, direct and iterative solvers introduced for the solution of the structural field can be

utilised equally for the thermal field. The reader is referred to this section 3.5 for details on the

available solvers.
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5 Thermo-structure interaction

The problem of thermo-structure interaction (TSI) is the actual topic of interest of this thesis. It

describes a coupled problem of the two physical fields structure and thermo. In particular, the TSI

problem is a volume-coupled problem, i.e. at each point of the domain the two fields are coupled.

This is in contrast to surface-coupled problems, as for instance fluid-structure interaction (FSI)

problems, which are only coupled at the interface between the fluid and the structural domain.

Based on the procedure of setting up the system of equations for the single fields structure and

thermo, see chapter 3 and chapter 4, respectively, the coupled TSI problem is derived. Moreover,

the nonlinear continuum thermodynamics (see chapter 2) provides further basic relations.

Metals show isotropic behaviour due to thermal loads. This means, that a temperature change

causes purely volumetric deformations which are equal in each direction. The temperature is

inserted into solid mechanics by temperature-dependent stresses. These thermal stresses can be

introduced in two forms: firstly by thermal strains and secondly by a thermomechanical potential.

The assumption of thermal strains is common in infinitesimal thermo-elasto-plasticity with the

total strain tensor ε being split into

ε = εe + εp + εt , (5.1)

i.e. in addition to elastic and plastic strains, εe and εp, respectively, thermal strains εt arise. They

are defined as

εt = αT ∆T I (5.2)

with the coefficient of thermal expansion (CTE) αT and the temperature difference ∆T which

is defined as the difference between the current temperature T and the initial temperature T0,
that is ∆T = T − T0. Thus, for linear thermoelasticity, assuming Hooke’s law, the stress yields

σ = E εe = E ε − E αT ∆T I , where (5.1) and (5.2) are used and εp ≡ 0. This approach is

used, e.g. in André [5], Bornemann and Wall [18, 19], and Kuhl et al. [69]. The second possi-

bility, namely a thermomechanical potential, represents the default strategy in finite deformation

thermomechanical analysis, see for instance Adam and Ponthot [1], Bargmann and Steinmann

[13], Glaser [50], Holzapfel [58], Ibrahimbegovic and Chorfi [61], and Simo and Miehe [122].

Here, the temperature T is included in the constitutive law. Following the setup of finite strain

plasticity in the general non-isothermal case, in addition to the plastic intermediate configuration

Ω̌ depicted in Figure 3.5, a thermal intermediate configuration has to be considered, cf. e.g. Erbts

and Düster [38], Glaser [51], Hartmann [54], Holzapfel [58], Miehe [87], and Netz [96], i.e.

F = F t · F e · F p . (5.3)

Alternatively, for instance in Holzapfel [58] and Hartmann [54], the opposite order compared

to (5.3), that is F = F e · F t is employed for the study of thermoelastic elastomers. For the

application to isotropic thermal expansion, Hartmann [54] showed that both order yielded the
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5 Thermo-structure interaction

same expressions for stress and entropy. Since the present work does not investigate elastomers,

the multiplicative split (5.3) is exclusively considered in this work.

In contrast to the thermal deformations which are solely volumetric, for most metals the vol-

ume remains constant during plastic deformations. Hence, plastic deformations are assumed

isochoric (Jp = detF p = 1, see (2.37)). Subsequently, based on (5.3) the Jacobi determinant

(2.7) can be used to further express volumetric deformations as

J = J t Je . (5.4)

This corresponds to the so-called Duhamel-Neumann hypothesis for the theory of finite defor-

mations, i.e. to (5.1) for linear thermoelasticity where εp = 0. According to Lu and Pister [81],

the thermal expansion is assumed to be

J t =
dV

dV0
= exp (3αT∆T ) . (5.5)

Linearisation of (5.5) with respect to the initial configuration yields for isotropic materials

J t = 1 + 3αT∆T , which corresponds to the infinitesimal linear theory. Thus, instead of a

multiplicative split shown in (5.4), in the following the volumetric deformation is expressed by

Je = Je(T ) = J J t−1 . (5.6)

Consequently, the additional thermal intermediate configuration can be omitted and volumetric

deformations are described only by Je. For instance, if thermal stresses arise due to a temperature

change, elastic strains balance the body which implicitly correspond to thermal strains according

to (5.6). For further details on the derivation of (5.6), the reader is referred to the literature

mentioned above and Willner [145].

5.1 Governing equations

The target of the present work is to establish a general approach for TSI. Hence, based on the

general framework for a constitutive model, presented in section 2.4.3, with the general TSI

potential (2.89), which comprises mechanical, thermal, and thermomechanical terms, the gen-

eral approach is subsequently specified for the application to small and finite strain TSI. Since

thermal loads lead to purely volumetric and plastic loads to purely isochoric deformation, re-

spectively, the complete deformation behaviour can be described as a sum of the thermoelastic

and the plastic contribution. Thus, according to (3.57), (3.82) or (3.175), the constitutive TSI law

postulates a potential

ψ(F , T, gradT,αk,X) = ψe(F , T, gradT,X) + ψp(F , T,αk,X) (5.7)

with the thermoelastic and plastic potentials, ψe and ψp, respectively. Since ψp, can possibly

include temperature-dependent material parameters, the temperature T enters the plastic poten-

tial. As explained in Stainier and Ortiz [128], for metals it is valid to assume that the elastic

deformation behaviour and the purely thermal energy are independent of the internal, i.e. plas-

tic processes. Hence, the energy ψ is decomposed additively into uncoupled contributions of

76



5.1 Governing equations

the single effects. To emphasize this additive decomposition, the Helmholtz free energy ψ in

(5.7) is expressed with respect to the reference volume, so that ψ is reformulated using potential

functions according to

ρ0 ψ(F , T, gradT,αk,X) := Û(Je) + Ŵ(F̃ ) + M̂(Je, T ) + T̂(T ) + K̂(αk, T ) , (5.8)

where in contrast to the deformation gradient F , the Jacobi-determinant Je (5.6) and the iso-

choric deformation gradient F̃ (2.36) are applied. Û and Ŵ can be identified with the standard

hyperelastic materials potentials according to (3.57), whereas M̂(Je, T ) describes the thermo-

mechanical coupling potential. The potential T̂(T ) represents the purely thermal potential and

is assumed identical to (4.8). Finally, K̂(αk, T ) is the convex plastic potential. Subsequently,

based on the potential functions, the coupling of the two fields structure and thermo can be ex-

plained: the temperature enters the structural field via additional thermal stresses and possibly

moreover via temperature-dependent material parameters. Herein, M̂(Je, T ) characterizes the

thermomechanical coupling potential, leading to thermal stresses and moreover to thermal ex-

pansion and dilatation, whereas K̂(αk, T ) being temperature-dependent and therefore enables

exemplarily von Mises plasticity combined with temperature-dependent isotropic hardening and

thermal softening. This is in accordance to Agelet de Saracibar et al. [2], Ibrahimbegovic and

Chorfi [61], but in contrast to Simo and Miehe [122], who assumed an isothermal plastic poten-

tial K̂Simo(αk). In contrast, the structure enters the thermal field via coupling terms, arising from

M̂(Je, T ) and K̂(αk, T ), in addition to the purely thermal energy (4.8). Thus, coupling terms as

the internal or mechanical dissipation Dmech may emerge in the thermal balance equation. Fur-

thermore, for finite deformation TSI, where the initial domain Ω0 deforms to Ω, so that Ω 6= Ω0,

and a Lagrangian formulation is used, the deformation enters the thermal field additionally due

to the mapping of all quantities in the balance equations to the reference configuration.

In the following, the corresponding balance equations for a general nonlinear TSI problems are

established. In this context, equilibrium of the overall TSI problem is achieved if the balance of

linear momentum and the nonlinear instationary heat equation are solved for the displacements

u and the temperatures T .

5.1.1 Structural field

The balance of linear momentum, utilised to describe the mechanical field of a thermomechan-

ical solid within the TSI framework, is described by the strong or the weak form, (3.1) and

(3.11), respectively. Since in TSI the potential is defined by (5.7), the structural balance equation

modifies to

∫

Ω0

ρ0 ü ·δu dV0 +

∫

Ω0

δET
GL : S(F , T,αk,X) dV0 −

∫

Ω0

b̂0 ·δu dV0 −
∫

Γ0;N;S

t̂0 ·δu dA0 = 0 , (5.9)

where the stresses S depend on mechanical variables (F ,αk) and on the temperature T . The

mechanical initial boundary value problem (IBVP) is described by (5.9), the boundary and initial

conditions (3.2)-(3.6), and finally by a constitutive law for the stresses, which will be specified

later in section 5.3.
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5.1.2 Thermo field

The nonlinear instationary heat conduction equation, utilised for modelling the temperature field

of coupled TSI, can be obtained following the procedure presented in chapter 4 where instead of

the potential (4.8), the thermomechanical potential (5.8) is used. As the second law of thermo-

dynamics must be satisfied, (2.95), (2.99), (2.101), and (2.102) must be valid. The first term of

(2.102), i.e. the mechanical dissipation Dmech is given, e.g. by (3.194), whereas the second term

of (2.102) represents the heat conductivity dissipation Dcond which associates the material heat

flux Q with the material temperature gradient GradT . Taking into account (4.12), the material

heat flux Q is obtained as pull-back of the spatial heat flux q (4.12), i.e.

Q = −k0 C−1 ·GradT (5.10)

with the reference thermal conductivity k0 and the inverse of the right Cauchy-Green deforma-

tion tensor C−1, see (2.12). Furthermore, k0 := Jk and it is assumed to be constant and positive,

whereas k is the deformation-dependent thermal conductivity. Subsequently, the entropy (4.9)

and its rate (4.10) are required, as shown in chapter 4. Hence, by assuming (5.8)

η(F , T,αk) = −∂ψ
∂T

= − 1

ρ0

(∂M̂(Je, T )

∂T
− ∂T̂(T )

∂T
− ∂K̂(αk, T )

∂T

)

= CV ln
( T

T0

)

− 1

ρ0

(∂M̂(Je, T )

∂T
+
∂K̂(αk, T )

∂T

)

,

(5.11)

η̇(F , T,αk) = CV

1

T
Ṫ − 1

ρ0

(∂2M̂(Je, T )

∂T ∂Je
J̇e +

∂2M̂(Je, T )

∂T 2
Ṫ +

+
∂2K̂(αk, T )

∂T 2
Ṫ +

∂2K̂(αk, T )

∂T ∂αk

⋆ α̇k

)

,

(5.12)

where CV denotes the constant heat capacity, see (4.7), and J̇e is the rate of the elastic Ja-

cobi determinant, see (5.6). Based on (5.12), the so-called thermo-elasto-plastic heating term or

Gough-Joule effect Hep is defined as

Hep := T
1

ρ0

(∂2M̂(Je, T )

∂T ∂Je
J̇e+

∂2M̂(Je, T )

∂T 2
Ṫ +

∂2K̂(αk, T )

∂T 2
Ṫ +

∂2K̂(αk, T )

∂T ∂αk

⋆ α̇k

)

, (5.13)

which represents a further coupling term for the thermal equation in addition to Dmech. Since the

given potential (5.8) describes a general thermo-elasto-plastic material, the index (·)ep indicates

that the term is defined by elastic and plastic terms. In contrast in case of thermoelasticity, this

term reduces to the thermoelastic heating term He.

By combining the aforementioned results with the first law of thermodynamics, the change in

temperature can be determined by

ρ0 CV Ṫ + DivQ − ρ0 r − Dmech − Hep = 0 in Ω0 , (5.14)

denoting the strong form of the thermomechanically instationary heat conduction equation. Thus,

the thermal IBVP of TSI is given by (5.10), (5.14), and by the boundary and initial conditions

(4.13)-(4.16). Analogous to (4.17), the weak form is established based on (5.14) and (4.14), by
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introducing virtual temperatures δT and applying integration by parts. Hence, the weak form

reads
∫

Ω0

ρ0CV Ṫ δT dV0 −
∫

Ω0

Q ·Grad δT dV0 −
∫

Ω0

Dmech δT dV0 −
∫

Ω0

Hep δT dV0−

−
∫

Γ0;N;T\Γ0;C;T

Q̂ δT dA0 −
∫

Γ0;C;T

Q̂C δT dA0 −
∫

Ω0

ρ0 r δT dV0 = 0 .

(5.15)

In the following, the boundary of the heat convection is further investigated. Within the purely

thermal analysis in chapter 4, the deformation was neglected as F ≡ I , so that a material version

of the heat convection boundary was given by (4.15). This is also valid for a geometrically linear

TSI analysis. In contrast, for the given general geometrically nonlinear TSI case, the pull-back

of (4.15) using Nanson’s formula (2.10) results in the fully material version, i.e.

−q · n dA = h (T − T∞) dA = q̂C dA

= h (T − T∞) J
√

nT
0 ·C−1 · n0 dA0 =: Q̂C dA0 ,

(5.16)

where the pull-back of the infinitesimal area element of the current configuration dA is utilised,

defined as

dA = J
√

nT
0 ·C−1 · n0 dA0 , (5.17)

leading to the material equivalent dA0. As previously mentioned, material versions of balance

equations still describe equilibrium with respect to the current configuration. Via pull-back to

the reference configuration the terms can be expressed in its material form, which usually sim-

plifies the equation. For instance, the reference domain Ω0 is known and constant, subsequently

the differentials dΩ0 in the weak form are independent of the deformation, so that they do not

contribute to the linearisation process. Thus, for solving the integral terms in the weak form, the

terms are mapped from the reference configuration to the parameter space and evaluated after-

wards using, e.g. Gauss quadrature as introduced in section 3.2.1.1. As depicted in (5.16), the

material form of heat convection boundary conditions is more complicated compared to its spa-

tial form. Hence, instead of the standard procedure described above, the procedure of curvilinear

coordinates, proposed in section 2.1.2, is adopted here for the coupled nonlinear heat convection

boundary conditions. Instead of performing a pull-back of q̂C dA from current to the reference

configuration (via ϕ−1) and from reference into the parameter space (via ζ−1), the mapping

(ϕ ◦ ζ)−1 is directly performed, i.e. the term is directly mapped from the current configuration

into the parameter space and computed there afterwards using Gauss quadrature. Subsequently,

the boundary term is evaluated by

∫

ΓC

q̂C dA =

∫

ΓC

h (T − T∞) dA =

1∫

−1

1∫

−1

h (T − T∞) |ň| dξ1 dξ2 , (5.18)

where the scalar-valued physical infinitesimal area element of the current configuration dA ac-

cording to (2.34) is utilised which is part of the boundary Γc. As the current infinitesimal area dA
is deformation-dependent, the term contributes to the consistent linearisation process. In contrast
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to the material term in (5.17), this linearisation can easier be performed. Consequently, the weak

form of the thermo problem is expressed by
∫

Ω0

ρ0CV Ṫ δT dV0 −
∫

Ω0

Q ·Grad δT dV0 −
∫

Ω0

Dmech δT dV0 −

−
∫

Ω0

Hep δT dV0 −
∫

Γ0;N;T\Γ0;C;T

Q̂ δT dA0 −
∫

ϕ(Γ0;C;T)

q̂C δT dA −
∫

Ω0

ρ0 r δT dV0 = 0 ,
(5.19)

where ϕ(Γ0;C;T) denotes the mapping of the boundary Γ0;C;T to the current configuration accord-

ing to Figure 2.1.

5.2 Space and time discretisation

After having defined the weak forms of the balance equations for TSI, i.e. (5.9) and (5.19), util-

ising a Lagrangian description, a numerical solution is obtained by applying the finite element

method (FEM) for spatial discretisation and a finite difference method for temporal discretisa-

tion, resulting in the fully discrete TSI equations.

In this context, it is worth mentioning that the Lagrangian approach is advantageous for the

whole nonlinear TSI problem. For instance considering the structural field whose domain is

deformed as a result of an applied deformation: due to the volume-coupling, the domain of

the thermo field has to experience the same deformation, yielding the same deformed domain.

A Lagrangian description refers all quantities to the initial domain Ω0, which is per definition

identical for both fields. Hence, no additional effort is required to transform the thermal domain

according to the structural domain. In contrast, using an Euler approach for the thermo field

would require additional effort since transformation operations would be necessary to get the

deformed thermal domain.

In the present thesis, a conforming element approach is employed for the TSI problem, i.e.

the spatial discretisation of both fields structure and thermo are identical. However, since the

TSI is based on separate discretisations for both fields, a non-conforming element approach can

also be realised. Ongoing work is concerned which this aspect which will contribute to increase

the efficiency and the flexibility of the TSI solution. Thus, it will be possible to choose different

meshes due to the physical requirements of the single field. For instance a fine mesh will be

applied for thermo field at regions where high heat fluxes will be excepted whereas a coarse

mesh will be sufficient for the corresponding structure. Subsequently, the computational costs

will be reduced since, e.g. less structural element evaluations need to be performed.

The procedure of setting up the system of equation for TSI comprises the procedure of the sin-

gle fields, thus the present explanations are based on sections 3.2.1 and 4.2 for the structural and

thermal field, respectively. Consequently, the global semi-discrete equations of the TSI problem

follow as

Md̈ + D ḋ + f int;S(d,T) − fext;S = 0 , (5.20)

C Ṫ + f int;T(T, d) − fext;T(T, d) = 0 , (5.21)

with the global mass and damping matrix M and D, the structural internal and external force

vector f int;S and fext;S, and the global acceleration, velocity and displacement vectors d̈, ḋ and d,
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respectively. Moreover, C denotes the capacity matrix, f int;T and fext;T denote the thermal internal

and external force vector, and Ṫ and T are the global vectors of temperature rate and temperature,

respectively. In (5.20) and (5.21), the coupling is established. For instance, in the structural

equation (5.20), the structural internal force vector f int;S(d,T) is temperature-dependent and

in the thermal equation (5.21), the thermal internal and external force vectors, f int;T(T, d) and

fext;T(T, d), are both deformation-dependent.

The given equations are discretised with standard finite elements (FEs) where the order of the

polynomial is chosen according to the requirements of the problem. In the context of thermo-

plastic modelling at finite strains, different FE approaches are available. As explained in sec-

tion 3.2.1.2 for a purely mechanical analysis with isothermal finite strain plasticity, volumetric

locking arises for standard linear displacement-based FE elements (as e.g. (tri-)linearly inter-

polated hexahedral elements) due to the incompressibility constraint. Hence, the F-bar method

has been introduced to circumvent the emerging volumetric locking. Subsequently, for TSI with

finite strain thermo-elasto-plasticity, the approach of section 3.2.1.2 is extended. Consequently,

the F-bar method is applied to the whole structural equation (5.20), i.e. the element technology is

applied to the mechanical and the thermal stresses, further details are explained in Appendix D.2.

In contrast, standard FE elements are chosen for the thermal field. Choosing different kinds of

element technology for the structural field and standard FE elements for the thermal field repre-

sents a common strategy in literature, see for instance Adam and Ponthot [1], Glaser [51], Miehe

[90], and Miehe et al. [92]. In contrast, approaches exist where element technology is extended

to both fields, as e.g. in Ibrahimbegovic and Chorfi [61], Simo and Miehe [122]. Moreover,

as an alternative to circumvent locking, quadratic elements as the 27-noded (tri-)quadratically

interpolated hexahedral elements are utilised which are applied for both fields equally.

Subsequently, the fully discrete system of equation for TSI is obtained by time discretisation

of (5.20) and (5.21) according to sections 3.2.2 and 4.2.2. Consequently, using an one-step-θ
scheme, the TSI system results in

M
vn+1 − vn

∆t
+ θS

[

Dvn+1 + f int;S(dn+1,Tn+1) − fext;S;n+1

]

+

+ (1 − θS)
[

Dvn + f int;S(dn,Tn) − fext;S;n

]

= 0 ,
(5.22)

C
Tn+1 − Tn

∆t
+ θT

[

f int;T(Tn+1, dn+1) − fext;T(Tn+1, dn+1)
]

+

+ (1− θT)
[

f int;T(Tn, dn) − fext;T(Tn, dn)
]

= 0 ,
(5.23)

or in

Man+1−αm;S
+ Dvn+1−αf;S

+ f int;S;n+1−αf;S
(d,T) − fext;S;n+1−αf;S

= 0 , (5.24)

Ctn+αm;T
+ f int;T;n+αf;T

(T, d) − fext;T(Tn+αf;T
) = 0 , (5.25)

using a generalised-α method. For the sake of clarity, the indices S and T differentiate the algo-

rithmic parameter of the structural and thermal field, respectively. It is worth mentioning, that

in a coupled problem, the time integration plays an important role. A consistent solution is only

established if the coupled fields are evaluated at the same point in time. Otherwise, this may

cause problems leading to possibly unphysical solutions. Details on this topics will be drawn in

section 6 where the different solution techniques for the TSI problem will be presented.
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5.3 Constitutive laws for thermo-structure interaction

problems

As noted above, constitutive laws have to be chosen to close the thermomechanical problem at

hand while fulfilling the second law of thermodynamics. According to (2.82) or (2.104), two

sub-potentials are necessary. Firstly, to satisfy the thermal dissipation Dcond, Fourier’s law (4.12)

is exclusively utilised to determine the heat fluxes. Secondly, a thermomechanical potential is

necessary which must fulfil the mechanical dissipation Dmech and which is used to determine the

stresses, the entropy and the coupling terms of the thermo equation arising in TSI, i.e. Dmech and

Hep. Based on the mechanical potentials introduced in section 3.4 and the thermal potential (4.8),

in the following extended thermomechanical potentials will be presented. As the TSI problem

will be solved with an exact Newton method, a consistent linearisation of the whole problem is

required. Subsequently, in addition to the stresses, the material tangent CCC mat will be determined

which is a fourth-order tensor. Since the stresses will include mechanical and thermal parts, a

thermal material tangent CT may further arise according to

CT =
∂S

∂T
, (5.26)

which represents a second-order tensor. For TSI, two kinds of thermomechanical materials are

generally distinguished, namely thermoelastic and thermo-elasto-plastic materials. These two

kinds will be explained in the following sections based on the corresponding isothermal struc-

tural materials presented in section 3.4.

5.3.1 Thermoelasticity

In the following, two isotropic thermo-hyperelastic constitutive models are proposed based on

the elastic material models of section 3.4.1, which are extended to temperature-dependence.

Hence, a thermomechanical potential is described as the sum of different potentials, which com-

prises a mechanical potential given in (3.53) or (3.51), the thermal potential (4.8) and a coupling

potential. Thus, the temperature-dependent Saint Venant-Kirchhoff (TSVK) material utilised,

e.g. in Glaser [51], and the compressible thermo-hyperelastic material model based on Simo and

Miehe [122] are established. The Helmholtz free energy per unit reference volume for these two

materials postulates

ρ0 ψTSVK(EGL, T ) = ΨTSVK = µ(T )EGL : EGL +
λ(T )

2
(trEGL)

2

︸ ︷︷ ︸

Û(EGL,T )+ Ŵ(EGL,T )

+ m0(T )∆T (trEGL)
︸ ︷︷ ︸

M̂(EGL,T )

− ρ0CV

(

T ln
T

T0
− ∆T

)

︸ ︷︷ ︸

T̂(T )

,
(5.27)
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ρ0 ψTESIMO(B, T ) = ΨTESIMO =
K

2

(1

2
(Je 2 − 1) − ln Je 2

)

︸ ︷︷ ︸

Û(Je)

+
µ

2
(tr B̃ − 3)

︸ ︷︷ ︸

Ŵ(B̃)

+

+
m0

2
∆T

(Je 2 − 1

Je

)

︸ ︷︷ ︸

M̂(Je,T )

−ρ0 CV

(

T ln
T

T0
− ∆T

)

︸ ︷︷ ︸

T̂(T )

,
(5.28)

where the abbreviation “TESIMO” represent the thermoelastic version of the model in Simo and

Miehe [122]. Moreover, the corresponding potential functions per reference volume ΨTSVK and

ΨTESIMO are included in (5.27) and (5.28), respectively. In (5.28), the stress-temperature modulus

defined as

m0 = − (2µ + 3 λ)αT , (5.29)

the Lamé constants λ and µ (see (3.52)), and the bulk modulus K (see (3.125)) are used. As

homogeneous bodies are treated αT = const., see Parkus [103]. The TSVK material includes a

temperature-dependent Young’s modulus E(T ) which can be approximated using a polynomial

function. Consequently, for this material the Lamé constants, the bulk modulus, and hence the

stress-temperature modulus are also temperature-dependent, i.e. µ(T ), λ(T ), K(T ), and m0(T ),
respectively. In contrast, for the TESIMO material the parameters are constants. Based on the

potentials (5.27) and (5.28), and including equation (2.96), (3.55), and (3.56), the second Piola-

Kirchhoff stresses follow as

STSVK = 2µ(T )EGL + λ(T ) trEGL I
︸ ︷︷ ︸

SdT

+ m0∆T I
︸ ︷︷ ︸

ST

, (5.30)

STESIMO =
K

2
(Je 2 − 1)C−1 + F−1 · (µ dev B̃) · F−T

︸ ︷︷ ︸

Sd

+
m0

2
∆T

(Je 2 + 1)

Je
C−1

︸ ︷︷ ︸

SdT

. (5.31)

Herein, the stresses can be additively split. For the TSVK material, thermomechanical and purely

thermal stresses can be distinguished, i.e. SdT and ST, while for the TESIMO material model,

purely mechanical and thermomechanical stresses, Sd and SdT, respectively are distinguished.

Subsequently, the material tangents are determined. While the determination of CCC mat follows

standard procedures, the thermal tangent is specified for the two materials, based on (5.26), to

CT;TSVK = 2
∂µ(T )

∂T
EGL +

∂λ(T )

∂T
trEGL I + m0 I , (5.32)

CT;TESIMO =
m0

2

(Je 2 + 1)

Je
C−1 . (5.33)

In the following, the thermoelastic coupling term He is determined according to (5.13), leading

for the TSVK and the TESIMO material to

He
TSVK = T m0 tr ĖGL , (5.34)

He
TESIMO = T

m0

2

Je 2 + 1

Je
C−1 : ĖGL , (5.35)

respectively. Thermoelastic materials are treated here, i.e. no energy is dissipated, which implies

that the dissipation in (5.19) vanishes and Dmech ≡ 0.
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5.3.2 Thermo-elasto-plasticity

Based on the elastoplastic materials in section 3.4.2, in the following thermo-elasto-plastic ma-

terials will be presented. For the small strain regime, two thermo-elasto-plastic material models

will be distinguished. First, a von Mises thermo-elasto-plastic material model with mixed hard-

ening will be developed which is based on the elastoplastic material model of section 3.4.2.3.

This material model is used, e.g. in Kuhl et al. [69] in a slightly modified version. Subse-

quently, the so-called Robinson’s viscoplastic material model, originally proposed by Robinson

and Swindeman [110] and extended to the non-isothermal case, e.g. in Bornemann and Wall

[18], will be established. Finally, in the context of finite strains, the thermo-hyperelasto-plastic

material model of Simo and Miehe [122] will be developed.

As introduced in section 2.4, the phenomenological approach to thermodynamics with in-

ternal variables is applied in the following. Hence, based on a chosen energy potential ψ, the

stresses and the entropy can be determined. Hereby, the equilibrium contributions belong to the

thermoelastic response, while the non-equilibrium contributions belong to the plastic response

of the material, so that irreversible, dissipative effects are described via the evolution of the in-

ternal variables, i.e. by α̇k. As a stress-free initial configuration is assumed, at t = 0 all internal

variables αk vanish. If the evolution equations for the internal variables αk are fulfilled together

with the balance equations, a thermodynamical equilibrium is achieved.

Since in plasticity irreversible processes are described, energy dissipates to heat leading to a

dissipation D ≥ 0. Hence, apart from stresses and the thermo-elasto-plastic heating term Hep,

the mechanical dissipation Dmech will be determined for each material model.

Thermo-elasto-plasticity is solved using an elastic predictor/plastic corrector solution strat-

egy, as proposed in section 3.4.2.2. Instead of an elastic predictor, the predictor comprises an

thermoelastic predictor phase followed by a plastic corrector phase. This strategy is used, e.g. in

Kuhl [68] and Kuhl et al. [69] for small strain thermoplasticity and in Simo and Miehe [122] and

Fritsch [44] for finite strain thermoplasticity.

5.3.2.1 Linear thermo-elasto-plastic material

As mentioned above, the present linear thermo-elasto-plastic material model represents an ex-

tension of the linear isothermal elastoplastic material model of section 3.4.2.3. In addition to the

purely mechanical model, where mechanical stresses are described by (3.138), thermal stresses

arise, so that the total stress yields

σn+1 =
[

CCC
e
mat − Ĥ(Φtrial)

∆γ 6G2

q̄trialn+1

III d

]

: εe;trialn+1 + Ĥ(Φtrial)
∆γ 3G

q̄trialn+1

βn

︸ ︷︷ ︸

σd

+ m0∆T I

︸ ︷︷ ︸

σT

.

(5.36)

Herein, equivalent to (5.7) and (5.8), the linear stress can be additively decomposed into me-

chanically elastoplastic and thermal stresses, σd and σT, respectively. This thermo-elasto-plastic

material model is able to show mixed hardening, i.e. nonlinear isotropic hardening and linear

kinematic hardening, as well as temperature-dependent stresses. While the mechanical material

tangent is described by (3.140), the thermal tangent follows as

CT = m0 I . (5.37)
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Subsequently, the thermo-elasto-plastic heating term and the mechanical dissipation follow as

He = T m0 tr ε̇
e (5.38)

Dmech = η : ε̇p − κ(ε̄p) ˙̄εp , (5.39)

respectively. It is noted here, that due to the chosen linear Prager-Ziegler’s law (3.132), the

influence of the kinematic hardening in Hep vanishes, consequently Hep ≡ He, i.e. the thermo-

elasto-plastic heating terms reduces to the thermoelastic heating term.

5.3.2.2 Robinson’s viscoplastic material

In this section, the so-called Robinson’s viscoplastic material proposed by Arya [8, 9] and Arya

and Arnold [10] and adopted by Bornemann and Wall [18, 19] is presented. The basic version

of the viscoplastic Robinson’s material model in Robinson and Swindeman [110] describes a

purely mechanical material. Subsequently, this model is extended to the non-isothermal case,

e.g. in Arya and Arnold [10], Bornemann and Wall [18, 19], and moreover in Providakis [106]

for a boundary element method (BEM). Motivated by the application to rocket thrust cham-

bers in the publications of Arya, this material is established for the present thesis as well. For

instance in Arya [8], Robinson’s material is used in the context of unified viscoplastic finite el-

ement stress-strain analysis where it is compared to experiments on thrust chambers composed

of NARloy-Z. NARloy-Z is a copper-based alloy. In this context unified means, that the inelastic

strains cover plasticity, creep, relaxation, etc.. Different version of Robinson’s material exist. In

the present thesis, the version of Arya and Arnold [10] is utilised. The presentation is restricted

to the main equations. For further details on the Robinson’s material, the reader is referred to the

literature mentioned above.

Robinson’s material is an isotropic viscoplastic material model which includes kinematic

hardening. Hence, the inelastic strains εp and the back stress β are the internal variables of

this model, i.e. αk = {εp,β}. The material model is based on the additive split of strains ac-

cording to (5.1) with the thermal strains εt (5.2) and the viscoplastic strains εp, so that the total

strain rate follows as

ε̇ = ε̇e + ε̇p + ε̇t . (5.40)

According to Hooke’s law (3.61), the elastic strain rates ε̇e are related to the stress rates σ̇ by

ε̇e = CCC
e−1
mat : σ̇ , (5.41)

where CCC
e−1
mat is the inverse of Hooke’s elastic material tangent. Based on the notation proposed

in Freed et al. [42], Robinson’s material can be handled in a thermodynamically consistent way.

Therefore, the Gibbs free enthalpy ζ is introduced, in contrast to the Helmholtz free energy ψ
or the internal energy e, which represents an energy in the variables stress and temperature. Via

Legendre-transformation

ζ(σ, T ) = e − T η − 1

ρ0
σ : εe , (5.42)

i.e. the enthalpy can be related to the internal energy e(ε, η). Moreover, ζ is the mechanical com-

plementary energy to the Helmholtz free energy ψ(ε, T ). Subsequently, the Gibbs free enthalpy

can be used to define a potential for the given Robinson material by

ζ(σ, T, εp) = ζe(σ, T ) + ζp(σ, T, εp) , (5.43)
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where the thermoelastic free enthalpy of Hooke-like material and the plastic contributions are

assumed as

ρ0 ζ
e(σ, T ) =

ρ0
2
σ : CCC e−1

mat : σ + ρ0 αT I : σ∆T + η0∆T −

− ρ0 CV

(

T0 ln
T

T0
− ∆T

)

,
(5.44)

ρ0 ζ
p(σ, T, εp) =

1

3
Hkin εp : εp (5.45)

with the initial entropy value η0 and the kinematic hardening modulus Hkin. Using (5.44), the

elastic strains and the entropy result in

εe = −ρ0
∂ζ

∂σ
= CCC

e−1
mat : σ + ∆T αT I , (5.46)

η = − ∂ζ

∂T
= ρ0 αT I : σ + η0 − ρ0 CV

(T0
T

− 1
)

, (5.47)

where (5.46) can be transformed such that an equation for the stresses σ depending on elastic

strains εe and the temperature increment ∆T follows as

σ = CCC
e
mat : (ε

e − αT ∆T I) . (5.48)

To determine the unified plastic strains, the yield function is first assumed to

Φ =
J2(η)

K2
− 1 , (5.49)

where K = K(T ) is a temperature-dependent material parameter, η is the relative stress or

overstress (3.129) using the deviatoric stress s (2.49), and J2(η) is the second invariant of the

effective stress according to (B.23). According to the Kuhn-Tucker conditions (3.71), plasticity

can only occur in the Robinson material if the two conditions are fulfilled, namely the yield

function (5.49) and the scalar product of deviatoric and back stresses have to be both greater

than zero, i.e.

Φ
!
> 0 and s : η

!
> 0 . (5.50)

Hence, the plastic flow postulates

ε̇p = f p(u, εp,β, T ) =
AΦa

√

J2(η)
η , (5.51)

including the material constants a andA. If the two conditions are not valid, no plastic flow takes

place, i.e. ε̇p ≡ 0. To determine the back stresses a second evolution equation is required which

is assumed to

β̇ = fβ(u, εp,β, T ) = h(β) ε̇p − r(β)β (5.52)

with h corresponding to the evolution of the accumulated deformation, i.e. is connected with

the viscous strain rate ε̇p, and r corresponding to the recovery or softening process. In (5.51)
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and (5.52), the tensor f summarizes the evolution equations in a function, which is used later

for the solution of the local plasticity problem. The evolution law (5.52) is further known as

the so-called Bailey-Orowan law, see Arya and Kaufmann [11]. It postulates that at elevated

temperatures the deformation is governed by the two competing processes: hardening h and

softening r. Introducing

G =
J2(β)

K2
0

, R = R0 exp
[

Q0

( 1

Θ0
− 1

T

)]

, (5.53)

where J2(β) is the second invariant of the deviatoric back stress according to (B.23) and G0 and

G are the constant and the deformation-dependent shear threshold, respectively. Furthermore,K2
0

is the Bingham-Prager shear stress threshold and R is the recovery term for which the activation

energyQ0, the recovery or softening factorR0, and the activation temperature Θ0 are used. Thus,

for the case G > G0 and s : β > 0, h and r are expressed by

h(β) =
H

Gβ
, r(β) =

RGm−β

√

J2(β)
, (5.54)

whereas for the remaining cases G ≤ G0 and s : β ≤ 0

h(β) =
H

Gβ0
, r(β) =

RGm−β
0

√

J2(β)
. (5.55)

Summarizing, in (5.54) and (5.55) the following material parameters are used: H = H(T ),
β = β(T ), and R0 = R0(T ) are temperature-dependent variables, whereas m is a constant

material parameter. At steady state, they balance each other, so that in (5.52) β̇ ≡ 0 follows.

As mentioned previously, an equilibrium state is obtained if the balance equations and in

addition the evolution equations (5.51) and (5.52) at Gauss point level are solved. Therefore, the

evolution equations are firstly discretised in time using a backward Euler time integration scheme

and secondly are computed at each Gauss point gp for the current time step n+ 1. In contrast to

all other plastic materials, the Robinson’s material is not solved using an elastic predictor/plastic

corrector schemes (as presented in section 3.4.2.2). Instead, the internal variables εp and β are

locally defined, so that they are understood discontinuous across element boundaries. It this

context it is common to discretise the internal variables by an interpolation with polynomials that

are equal to 1 at a Gauss point gp. Hence, the discrete internal variables εp;(e);gp and β(e);gp are

associated to each Gauss point of an element (e). Due to the local definition, their elementwise

contribution is decoupled in the global system. Consequently, the increments of the internal

variables ∆εp;(e) and ∆β(e) depend only on the displacement increment ∆d(e) of this element

(e). Thus, a relatively easy local static condensation is enabled which eliminates the internal

variables on the global level. To realise the static condensation, in a first step residuals of the

evolution equations are defined as

r
(e);gp
εp := ε̇p;(e);gp − fp(d(e), εp;(e);gp,β(e);gp,T(e)) = 0 , (5.56)

r
(e);gp
β := β̇

(e);gp − fβ(d(e), εp;(e);gp,β(e);gp,T(e)) = 0 . (5.57)
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Subsequently, these residuals are discretised in time using a backward Euler time integration

scheme, yielding

r
(e);gp
εp;n+1 :=

ε
p;(e);gp
n+1 − ε

p;(e);gp
n

∆t
− fp(d

(e)
n+1, ε

p;(e);gp
n+1 ,β

(e);gp
n+1 ,T

(e)
n+1) = 0 , (5.58)

r
(e);gp
β;n+1 :=

β
(e);gp
n+1 − β(e);gp

n

∆t
− fβ(d

(e)
n+1, ε

p;(e);gp
n+1 ,β

(e);gp
n+1 ,T

(e)
n+1) = 0 . (5.59)

The structural field is solved if the displacements and the internal variables are determined

within the Newton-Raphson iteration. In the present material model, static condensation of the

material variables is performed at each Gauss point, i.e. no global material response is achieved.

Instead, condensed stresses and condensed stiffness contributions, σred and CCC mat;red, respec-

tively, are computed at Gauss point level, which are then inserted elementwisely into the global

system. Based on initial values di, Ti and εp;(e);gp;i, β(e);gp;i for iteration step i, σ
(e);gp
red and

CCC
(e);gp
mat;red are obtained from linearisation of the material by

Lin





σ

rε
p

rβ





(e);gp

n+1

=





σ

rε
p

rβ





(e);gp;i

n+1

+











∂σ

∂ε

∂σ

∂εp
∂σ

∂β
∂rε

p

∂ε

∂rε
p

∂εp
∂rε

p

∂β

∂rβ

∂ε

∂rβ

∂εp
∂rβ

∂β











(e);gp;i

n+1





∆ε

∆εp

∆β





(e);gp;i

n+1

, (5.60)

where the internal variables are computed for a given strain increment ∆ε via static condensation

of the two lower rows by

[
∆εp

∆β

]gp;i

n+1

=







∂rε
p

∂εp
∂rε

p

∂β

∂rβ

∂εp
∂rβ

∂β







gp;i;−1

n+1







−
[
rε

p

rβ

]

−







∂rε
p

∂ε

∂rβ

∂ε







∆ε







gp;i

n+1

. (5.61)

Inserting (5.61) into (5.60), the linearisation of the stresses σ with respect to the strains ε is

given as

Linσ = σ +
∂σ

∂ε
: ∆ε +

[
∂σ

∂εp
∂σ

∂β

]

:

[
∆εp

∆β

]

, (5.62)

where the indices are omitted for the sake of clarity. Reformulating (5.62) yields

Linσ = σ +
∂σ

∂ε
: ∆ε+

+

[
∂σ

∂εp
∂σ

∂β

]







∂rε
p

∂εp
∂rε

p

∂β

∂rβ

∂εp
∂rβ

∂β







−1 




−
[
rε

p

rβ

]

−







∂rε
p

∂ε

∂rβ

∂ε






∆ε







,
(5.63)
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and

Linσ =
{

σ −
[
∂σ

∂εp
∂σ

∂β

]







∂rε
p

∂εp
∂rε

p

∂β

∂rβ

∂εp
∂rβ

∂β







−1

[
rε

p

rβ

]}

︸ ︷︷ ︸

σred

+

+
{∂σ

∂ε
−







∂rε
p

∂εp
∂rε

p

∂β

∂rβ

∂εp
∂rβ

∂β







−1

[
∂εp

∂ε

∂β

∂ε

]}

︸ ︷︷ ︸

CCCmat;red

∆ε ,

(5.64)

which is finally summarized to

Linσ =: σred + CCC mat;red : ∆ε . (5.65)

Consequently, the condensed reduced stresses and tangent, σred and CCC mat;red, respectively, follow

as results of the linearisation and the elimination of the internal variables.

Subsequently, based on (5.65) a solution of the target linear system (6.3) can be computed

after assembly of the elementwise terms. Therefore, the global internal force vector is composed

of σred at each Gauss point, i.e.

f int;S;n+1(d
i,Ti) =

nele∑

e=1

[ ngp
∑

gp

∫

Ω
(e)
0

(∂ε

∂d

)T

: σred(d, ε
p,β,T) dV0

](e);gp;i

n+1
(5.66)

and accordingly, the global tangential matrix KSS is composed of the matrices CCC mat;red at each

Gauss point by

Kint;SS(d,T) =

nele∑

e=1

{ ngp
∑

gp

[ ∫

Ω
(e)
0

(∂ε

∂d

)T

: CCC mat;red :
(∂ε

∂d

)

dV0

](e);gp}

. (5.67)

Since a Newton method is utilised which solves for incremental values ∆d, incremental solutions

of the internal variables are computed. The final solution of the internal variables at the end of

time step n+ 1 at each Gauss point gp of each element (e) are obtained by updating

[
εp

β

]i+1

n+1

=

[
εp

β

]i

n+1

+

[
∆εp

∆β

]i+1

n+1

. (5.68)

To summarize, Algorithm 3 describes a solution approach with a Newton-Raphson scheme

using Robinson’s material with static condensation.

Based on the entropy equation (5.47), the thermo-elasto-plastic heating terms vanishes (Hep ≡
0). Moreover, based on Freed et al. [42], the mechanical Dissipation follows as

Dmech = η : ε̇p . (5.69)
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5 Thermo-structure interaction

Algorithm 3 Solution procedure for the structural subproblem (5.22) of a TSI problem using

Robinson’s viscoplastic material model.

# Time loop

for time step n = 0, ..., tmax

Predictor xi=0
n+1 = xn with x = {d,T, εp;(e);gp,β(e);gp}

Calculate initial global residual ri=0
S;n+1 with xi=0

n+1 and element internal force vector f i=0
int;S;n+1

# Newton-Raphson iteration

for each iteration step i = 0, ...,maxnlniter
# Check for convergence of Newton-Raphson iteration

if ||riS;n+1|| ≤ ǫ
stop Newton-Raphson iteration

Calculate riS;n+1 = rS(x
i
n+1) with f int;S(d,T) (5.66) and Ti = const.

Calculate Ki
S;n+1 = KS(x

i
n+1) according (5.67)

# Solve linear system ∆di+1
n+1 = −(Ki

S;n+1)
−1 rid;n+1

# At Gauss point gp start material call

for Gauss point l = 0, ..., ngp
Given is ∆ε

i+1;l
n+1 , T i+1;l

n+1 and all state variables at tn
Update internal variables ε

p;i+1;l
n+1 ,βi+1;l

n+1 according to (5.68)

Calculate ε
e;i+1;l
n+1 based on (5.1)

Calculate the incremental solution vectors of the internal variables

∆ε
p;i+1;l
n+1 ,∆β

i+1;l
n+1 according to (5.61) using ∆ε(∆di+1

n+1)
Calculate σred and CCC mat;red according to (5.64)

# Finish material call

# Update solution vectors

di+1
n+1 = din+1 + ∆di+1

n+1

Update Newton-Raphson iteration step i = i+ 1

Update time t = t+∆t and step n = n + 1
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5.3 Constitutive laws for thermo-structure interaction problems

5.3.2.3 Finite strain thermo-hyperelasto-plastic material model

The previously presented material models are based on small strains. In contrast, the present

material model is formulated in finite strains. It is based on Simo and Miehe [122] and has been

introduced for purely mechanical analyses in section 3.4.2.5. Extensions of the model of Simo

and Miehe [122] is realised in numerous publications, for instance in Miehe and Schröder [91]

and Reese and Govindjee [108].

In addition to the purely mechanical finite strain elastoplastic material model, temperature-

dependence is introduced in the yield stress and additional thermal stresses. Thus, the present

model describes a finite strain isotropic thermo-hyperelasto-plastic material with J2-plasticity

and nonlinear isotropic hardening. The thermoelastic domain is presented by the von Mises

yield function (3.185), where the yield function is temperature-dependent, i.e. σy(ε̄
p, T ). The

Helmholtz free energy ψ given in (5.8) is specified by determining the internal variables accord-

ing to (3.173) and by using the elastic left Cauchy-Green deformation tensor Be, see (3.168) and

especially (3.171), so that the potential yields

ρ0 ψ(B
e, T, ε̄p) = Û(Je) + Ŵ(B̃e) + M̂(Je, T ) + T̂(T ) + K̂(ε̄p, T )

=
K

2

[1

2
(Je 2 − 1)− ln Je

]

︸ ︷︷ ︸

Û(Je)

+
1

2
µ (tr B̃e − 3)

︸ ︷︷ ︸

Ŵ(B̃e)

+

+
m0

2
∆T

(Je 2 − 1

Je

)

︸ ︷︷ ︸

M̂(Je,T )

− ρ0CV

(

T ln
T

T0
− ∆T

)

︸ ︷︷ ︸

T̂(T )

+

+
1

2
H iso ε̄p 2 + [σy;∞(T ) − σy;0(T )] Ĥ(ε̄p)

︸ ︷︷ ︸

K̂(ε̄p,T )

(5.70)

with the hardening potential Ĥ (3.176). In contrast to Simo and Miehe [122], a plastic potential

K̂(ε̄p, T ) is assumed which depends not only on the accumulated plastic strain ε̄p but also on

the temperature T . Consequently, the hardening potential K̂ enables von Mises plasticity with

isotropic temperature-dependent nonlinear hardening, so that saturation strain hardening com-

bined with linear thermoplastic softening is enabled. The proposed version of K̂ is in agreement

with approaches in literature, e.g. Agelet de Saracibar et al. [2], Ibrahimbegovic and Chorfi [61],

and with the final function used for the yield stress in the numerical example section of Simo

and Miehe [122]. In Simo and Miehe [122], the mechanical dissipation term derived in the the-

ory is not used for the numerical examples. Instead they redefine the mechanical dissipation

by introducing a non-physical dissipation factor and by utilising the total yield function so that

temperature-dependence is further introduced. In the work of Stainier and Ortiz [128], the au-

thors explain that an a-priori definition of this constant dissipation factor is in general not capable

to reproduce real material behaviour which has further been confirmed by various experimental

works. Consequently, they do not use this restricted form for the dissipation, instead they use

the expression directly following from their variational framework. Accordingly, in the present

work the term derived in the theory is utilised.
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5 Thermo-structure interaction

To enable thermal softening, the yield stresses and the isotropic hardening modulus are as-

sumed temperature-dependent, yielding

σy;0(T ) = σy;0(T0) [1 − ω0 (T − T0)] , (5.71)

σy;∞(T ) = σy;∞(T0) [1 − ωh (T − T0)] , (5.72)

H iso(T ) = H iso(T0) [1 − ωh (T − T0)] , (5.73)

with the thermal softening parameter ω0 for the initial yield stress and the thermal softening

parameter ωh for the hardening modulus and the saturation stress. Derivations of (5.70) are used

within the second law of thermodynamics, see section 2.4.3, to determine the stresses based on

(5.31), leading to

S =
K

2
(Je 2 − 1)C−1

︸ ︷︷ ︸

Sd

+ F−1 · (µ dev B̃e
) · F−T +

m0

2
∆T

(Je 2 + 1

Je

)

C−1

︸ ︷︷ ︸

SdT

, (5.74)

where in contrast to (5.31), the deviatoric plastic stresses are temperature-dependent due to

(5.71)-(5.73) which enter the stress calculation in the return-mapping. To compute the coupling

terms, the mechanical dissipation Dmech is expressed by (3.199) where according to (5.71), the

mechanical dissipation follows to be temperature-dependent which is shown by

Dmech = γ̇

√

2

3
σy;0(T ) . (5.75)

Moreover, Hep is derived from (5.13) and (5.70), leading to

Hep = T
(m0

2

Je 2 + 1

Je
C−1 : ĖGL +

∂κ(ε̄p, T )

∂T
˙̄εp
)

, (5.76)

where κ(ε̄p, T ) is the thermodynamical force associated to isotropic hardening based on (3.183).

In contrast to the constant terms in (3.183), the present κ includes temperature-dependent terms

(see (5.71)-(5.73)). In (5.76), the derivative of κwith respect to the temperature is included which

is computed using the chain rule by

dκ(ε̄p, T )

dT
=

∂κ(ε̄p, T )

∂T
+
∂κ(ε̄p, T )

∂ε̄p
∂ε̄p

∂∆γ

∂∆γ

∂T
, (5.77)

where a temperature-dependent plastic multiplier ∆γ(T ) is assumed. Based on (3.187), the par-

tial derivation yields

∂ε̄p

∂∆γ
=

√

2

3
. (5.78)

A result of ∂∆γ
∂T

is achieved by linearising the consistency condition with respect to the tempera-

tures and subsequently reordering the result, which gives

∂∆γ

∂T
= −

√

2

3

∂σy;0(T )

∂T
+
∂κ(ε̄p, T )

∂T
2 µ̄ β0

(5.79)
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5.3 Constitutive laws for thermo-structure interaction problems

with the coefficient β0 introduced for the purely structural case in (3.213) including (3.218),

which is here temperature-dependent due to (5.77). For the sake of clarity, it is noted that the

total temperature derivation of the thermodynamical force (5.77) is split in (5.79) into its partial

derivations: while the first term of the right-hand side is included in the numerator, the second

term is part of the denominator included in β0. Subsequently, the partial derivations of the yield

stresses follow as

∂σy;0(T )

∂T
= σy;0(T0) (−ω0) , (5.80)

∂κ(ε̄p, T )

∂T
= −H iso(T0)ωh ε̄

p + [−ωh σy;∞(T0) + ω0 σy;0(T0)] [1 − exp(−δ ε̄p)] , (5.81)

∂κ(ε̄p, T )

∂ε̄p
= H iso(T ) + [σy;∞(T ) − σy;0(T )] [− exp(−δ ε̄p) (−δ)] , (5.82)

so that the total derivative of κ (5.77) is composed of (5.78), (5.81), and (5.82). The thermal

derivation of ∆γ (5.79) is determined using (5.80) and (5.81). Further details are shown in Ap-

pendix D.2.

Based on (3.201), the material tangent for the thermo-elasto-plastic material CCC
ep
mat consists of

a volumetric and an isochoric part

CCC
ep
mat = CCC

e
mat;v + C̃CC

ep

mat (5.83)

with the isochoric tangent C̃CC
ep

mat (3.212) and the volumetric thermoelastic tangent

CCC
e
mat;v = CCC

e
mat;v;S + CCC

e
mat;v;T , (5.84)

where CCC e
mat;v;S corresponds to (3.202) and CCC e

mat;v;T to the volumetric thermoelastic part, defined

as

CCC
e
mat;v;T = ∆T

m0

2

[(

Je − 1

Je

)

(C−1 ⊗C−1) − 2
(

Je +
1

Je

)

(C−1 ⊙C−1)

]

. (5.85)

Subsequently, the thermal tangent CT (5.26) is established. The linearisation of the thermome-

chanical stresses SdT in (5.74) with respect to the temperatures T yields two terms, one as a result

of the volumetric thermal stresses and one as a result of the temperature-dependence of the yield

stresses, see (5.71) and (5.72), which is determined within the return-mapping algorithm. Thus,

the thermal tangent reads

CT =
∂S

∂T
=

∂Sv
∂T

+
∂S̃

∂T
= CT;v + C̃T (5.86)

with the volumetric thermal tangent

CT;v =
∂Sv
∂T

=
m0

2

(Je 2 + 1

Je

)

C−1 . (5.87)

The isochoric thermal tangent C̃T is determined by the result of the linearisation of the final de-

viatoric stresses sn+1 (3.203) with respect to T . The only temperature-dependent term in (3.203)

represents the plastic multiplier according to (5.79). Hence, the isochoric thermal tangent yields

C̃T =
∂S̃

∂T
= −2 µ̃

∂∆γ

∂T
N (5.88)
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5 Thermo-structure interaction

with the isothermal constant µ̃, see (3.204), and the material flow vector N introduced as pull-

back of (3.193).

Finally, based on (5.87), the thermo-elasto-plastic heating terms (5.76) reduces to

Hep = T
(

CT;v : ĖGL +
∂κ(ε̄p, T )

∂T
˙̄εp
)

, (5.89)

hence recovering the original relation of Hep towards the temperature-dependent stresses in-

cluded via M̂(Je, T ) in (5.13).
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6 Solution approaches for

thermo-structure interaction

This chapter draws an overview of the different solution techniques available for thermo-structure

interaction (TSI) problems and subsequently explains in detail the methods utilised in this thesis

for solving a TSI problem.

In the literature, various approaches exist to solve a coupled problem. In this context field

elimination, operator splitting, fractional-step method, staggered solution method, partitioned

solution method, and finally the monolithic solution method can be distinguished. For a general

introduction to coupled problems, available solution approaches, and especially to the surface-

coupled problem of fluid-structure interaction (FSI), the reader is referred, e.g. to Felippa et al.

[40], Küttler [70], Löhner et al. [80], Mok [93], Wall [141], and the references therein.

In the following, the different solution methods for coupled problems are explained. First,

solution with field elimination implies, that the field variables of one field are eliminated and

are introduced into the other field, which is solved subsequently. The elimination destroys the

sparsity pattern of the system matrix, so that a solution can only be realised with the expense of

possibly high computational costs. Thus, this method is restricted to small linear problems. Since

the present work investigates also large problem sizes, the method of field elimination is not

further pursued. Next, as described, e.g. in Armero and Simo [6] and Wall [141], the two methods

partitioned and staggered can be used synonymously, hence they are summarized to the sole

partitioned solution method. A partitioned method is characterized by a separation of the coupled

problem in different partitions, so that the individual physical fields can be solved independently.

In general, a partition is understood as a separation of the spatial discretisation, while a separation

of the time discretisation is generally known as splitting, as shown in Felippa et al. [40]. In

contrast, for TSI problems it is common to interpret a partitioned solution approach as a product

formula which is known as operator splitting or synonymously as fractional-step method. Thus,

for thermomechanical problems the latter two solution methods can also be integrated into the

partitioned approach.

Consequently, fully coupled thermomechanical systems can be solved with both partitioned

and monolithic coupling algorithms. In current literature, usually partitioned algorithms are con-

sidered, since they are very flexible with respect to the formulation and solution methods of

the individual fields. Each partition may even be treated, for example, by existing field-specific

software packages, so that commercial and non-commercial software packages can be com-

bined. The coupling informations are passed as “external loads” with known values from one

field to another. Separating the total problem into smaller blocks enables reductions concern-

ing complexity and memory requirements, while computing time in general increases. Loosely

(“one-way staggered”) and strongly (“iterative staggered”) coupled partitioned algorithms can

be distinguished. Loosely coupled schemes accept that the coupling conditions are not fulfilled

exactly at any point within a time step. In contrast, strongly coupled schemes aim at achieving
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6 Solution approaches for thermo-structure interaction

equilibrium of the overall TSI system of equations at any point within a time step through itera-

tions between the partitioned fields (i.e. an equilibrium state is achieved with respect to a given

exactness criterion ǫout). Hence, these strongly coupled schemes imply that at the end of the time

step the coupling conditions are fulfilled with respect to ǫout. A significant problem of partitioned

algorithms is either their conditional stability (for loosely coupled schemes) or their potentially

very slow convergence or even divergence (for strongly coupled schemes). Various stabilisa-

tion techniques have been proposed to retain unconditional stability properties and acceleration

techniques to improve convergence behaviour, respectively. For instance, as an acceleration tech-

nique relaxation in form of an Aitken ∆2 method, as proposed in Irons and Tuck [62] and Mok

and Wall [94] can be considered. This kind of relaxation is simple to implement and leads in

many applications to a faster convergence of the problem. Aitken relaxation is applied for the

coupled problem of FSI, e.g. in Küttler and Wall [71, 72], where it is said to be a proper choice

for many FSI problems. For instance in Danowski et al. [29], Erbts and Düster [38], the Aitken

∆2 method was applied to strongly coupled partitioned TSI algorithms.

As previously mentioned, a partitioned approach to TSI can be interpreted as a product for-

mula. In literature, mainly three different operator splits can be distinguished for TSI: isother-

mal, adiabatic, and isentropic split. The definition of the operator split refers to the predictor

step, which is then followed by a corrector step. The traditional way in loosely coupled TSI

is the isothermal split, presented in Armero and Simo [6] for linear thermoelasticity and Erbts

and Düster [38], Miehe [89] for finite strain thermoelasticity. Additionally, in Adam and Pon-

thot [1], Canadija and Brnic [22], Simo and Miehe [122], and Wriggers et al. [146] an isothermal

split was utilised for finite strain thermo-elasto-plasticity. To simulate finite strain thermo-elasto-

plasticity including phase change, the isothermal split was considered in Agelet de Saracibar

et al. [2], while it was considered in Srikanth and Zabaras [127] for finite strain thermo-elasto-

plasticity including damage, and in Miehe et al. [92] for finite strain thermo-visco-plasticity

neglecting the so-called structural thermo-elasto-plastic heating term Hep. The implementation

of the isothermal split is rather easy, but a maximal time-step size has to be obeyed and the split

is only conditionally stable. This split implies, that the field equations are divided into a mechan-

ical phase solved at constant temperature, i.e. isothermal, followed by a purely thermal phase. In

contrast in the adiabatic split, as e.g. in Armero and Simo [6], the structural thermoelastic heating

term He is included into the mechanical phase, leading to a temperature change in the mechan-

ical phase that enforces the entropy η to remain constant, i.e. η̇ = 0. In the isentropic split, the

first subproblem corresponds to an isentropic (adiabatic) elastodynamic phase with fixed entropy

followed by a heat conduction phase with fixed motion and velocity. In Armero and Simo [6], an

unconditionally stable algorithm based on an adiabatic split was presented for linear thermoelas-

ticity or in Armero and Simo [7] for finite strain thermoplasticity, whereas in Armero and Simo

[7], Holzapfel and Simo [59] an unconditionally stable isentropic operator split was proposed.

Moreover, in Agelet de Saracibar et al. [2] finite strain thermo-elasto-plasticity using an isother-

mal as well as an isentropic split was presented. In addition to the isothermal split, an isentropic

operator split was considered in Miehe [89] for finite strain thermoelasticity and in Agelet de

Saracibar et al. [2] for finite strain thermo-elasto-plasticity with phase change. In Farhat et al.

[39], an unconditionally stable second-order-accurate loosely coupled partitioned procedure was

proposed for the fully coupled linear elastic thermomechanical system, assuming that the stress

term in the temperature equation depends on the initial temperature T0 instead of the current

temperature T . In Bornemann and Wall [19], a partitioned TSI approach was presented neglect-
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ing Hep. In Erbts and Düster [38], an isothermal fully implicit partitioned coupling scheme for

thermoelasticity at finite deformation was presented utilising different strategies to accelerate the

convergence of the outer iteration loop, utilising backward Euler time integration, and consid-

ering all coupling terms in the model. In Ibrahimbegovic and Chorfi [61], fully coupled finite

strain viscoplasticity was solved using the commercial finite element (FE) program FEAP (see

Taylor [131]). New consistent time integration algorithms for finite strain thermoelasticity were

developed in Romero [112] which were applied to a fractional step method in time in Romero

[111].

In the context of the surface-coupled problem of FSI, it was recently pointed out, e.g. in Gee

et al. [47] that well-designed monolithic algorithms are superior to iterative staggered schemes,

even if acceleration procedures are utilised in the latter. Especially if the problem is physically

strongly coupled, monolithic solutions are very efficient and robust and within the discretisation

an exact solution is achieved. Monolithic algorithms solve the coupled nonlinear multiphysics

system simultaneously. They do not assume any approximation or assumption for the solution as

it is common in partitioned schemes, for instance by choosing an operator split. Predominantly,

implicit schemes are applied to achieve good stability properties. Compared to partitioned ap-

proaches, standard and unmodified single field solvers, e.g. in the form of commercial software

packages, cannot be used in most cases. A particular challenge for monolithic algorithms is the

efficient solution of the large system of equations, including potential nonlinearities or unsym-

metries. One essential aspect for efficient solvers for large-scale problems is a good precondi-

tioning technique. Various preconditioners based on algebraic multigrid (AMG) methods were

proposed in Gee et al. [47], Heil [55], Klöppel et al. [67] for monolithic solution schemes for FSI

problems based on matching and non-matching grids, respectively. If properly designed, those

schemes were shown to enable fast, efficient, and robust solutions of the fully coupled problem.

Few monolithic approaches to TSI problems can be found in the literature, and most of them

have been based on simplifying assumptions. For instance, monolithic algorithms were applied

to the fully coupled linear thermomechanical problem along with a boundary element method

(BEM) in Tanaka et al. [130], assuming that the linear stress term depends on the initial tem-

perature T0 instead of the current temperature T , as was also done in Farhat et al. [39]. That

assumption avoided a linearisation with respect to the temperatures, so that the coupling term

could be interpreted as an external load. By contrast, in the present work, the current temper-

ature T , i.e. a full coupling will be considered. In Carter and Booker [24], a symmetric TSI

system was constructed for small strain thermoelastic problems which was then solved in a fully

coupled monolithic way. In Glaser [51], monolithic algorithms were developed for the calcula-

tion of thin-walled structures using shell elements and an arc-length method for the TSI solution.

While all coupling terms were considered, only a simplified mechanical dissipation was included

where the hardening power was neglected. In contrast, the present approach included all emerg-

ing dissipation terms. An effective monolithic approach based on a variational formulation of

the fully coupled thermomechanical boundary-value problem for general dissipative solids was

established in Yang et al. [147] and Stainier and Ortiz [128]. They showed that the proposed

variational formulation was able to correctly predict the dissipated energy that was converted

into heat by comparison with experimental data. Subsequently, their work was further proceeded

in Canadija and Mosler [23], for instance with respect to account for kinematic hardening.

In the following, partitioned and monolithic solution techniques for coupled TSI problems

will be specified. While in section 6.1 the target coupled system will be first summarized, in
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section 6.2 loosely and strongly coupled partitioned schemes with different predictors will be

presented. Subsequently, in section 6.3 a monolithic scheme with block Gauss-Seidel (BGS)

preconditioner and AMG methods will be established.

6.1 Linearisation and solution techniques for nonlinear

equations

Previously, partitioned and monolithic solution strategies for TSI problems have been intro-

duced. Since both strategies apply a Newton-Raphson method to iteratively solve the coupled

TSI system of nonlinear algebraic equations, in the following, the corresponding linear systems

will be deduced. Based on section 3.3 and 4.3 for the single fields, the fully discrete equations

for the structure (5.24) and the thermo (5.25) are considered, where exemplarily a generalised-α
time integration scheme is used. Subsequently, residuals of the coupled problem can be defined

for a given (Newton) iteration step i as

rS(d
i
n+1,T

i
n+1) = Main+1−αm;S

+ Dvin+1−αf;S
+ f int;S;n+1−αf;S

(di,Ti) − fext;S;n+1−αf;S
, (6.1)

rT(T
i
n+1, d

i
n+1) = Ctin+αm;T

+ f int;T;n+αf;T
(Ti, di) − fext;T;n+αf;T

(Ti, di) . (6.2)

Equation (6.1) and (6.2) represent the corresponding coupled residuals of the single fields struc-

ture (3.41) and thermo (4.31). Once the residuals are available, the linear systems of equations

follow by

KSS(d
i
n+1,T

i
n+1)∆di+1

n+1 + KST(d
i
n+1,T

i
n+1)∆Ti+1

n+1 = −riS;n+1 , (6.3)

KTT(T
i
n+1, d

i
n+1)∆Ti+1

n+1 + KTS(T
i
n+1, d

i
n+1)∆di+1

n+1 = −riT;n+1 , (6.4)

where due to the coupling effects the matrices KST and KTS emerge. While KST includes the

linearisation of the structural equations with respect to the temperatures (as e.g. the linearisation

of the thermal stresses with respect to the temperatures), the matrix KTS includes the linearisa-

tion of the thermal equations with respect to the displacements (as e.g. the linearisation of the

thermoelastic heating term He (5.35) with respect to the displacements). For the sake of com-

pleteness, the diagonal matrices KSS and KTT correspond to the tangential matrices (3.45) and

(4.32), respectively, which can include additional terms due to the coupling, as described e.g.

in (5.84). Since KST 6= KT
TS, the TSI system is non-symmetric. Equation (6.3) and (6.4) can be

summarized in matrix notation to
[
KSS KST

KTS KTT

]i

n+1

[
∆d

∆T

]i+1

n+1

= −
[
rS
rT

]i

n+1

. (6.5)

If a converged solution is achieved, the solution vectors for both fields at tn+1 are computed by

(3.46) and (4.33), respectively.

6.2 Partitioned solution approach

In the present section, the different partitioned TSI algorithms will be presented. Based on sec-

tion 6.1, (6.3) and (6.4) describe the system of equations which is solved using a partitioned
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algorithm. As mentioned in the introduction of this chapter, the coupling variables are passed

in partitioned algorithms as “external loads” with known values from one field to another. Con-

sequently, the matrices KST and KTS vanish. Subsequently, based on (6.5), the partitioned TSI

system follows as

[
KSS 0

0 KTT

]i

n+1

[
∆d

∆T

]i+1

n+1

= −
[
r̂S
r̂T

]i

n+1

, (6.6)

where the two fields are decoupled, so that each can apply its own Newton method. The (̂·) in the

residuals indicates that the residuals include coupling information in the form of external loads.

In the following, the well-known isothermal split is considered as coupling strategy. To enable

a common representation of the partitioned TSI approach used in various references, for instance

in Armero and Simo [6], Erbts and Düster [38], and Simo and Miehe [122], alternatively to the

representation of the fully discrete problem in (6.6), a nonlinear operator

A(u(X, t), u̇(X, t), T (X, t)) =







u̇

ρ0 ü − DivP (u, T ) − b̂0
ρ0CV Ṫ + DivQ − ρ0 r − Dmech − Hep






(6.7)

is introduced for the continuous TSI problem, where the variables are summarized in s =
{u(X, t), u̇(X, t), T (X, t)}. Subsequently, for the isothermal split, the operator A is split into

the two following subproblems

A1
S(s) =







u̇

ρ0 u̇ − DivP (u, T ) − b̂0 = 0

0






,

A2
T(s) =







0

0

ρ0CV Ṫ + DivQ − ρ0 r − Dmech − Hep = 0






,

(6.8)

where A1
S(s) corresponds to the purely mechanical, isothermal and A2

T(s) to the purely thermal,

heat conduction phase, respectively. According to this split, the sub-problems A1
S and A2

T, which

represent the predictor and the corrector phase, respectively, are decoupled. The continuous sub-

problems are first fully discretised in space and time, as previously presented in chapter 5.2,

and subsequently can be solved successively within one time step leading to a two step solution

procedure. The two step procedure implies, that the isothermal subproblem A1
S(s) is solved for

the displacements first (i.e. predictor), which are then passed to A2
T to compute the temperatures

(i.e. corrector).

In the following, the different solution procedures available in this thesis for partitioned TSI

problems are presented. The most trivial coupling strategies are depicted in Figure 6.1. Herein,

one-way or unidirectional loosely coupling schemes are shown, i.e. the coupling information

is passed from one field to the other, but not vice versa. The horizontal arrows in Figure 6.1

indicate the solution in time. Hence, the first row describes the temperature solution in time and

the second row the corresponding displacement solution in time. The vertical arrows indicate

the exchange of coupling information. Using this coupling scheme, a TSI simulation can be

realised in which one field is completely decoupled from the other. For instance in Figure 6.1
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dn+1

Tn+1Tn

dn dn+2

Tn+2 Tn+1

dn+1

Tn

dn dn+2

Tn+2

Figure 6.1: Unidirectional, one-way loosely coupled TSI with temperature (left) and displace-

ment (right) as coupling variable.

(left), within time step tn+1 first the temperatures Tn+1 are computed, subsequently Tn+1 is

passed to the structural field and is then used with dn to compute the displacement solution dn+1.

For instance, this coupling strategy (cf. Figure 6.1 (left)) can be used to simulate an example

with purely thermal external loads resulting in temperature changes and, due to the coupling, in

deformations, i.e. thermal expansion. In contrast, the deformation does not enter the thermo field.

Consequently, it comprises the solution of the thermal field (4.21) and the coupled structural

equation (5.20). Furthermore, Figure 6.1 (right) enables problems, as e.g. compression of a bar

leading to heating due to dissipation neglecting thermal expansion.

The previously presented coupling schemes enable an one-way coupled TSI simulation. How-

ever, the thesis aims at fully coupled TSI, so that unidirectional coupling is not sufficient. Thus,

as shown in Figure 6.2, two-way loosely and strongly coupled TSI algorithms are established.

Exemplarily, a mechanical predictor is chosen which further contributes to improve the solu-

tion procedure. The mechanical predictor is indicated in Figure 6.2 by the inclined arrows.

Alternatively, a thermal predictor can be applied so that, e.g. a corresponding two-way cou-

dn+1

Tn+1 Tn+2

dn dn+2

Tn

dn+1

Tn+1 Tn+2Tn

dn dn+2

Figure 6.2: Two-way loosely (left) and strongly (right) coupled schemes with mechanical pre-

dictor.

pled algorithm based on Figure 6.1 (right) can be established via additional inclined arrows from

top to bottom.

Both coupling strategies in Figure 6.2 describe a full coupling, i.e. both fields are influenced

by a coupling effect. For instance in Figure 6.2 (left), within the mechanical predictor the cou-

pling information of the old time step dn is passed to the thermal field to compute the new

temperature solution Tn+1. Subsequently, the temperature Tn+1 is passed to the structural field,

so that two-way or bi-directional full coupling is realised. Figure 6.2 (left) depicts a loosely cou-

pling, i.e. a time offset of the coupling effects arises. At the end of a time step equilibrium is

not achieved. In contrast, in the strong coupling shown in Figure 6.2 (right), within one time

step the coupling variables are exchanged in both directions. Equilibrium of the overall TSI sys-

tem is achieved with respect to a given exactness criterion ǫout by iteration between the fields

known as the so-called outer iteration loop. As mentioned at the beginning of this section and

in the introduction (cf. section 1.2), strongly coupled partitioned algorithm may have the draw-
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back of possibly slow convergence. Consequently, to accelerate the convergence behaviour, fix

or dynamic relaxation can be integrated in strongly coupled partitioned TSI schemes. Numerical

relaxation is a common method in computational mechanics to accelerate the convergence of

the outer iteration loop (with iteration index l) by modifying the current solution vectors before

passing them to the other field in the next iteration step. In this context, acceleration is meant to

reduce the number of iterations in the outer iteration loop and to stabilize the partitioned coupling

procedure. To explain the relaxation techniques applied in the present work, an abstract vector

y is considered which can either represent the displacement or the temperature solution vector

which subsequently is relaxed. For instance, relaxing the displacements, i.e. y = d, relaxation

comprises that within the outer iteration loop iteration between the fields structure and thermo

(indicated in Figure 6.2 (right) by the curved arrows), the current relaxed displacement solution

dl+1 is passed to the thermal field as new coupling variable.

In the following, fix and dynamic relaxation strategies are presented. Both relaxation strate-

gies are based on known iterative solution vectors yl−p with (p = 0, 1, 2, ... ≤ l and l =
0, 1, 2, ..., lmax), which are used to compute a new iterative solution y̌l+1. Instead of y̌l+1, a re-

laxed solution vector yl+1 is passed to the coupling field. The first and most trivial form is a fix

relaxation which is characterized by

yl+1 = yl + ω∆yl+1 , (6.9)

where ω denotes the fix relaxation parameter, i.e. ω = const. and ∆yl+1 = y̌l+1 − yl. Fur-

thermore, in the context of dynamic relaxation, the Aitken ∆2 method is applied, as proposed by

Irons and Tuck [62] which was utilised for FSI, e.g. in Küttler [70], Küttler and Wall [71, 72],

and Mok [93], and for TSI with an isothermal split, e.g in Danowski et al. [29] and Erbts and

Düster [38]. Based on known iterative solution vectors yl−p, a new iterative solution y̌l+1 is com-

puted within the Aitken ∆2 method. In contrast to fix relaxation, the Aitken relaxation parameter

ωAit is recalculated in each iteration. For l ≥ 1, first the so-called Aitken factor µ is extrapolated

via

µl = µl−1 + (µl−1 − 1)
[∆yl+1 − ∆yl]T · (−∆yl+1)

(∆yl+1 − ∆yl)2
(6.10)

with initial guess µl=0 = 0. Subsequently, the Aitken relaxation parameter follows as

ωAit;l = 1 − µl , (6.11)

which is used to calculate the relaxed new solution vector, according to (6.9), by

yl+1 = yl + ωAit;l∆yl+1 . (6.12)

Since in (6.10) three solution vectors yl+1, yl and yl−1 are required to calculate the Aitken factor

µl, and moreover the initial values are chosen to µ0 = 0 or ωAit;0 = 0, the first iterative solution

y1 is not relaxed. Apart from this initial guess for the first time step, as proposed in Irons and

Tuck [62] and utilised in Mok [93], the initial guess for the next time step n+ 1 and l = 0 is set

to µ0
n+1 = µlmax

n , i.e. to the latest relaxation parameter of the last time step. Moreover, as observed

in Küttler [70] in the context of FSI, it is recommended to limit the relaxation parameter. In case

of too large relaxation parameters the solution may diverge. Hence, to circumvent divergence,
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6 Solution approaches for thermo-structure interaction

the present approach includes a problem-dependent maximal relaxation parameter ωmax which

limits the largest possible relaxation parameter for the new time step via

ωAit;0
n+1 = min(ωAit;lmax

n , ωmax) . (6.13)

As described previously, convergence of the outer iteration loop is achieved if a prescribed tol-

erance ǫout is met. Herein, either relative or absolute criteria are possible, i.e. exemplarily for the

displacements it follows

||∆dl+1
n+1||

||dn||
< ǫout , or ||∆dl+1

n+1|| < ǫout , (6.14)

where for the norm || · || it is common to use the L2-norm. Equation (6.14)1 describes a relative

criterion with respect to a known, converged solution dn. Furthermore, the relative criterion can

refer to the solution of the last iteration step of the outer iteration loop dln+1 for the current time

tn+1. This can be critical, since convergence may be achieved based on a bad initial solution

dln+1. Consequently, although the solution may be said to be converged and equilibrium may be

said to be achieved, the results may be completely unphysical. Thus, one should decide carefully

which is the most suitable convergence criterion for a given problem. Finally, equilibrium of

strongly coupled partitioned TSI algorithms is said to be achieved if (6.14) is fulfilled for both

displacements and temperatures.

In Erbts and Düster [38], a fully thermomechanical coupling for finite strain thermoelastic-

ity is presented where weakly and strongly physical coupling are described dependent on the

value of the coefficient of thermal expansion, so that loosely and strongly coupled solution ap-

proaches become necessary. They show that the isothermal split can achieve a converged and

stable solution for their examples even if strong physical coupling is considered. Moreover, dy-

namic relaxation of the displacements is utilised, but they do not mention the treatment of the

velocities in detail, so that it is not clear how they treat the velocities, i.e. either the velocities

are relaxed according to the displacements or the velocities are recalculated after having relaxed

the displacements. For the case of neglecting the velocities within the relaxation process, the

resulting velocities do not fit to the displacements, so that a judgement of the results is difficult.

In contrast, in this thesis in case of relaxing the displacements (i.e. y = d), the velocities are

recalculated after having relaxed the displacements, so that displacements and velocities corre-

late. This may have an influence for the coupling, since the velocities are required, e.g. for the

coupling term Hep. Moreover, the present work enables in addition the relaxation of the tem-

peratures, i.e. y = T. To conclude, it is recommended to relax the coupling variable which is

not directly influenced by the external loads. Hence, for instance in a tension or compression

test where a purely mechanical load is applied, it is recommended to relax the temperatures,

whereas, e.g. heating of a body, i.e. applying a purely thermal load, the displacements should be

relaxed. Thus, in addition to the external loads, the body experiences, due to the relaxation, only

a part of the coupling load.

As stated in the introduction of this chapter, one advantage of partitioned approaches is their

flexibility. Exemplarily, different time integration schemes can be used for the coupling fields

while consistent time integration is guaranteed in all cases. Even if the evaluation point of the

equilibrium equation for structure and thermo are different (e.g. generalised-α for the structure

and one-step-θ for the thermo), a consistent time integration is achieved because the coupling
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information are exchanged at the end of the time step, i.e. at tn+1 by interpolating the solution

vectors. A very common assumption in TSI is a quasi-static time integration, i.e. the structure

is solved neglecting the inertia effects whereas the thermo field is solved dynamically. Since,

for instance the coupling term Hep requires the velocities, the velocities in a quasi-static TSI

approach are calculated in this work using a finite difference scheme according to

ḋn+1 =
dn+1 − dn

∆t
, (6.15)

which corresponds to a backward Euler.

6.3 Monolithic solution approach

In the following, a monolithic solution scheme for the TSI problem will be presented which

is based on Danowski et al. [29]. The fully coupled non-symmetric TSI system resulting from

above derivations and (6.1)-(6.4) or (6.5) is

[
KSS KST

KTS KTT

]i

n+1
︸ ︷︷ ︸

K
TSI;i
n+1

[
∆d

∆T

]i+1

n+1
︸ ︷︷ ︸

xi+1
n+1

= −
[
rS
rT

]i

n+1
︸ ︷︷ ︸

−r
TSI;i
n+1

. (6.16)

After preconditioning, the coupled linear system (6.16) for time step n + 1 and iteration step

i+ 1 reads

KTSI M−1
R MR x = −rTSI , (6.17)

where MR is the right preconditioning matrix. As stated in section 3.5, right preconditioning

is used here exclusively. For the sake of simplicity, the Newton and time iteration indices are

omitted in the following. Again, for an effective and efficient preconditioning process, the pre-

conditioner matrix MR should approximate the tangent matrix of the coupled TSI system (or

Jacobian of the TSI problem) well (MR ≈ KTSI), while being invertible with as little effort as

possible.

Based on the abstract linear system (3.226) with the vectors y and z, the linear TSI system is

iteratively solved performing a stationary Richardson iteration, i.e.

zj+1 = zj + ωBGS ∆zj+1 with ∆zj+1 = M−1
R (y − KTSI zj)

︸ ︷︷ ︸

řj

, (6.18)

with the iteration residual řj , the Richardson iteration index j, and the potential parameter ωBGS

∈ (0, 1], which can be interpreted as a relaxation parameter for the update of zj+1 (cf. (6.9)).

Since the properties of the individual blocks (structural and thermal submatrices) in the mono-

lithic system (6.16) differ considerably, standard preconditioners cannot be applied. Alterna-

tively, a BGS preconditioner is employed here. In this case, the different equation blocks of the

linear system are solved successively within the two-step Gauss-Seidel iteration process. For

each step, just as for partitioned schemes, efficient field-specific solvers like the algebraic multi-

grid (AMG) method can be used. As demonstrated for FSI in Gee et al. [47], the sequence of

solution blocks in the preconditioner is physically motivated. In TSI, it is common to assume that
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the effect of the structure on the thermal field is less important than the opposite effect. Thus, to

enable an efficient solution, the preconditioning matrix is chosen to be

MR =

[
KSS ωBGS KST

0 KTT

]

, (6.19)

assuming that the effect of thermal expansion has a higher influence than the thermoelastic heat-

ing. In the first step, the solution of the thermal field is determined from

Ki
TT ∆zT ;j+1 = ř

j
T = yT − Ki

TT z
T ;j − Ki

TS z
d;j , (6.20)

using the displacement and temperature values zd;j and zT ;j , respectively, resulting from the

previous block Gauss-Seidel iteration step j. The update of the temperature solution vector is

realised according to

zT ;j+1 = zT ;j + ωBGS ∆zT ;j+1 . (6.21)

In the second step, the update of the structural field is computed by solving

KSS ∆zd;j+1 = řd;j − ωBGS KST z
T ;j+1 = yS − KSS z

d;j − ωBGS KST z
T ;j+1 , (6.22)

with the new temperature values zT ;j+1 and

zd;j+1 = zd;j + ωBGS∆zd;j+1 . (6.23)

For the approximate solution of (6.20) and (6.22), again AMG methods are utilised as proposed

in Gee et al. [47].

In case of inclusion of plasticity into the TSI problem, in contrast to (6.19), the opposite se-

quence may be more appropriate. Due to plasticity, dissipation arises and may have a significant

impact on the thermo solution. Hence, instead of the procedure (6.19)-(6.23), the preconditioning

matrix may be assumed to

MR =

[
KSS 0

ωBGS KTS KTT

]

, (6.24)

so that the solution is obtained via firstly solving the structural field, and secondly updating the

thermo field while applying the recently computed displacements zd;j+1. Consequently, for each

TSI problem the appropriate sequence within the preconditioner has to be chosen according to

the requirements. According to Gee et al. [47], the procedure (6.19)-(6.23) constitutes a back-

ward BGS preconditioner, whereas the corresponding procedure utilising (6.24) constitutes a

forward BGS preconditioner.

To summarize the proposed preconditioning method, a BGS preconditioner with independent

AMG preconditioners for the respective diagonal blocks is used as given in Algorithm 4. As

in Gee et al. [47], this preconditioning is named “BGS(AMG)”. Both the open-source package

AZTEC (see Tuminaro et al. [138]) and the ML package (see Gee et al. [45]) developed by

Sandia National Laboratories are used for the solution procedure. To finish this section, the

proposed monolithic TSI solution procedure is summarized in Algorithm 5.

In Algorithm 5, for convergence of the Newton-Raphson scheme the norm of the TSI residual

||rTSI;in+1 || and the norm of the TSI vector ||xTSI;in+1 || are tested. Beyond, the single fields can be
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Algorithm 4 Relaxed block Gauss-Seidel iteration process employed as approximate solver for

the abstract TSI problem based on (3.226) using (6.18) and (6.19).

for each iteration step j
Compute thermal solution increment ∆zT,j+1 from (6.20)

Update thermal solution zT,j+1 utilising (6.21)

Compute structural solution increment ∆zd,j+1 from (6.22)

Update structural solution zd,j+1 utilising (6.23)

tested for convergence separately. Hence, the strictest convergence criterion for the Newton-

Raphson comprises the check for convergence of the coupled TSI problem and of the single

fields structure and thermo, in which for each both the residual and the increment are tested.

Moreover, as mentioned in section 3.3, the chosen convergence norm has a high influence, i.e.

a simulation may converge or even diverge dependent on the chosen norm. It is common to use

the L2-norm or the root mean square (RMS) norm. While these norms consider all entries, an

extreme single peak in the solution of one single DOF is not noticed but balanced out with the

values of all other DOFs. In contrast, an infinity norm L∞ gives the absolute value of the largest

component of the vector, hence a single high peak can lead to an inadmissible norm so that the

whole simulation can diverge.

Another important aspect arises in a challenging TSI problem using an iterative solver: here,

the interaction between the nonlinear solver (Newton-Raphson iteration scheme) and the linear

solver (an iterative solver, as the GMRES) is very important and has to be treated very carefully.

The difficulty of this aspect is emphasized in the following by means of two possible convergence

settings. Based on Table 6.1, an equilibrium state is achieved if all three prescribed tolerances

Nonlinear solver residual Nonlinear solver increment Linear solver

1. ||rTSI;i||/||rTSI;i=0|| ≤ 10−6 ||xTSI;i|| ≤ 10−8 ||rj+1||/||rj=0|| ≤ 10−4

2. ||rTSI;i||/||rTSI;i=0|| ≤ 10−6 ||xTSI;i|| ≤ 10−8 ||rj+1||/||rj=0|| ≤ 10−8

Table 6.1: Two different solver settings using relative and absolute convergence criteria for the

Newton-Raphson scheme (i.e. nonlinear solver) and a relative criterion for the itera-

tive, linear solver.

in the nonlinear and in the linear solver are met. The only difference between the two settings

in Table 6.1 is the criterion for the linear solver ǫlin. As mentioned above, an iterative solver

approximates the solution with respect to ǫlin. In case of a too coarse criterion ǫlin, the solution

of the overall problem is approximated only roughly and may lie outside the convergence radius

of the Newton-Raphson. Consequently, possibly no solution may be found since the prescribed

descendent direction may no fit. Thus, to ensure a correct Newton direction, it is recommended

to first choose appropriate Newton criteria ǫrTSI and ǫxTSI , and subsequently the criterion ǫlin for

the linear solver, which in general should be of the same order of magnitude or even stricter than

the criterion ǫrTSI .
For the check of the coupled TSI vectors, i.e. residual rTSI and increment xTSI, it is noted, that

the vectors need to be scaled with the total number of DOFs. For instance in a three-dimensional
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Algorithm 5 Solution procedure for TSI problem (6.16) with right preconditioned Newton-

Krylov approach.

# Time loop

for time step n = 0, ..., tmax

Predictor x0n+1 = xn

# Newton-Raphson iteration

for each iteration step i = 0, ...,maxnlniter
# Check for convergence of Newton-Raphson iteration

if ||rTSI;in+1 || ≤ ǫrTSI and if ||xTSI;in+1 || ≤ ǫxTSI
stop Newton-Raphson iteration

Calculate r
TSI;i+1
n+1 = rTSI(xi+1

n+1)

Initial guess x̌0 = x
i+1;j=0
n+1

# Calculate linear residual vector rj=0 = r0

r0 = ∆r0 = r
TSI;i+1;j=0
n+1 − K

TSI;i
n+1 x̌0

# Krylov iteration

for each iteration step j = 0, ...,maxliniter
Apply block preconditioner pj+1 = M−1

R ∆rj  use Algorithm 4

# Solve for Krylov increment ∆x̌j+1 using pj+1 (e.g. with GMRES)

Calculate ∆x̌j+1 =
∑j+1

k ∆x̌k with 0 ≤ k ≤ j using M−1
R

Update x̌j+1 = x̌j + ∆x̌j+1 and rj+1 = rTSI;j − KTSI x̌j+1

# Check for convergence of Krylov iteration

if ||rj+1||/||r0|| ≤ ǫlin
stop Krylov iteration

Calculate solution vector xj+1 = M−1
R x̌j+1 for time step n+ 1 and Newton iteration

step i+ 1  use Algorithm 4

Update solution vectors xi+1
n+1 = xin+1 + ∆xi+1

n+1

Update Newton-Raphson iteration step i = i+ 1

Update time t = t+∆t and step n = n+ 1
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problem, the structure has three DOFs per node whereas the thermo has one DOF per node.

Hence, within the TSI system the structure is weighted by a factor of three compared to the

thermo field. To circumvent this issue, for convergence check of the TSI vectors the RMS norm

is recommended which is defined as a L2-norm scaled with the square root of the length of the

vector, i.e. the total number of DOFs.

Another important issue arises for the TSI system because of the inclusion of units. SI-units

are metre, seconds, kelvin, kilogram. For a TSI simulation the SI-units may not be appropriate.

For instance, a deformed body is described by a temperature change of about ∆T = 300 K
and a deformation in the range of millimetres. Thus, the solution vector includes (temperature)

increments of 300 and (displacement) increments of 10−3 spanning in total 5 order of magnitude.

Moreover, the condition of the system is deteriorated since terms of the tangent matrix and the

solution vector differ by a factor of 1014 (e.g. Young’s modulus of steel is 2.1 · 1011 N
m2 with

displacement increments of about 1 mm = 0.001 m). Improvements are realised by choosing,

for instance the following units [mm,ms,K, kg]. For this choice, the condition of the system is

improved as the matrix entries and the displacement increments only span 2 order of magnitude

(matrix entries ≈ 210 GPa with increments ≈ 1 mm leading to a range of ≈ 102).

In Mayr et al. [86], a consistent time integration for the surface-coupled problem of FSI is pre-

sented. They show that optimal temporal convergence is achieved by interpolating consistently

the coupling fields and the coupling conditions. Hence, for the choice of generalised-α scheme

for the structural field and one-step-θ scheme for the fluid field (which is commonly utilised in

FSI, as e.g. in Klöppel et al. [67] and Küttler and Wall [71]), optimal convergence is achieved.

In this thesis, consistent time integration for the present monolithic TSI approach is realised by

restricting the choice of time integration schemes for both fields to the same scheme with the

same parameters. For instance, using generalised-α time integration for TSI, as shown in (5.24)

and (5.25), the same spectral radius ρ∞ is assumed for both fields, i.e. ρ∞ = ρ∞;S = ρ∞;T.

Furthermore, for the choice of one-step-θ time integration, in (5.22) and (5.23) the parameters θ
are chosen to θ = θS = θT.

In the context of monolithic solution approaches and large deformation TSI, heat convection

boundary conditions require a special treatment for the tangent matrix. Since they depend on

both the temperatures and the displacements, full linearisation leads on the one hand to the well-

known contributions for the matrix KTT due to linearisation with respect to the temperatures and

on the other hand to contributions for KTS due to linearisation with respect to the displacements.

While the derivations for KTT are straight-forward, focus is set on the derivation for KTS which

arises only in a monolithic approach (in contrast, in partitioned approaches KTS is neglected,

see (6.6)). As previously discussed in section 5.1.2, a spatial approach for this thermal boundary

condition is advantageous. Hence, further nonlinearities are introduced into the problem by use

of the current area element dA. Moreover, time discretisation with an one-step-θ method is ex-

emplarily assumed in the following. According to (5.16), using the index notation, the boundary

condition at node I is given by

θ · (fext;T;I)(e);in+1 = −θ
( ∫

ϕ(Γ
(e)
C

)

−q · n dA
)(e);i

n+1
= −θ

( ∫

ϕ(Γ
(e)
C

)

h (T − T∞) dA
)(e);i

n+1
, (6.25)
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so that the overall contribution to the matrix KTS is obtained as

(
KTS;I;(J ;r)

)(e);i

n+1
= −θ

∫

ϕ(Γ
(e)
C

)

NT
T h (NT T

i
n+1 − T∞) dA(e)

(
∂A

∂dJ ;r

)(e);i

n+1

, (6.26)

where r denotes the respective coordinate direction. Recalling that the area of an arbitrary curved

surface (cf. section 2.1.2) is given as

A(e) =

1∫

−1

1∫

−1

√
ň1 + ň2 + ň3 dξ1 dξ2 =

1∫

−1

1∫

−1

|ň| dξ1 dξ2 , (6.27)

thus the derivation of the area with respect to the displacement in r-direction at node I reads

(
∂A

∂d

)(e);i

n+1

=

(
∂A

∂dI;r

)(e)

=

1∫

−1

1∫

−1

∂|ň|
∂dI;r

dξ1 dξ2 =

1∫

−1

1∫

−1

1

|ň|

(

ňs
∂ňs
∂dI;r

+ ňt
∂ňt
∂dI;r

)

dξ1 dξ2 ,

(6.28)

where the direction r, s, t ∈ 1, 2, 3 are mutually distinct, i.e. r 6= s, s 6= t, t 6= r. For the sake of

lucidity the indices are omitted. The derivation of the current normal vector with respect to the

displacements included in (6.28) results in

∂ňs
∂dI;r

= Erst
∂

∂dI;r

(
∂xr
∂ξ1

∂xt
∂ξ2

− ∂xr
∂ξ2

∂xt
∂ξ1

)

(6.29)

with the so-called “Levi-Civita” permutation symbol

Erst =







+1 if {r, s, t} = {1, 2, 3}, {3, 1, 2}, {2, 3, 1} (even permutation)

0 if r = s or s = t or t = r

−1 if {r, s, t} = {3, 2, 1}, {2, 1, 3}, {1, 3, 2} (odd permutation)

. (6.30)

In contrast to section 2.1.2, the distinction between co- and contravariant components is omitted

here since a Cartesian coordinate system is assumed. Moreover, the derivation ∂xr
∂ξl

with l ∈ 1, 2
is introduced as

∂xr
∂ξl

=
nnod∑

J=1

[
∂NJ

∂ξl
xJ ;r

]

=
nnod∑

J=1

[
∂NJ

∂ξl
(XJ ;r + dJ ;r)

]

, (6.31)

so that the differentiation of ňs (6.29) follows as

∂ňs
∂dI;r

= Erst
{

∂NI

∂ξ1

nnod∑

J=1

[
∂NJ

∂ξ2
(XJ ;t + dJ ;t)

]

− ∂NI

∂ξ2

nnod∑

J=1

[
∂NJ

∂ξ1
(XJ ;t + dJ ;t)

]}

= Erst
{

∂NI

∂ξ1

nnod∑

J=1

[
∂NJ

∂ξ2
xJ ;t

]

− ∂NI

∂ξ2

nnod∑

J=1

[
∂NJ

∂ξ1
xJ ;t

]}

.

(6.32)
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6.3 Monolithic solution approach

The differentiation of ňt with respect to dI;r follows equivalently. Consequently, the linearisation

yields

(KTS;I;(J ;r))
(e);i
n+1 =



−θ
1∫

−1

1∫

−1

NT
T h (NT T − T∞)

1

|ň|

(

ňs
∂ňs
∂dI;r

+ ňt
∂ňt
∂dI;r

)

dξ1 dξ2





(e);i

n+1

(6.33)

and assembly of all elementwise matrices (6.33) completes the global matrix KTS.

In practice, the structural index pairs (J ; r) utilised above are substituted by global numbers

of DOFs. For instance, for a three-dimensional problem with ndim = 3, the global ID z follows

from (J ; r) via

(J ; r) → z = ndim · J + r . (6.34)

Finally, with regard to the three-dimensional numerical example of a rotationally symmetric

subscale thrust chamber, which will be presented in section 7.2, so-called inclined structural

Dirichlet boundary conditions need to be introduced into the monolithic TSI system. Inclined

structural Dirichlet boundary conditions are enabled in the monolithic algorithm by introducing

a transformation matrix T into the linear system (6.16) as follows

[
TKSS TKST

KTS KTT

]i

n+1
︸ ︷︷ ︸

K
TSI;i
n+1

[
∆d

∆T

]i+1

n+1
︸ ︷︷ ︸

xi+1
n+1

= −
[
T rS
rT

]i

n+1
︸ ︷︷ ︸

−r
TSI;i
n+1

, (6.35)

where the transformation matrix T is applied to each block of the structural equation.

In general, if a DOF is defined to have a Dirichlet boundary condition, the row which corre-

sponds to this DOF in the system of equations is treated as follows: the tangent matrix K has

a single one at the diagonal while all remaining entries are blanked. Furthermore, the Dirichlet

value is set on the right-hand side of this DOF. Since the DOFs of the structural field are split into

DOFs in x-, y-, and z-direction, respectively, inclined Dirichlet boundary conditions are realised

by transformations, i.e. all DOFs of this node are rotated from a global xyz-coordinate system

into a local coordinate system such that finally the directions corresponds to the inclined plane,

described by two in plane directions, i.e. tangential- and normal-direction, t and n, respectively,

as well as by a third out-of-plane direction ž. Subsequently, a structural Dirichlet boundary con-

dition can be defined which constraints for instance the movements of a certain node in normal

direction of the inclined plane.

Since structural Dirichlet boundary conditions influence only the structural equation, the ap-

plication of the transformation matrix T is reduced to the structural blocks, i.e. to KSS and KST.

Hereby, for a DOF which has a structural Dirichlet boundary condition, the mentioned single one

is set at the diagonal entry of KSS, whereas the corresponding row of the block KST is blanked.

Furthermore, the thermal blocks of the tangent matrix are not influenced by a structural boundary

condition, so that no special treatment is required for KTT or KTS.

The transformation matrix T is a sparse matrix, which has zeros at the off-diagonal terms and

an one at the diagonal entries, i.e. multiplication with T does not change the structural blocks.

In contrast, at a certain node which has inclined Dirichlet boundary conditions, T has a 3 × 3
nonzero block, i.e. all x-, y-, and z-DOFs of this nodes are transformed such that finally in the

local rotated system the inclined DOF is correctly described.
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6 Solution approaches for thermo-structure interaction

For the numerical example in section 7.2, the presented inclined structural Dirichlet boundary

conditions will be used within the monolithic TSI algorithm to realise symmetry boundary con-

ditions due to reduction of the symmetrical cylindrical thrust chamber to a computational model

which comprises only 1/80th of the whole rotationally symmetric body.
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7 Examples

In this chapter, the proposed computational method is tested for several different numerical ex-

amples, demonstrating that it is robust and provides accurate results. Since the present work aims

at improving the understanding of the functionality of rocket nozzles in all working stages, the

thermo-structure interaction (TSI) model has to be well verified and validated to enable reliable

computational results. Hence, a series of validation examples is performed, in which each nu-

merical example focuses on a different aspect of both the mathematical modelling and the com-

putational approach. The variety of the considered examples illustrates that a broad spectrum of

capabilities is realised. Some of the following examples have been published in Danowski et al.

[29], whereas additional examples can be found in this work.

The remainder of this chapter is organized as follows. In section 7.1, the first examples will

be considered for validating the different (temperature-dependent) elastoplastic material models

for small and finite strain, respectively, possibly including ductile damage. For instance in sec-

tion 7.1.1, the plastic materials will be tested in a very simple one element cyclic loading test

which will aim at verifying the different effects of perfect plasticity and isotropic or kinematic

hardening. Moreover, in section 7.1.2, the Robinson’s viscoplastic material will be validated

with results obtained in Arya and Kaufmann [11] by simulating a thick-walled cylinder sub-

jected to an internal pressure under isothermal conditions. Then, in section 7.1.3, a cylindrical

notched specimen will be computed to validate the linear elastoplastic material including duc-

tile damage. Obtained results will be compared with the results of de Souza Neto et al. [33].

Subsequently, in section 7.1.4, the finite strain thermo-hyperelasto-plastic material model on the

basis of the theory developed in section 5.3.2.3 will be validated for the simulation of thermally

induced necking. The computed results will then be compared to the ones of Simo and Miehe

[122]. After focusing on the validation of the different material models, the coupled TSI ap-

proach will be investigated in section 7.1.5. For the so-called second Danilovskaya problem,

the partitioned and monolithic approaches are validated using a linear thermoelastic material.

Furthermore, these two TSI algorithms will be compared with each other and the results will

be discussed. In this context, the influence of different material parameters will be investigated

for partitioned and monolithic solution algorithms, and the limits of partitioned TSI will be

demonstrated. Finally, a fully three-dimensional simulation of a subscale rocket nozzle will be

presented in section 7.2, which will demonstrate that high performance, fully parallel computing

can also be realised. Furthermore, this example shall provide the reader with an overview of the

huge variety of simulations which can be realised with the present TSI approach.

In this chapter, all numerical values are given in terms of the basic units millimetre, mil-

lisecond, kilogram and kelvin if the contrary is not explicitly indicated. Details on the material

parameters and their units are summarized in Appendix A. The numerical simulations are per-

formed by using our in-house parallel multiphysics research code BACI, see Wall and Gee [142].

Within the block Gauss-Seidel (BGS) preconditioner of the monolithic TSI algorithm, the default

value of the potential parameter ωBGS is chosen to be equal to one, which results in a conserva-
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tive rating of the proposed approach. In case of other values, the respective value is stated in the

corresponding section.

7.1 Validation examples

7.1.1 One element under cyclic loading

Within this first rather simple example, the different hardening effects and their correct represen-

tation by the numerical implementation will be demonstrated for all proposed (thermo-)elasto-

plastic materials presented in sections 3.4.2 and 5.3.2. Based on section 3.4.2, the small strain

elastoplastic material model and the Lemaitre material will be distinguished by “PlLin” and

“Damage”. Moreover, the small strain thermo-elasto-plastic model, see 5.3.2.1, and the finite

strain thermo-elasto-plastic model, introduced in section 5.3.2.3 and originally proposed by Simo

and Miehe [122], will be denoted by “TPlLin” and “SIMO”, respectively.

A cube of unit size, i.e. x×y× z = 1 m×1 m×1 m is simulated under cyclic, displacement-

controlled load û(ť), leading to tension and compression loading according to Figure 7.1. Hence,

the initially stress-free body, is first elongated, then compressed, elongated, and finally com-

pressed, so that at the end the prescribed elongation is reduced to zero, i.e. û = 0. To avoid

volumetric locking effects during plastic deformations, the lateral displacement is left uncon-

strained. Thus, structural Dirichlet boundary conditions are applied at the cube such that one

single corner node is fixed in all three directions and the remaining edges around this node are

fixed according to symmetry conditions.

û [m]

ť [s]

0.002

−0.002

1 2 3 4 5 6

Figure 7.1: One element under cyclic loading: displacement-controlled load cycle under pseudo-

time ť.

The material parameters are chosen to a Young’s modulus E = 100 Pa, a Poisson’s ratio

ν = 0.29, an initial yield stress σy;0 = 0.1 Pa, and varying linear hardening moduli H iso and

Hkin. To enable the correct deformation behaviour of pure elastoplasticity for all considered

(thermo-)elastoplastic material models, the additional physical effects of the individual material

models are neglected by choosing the corresponding material parameters to be equal to zero.

This implies for the Lemaitre material model that the damage exponent and denominator, S and

r, respectively, are set to zero. Furthermore, to omit damage, the damage threshold (3.156) is

chosen to an extreme value of ε̄pD = 1.0 · 104. Thus, damage starts to occur only at an extreme

plastic deformation state characterized by current accumulated plastic strains ε̄pn+1 which are

equal to or exceed the damage threshold ε̄pD, i.e. ε̄pn+1 ≥ ε̄pD = 1.0 · 104. For the thermoplastic

material models, the coefficient of thermal expansion and the initial temperature are assumed to

αT = 0 and T0 = 0, respectively. Beyond, the SIMO material includes the additional parameters
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7.1 Validation examples

δ, ωh, and ω0, which corresponds to the hardening exponent and the two softening parameters,

respectively. They are each chosen to be equal to zero. Finally, the saturation hardening stress

σy;∞ is set to σy;∞ = σy;0.
Spatial discretisation is realised by a single (tri-)linearly interpolated hexahedral element (i.e.

one Hex8 element). Due to the bearing, which allows free movements in lateral directions, the

appearance of volumetric locking is circumvented. However, in case of finite strain plasticity,

i.e. the SIMO material, one Hex8 element with the F-bar method is used. The results of this

simulation can be used to confirm the absence of volumetric locking for the given example. For

time integration a quasi-static scheme is chosen, thus the pseudo-time ť is utilised. The strains

remain small in the present example, hence the differentiation between the different stress and

strain measures can be omitted. Consequently, in Figure 7.2 only the terms “stress” and “strain”

are used. Since locking is expected not to cause problems and since stress and strain remain

small, identical results are likely to occur for all proposed materials.
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Figure 7.2: One element under cyclic loading: stress-strain curve for different hardening types:

perfect plasticity (left), isotropic hardening H iso = 20 Pa (middle), and kinematic

hardening Hkin = 20 Pa (right).

Figure 7.2 depicts the results for the cases perfect plasticity (left) (i.e. H iso = Hkin = 0), pure

isotropic hardening (middle) (i.e. H iso = 20 Pa and Hkin = 0), and pure kinematic hardening

(right) (i.e. Hkin = 20 Pa and H iso = 0), respectively. As introduced at the beginning of this ex-

ample, these abbreviations of the material models are utilised in Figure 7.2. Up to now, kinematic

hardening is integrated in the small strain (thermo-)elasto-plastic material models “TPlLin” and

“PlLin”. Consequently, results for pure kinematic hardening are provided only for these two

materials, see Figure 7.2 (right).

Hooke’s law is perfectly recovered, so that the slope of the stress-strain curve in the elastic

regime is identified as the Young’s modulusE. For the case of perfect plasticity, i.e. no hardening

takes place, the uniaxial stress σ is strictly limited by the yield stress σy;0. Thus, the computed

results are in perfect agreement to the theoretical derivations in section 3.4.2.1. Pure isotropic

hardening, which implies H iso = 20 Pa and Hkin = 0, results in a homogeneous extension of

the elastic domain, i.e. σ > σy;0, around the stress-free state σ = 0. For the case of kinematic

hardening, the centre of the elastic region is translated in the direction of the plastic flow, that

is the resistance to plastic yielding is reduced for compression which takes place after pulling

the body so that plasticity starts earlier i.e. for absolute stress values |σ| < |σy;0|. In Figure 7.3,

the hardening effects are further illustrated by showing the stress distribution versus pseudo

time ť for pure isotropic (left) and pure kinematic hardening (right). Consequently, the presented

results reproduce the analytical solution for small strain plasticity. The results indicate that in
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Figure 7.3: One element under cyclic loading: evolution of stress σ over pseudo time ť for pure

isotropic (left) and pure kinematic hardening (right) using the proposed materials.

the elastic regime the slope is identified with the Young’s modulus E (3.61). In the case of

isotropic hardening, the slope corresponds to the elastoplastic tangent Eep;iso (3.78), and finally,

e.g. according to Sedlácek [115], for pure kinematic hardening, the slope can be identified with

the elastoplastic tangent Eep;kin given as

Eep;kin =
σmax − σy;0
ε − σmax

E

, (7.1)

where σmax denotes the maximal stress value and ε describes the total strain.

7.1.2 Internal pressurised thick-walled cylinder

In order to verify Robinson’s viscoplastic material introduced in section 5.3.2.2, an internal pres-

surised cylinder is considered as proposed in Arya and Kaufmann [11]. As shown in Figure 7.4,

p̂

O
x

y

z

2.29 mm

rori

Figure 7.4: Internal pressurised cylinder: initial geometry and prescribed pressure boundary con-

dition.

the thick-walled cylinder is subjected to an internal pressure p̂ = 25.17 MPa under isothermal

conditions, i.e. the temperature is held constant at T = 699.8 K. Due to symmetry, the cylinder

is reduced to a quarter of a circular ring with corresponding symmetry boundary conditions as
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depicted in Figure 7.4. The inner and outer radius are ri = 4.06 mm and ro = 6.35 mm, respec-

tively. The cylinder is composed of a 2 1/4 Cr–1 Mo steel alloy. According to Arya and Kaufmann

[11] and Bornemann and Wall [18], the material parameters for the present example are provided

in Table 7.1. Herein, values for Young’s modulus E, Poisson’s ratio ν and coefficient of thermal

E = 139.5 GPa ν = 0.296 ρ = 7, 850 kg
m3 αT = 0.0

G0 = 0.14 A = 2.468 · 10−13 1
s

m = 7.73 a = 4

H = 68.2 GPa R0 = 6.37 · 10−8 N
m2 s

Q0 = 0.0 Θ0 = 1.0 K

β = 1.5 K2
0 = 31.96 MPa2 K2 = 31.96 MPa2

Table 7.1: Internal pressurised cylinder: material parameters.

expansion αT are summarized. In addition, the density ρ and the specific material parameters of

the Robinson’s material are outlined. For the present numerical example, the specific Robinson’s

parameters are all assumed to be temperature-independent.

The computational model is discretised with 45 × 15 × 1 Hex8 elements in circumferential,

radial and z-direction, respectively. For time discretisation an one-step-θ scheme is chosen with

θ = 0.5 resulting in a Crank-Nicolson scheme. The simulation time is ť = 1, 985 s with a time

step ∆t = 0.1 s. To enable a smooth application of the internal pressure load p̂, the pressure

p̂(ť) is increased linearly within the first five seconds. Thus, at ť = 5 s, the complete value

p̂(ť = 5 s) = 25.17 MPa is applied to the cylinder, which in turn defines the initial value of

the evaluation time t. After ť = 5 s which is identical to t = 0, the pressure is held constant

at p̂ = 25.17 MPa. For comparison of the present results with the results in the literature the

evaluation time t is used.
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Figure 7.5: Internal pressurised cylinder: stress distribution over radius using Robinson’s mate-

rial model at time t = 0 s (left) and t = 2.5 s (right).

The example is simulated with the strongly coupled partitioned and the monolithic TSI al-

gorithms. As expected, identical results are obtained for both solution algorithms as shown in

Figure 7.5 and 7.6, where the naming “Monolithic” and “Partitioned” corresponds to the mono-

lithic and the partitioned solution scheme, respectively. These Figures show the circumferential
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Figure 7.6: Internal pressurised cylinder: stress distribution over radius using Robinson’s vis-

coplastic material model at time t = 21.6 s (left) and t = 1, 980 s (right).

(hoop) stress distribution over the radius of the cylinder at different times as well as the results of

Arya and Kaufmann [11] denoted by “Arya Kaufmann”. Good agreement of the present results

with the results in literature is achieved. Since the pressure is held constant at 25.17 MPa, the

stresses decrease with time, i.e. the body relaxes and approaches a steady state. In Figure 7.5, the

results are all in excellent agreement. A larger discrepancy is recognizable in the results shown

in Figure 7.6. While the general development is still reproduced, namely that the hoop stresses

decrease at the inner surface and increase at the outer surface with time, the resulting stresses

are too high compared to the results of Arya and Kaufmann [11]. In contrast, the kink which is

depicted in the left curve of “Arya Kaufmann” in Figure 7.6 seems to occur in the present results

later in the simulation, as depicted in the right picture. The discrepancy can further be explained

by the different evolution term h in the present approach (5.54)1 compared to the one in Arya

and Kaufmann [11]. However, the present h is in accordance to the one in Bornemann and Wall

[18].
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Figure 7.7: Internal pressurised cylinder: hoop stress distribution over time using Robinson’s

viscoplastic material model for one point at the inner side and another at the outer

side of the cylinder using partitioned and monolithic schemes.
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Apart from comparison with Arya and Kaufmann [11], a simulation was performed with long

run times, i.e. ťmax = 13, 500 s. Figure 7.7 depicts the hoop stress evolution over time for the

first 5, 000 s, for which partitioned and monolithic TSI are utilised for two positions namely one

at the outer and one at the inner side of the cylinder described by “out” and “in”, respectively. In

this Figure 7.7, the approximation of the body to a steady state is noticeable. It is emphasized that

Figure 7.7 shows the results only for the first 5, 000 s, because at this time the partitioned algo-

rithm diverges. In contrast, the monolithic algorithm reaches the maximal time ťmax = 13, 500 s.
The evolution of the hoop stress over time ť is exemplarily depicted in Figure 7.8 for the outer

side. It is obvious, that after ťmax the steady state is still not achieved. However, since the target of
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Figure 7.8: Internal pressurised cylinder: hoop stress distribution over long time up to ťmax =
13, 500 s using Robinson’s viscoplastic material model at a point on the outer surface.

this numerical example is on the validation of the physical behaviour of the present Robinson’s

viscoplastic material model which has been successfully conducted, a longer run is out of scope

of the present thesis, and consequently is not further pursued.

7.1.3 Fracturing of a cylindrical notched specimen

The present numerical example is used to validate Lemaitre’s material model of coupled plastic-

ity and ductile damage introduced in section 3.4.2.4, which is also presented in Andrade Pires

et al. [3] and de Souza Neto et al. [33]. A cylindrical pre-notched bar is subjected to mono-

tonic axial stretching until the body fails. As a result of the monotonic axial stretching, isotropic

hardening fully captures the deformation behaviour, i.e. the influence of kinematic hardening

vanishes.

The bar is said to be failed as soon as the integrity ωD at any Gauss point gp reaches an

inadmissible value, i.e. ωD < 0 or equivalently D > 1. For post-processing, the damage is

visualised as an elementwise quantity, i.e.

D(e) =
1

ngp

ngp
∑

gp

D , (7.2)

whereD and ngp denote the damage value at Gauss point gp and the total number of Gauss points

per element, respectively. Consequently, the damage value D(e) at the end of the simulation is

expected to be less than 1.
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Figure 7.9: Cylindrical notched bar: geometry and boundary conditions (left) and the two used

meshes (right).

In Figure 7.9 (left), the geometry and the boundary conditions of the problem are summa-

rized. The body has a height h = 40 mm, a width b = 18 mm, a radius r = 4 mm, and a depth

t = 1 mm. The loading consists of a prescribed monotonically increasing displacement ûy(t)
at the top and the bottom surfaces of the body until the body fails. Due to symmetry only one

eighth of the body is simulated which is depicted in Figure 7.9 (left) by the grey body. Hence, ap-

propriate symmetry boundary conditions need to be imposed. Moreover, at the top load surface,

the displacement in x- and z-direction are unconstrained. The evaluation points are illustrated

in Figure 7.9 (left). While point A corresponds to the centre of the body, point B is located at

root of the notch, which corresponds to the location where necking is likely to occur. Further-

more, point C is located at the top, where the displacement-controlled load ûy(t) is applied.

The material parameter for Lemaitre’s material are given in Table 7.2. For time integration, a

E = 210 GPa ν = 0.3 ρ = 7, 850 kg
m3 σy;0 = 0.62 GPa

σy;∞ = 3.3 GPa δ = 0.4 S = 1.0 r = 3.5 MPa

Table 7.2: Cylindrical notched bar: material parameters.

quasi-static analysis is chosen with a quasi-time step t. In Figure 7.9 (right), the two chosen un-

structured meshes using (tri-)quadratically interpolated hexahedral elements (Hex27) are shown.

For the fine mesh, 3, 892 elements with 36, 297 nodes and for the coarse mesh, 698 elements with

7, 415 nodes are used. To enable a correct resolution of the damage evolution, the mesh is re-

fined in the bottom region surrounding the smallest cross section which in turn corresponds to

the region where damage is likely to occur.

The failure of the body is observed in experiments in the centre of the specimen. Thus, the

present simulation approach is aimed to reproduce this point of failure as well. Figure 7.10 il-
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lustrates the damage distribution at the final deformed configuration. For visualisation purposes,

the simulation results are reflected to cover the full length of the actual body. Figure 7.10 (left)

shows that the coarse mesh is not able to reproduce the physical damage behaviour. In contrast,

Figure 7.10: Cylindrical notched bar: damage contribution of mid-plane at final deformed con-

figuration utilising the coarse (left) and fine mesh (right).

Figure 7.10 (right) depicts the results using the fine mesh. This simulation is able to capture

the physics and the failure state correctly. It is worth repeating, that the damage variable D(e),

e.g. in Figure 7.10 represents an elementwise measure, so that the maximal value is less than 1.

However, a simulation is stopped due to exceeding an admissible value D at Gauss point level,

i.e. D > 1.

The coarse mesh can bear more stretching with a maximal elongation ûcoarsey;max = 0.47 mm, be-

fore fracturing with a final damage valueD
(e);coarse
max = 0.6760 and the corresponding Gauss point

value of Dcoarse
max = 1.0073. For the fine mesh, an inadmissible value of Dfine

max = 1.0040 at the

Gauss point and corresponding elementwise damage value of D
(e);fine
max = 0.7145 are reached at

the centre of the body at an elongation ûfiney;max = 0.348mm. This elongation ûfiney;max = 0.348mm
leads to failure of the body and hence to the end of the simulation and is computed earlier com-

pared to the coarse mesh (with ûcoarsey;max = 0.47 mm).

Figure 7.11 depicts on the left side for both meshes the damage evolutionD
(e)
max of the element

at the centre point A over the elongation ûy. Since the failure point for the coarse mesh is not the

centre, a third curve is included in Figure 7.11 (left). The third curve is labelled “698 ele D
(e)
max”

and presents the results for the failure point applying the coarse mesh, i.e. with 698 elements.

At the beginning, all curves are equal to zero. Then damage starts to develop: for the fine mesh

at point A at ûfiney = 0.0597 mm and for the coarse mesh at ûcoarsey = 0.0053 mm. In the middle
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Figure 7.11: Cylindrical notched bar: evolution of the damage variable D(e) at centre point A

over elongation ûy (left), necking at point B over elongation ûy (middle), and reac-

tion force over elongation ûy (right).

of Figure 7.11, the necking radius at point B for both meshes over elongation ûy are shown.

Finally, the rightmost plot of Figure 7.11 depicts the real reaction force of the notched specimen

over the elongation. Since the computational model corresponds to a quarter of the real notched

specimen, the real reaction force corresponds to four times of the computed reaction force.

Subsequently, Figure 7.12 illustrates the damage evolution at different load states using the

fine mesh which is able to represent the physics correctly. While damage first starts to evolve at

the bottom root of the notch, damage develops towards the middle of the body and finally leads

to the failure of the whole body due to D
(e);fine
max = 0.7145 in the centre. Moreover, Figure 7.13

depicts the deformed three-dimensional body at failure state and emphasizes the fracture point at

the centre. The colour represents the final damage distribution and the maximal value is reached

at the centre and decrease in thickness direction.

In the following, the present results are compared to the results of de Souza Neto et al. [33].

A discrepancy between the results is observed: while the maximal displacement applied to the

bar in the present model is ufiney;max = 0.348 mm, in de Souza Neto et al. [33] a larger value

uy;max = 0.576 mm is reached. The discrepancies can be justified by the fact that the present

approach is fully three-dimensional (see in particular Figure 7.13) in contrast to the study of

de Souza Neto et al. [33] who performed a two-dimensional fracturing only. Since damage evo-

lution depends on the total current stress state, see (3.156) and (3.152), the z-components are

considered additionally in this work. Hence, higher von Mises equivalent stress values are com-

puted leading to higher plasticity and higher damage in the present approach, which in turn

implies that the critical damage value is reached earlier.

Based on Appendix B.3, Figure 7.14 depicts on the left the von Mises stresses σvM for the

evaluation points A-C. Here, the largest decrease of stresses during elongation is observed at the

centre point A, whereas the stresses at the other two points remain nearly constant. The plot in

the middle shows the von Mises stresses σvM and the von Mises strains εvM, respectively, over

elongation at the centre point A. Furthermore, on the right side, the stress-strain curve for the

normal stresses σyy and normal strains εyy is shown. It can be seen, that in the first 0.05 mm
of elongation in y-direction, the bar deforms elastically, which is identified by the linear stress-

strain slope in Figure 7.14 (right). While the elastic strains εeyy cover only a very small part of

the total strain εyy, the much larger part is composed of plastic strains εpyy.

Summarizing the previous results, fracture initiation is expected at the centre of the specimen

and propagates radially towards the notch (cf. e.g. Figure 7.12 bottom right). This is in agreement
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Figure 7.12: Cylindrical notched bar: damage contour plots at different deformation states using

the fine mesh with 3, 892 elements.
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Figure 7.13: Cylindrical notched bar: three-dimensional damage contour plots of the fine mesh

with 3, 892 elements at failure state.
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Figure 7.14: Cylindrical notched bar: von Mises stress σvM versus elongation ûy at centre point

A, and points B and C (left), von Mises stress σvM and von Mises strain εvM versus

elongation ûy at centre point A (middle), and stress-strain curve for normal stress

σyy and normal strain εyy (right). For all results the fine mesh with 3, 892 elements

is applied.

to the literature, as e.g. de Souza Neto et al. [33], where damage growth in ductile metals is

described as strongly dependent on the stress triaxiality ratio. The stress triaxiality ratio p
q

is

defined as the ratio between pressure p and von Mises equivalent stress q. Herein, decreasing

ductility of a material leads to increasing values of the stress triaxiality ratio. For the present

simulation, the absolute maximal value of the stress triaxiality ratio is computed at the centre of

the specimen with (p
q
)A = −3.6560, which in turn represents the location for fracture initiation.

For the sake of completeness, the corresponding values at the root of the notch point B and at

the top edge point C are (p
q
)B = −0.20615 and (p

q
)C = 0.20708, respectively. Hence, absolute

value of the stress triaxiality is maximal at point A which corresponds to the point of fracture

initiation.

The importance of including ductile damage into the present example of a notched specimen

can further be emphasized by assessing the results presented in Figure 7.14 and, in particular, the

von Mises stresses at the three points depicted on the left side. The highest stresses are computed

for evaluation point B. If the results are obtained from a simulation of the notched specimen

applying a purely elastoplastic material without ductile damage according to section 3.4.2.3, this
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point B would represent the point of largest plasticity and not point A. This is in agreement to

de Souza Neto et al. [33]. They showed that simulating the notched specimen applying a purely

elastoplastic material without ductile damage and defining a critical value of the accumulated

plastic strains as the fracture criterion instead, fracture or crack initiation is predicted at the root

of the notch B instead of the centre A. Consequently, to predict the correct physical behaviour,

the inclusion of damage for instance in form of Lemaitre’s material model is essential.

7.1.4 Thermally induced necking of a cylindrical bar

In the following, the finite strain thermo-hyperelasto-plastic material (see section 5.3.2.3) is val-

idated. Therefore, the well-known benchmark example of necking of a cylindrical bar is consid-

ered. This example represents the common benchmark in the literature to show robustness and

accuracy of a plastic formulation, and the utilised finite element (FE) technology of incompress-

ible materials. Necking is simulated, for instance in Andrade Pires et al. [4], Caminero et al.

[21], Montáns and Bathe [95], and Simo and Ju [121] for purely mechanical analyses, and e.g.

in Canadija and Brnic [22], Ibrahimbegovic and Chorfi [61], Lehmann and Blix [74], Miehe

[90], Simo and Miehe [122], and Wriggers et al. [146] for the extension to thermal effects. The

present necking example represents the thermally triggered version and is based on the cor-

responding example of Simo and Miehe [122]. Hence, the results of the present example are

compared to the results of Simo and Miehe [122]. In this context, it is important to note, that

differences of the present results are expected due to differences of the material model, but the

physical effects must be captured. For more details on the theory, the reader is referred to sec-

tion 5.3.2.3.

The cylinder is characterized by a radius r = 6.413 mm and a length l = 53.334 mm.

A total elongation of 2 ûz = 16 mm is simulated by stretching the specimen with a constant

velocity 2 ˆ̇uz = 2 mm
s

. Mechanical Dirichlet boundary conditions applied at each end allow

free contraction of the body leading to an initially homogeneous stress state in the absence of

imperfections. A constant initial temperature T0 is assumed for the whole body with T0 = 293 K.

Moreover, thermal heat convection boundary conditions Q̂C according to (5.16) with T∞ =
T0 = 293 K and h = 1.75 · 10−8 kg

ms2 K
are applied on the entire boundary of the specimen,

i.e. on the top surfaces and the circumference. The bar is composed of metal with the material

parameters given in Table 7.3. The present thermomechanical necking example is triggered by

K = 164.206 GPa µ = 80.1938 GPa ρ = 7800 kg
m3

k0 = 45 W
mK

CV = 460 J
kgK

αT = 1.0 · 10−5 1
K

H iso = 0.12924 GPa σy;0 = 0.45 GPa σy;∞ = 0.715 GPa

δ = 16.93 ω0 = 0.002 ωh = 0.002

Table 7.3: Thermally induced necking: material parameters.

a non-homogeneity in the temperature field. Plastic deformations lead to mechanical dissipation

so that heat is generated. Due to the applied heat convection boundary conditions Q̂C at the
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surrounding surfaces, the generated heat is released to the surrounding medium. Hence, thermal

diffusion starts, leading to an inhomogeneous temperature field. This inhomogeneity results in

non-uniform thermal strains and, since linear thermal softening is considered, the temperature-

dependent material parameters change (for instance the yield stress σy;0 according to (5.71)). The

generated heat breaks the symmetry of the problem and thus triggers the necking of the initially

cylindrical bar.

The inclusion of the thermo-elasto-plastic heating Hep leads to cooling of a body due to ex-

pansion. This term is especially important in the elastic regime, while its influence diminishes

decisively compared to the increasing influence of the plastic mechanical dissipation. Since elas-

tic behaviour captures only a small part of the whole deformation, the cooling is not noticed in

the following Figure 7.16.

To circumvent overshooting of the temperature solution in particular at the top of the speci-

men, which then would lead to necking at the wrong side, i.e. at the top, the standard meshes

used for purely mechanical necking analyses, e.g. in de Souza Neto et al. [33] with high aspect

ratio (i.e. large elements at the top and very small elements in the necking zone) are not appli-

cable here. In contrast, a mesh with smaller elements at the top needs to be used as shown in

Figure 7.15 and confirmed in Simo and Miehe [122].

In this context it is worth mentioning, that the predictor plays a decisive role in a displacement-

controlled simulation. A constant predictor updates the solution vectors only for the degrees of

freedom (DOFs) which have Dirichlet boundary conditions, i.e. the new prescribed deformation

ûz;n+1 is fully applied to the Dirichlet DOFs only. Thus, the largest stress state is predicted

at these Dirichlet DOFs and plasticity is likely to occur at the top. By contrast, the so-called

TangDis predictors of the structural field extrapolate the new prescribed deformation ûz;n+1 to

the whole domain, so that the stresses are not concentrated only at the top. Consequently, to

ensure correct physical prediction of plastic necking in the middle, which is caused by maximal

stresses in the middle, the TangDis predictors need to be employed.

A

B

Figure 7.15: Thermally induced necking: applied finite element mesh with 3, 240 elements and

evaluation points A and B (left), mesh with 960 elements (middle), and the mesh

with 120 elements (right).

Subsequently, due to symmetry of the problem, only one eighth of the cylinder is modelled.

Hence, corresponding symmetry boundary conditions are applied. To ensure a constant applied

velocity ˆ̇uz = 1 mm
s

, the simulation time is t = 8 s. The cylinder is discretised in space with F-bar
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elements. As depicted in Figure 7.15, three different meshes are chosen, one with 120 elements,

one with 960 elements, and the third one with 3, 240 elements. Moreover, in Figure 7.15 (left)

the two evaluation points are indicated. While point A is located on boundary at the middle of the

bar where necking is likely to occur, point B lies at the top surface where the load is applied. The

numerical simulation is performed with the monolithic TSI algorithm and for time discretisation

an one-step-θ scheme with θ = 0.5 is chosen for both fields structure and thermo, resulting in a

Crank-Nicolson scheme.

Figure 7.16 depicts the computational results for the temperature distribution. The bar is ini-

tially heated homogeneously. As soon as the symmetry of the bar is broken, the necking process

is triggered at the bottom of the computational model. The circular bar plastifies strongly in the

necking area. As mentioned above, mechanical dissipation is connected with the plastic defor-

mations: the higher the plastic deformations the stronger the heating. Hence, the temperature

rises the most in the necking zone.

Figure 7.16: Thermally induced necking: temperature distribution of deformed bar over time,

starting from t = 0 s (left) to tmax = 8 s (right) using the mesh of 3, 240 elements.

To validate the present approach, results are compared to results given in Simo and Miehe

[122]. In Figure 7.17 and Figure 7.18 (right), a quantitative comparison is realised by presenting

a load-displacement diagram and the evolution of the temperature in the necking zone, respec-

tively. Figure 7.17 shows that the reaction force is well approximated by the present model. As

expected, the finer the mesh the better the quality of the results and the better the agreement with

the results in literature. In contrast, in Figure 7.18 (right) a larger discrepancy is observed in

the temperature evolution between the current results and the results of Simo and Miehe [122].

This is caused by the different formulation of the yield function and especially of the mechanical

dissipation term Dmech. While Simo and Miehe [122] redefine Dmech in their numerical exam-

ple section by introducing a non-physical dissipation factor χ and by using the total yield stress

σy(ε̄
p, T ), i.e.

Dmech;SIMO := γ̇

√

2

3
σy(ε̄

p, T )χ , (7.3)
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Figure 7.17: Thermally induced necking: reaction force over elongation at point B using the

three meshes. Comparison with results from Simo and Miehe [122].
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Figure 7.18: Thermally induced necking: evolution of the necking radius rneck/r (left) and tem-

perature change ∆T (right) over elongation at point A. Comparison with results

from Simo and Miehe [122].

the present approach utilises the term (5.75) derived within the theory. Consequently, different

values are expected for the temperature change. However, the physical behaviour is still captured

satisfactorily as well as the mechanical behaviour.

Furthermore, Figure 7.18 (left) depicts the evolution of the radius in the necking zone using a

relative quantity, namely the quotient between current necking radius rneck [mm] and the initial

radius r [mm]. Since Simo and Miehe [122] do not provide data about the radius, Figure 7.18

(left) is restricted to the results obtained by the present approach. As expected, the necking

increases with increasing numbers of elements.

Finally, it is worth noting that the present results are obtained exclusively using the pro-

posed monolithic TSI algorithm. Unlike the monolithic algorithms, no solution could be found

for the partitioned algorithms even if strongly coupled schemes with the Aitken ∆2 method

was utilised. The structural field solver diverged after 50 nonlinear iteration steps although the

pseudo-transient continuation (ψTC) strategy has been chosen, which in general enables larger
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convergence radius compared to the exact Newton method integrated in the monolithic TSI strat-

egy.

7.1.5 Second Danilovskaya problem

The second Danilovskaya problem as originally proposed in Danilovskaya [28], which has often

been used in literature for validation of a fully coupled thermomechanical model (e.g. in Farhat

et al. [39], Tamma and Namburu [129], Tanaka et al. [130], and Tosaka and Suh [133]), is consid-

ered. The problem is essentially one-dimensional. A linear elastic solid is subjected to a uniform

sudden temperature change due to a heat flux Q̂C ≡ q̂C on the surface x = 0 mm according to

(4.15) or (5.16) for small deformations (i.e. a geometrically linear analysis is performed assum-

ing the deformation gradient F ≡ I). The geometry in the form of a cuboid of height and width

of 4 mm, respectively, and a length of 6 mm is shown in Figure 7.19.

4
m

m

z
x

y6
m
m

q̂C = h(T − T∞)4 mm

Figure 7.19: Second Danilovskaya problem: initial geometry and prescribed heat convection

boundary condition q̂C.

The simulation is carried out in three spatial dimensions, fixing all displacement DOFs in y-

and z-direction, such that a quasi-one-dimensional motion is achieved. The body is assumed to

be mechanically constrained and thermally insulated. The initial and boundary conditions are

given as

ux;0 = ux(x, t = 0) = 0 = u̇x;0 , T0 = T (x, t = 0) , t̂(x = 0, t) = 0 . (7.4)

The mechanical and thermal field properties are given in Table 7.4, where h̄ denotes the kine-

matic heat transfer coefficient, defined as h̄ = h
ρCV

with the linear heat transfer coefficient h.

Furthermore, the values for the thermal conductivity k, the coefficient of thermal expansion αT

(also known as linear heat expansion coefficient), the constant initial temperature T0, as well

as an ambient temperature T∞ are given. According to Table 7.4, a Young’s modulus E and a

Poisson’s rate ν are chosen for the structural field.

The discretisation for both structural and thermal field contains each nx × ny × nz = 12 ×
4 × 4 Hex8 elements. The simulation time is t = 4 s, with a time-step size of ∆t = 0.001 s.
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E = 210 GPa ν = 0.3 αT = 1.1 · 10−5 1
K

k = 1, 030 mmkg
s3 K

h̄ = 0.1 mm
s

T0 = 273.15 K T∞ = 373.15 K

Table 7.4: Second Danilovskaya problem: material parameters.

Moreover, one-step-θ time integration is chosen with the value θ = 0.5, resulting in a Crank-

Nicolson scheme. Heat convection boundary conditions are used at the surface x = 0. A linear

thermoelastic material is chosen according to (5.30). Hence, for small deformations the linear

stress is given by

σlin = σ(ε, T ) = 2µ ε + λ tr ε I + m0∆T I , (7.5)

where linearised strains ε are utilised according to (2.107). Displacements and temperatures are

evaluated at the centre point of the plane at x = 1 mm.

To enable a comparison with Danilovskaya [28], Farhat et al. [39], or Tanaka et al. [130], the

thermomechanical coupling term in the energy balance equation (5.14) is assumed to depend

on the initial temperature T0 instead of the current temperature T for the results presented in

Figure 7.20. This simplifies the thermal subproblem, since the linearisation of this term with

respect to T can be neglected. Equation (5.14) then reads

ρ0CV Ṫ + div q − ρ r − T0m0 tr ε̇
︸ ︷︷ ︸

He

= 0 . (7.6)

Hence, the coupling term He is independent of the current temperature solution and can therefore

be interpreted as an external load.

The present results are compared to the ones given in Tanaka et al. [130]. Unfortunately, not
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Figure 7.20: Second Danilovskaya problem: temperature (left) and displacement (right) results

based on simplifying assumption T0. Approximation and validation of present TSI

algorithm with results from Tanaka et al. [130] can be realised by varying CV.

all material parameters for the second Danilovskaya problem are specified in the literature, as

e.g. Farhat et al. [39], Tamma and Namburu [129], Tanaka et al. [130], or Tosaka and Suh [133]:

depending on the dimensionless thermomechanical coupling parameter δ introduced in Armero
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and Simo [6], Farhat et al. [39], and Tanaka et al. [130], the density ρ and the heat capacity

CV can be chosen arbitrarily. Figure 7.20 depicts the spread of results for temperatures and

displacements in x-direction depending on a variation of the values for CV. Identical results are

obtained for monolithic and partitioned TSI, so that, for the sake of clearness, the TSI algorithm

is not specified in Figure 7.20. Choosing a density ρ = 7, 850 kg
m3 , the heat capacity is computed

to beCV = 0.821 J
kg K

(corresponding to the green line which is namedCV = 0.8 in Figure 7.20),

resulting in the best approximation of temperatures and displacements to the results of Tanaka

et al. [130]. Hence, in the following, these values for density and heat capacity are assumed.

The proposed monolithic TSI algorithm is now compared to the partitioned algorithm. In con-

trast to the simplifying assumption in Farhat et al. [39], Tamma and Namburu [129], Tanaka et al.

[130], and Tosaka and Suh [133] also considered in Figure 7.20, the current temperature T as

given in (5.14) is now taken into account. Without this simplifying assumption, i.e. considering

the full coupling in the thermal equation, severe problems are observed to occur for the parti-

tioned algorithms in the form of bad convergence. Within a time step t the iteration between the

single fields diverges, i.e. the norms of the displacement and the temperature increments, respec-

tively, cannot be dropped down to the prescribed tolerances ǫout = 1.0 · 10−6. These problems

can be reduced, e.g. by varying the material parameters, but this means changing the problem.

In contrast to the partitioned algorithms, even with the inclusion of T in the full coupling term,

the monolithic TSI algorithm converges for all choices of material parameters.

Figure 7.21 shows the results obtained with the monolithic algorithm, using (5.14) or (7.6)

as thermal equation according to Table 7.5. These results are compared to the results obtained
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Figure 7.21: Second Danilovskaya problem: temperature (left) and displacement (right) results

using E = 210 GPa. The naming of the solution strategies is given in Table 7.5.

with the partitioned algorithm using (7.6) and perfect agreement is achieved. Results of the

partitioned algorithm utilising (5.14) are not presented, because no solution can be obtained due

to divergence. It can be clearly seen that the simplifying assumption has quite some influence

on the solution (in contrast to (7.6) decisively smaller temperature and displacement changes are

developed regarding (5.14)) and should not just be introduced in order to get partitioned schemes

working.

The Young’s modulus is identified as an important parameter influencing the observed be-

haviour of bad convergence. In Figure 7.22, exemplary results for temperatures and displace-

129



7 Examples

Name Solution Temperature considered Thermal balance

strategy in coupling term equation considered in TSI

“monolithic” monolithic T (5.14)

“T0 monolithic” monolithic T0 (7.6)

“partitioned” partitioned T (5.14)

“T0 partitioned” partitioned T0 (7.6)

Table 7.5: Second Danilovskaya problem: naming of solution strategies

ments are provided for the reduction of the modulus by a factor of 100. In this case, the simula-

tion using the partitioned algorithm with (5.14) converges and results can again be obtained.

Figure 7.22 also shows results obtained with the monolithic TSI algorithm for both values

E = 2.1 GPa and E = 210 GPa. For the reduced modulus, i.e. E = 2.1 GPa, the results

of the partitioned and the monolithic TSI algorithms are in good agreement. Again, it is empha-

sized that the monolithic TSI algorithm, as opposed to the partitioned one, is able to handle the

complete range of the parameter spectrum without problems.
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Figure 7.22: Second Danilovskaya problem: temperature (left) and displacement (right) results

with varying Young’s modulus. The naming of the solution strategies is given in

Table 7.5.

As proposed in Armero and Simo [6], Erbts and Düster [38], the coefficient of thermal ex-

pansion (CTE) αT can be used to describe the strength of coupling between the two fields.

While a value αT = 1.5 · 10−5 1
K

correlates with a weak coupling, strong coupling arises by

αT = 1.5 · 10−4 1
K

, see Armero and Simo [6] and Erbts and Düster [38]. As previously men-

tioned, no convergence could be achieved for the partitioned algorithms using the material pa-

rameters presented at the beginning of this section and solving (5.14). Following the suggestions

of Armero and Simo [6] or Erbts and Düster [38], the present CTE is reduced by a factor of 10,

i.e. using a value αT = 1.1 · 10−6 1
K

. Using the reduced CTE, the partitioned algorithm con-

verges and results can be obtained. As before, the monolithic TSI algorithm is able to handle

both parameters, as illustrated in Figure 7.23. Consequently, the Young’s modulus and the CTE
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Figure 7.23: Second Danilovskaya problem: temperature (left) and displacement (right) results

with varying linear heat expansion coefficient. The naming of the solution strategies

is given in Table 7.5.

are important parameters for the behaviour of the partitioned TSI algorithm and can influence

the observed behaviour of bad convergence.

Finally, the influence of the discretisation is investigated, i.e. the approximation of the continu-

ous solution via FEs. In the present second Danilovskaya problem, high heat fluxes q̂c are applied

at the left, i.e. at x = 0, and zero heat fluxes at the right boundary, i.e. at x = 6 mm, respectively.

If a too coarse mesh is chosen, the temperatures and their gradients cannot be approximated

sufficiently. Figure 7.24 depicts the temperature solution at time t = 0.001 s choosing an ex-

tremely coarse mesh for the discrete solution (consisting of e.g. two elements only). Due to the

Figure 7.24: Second Danilovskaya problem: overshooting of the temperature solutions at time

t = 0.01 s using a coarse mesh.

insufficient approximation of the temperatures and their gradients in the middle of the body, i.e.

at x = 3 mm, the temperatures overshoot to fulfil the Neumann boundary conditions the best

possible at x = 0 and x = 6 mm, respectively, resulting in an unphysical discrete solution of the

numerical example. In order to achieve a good numerical solution the spatial discretisation has to

be carefully chosen to avoid this overshooting. In contrast to the coarse mesh, the discretisation

utilised for the aforementioned investigations of the present numerical example, using 12×4×4
elements, resolves the given gradients sufficiently.
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7.2 Rocket nozzle

Finally, in order to demonstrate the applicability of the presented TSI approach to real three-di-

mensional problems, the behaviour of a cylindrical rocket nozzle of a subscale thrust chamber

is simulated. In contrast to a real rocket nozzle, the geometry of the computational model of

the nozzle is modified slightly: in addition to the real nozzle extension, prior to it, a part of

the combustion chamber up to the throat is added. While the result evaluation of the present

numerical example is not weakened by the modified geometry, geometry and mesh generation

have been facilitated extremely.

The cross section of the given rocket nozzle (see Figure 7.25 (left)) changes continuously in

z-direction: at z = 0 the radius is rcombust = 25.3 mm and reaches routlet = 169.8 mm at the

outlet of the nozzle at z = 398.5 mm. The front surface (z = 0) describes the transition from the

combustion chamber to the nozzle extension. The constant height of the cross section is 6.7 mm.
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Figure 7.25: Rocket nozzle: initial geometry and prescribed boundary conditions. Three-

dimensional view of the considered geometry containing one cooling channel (left)

and cross section with the definition of dimensions and loads (right).

The cooling channels are considered in the present example, as shown in Figure 7.25. While

the cooling within the nozzle extension in “Vulcain 2” is realised by helicoidal cooling channels,

i.e. they are coiled in a spiral around the nozzle wall, in the present numerical example they

are assumed to span along the flow direction as illustrated in Figure 7.25 (left), i.e. along the

z-direction. As depicted in Figure 7.26, this arrangement is in accordance to Mäding [82] and to

the combustion chamber of the “Vulcain 2” thrust chamber (see Figure 1.1). The cooling of the

present nozzle is realised by 80 cooling channels distributed equally over the circumference of

the body. The cooling channels are described by a constant fin thickness tfin = 1 mm. Due to the

constant fin thickness, the width b(y, z) changes continuously in y- and along the z-direction.

The rocket nozzle is a rotationally symmetric body, so that the computational model can be

restricted to one cooling channel only, i.e. the simulation is performed by modelling only 1/80th

of the whole nozzle, which is described by an angle of ϑ = 4.5◦ (see Figure 7.25 (right)).

The material parameters are adopted from Kuhl et al. [69], meaning that the liner material is a

copper alloy and the closure of the channels is realised by a nickel jacket as shown in Figure 7.25.

The material parameters according to Kuhl et al. [69] are provided in Table 7.6.
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7.2 Rocket nozzle

Figure 7.26: Rocket nozzle: schematic drawing of a rocket nozzle illustrating the inner liner

material with axial cooling channels marked with number 1 and the jacket material

marked with number 2, see Mäding [82].

Copper alloy

k0 = 310 W
mK

CV = 373 J
kg K

αT = 1.72 · 10−5 1
K

T0 = 40 K

E = 148 GPa ν = 0.3 ρ0 = 9, 130 kg
m3

Nickel jacket

k0 = 75 W
mK

CV = 444 J
kg K

αT = 1.22 · 10−5 1
K

T0 = 40 K

E = 193 GPa ν = 0.3 ρ0 = 8, 910 kg
m3

Table 7.6: Rocket nozzle: material parameters.

The nickel jacket and the copper alloy have a height lni = 4 mm and lco = 2.7 mm, respec-

tively. In addition, the height of the copper alloy lco is divided into the hot gas wall height lhg and

the cooling channel height lcc. According to Kuhl et al. [69] for the so-called optimized model,

the heat transfer coefficient at the hot gas side is chosen to be hhg = 32 kW
m2 K

and at the cooling

channel walls to be hcc = 100 kW
m2 K

. Furthermore, at the beginning of the simulation (t = 0) the

stress-free chamber has a constant initial temperature T0 = 40 K.

The corresponding boundary conditions for heat transfer Q̂C and pressure p̂ at the hot gas side

and in the cooling channel are given in Table 7.7. The temporal phases of the loading cycle are

taken from Arya and Arnold [10] (see Figure 7.27) proposing a typical reduced loading cycle,

which can be split in a cold (I and V) and a hot phase (II to IV), respectively. The pressure p̂ is

applied normal to the respective surfaces and points inwards. Thus, p̂ represents a deformation-

dependent external load, which contributes to the stiffness matrix KSS. After t = 3.5 s the load

is held constant until t = 6 s. Apart from the applied loading, structural symmetry boundary

conditions are applied at the left and right side of the body. At the front surface (z = 0) the
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Figure 7.27: Rocket nozzle: cyclic temperature and pressure loading histories. The values for

pressure p̂ and temperature T∞ are summarized in Table 7.7.

Phase Time [s] Pressure [MPa] Temperature [K]

p̂hg p̂cc T∞,hg T∞;cc

I 0.0− 0.1 0.0 0.0 40.0 40.0
II 0.1− 1.0 0.0− 10.0 0.0− 2.0 40.0− 950.0 40.0
III 1.0− 1.8 10.0 2.0 950.0 40.0
IV 1.8− 2.25 10.0− 0.0 2.0− 0.0 950.0− 293.15 40.0
V 2.25− 3.5 0.0 0.0 293.15 40.0

Table 7.7: Rocket nozzle: pressure cycle p̂ and internal thermal cycle, given in terms of the ambi-

ent temperature T∞ on the hot gas side (index “hg”) and in the cooling channels (index

“cc”), respectively.

body is fixed in z-direction, thereby taking into account that the real nozzle is connected to the

combustion chamber to build the whole thrust chamber. Furthermore, at the symmetric surfaces

and at the outer surfaces, zero flux conditions are prescribed for the thermal field.

The total simulation time is t = 6 s, with a time step ∆t = 0.05 s. Three meshes A to C are

differentiated as given in Figure 7.28 and Table 7.8. The default element type is a Hex8 element.

The number of elements and corresponding DOFs are summarized in Table 7.8 for the three

meshes A to C. Exemplarily, the coarsest mesh A, see Figure 7.28 at the top, contains for the

structural and the thermal field each 3, 685 nodes and 2, 376 elements, whereby 8 elements are

distributed in circumferential direction, 9 elements in radial direction, and 58 elements in z-

direction, respectively. Alternatively to the default Hex8 elements, for mesh A Hex27 elements

can be chosen. The total number of DOFs are specified in Table 7.8 for all applied meshes. For

time integration of both fields either an one-step-θ time integration scheme or a generalised-α
scheme are chosen. In case of an one-step-θ scheme, the value θ is chosen to θ = θS = θT = 0.66,

which has proven to be a stable choice. In case of a generalised-α scheme the maximal spectral

radius ρ∞ is set to ρ∞ = ρ∞;S = ρ∞;T = 0.5, which corresponds to a stable, second-order

accurate scheme. Thus, based on sections 3.2.2 and 4.2.2, the algorithmic parameter for the

structural field follow as αm;S = 0, αf;S = 1/3, γS = 5/6, and βS = 4/9, and for the thermo field

as αm;S = 5/6, αf;T = 2/3 and γT = 2/3, respectively. The computed results are evaluated at

four different points A to D in the middle of the body as shown in Figure 7.29.
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Figure 7.28: Rocket nozzle: mesh A (2, 376 elements) to C (551, 104 elements) from top to bot-

tom. Front view (left) and back view (right).

Mesh Number of elements per field Total number of DOFs

total circumferential radial z Hex8 Hex27

A 2, 376 8 9 58 14, 740 115, 128

B 4, 576 10 10 104 28, 560 -

C 551, 104 68 34 632 2, 501, 616 -

Table 7.8: Rocket nozzle: overview of the spatial distribution of elements for the three meshes A

to C as well as the total number of TSI degrees of freedom.

As illustrated for instance in Figure 7.25 (right), symmetry boundary conditions need to be

imposed at the left surface and the inclined right surface of the computational model to simulate

a correct physical deformation behaviour, as e.g. expansion along the tangential directions of

these surfaces by fixing the normal directions. Unlike the standard structural Dirichlet boundary

conditions at the left surface, which constrain the movements in x-directions, so-called inclined

structural Dirichlet boundary conditions are required at the inclined right surface. For partitioned

TSI algorithms the inclusion of inclined boundary conditions is straightforward and influences

only the structural equation with the corresponding tangential stiffness matrix KSS. However, for

the monolithic TSI algorithm these boundary conditions require additional effort. As explained

in section 6.3, inclined structural Dirichlet boundary conditions are realised in the monolithic

algorithm by transforming the TSI system according to (6.35), where both blocks KSS and KST

are modified. For further details on inclined structural Dirichlet boundary condition within the

monolithic TSI algorithm, the interested reader is referred to the end of section 6.3. Further-

more, in contrast to the previous examples, within the BGS preconditioner of the monolithic TSI

algorithm, the potential parameter ωBGS is chosen to be equal to 0.5.

In the following, a variety of results will be presented. Via modification of different parame-

ters, concerning e.g. material (thermoelastic or thermo-elasto-plastic material), time integration,

mesh, or solution strategy, a wide range of simulations realised with the present TSI approach
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B
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A

Figure 7.29: Rocket nozzle: definition of evaluation points A to D in the cross section in the

middle of the body.

will be illustrated. Hereby, monolithic and partitioned solution algorithms will be used to com-

pute the nozzle example. For the case of strongly coupled partitioned algorithms, static and

dynamic relaxation will be integrated to accelerate the convergence. It is noted, that the results

which will be presented always correspond to the best partitioned setup with respect to, e.g. the

total solution time.

One-step-θ time integration with the thermoelastic Saint

Venant-Kirchhoff material

The first setup is based on Danowski et al. [29] and considers a geometrically linear analysis

using the monolithic and the strongly coupled partitioned TSI algorithms, as well as the ther-

moelastic Saint Venant Kirchhoff (TSVK) material. For time integration an one-step-θ method

is utilised. Firstly, for spatial discretisation mesh B is chosen.

As anticipated, identical results for both monolithic and strongly coupled partitioned TSI al-

gorithms are achieved. In Figure 7.30, the results for temperatures (left) and displacements in

x-direction (right) over time t are exemplary shown for both approaches at points A and B for

z = 0. After 0.1 s the load is increased. Due to the high temperature T∞;hg at the hot gas side

the temperature is increasing faster at point A compared to point B. At t = 1.8 s, the body

experiences the largest mechanical and thermal loading. For instance, at point A a maximal dis-

placement ux = 1.5467 · 10−02 mm and a maximal temperature T = 350.82 K are reached.

At point B, which is located at the bottom of the cooling channel, the surrounding temperature

T∞;cc remains constantly at 40 K. Thus, due to the difference of the surrounding temperatures

T∞;hg and T∞;cc, the temperature changes at point B are smaller compared to point A. Therefore,

the thermal gradients between points A and B are very large at this time.

For the sake of lucidity, subsequent results are restricted to the ones where a monolithic ap-

proach is utilised. According to the previously presented results (see for instance Figure 7.30),

the partitioned approach yields identical results compared to the monolithic approach. Thus, in

Figure 7.31 the results for temperatures and displacements at the back surface of the nozzle for

the evaluation points A to D are depicted over time t. Due to the increasing temperature T∞;hg

up to 950 K, the temperature increases more at point A and B compared to point C and D. The

constant temperature T∞;cc leads to small thermal changes for the points C and D. As a conse-

quence of the thermal expansion of the whole body, the deformation reaches its maximum for
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Figure 7.30: Rocket nozzle: temperature (left) and displacement in x-direction (right) at the eval-

uation points A and B (see Figure 7.29) at the front surface (z = 0) using a geomet-

rically linear analysis, mesh B and the TSVK material. For the solution monolithic

and partitioned TSI algorithms are utilised.

all points at the front surface at the end of the hot run (t = 1.8 s) and at the back surface earlier

at the (t = 1.0 s).
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Figure 7.31: Rocket nozzle: temperature (left) and displacement in x-direction (right) for evalu-

ation points A to D according to Figure 7.29 at the back (z = 398.5 mm) using a

geometrically linear analysis, mesh B, the TSVK material, and the monolithic TSI

algorithms.

After having investigated the local development of the temperatures and the displacements

over time, Figure 7.32 shows the current deformation state of the nozzle at time t = 1.8 s,
namely the z-displacements at the end of the hot run. No deformation occurs at the front surface,

where the body is fixed in z-direction, whereas the nozzle expands up to z = 1.251 mm at the

back surface. Furthermore, the inward pointing arrows indicate the direction of the heat flux

Q [ kg
ms3

], i.e. heat is introduced into the body leading to an increase of temperature as well as

to thermal expansion of the body. For the given numerical example, the partitioned algorithm

can be used as an alternative to the monolithic algorithm. However, the computing time for the

solution of the TSI problem is 141.25 % of the solution time of the monolithic algorithm.
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Figure 7.32: Rocket nozzle: displacement in z-direction at time t = 1.8 s using a geometrically

linear analysis, mesh B, and the TSVK material. The arrows mark the direction of

the heat flux.

Secondly, the previous setup is rerun using in addition a geometrically nonlinear analysis.

To investigate the influence of a chosen mesh, all three meshes A to C are utilised in the fol-

lowing. Based on the first setup and Figure 7.32, in the subsequent Figures 7.33-7.35 the z-

displacements [mm] and the heat fluxes Q
[

kg
ms3

]
are visualised at time t = 1.8 s employing a

geometrically nonlinear analysis, i.e. including large deformations. While Figure 7.33 depicts

the results for mesh A, Figure 7.34 and Figure 7.35 show the corresponding results for mesh

B and C, respectively. The maximal z-displacements and heat fluxes increase with increasing

mesh size. Comparing Figure 7.32 and Figure 7.34, i.e. comparing the results using a geomet-

rically linear with the results using a geometrically nonlinear analysis, the heat fluxes range in

the same order of magnitude for both analyses. In contrast, the deformation of the linear analy-

sis is smaller. In Figure 7.36, the evolution of temperatures and x-displacements over time are

shown for point A using the three meshes as well as small and large deformation TSI. Herein,

the abbreviations “GeoLin” and “GeoNln” correspond to the geometrically linear and nonlinear

analysis, respectively. While larger discrepancies between the results of mesh B and mesh C are

observed, the results of mesh A are in good agreement with the solution of the finest mesh C,

although it is coarser compared to mesh B. The discrepancies observed in mesh B are caused by

an overshoot of the temperature solution which is explained in more detail in the following. As

mentioned in the second Danilovskaya problem, see section 7.1.5, the influence of the spatial

discretisation can have a high influence. If a too coarse mesh is chosen, the thermal solution

cannot be approximated sufficiently, thus the temperatures overshoot, see Figure 7.24. The ef-

fect of overshooting is clearly illustrated in the second Danilovskaya problem due to the simple
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Figure 7.33: Rocket nozzle: displacement in z-direction at time t = 1.8 s using a geometrically

nonlinear analysis, coarse mesh A, and the TSVK material. The arrows mark the

direction of the heat flux.

Figure 7.34: Rocket nozzle: displacement in z-direction at time t = 1.8 s using a geometrically

nonlinear analysis, mesh B, and the TSVK material. The arrows mark the direction

of the heat flux.
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Figure 7.35: Rocket nozzle: displacement in z-direction at time t = 1.8 s using a geometrically

nonlinear analysis, fine mesh C, and the TSVK material. The arrows mark the di-

rection of the heat flux.

geometry and the one-dimensional loading. Such a clear representation of the overshooting is

not possible in the present example due to the more complex geometry and loading. However, as

depicted in Figure 7.36, the resulting temperatures using mesh B are much higher compared to

the other meshes. Maximal temperature solutions are computed at t = 1.8 s, yielding for mesh

B TmeshB
max = 353.80 K compared to TmeshA

max = 239.31 K and TmeshC
max = 236.53 K for mesh A

and C, respectively. In Figure 7.37, the temperature solution near the front surface is shown for

all three meshes at t = 1.8 s for the TSVK material and the geometrically nonlinear analysis.

Again, the temperature solution of mesh B at the hot gas side is much higher compared to the

remaining meshes which is caused by an insufficient approximation of the temperature gradients

in y-direction. For instance considering point A at the front surface, the temperature gradients of

mesh A and C are (GradT )meshA
y = −64.66 K

mm
and (GradT )meshC

y = −72.26 K
mm

, respectively.

In contrast, the thermal gradients for mesh B are (GradT )meshB
y = −246.19 K

mm
, i.e. more than

three times higher compared to the two other meshes. Thus, spatial discretisation of the height lhg
with two elements is not sufficient. For the present loading it is noted, that the discretisation with

one single element (see mesh A) leads to better results compared to two elements. However, in

general it is recommended to choose more elements for spatial discretisation of lhg to guarantee

good quality of the computed results. Hence, for the following investigations good quality of the

results is pursued by exclusively utilising mesh A and C, while mesh B is not further applied.

Generalised-α time integration with various thermoelastic materials

In the following, the generalised-α scheme is chosen for time integration with spectral radius

ρ∞ = 0.5 for both fields. Hence, the resulting algorithmic parameters enable a second-order
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Figure 7.36: Rocket nozzle: temperature (left) and displacement in x-direction (right) over time

at evaluation point A at the front (z = 0), using geometrically linear and nonlinear

analyses, the TSVK material, and the three meshes.

Figure 7.37: Rocket nozzle: temperature solution at t = 1.8 s for a geometrically nonlinear

analysis and the TSVK material thermal applying mesh A (left), mesh B (middle),

and mesh C (right).

accurate and robust scheme for the coupled TSI problem. The subsequent simulation set-ups

include large deformations, finite strains and plasticity. Consequently, the accurate and robust

generalised-α time integration scheme is in particular appropriate for the following challenging

computations.

For the results above, the TSVK material with constant material parameters is used. Subse-

quently, the nozzle example including the TSVK material is extended to account for a temperature-

dependent Young’s modulus as proposed in Kuhl et al. [69]. The temperature-dependent Young’s

modulus is approximated by a linear relationship according to E = E(T ) = 148 GPa −
0.073 T 1

K
GPa. While “TSVK” denotes the thermoelastic Saint Venant-Kirchhoff material with

constant material parameters, “TSVK E(T)” corresponds to the TSVK material including the

temperature-dependent Young’s modulusE(T ), and finally “TESIMO” to the thermo-hyperelastic

material, respectively. The fine mesh C is chosen for the thermoelastic simulations. Figure 7.38

depicts the results for these thermoelastic materials at the back side: all thermoelastic materials

predict nearly the same temperature and displacement values over time. However, slight differ-

ences can be identified by zooming into a subinterval. This is realised in Figure 7.39, where

the corresponding results for temperatures and x-displacements are presented exemplarily for

the time interval t ∈ [1.1 s, 1.8 s]: the largest thermomechanical changes are computed for

the TESIMO material, while the lowest changes are obtained for the TSVK material with the
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Figure 7.38: Rocket nozzle: temperature (left) and displacement in x-direction (right) over time

at point A at the front (z = 0), using a geometrically nonlinear analysis, fine mesh

C, and different thermoelastic materials.
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Figure 7.39: Rocket nozzle: temperature (left) and displacement in x-direction (right) over time

interval [1.1 s, 1.8 s] at point A at the front (z = 0), using a geometrically nonlinear

analysis, fine mesh C, and different thermoelastic materials.

temperature-dependent Young’s modulus. In Figure 7.40, the corresponding stress distribution

for separate mechanical and thermal stresses, respectively, are shown for t = 1.8 s. At this time

the stresses reach their maximal values. From left to right, the stress results are depicted for

the TESIMO, the TSVK with E(T ), and the TSVK material, respectively. As explained previ-

ously, the thermal stresses, i.e. ST [GPa] in (5.30) and SdT [GPa] in (5.31), respectively, are

determined by the temperature difference ∆T defined as difference between current temperature

T and initial temperature T0. For the sake of clarification, the maximal and minimal value of

the current temperatures are also visualised in Figure 7.40. Thus, it is shown that the larger the

temperatures T , the larger the thermal stresses. For the present simulations, this implies that the

largest thermal stresses are computed for all materials at the hot gas side and, in particular, are

computed for the TESIMO material. In contrast, the lowest values are obtained for the TSVK

including E(T ). Consequently, inclusion of the temperature-dependent Young’s modulus E(T )
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7.2 Rocket nozzle

Figure 7.40: Rocket nozzle: thermal (top) and mechanical (bottom) stress distribution at t =
1.8 s using a geometrically nonlinear analysis, fine mesh C, and the three thermoe-

lastic materials, i.e. the results for TESIMO (left), TSVK with E(T ) (middle), and

TSVK (right). Back view of the body.

into the material model leads to smaller deformations and temperature changes, i.e. to a stiffer

deformation response.

Thermo-hyperelastic material using different solution strategies

Based on the results in Figures 7.38-7.40, where a geometrically nonlinear analysis with the

TESIMO material and the fine mesh C are utilised, in the following the influence of the different

fully coupled partitioned strategies is investigated. In this context, loosely and strongly coupled

partitioned algorithms are distinguished and moreover for the strongly coupled algorithms static

and dynamic relaxation of the temperature and the displacements, respectively, are considered.

The fastest solution is achieved with the strongly coupled partitioned TSI algorithm consid-

ering the Aitken ∆2 method and relaxation of the displacements with a maximal relaxation

parameter ωmax = 2.0. Hence, this solution scheme is defined as the reference for the other so-

lution schemes. Firstly, the loosely coupled approaches are analysed. Unlike the reference setup

utilising the Aitken method, the solution time requires 108.33 % and 125.66 % for a loosely

coupled partitioned approach with mechanical and thermal predictor, respectively. Secondly, the

strongly coupled partitioned algorithm without relaxation is considered. Neglecting relaxation at

all, this slows down the simulation time to 187.04 % compared to the reference simulation. Sub-

sequently, inclusion of static or fix relaxation with a fix relaxation parameter ω = 0.5 = const.
of the displacements and the temperatures requires 100.76 % and 167.13 %, respectively. Dy-

namic relaxation of the temperatures leaded to divergence of the simulation, so that for this setup

no solution time is presented.

Comparing the two relaxation methods, i.e. relaxation of the displacements with the relaxation

of the temperatures, the solution approach including relaxation of the displacements performs

more robust and more efficient. This is in accordance to Erbts and Düster [38], who investigated

strongly coupled partitioned TSI algorithms including dynamic relaxation of the displacements.

They also showed that this partitioned algorithm enabled the best and most efficient solution

approach for their numerical examples. For the sake of completeness, the computation of the

present setup with the monolithic TSI algorithm is slower and needs 116.25% of the dynamically

relaxed partitioned algorithm.
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Generalised-α time integration and combined thermoelastic /

thermo-elasto-plastic material

As explained in the introduction in chapter 1 and illustrated in Figure 1.1 (right), a rocket nozzle

has to withstand high thermal and mechanical loads which may lead to irreversible deformations.

To describe irreversible deformations, the elasticity is not sufficient to capture the whole defor-

mation behaviour. Consequently, plasticity needs to be integrated into the computational model.

As proposed in Kuhl et al. [69], the copper liner located at the inner hot gas side is assumed to

experience irreversible deformations so that plasticity needs to be taken into account. In contrast,

the nickel closure is assumed to be deformed only elastically. Hence, simulations are performed

which are based on the TSVK material for the nickel and the thermo-elasto-plastic materials

presented in section 5.3.2 for the copper. Table 7.6 summarizes the elastic material parameters.

In addition, the plastic parameters for small or finite strain thermo-elasto-plastic material will be

provided at the suitable place in the following.

For the solution of the plastic setup with the monolithic algorithm, the preconditioner strategy

changes. The default preconditioner strategy within the monolithic algorithm is the backward

BGS preconditioner, see (6.19)-(6.23). However, for the case of including plasticity into the TSI

model, a forward BGS preconditioner is applied instead, see (6.24), i.e. within the preconditioner

the structural field is solved first followed by the thermal field. This sequence is physically moti-

vated and assumes that the solution of the structural field, in particular caused by the mechanical

dissipation, has a higher influence on the temperature solution compared to the opposite effect

of thermal expansion.

Linear thermo-elasto-plastic material

The first plastic setup considers the linear thermo-elasto-plastic material model according to

section 5.3.2.1 for the copper and the TSVK material for the nickel within a geometrically linear

analysis. In addition to the elastic material parameters in Table 7.6, based on Kuhl et al. [69], the

plastic parameters are chosen to σy;0 = 0.232 GPa, H iso = 0.2 GPa and Hkin = 0.6045 GPa.

Herein, the kinematic hardening modulus Hkin is determined by

Hkin =
E T

E − T
, (7.7)

where the Young’s modulus E and the tangent modulus T are used and the latter is computed

to T = 0.602 GPa. Hence, mixed hardening is included for this simulation. To enable a good

resolution of the results, the fine mesh C is utilised.

Figures 7.41-7.43 depict the results of the given rocket nozzle configuration. The maximal

plasticity is computed at the back surface (z = 398.5 mm) at the bottom corners inside the

cooling channel, see Figure 7.41 (right). It is important to note, that these maximal values are

caused by singularities at the corners of the computational model introduced by the spatial dis-

cretisation: the finer the mesh, the more pronounced these singularities. The singularities lead to

unphysical peaks in the stress solution. Since plasticity is determined by the stress state, these

stress peaks lead to unphysical high plastic solutions. It is important to keep in mind, that in real-

ity the maximal plasticity does not occur at this corners but in the middle of the cooling channels

at the hot gas wall, i.e. at points A and B. However, for the sake of completeness, results are also
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7.2 Rocket nozzle

Figure 7.41: Rocket nozzle: displacement in z-direction at time t = 1.8 s using a geometrically

linear analysis, fine mesh C, the small strain thermo-elasto-plastic material for the

liner, and the TSVK material for the nickel jacket. The arrows mark the direction

of the heat flux (left). Deformed contour of the back with colour distribution of the

accumulated plastic strain at time t = 6.0 s (right).

shown for this corner point which is named evaluation point E. In Figures 7.41 (left), the distri-

bution of the z-displacements is drawn at time t = 1.8 s. As anticipated, at this point in time,

maximal z-displacements are reached at the back of the nozzle yielding uz;max = 1.928 mm.

Subsequently, Figure 7.42 shows for the z-direction the evolution of the total normal stresses,
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Figure 7.42: Rocket nozzle: total stresses Szz vs. time (left), stress-strain curve for second Piola-

Kirchhoff stresses Sxx versus Green-Lagrange strains Exx (middle), and accumu-

lated plastic strain ε̄p versus time (right) for the evaluation points A at the front and

back, as well as for point E at the back using a geometrically linear analysis, the fine

mesh C, the small strain thermo-elastoplastic material for the liner, and the TSVK

material for the nickel jacket.

i.e. Szz over time for the three evaluation points A at the front and the back (denoted “Front

A” and “Back A”), as well as for point E at the back (abbreviated to “Back E”). Since thermal

stresses are assumed to be isotropic and volumetric, firstly, identical values are computed for the

thermal normal stresses, i.e. ST;xx = ST;yy = ST;zz and secondly, the shear stresses are identical

to zero. The largest thermal stresses are obtained at point Back A with SBack A
T = −1.5546 GPa.

The largest mechanical stresses are computed at point Front A with SFront A
d = 1.5010 GPa. The

total stresses are obtained as sum of mechanical and thermal stresses, thus the point of maximal

total stresses can differ from the point of maximal mechanical or thermal stresses. Exemplarily,

in the middle of Figure 7.42, the stress-strain curves for the total second Piola Kirchhoff stresses

Sxx versus Green-Lagrange strains Exx are depicted. Here, the deformation of point Back E
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is the largest compared to the other two evaluation points with respect to largest stresses and

strains. Furthermore, the maximal stresses in z-direction are computed at point Back E with

SBack E
zz = −0.5305 GPa compared to SFront A

zz = 0.2268 GPa and SBackA
zz = −0.1054 GPa for

the evaluation points Front A and Back A, respectively. While the stresses at the back are com-

pression stresses, the stresses at the front are tensile stresses. Hence, considering the absolute

stress values, the point of maximal load is evaluation point Back E followed by point Back A

and the least results are obtained at point Front A. This is further confirmed by the other two

plots of Figure 7.42 where the results are the most pronounced for point Back E and the less for

point Front A. Hence, maximal plastic values are expected for point Back E which is confirmed

by the right plot of Figure 7.42, where the accumulated plastic strains ε̄p [−] versus time are

drawn.

Figure 7.41 (right) captures the final deformed shape of the body at the back and t = 6 s.
Although the applied loading is removed completely, the body still experiences significant de-

formations. For instance maximal and minimal y-displacements are in the range of uy;max =
1.6589 mm and uy;min = −0.0778 mm, respectively, and uy;max is computed at the thin wall

between hot gas and cooling channel. Thus, the shown deformation uy is nearly identical to the

plastic deformation. Slight changes are still observed due to the coupling to the temperatures,

which so far have not reached the steady state.

The level of stresses influences the plastic behaviour, i.e. the higher the stresses, the higher

the plastic values. The present example describes a fully three-dimensional problem, hence the

stress-strain curve of single stress and strain components, respectively, as illustrated in Fig-

ure 7.42, in general not allows for a statement of the overall deformation behaviour. To enable

a meaningful statement, especially about the location of maximal plasticity, in Figure 7.43 (left)

the von Mises stresses SvM, defined e.g. in Appendix B.3, are evaluated for the three previous

evaluation points. In addition, the results are visualised for point B for which the plastic values
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Figure 7.43: Rocket nozzle: von Mises second Piola-Kirchhoff stresses SvM (left), accumulated

plastic strain ε̄p (middle), and thermal hydrostatic pressure pT (right) over time

for points A and B at the front and back surface, and point E at the back using

a geometrically linear analysis, fine mesh C, the small strain thermo-elasto-plastic

material for the liner, and the TSVK material for the nickel jacket.

are maximal at the front surface. The value of the von Mises stresses SvM is maximal during

the hot run phase and reaches the largest values for point Back E followed by Front B. The

largest overall stress state is computed for point Back E which experiences the largest plasticity.

This is also confirmed by Figure 7.42 (right). However, the results at Back E are achieved as a

result of singularities caused by the fine spatial discretisation, thus the actual maximal physical
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7.2 Rocket nozzle

plasticity is computed at point Front B, see the accumulated plastic strains shown in the middle

of Figure 7.43. The von Mises stresses SvM are pressure invariant, i.e. the volumetric thermal

stresses do not influence the values of the von Mises stresses. Consequently, for the sake of com-

pleteness, the thermal stresses are illustrated in Figure 7.43 (right) by evaluating the hydrostatic

pressure pT of the thermal stresses ST defined as

pT =
1

3
trST . (7.8)

Again, the maximal thermal loadings are observed for point A which reach higher values at the

back compared to the front.

Robinson’s viscoplastic material

This setup integrates the linear Robinson’s viscoplastic material into the present nozzle example.

The parameters of the Robinson’s material model are not available for copper, however, in Arya

and Arnold [10], Robinson’s viscoplastic material is applied to a rocket thrust chamber, where

a so-called NARloy-Z copper alloy, i.e. silver-zirconium-copper alloy, is chosen. Furthermore,

in Bornemann and Wall [18], the NARloy-Z copper alloy is applied to a two-dimensional rocket

configuration and in Tini et al. [132] for a lifetime prediction. Hence, the NARloy-Z copper al-

loy, as proposed in Bornemann and Wall [18], is applied for the liner material in the present

simulation and the corresponding material parameters are summarized in Table 7.9. Herein,

ρ = 8, 890 kg
m3 ν = 0.34 αT = 0.0

E = E(T ) = 147.0 GPa− 7.05 · 10−2 T 1
K
GPa

G0 = 0.04 A = 1.385 · 10−8 1
s

a = 4

H0 = 1.67 · 104 MPa3 m = 4.365

Ř0 = 6.083 · 10−4 N
m2 ms2

Q0 = 40, 000 J
mol

Θ0 = 811.0 K

β = β(T ) = 0.8 + 0.553 · 10−6 T 2 1
K2

K2
0 = K2

0 (T ) = K2(T ) = 6.988 · 107 GPa2 − 6.7 · 10−8 T 1
K
GPa2

Table 7.9: Rocket nozzle: material parameters for the Robinson’s viscoplastic material.

the temperature-dependent material parameters H(T ) and R(T ) included in (5.54), (5.55) and

(5.53)2, respectively, are approximated according to

H(T ) = H0 6.895
β+1 1

3K2
0

, (7.9)

R(T ) = Ř0 (6.895)
1+β−m (3K2

0)
m−β exp

[

Q0

( 1

Θ0
− 1

T

)]

, (7.10)

respectively. In accordance with the previous set-ups, this configuration assumes the application

of the Robinson’s material assuming a NARloy-Z alloy for the copper and the TSVK for the
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nickel. Furthermore, the coarse mesh A is chosen with Hex27 elements to circumvent volumetric

locking.

In Figure 7.44 from top to bottom, the final distribution of the plastic strains εpyy, the to-

tal strains εyy, the y-displacements, and the temperatures are shown for the whole computa-

tional model at time t = 6 s. While the nickel jacket does not experience plastic deformations,

Figure 7.44: Rocket nozzle: from top to bottom: plastic strains εpyy, total strains εyy, y-

displacements, and temperatures at time t = 6.0 s using mesh A, Robinson’s mate-

rial for the liner, and the TSVK material for the nickel jacket.

maximal plastic values are obtained at z = 0 at the hot gas wall. At t = 6 s, the loading is

removed completely, thus the remaining deformations are again nearly identical to the plas-

tic deformations. Accordingly, maximal y-displacements are observed at this front surface with

uy;max = −0.0185 mm. In Figure 7.45, the deformed contour, scaled with a factor of 100, is

Figure 7.45: Rocket nozzle: deformed contour of the nozzle using a scaling factor of 100 to en-

hance the irreversible plastic deformations. The colour distribution shows the tem-

perature (top) and the total strains εxx (bottom) at t = 6 s using mesh A, Robinson’s

material for the liner, and the TSVK material for the nickel jacket.
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7.2 Rocket nozzle

depicted and focus is set on the front view of the model. The colour distributions show for end

time t = 6 s the temperatures T and the total strains εxx. Again, for this final deformation

state, the strains have its maximum at the hot gas side and due to the applied loadings the wall

thickness lhg is reduced. The present load cycle is not sufficient to represent irreversible effects

due to cyclic loading. However, the originally rectangular cooling channel deforms in direction

of a dog-house. As introduced in section 1.1 and visualised in Figure 1.1 (right), consequently

the tendency of the deformation seems to reproduce the correct physical behaviour, namely a

thinning of the hot gas wall in the form of a dog-house.

The present results are obtained using the monolithic approach. Furthermore, the correspond-

ing simulation using a strongly coupled partitioned approach including dynamic relaxation of

the displacements is additionally performed. As expected identical results are obtained, thus the

representation is exemplarily chosen to the monolithic results only. However, the computing time

for the solution of the partitioned TSI approach necessitates 124.65 % of the solution time of the

monolithic approach.

Finite strain thermo-hyperelasto-plastic material

Finally, a geometrically nonlinear analysis is performed using the meshes A and C. For material

modelling of the nozzle, the TSVK material is utilised for the nickel and the finite strain thermo-

hyperelasto-plastic material according to Simo and Miehe [122] (abbreviated to “SIMO”) for

the copper. To avoid volumetric locking, Hex8 elements including the F-bar method are used.

In addition to the elastic material parameters in Table 7.6, the plastic parameters are chosen as

follows: σy;0 = 0.232 GPa, σy;∞ = 0.715 GPa, ωh = ω0 = 0.002, and δ = 16.93.

In Figures 7.46 and 7.47, results are shown for the coarse mesh using monolithic and parti-

tioned solution algorithms. Equivalently to the previous set-ups, the strongly coupled iterative
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Figure 7.46: Rocket nozzle: temperature at points A-D (left) and normal strains at point A (right)

over time at the front surface (z = 0), using the coarse mesh A, the SIMO material

for the copper liner, and the TSVK material for the nickel jacket. Monolithic and

partitioned schemes are applied.

staggered scheme with Aitken relaxation of the displacements is applied with a maximal re-

laxation parameter ωmax = 2.0. As expected identical results are obtained for both schemes.
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Figure 7.47: Rocket nozzle: temperature (left) and x-displacement (right) over time at points

A-D at the back surface (at z = 398.5 mm) using the coarse mesh A, the SIMO

material for copper, and the TSVK material for nickel. Monolithic and partitioned

schemes are applied.

Moreover, solver times are compared showing that the monolithic one is 10% faster compared

to the partitioned one.

In the following, focus is set on the plastic behaviour. Hence, the illustration in Figure 7.48 is

restricted to the mechanical stresses Sd only. On the left of Figure 7.48, the stress-strain curve

for the mechanical second Piola-Kirchhoff stresses Sd;zz [GPa] versus corresponding Green-

Lagrange strains Ezz [−] is depicted for point A and z = 0. The nonlinear isotropic hardening

included in the SIMO material is illustrated by the nonlinear stress-strain relation, where the

stresses increase with respect to the strains in a nonlinear relation. For the illustration of the effect

of isothermal pure isotropic hardening, the reader is referred to section 7.1.1 and in particular to

Figure 7.2 (middle). Moreover, Figure 7.48 (right) shows the mechanical second Piola-Kirchhoff
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Figure 7.48: Rocket nozzle: stress-strain curve (mechanical stress Sd;zz over Ezz) at point A

(left) and normal stress Sd;yy over time (right) at points A-D at front surface (z = 0),

using the coarse mesh A, the SIMO material for the copper, and the TSVK material

for the nickel. Monolithic and partitioned schemes are applied.

stresses Sd;yy [GPa] versus time for the monolithic and the partitioned algorithm, respectively,
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7.2 Rocket nozzle

for all four evaluation points. According to the previous results, where only elastic materials are

employed, the highest stress values are reached at point A located at the hot gas side. Beyond,

Figure 7.49 and Figure 7.50 show for t = 6.0 s at the top and in the middle the thermal and the

mechanical stress distribution in y-direction, respectively, of the three-dimensional body. Due

to the temperature increase (see (5.74)), the thermal stresses are compression stresses which

reach the highest values at the hot gas side. In contrast, very small temperature changes ∆T
are computed (i.e. ∆T ≈ 0), thus leading to the smallest thermal stresses at the outer surface.

Furthermore, the mechanical stresses are mainly tension stresses whose largest values are at

the hot gas side. At the bottom of Figure 7.49 and Figure 7.50, the accumulated plastic strains

Figure 7.49: Rocket nozzle: normal thermal (top) and mechanical (middle) stresses, SdT;yy and

Sd;yy respectively, and accumulated plastic strain ε̄p at t = 6.0 s using the fine mesh

C, the SIMO material for copper, and the TSVK material for nickel.

ε̄p [−] are visualised as elementwise quantities for time t = 6 s. While the maximal plastic values

are computed for the coarse mesh at the smallest cross section at the inner hot side at z = 0,

the largest values for the fine mesh are computed at the bottom corners of the cooling channel

at z = 398.5 mm. This is in accordance with the small strain thermo-elasto-plastic material,

see e.g. Figure 7.41 (right) or Figure 7.42, and is caused by the fine spatial discretisation of

mesh C which leads to singularities at these corners. The singularities are not physical and are

not observable for the coarser mesh A, see the Figure 7.50 downright. This aspect is further

illustrated in Figure 7.51 on the right, where the accumulated plastic strains are depicted for the

fine mesh at the top and the coarse mesh at the bottom, respectively. While the corner elements

at the bottom of the cooling channels, denoted as point Back E in Figure 7.42, experience the

largest plastic deformations with ε̄p;BackE;mesh C = 0.1610, the corresponding values for the coarse

mesh are ε̄p;BackE;mesh A = 0.0273 compared to the maximal values of ε̄p;Front A;meshA = 0.0569
computed at point A at the front. Furthermore, Figure 7.51 shows on the left the final results of

the accumulated plastic strains ε̄p [−] at the end of the simulation for mesh A and C with focus

on the distribution at the front. It is noted that the scale in Figure 7.51 corresponds to the one
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Figure 7.50: Rocket nozzle: thermal (top) and mechanical (middle) stresses, SdT;yy and Sd;yy,

respectively, and accumulated plastic strain ε̄p at t = 6.0 s using the coarse mesh

A, the SIMO material for the copper, and the TSVK material for the nickel.

Figure 7.51: Rocket nozzle: accumulated plastic strains ε̄p using the fine mesh C (top) and the

coarse mesh A (bottom), front view (left) and back view (right), using SIMO mate-

rial for copper and the TSVK material for the nickel at end time t = 6 s.
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7.2 Rocket nozzle

of the coarse mesh. While the maximum of the accumulated plastic strains is predicted in the

middle of the hot gas side using the coarse mesh A, the distribution of the fine mesh is not so

pronounced at this location.

It is worth noting, that the present geometrically nonlinear including large deformations is

advisable. This can be emphasized by comparing the deformed final shape at time t = 6 s il-

lustrated in Figure 7.41 (right) and Figure 7.51 (right) applying a geometrically linear and a

nonlinear analysis, respectively. At the end of the simulation, for the linear, small deformation

analysis, e.g. the maximal displacement in y-direction results to be uGeoLiny;max = 1.6589 mm com-

pared to the corresponding values of the nonlinear analysis with uGeoNln;mesh C
y;max = 0.7223 mm

and uGeoNln;meshA
y;max = 0.5407 mm for the fine and coarse mesh, respectively. Since the remaining

displacements are not negligible, the use of a geometrically nonlinear analysis including large

deformations is more appropriate.

Finally, in accordance with Figure 7.43, the same measures are evaluated in Figure 7.52 for

the finite strain SIMO Material to highlight the point of maximal plasticity. In particular, on the

left side of Figure 7.52, the von Mises stresses over time, in the middle the accumulated plastic

strains over time, and finally at the right side, the thermal hydrostatic pressure over time are de-

picted. As expected, the values of ε̄p are the highest at point Back E and are more pronounced for
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Figure 7.52: Rocket nozzle: von Mises second Piola-Kirchhoff stresses SvM (left), accumulated

plastic strains ε̄p (middle), and thermal hydrostatic pressure pT (right) over time

for points A and B at the front and back surface, and point E at the back using a

geometrically nonlinear analysis, the fine mesh C, the SIMO material for the liner,

and the TSVK material for the nickel jacket.

the small strain material using a geometrically linear analysis compared to the present nonlinear

setup. Furthermore, the influence of the simulation setup for the thermal hydrostatic pressures

seems to be only marginal: the maximal values are computed for both at point Back E with

pGeoLinT = −1.5546 GPa for the linear analysis compared to pGeoNln
T = −1.5155 GPa of the

nonlinear analysis.

In summary, a successful numerical simulation of a realistic fully three-dimensional rocket

nozzle with combined mechanical and thermal loadings is presented. In particular, large defor-

mation TSI with complex finite strain thermo-hyperelasto-plasticity is simulated within a chal-

lenging three-dimensional geometry which is discretised with more than two million degrees of

freedom. In this context it is worth noting, that the creation of the geometry and subsequently of

the mesh needs to be realised carefully, for instance to circumvent an overshooting of the thermal

solution. Furthermore, the present geometry includes a rectangular cooling channel with angu-

lar corners. Thus, the angular corners in combination with the fine spatial discretisation and a

153



7 Examples

plastic material enhanced singularities in the solution. Exemplarily, as previously shown for the

fine mesh and the plastic materials, e.g. in Figure 7.51, at the angular corners stress singularities

arise, which in turn lead to unphysical peaks in the plastic solutions. Hence, instead of angular

corners more smoother corners should be pursued to resolve the issues of the singularities.

For the sake of completeness, also simpler configurations for computing elastic and small

strain thermo-elasto-plastic distributions with and without temperature-dependent material pa-

rameters are considered. Furthermore, two additional coarser meshes are utilised. Although even

these simpler approaches perform well, the proposed finite strain thermo-hyperelasto-plastic ma-

terial model with the fine mesh represents the most general approach. In particular, when a given

realistic configuration is investigated for the first time, the more comprehensive model can be

used to either justify the use of simpler models in subsequent numerical studies or to show that

such simpler approaches are not applicable due to the importance of integrating irreversible pro-

cesses into the model or due to the necessity of a fine spatial discretisation with large numbers

of elements yielding realistic results and preventing overshooting of the solution. Finally, the

present nozzle example is computed with the monolithic Newton-Krylov method with problem-

dependent preconditioner as well as with different partitioned algorithms. It is emphasized that

the partitioned algorithms can be used as an alternative to the monolithic algorithm. However,

for a general TSI problem, the monolithic approach is the method of choice and its superiority

is demonstrated in numerous configurations.
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8 Summary and outlook

In this thesis, a comprehensive numerical model for the volume-coupled problem of thermo-

structure interaction (TSI) has been developed. It is aimed at improving the understanding of

the complex interactions and strong coupling effects in rocket nozzles in flight conditions. For

this purpose, a general computational modelling approach to TSI has been realised, which in-

cludes all coupling terms and features the main aspects of a nonlinear thermomechanical solid

simulation.

The present approach for coupled TSI problems has been exclusively based on the finite el-

ement method for both structural and thermal field, yielding two independent discretisations.

While the structural field was already available in the in-house finite element solver BACI, the

first step of the present work has introduced the thermal field into BACI, including various el-

ement formulations and time integration schemes. Subsequently, the coupled TSI problem has

been established by a conforming equal-order finite element approach for both fields. Further-

more, with different time integration schemes available for structural and thermal field, respec-

tively, a broad spectrum of stable, usually implicit schemes has been realised for the target TSI

problem.

For modelling rocket nozzle structures, various isotropic, temperature-dependent, elastic as

well as elastoplastic materials for small and finite strains, respectively, have been applied. With

regard to irreversible deformations, for instance von Mises plasticity has been chosen. Further-

more, first steps towards including damage into the present computational model have been

accomplished using Lemaitre’s isothermal, small strain material model.

For solving a TSI problem, various partitioned and monolithic solution strategies have been

proposed. On the one hand, different loosely and strongly coupled partitioned algorithms, some

of them including acceleration techniques in form of, e.g. the Aitken ∆2 method, have been im-

plemented. On the other hand, a novel monolithic Newton-Krylov approach with a block Gauss-

Seidel (BGS) preconditioner and an algebraic multigrid (AMG) method for approximating the

tangent matrices KSS and KTT has been developed. This preconditioning strategy has been called

BGS(AMG). It has been shown that both partitioned and monolithic algorithms enable solu-

tions of TSI problems. However, for several problem configurations, monolithic schemes have

exhibited improved robustness compared to partitioned schemes, enabling the computation of

a broader spectrum of physical parameters. Furthermore, in contrast to partitioned schemes,

monolithic schemes have turned out to be considerably faster. Hence, it has been demonstrated

that the monolithic TSI algorithms are superior to strongly coupled partitioned schemes, even

if acceleration techniques are utilised for the latter ones. This is in agreement to the preced-

ing work of Gee et al. [47], where the coupled problem of fluid-structure interaction (FSI) was

investigated using similar approaches. Moreover, the significant problems usually observed for

partitioned algorithms, such as conditional stability of loosely coupled schemes and slow con-

vergence of strongly coupled schemes, respectively, have been circumvented by utilising the

proposed monolithic algorithm. Consequently, as a result of thorough comparison, the mono-
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8 Summary and outlook

lithic Newton-Krylov approach with problem-specific preconditioner is the method of choice

and has been shown to be superior for solving challenging TSI problems.

The model has been tested for six meaningful numerical examples, where the first examples

have been considered for validating the different (temperature-dependent) elastoplastic mate-

rial models for small and finite strains, respectively, possibly including ductile damage. Sub-

sequently, for validation of the TSI algorithms, the proposed method has been applied to the

second Danilovskaya problem. Finally, a fully three-dimensional rocket nozzle of a subscale

thrust chamber has been computed. In this example, various aspects such as solution strategy,

material modelling, time integration, high performance computing with large numbers of degrees

of freedom have been combined in one complex simulation. It has been shown for all numerical

examples that the numerical solutions for displacements and temperatures are in good agreement

with results in the literature. Differences to other numerical studies have been discussed and at-

tributed to, e.g. deviating modelling assumptions such as the computation of a two-dimensional

problem in contrast to a fully three-dimensional analysis or alternative expressions for the cou-

pling terms, such as the mechanical dissipation and the yield criterion.

Consequently, a broad spectrum of exemplary TSI applications have been investigated in this

work, ranging from geometrically linear analysis with small strain thermoelastic materials to ge-

ometrically nonlinear analysis with finite strain thermo-hyperelasto-plastic materials. After all,

it has been demonstrated that the proposed computational model is robust and provides accurate

results. Among others, realistic three-dimensional problem configurations have been considered,

illustrating that the method can be applied to complex geometries, which is essential for simu-

lating real-world rocket configurations.

In summary, a comprehensive and validated computational model for truly general thermo-

mechanical solid problems has been successfully established. Nevertheless, there is still room

for improvements with regard to several aspects, which were only marginally covered in this

thesis or not addressed at all. Hence, selected concepts for improving the individual building

blocks, such as the overall TSI solution strategy or the material formulation and its efficient

local solution will be briefly addressed in the following.

With regard to the monolithic TSI algorithm, the overall monolithic Newton-Krylov method

can be notably accelerated by improving the preconditioners. For instance in Gee et al. [47], an

alternative preconditioning approach, named AMG(BGS), was proposed for FSI problems. In

this approach, within one single algebraic multigrid V-cycle, independent Gauss-Seidel iterations

on each grid level were used. For FSI, this preconditioner was shown to further improve the field

coupling compared to the alternative BGS(AMG) approach in many cases. Thus, in addition to

the utilised BGS(AMG) approach, a similar AMG(BGS) approach may also be developed for

the TSI problem discussed in this work and investigated in the future. Apart from improving

the preconditioners of the monolithic TSI algorithm, in Gee et al. [46], the pseudo-transient

continuation (ψTC) strategy has been developed for structural dynamics and has shown to enable

a more robust solution compared to standard exact Newton methods. Consequently, the exact

Newton method of the monolithic TSI approach may be replaced by a ψTC strategy such that,

e.g. larger time steps may be applied.

Further potential improvements concern, in particular, TSI problems including irreversible,

plastic deformations. Irreversible deformations imply the solution of the plasticity at each Gauss

point. In the present work, plasticity is solved using an elastic predictor/plastic corrector scheme.

However, as proposed in Seitz et al. [116] for isothermal finite strain plasticity, an alternative,
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more efficient strategy using a semi-smooth Newton method combined with global nonlinear

complementary (NCP) functions enables superior, more robust behaviour over classical return-

mapping algorithms. Hence, the overall TSI simulation may be accelerated by replacing the

classical return-mapping at each Gauss point with such a semi-smooth Newton method with

NCP functions. Furthermore, in the context of thermoplasticity, additional improvements can be

realised with respect to the finite element technology utilised to circumvent volumetric locking.

For instance according to Simo and Miehe [122], element technology may be considered in both

fields. Hence, for example the F-bar method may be extended to the (mechanical) coupling terms

in the thermal equation. Since locking is caused by parasitic stresses, which are derived from the

constitutive law, the coupling terms, which also follow from the constitutive law, may be treated

in a more consistent way.

Besides improvements of the solution of plasticity, future work may be concerned with other

extensions of the material formulations. For instance Lemaitre’s material model for isothermal,

ductile damage may be enhanced. Exemplarily, following the material model of Schwarz et al.

[114], which is aimed at predicting the dog-house failure in rocket nozzles, Lemaitre’s ma-

terial model may be extended to temperature-dependent, anisotropic damage, including mixed

isotropic and kinematic hardening as well as the so-called crack-closure effect. The crack-closure

effect takes into account the closure of microcracks under compression loadings by separating

the effective stresses in tensile and compression parts. Furthermore, anisotropic damage is de-

scribed by a second-order damage tensor D instead of the scalar-valued damage variable D
utilised in this work. In addition, for the sake of universal validity, the damage material model

may be extended to finite strains, see e.g. Tini et al. [132] and Vladimirov et al. [139].

So far, a so-called matching grid approach has been utilised for the present TSI model. How-

ever, since the TSI model has been based on separate discretisations for both fields, the ex-

tension to non-matching grids represents another potential future step. Due to a manifold of

reasons, e.g. different resolution requirements in the different physical fields, non-conforming

or non-matching grids would be advantageous. In Klöppel et al. [67], non-matching interface

grids were realised for the surface-coupled problem of FSI by applying a dual mortar method.

Non-matching grids for the volume-coupled TSI problem might also be based on mortar meth-

ods, which is already part of current research at the Institute of Computational Mechanics. It is

expected that non-conforming grids will substantially increase the flexibility and the efficiency

of the coupled TSI solution.

Furthermore, first steps towards integrating thermomechanical aspects into the problem of

nonlinear contact dynamics, such as wear, were already realised in Gitterle [49] by combining

the present model with a mortar method for contact dynamics. Further work in this context will

broaden the applicability of the present TSI model towards additional multiphysics problems.

Finally, for a comprehensive study of the target system of a rocket nozzle in real flight condi-

tions, the influence of the fluid field is of course not negligible. Hence, the present TSI approach

is currently combined with a fluid solver to enable the simulation of thermo-fluid-structure in-

teraction (TFSI) problems. First steps towards TFSI were already presented in Hammerl et al.

[53] and Grilli et al. [52], where the present TSI model was combined with a compressible flow

solver within a loosely coupled scheme.
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A Material parameters and units

SI units

Length metre [ m]
Mass kilogram [ kg]
Time second [ s]
Temperature kelvin [ K]

Derived units

Bar [ bar] [100 kPa = 105 kg
ms2

]

Joule [ J] [ Nm = m2 kg
s2

]

Newton [ N] [ mkg
s2

]

Pascal [ Pa] [ N
m2 = kg

m s2
]

Watt [W] [ 1
K
]

Material parameters and their units

Density ρ [ kg
m3 ]

Force f [ N = mkg
s2

]

Power P [W = J
s
= m2 kg

s3
]

Energy ψ, e, ζ, ξ [ J = Nm = m2 kg
s2

]

Entropy η [ J
K
= m2 kg

s2 K
]

Stress σ [ Pa = N
m2 = kg

m s2
]

Work W [ J = Nm = m2 kg
s2

]
Coefficient of thermal expansion αT [ 1

K
]

Heat capacity CV [ J
kgK

= m2

s2 K
]

Heat flux q [ W
m2 = kg

s3
]

Heat transfer coefficient h [ W
m2 K

= kg
s3 K

]
Kinematic heat transfer coefficient h̄ = h

ρCV
[ m
s
]

Stress-temperature modulus m0 [ N
m2 K

= kg
m2 Ks2

]

Thermal conductivity k [ W
mK

= mkg
s3 K

]

Thermal diffusivity κ̄ = k
ρCV

[ m
2

s
]
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B Tensor calculus

B.1 Basic laws

Scalar products of tensors

A : B = B : A commutative law

A : (B + C) = A : B + A : C distributive law

(αA) : B = A : (αB) = α (A : B) associative law

A : (B ·C) = (BT ·A) : C = (A ·CT) : B

(B.1)

Symmetric tensors

A = AT

A =
1

2
(A + AT)

(B.2)

Transposed tensors

(AT)T = A

(A + B)T = AT + BT

(A ·B)T = BT ·AT

(A ·B) : I = B : AT = BT : A

(B.3)

Inverse tensor

A ·A−1 = A−1 ·A = I

(A−1)T = (AT)−1 =: A−T

(A ·B)−1 = B−1 ·A−1

(B.4)

B.2 Voigt or matrix notation

Physical quantities are often described by higher-order symmetric tensors. In this context, the

Voigt or matrix notation enables an alternative and simplified way to write these tensors. Given
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B Tensor calculus

is a symmetric second-order matrix A (B.2). Using the matrix notation, the tensor A can be

converted to a one-dimensional vector according to

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 =





A1 A4 A6

· A2 A5

· · A3



 =











A1

A2

A3

A4

A5

A6











, (B.5)

where the order in the vector is a matter of convention. Consequently, the Voigt or matrix notation

enables to represent a symmetric second-order tensor as a six-component vector.

In case the Voigt notation is utilised for the symmetric second-order tensors stress or strain,

as e.g. the Cauchy stress tensor σ and the corresponding Euler-Almansi strain tensor EEA, some

special conventions need to be taken into account. First, the Cauchy stress tensor reads

σ =





σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33



 =





σ1 σ4 σ6
· σ2 σ5
· · σ3



 =











σ1
σ2
σ3
σ4
σ5
σ6











. (B.6)

Subsequently, a scaling factor has to be introduced when converting the strain tensor EEA into

Voigt notation. The shear components of the strain tensor, i.e. the off-diagonal components of

the tensor, are converted such that they correspond to the engineering shear strains. Hence,

EEA =





EEA;11 EEA;12 EEA;13

EEA;21 EEA;22 EEA;23

EEA;31 EEA;32 EEA;33



 =





EEA;11
1
2
γ12

1
2
γ13

1
2
γ21 EEA;22

1
2
γ23

1
2
γ31

1
2
γ32 EEA;33





=





EEA;1 2EEA;4 2EEA;6

· EEA;2 2EEA;5

· · EEA;3



 ,

(B.7)

where 1
2
γ12 = EEA;12, 1

2
γ23 = EEA;23,

1
2
γ13 = EEA;13 are the engineering shear strains. Subse-

quent conversion to the vector notation yields

EEA =











EEA;11

EEA;22

EEA;33

EEA;12 + EEA;21

EEA;23 + EEA;32

EEA;13 + EEA;31











=











EEA;11

EEA;22

EEA;33

2EEA;12

2EEA;23

2EEA;13











=











EEA;1

EEA;2

EEA;3

2EEA;4

2EEA;5

2EEA;6











. (B.8)

The benefit of using different representations for stress and strain in matrix notation is the scalar

invariance

σ ·EEA = σij EEA;ij = σiEEA;i . (B.9)
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B.2 Voigt or matrix notation

The additional factor 2 of the last three components of the strain matrix enables that the scalar

product of stress and strain is identical to the inner tensor product of the stress and strain tensor.

This relation is only valid for the scalar product of stress and strain, but not for scalar products

in general.

The elasticity law σij = Cijkl : EEA;kl is written in tensor notation by

σ = CCC : EEA (B.10)

and equivalently follows using the matrix notation by

σ = CCC EEA (B.11)

which requires conversion of the fourth-order tensor CCC into a (6× 6)-matrix, so that

CCC =











C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66











(B.12)

leading to the elasticity constitutive equation in matrix notation










σ11
σ22
σ33
σ23
σ13
σ12











=











C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





















EEA;11

EEA;22

EEA;33

2EEA;12

2EEA;23

2EEA;13











. (B.13)

In order to preserve the product relation of tensors, the components Cpg of the matrix are related

to the components of the tensor CCC (i.e. Cijkl) through an appropriate mapping. For instance the

two components C11 or C14 of the matrix are related to the corresponding tensor entries by

C11 = C1111 , or 2C14 = C1112 + C1121 . (B.14)

Including these relations, exemplarily the stress component σ11 yields

σ11 = C1111
︸ ︷︷ ︸

C11

EEA;11 + C1122
︸ ︷︷ ︸

C12

EEA;22 + C1133
︸ ︷︷ ︸

C13

EEA;33+

+ C1112 EEA;12 + C1121 EEA;21
︸ ︷︷ ︸

C14 2EEA;12

+

+ C1123 EEA;23 + C1132 EEA;32
︸ ︷︷ ︸

C15 2EEA;23

+ C1113 EEA;13 + C1131 EEA;31
︸ ︷︷ ︸

C16 2EEA;13

= C11 EEA;11 + C12 EEA;22 + C13 EEA;33+

+C14 2EEA;12 + C15 2EEA;23 + C16 2EEA;13

(B.15)

The above relations are utilised in the implementation in BACI in the context of constitutive

material modelling for stress, strain, and the material tangent CCC = CCC mat.
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B.3 Transformations

In the following, transformations of stress- and strain-like tensors, as e.g. the symmetric, second-

order stress tensors Cauchy stress σ and Euler-Almansi strain tensor EEA, as well as special

identity tensors are summarized. Furthermore, some special tensor products applied within the

calculation of the material tangent CCC mat are given.

Split of a tensor in deviatoric and volumetric parts

A second-order tensor σ can be split in its deviatoric part devσ and volumetric part σv by

σ = devσ + σv = devσ +
1

3
(trσ) I , (B.16)

tr (devσ) = 0 , (B.17)

where the latter represents the characteristic condition of deviatoric tensors devσ.

Equivalent von Mises stress

The equivalent von Mises stress of a stress tensor σ is a common scalar-valued measure in

engineering applications which is defined, e.g. in (3.97). Additionally, various alternative forms

of the equivalent von Mises stress are available, as for instance

σvM= q

=
√

σ2
xx + σ2

yy + σ2
zz − σxx σyy − σxx σzz − σxx σzz − σyy σzz + 3 (τ 2xy + τ 2xz + τyz) .

(B.18)

Invariants of a second-order tensor

In the following, the invariants of a second-order tensor, as e.g. the stresses σ are calculated by

I1 = trσ = σ11 + σ22 + σ33 = σkk , (B.19)

I2 =
1

2
[(trσ)2 − tr (σ · σ)] = 1

2
[I21 − (σ · σ) : I] = 1

2
(σii σjj − σij σji) , (B.20)

I3 = detσ =
1

3
σij σjk σki . (B.21)

Based on (B.16), the invariants of the stress deviator s = devσ are summarized

J1 = tr s = s11 + s22 + s33 = skk = 0 , (B.22)

J2 =
1

2
[(tr s)2 − tr (s · s)] = 1

2
s : s =

1

2
sij sji , (B.23)

J3 = det sij =
1

3
sij sjk ski . (B.24)

The stress deviator (2.49) is utilised in particular within the plastic material modelling, see e.g.

section 3.4.2.
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B.3 Transformations

Mappings using an isotropic fourth-order tensors

In continuum mechanics, a symmetric isotropic fourth-order tensor III σ is frequently used, which

is defined as

III σ =
1

2
(III + III

T) → (III σ)ijkl =
1

2
(δik δjl + δil δjk) . (B.25)

This tensor maps any second-order tensor (here σ) into its symmetric part, according to

III σ : σ = σ : III σ = sym (σ) . (B.26)

i.e. the tensor remains unchanged due to the mapping. Furthermore, the deviatoric projection

tensor III d follows as

III d ≡ III σ − 1

3
I ⊗ I , (B.27)

which projects a second-order symmetric tensor (like the stress tensor σ) into the deviatoric

subspace, i.e. into the space of traceless tensors:

III d : σ = devσ . (B.28)

In the following, the fourth-order identity-tensors are summarized in matrix notation (cf. sec-

tion B.2) by

III σ =











1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1











, (B.29)

III ♯
σ =











1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
0.5 0 0

0.5 0
0.5











, (B.30)

I ⊗ I =











1 1 1 0 0 0
1 1 0 0 0

1 0 0 0
0 0 0

0 0
0











, (B.31)

III d = III σ − 1

3
(I ⊗ I) =














2
3

−1
3

−1
3

0 0 0

2
3

−1
3

0 0 0

2
3

0 0 0
1 0 0

1 0
1














. (B.32)
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Hereby, the fourth-order tensor III ♯
σ (B.30) is utilised, e.g. within the material call to compute the

material tangent in connection with the Voigt notation. As previously mentioned in section B.2,

the material tangent CCC mat is applied to a strain tensor, as e.g. the Euler-Almansi strain tensor EEA.

Utilising the Voigt notation, the tensors are transformed to matrices, i.e. the fourth-order material

tangent tensor is transformed to a matrix of dimension 6 × 6 and the strain tensor to a vector of

dimension 6 × 1. Furthermore, to correctly describe the strain state, the shear strains are scaled

with a factor 2, see (B.8). Accordingly, to compute the stresses correctly, the identity matrix III ♯
σ

(B.30) is employed instead of identity matrix III σ (B.29). Otherwise, the shear stresses would be

the double of the actual result.

Special tensor products

According to Holzapfel [58], two special tensor products can be distinguished. By assuming a

tensor, for instance the symmetric second-order right Cauchy-Green deformation tensor C, to

be invertible and smooth, the tensor products follow as

−(C−1 ⊙C−1)ijkl = −1

2
(C−1

ik C−1
lj + C−1

il C−1
kl ) =

∂C−1
ij

∂Ckl
, (B.33)

(C ⊗C)ijkl = (Cij Ckl) . (B.34)
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C Differentiation

C.1 Basics

Based on section 2.1, useful relations in the context of linearisations will be summarized in this

appendix. Herein, the initial position X (2.1), the displacements u (2.2), and the deformation

gradient F (2.3) will be utilised. Moreover, in the context of line elements (2.5) of reference and

current configuration, dX and dx, respectively, will be used.

Kinematic relations of the deformation gradient

F =
dx

dX
= GradX + u = I + Gradu

F−1 =
dX

dx
= gradx − u = I − gradu

F−1 =
∂X

∂x
=

∂X

∂x

( ∂x

∂X

∂X

∂x

)

= F−1 · F · F−1

(C.1)

Mappings

Gradu = gradu · F

GradT u = F T · gradT u

gradu = Gradu · F−1

gradT u = (Gradu · F −1)T = F−T ·GradT u

(C.2)

C.2 Derivatives of functions

In the present section useful derivations for functions of different order are summarized.

Scalar function y(x) of a scalar argument x(u)

y(x) = x2 −→ ∂y(x)

∂u
·∆u = 2 x0 ·∆u (C.3)
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C Differentiation

Scalar function y(x) of a vector argument x(u)

y(x) = x · x −→ ∂y(x)

∂u
·∆u = 2x · ∆u

y(x) = ||x|| −→ ∂y(x)

∂u
∆u =

x

||x|| ·∆u

(C.4)

Scalar function y(X) of a tensor argument X(U)

y(X) ≡ X : X −→ ∂y(X)

∂U
·∆U = 2X : ∆U

y(X) ≡ ||X|| −→ ∂y(X)

∂∆U
·∆U =

X

||X|| : ∆U

(C.5)

C.3 Collection of linearisations

This section will give an overview of useful linearisations. The section will be split into a part

where derivations with respect to the continuous displacements u and with respect to the discrete

displacements d, respectively, will be presented.

Basic linearisations with respect to continuous displacements

Prerequisite for all following linearisations is the following relation:

∂Gradu

∂u
=

∂2u

∂x⊗ ∂u
= 0 , using the relation

∂u

∂u
= 0 . (C.6)

For a consistent linearisation of the present problem of thermo-structure interaction the fol-

lowing linearisations are used:

Linearisations of the deformation gradient

∂F

∂u
=

d

dǫ
Grad (x + ǫu)

∣
∣
ǫ=0

= Gradu

∂F T

∂u
=

d

dǫ
GradT (x + ǫu)

∣
∣
ǫ=0

= GradT u

∂F−1

∂u
= −F−1 ·

(∂F

∂u

)

· F−1 = −F −1 ·Gradu · F−1 = −F −1 · gradu

∂F−T

∂u
=

(∂F −1

∂u

)T

= (−F−1 · gradu)T = −gradT u · F−T

(C.7)

∂J

∂u
=

∂J

∂F
:
∂F

∂u
= J F−T : Gradu = J I : Gradu · F−1 = J divu (C.8)

The virtual displacements δu are arbitrary so that they do not contribute to the linearisation.

Thus, derivatives of the virtual displacements δu and the general scalar-valued and vector-valued
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C.3 Collection of linearisations

mechanical quantities, χ and χ, respectively, introduced in section 2.3.1, follow as

∂(grad δu)

∂u
= (Grad δu) · F−1 = −(grad δu) · gradu

∂(gradχ)

∂u
= Gradχ ·

[ ∂F−1

∂u

]

= −(gradT u) · gradχ

∂(gradχ)

∂u
=

[ ∂F−T

∂u

]

·Gradχ = −(gradT u) · gradχ

(C.9)

Linearisations of the right Cauchy-Green deformation tensor

∂C

∂u
=

∂

∂u
(F T · F ) = F T ·Gradu + GradT u · F = 2 sym (F T ·Gradu)

∂C−1

∂u
=

∂

∂u
(F−1 · F−T) = −F−1 · (gradu + gradT u) · F−T

(C.10)

For (C.10)2, the following relations are included

C−1 = F−1 · F−T = F−1 · I · F−T

= (F−1 · F ) · F−1 · F−T · (F T · F−T)
= F−1 · (F−T · F T) · (F · F−1) · F−T

= C−1 ·C ·C−1 .

(C.11)

Linearisations of the Green-Lagrange strain tensor

∂EGL

∂u
=

∂

∂u

[1

2
C
]

=
∂

∂u

[ 1

2
(F T · F )

]

= sym (F T ·Gradu)

∂δEGL

∂u
=

1

2
[GradT δu ·GradT u) + GradT δu ·Gradu]

(C.12)

Collection of further linearisations

Using (2.7), derivatives of the Jacobi determinant J with respect to deformation measures result

in

∂J

∂F
=

∂(detF )

∂F
= J F−T

∂J

∂C
=

1

2
J C−1

∂J2

∂C
= J2 C−1

J̇ =
∂J

∂t
= J div u̇ F−1 = J tr d =

∂J

∂C
: Ċ = J C−1 :

1

2
Ċ

(C.13)
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Basic linearisations with respect to discrete displacements

Linearisations of the deformation gradient

The discrete elementwise deformation gradient F is defined as

F = BL d , (C.14)

including the linear gradient operator BL, often denoted the so-called linear B-operator. Further-

more, within the nonlinear finite-element method the nonlinear B-operator B is utilised which is

given as

B = FT BL . (C.15)

Thus, the following linearisations are based on (C.14) and (C.15). Linearisation of the deforma-

tion gradient F with respect to the discrete displacements d yields

∂F

∂d
= BL . (C.16)

Subsequently, linearisations required for the present TSI model are summarized:

∂Ḟ

∂d
=

∂Ḟ

∂d
= BL

∂ḋ

∂d

∂J

∂d
= J F−T : BL

∂(div ḋ)

∂d
= Grad ḋ (−F−1 ∂F

∂d
F−1) = −BL

∂ḋ

∂d
F−1BL F

−1

(C.17)

Linearisations of the right Cauchy-Green deformation tensor

∂C

∂d
= FT BL + BT

L F = B + BT = 2 sym(B)

∂Ċ

∂d
=

∂Ḟ
T

∂d
F + FT ∂Ḟ

∂d
= 2 sym

[

FT
(

BL

∂ḋ

∂d

)]
(C.18)

Linearisations of the Green-Lagrange strain tensor

∂EGL

∂d
=

1

2

∂C

∂d
=

1

2
(B + BT) = sym(B)

∂δEGL

∂d
=

∂EGL

∂F
: δF =

1

2
(δFT F + FT δF)

(C.19)
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D Details on material formulations

D.1 Small strain elastoplastic material including ductile

damage

Based on the Lemaitre material model presented in section 3.4.2.4, the so-called full Lemaitre

material is formulated in the following. The model of section 3.4.2.4 considers pure isotropic

hardening, hence it is often called simplified Lemaitre material model. In contrast, the full

Lemaitre model includes mixed hardening, i.e. in addition to the isotropic hardening, this model

is extended to account for kinematic hardening. Hence, it is defined in the following internal

variables αk and their corresponding thermodynamical forces Ak specified each to

αk = {εp, R,Z, D} , Ak = {−σ, κ,β,−Y } , (D.1)

respectively. Herein, in addition to (3.147), the tensor-valued variable Z and its conjugated ther-

modynamical force, the back stress tensor β appear to enable kinematic hardening. Exemplarily,

the thermodynamic potential in form of the Helmholtz free energy reads

ρ0 ψ(ε
e, R,Z) = ρ0 ψ

ed(εe, D) + ρ0 ψ
p(R,Z) , (D.2)

with the elastic damaged and the plastic potential,

ρ0 ψ
ed(εe, D) =

1

2
εe : [(1 − D)CCC e

mat] : ε
e , (D.3)

ρ0 ψ
p(R,Z) = σy;∞

[

R − [1 − exp(−δ R)]
] 1

δ
+

1

2
aZ : Z , (D.4)

respectively. In (D.4), the saturation hardening yield stress σy;∞ with σy;∞ ≥ σy;0, the hardening

exponent δ > 0, and an additional material parameter a are utilised. The saturation hardening

yield stress σy;∞ can be identified with the maximal stress σm in Figure 3.2. Based on (D.4),

the full Lemaitre material model enables exponential isotropic hardening behaviour including

saturation and softening. The relation (3.151) is still valid with R = γ̇ = ε̄p for an undamaged

load step, i.e. D ≡ 0. Subsequently, the von Mises yield function is assumed to

Φ =
√

3 J2(seff − β) − σy(R) =
√

3 J2(ηeff) − σy(R) ≤ 0 , (D.5)

where based on (3.144) and (3.153)1, the effective relative stresses ηeff and the effective relative

von Mises equivalent stresses read

ηeff = seff − β , q̃eff =

√

3

2
||ηeff || , (D.6)
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D Details on material formulations

respectively. The yield stress σy is given according to (3.154). The flow vector considers (3.93)

and (D.5) and follows as

N =
∂Φ

∂σeff

=

√

3

2

seff − β

||seff − β|| =

√

3

2

ηeff

||ηeff ||
, (D.7)

where the evolution of the back stress is determined by the nonlinear Armstrong-Frederik law

β̇ = (1 − D) (a ε̇p − b ε̄p β) , (D.8)

where b is an additional material parameter.

In section 3.4.2.4, a solution of the ductile damage model could be achieved using a very

efficient strategy which enabled the reduction of the solution of the given system of equations

to the solution of one single equation (3.158). Unlike the Lemaitre material of section 3.4.2.4,

the full Lemaitre material model considers the back stresses in the system of equations which

is described by equation (D.5), (D.8), (3.146), and (3.156). As shown in (D.8), the back stress

tensor β depends on the plastic multiplier via the accumulated plastic strains and on the damage.

Consequently, further nonlinearities are introduced into the given system of equations, so that an

equivalent efficient approach such as the one presented in section 3.4.2.4 is not realisable for the

full Lemaitre material model. In contrast, a system of equations has to be solved. Furthermore,

in Doghri [34], an alternative strategy for the solution of the full Lemaitre model is proposed,

which utilises explicit updating schemes. Hence, it enables a solution without solving a system

of equations.

D.2 Finite strain thermo-hyperelasto-plastic material

In section 3.4.2.5, the isothermal and in section 5.3.2.3, the corresponding non-isothermal ma-

terial model, respectively, for finite strain elastoplasticity are presented. Since in these sections

only the final results are summarized, details about selected terms and derivations are explained

in more detail in this section.

Determination of the thermo-hyperelasto-plastic heating term

First, the derivations of the thermo-elasto-plastic heating term Hep, see (5.76), are considered.

Based on (5.13), the spatial version reads

∫

Ω

Hep
cur dV :=

∫

Ω

ρ T
[ 1

2 ρ0
m0

(Je 2 + 1

Je

)

trD − 1

ρ0

∂κ(ε̄p, T )

∂T
˙̄εp
]

dV , (D.9)

where the index (·)cur emphasizes the reference to the current configuration. Via pull-back of

Hep
cur the material version Hep is achieved. For the pull-back of (D.9), the relations (2.8), (2.54),

(2.27), and

I = F ·C−1 · F T (D.10)
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D.2 Finite strain thermo-hyperelasto-plastic material

are considered. Subsequently, including these equations and rearranging the equation yields
∫

Ω

Hep
cur dV

=

∫

Ω0

T
ρ

J ρ

[1

2
m0

(Je 2 + 1

Je

)

(F ·C−1 · F T) : (F−T · ĖGL · F−1) − ∂κ(ε̄p, T )

∂T
˙̄εp
]

J dV0

=

∫

Ω0

T
[m0

2

(Je 2 + 1

Je

)

C−1 : ĖGL − ∂κ(ε̄p, T )

∂T
˙̄εp
]

dV0 ≡
∫

Ω0

Hep dV0 ,

(D.11)

i.e. the material version of the thermo-elasto-plastic heating term Hep (5.76) is received.

Linearisations of the thermo-hyperelasto-plastic material

In the following, details about the resulting linearisation terms are provided. All presented quan-

tities refer to the current time tn+1 if no explicit index is specified.

For the application of Newton’s method and in the context of consistent linearisation, the

linearisation is performed with respect to discrete quantities, i.e. with respect to the discrete

displacements d and temperatures T.

However, to derive the theory of a material model it is common and in particular easier to

express all relations in their continuous forms, see exemplarily section 5.3.2.3, where the stress

and the corresponding material tangents are specified as continuous measures, i.e. continuous

stresses and material tangents CCC mat and CT according to (3.200) and (5.86), respectively. The

actual solution using the finite element method is computed based on discrete quantities, hence

the terms are fully discretised, which then leads, for instance to the consistent tangent operators

required for quadratic convergence.

Mechanical linearisations

In particular, subsequent explanations concern the derivation of the material tangent CCC mat. First,

the derivations with respect to the plastic multiplier ∆γ, i.e. (3.209), are considered. For this

derivation, it is exploited that an admissible plastic step is computed in the return-mapping,

assuming ∆γ 6= 0, and that the resulting admissible state is the projection of the trial stress state

onto the yield surface with Φ̌ = 0. Hence, at the end of the time step tn+1 and based on the

fulfilled yield criterion (3.185) including (3.203), it follows

Φ̌
!
= 0 = ||strial|| − 2 µ̃∆γ −

√

2

3
σy (D.12)

using

σy = σy;0(T ) + κ(ε̄p, T ) . (D.13)

Thus, based on (D.12), consistent linearisation with respect to the Euler-Almansi strains is per-

formed, yielding

0 =
∂||strial||
∂EEA

− 2
∂µ̃

∂EEA

∆γ − 2 µ̃
∂∆γ

∂EEA

−
√

2

3

∂σy
∂EEA

, (D.14)

173



D Details on material formulations

where the last term is determined by

∂σy
∂EEA

=
∂σy;0(T )

∂EEA
︸ ︷︷ ︸

≡0

+
∂κ(ε̄p, T )

∂EEA

=
∂κ(ε̄p, T )

∂ε̄p
∂ε̄p

∂∆γ

∂∆γ

∂EEA

, (D.15)

and the last term in (D.15) can be simplified according to (3.187) leading to

∂ε̄p

∂∆γ
=

√

2

3
. (D.16)

Inserting the previous relations into (D.14), and rearranging with respect to ∂∆γ
∂EEA

, results in

∂∆γ

∂EEA

=

[∂||strial||
∂EEA

− 2
∂µ̃

∂EEA

∆γ
]

2 µ̃ +
√

2
3

∂κ(ε̄p, T )

∂ε̄p

√
2
3

=

[∂||strial||
∂EEA

− 2
∂µ̃

∂EEA

∆γ
]

2 µ̃ + 2
3

∂κ(ε̄p, T )

∂ε̄p

. (D.17)

The coefficient β0, defined in (3.213) for the isothermal mechanical analysis, follows for the

non-isothermal case as

β0 = 1 +
1

3 µ̄

∂κ(ε̄p, T )

∂ε̄p
. (D.18)

This relation is used, e.g. in (5.79) and implicitly in the material tangents (3.201) and (5.88). The

coefficient β0 can be inserted into (D.17), so that the equation reduces to

∂∆γ

∂EEA

=

[∂||strial||
∂EEA

− 2
∂µ̃

∂EEA

∆γ
]

2 µ̃ β0
, (D.19)

which represents the basic equations for (3.209). The linearisation in (D.19) is performed with

respect to the strains EEA. However, the actual linearisation is performed with respect to the

primary variables, i.e. the displacements. Hence, for instance the linearisation of the plastic mul-

tiplier ∆γ with respect to the displacements u follows as pull-back of (D.19) and applying

the chain rule. Furthermore, instead of the spatial deformation measure, the material Green-

Lagrange strain tensor EGL is used, so that the linearisation results in

∂∆γ

∂uk
=

∂∆γ

∂EGL;IJ
:
∂EGL;IJ

∂uk
, (D.20)

where the first term of the right side is identified as part of the material tangent CCC mat and the

second term is obtained as a result of the chosen deformation measure with respect to the primary

variable displacements according to (C.12)1. Using the pull-back of (3.209) and (C.10)1, the

linearisation finally reads

∂∆γ

∂uk
=

1

β0

[(

1 − 2 qtrial∆γ

3 µ̄

)

N +
qtrial

µ̄
F−1 ·dev [N 2

cur]·F−T
]

·sym (F T ·Gradu) , (D.21)

Accordingly, the linearisation of the accumulated plastic strain is achieved by scaling (D.21)

with the factor

√
2
3
.

174



D.2 Finite strain thermo-hyperelasto-plastic material

Thermal linearisations

Based on (5.86), the thermal material tangent CT evolves as a result of linearising the stresses

with respect to the temperatures. Equivalently to the derivation of the material tangent tensor

CCC mat, the thermal material tangent CT is derived considering (5.26). As previously shown for the

plastic multiplier, the complete linearisation term is computed with respect to discrete quantities.

Correspondingly, based on (4.19) the full linearisation comprises

∂(·)
∂T

=
∂(·)
∂T

∂T

∂T
=

∂(·)
∂T

NT , (D.22)

where the matrix of the thermal shape functions NT is used.

In accordance with the previously presented contribution of the plastic multiplier for the me-

chanical matrix block KSS, included e.g. in (6.5), the corresponding thermal linearisation terms

for matrix KST are determined. Starting point is again (D.12) which is fulfilled for an admissible

plastic solution step. Subsequent linearisation with respect to the temperatures T results in

0 =
∂||strial||
∂T

− 2
∂µ̃

∂T
∆γ − 2 µ̃

∂∆γ

∂T
−

√

2

3

∂σy
∂T

, (D.23)

where the last term is specified by

∂σy
∂T

=
∂σy;0(T )

∂T
+
∂κ(ε̄p, T )

∂T
+
∂κ(ε̄p, T )

∂ε̄p
∂ε̄p

∂∆γ

∂∆γ

∂T
, (D.24)

where (5.77) is included. The trial deviatoric stresses strial and the deformation-dependent Lamé

constant µ̃ are temperature-independent, thus these terms vanish. Subsequently, including the

relations (5.80), (5.81), (5.82), and rearranging the resulting equation with respect to ∂∆γ
∂T

, yields

∂∆γ

∂T
=

√

2

3

(
∂σy;0(T )

∂T
+
∂κ(ε̄p, T )

∂T

)

−2 µ̃ − 2

3

∂κ(ε̄p, T )

∂ε̄p

=

√

2

3

∂σy;0(T )

∂T
+
∂κ(ε̄p, T )

∂T
2 µ̃ β0

, (D.25)

which recovers the equation presented in (5.79).

Application of the F-bar method

The computation of a TSI problem including finite strain thermo-hyperelasto-plastic material

behaviour requires the use of element technology. In the present work, to prevent volumetric

locking issues, the F-bar method in conjunction with three-dimensional (tri-)linearly interpolated

hexahedral elements is applied. For more details on the F-bar method, the interested reader is

referred to section 3.2.1.2.

As a result of the F-bar method, a modified internal force vector (3.25) is obtained. For re-

alisation of the consistent linearisation this modified internal force vector is considered, hence

leading to a modified, different tangential system K̄. As explained in section 3.2.1.1, the consis-

tent tangential matrix K is composed of elementwise contributions K(e) by the assembly of these
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D Details on material formulations

elementwise terms into the global matrix K. Accordingly, the global modified tangential matrix

K̄ is determined by elementwise contributions K̄
(e)

, which are based on (3.25). Moreover, the

temperature-dependent finite strain material is considered, thus the purely mechanical vector in

(3.25) is extended to

f
(e)
int;S =

∫

Ω
(e)
0

(detF0

detF

)− 1
3

δET : S̄(d,T) dV0 (D.26)

with the second Piola-Kirchhoff stress (5.74) which depends on the deformations d and the

temperatures T. In the following, the stresses are split into

S̄(d,T) =
K

2
(J̄e 2 − 1) C̄

−1
+ F̄

−1 · (µ dev B̃e
) · F̄−T

︸ ︷︷ ︸

S̄d

+

+
m0

2
∆T

( J̄e 2 + 1

J̄e

)

C̄
−1

︸ ︷︷ ︸

S̄dT

,
(D.27)

which differs from the split in (5.74), but which summarizes the isothermal purely mechanical

model of section 3.4.2.5 in the mechanical stresses S̄d. Furthermore, in (D.27), the modified

deformation gradient F̄ is utilised.

The stresses (D.27) depend on the displacements d and the temperatures T, hence consistent

linearisation leads to contributions for the purely mechanical block K̄SS as well to the mechanical

coupling block K̄ST. The derivations of S̄d for K̄SS for the current element, i.e.

K̄
(e)
SS;d =

∂

∂d

[ ∫

Ω
(e)
0

(detF0

detF

)− 1
3

δET S̄d dV0

]

(D.28)

are straightforward and are explained in detail, e.g. in Tsoukalas [137] assuming an isothermal

finite strain elastoplastic material model. Hence, the representation is restricted here to the final

expression, leading to

K̄
(e)
SS;d =

∫

Ω
(e)
0

(detF0

detF

)− 1
3
BT

L S̄dBL dV0−

−
∫

Ω
(e)
0

1

3

(detF0

detF

)− 1
3
BT S̄dH

T dV0 +

+

∫

Ω
(e)
0

(detF0

detF

) 1
3

BT
CCC matCHT dV0+

+

∫

Ω
(e)
0

1

3

(detF0

detF

) 1
3
BT

CCC matB dV0 ,

(D.29)

with the linear and nonlinear B-operators, BL and B, introduced in (C.14) and (C.15), respec-

tively, and the discrete form of the mechanical material tangent CCC mat. Furthermore, the matrix
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D.2 Finite strain thermo-hyperelasto-plastic material

H is given in index notation by

(H)j =
(detF0

detF

)−1 ∂

∂dj

(detF0

detF

)

= (F−1
0 )Ii (BL;0)iIj − (F−1)Ii (BL)iIj . (D.30)

For the present thermo-hyperelasto-plastic material, additional terms arise for K̄ in contrast to

Tsoukalas [137]. For instance contributions arise for the structural or mechanical block K̄SS

due to the thermal stresses S̄dT and for the coupling matrix K̄ST due to the the temperature-

dependence of the yield stresses, see (5.71)-(5.73) included in the isochoric stresses
¯̃
Sd. First,

the additional terms for K̄
(e)
SS are considered, i.e.

K̄
(e)
SS;T =

∂

∂d

[ ∫

Ω
(e)
0

(detF0

detF

)− 1
3
δET S̄dT(d,T) dV0

]

, (D.31)

which result in

K̄
(e)
SS;T =

∫

Ω
(e)
0

(detF0

detF

)− 1
3
BT

L S̄dT BL dV0−

−
∫

Ω
(e)
0

1

3

(detF0

detF

)− 1
3
BT S̄dT H

T dV0+

+

∫

Ω
(e)
0

(detF0

detF

) 1
3

BT
CCC mat;v;T CHT dV0+

+

∫

Ω
(e)
0

1

3

(detF0

detF

) 1
3
BT

CCC mat;v;T B dV0 ,

(D.32)

where the discrete temperature-dependent mechanical tangent CCC mat;v;T based on the continuous

form (5.85) is utilised. Finally, the total matrix is composed as sum of (D.29) and (D.32), i.e.

K̄
(e)
SS = K̄

(e)
SS;d + K̄

(e)
SS;T . (D.33)

Subsequently, the linearisation with respect to the temperatures T are investigated resulting in

contributions for the matrix block K̄ST. In this context it is worth mentioning, that this cou-

pling matrix block K̄ST only evolves for the case of the monolithic TSI algorithms introduced in

section 6.3. The linearisation of the terms for K̄
(e)
ST is computed according to (D.28) by

K̄
(e)
ST =

∂

∂T

[ ∫

Ω
(e)
0

(detF0

detF

)− 1
3
δET S̄(d,T) dV0

]

=

∫

Ω
(e)
0

(detF0

detF

)− 1
3
δET ∂S̄(d,T)

∂T
dV0 , (D.34)

i.e. the stresses are the only temperature-dependent component of the internal force vector (3.25).

Based on (5.86), (5.87), (5.88), and (D.27), the linearisation of the stresses is expressed as

∂S̄(d,T)

∂T
=

∂S̄d(d,T)

∂T
+
∂S̄dT(d,T)

∂T
= ¯̃

CT NT + C̄T NT . (D.35)
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D Details on material formulations

Herein, C̄T and
¯̃
CT are the discrete versions of (5.87) and (5.88), respectively. Furthermore, NT

denotes the matrix containing the shape functions of the temperature field included in (D.22).

Thus, the coupling matrix for the current element is determined by

K̄
(e)
ST =

∫

Ω
(e)
0

(detF0

detF

)− 1
3

BT ¯̃
CT NT dV0 +

∫

Ω
(e)
0

(detF0

detF

)− 1
3

BT C̄T NT dV0 . (D.36)

Finally, the global matrices are composed by assembly of the elementwise contributions, i.e.

K̄SS =

nele∑

e=1

K̄
(e)
SS , K̄ST =

nele∑

e=1

K̄
(e)
ST . (D.37)
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[3] F. M. Andrade Pires, J. M. A. César de Sá, L. Costa Sousa, and R. M. Natal Jorge, Nu-

merical modelling of ductile plastic damage in bulk metal forming, International Journal

of Mechanical Sciences 45, 273–294, 2003.

[4] F. M. Andrade Pires, E. A. de Souza Neto, and J. L. de la Cuesta Padilla, An assessment

of the average nodal volume formulation for the analysis of nearly incompressible solids

under finite strains, Communications in Numerical Methods in Engineering 20, 569–583,

2004.
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