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ABSTRACT

Bayesian updating using structural reliability methods (BUS) is applied to calibrate the
simple hydrological abc model to observations of a hypothetical real world case. The
assumed hypothetical real world is chosen such that the abc model cannot represent it
perfectly. The likelihood function is expressed in terms of the measurement error and
the modeling error. The probability distributions of both errors are only approximate,
due to a lack of knowledge about the true behavior. The correlation structure of the
modeling error is regarded as partially uncertain and inferred in the updating process.
It is highlighted that under the presence of modeling errors, the predictive distribution
of the model output is not the same as the predictive distribution of the true discharge.

INTRODUCTION

In hydrological model calibration long time series of relevant observed rainfall and
discharge are commonly available (Beven 2009). Due to the spatial and/or temporal
structure of the observed process, there is a dependency in the data that should not
be neglected. Additionally, hydrological models can be rather complex (e.g. non-linear
behavior, a single model run might already be computationally demanding) and include
several parameters that have to be calibrated. All of these characteristics increase the
complexity of the numerical treatment of the calibration process. If Bayesian model
calibration is applied to infer the parameters of the model based on available observa-
tions, often the problem is tackled by means of Markov Chain Monte Carlo (MCMC)
methods (Gilks et al. 1996; Gelman et al. 2003).

In this contribution we present a different approach, termed BUS, that transforms
the updating problem to a structural reliability problem and uses techniques from struc-
tural reliability to perform the updating (Straub and Papaioannou 2014). To demonstrate
that BUS is a rather flexible method, we express the likelihood in terms of the measure-
ment error and the modeling error, and learn not only the parameters of the model but
also the correlation in the modeling error.



BAYESIAN MODEL CALIBRATION

Let M denote a probabilistic model class with uncertain model parameters 8 € RY.
Model calibration aims at learning the uncertain parameters © based on observed
behavior d of the system of interest. However, the parameters © cannot be determined
explicitly for the following two reasons: First, the true behavior d of the system of
interest is different from the observed behavior d. Second, none of the models in M
can represent reality perfectly, because nature is too complex to be described exactly
by any model.

Considering the two points stated above, the engineer responsible for conducting
the calibration can ask herself: How well can the observations d be explained by a
certain set of parameters ©? This question can be formalized as the likelihood function
L(6]d) = f(d|®), i.e.: What is the probability of observing d given some parameter
set ©? Note that, due to our imperfect understanding of the real world, assumptions
have to be made when formulating the likelihood. Consequently, the synthesis of model
and likelihood function represents the belief of the engineer on how the system that is
observed should be described within a Bayesian framework.

The available observations d represented through their likelihood L(8|d) can be
used to learn the parameter vector © through Bayes’ theorem as:

f(01d) = - L(0|d) f(e) 1)

CMm

where f(0|d) is the posterior distribution of the parameters given the observations,
f(0) is the prior distribution of the parameters, and c,4 acts as a scaling constant:
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The difficulty in Bayesian updating is that usually samples of © cannot be drawn
directly from the posterior distribution f (6 |&) Commonly, Markov chain Monte Carlo
(MCMC) methods are used to sample from the posterior f (9|El) (Gilks et al. 1996;
Gelman et al. 2003). The problem with MCMC methods is that the samples used after
an initial burn-in phase may not have reached the stationary distribution of the Markov
chain (Plummer et al. 2006). An alternative approach that applies structural reliability
methods to draw samples from the posterior distribution was proposed by Straub and
Papaioannou (2014). The advantage of this technique is that methods from structural
reliability can be readily applied to perform Bayesian model calibration.

BUS: Bayesian updating using structural reliability methods

Let P be a standard uniform random variable defined on the interval [0, 1]. Combin-
ing P with the uncertain parameter vector 0 to be learned gives the augmented outcome
space [0, p|. Note that for the joint probability density function of {0, p} the following
relation holds: f(0,p) = f(0) - f(p) = f(0), since f(p) = 1; therefore, f(6,p) and



f(0) will be used interchangeably. Furthermore, let the domain €2 be defined as
Q= {p<cL(0|d)} 3)

where c is a positive constant such that c¢L (0 |a) < 1 for all 0. Straub and Papaioannou
(2014) showed that
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and, consequently, Eq. (1) can be written as:
- Joeq 1(0)dp
0|d) = —< 5
f(e[d) Toen J(©)dpd0 (5)

The denominator in Eq. (5), denoted p, € (0;1], constitutes a structural reliability
problem with limit-state function ¢(0,p) = p — cL(G]a) (Straub 2011). The scaling
constant ¢y defined in Eq. (2) is linked to p, through cpy = p,/c. The limit-state
function is defined such that if the outcome [0, p| is in €2, then ¢(0,p) < 0 will hold;
and if the outcome is not in €2, then ¢(0,p) > 0. The important point is that samples
generated from the prior distribution f(0) will be distributed according to the posterior
£(©]d) if they fall into the domain 2 (Straub and Papaioannou 2014).

The simplest application of this idea is the rejection sampling algorithm (Smith and
Gelfand 1992, Straub and Papaioannou 2014) for drawing K samples from the posterior
distribution:

1. Setcounter k = 1.
2. Propose a sample [0 p(*)]:
(a) Draw 0*) from the prior distribution f(8).
(b) Draw p*) from the standard uniform distribution defined on [0, 1].
3. If g(8™, p®)) < 0:
(a) Accept the proposed sample [0, p(¥)].
(b) Increase the counter £k = k£ + 1.
4. Gotostep2aslongask < K.

The above algorithm is equivalent to applying Monte Carlo simulation for solving a
structural reliability problem with limit-state function g(0, p). The simulation continues
until K failure events are observed. On average, the procedure needs to be repeated
K /p, times, where p, is the probability of accepting a proposed sample; i.e. p, =
Pr[g(0™, p*)) < 0]. If the posterior distribution does not match the prior distribution
well, p, becomes small and renders the algorithm inefficient. However, as Straub and
Papaioannou (2014) pointed out, other structural reliability methods can be used instead
of the simple rejection sampling algorithm.

In this paper, subset simulation (SuS) is applied to perform the reliability analysis.
SuS was proposed by Au and Beck (2001) and is an adaptive Monte Carlo method that
is efficient for estimating small probabilities in high dimensional problems. The domain



Q) is expressed as the intersection of M intermediate nested domains Z;, where Z, C
Zy C Zy C ... C Zy = €. The domains Z; are defined as the sets {g(0,p) < b;},
where by = 0o > by > by > ... > by = 0 holds. SuS starts with drawing /N, random
samples from the prior distribution f(0). These samples are realizations from 7. The
scalar b; 1 is picked as the p;-percentile from the list of values of ¢(0, p) that belong to
the IV, realizations of Z;, where p;, is usually chosen equal to 10% in each step. If the p;-
percentile is negative, b, ;1 is set to zero and py is set to the fraction of negative values in
the list. Consequently, p; - N, realizations of Z; are also realizations of Z; ;. In order to
obtain N realizations of Z;, 1, Markov chain Monte Carlo (MCMC) methods are used
to generate (1—p;)- N, additional samples of Z; 1, where the p,- N original realizations
of Z; 1 are used as seed values for the Markov chains. The described iterative process
is continued until b; = by; = 0. Note that samples from the domain 7, follow the
posterior distribution. Let K denote the number of samples to be generated from the
posterior distribution. If X' > N, the MCMC sampling at the Mth iteration step is
continued until A (and not only N;) realizations from the domain Z,; are available.
For a more detailed description of the sampling procedure, the reader is referred to
Straub and Papaioannou (2014).

APPLICATION TO THE SIMPLE HYDROLOGICAL abc MODEL

We apply Bayesian updating by means of structural reliability methods (BUS) to a
hypothetical hydrological example, inspired by the model discussed in Beven et al.
(2008). Our aim is to infer the parameters of the simple hydrological abc model by
means of Bayesian model calibration. We assume that measurements of past rainfall
and discharge are available, where the measurements are not exact due to measurement
errors. Moreover, the true discharge is generated by a model different from the abc
model.

The abc model is introduced in the next section. Thereafter, we discuss the hypo-
thetical real world case, i.e. the model that was used to generate the rainfall data, the
discharge data and the measurement errors. Using hypothetical data has the advantage
that the computed model output can be compared to the fictitious truth. Following this
section, we set up the Bayesian updating problem; i.e. we define the prior assumptions
and the formulation of the likelihood function. Finally, the results obtained by means
of the Bayesian model calibration are presented and discussed.

Assumed model to be calibrated
The abc model has three parameters (a, b and ¢) and two equations:
Qt:(l—a—b)~7’t+c~5t (6)
Sipi=1—c¢)-Si+a-r (7

where (), is the discharge at time-step ¢, r; is the rainfall at £ and S; is an assumed
storage of water at t. The parameter a € [0, 1] describes the proportion of rainfall



that enters the storage, b € [0,1] is the proportion of rainfall that is lost due to
evapotranspiration, and c is the proportion of water seeping from the storage. When
selecting a and b, the condition a + b < 1 must be maintained. Besides the three
parameters, the initial storage S; at t = 1 has to be determined.

The hypothetical real world case

In this section we describe how the hypothetical real world was modeled. This
includes generation of true rainfall, the errors attached to the rainfall and discharge
measurements, and the hydrological model that evaluates the true discharge given the
true rainfall.

The true rainfall was generated by a model similar to the one used in Mantovan and
Todini (2006) and described in Beven et al. (2008): At each time-step, the probability
that a rainfall event starts is 10%. If a rainfall event is triggered at time-step ¢, it lasts k;
time-steps, where £; follows a Poisson distribution with a mean of five. Let 7, ; denote
the rainfall at time-step ¢ due to a rainfall event that started at time-step ¢ — ¢, where

1 =0,1,...,k — 1 and k; is the duration of the rainfall event triggered at time-step
t — i. The value r; o follows a Gamma distribution with a mean of 400 and a variance
of 800. The r,; with¢ =1, ...,k — 1 follow a Gamma distribution with a conditioned

mean of 0.35-74,_1,,—1 and a conditioned variance of 0.7-7;,,_; ;1. The actual rainfall
ry at time-step ¢ is the superposition of all rainfall events that are active at time-step ¢.

The true discharge was computed based on the true rainfall by means of the
following model:

Qt:(l—a—b)-rt—i—c-st (8)
St+1:(l—c—d)'st+a‘rt+€‘Rt (9)
Rt+1:(1—€—f)'Rt+d'St (10)

where S and R are two storages, parameters a, b and c¢ are equivalent to the ones used
in the simple abc model, parameter d is the proportion of water that goes from storage
S to storage R, e is the proportion of water that goes from storage R to storage .S, and
f 1is the proportion of water that is leaking from storage R to underground flow. The
parameters that represent the real world were fixed as: a = 0.3, b = 0.65, ¢ = 0.06,
d =0.02,e = 0.025, f = 0.02, S; = 200, R; = 200. Note that the hypothetical real
world model is run for 200 time-steps before the recording of rainfall and discharge
measurements begins, to diminish the influence of the initial condition.

The rainfall measurement errors are generated as follows: between the mea-
sured rainfall 7, and the true rainfall r,, the relation In(7) = In(ry) + &4
holds. The error term ¢, is described by a moving-average model as &.; =
5v/In(0.124+1) (& + &1 + &—2) — 35In(0.1> + 1), where the & are uncorrelated
standard normal random variables. Note that exp(e,.) is a log-normal random variable
with a mean value of 1.0 and a standard deviation of 0.1; the measurement error of
the current time-step is correlated with the measurement errors of the two previous
time-steps.



For the discharge measurement errors the following relation between measurement
¢ and true discharge ¢; is assumed: ¢; = ¢; - (0.85 + 0.008¢; — 0.00008¢7) - £4,+, Where
the €4, are independent Gamma distributed random variables with a mean of 1.0 and a
standard deviation of 0.02.

Formulation of the updating problem

The Bayesian updating problem is formulated assuming that the engineer who
conducts the analysis does not have perfect knowledge of the physics that drive the
real world. The prior distributions of a, b, c and S, are assumed as: b is Beta-distributed
on [0; 1] with « = 4 and = 3, a is Beta-distributed on [0; 1 —b] with & = 8 and § = 3,
c is Beta-distributed on [0; 1] with @ = 1 and 8 = 10, and S, is Gamma-distributed with
a mean of 300 and a standard deviation of 100.

For calibrating the model, N, = 500 consecutive rainfall and discharge measure-
ments are available. The error in the rainfall measurements is modeled as r; = 7 - &4,
where r; is the true rainfall, 7, is the measured rainfall, and &, is a correlated
log-normal distributed error term with a mean of 1 and a standard deviation of 7.
The standard deviation 7 is assumed uncertain; its prior is a log-normal distribution
with a mean of 0.1 and a standard deviation of 0.1. The error term is modeled as
e = exp (/In(n? +1) - xry — 5 In(n* + 1) ), where the x., are correlated standard
normal random variables. The x. . are described by the following autoregressive model
of order 1: vy = ¢ - Xrt—1 + (;» Where (; are uncorrelated normal random variables
with zero mean and /1 — 2 standard deviation. The value of ¢ € [0;1] is assumed
uncertain with a uniform prior distribution.

Let O, be a vector that contains the 506 uncertain parameters
{a;b;¢;S0;m;0;C1, ..., Cs00) of the model. Furthermore, let Gy <9M,ar> be

the vector of the discharge computed by the model, where d, is a vector that
contains the observed rainfall. Assuming that the discharge is always larger than
zero, the computed discharge is linked to the observed discharge d4q through the
equation Eid = Gy (9 M,EL) - €, where € i1s a multiplicative error that contains
both measurement and modeling errors. Using a transformation based on the natural
logarithm, the error € can be written as the difference ¢}, = id .y <9 M (~lr>, where
€m, lg, Ly denote the log-transforms of e, dy, G, respectively. The dependency on
the modeling and measurement error can be stated explicitly by expressing €, as

€ = (Id — ld) + (ld - lM (eMa ar)) = €lnm T+ €M (11)

where l4, €, A and €y, 1y are the log-transforms of the unknown true discharge dg, the
modeling error and the measurement error of the discharge. Modeling the two errors



separately, the likelihood function can be expressed as:
L (0adledr) = 7 (Lfd 0ar) = [ £ (1oLl 020)
_ / 7 (Tafte) £ (1a]d, 0,00 (12)
. / Feuw (l=16) fope (le— Lt (000 d) ) dla - (13)

where fe, . fe. ., are the joint probability density functions of €, m, €i,0. Here we
implicitly assume that the modeling error and the measurement error are independent.

The measurement and the modeling error are formulated separately to obtain the
predictive distribution of the unknown true discharge d, (or rather its log-transform 1ly).
Alternatively, the likelihood could also be expressed directly through the measurement
error fg, . if € a4 is included in the vector of model parameters 0 o. As a consequence,
samples from the predictive distribution of 1; would be directly available through poste-
rior samples of 0 .. However, such an approach renders the numerical treatment of the
updating problem more demanding compared to formulating the likelihood according
to Eq. (13), because the likelihood of the problem has a stronger peak. The disadvantage
of expressing the likelihood through Eq. (13) is that the predictive distribution of 1,
denoted by fj,, is not readily available. The predictive distribution f;, can be obtained
as

fu (flad) = [ £ (Wflad000) fou, ([l d) do (14)

where fo,, (9 M|id,&r> is the posterior distribution of the model parameters, and
the distribution of f (ldﬁd, d,, o M) can be deduced from f (id, ld‘ar, 0 M) up to a

proportionality constant for fixed 14 and d,. The predictive distribution f;, expresses
our posterior belief on how the log-transform of the unknown true discharge in the
calibration phase 14 is distributed.

Let the predictive distribution of the log-transform of the discharge in the pre-
diction phase l;, be denoted by fj, . Furthermore, let Elr,p denote the vector of
observed precipitation in the prediction period, and let ©, be a vector that con-
tains the parameters (501, . - ., (oo describing the uncertainties of the observed rain-
fall during the prediction step. Using the relations stated in Eq. (11), we can write

f <ld,p|ld7id7 ara ar,p7 GM, ep) = f <€ln,M,p‘€ln,Ma ar,p7 ep>, where €ln,./\/t,p is the 1Og'
transform of the modeling error in the prediction phase. The probability distribution of
14, can be expressed as:

fldm (ld,pﬁdaaraar,p> = ///f (&n,M,p‘sln,Maar,wep)

f ([l dr, 80 < fo, (8p) - fo, (Baefla i) dBydBualy  (15)



Table 1. Prior mean ;' and prior standard deviation o', and posterior mean ;"
and posterior standard deviation o” of the driving parameters of the model.

Parameter 74 ! o’ o
3.1-107¢ 2.6-1071 1.4-1071 2.1-1073
b 5.7-107¢ 6.8-1071 1.7-1071 2.4-1073
c 9.1-1072 6.8-1072 8.3-1072 5.7-10*
So 3.0 - 102 3.4- 102 1.0 - 102 1.1- 10!
n 1.0-1071 6.7-1072 1.0-1071 1.3-1072
© 5.0-107¢ 8.3-1071 2.9-107¢ 1.3-1071
le nr 1.0- 10! 1.4-10! 5.0 - 10° 7.0-107t

In this study f,, , and fc, ,, are chosen to have a multivariate normal distribution
with zero mean. The distribution f, . is modeled with a uniform standard deviation of
0.03, and fe, ,, is modeled with a uniform standard deviation of 0.08. The correlation
structure of f, . is defined as pe, . (i,7) = exp(—(i — j)?/2°), where i, j are the
indices of the corresponding entries in the random vector with distribution f, . For the
correlation structure of f, ,, the following model is used: All time-steps are grouped
into periods depending on whether it is raining or not. A period of no-rain starts when
the observed rainfall is below 40, and the rain-period starts when the observed rainfall
is above 40. Entries of a random vector that has distribution f,, ,, with indices ¢, j are
uncorrelated if ¢ and j belong to different periods. If 7 and j are in the same period, the
following exponential correlation structure is applied: pe, ,,(i,7) = exp (—|i — j|/I¢),
where [, = 2 for rain periods and [ ,, for no-rain periods is assumed to be uncertain
with a log-normal prior distribution that has a mean of 10 and a standard deviation of
5. As a consequence, ., has to be added to the parameter vector O 4.

Results and discussion

The length of the calibration phase is 500, the duration of the consecutive prediction
phase is 300 time-steps. The true discharge, measured discharge and measured rainfall
were obtained by means of the described hypothetical real world model. For the ob-
tained observations, the updating problem was solved with the BUS approach; i.e. it was
transformed to a structural reliability problem that has 508 random variables and was
solved by means of subset simulation. 1 - 10 random realizations were drawn from the
posterior distribution. These realizations were used to estimate the posterior mean and
standard deviation of the parameters listed in Table 1. Note that the parameters a and b
are strongly correlated: their prior correlation is —0.91, and their posterior correlation
1s —0.96. The posterior uncertainty of all parameters listed in Table 1 is considerably
reduced compared to their prior uncertainties. However, since imperfect knowledge
of the real world was assumed, the applied error model is only approximate. As a
consequence, the estimate of the posterior parameter uncertainty obtained by means of
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Figure 1. Credible intervals of the predicted discharge and the model output;
transition from the calibration to the prediction phase at ¢ = 500.

Bayesian model calibration might underestimate the true parameter uncertainty (Beven
2009); i.e. the Bayesian estimate of the model parameters tends to be overly confident.

However, if the focus of the analysis is not on parameter estimation but on pre-
diction, this problem can be compensated by an explicit description of the modeling
error. If the modeling error is neglected, the predictive distribution of the discharge
is equal to the predictive distribution of the model output. If the modeling error is
considered in the analysis, the predictive distribution of the discharge does not match
the predictive distribution of the model output. This difference is illustrated in Fig. 1.
The time-interval that was chosen for the comparison ranges from the 400th to the
600th time-step, and contains the transition from calibration to prediction occurring
at the 500th time-step. In Fig. 1 the 90% credible intervals of the predictive distri-
butions of discharge and the model output are plotted. During the calibration phase,
the uncertainty in the predicted discharge is only slightly larger than the uncertainty
in the model output. However, the predictive distribution of the discharge is drawn
towards the measured discharge. At the end of the calibration phase and the beginning
of the prediction phase, the uncertainty in the predictive distribution of the discharge
increases considerably. After a transition phase that lasts for approximately 15 time
steps, the modeling error acts as an amplifier of the uncertainty bounds of the model
output. Therefore, even if one particular parameter set is clearly favored in Bayesian
model calibration, i.e. the predicted model output becomes almost deterministic, the
uncertainty in the predictive distribution of the discharge will not diminish. However,
it should be noted that the underlying true modeling error is not known in hydrological
modeling, because we lack a perfect understanding of how the real world behaves.



Therefore, the choice of the modeling error depends on the engineer conducting the
analysis, and, consequently, represents his belief about the quality of the model.

CONCLUSION

The BUS approach was applied to infer the parameters of a hydrological model. We
showed that the modeler is quite flexible in how to formulate the updating problem.
Additionally, we highlighted that the modeling error should not be neglected when the
uncertainty in the prediction is assessed.
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