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Prüfer der Dissertation: 1. Univ.-Prof. Dr. Hans-Werner Mewes

2. Univ.-Prof. Dr. Iris Antes

Die Dissertation wurde am 19.05.2014 bei der Technischen Universität München

eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Er-
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Abstract

Chemical genetics has emerged in recent years as a study to screen small

molecules from large chemical libraries that can be used to explore protein tar-

gets and phenotypes. It can be divided into forward and reverse strategies that

are termed phenotype-based and target-based screening, respectively. Both ex-

perimental approaches can provide valuable tools for the dissection of biological

processes, understanding gene function and molecular mechanism of action of

small molecules and further speed up the discovery of novel chemical probes or

drugs.

With the significantly increased experimental capabilities of performing exten-

sive chemical genetic screens in the past decades, vast amounts of information have

been generated. However, the development of methods for the analysis of such

huge amounts of high-throughput screening (HTS) data lags far behind the fast

rate of chemical screening generation. Many HTS laboratories apply sub-optimal

solutions that are either too slow or suffer from a limited scope of analysis due to

methodological challenges, such as development of high quality chemical hit iden-

tification methods, the identification of protein targets of hits of phenotype-based

screens and the detection of promiscuous compounds.

In order to tackle these challenges, in this thesis, I applied a systems biology

approach to develop a series of versatile and powerful methods to facilitate the

analysis of chemical genetic screens and applied them to the collection of assays

stored in ChemBank public repository. Briefly, I determined a hit identification

approach that optimally retrieves chemical hits from ChemBank, developed a

method to predict protein targets for the hits and introduced an efficient proto-

col to discard the promiscuous compounds. Some of these methods are available

for public usage in a user-friendly web server – HitPick (http://mips.helmholtz-

muenchen.de/proj/hitpick). In addition, I applied mentioned methods to inter-

rogate the public chemical genetic screens in order to extract novel biological



information.

In the first place, I asked whether chemical screening assay pairs that share

selective hits are biologically related. The analysis of the biological activities

measured in assays sharing selective hits and the predicted targets of those hits

confirmed this hypothesis. I showed that this approach can reveal novel relation-

ships between biological activities as well as uncover novel molecular associations

between drug targets and multiple biological activities.

Secondly, I devised a computational strategy to predict the protein targets

that upon chemical modulation alter three phenotypes measured in three phe-

notypic screens. I proved that 88% of the drug targets predicted to affect the

three phenotypes are confirmed by literature reports, evidencing the validity of

the approach to detect targets related to phenotypes. This novel approach allows

to obtain an overview of the druggable molecular repertoire behind the phenotype

and to propose novel associations between targets and biological activities.



Zusammenfassung

Die chemische Genetik beschreibt ein in den letzten Jahren etabliertes For-

schungsfeld das sich mit der Interaktion kleiner biologisch aktiver Moleküle zur

Untersuchung von Zielproteinen und – als Ergebnis dieser Intervention – von Phä-

notypen befasst. Man unterscheidet zwischen vorwärts gerichteten oder Phänotyp-

basierten und rückwärts oder target-basierten Strategien. Beide Ansätze sind

nützliche Werkzeuge zur Untersuchung biologischer Prozesse, von Genfunktionen

sowie der molekularen Mechanismen biologisch aktiver Moleküle. Sie sind geeignet,

neuartige chemische Sonden zu entdecken und die Entwicklung von medizinischen

Wirkstoffen zu beschleunigen.

Dank des enormen Zuwachses experimenteller Kapazitäten zur Durchführung

umfassender chemisch-genetischer Tests konnten während der letzten Dekaden er-

hebliche Datenmengen generiert werden. Allerdings ist die Entwicklung adäqua-

ter Methoden zur Analyse solcher Datenmengen aus High-Throughput Screenings

(HTS) weit hinter dem Durchsatz zurückgefallen, mit der chemische Screenings

durchgeführt werden. Viele HTS Labore verwenden sub-optimale Verfahren die

entweder zu langsam sind oder bedingt durch die methodischen Herausforderun-

gen nur einen eingeschränkten Analyseumfang haben. Zu diesen Herausforderun-

gen zählen die Entwicklung qualitativ hochwertiger Hit-Identifikationsmethoden,

die Identifizierung von Zielproteinen für Hits aus Phänotyp-basierten Screens so-

wie die Erkennung promiskuitiver Wirkstoffe.

Um diese Herausforderungen anzugehen habe ich im Rahmen dieser Disserta-

tion einen systembiologischen Ansatz angewandt, um eine Reihe von vielseitigen,

leistungsfähigen Methoden zu entwickeln die die Analyse chemisch-genetischer

Screens erleichtern. Diese habe ich anschließend zur Analyse der in der öffentli-

chen Datenbank ChemBank vorhandenen Assays verwendet. Ich konnte eine op-

timale Methode bestimmen die chemische Hits in ChemBank Daten identifiziert

und entwickelte eine Methode zur Vorhersage von Zielproteinen für diese Hits.



Ebenso habe ich ein effizientes Protokoll entworfen um promiskuitive Wirkstoffe

herauszufiltern. Einige dieser Methoden stehen über einen anwenderfreundlichen

Webservice öffentlich der wissenschaftlichen Gemeinde zur Verfügung – HitPick

(http://mips.helmholtz-muenchen.de/proj/hitpick). Darüber hinaus habe ich die-

se Methoden auf öffentlich zugängliche chemisch-genetische Screens angewandt

um neue biologische Informationen zu gewinnen.

In einem ersten Schritt stellte ich die Frage, ob Paare von chemisch-genetischen

Screeningassays, die selektive Hits teilen, biologisch zueinander in Beziehung ste-

hen. Die Analyse der in diesen Assays gemessenen biologischen Aktivitäten so-

wie die Analyse der vorhergesagten Zielproteine bestätigte diese Hypothese. Ich

konnte zeigen, dass der vorgestellte Ansatz sowohl bisher unbekannte Beziehun-

gen zwischen biologischen Aktivitäten als auch molekulare Assoziationen zwischen

Wirkstoffzielen und multiplen biologischen Aktivitäten aufdecken kann.

Im zweiten Schritt habe ich eine Strategie entwickelt, um Zielproteine vor-

herzusagen deren chemischen Modulationen drei Phänotypen beeinflussen, wel-

che in drei verschiedenen Assays untersucht wurden. Ich konnte zeigen, dass die

Phänotyp-spezifische Wirkung von 88% dieser vorhergesagten Wirkstoffziele be-

reits in der wissenschaftlichen Literatur belegt wurde. Dies beweist die Validi-

tät dieses Ansatzes zur Identifikation von Wirkstoffzielen, die mit spezifischen

Phänotypen in Zusammenhang stehen. Dieser neuartige Ansatz erlaubt es, sich

einen Überblick über das wirkstoff-zugängliche molekulare Repertoire bzgl. eines

Phänotyps zu verschaffen und neue Assoziationen zwischen Wirkstoffzielen und

biologischen Aktivitäten vorherzusagen.
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Structure of the Thesis

Below I summarize the chapters of this thesis:

The first chapter is an introductory section intended to explain the evolution,

definition, and function of chemical genetics in more details to provide the right

context to readers not familiar with the topic of this thesis. I describe each essen-

tial element of the chemical genetics process, discuss common challenges that the

field is facing, such as hit identification, and critically review various biochemical,

genetic and computational approaches recently developed for target identification.

Based on these challenges, I also give an insight into various methods in the field

as well as provide a series of analysis tools to facilitate the analysis of chemical

genetic studies.

The second chapter introduces the data and provides details and explanations

of the methodology followed to process the chemical genetics data, to tackle the

challenges and to infer novel biological information.

In the third chapter of my thesis, I intend to cope with the challenge of hit

identification. First, I introduce eight different hit identification methods that

I applied on ChemBank assays and discuss the weakness of each method when

addressing the systematic variation of signals. Then, I explain how I determined

the best method for chemical hit identification by comparing their performance

when discriminating positive and negative controls in the assays.

In the fourth chapter, I focus on addressing the challenge of target predic-

tion of small molecules. I explain the creation of a novel drug target prediction

method based on a combination of two 2D molecular similarity based methods,

namely, 1-nearest-neighbor (1NN) similarity searching and Laplacian-modified

näıve Bayesian target models. This method along with B-Score, a well-known

chemical hit detection method, were implemented for public usage in a web server

– HitPick. In the end of this chapter, I also explain how to use the hit identification
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and target prediction functions implemented in HitPick.

In the fifth chapter, I first introduce an efficient protocol to remove promiscu-

ous compounds. I describe the application of this filter for detecting selective hits

and use HitPick to predict their drug targets. Afterwards, I test the hypothesis

of whether the biological activities of pairs of chemical screening assays sharing

selective hits are related. The analysis of biological activities measured in the

assays confirmed this hypothesis. This finding was reinforced by the biological

role of the predicted targets of shared hits as they evidenced known associations

between targets and the two biological processes measured in the assays, such as

the enrichment of known anticancer targets in the growth inhibition screens. It

allowed me to propose novel associations between them, like the potential growth

inhibitory effect of ATP2A1, etc.

In the sixth chapter, I incorporate the methods that I developed, that is, hit

identification and HitPick target prediction, in a computational strategy to detect

drug targets statistically associated to biological processes. To demonstrate the

powerfulness of my approach, I applied this computational approach to three

case studies, and validated the drug target-phenotype relationships by literature

reports. Further, I was able to propose novel targets involved in the observed

phenotype as well.

The seventh chapter outlines, concludes and places in a wider picture all results

of the computational studies on the chemical genetic data. Finally, this chapter

offers an outlook on the future studies motivated by the findings from the present

thesis.
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Chapter 1

Introduction

1.1 Genetics and Pharmacology

Genetics and pharmacology are the two available principal approaches aiming

at discovering the protein function in cells of an organism. In the following sections

I briefly introduce and explain them.

1.1.1 Genetics

Since the seminal study of pea genetics by Mendel in 1865, genetics has been

widely used to study biology by manipulating the biological system at the level of

the gene. The function of gene products - proteins - is what researchers ultimately

desire to understand, and the perturbation of gene function is one of the most

direct ways to identify the protein function [1]. Genetically, gene function can

be modulated through a mutation, such as DNA substitution, deletion, insertion,

etc. [2], which can result from the action of physical and chemical mutagens [3].

Once a series of gene mutants in a biological model, including cells lines or

organisms, have been yielded, generally one needs to check out thousands of in-

dividuals to locate the altered phenotype of interest, like a modified behavior,

appearance, etc. Such a search in a mutagenized population is called as genetic

screen [4]. These mutants are then used to find and study the genes that reg-

ulate the biological processes or pathways. This strategy is defined as “forward

genetics”, that is, from phenotype to gene, involving the random mutagenesis in

collaboration with screening with the aim to identify a gene that particularly

7
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1.1. Genetics and Pharmacology

produces the phenotype (Fig. 1.1.1A) [1].

In addition to forward genetics, reverse genetic methods are also available to

ascertain the gene functions (Fig. 1.1.1A). The mutation of a particular known

gene by DNA engineering methods makes the gene become a permanent part of

the genome [5] and the resulting phenotype helps to determine role of the gene

in the cell or organism. Such approach is called as “reverse genetics” that is from

gene to phenotype [1].

1.1.2 Pharmacology

Pharmacology, a discipline of biomedical science, is the combination of biology

and medicine with the aim to provide an understanding of the effect of drugs on

human [6]. The basis of classic drugs is formed by small molecules, which are

described as those carbon based compounds whose molecular weight is usually

less than 500 Daltons and always smaller than that of macromolecules, such as

DNA, RNA and proteins [7]. The tiny size in structure and chemical composition

of small molecules often help them easily pass through cell membranes and thus, if

the drugs are more effective and less toxic than previous generations, then they are

normally processed into ingestible tablets or capsules to reach the desired destina-

tion in the body and further cure the diseases. For example, in 1929, Alexander

Fleming [8] discovered the small molecule penicillin as the most compelling case

for antibiotics. Penicillin exerts its cytotoxic effect through the inhibition of the

cross-linking of small peptide chains in peptidoglycan, the main cell wall poly-

mer of bacteria that was formed via binding of the four-membered β-lactam ring

of penicillin to the enzyme D-Ala-D-Ala carboxypeptidase/transpeptidase (DD-

peptidases) [9]. The existing bacterial cells will not be influenced by the treatment

of penicillin; however all the newly produced cells will grow abnormally due to

the impairment of cell walls, and thus they are prone to osmotic lysis.

Although both genetics and pharmacology can be used to study the function

of proteins, the two techniques sometimes can evoke notably different phenotypes

even when they target the same protein [10]. For example, there is a paradox phe-

nomenon when antidiabetic thiazolidinediones (TZDs) and genetic manipulation

are used to modulate the target PPAR-γ, a nuclear hormone receptor involved in

adipogenesis [11]. More detailed, from the pharmacological point of view, TZDs

are the marketed drugs for treating type 2 diabetes; however, this treatment results

9



1. Introduction

in the direct activation of PPAR-γ [12], which is a transcription factor to promote

adipogenesis. Quite unexpectedly, from the genetic point of view, heterozygous

deletion of PPAR-γ gene actually prevents insulin resistance in mice [13], pointing

that only PPAR-γ inhibitors, instead of activators, can be developed as antidia-

betic drugs. Eventually, Yamauchi et al. [14] explained the paradox and showed

that pharmacological agonists and genetic antagonists of PPAR-γ can both im-

prove glucose metabolism through different mechanisms. They have shown that

TZD drugs clinically increase insulin sensitivity in muscle and liver by elevating

number of small adipocytes and weight gain; by contrast, genetic antagonists re-

duce insulin resistance by potentiating leptin’s effect, increasing fatty acid burning

and energy dissipation [14]. This example revealed TZDs as the therapeutic po-

tential of PPAR-γ agonists that could not be predicted from genetic analysis. In

addition to this, there are many other well described examples shown by Knight

and Shokat [10] who illustrated that due to the different ways to perturb the activ-

ity of a protein by a small molecule and a genetic mutation, different phenotypes

can emerge.

The most important strength of genetic approach is that it is possible to un-

conditionally detect the mutation that is responsible for the observed phenotype.

However, this approach is impossible to effectively identify the cellular targets of

the small molecules. This ambiguity ignores direct comparisons between genetic

and pharmacological phenotypes because it is possible that any of the differences

can reflect off-targets of the drug [10]. Furthermore, because the mutations in

some essential proteins often lead to lethality at early stage making subsequent

study impossible, it is difficult to control the protein function using genetic knock-

out/knockin experiments [15].

One way to overcome these difficulties is to perturb cellular function by small

molecules targeting a protein (the ‘mutations’), an approach referred to as “chem-

ical genetics” which is rising markedly worldwide.

1.2 Chemical genetics

Chemical genetics has emerged over the last 10 years [16, 17] as a study to

distinguish small molecules from large chemical libraries that can be used to ex-

plore protein targets and signal transduction pathways [7]. It is a discipline where

genetics and pharmacology meet [10]. The booming number of publications on
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1.2. Chemical genetics

Figure 1.2.1: Increased tendency of applications of chemical genetics. The number
of literature reports is retrieved by the search term “chemical genetics” from the
year of 2003 to 2012.

chemical genetics within the last decade strongly shows the growing interest in

this field (Fig. 1.2.1).

By analogy to genetics, chemical genetics can as well be divided into forward

and reverse strategies (Fig. 1.1.1B). Forward chemical genetics involves directly

screening small molecules against one or a few desired phenotypic effects in a cel-

lular, or even whole organism-based context in order to identify active chemicals.

Afterwards, identification of the protein target(s) that induce the observed phe-

notype is required [17]. Reverse chemical genetics uses small molecules targeting

directly a protein of interest (e.g. enzymatic assay or protein-DNA interaction

studies) in a cell-free context. Once the active compound targeting a given pro-

tein is identified, then the challenge is to check if the changed phenotype can be

observed by including the active compound in a cellular context [17].

In both forward and reverse directions, the identification of selective small

molecules followed by detailed biological investigation is required [18,19].

In addition to having the potential of deriving new drugs, chemical genetics

still has many advantages over classical genetic techniques due to the perturbation

of protein functions by selective small molecules in the biological system.

In the first place, small molecules are easy to apply on different cell types
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of interest and they work rapidly and often reversibly [20]. Hence, they offer

excellent temporal tools to switch the processes on and off by adding or removing

the compound. For example, brefeldin A has been reported to block the process

of protein transport from the endoplasmic reticulum (ER) to Golgi in different

organisms, such as yeasts, plants and mammalian cells [21].

Secondly, instead of simply turning protein activity up or down, small molecules

can also alter protein translation and transcription in more subtle ways, such as

modulating one of its several functions [22]. For example, histone deacetylase 6

(HDAC6) has two distinct and active catalytic domains, but only one of them

possesses α-tubulin deacetylase activity that can be selectively inhibited by small

molecule tubacin [23].

Last but not least, small molecules can be used for chemical combination in-

terventions, making them especially advantageous for integrating systems and

chemical biology [24, 25]. Furthermore, synergistic and potentiative drug com-

binations have been explored to achieve one or more favorable outcomes, such

as enhanced safety and efficacy and decreased drug resistance, etc. [26], which

are the adorable effects for the treatment of complex diseases, like cancer and

cardiovascular disease.

1.3 Chemical genetic process

Chemical library, bioassay and compound signal analysis are the three foun-

dations involved in the outline of a chemical genetic process (Fig. 1.3.1). In the

following sections I describe them more in detail.

1.3.1 Chemical library

As the application of small molecules to living organisms can mimic the ef-

fect of mutated strains or organisms that are essential for genetic studies, the

preparation of a chemical library is crucial as well for every chemical genetic

screening. The first chemical libraries were assembled over the past century by

pharmaceutical companies whose aim was to find novel drugs [27]. The library

can be composed of low-molecular-weight organic molecules, and can also in-

clude peptide aptamers [28, 29] (Fig. 1.3.1). Historically, the majority of the

agents were synthesized based on the already existing biologically active small

molecules - either from Food and Drug Administration (FDA) approved drugs or
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Figure 1.3.1: Chemical genetic process.

natural products [30]. However, chemical genetic screening approach was largely

unavailable for academic researchers until the expansion of interest in chemical

genetics along with the proliferation of commercial chemical library suppliers,

such as Enamine (http://www.enamine.net/, 1.8 million compounds), ChemDiv

(http://eu.chemdiv.com/, 1.5 million compounds), BioFocus (http://www.biofoc-

us.com/, 0.9 million compounds), etc. In addition to these commercial library

vendors, non-profit research organizations that offer small-molecule libraries are

also available, such as the “Diversity Set IV”of the National Cancer Institute that

can provide around 1,600 compounds. Although each of the available library dis-

plays a high degree of diversity in structures, the individual compounds in these

libraries typically fulfill the following criteria: (i) they are easy to penetrate cell

membranes; (ii) they possess well solubility in organic solvents, such as dimethyl

sufloxide (DMSO); (iii) they are metabolically stable in liver, plasma, etc.; (iv)

they contain substructures resembling known bioactive molecules; (v) they do

not contain “functional groups” (e.g. highly reactive groups) that are possible to

produce cytotoxic effects [20, 31].

In practice, there are basically two types of chemical libraries that are synthe-

sized today,“diversity-oriented libraries”and“focused libraries”[32,33]. “Diversity-

oriented libraries” contain diverse collections of small molecules that can target

any protein classes. They are normally used in broad screens in which the targets
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are unknown and thus offer the opportunity to discover new classes of targets [34].

In contrast, “focused libraries” include compounds which have been designed or

assembled with a specific protein target or protein family, such as proteases [35],

kinases [36], phosphatases [37] and G-protein coupled receptors [38]. The advan-

tage of screening a focused library is that compared to “diverse-oriented library”,

fewer compounds are needed to be screened to get chemical hits for a particular

target, and it generates higher hit rates [39]. Based on the goal of the experiments,

the screeners should decide the nature of the library. For example, if chemical biol-

ogy researchers attempt to create and assess the vast potential chemical space for

an unexplored bioactivity, then the diverse-oriented library should be chosen [7].

Regardless of the source of chemical library, it is of the utmost importance that

the provider and users of libraries must adopt quality and reporting standards

to advance the impact of small-molecule high-throughput screening (HTS) [40].

Compound purity, stability, accuracy of compound concentration, sufficient sol-

ubility and lack of notoriously toxic or promiscuous molecules are all factors of

library quality and should be carefully considered before the screening starts [41].

1.3.2 Bioassay

A biological screen is also called as “assay”, “HTS assay”, “bioassay” or “chem-

ical genetic assay”. Considering the challenge that typically thousands of com-

pounds have to be analyzed to find the desired bioactive small molecules in a

bioassay, it is evident that HTS should be set up in a robust way in a model

system. “High throughput” is a relative term as generally it is defined as the

screening of 10,000 to 100,000 compounds per day [42], which is a major tech-

nological break-through in biological experimentation [43]. Designing a suitable

bioassay is vital to the success of the drug discovery. Generally, bioassays can

run by multi-well assay plates (96-, 384-, 1536-, 3456- and even can extend to

6144-well [44–46] in a parallel fashion. Assays that are run in 1536-, 3456- and

6144-well plates are referred as ultra HTS (uHTS).

The possible model systems of the screening can vary from cell-free to cell-

based or even the whole organisms and chemical genetic approaches can be ap-

plied in forward or reverse directions. Forward chemical genetics is also called as

“phenotype-based” or “cell-based” screening (Fig. 1.3.1), which detects the small

molecules that can induce a specific phenotype in a cell (including mammalian
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Figure 1.3.2: Schematic representation of four different small-molecule screening
technologies. A. Phenotype-based screening. B. Target-based screening. This
figure was adapted from Ref. [7, 17].

and plant cells, etc.) or whole organism (including single-cell organism, such as

bacteria and fungi, and multicellular organism, such as zebrafish). Reverse chem-

ical genetics is also called as “target-based” or “cell-free” screening (Fig. 1.3.1)

and is done on “pure protein”. This approach identifies ligands for some specific

protein of interest in vitro, and afterwards, these active ligands are tested in vivo

to investigate their activity on physiological conditions.

Approaches applied on phenotype-based screening

There are three types of biological assays commonly used in phenotype-based

screens, namely reporter gene, cytoblot and microscopy assays [7,17,22](Fig. 1.3.2A).

Reporter gene assay

Reporter gene assay is a common cell-based approach in which the accumu-

lation of an easily detectable enzymatic activity such as luciferase, depends on

the activity of a gene promoter [20]. This method is used to measure the gene
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promoter activity, however it does not fully account for the complete regulation

of the gene due to the lack of distant promoter sites in the construct. For rapid

and quantitative assessment of gene promoter activity, the reporter gene (often

luciferase, used as a light-based technology) is cloned downstream of the promoter

fragment (Fig. 1.3.2A). Luciferase-based reporter assays are quite powerful to de-

tect the changes of gene expression within the cells at a specific promoter due

to their ultrasensitive detection capacity and wide dynamic range. These assays

involve transferring the resulting reporter construct into cells or whole organism

via transfection, transformation or injection. The self-multiplication or mating be-

tween wild type and homozygous transgenic reporter animals generates progeny of

100% heterozygous reporter cells or embryos [47]. The expression of the luciferase

reporter gene can be quantified by measuring the released light.

Cytoblot assay

The cytoblot approach makes use of functional readouts (e.g. cell viability)

or of “whole-cell immunoassays” (Fig. 1.3.2A), a luminescence-based method that

uses a suitable antibody to detect an epitope in cells whose occurrence or disap-

pearance can be used as readout for a specific process of interest [20,46]. Growing

cells are seeded onto the bottom of wells and a single compound is added to each

well. After incubation of cells and compounds, cells are fixed and then a primary

antibody of desired specificity is added. Later, a secondary antibody covalently

linked to horseradish peroxidase is added, and finally, the enhanced chemilumines-

cence reagent is used to detect the antibody complex [7]. Because antibodies can

directly recognize proteins and specific protein modifications, cytoblot cell-based

assay is able to screen for biosynthetic processes, such as DNA synthesis as well

as post-translational protein modifications, such as acetylation and phosphoryla-

tion [46].

Microscopy assay

The aforementioned two cell-based methods are not biased towards one spe-

cific protein but they are conceptually broader, offering the potential to find com-

pounds regulating poorly characterized or even unknown targets [20]. Unlike the

above two methods, microscope-based approach represents a new and exciting

trend in cell-based screening towards acquiring more complex data [20]. This

approach is capable to detect even subtle morphological changes (Fig. 1.3.2A).
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Moreover, it allows the collection of data on the particular process under inves-

tigation and data on effects indirectly influencing the process of interest [20].

Recently, this type of approach, which obviously demands the use of automated

microscopes and image-analysis software [48], has been successfully applied to

identify small molecules that interfere with a wide range of biological processes,

such as embryonic development [49], cell differentiation [50] and the transport of

intracellular vehicles [51]. For example, if a screen searches for inhibitors of cell

migration, the total cell count in a counting chamber can then be used as the

parameter to identify the cytotoxic compounds, whose inhibitory activity on cell

migration is indirectly caused by the fact that the cells are dying.

The experimental procedure of microscope-based assay is as follows: after

incubation with cells and compounds in the plate, morphological or subcellular

localization changes in the cells can be visualized by microscopy. It includes

“nuclear foci formation assay”, “cell morphology assay” and “protein translocation

assay”.

Approaches applied on target-based screening

A powerful method for target-based assay is the small molecule microarrays

(SMM) (Fig. 1.3.2B). Maximum 10,000 small molecules are firstly covalently at-

tached onto a glass slide in high density [7, 22]. Subsequently, the microarray

is incubated with purified proteins or cell lysates, which are called as “purified

protein binding assay” and “cell lysate binding assay”, respectively; afterwards, a

primary antibody against a protein of interest and a secondary antibody conju-

gated with a fluorescent dye are added [7]. Finally, a laser scan of the entire slide

can be used to detect the binding of proteins to selective small molecules [7].

1.3.3 Compound signal analysis

After the HTS, setting up a screening platform with mechanization that ranges

from manually operated workstations to fully automatic robotic systems is re-

quired to analyze the effect of the compounds on the model system [42]. Depending

on the output needed for the results, the detection method includes“fluorescence”,

“absorbance” and “luminescence” (Fig. 1.3.1).
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1.4 Application of chemical genetics

There is no doubt that small molecules are invaluable tools for the dissec-

tion of complex biological processes, understanding gene function and molecular

mechanisms of action of selective small molecules via the perturbations of pro-

tein functions. For example, taxol, a compound known to disturb the micro-

tubule dynamics has been used to understand cell cycle [52]. In addition, because

small molecules can be used to develop drugs or chemical probes, the chemical

genetic approaches have become the cornerstone technology in the majority of

pharmaceutical companies [53]. The final goal of the HTS is to accelerate mod-

ern drug discovery and development process by screening large small molecules

libraries [54].

1.5 From HTS to ultimate drug discovery

Target-based screening is basically the chemical approach pharmaceutical in-

dustry follows, and has allowed many major advances in the development of drug

discovery [55], such as the discovery of the antiretroviral drug maraviroc by Pfizer

and approved by the FDA in 2007 (trade name: Selzentry or Celsentri). For the

discovery of maraviroc, in 1997 a screening based on a CC-chemokine receptor 5

(CCR5) protein binding assay was employed [56].

A prerequisite for a target-based screen is a reasonably well-characterized tar-

get, such as the CCR5 for maraviroc, which is somewhat limiting when exploring

new molecular mechanisms of phenotypes and new fields of biology. In contrast,

phenotype-based screening allows to explore poorly molecularly characterized phe-

notypes and thus, has become a renewed approach for drug discovery [57, 58]. In

fact, Swinney and Anthony [59] analyzed the mechanisms and methods of dis-

covery for first-in-class FDA approved drugs and showed that between 1999 and

2008, 37% of them were discovered in phenotypic assays. For example, one of

the FDA approved drugs in 2008 derived from a cell-based luciferase reporter as-

say run by GlaxoSmithKline in 1997 is eltrombopag (trade name: Promacta or

Revolade) [60].

In addition to the selection of either target-based or phenotype-based screen-

ing strategies for the discovery of drugs or chemical probes, an effective HTS

strategy considers both primary and subsequent secondary assay designs carefully
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(Fig. 1.5.1). In the primary assay, the nature of the response to be measured

should be clearly defined. The screeners should clearly know which signal re-

sponse is what they are interested in, that is, whether the signal should increase,

decrease, change in nature of the location, or belong to part of a more complex

response. The active compounds are labeled “hits” and can be used for follow-up

assays.

The follow-up assays are also referred as secondary screens or counter screens.

Ideally, the only difference between the primary and follow-up assay is the protein

target or the countering property such as cytotoxicity, whereas other reagents

and parameters such as concentration of the compounds, should be the same.

Secondary screen evaluates the involvement of compounds in the intended bio-

logical interaction, and consequently assists in the recognition of compounds that

generate the positive signal through other mechanisms, such as showing activ-

ity on other related targets or inhibiting a cellular pathway from a cytotoxic

response [42]. If the activity is observed in both primary and secondary assays,

then the small molecule is likely to be a false positive hit. Furthermore, the testing

of primary active hits on secondary screens is also expected to remove artefacts

caused by aggregate formation and small molecule precipitation [62]. In the sec-

ondary assays, only few compounds (around 1% of the most active compounds

from the primary screens [61]) are generated and at least duplicates are typically

used. The active compounds are termed “confirmed hits”. If these hits have an

established biological activity according to a structure-activity relationship (SAR)

series and medical chemistry, then they are termed “leads”, which can be used to

develop for drug candidates in clinical trials [61]. On average one lead compound

is identified for every 120,000 compounds screened [63].

1.6 Challenges of chemical genetics

Chemical genetic screening is definitely a useful tool for drug candidate gener-

ation; nevertheless, the development of analysis methods that are able to handle

and process the chemical screening data is lagging behind. The most crucial is-

sues that need to be tackled are chemical hit identification, target prediction of

small molecules in phenotypic screens and elimination of unspecific compounds

that show activity in multiple assays. In the light of these challenges, efforts from

the computational systems biology field is required to generate novel and suitable
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Figure 1.5.1: From HTS process to ultimate drug development. This figure was
adapted from Ref. [61].

20



1.6. Challenges of chemical genetics

approaches to analyze the chemical genetic data and finally maybe with the coop-

eration of biologists to validate the active compounds and their molecular targets

in vivo.

1.6.1 Chemical hit identification

A great number of chemical biology researchers employ electronic spreadsheets

as the essential data analysis tool, resulting that their data exploration capabil-

ities are extremely limited [64]. Based on the activity values of compounds, the

experimental researchers usually sort the compounds and choose a cut-off man-

ually while searching for a trade-off between the number of hits and the risk of

missing important molecules. Their behavior obviously has several disadvantages:

(i) they leave room for several types of mistakes such as subjective judgment and

tiredness; (ii) the systematic errors in the assay plates are difficult to detect; (iii)

they also hinder the possibility to effectively explore the chemical space and to

associate the activity levels of compounds with structural features [64]. To over-

come these problems some computational methods have been developed including

the ChemBank [65], the B-Score [61] and the Well-Correction [66], although their

performance in terms of discrimination between positive and negative controls in

the assays is poor (see Chapter 3 Chemical Hit Identification). Therefore, there is

an urgent need for novel automatic methods capable to correct systematic errors

in an accurate and fast manner.

1.6.2 Target prediction

There is no guarantee that the chemical hits of target-based screening will be

cell-permeable or affect the protein in a way that results in a functional phenotype

in cell-based or organism-based context, and indeed, many drugs that are identi-

fied in these screens ultimately fail [59, 67]. As a consequence, phenotype-based

screening is emerging as a cost-efficient and translational small-molecule discov-

ery technology to identify efficacious therapeutics. For example, an innovative

drug discovery strategy has been reported recently in larval zebrafish to identify

metabolically active drugs with potential therapeutic function [47].

In the phenotype-based screens, however, the crucial challenge is to identify

the target altered by the small molecule for the observed phenotype [55]. Several

strategies have been proposed in the identification of drugs targets through affinity

21



1. Introduction

chromatography, genetic interaction and computational approaches (reviewed in

Ref. [68]), which significantly help to alleviate this problem.

Affinity chromatography approaches

Affinity chromatography techniques use traceable (radioactive or otherwise

tagged - for example - biotin [20]) compound derivatives or compounds bound to

solid-phase matrices to detect protein targets of compounds. They have success-

fully identified the protein targets of acetylcholine, steroids and natural products

such as cyclosporin and rapamycin [1]. However, this strategy requires a stringent

criteria - the abundance of the target protein(s) and the strong affinity between

protein and small molecule partner - that rarely meet [69, 70].

Genetic interaction approaches

The advent of whole-genome sequence information has allowed the application

of the new gene-based approaches for drug target identification. Relying on the

idea of genetic modifiers (activators or inhibitors of the gene), genetic methods

use the principle of genetic interaction to stimulate hypothesis of targets [68].

As both genetic methods (such as gene knock down and RNA interference) and

chemical interference approaches are biological tools to alter the protein functions

in organism (reviewed in [68]), the resulting phenotypes of the the two types of

techniques can be combined to generate hypothesis on the target relevant to the

phenotype. In fact, there are a number of very promising candidate drug targets

that have been discovered for new cancer therapeutics by using genetic interaction

methods [71,72].

Computational approaches

Purely computational approaches, especially those relying only on ligand struc-

ture information are less explored. Nevertheless, they have recently been shown

to powerfully predict previously unknown targets for drugs, with the goal of drug

repositioning and explaining off-target effects. The most well-known ligand-based

method is the Similarity Ensemble Approach (SEA) [73] that has been success-

fully employed to predict new molecular targets for known drugs, chemical hits

and probes [74–76]. However, although the method is implemented in a web

server (http://sea.bkslab.org), the results of the method cannot be downloaded

from their web site. Besides, as SEA treats multiple compounds as a single set,
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the predicted targets of a set of query compounds are displayed collectively. As

a result, the discrimination of the predicted targets that correspond to a single

compound is a difficult task. Therefore, this method cannot be practically applied

for large-scale compounds.

Hence, faster and better methods of target prediction are required to accelerate

the final phases of the chemical genetic process and provide valuable new tools

for the dissection of various diseases.

1.6.3 Promiscuity

Another critical challenge in HTS procedure is the occurrence of “frequent

hitters” or “promiscuous hits”, that is, many compounds are active in multiple

assays via irrelevant mechanisms. Small molecules may interfere with the assay

signal [77], act as oxidants [78] or chemically react with targets [77–79]. A common

mechanism underlying this phenomenon is the formation of particles of 30-400nm

diameter composed of small molecules [80] that inhibit the targets non-specifically.

Several methods have been developed to predict the likely false positives produced

via these mechanisms. For example, Baell et al. [81] described a number of sub-

structural filters to selectively identify compounds that appear as frequent hitters

in many biochemical HTS. Also, Gamo and co-authors [82] calculated an “inhi-

bition frequency index” to exclude the promiscuous and non-specific compounds

from the analysis. Jacob and collaborators, in turn, calculated HTS“promiscuous

index” to filter 136 out of 2,999 compounds. However, the promiscuity threshold

should not be set neither too high nor too low, and people should adjust the value

according to the goal of chemical genetic study.

1.7 Computational systems biology in chemical

genetics

Due to the steady growth of the amount of data emerging from chemical genetic

studies, automatic methods for processing and handling the resulting assay data

are necessary in order to extract the maximum amount of information from such

screens. Computational systems biology with two major advantages – high speed

and low cost – is making an increasing contribution and plays a crucial role in the

analysis of chemical genetic assay data [83].

23



1. Introduction

1.7.1 Systems biology

Systems biology is a scientific discipline that endeavors to quantify all of the

molecular elements of a biological system, to assess their interactions and to in-

tegrate complex information such as that originated from development of high-

throughput platforms for genomics, transcriptomics, proteomics and metabolomics,

into graphic network models that serve as predictive hypotheses to explain emer-

gent behaviors [84–87]. The goal of modern systems biology is to offer exciting

new prospects for determining the causes of human diseases from the level of

molecular pathways, regulatory networks, cells, tissues, organs and ultimately the

whole organism and find possible cures [85].

Systems biology approaches in combination with computational methods can

be extremely helpful for drug discovery and can aid in the optimization of medical

treatment regimes for individual patients [84]. It has been predicted that compu-

tational systems biology and bioinformatics approaches could help cut the cost of

creating a new drug in half and save 2 ∼ 3 years of the development [88].

1.8 The goal and significance of the project

1.8.1 Goal

In this project, I aimed to systematically analyze the chemical screening data

from public repositories, such as ChemBank [65], with the goal to develop analysis

tools, like chemical hit identification, target prediction of hits and promiscuity

filtering protocols for chemical genetic screens.

Ultimately, I applied these methods to answer two biological questions. The

first one was whether novel relationships between biological activities can be ex-

tracted by comparing the profiles of compounds for different readouts of HTS. The

concept is analogous to chemical profiling methods where relationships between

compounds were established based on the similarity of their biological profiles.

For example, chemical genetic experiments, where a chemical was screened in a

panel of genetically different cell lines have been proved useful to reveal new mech-

anism of action of compounds as well as new gene functions [89]. As in profiling

methods, I defined a fingerprint for every assay. This fingerprint was formed by

the activity of a collection of chemicals on a biological assay. I hypothesized that
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the bioactivities measured in two assays sharing selective hits are likely to be re-

lated. Later on, to understand better the novel associations between phenotypic

assays I determined the molecular targets of specific hits associated with the bio-

logical process. Thus, by analyzing the fingerprints of each assay readout together

with the drug targets of hits I aimed to find unexpected relationships between the

biological activities measured in the assays.

As the second application of these methods, I proposed a novel computational

approach to identify targets of specific hits and applied it to three phenotypic

screens in ChemBank repository. By analyzing the targets involved in the pheno-

types of high-throughput phenotypic screens, I aimed to find novel relationships

between drug targets and biological processes.

The thesis has been organized in the following different sections and the work-

flow of the work is shown in Fig. 1.8.1.

(i) Collection of HTS data from the ChemBank database and analysis of of

the individual data sets of the repository.

(ii) Hit identification and data standardization of results of different screening

assays.

(iii) Target prediction of tested compounds.

(iv) Description of a filtering protocol to detect promiscuous chemicals. Com-

pounds showing positive activity in multiple assays were removed in order to

discard unspecific activities.

(v) Computation of assay similarity and application of statistical methods to

assess similarity between biological assays.

(vi) The associations between biological assays were integrated with predicted

targets of hits in order to understand better the molecular basis of the similarity

of assays.

(vii) Description of a method to systematically identify the targets involved in

phenotypic screens. In the first place, I selected well-studied phenotypic assays.

Then, I divided the tested compounds into specific hits and inactive compounds

sets, and predicted human drug targets for these two sets. Using a statistical

approach, I identified novel over-represented targets in the specific hits set of the

assays.
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Figure 1.8.1: Workflow of the project. Asterisks denote the over-represented
targets in the specific hits set.

1.8.2 Significance

By using the large chemical compound libraries, chemical screening is typically

performed for early-stage drug development in academic institutions and pharma-

ceutical companies. The creation of a series of powerful tools is quite helpful

and flexible for analyzing chemical genetic screening data, since these tools not

only track and analyze chemical screening data, but they can also be used find

novel biological connections. I believe that this work will facilitate sophisticated

chemical genetic screening analysis in a wide variety of academic and industrial

laboratories and will have a rapidly growing impact on life science research.
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Chapter 2

Materials and Methods

2.1 ChemBank

ChemBank was created by the Broad Institute’s Chemical Biology Program

and funded mainly by the National Cancer Institute’s Initiative for Chemical Ge-

netics (ICG) [22]. This repository archives information on hundreds of thousands

of small molecules as well as thousands of assays that have been performed at the

ICG in collaboration with worldwide biomedical researchers [22].

2.1.1 ChemBank assay data structure

ChemBank [65] data was downloaded in May 2011 and comprised 193 projects

with loaded screening plates, including 3,852 assays and 228,887 tested com-

pounds. I also extracted information about assay names and description, project

names, description and motivation of the projects. Three projects containing 18

assays were discarded because they lacked information about compound IDs, re-

sulting in 190 projects. If a project comprises assays containing in the assay name

an annotation of “raw” and “user”, such as the project of “Pseudomonas Cell Wall

Synthesis”, I only kept the assay annotated as “user” as I observed that this type

often reports the specific activity of the compounds. This step retained 3,617

assays. Then I combined the assays performed with the same annotated “exper-

imental protocol” indicated by identical title and description, such as assay ID

1133.0005, ID 1133.0006 and ID 1133.0007 of the project “Glioblastoma Modula-

tors”, into the same “assay type”. In total, 3,617 assays were grouped into 1,640

assay types. The analysis presented here was based on the assay type, which for
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simplicity I named “assay”. I assigned the activity of a compound both on an

assay level and a project level. A compound is active in a project when it is active

in at least one of their assays.

I classified the assays into “cell-free”, “cell-based” or “microorganism” assays

according to the assay description provided by ChemBank. If the assay was per-

formed in a cell line (e.g. all the assays in the “Glioblastoma Modulators” project

were done in U251 human glioma cells), this assay was classified as “cell-based”;

if the assay was performed in a microrganism (e.g. the “SigB Inhibition” project

that identified small-molecule inhibitors of Listeria SigB transcription factor to

reduce Listeriosis was performed in Vibrio sp. S1063), this assay was classified as

“microorganism”; the remaining biochemical or biophysical assays were classified

as “cell-free”.

2.2 Chauvenet’s criterion

Chauvenet’s criterion (named for William Chauvenet [90]) provides a statisti-

cal approach to assess whether one experimental sample of a set of observations

is likely to be a suspicious outlier and should be removed from the set.

To apply Chauvenet’s criterion, first the mean value and standard deviation

using the set of “n” data points was calculated. Then the normal distribution

function was used to calculate the probability of a given data point being the

suspicious data point. Subsequently, this probability was multiplied by the number

of data points (n). If the result was less than 0.5, the suspicious data point may

have been eliminated, that is, a sample may have been rejected if the probability

of obtaining the particular deviation from the mean was less than 1/(2n). After

removing the outliers, the new mean value and standard deviation was calculated.

In the ChemBank hit identification method, in order to apply Chauvenet’s

criterion, first all mock-treatment wells for each plate (number = n) were collected,

next normal distribution function was used to calculate p-value for each mock-

treatment, if p − value ∗ n < 0.5, then this mock-treatment was discarded. The

remaining mock-treatment wells that passed the outlier trimming were used to

calculate mean and standard deviation.
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Figure 2.3.1: From assay duplicates to yield Composite Z-score.

2.3 Composite Z-score and Reproducibility

Due to the fact that a compound was normally tested in two, three even

four replicates, after combining the information from replicates, Composite Z-

score (CompositeZ) and Reproducibility for each compound were calculated to

obtain the values of Z-score and Reproducibility in the ChemBank hit identifica-

tion method. To illustrate the calculation of both parameters, I used two replicates

as an example. CompositeZ was obtained by projecting vector (ZA, ZB) to “per-

fect reproducibility” (that is, equal Z-scores in both replicates, see the diagonal in

Fig. 2.3.1) using cosine correlation (see equation 2.3.1), while Reproducibility is

the cosine value (see equation 2.3.2).

CompositeZ =
�
Z2

A + Z2
B � cosθ (2.3.1)

Reproducibility = cosθ =
ZA + ZB�

Z2
A + Z2

B �
√
1 + 1

(2.3.2)

2.4 Median polish procedure

As the name implies, median polish is a technique using medians rather than
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Figure 2.4.1: Illustration to get the residual activity. (A) Procedure operating on
the rows first. (B) Procedure operating on the columns first.

arithmetic means for extracting/polishing row and column effects in a two-way

data layout [91]. In every row (including the row of column effect), the median

of all entries was taken to subtract from the row of all entries and next oper-

ated similarly on columns instead of rows, then returned to operate on rows, then

columns,..., etc. The procedure was terminated when the two-way layout of resid-

uals had zero medians in every row and column, and where the row and column

effects each had median zero (see example in Fig. 2.4.1A).

Thus, if xij is the entry of row i and column j, if rij is the corresponding

residual, µ is the overall effect, αi is the ith row effect and βj is the jth column

effect, then

xij = µ+ αi + βj + rij , with

mediani(αi) = medianj(βj) = mediani(rij) = medianj(rij) = 0 (2.4.1)

Since the median of column and row effects will not influence rij, to simplify

the algorithm, when the medians of both row and column are 0, the remaining

value is the residual activity rij of each well. Alternatively, the polishing method

can be operated on columns first rather than rows. This may lead to different, but

qualitatively similar results (Fig. 2.4.1B). Median polish approach is completely

analogous to that in 2-way ANalysis Of Variance (ANOVA), a procedure based
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on fitting row, column and plate means. However, mean values are sensitive to

outliers, and median polish algorithm possesses good robustness properties.

2.5 Median absolute deviation

Medan absolute deviation (MAD) for each plate is a robust estimate of spread

of the residual activity values (rij) (see equation 2.5.1).

MADp = median {|rijp −median(rijp)|} (2.5.1)

2.6 B-Score

The B-Score is calculated as follows (equation 2.6.1):

B − Score =
rijp

MADp
(2.6.1)

2.7 Receiver operating characteristic space

The receiver operating characteristic (ROC) graph [92] is a widely used ap-

proach to evaluate the performance of a binary classification method. For exam-

ple, it has been used as a quality metric in microarray transcriptomics [93, 94].

Given positive and negative controls, ROC graph offers a fast and intuitive un-

derstanding of dynamic ranges in data [95]. A ROC space plots sensitivity versus

(1-specificity). Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP). TP:

true positive, TN: true negative, FN: false negative, FP: false positive.

A completely random guess provides a point on a diagonal line (also called as

no-discrimination line) that is from the left bottom to the top right corners. The

diagonal divides the ROC space into two parts. Points above the diagonal show

good results (better than random, such as point A and B points in Fig. 2.7.1),

points below the line represent poor results (worse than random, such as point C

in Fig. 2.7.1) and points on the diagonal show neutral results (as bad as random,

such as point D in Fig. 2.7.1). The distance of a point to the diagonal of the ROC

space can be used as a quality metric of the method. For example, a distance

of 1/
√
2 shows a perfect classification, yielding a point in the upper left corner

(point A in Fig. 2.7.1) of the ROC space, representing 100% sensitivity (no false
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Figure 2.7.1: The ROC space and plots of the four prediction examples.

negatives) and 100% specificity (no false positives). However, a distance of 0

shows that the performance of the method is as bad as random chance.

One advantage of using ROC curves is that multiple thresholds for defining

positives and the resulting trade-offs between sensitivity and specificity can easily

be investigated by plotting multiple ROC curves. For that reason, I used ROC

curves for the evaluation of hit retrieval in the chemical screens.

2.8 Target prediction in HitPick

HitPick is a novel web server for hit identification and target prediction of

chemical screens [96].

To predict the protein targets of small molecules, HitPick uses a newly devel-

oped approach that combines two ligand-based methods based on two dimensional

(2D) molecular fingerprints . The two methods are the 1-Nearest-Neighbor (1NN)

similarity searching [97] and Laplacian-modified näıve Bayesian target models [98].
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2.8.1 Database

The Search Tool for Interactions of Chemicals (STITCH) version 3 [99] that

can be access through http://stitch.embl.de, is a database containing known and

predicted interactions of chemical and proteins. STITCH includes interactions

from 1,133 organisms for between 300,000 chemicals and 2.6 million proteins [99].

In this study, I restricted the target prediction to human proteins, as it is currently

the species with the largest number of known drug targets, enabling thus more

accurate predictions. For human species, I selected targets with at least three

known ligands due to the later model validation. In total, there are 1,375 targets

interacting with 99,572 unique compounds indicated by SMILES strings. STITCH

compounds may have more than one target, so each ligand - target pair was

considered during the model training. In total, a set of 145,549 human chemical

- protein physical interactions extracted from the STITCH database.

2.8.2 Fingerprints

Two dimensional (2D) fingerprint is a binary vector denoting the presence or

absence (1 or 0) in a molecule of some fragment substructures [100]. The finger-

print designs can vary dramatically in length ranging from ∼100 to millions of

bits [101]. If the fingerprints of two molecules have many bits in common , then

they are considered to be similar in structure [102,103] (The evaluation of similar-

ity is described in section 2.8.3). Since the circular fingerprints are well-established

for building models to predict the biological activities of small molecules, the in-

house 2D circular fingerprints were generated for STITCH compounds based on

the Morgan algorithm [104] for radius up to 3 bonds and maximum length bit

string (9,192) using RDKit (http://rdkit.org).

2.8.3 1NN similarity searching

Recently, chemical similarity searching methodology based on 2D fingerprints

has been shown the simplest but efficient tool for ligand-based virtual screen-

ing [105–107] due to following characteristics: (i) only structural information

(provided by chemical fingerprints) of the compound is required to formulate the

query; (ii) the implementation of chemical similarity methods are computationally

inexpensive (only a few seconds), (iii) due to the generally valid “Similar Property

Principle” - Structurally similar molecules tend to exhibit similar biological activ-
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ities [108–110], computational chemists frequently retrieve from chemical library

compounds that are similar to the active lead compound; (iv) chemical similarity

searching method can also contribute the design of the diverse chemical libraries

which require the compounds should be as dissimilar as each other [111].

K Nearest Neighbor (KNN) search is a similarity method that searches k

most similar chemicals from the dataset. 1NN similarity searching is a particular

case of KNN with k = 1 in which the similarity between reference set R with

N molecules and a query compound x is defined as similarity between x and its

nearest neighbor (measured by similarity) in R [97].

Many approaches are available to measure the chemical similarity [112–115].

So far the most commonly used method for the quantitative comparison of bi-

nary molecular fingerprints is the Tanimoto coefficient (Tc). The Tc between the

fingerprints of two molecules is calculated using the equation (2.8.1).

Tc =
c

a+ b− c
(2.8.1)

where c is the number of bits shared between the two fingerprints of molecules,

and a is the number of bits that are set on in the first fingerprint, and b is the

number of bits that are set on in the second fingerprint. The higher Tc value is,

the more similar between the compared fingerprints are.

2.8.4 Laplacian-modified näıve Bayesian target models

Bayesian theory was proposed several decades ago to calculate posterior prob-

abilities. It assumes that on a given class, the effect of the presence or absence of a

feature will not be influenced by the presence or absence of other features, namely

these features are totally independent. Bayesian theory is called as“Bayesian clas-

sifier” as generally it is used to calculate the probability whether a given sample

can be classified into a particular class.

Bayesian based statistics in combination of chemical descriptors have been

proposed recently and have been shown to be a powerful classification tool in

recent studies to predict protein targets for compounds [98, 116–120]. Unfortu-

nately, in chemoinformatic data analysis, Bayesian theory is not realistic because

the descriptors/features (interpreted by fingerprint bits) of the compounds are

not independent. For simplification purposes, when it is supposed that all the
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molecular features are independent, Bayesian theory is “näıve”, and the resulting

models are called as näıve Bayesian target models.

According to the Bayesian statistical analysis, näıve Bayesian model first cal-

culates the conditional probability of a given sample belongs to a particular class

(equation 2.8.2).

P (A|B) =
P (B|A) � P (A)

P (B)
(2.8.2)

where B is the event for compound composed of a group of n features; and A

is the target class for which a compound is a ligand (active). P (A) and P (B) are

the probabilities of events A and B occurring; and P (A|B) is, given events A and

B, the probability of A occurring under the condition of given B.

Since each compound is characterized by the 9,192 chemical fingerprint bits,

P (B) can be calculated by multiplying all the probability of each individual fin-

gerprint bit according to näıve Bayesian theory (equation 2.8.3).

P (B) =
9192�

i=1

P (fi) (2.8.3)

where fi is the ith feature of compound B. fi is represented by binary value

0 or 1 (0 inactive, 1 active).

Some fingerprint bits are 0. To avoid the case of 0 probability values, Laplacian

corrected estimator [98,116,121] is applied to calculated the probability of target

A occurring by given feature fi (equation 2.8.4).

P (A|fi) =
Afi + 1

Tfi � A
T + 1

(2.8.4)

The above formulation was adapted from Xia et al. [116] and Nidhl et al. [98],

where Afi is the number of active fingerprint bits among compounds binding to

target A, Tfi is the active fingerprint bits among total compounds. A/T is the

number of compounds binding to target divided by number of total compounds

for all the targets.

Then, given the presence of 9,192 features, the probability of the compound

being active toward the target should be given by equation (2.8.5).

P (active) =
9192�

i=1

P (A|fi) (2.8.5)
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In order to avoid potential numerical problems of the resulting small values (�
1) and to interpret better the results, the above equation is typically implemented

by logarithms to yield a combined value, it is normally called score S (see equation

2.8.6).

S = logP (active) =
9192�

i=1

logP (A|fi) (2.8.6)

The model yields a score for any test compound by equation (2.8.7).

Stest =
9192�

i=1

xi � logP (A|fi) (2.8.7)

where Stest is the generated score for the compound, and xi is the bit value of

the fingerprint of the compound.

A model was built for each target based on the fingerprints of small molecules

in the STITCH dataset where the activity of compounds on multiple targets

(1,375) is stored. Such models are called as “multiple-class Laplacian-modified

näıve Bayesian target models” [98].

2.8.5 Combination of 1NN similarity searching and

Laplacian-modified näıve Bayesian target models

In this work, 1NN similarity searching method was applied first to search for

the most similar compound (measured by Tc similarity) of the query compound.

Then, the Laplacian-modified näıve Bayesian target models generated a score for

all known targets of the most similar compound, resulting in a list of ranked

target predictions. Each score of the target is indicative of the likelihood of the

prediction. That is, if the target A’s Bayesian score is 90, and target B’s score is

80, then it means the target A is more likely than target B to be the target of the

query compound. The target with the highest score is the most likely target for

the test compound. Similarly, the second highest score of a target is supposed to

the second most probable target, etc.

Before the models were applied to predict the targets for compounds, the

validity of the models was evaluated. For benchmarking, I randomly assigned 85%

of the known ligands of each target to the training set and the remaining 15% to

the validation set (Fig. 2.8.1). Due to the separation of the ligands, I required
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Figure 2.8.1: Benchmark of target prediction.

that every target should have at least three ligands. In total, the validation set

contained 22,868 positive and 20,779,507 negative compound-target relationships,

respectively. For each validation compound, the model generated a score for all

possible targets through each Laplacian-modified näıve Bayesian model of each

target class.

Two types multiple-class models were built. The first type of model contained

85% of the ligands as the training set, so that the remaining 15% of the ligands

could be used as the model validation. The second one contained 100% the ligands

for their application to predict any test compound.

HitPick target prediction method reports all targets of the most similar database

compound along with the precision. The reported precision refers to the proba-

bility of a target being true regardless of whether the target prediction for higher

ranked targets are true or false (see Chapter 4 HitPick).

The fingerprint creation for the STITCH compounds, building and applica-

tion of Bayesian target-specific fingerprint models were implemented in a KNIME

(http://www.knime.org) workflow making use of the chemoinformatic functional-

ity provided by KNIME itself as well as by RDKit.

2.8.6 MaxMinAlgorithm

MaxMinAlgorithm [122] is provided by RDKit (http://www.rdkit.org/), which

follows a simple yet efficient approach. It is initialized with a random seed com-

pound and subsequently adds compounds iteratively from outside the subset that

are maximally dissimilar to the current subset until the desired number of com-

pounds is selected.
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Figure 2.9.1: Hit comparison between different assays.

2.9 Calculation of hit similarity

I represented the hit profile of an assay using a binary fingerprint of the chem-

ical activity of compounds (“1” indicates that the compound is a hit; “0” indicates

that compound has been tested, but inactive; missing value signifies that the

compound has not been tested) (Fig. 2.9.1).

To calculate the hit profile similarity based on the shared and non-shared
hits between two assays (Fig. 2.9.1), I used the continuous Tc equation (equation
2.9.1),

Tc =

�n
i=1(wixi)(wiyi)�n

i=1(wixi)2 +
�n

i=1(wiyi)2 −
�n

i=1(wixi)(wiyi)
(2.9.1)

where n is the total number of compounds tested in both assays, i iterates over

all compounds, wi is the promiscuity (ratio of the number of assays where the

compound is active and the number of assays where the compound was tested) of

the compound at ChemBank database level including 1,640 assays. xi, yi are the

activity values (1 or 0) of the compound.

2.10 Similarity of assay project by applying

EXCERBT

EXtraction of Classified Entities and Relations from Biomedical Texts (EX-

CERBT) [123] is a free-to-use biomedical text-mining system based on all available

abstracts from PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), full-text arti-

cles from PubMed Central (http://www.ncbi.nlm.nih.gov/pmc/) and articles in

OMIM (http://www.ncbi.nlm.nih.gov/omim). As EXCERBT is case-sensitive I

searched for different combinations of lower and upper case of keywords avail-
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able in EXCERBT. For example, for the keyword “Wnt”, EXCERBT provides

different forms such as “wnt”, “WNT” and “Wnt”. For “histone deacetylase”, the

terms “HDAC”, “HISTONE DEACETYLASE”, “Histone deacetylase”, and “His-

tone Deacetylase” are available. Furthermore, the search result depends on the

order of two keywords. For instance, there are four evidences linking “HDAC”and

“Wnt” and only two for the search of “Wnt” and “HDAC”. Thus, I searched every

combination of keywords of two projects and selected the search that retrieved

the highest number of occurrences.

2.11 Promiscuity filters

In order to increase computational efficiency, I applied F1 to keep compounds

from the initial ChemBank dataset showing activity in more than one project.

The removal of the compounds active in only one project or inactive in all the

projects does not have an effect on the hit similarity (continuous Tc) between

assays (Fig. 2.11.1). Then, I applied two additional filters to keep selective com-

pounds at project level (F2) and assay level (F3), respectively. F3 was applied to

projects with at least nine assays, which was determined by averaging the number

of assays per project in the ChemBank screening repository.

2.12 Identification of significantly

over-represented enriched targets

All the compounds tested in both experimental and control assays are sepa-

rated into positive and negative groups, respectively. A modification of B-Score A

method that mainly uses the median polish procedure to remove the row/column

biases in a plate [61] (see Chapter 3 Chemical Hit Identification, with p-value

< 0.05 as the threshold), was applied to identify the hits of both “experiment”

and “control” assays. I define “experimental” assay as the assay that measures

the intended biological activity of a project and a “control” assay as an assay

that controls for the specificity of the biological signal in the “experiment” assay.

The positive group contained specific hits, i.e. compounds are only active in ex-

perimental assay of the project; the negative group contained all the remaining

inactive compounds. After predicting the targets for both groups by applying Hit-

Pick target prediction method [96], hypergeometric tests were used to assess the
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Figure 2.11.1: Chemical hit similarity comparison of the assay pairs after applica-
tion of filter F0 and F1. I randomly chose 10,000 assay pairs and compared the hit
similarity (Tc) after the filter F0 and F1. F0 contains all the initial compounds;
F1 includes the compounds that are active in more than one project.

statistical significance of over-representation of certain predicted target of specific

hits compared to all distinct proteins of the compounds with predictions.

The data can be represented in a 2 X 2 contingency table (Table 2.12.1). q is

the number of compounds with targeting A in positive group; (k−q) is the number

of compounds targeting A in negative group; m− q is the number of compounds

not targeting A in positive group; and n − (k − q) is the number of compounds

not targeting A in negative group. The over-represented calculations were done

in R [124] by command: phyper(q − 1,m, n, k, lower.tail = FALSE, log.p =

FALSE). All reported p-values were adjusted with a false discovery rate (FDR)

[125] correction.
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Table 2.12.1: 2 X 2 contingency table of hypergeometric test

Positive group Negative group Total
Number of compounds

targeting A
q k − q k

Number of compounds
not targeting A

m− q n− (k − q) m+ n− k

Total m n m+ n
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Chapter 3

Chemical Hit Identification

In a chemical screening assay, those tested compounds with activity levels,

which are reactive in the experiment, are termed“hits”. Chemical hit identification

process determines which activity values of the compounds differ meaningfully

from those of the negative controls in the assay [95]. This process is the starting

point for discovering and developing successful new biologically active compounds.

Typically, the experimental researchers organize the screening results in a sorted

list according to compounds’ activity and choose a threshold value above which

the compounds are considered as hits [64]. However, this comes at a price that

the systematic errors in HTS data sets will not be detected. Systematic errors

can be caused by inconsistent plate replication, agent evaporation, variation in

incubation time, pipette malfunction and temperature differences [54, 126, 127]

that lead to plate-to-plate variance, and also can be due to the positional effects

of wells within plates that cause the variance within the plate [128]. For example,

throughout the entire screening campaign of more than 1,000 plates, Brideau et

al. [128] detected that activity values of the compounds located in the row A were

on average 14% lower than those located in the row P of wells. To compensate

for systematic effects, to remove errors from HTS data sets and improve the

quality of raw screening data, visualization techniques [129] and rapid data-mining

procedures [130] have been developed.

In this chapter I evaluate the performance of existing and novel computational

chemical hit identification methods that account for systematic experimental er-

rors on the chemical screens in ChemBank repository.

In ChemBank repository, 228,887 compounds were tested in 190 diverse projects,
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3. Chemical Hit Identification

Figure 3.0.1: ChemBank assay structure. P: positive-control well; N: negative-
control well; C: compound-treatment well; M: Mock-treatment well.

consisting of 3,834 assays. For convenience, all the controls are at an edge in an

assay plate (see Fig. 3.0.1). Given such assay data structure of ChemBank and

the resulting signals of compounds, I asked which compounds can be selected as

“hits” or “screening positives”? Such particular and big amount of data requires

urgent development of automatically statistical scoring procedures that can justly

and better extract the hits from chemical genetic screens.

The results presented in this chapter have been submitted in X. Liu and M.

Campillos, ‘Chemical screening assay pairs that share selective hits are biologically

related’.
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3.1 Results and discussion

The availability of raw bioassay values in forms of cell counts, absorbance,

etc. as well as the information about the activity of the positive and negative

controls in the assays in ChemBank repository make it possible the application

and comparison of different hit identification methods. To identify the chemical

hits in the ChemBank data set, I applied three published methods, namely, the

ChemBank [65], the B-Score [61], the Well-Correction [66] methods and five mod-

ifications of them to adapt the methods to the ChemBank data structure that I

summarize as follows:

3.1.1 The ChemBank method to identify hits

I named it as ChemBank method, because the authors introduced this ap-

proach when ChemBank database was published in 2008 to identify hits aiming

to normalize the activity in the assay based on mock signals.

The calculation in the ChemBank method is based on Z-score to adjust for

plate-to-plate changes in the assay noise or variability of sample values (Fig. 3.1.1).

Considering plate-to-plate differences in signal [128, 131], the median of raw

value of mock-treatment wells on a given plate of the assay was firstly calculated,

afterwards, the median was subtracted from each mock-treatment value on the

same plate, providing a zero-centered distribution of mock-treatment wells for each

plate in one assay [65]. Next, all the values from all mock-treatment wells in the

assay were collected together, and those well values that fail to pass Chauvenet’s

criterion [90] (the calculation is described in Chapter 2 Materials and Methods)

were eliminated to protect against the edge effects and other systematic artifacts,

which are known technical problem in the chemical assays [132, 133]. The mock-

treatment values that passed the outlier trimming were used later to normalize the

compound-treatment wells. First, the mean value of remaining mock-treatment

wells of each plate was calculated and it was subtracted from compound-treatment

wells on the same plate to obtain background-subtracted values (BSubV alue).

Then, standard deviation (stdev) of mock-treatment wells of the assay was calcu-

lated, and a dimensionless Z-score of each compound-treatment well of the assay

was obtained by BSubV alue/(2 ∗ stdev). Since most of the chemical screening

assays deposited in ChemBank were performed in two, three or even four repli-

cates (A, B, C and/or D), these replicates were finally combined into a Composite
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Figure 3.1.1: Scheme of the ChemBank method to identify hits. M: mock-
treatment; C: compound-treatment; P: positive-control.

46



3.1. Results and discussion

Z-score (CompositeZ) by projecting the vector (ZA, ZB, ZC , and/or ZD,) to “per-

fect reproducibility” (that is, in all the replicates, each compound-treatment well

had equal Z-scores) [65]. The calculated CompositeZ was the overall measure of

whether a compound scored as active in an assay. If the CompositeZ and Re-

producibility (the calculation of these two parameters are described in Chapter 2

Materials and Methods) of each compound followed the objective criteria: |Com-

positeZ| > 8.53 AND |Reproducibility| > 0.99, then this compound was referred

as “hit”.

In the ChemBank method, the compound signals are normalized in the assay

based on mock-treatment signals. However, the obvious drawback of this method

is that if the plate does not contain any mock-treatment wells (see Fig. 3.1.1

plate2 and plate3), then the plate values are not normalized. For this reason, this

method does not fully correct for the systematic effects within the plates (The

performance of the ChemBank method in distinguishing positve and negative

controls is described in section 3.1.6).

3.1.2 The B-Score method to identify hits

B-Score (for “Better” score) normalization may be applied to the row/column

biases within a single plate via a procedure known as 2-way “median polish” (see

Chapter 2 Materials and Methods). As the name implies, the procedure is based

on the use of medians rather than means. Medians hold the advantage that

they are not influenced by the statistical outliers, thus, the median of data which

contains a few “wild” values (known as outliers) is almost the same as the same

data without them [131]. This confers relative robustness to outliners of the B-

Score method. In addition, the B-Score method has two other advantages [134]:

(i) it is nonparametric, (ii) it minimizes measurement bias due to positional effects.

To account for row and column effects of the plate, a two-way median polish

was first applied to compute residual activity (Fig. 3.1.2). To standardize for plate-

to-plate variability, the resulting residuals within each plate were then divided by

their median absolute deviation (MAD) (the calculation is described in Chapter

2 Materials and Methods) to calculate the B-Score. Finally, all the plates of

the same assay were collected together to obtain p-value by normal distribution.

Hits were determined using MAD or p-value statistics, i.e. (a) compounds with a

residual larger than 2*MAD (“2MAD”), (b) p < 0.01, (c) p < 0.05, were defined
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3. Chemical Hit Identification

Figure 3.1.2: Scheme of the B-Score method to identify hits. M: mock-treatment;
C: compound-treatment; P: positive-control.

as hits.

Considering the two systematic variations, the B-Score method uses median

polish procedure to remove both column and row effects. However, again when

the plate exclusively includes positive-control wells whose signals are normally

higher than other plates, the signals will be cancelled during polishing step (The

performance of B-Score method see section 3.1.6). To overcome this problem,

I developed a modification of B-Score method called as B-Score A method that

treats such plates specially to obtain the residual activity.

48



3.1. Results and discussion

Figure 3.1.3: Scheme of the B-Score A method to identify hits. M: mock-
treatment; C: compound-treatment; P: positive-control.

3.1.3 The B-Score A method to identify hits

As B-Score required ideally the controls to be located randomly among the

wells of each plate, or at most localized in the first and last columns, I modified

the method to adapt it to the ChemBank dataset structure where some plates

only contained positive-control wells (e.g. plate ID 1031.0004.Pos.A and B). For

this, positive controls were not involved in the median polish procedure and their

residual activity was computed by subtracting the mean median effects of non-

positive controls from their raw values. The next steps, including hit detection

thresholds, were the same as in the B-Score method and I named this modification

B-Score A (see Fig. 3.1.3) (The performance of B-Score A method see section

3.1.6).

3.1.4 The Well-Correction method to identify hits

The Well-Correction method rectifies the distribution of assay measurements

by normalizing data within each well across all assay plates [66,135]. Firstly it nor-
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malized the all plate signals using Z-score standardization so that each plate had a

mean of zero and standard deviation of one. Once the data were plate-normalized,

the linear regression (y = ax+ b , where x indicates the plate number, and y rep-

resents the well value after plate normalization) was applied for each well. The

obtained trend was then subtracted from the original value of each well, bringing

the mean of this well across plates to zero. Afterwards, the Z-score normalization

of each well was carried out, and p-value was computed using normal distribution

in the assay. In the end, threshold of p < 0.01 or 0.05 was applied to capture the

hits (Fig. 3.1.4) (The performance of Well-Correction method see section 3.1.6).

3.1.5 Modifications of the above four methods

The Well-Correction method analyzed well values measured across all assay

plates. This method required that wells across plates should not systematically

contain compound samples belonging to the same family. In the ChemBank

dataset, many wells across different plates contained high number of positive con-

trols (e.g. well A24 of assay ID 1017.0030) and therefore, the Well-Correction

method could not be applied directly. To correct for this, I discarded wells with

higher number of positive controls (i.e. number of positive controls ≥ number of

non-positive controls). In order to keep all the methods comparable, I applied this

modification for the above four methods (Fig. 3.1.5) (The performance of these

four methods see section 3.1.6).

If the assay contains replicates of compounds, I required all replicates to be

identified as hits to consider them as hits. All the eight methods described above

that rely on the application of existing methodology are statistical and can be

applicable to any HTS assay.

3.1.6 Performance comparison among the eight methods

I determined the performance of the eight hit identification methods using the

receiver operating characteristic (ROC) graph [92] (see Chapter 2 Materials and

Methods) and the positive and negative controls (including mock treatments) of

the assays were used as a benchmark set (Fig. 3.1.6). The total number of positives

is 96 and the number of negatives is 7,590,042 and 7,620,521 for non-modified and

modified versions of methods, respectively. The modification of the B-Score A

method with two different thresholds, namely, “2MAD”and “p<0.05”, showed the
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Figure 3.1.4: Scheme of the Well-Correction method to identify hits. M: mock-
treatment; C: compound-treatment; P: positive-control.
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3. Chemical Hit Identification

Figure 3.1.5: Modification of the four methods to identify hits. M: mock-
treatment; C: compound-treatment; P: positive-control; N: negative-control.

Figure 3.1.6: ROC plot for eight hit identification methods.
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best performances. Due to its higher specificity (97.4%) with 79.6% of sensitivity,

the latter one was determined to identify hits for chemical screens.

3.2 Conclusions

HTS is a large-scale approach that screens many thousands of small molecules

in order to identify potential lead and drug candidates rapidly and precisely. All

HTS campaigns are prone to systematic errors due to plate-to-plate and within-

plate variance, resulting in decreasing the validity of results by either over- or

under-estimating true values [61]. Normalization of raw data based on the two

variations helps to remove systematic errors, making all the measurements com-

parable.

The availability of the raw bioassay data in the ChemBank dataset allowed me

to assure a high quality in the detection of hits by testing and determining, among

eight different hit identification methods, the method that best discriminated

between the positive and negative controls within the assays. The modification of

the B-Score A method showed the best performance by achieving a sensitivity of

79.6% and a specificity of 97.4%.

53





Chapter 4

HitPick

Chemical biology experiments are increasingly used to search for chemical

modulators of biological processes in cell-based and even whole-organism assays

as illustrated by the thousands of phenotypic screens stored in public reposito-

ries [65, 136]. In these assays, the identification of the molecular targets of hits

is essential to understand the molecular basis of the chemical activities in the

bioassay. Recently, drug target prediction methods have been applied to the hits

of cells [137] and zebrafish [76] phenotypic screens showing that computational

approaches are suitable tools that facilitate the interpretation of the biological

activity of chemicals.

Although diverse in silico methods have been proposed to identify hits [61,

66] and predict targets for chemicals (reviewed in Ref. [138]), only few of them

are available as easy-to-use online tools [73, 139]. To overcome this situation

and assist in the analysis and interpretation of chemical phenotypic screens, I

introduce HitPick, the first web server for hit identification and target prediction

of chemical screens. HitPick provides the functionality to detect bioassay hits

using the B-Score method [61] (the calculation is described in Chapter 3 Chemical

Hit Identification) and predicts targets of a chemical of interest using a newly

developed approach combining 1-nearest-neighbor (1NN) similarity searching [97]

and a machine-learning method [98] (see Chapter 2 Materials and Methods).

The results presented in this chapter have been published in X. Liu*, I. Vogt*,

T. Haque, and M. Campillos. HitPick: a web server for hit identification and

target prediction of chemical screenings. Bioinformatics 2013, 29, 1910–1912.

(* These two authors contributed equally. Ref. [96]).
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Table 4.1.1: Performance of the three target prediction methods

HitPick 1NN Bayesian
Precision (%) 92.11 84.72 80.03
Sensitivity (%) 60.94 NA 52.95
Specificity (%) 99.99 NA 99.98

Note: NA, “not available”.

Table 4.1.2: Comparison of the performance of HitPick and SEA target prediction
methods.

HitPick SEA
Precision (%) 84.8 82.8
Sensitivity (%) 56.9 55.3
Specificity (%) 99.99 99.99

4.1 Results

4.1.1 Performance of target prediction

For the implementation of the target prediction approach, I used a set of

145,549 human chemical-protein physical interactions extracted from the STITCH

3 database [99] (preparation of the data is mentioned in Chapter 2 Materials and

Methods). I assessed the performance of the method in HitPick using as validation

set 15% of all ligands that were not part of the training set. When evaluating the

highest scoring target prediction for each compound, HitPick achieved a sensitivity

of 60.94% (with 66.16% being the maximum possible sensitivity), a specificity of

99.99% and a precision of 92.11%, an improvement over näıve Bayesian models

and 1NN similarity searching (see Table 4.1.1).

I used the same validation data and compared the performance of HitPick

to the Similarity Emsemble Approach (SEA) [73], a well-known target fishing

application that relates proteins based on the chemical similarity of their ligands.

For each method, I selected the best-predicted target (i.e. highest precision for

HitPick and lowest E-value lowest for SEA) for each validation compound and

then calculated precision, sensitivity and specificity over all predictions. The

performance of HitPick is comparable with the target prediction quality achieved

by the SEA (see Table 4.1.2).

I also evaluated the performance of the HitPick target prediction method at dif-
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Table 4.1.3: Precision (%) for the first five predicted targets in relation to the Tc
similarity of a validation compound to the most similar molecule in the training
set

Ranked
prediction

[0.2∼
0.3)

[0.3∼
0.4)

[0.4∼
0.5)

[0.5∼
0.6)

[0.6∼
0.7)

[0.7∼
0.8)

[0.8∼
0.9)

[0.9∼
1.0)

1.0

1st 15.7 26.4 53.3 77.0 89.8 94.8 96.7 97.7 97.3
2nd 15.4 14.5 43.5 54.3 64.1 68.9 88.2 88.2 83.0
3rd NA NA 24.6 39.1 48.3 63.2 77.9 77.9 66.7
4th NA NA 15.4 33.3 36.1 62.0 77.6 77.6 56.5
5th NA NA NA NA 29.6 46.1 NA NA NA

Note: The precision in the Tc bins of 0∼0.1 and 0.1∼0.2 are not available due
to the low number of compounds (0 and three compounds, respectively). The
precision for cells marked as ‘NA’ could not be determined because of the low
number of compound–target predictions (< 30). When I evaluated the 2nd (3rd,
4th and 5th) prediction, I required that there should be at least 2 (3, 4 and 5)
targets respectively of the most similar compound so that there is no bias for the
calculation between the precision of 1st and 2nd (3rd, 4th and 5th) prediction.
Therefore, the values in each column of Table 4.1.3 do not sum up to 100%. Due
to the design of the widely and successfully used fingerprint scheme, Tc of 1 does
not mean that two molecules are necessarily identical (see 4.2 Discussion). For
the compounds that are in the STITCH database, I assigned their known targets
with 100% target prediction precision.

ferent ranges of chemical similarity of the query compound to the closest training

compound and for up to five top scoring known targets of this training molecule

independently. To obtain robust precision estimates, I required a minimum of

30 compound-target predictions for each target rank in a given Tc interval (Ta-

ble 4.1.3). The first step of the validation process consists of finding the most

similar compound from the training set to a compound from the validation set

(calculated by Tc). For instance, in the evaluation of the targets that ranked on

the 3rd position there are only 5 compounds in the validation set whose highest Tc

maps to the bin 0.2∼0.3. In this case “NA” is assigned for the prediction precision

for the 3rd target because of the threshold of 30 compound-target predictions. As

a consequence, I did not report targets ranked on third position if the Tc for the

most similar database compound maps to 0.2∼0.3.

I observed that the precision increases with increasing Tc. For compounds with

a Tc of >= 0.7 to the training set, the first predicted target was nearly always

correct (almost 100%, see Table 4.1.3). Furthermore, the precision reached at
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least 53% for a Tc in the range of 0.4∼0.5. Thus, I chose 50% as default precision

threshold for the predicted targets on the web server.

4.1.2 Implementation

HitPick web server offers two independent functions, namely, hit identification

and target prediction of chemical screens. Below I described these two functions

in detail.

Hit identification

The first function identifies bioassay hits based on the B-Score method and

predicts targets for up to 100 hits (Fig. 4.1.1). As input, it requires the data from

a bioassay, including plate names, compound identifiers, well positions, activity

values and SMILES strings. The output is a table listing the hits and their

chemical structures. Hits are determined by a p-value cut-off of 0.05. If the assay

contains replicates of compounds, I require all replicates to be identified as hits.

This table is used as input source for the target prediction method. The output

of the target prediction is a list of target predictions for the input compounds

ranked by decreasing precision.

Whenever the hit identification routine returns more than 100 compounds,

target prediction is carried out for a structurally diverse (meaning as dissimilar

as possible) subset consisting of 100 compounds by applying the MaxMinAlgo-

rithm [122] (see Chapter 2 Materials and Methods) implemented in RDKit. This

procedure is intended to facilitate the analysis of molecular targets putatively in-

volved in the measured biological processes by focusing on a representative subset

of hits.

Target prediction

In addition, HitPick allows the prediction of targets for up to 100 compounds

independently from bioassay data (Fig. 4.1.2). For this second function, only

SMILES strings are required as input. To ensure reliability of reported precision

values I require a minimum of 30 compound-target predictions. The precision

depends on the similarity to the most similar compound in the set of known

interactions as well as on the rank of the target’s score.

The results are displayed sorted by precision with a threshold of 50% by de-

fault. Users can select different precision thresholds for the target prediction
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Figure 4.1.1: Input and output scheme of hit identification.

results as desired. Under a lower threshold, more chemicals will have predictions

at the cost of a lower precision. The targets are reported as gene symbols and

more information can be found at STITCH (http://stitch.embl.de/) or GeneCards

(http://www.genecards.org/). In addition, an overview of the predicted targets is

given in form of pie chart.

4.1.3 Processing time

The processing time for hit identification depends on the size of the assay data.

For bioassays containing less than 5,000, 10,000 and 100,000 compounds, the web

server returns the results in less than 1, 2 and 30 minutes, respectively. The target

prediction takes around 2 minutes per batch of query.

59



4. HitPick

Figure 4.1.2: Input and output scheme of target prediction.
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However, as calculations are carried out on a shared cluster environment, ac-

tual processing time depends on the cluster workload.

4.1.4 Privacy

To preserve the privacy of the user data, only users are able to access to their

uploaded data and results (from the same IP address as on query submission).

In addition, all data will be deleted automatically in seven days after they are

submitted.

4.2 Discussion

HitPick is a novel web server for predicting the targets of small molecules

with high quality. The drug target prediction methods implemented in HitPick,

that is, 1-Nearest-Neighbour (1NN) similarity searching and Laplacian-modified

näıve Bayesian target models exist. However, HitPick does not simply use these

methods but integrate them in a single method that shows better performance

than the two methods independently. An additional novelty of HitPick is that it

is the first webserver available that identifies the hits for bioassays and predict

their molecular targets. Regarding the quality of the server, I found that the

performance of HitPick and Similarity Emsemble Approach (SEA) is comparable.

During the validation of HitPick target prediction approach, I observed that

the precision of the drug-target prediction increases with increasing structural

similarity (Tc) between the query compound and compounds of the database.

However, for drug-target prediction with a structural similarity of 1 (Tc=1) I

noticed a decreased precision (see Table 4.1.3). This decrease is due to the fact

that Tc of 1 does not necessarily mean that two molecules are identical. On

the one hand, the binary fingerprints capture the presence of molecular features,

but not the frequency. For instance, they are unable to distinguish between a

molecule and its dimer. On the other hand, these fingerprints do not rely on pre-

defined moieties but can detect all possible combinations of atom environments.

To lessen the computational complexity these fingerprints usually map the found

features to a fixed-length bit string by means of a hashing function, so that in

the end a single bit could potentially account for more than one feature. In order

to reduce the chance of two non-identical compounds being Tc of 1, I selected

the maximum fingerprint length determined by the utilized software. However,
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this procedure did not remove all dissimilar compounds from the bin Tc=1. The

manual inspection of compounds in the bins of [0.9-1.0) and of 1 and their most

similar compounds revealed that with the exception of those actually identical

compounds, the compounds in the bin of [0.9-1.0) are in fact more similar than the

pair of compounds in the bin of Tc=1. The latter bin was enriched in compounds

containing long aliphatic chains whose fingerprints were identical to functionally

distant compounds with very short aliphatic chains and this explains the decrease

in the drug target precision in this bin. To avoid the underestimation of target

prediction precision for query compounds identical to compounds in the STITCH

database, I introduced a feature in HitPick that automatically recognized if the

query compound is identical to compounds in the STITCH database by comparing

their SMILES strings prior to the generating of fingerprint bits and assigned their

known targets with 100% target prediction precision.

HitPick is the first web server publicly available to facilitate the analysis of

chemical screens by identifying hits and predicting their molecular targets. These

two functionalities of HitPick can still be extended in the future. Currently Hit-

Pick allows to apply only the widely used B-Score method [61] for hit identification.

I have shown in this thesis that other existing and novel methods have an optimal

and even better performance to detect hits of high-throughput chemical assays

(see Chapter 3 Chemical Hit Identification). All these methods can be easily

implemented into HitPick hit identification functionality. For target prediction,

as human is currently the species that contains largest number of known drug

targets, HitPick focuses on human drug targets. With the increasing number of

chemical-protein interactions in other species (STITCH 3 contains information of

1,133 organisms [99]), HitPick can also be extended to other species.

4.3 Conclusions

High-throughput phenotypic assays reveal information about the molecules

that modulate biological processes, such as a disease phenotype and a signaling

pathway. In these assays, the identification of hits along with their molecular

targets is critical to understand the chemical activities modulating the biological

system. Here, I present HitPick, the first web server for identification of hits

in high-throughput chemical screens and prediction of their molecular targets.

HitPick applies the B-Score method for hit identification and a newly developed
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approach combining 1-nearest-neighbor (1NN) similarity searching and Laplacian-

modified näıve Bayesian target models to predict targets of identified hits.

When evaluating of the highest scoring prediction for each compound, HitPick

target prediction method achieved a sensitivity of 60.94% (with 66.16% being the

maximum possible sensitivity), a specificity of 99.99% and a precision of 92.11%,

which performs better than two individual target prediction methods, namely

Bayesian models (sensitivity of 52.95%, specificity of 99.98% and precision of

80.03%) and 1NN similarity searching (precision of 84.72%). I believe that the

application of HitPick to identify hits and predict targets of chemical screens in

a systematic and comprehensive manner may help to unravel hidden molecular

targets of chemicals, contributing to understand side effects of drugs and propose

new drug therapeutic indications.

The server can be accessed at http://mips.helmholtz-muenchen.de/proj/hitpick.
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Chapter 5

Chemical Screening Assay Pairs

that Share Selective Hits Are

Biologically Related

The screening of a library of compounds in a biological assay is a common first

step in drug discovery to find chemical hits for the drug leads. A single chemical

screening experiment provides information about the activity of compounds on a

target or biological process. However, to select a chemical hit as chemical probe

or drug lead, it is important to know additional properties of the compound such

as its specificity and toxicity. An inexpensive and efficient manner to obtain in-

formation about these properties is to learn about the activity of this compound

across multiple chemical screens. This approach is followed routinely in chemi-

cal screening programs such as the NCI60 project run by “US National Cancer

Institute (NCI)” where the activity of a compound across 60 different cancer cell

lines is measured to detect selective chemical hits for a particular cancer and avoid

general toxicity [140].

In the last decade several initiatives including the NIH Molecular Libraries

Program [141] and ChemBank [65] have compiled chemical biology experiments

performed by different laboratories using diverse experimental set-ups ranging

from cell-free to cell-based and even whole organism-based assays. The analysis

of these heterogeneous datasets is challenging yet offers the possibility to obtain a

global view of the chemical and biological activities of chemicals. In this regard,

the integration and analysis of the collection of assays stored in the PubChem
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BioAssay [136] repository has proven to be useful to determine chemical properties

of promiscuous compounds [142–144] and to predict adverse drug reactions [145].

The results of these studies suggest that a plethora of hidden molecular and

biological information in these repositories can be uncovered using integrative

computational methods. This is particularly relevant for the hits of phenotypic

assays, for which the underlying molecular targets responsible for their activity is

unknown. To determine the protein targets of the chemical hits of these assays,

in silico target prediction methods [73,96,139] are arising as an efficient approach

to obtain insights into the compound mode of action. For instance, Young et

al. [137] have shown recently that the predicted molecular targets of hits are able

to explain complex readouts of high-content screening assays.

Here, I exploited the vast amount of publicly available chemical screening as-

says present in the ChemBank database to evaluate in a systematic manner if a

pair of biological activities modulated by common chemicals is related. I tested

and confirmed this hypothesis by the systematic analysis of the molecular activi-

ties and biological processes measured in pairs of assays sharing non-promiscuous

compounds in this repository. Subsequently, to understand the molecular mech-

anism linking pairs of phenotypic assays sharing chemical hits, I annotated the

molecular targets of the shared hits. To that aim, I used HitPick [96], a recently

developed in silico target prediction method to predict the molecular targets of

compounds (see Chapter 4 HitPick). I found that the known biological role of the

predicted targets of common chemical hits confirms the biological relationships

between the assay pairs and provides mechanistic understanding of the relation-

ships. This approach allows me to find relationships between biological activities

and to understand better the molecular basis of the shared biological activities.

The results presented in this chapter have been submitted in X. Liu and M.

Campillos, ‘Chemical screening assay pairs that share selective hits are biologically

related’.

5.1 Results

5.1.1 ChemBank structure and chemical hit identification

I chose the ChemBank repository of chemical screens to test the hypothesis

of whether a pair of biological processes modulated by the same chemicals is
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related. In the ChemBank repository, the raw activity of a total number of 228,887

compounds in 3,834 assays (representing experimental batches) of 190 diverse

projects is available.

In a first step, I identified the chemical hits of the individual assays. Since

out of the eight methods applied (see Chapter 2 Materials and Methods), the B-

Score A method, a modification of the well known B-Score method [61] achieved

the best performance with a sensitivity of 79.6% and a specificity of 97.4%. I

thus, selected this method to determine the chemical hits of ChemBank assays.

Then, I grouped chemical screen batches performed using identical experimental

protocols into “assay types” (hereafter named “assays”) reducing the number of

assays to 1,640 (see Chapter 2 Materials and Methods).

Next, in order to understand better the molecular or biological activity mea-

sured in the assays I analyzed and classified the assays part of ChemBank projects.

I first classified the assays into “experiment” and “control”, according to whether

the activity measured in the assay was the intended biological activity of the

project or unspecific activities, respectively (Fig. 5.1.1A). In the second place,

I classified the assays into cell-free, cell-based and microorganism based on the

biological object of the experiments (Fig. 5.1.1A) (see Chapter 2 Materials and

Methods). Lastly, I annotated the molecular activities and biological processes

measured in the projects by assigning manually specific Gene Ontology (GO) [146]

terms (biological process for phenotypic assays or molecular function for cell-free

assays) to the projects Fig. 5.1.1A). As an additional description of the activ-

ity tested in projects, I manually assigned suitable keywords representing pro-

tein/gene names or biological processes to the projects (Fig. 5.1.1A). I then prop-

agated the GO terms and keywords of each project to its “experiment” assays.

I observed that the projects differ both in the number of assays (ranging from

1 to 113, Fig. 5.1.1B) and the percentage of “experiment” assays (Fig. 5.1.1C)

they include. This observation underlines the heterogeneity of the composition of

ChemBank dataset. The distribution of cell-free, cell-based and microorganism

assays is also heterogeneous. More than 40% of the projects are composed of

phenotypic assays (cell-based and microorganism), and the majority of them are

cell-based assays (Fig. 5.1.1D, also see Appendix Fig. A.0.1). Interestingly, despite

the inhomogeneity of the ChemBank dataset, I found that approximately 80% of

the assays have more than 1,000 tested compounds (Fig. 5.1.1E) in common,

indicating that the different assays can be compared based on the activity of a
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Figure 5.1.1: Data structure of the ChemBank repository. (A) Classification of
the different projects. (B) Distribution of the number of assays in projects. (C)
Distribution of experimental assays in projects. (D) Distribution of cell-free, cell-
based and microorganism assays in projects. (E) Percentage of assays sharing
tested compounds.

68



5.1. Results

large number of compounds.

5.1.2 Promiscuity filters and similarity in biological

activity

Next, I tested the hypothesis of whether chemical screening assays belonging

to different projects with a similar chemical hit profile are biologically related. To

evaluate if two assays are related biologically, I applied the Lin measurement [147]

that quantifies the semantic similarity between GO terms assigned to the assays.

Additionally, I applied the biomedical text-mining tool “EXtraction of Classified

Entities and Relations from Biomedical Texts (EXCERBT)” [123] that detects

terms co-mentioned in abstracts of scientific literature to evaluate if the keywords

linked to the assays of the pair are related (see Chapter 2 Materials and Methods).

Afterwards, for every assay with the set of compounds that show activity in

at least two projects (Filter 1, F1) (Fig. 5.1.2A, F1) (see Chapter 2 Materials

and Methods), I constructed a binary fingerprint vector representing the activity

of the set of compounds in the assays (1 active chemical hit, 0 inactive). Next,

for all possible pair wise fingerprint combinations of “experiment” type assays

belonging to different projects, I calculated the chemical hit similarity using a

weighted Tanimoto coefficient (Tc) [112] (see Chapter 2 Materials and Methods).

Under these conditions, the assessment of the relationship between chemical hit

similarity and the molecular and biological similarity of assay pairs did not reveal

an association between hit and biological similarity (Fig. 5.1.2B and 5.1.2C, F1). I

reasoned that promiscuous compounds might be responsible for the high chemical

hit similarity in unrelated assays as the prevalence of nonspecific or promiscuous

compounds is a well-known problem in High-Throughput Screening (HTS) assays

commonly explained by their ability to form aggregates and act on unrelated

targets [148]. Thus, their presence might be especially disturbing for the detection

of biological connections between assay pairs.

Based on this assumption, I tested if the removal of promiscuous compounds

increases the biological relatedness for assays sharing hits. To that aim, I applied

two promiscuity filters. The first filter retained compounds with activity observed

in less than 20% of the projects (Fig. 5.1.2A, F2) and the second filter (F3)

kept compounds that are active in less than 20% of the assays within a project.

To avoid discarding specific chemical hits in projects with low number of assays
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Figure 5.1.2: Promiscuity filters and correlation between hit similarity and known
relationships of assay pairs. (A) Promiscuity filters. F0 contains all the com-
pounds of the dataset. F1 keeps the compounds active in at least one project,
and F2 retrieves the compounds active in ≤ 20% of the projects. F3 retains com-
pounds active in ≤ 20% of the assays for the projects with higher than average
number of assays (average number of assays per project is 9 for ChemBank). The
number of remaining compounds after filtering is given in brackets. (B and C)
Correlation between hit similarity and known relationships of ChemBank assay
pairs. (B) Relationships indicated by GO terms and (C) relationships indicated
by text-mining. Each point in the plot represents a bin of assay pairs according
to the sorted Tc values. In F1, each bin contains 1,000 assay pairs. Bins in F2
and F3 contain 500 and 100 pairs, respectively. Separately, the performance of
assay pairs in F3 sharing five or more hits is shown for (B) and (C).
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where “experiment”assays represent more than 20% of all assays, the filter F3 was

applied only to projects with at least nine assays (Fig. 5.1.2A, F3) (see Chapter 2

Materials and Methods). For example, the latter filter would discard all specific

chemical hits in projects composed of one experiment and one control assay like

the project “Glioblastoma Modulators” (Fig. 5.1.1A) that searched for PI3K and

mTOR modifiers in glioblastoma cells. If applied to this project, this filter would

remove all specific hits, that is, those compounds that are active in cells treated

with rapamycin (“experiment”) and inactive in cells not treated with the mTOR

inhibitor (“control”), since they are active on 50% (>20%) of the assays in this

project.

As can be observed in Fig. 5.1.2B and 5.1.2C, only after the application of the

most stringent promiscuity filter F3, a linear relationship between hit similarity

and known biological relationships was observed. This trend became stronger

when I discarded combinations of assays sharing low number of hits (Fig. 5.1.2B

and 5.1.2C, number of shared hits≥ 5, also see Appendix Fig. A.0.2A and A.0.2B)

indicating that the larger the number of common chemical hits is, the more likely

it is to capture biological relationships between assays.

5.1.3 Assay interaction network

Next, I visualized and inspected manually the assay pairs showing high chem-

ical hit similarity. For that, I constructed an assay interaction network with the

assay pairs showing the highest hit similarity (Tc > 0.4) and sharing five or more

chemical hits. This network contains 32 nodes and 26 edges (Fig. 5.1.3).

Interestingly, 92% of the edges in the network connect assays of the same

experimental type. That is, phenotypic assays share hits with other phenotypic

assays and cell-free assays tend to share hits with other assays of the same type.

I found, for instance, a group of four interconnected assay pairs of the “microor-

ganism” type (i.e. “Bacterial Viability”, “SigB Inhibition”, “Worm Anti-Infective”

and “Anti-Bacterial” assays) where the same biological activity, that is, the an-

tibacterial activity, was sought in all of them. An example of a connection of

two clearly related cell-free assays is the link between “Kinesin Activity Eg5” and

“Kinesin Activity MKLP1” comprised by two assays aiming to find inhibitors of

proteins of the Kinesin family. These instances provide evidence that molecular

and biological relationships between assays can be captured by our approach.
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Figure 5.1.3: Network of assay pairs from ChemBank repository sharing selective
hits.
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Intriguingly, I found a high number of edges (11, representing 42% of the

edges) connecting “control” assays to “experiment” assays, the majority of them

(9) linking two cell-based assays. A closer inspection of the activities measured

in these assays indicates that cell growth related processes such as differentia-

tion or growth inhibition, were often measured in the assays as the sought ac-

tivity, for example in assays seeking for chemicals with anticancer activity or

in assays controlling the cytotoxicity of compounds. To gain deeper insights

into the molecular basis of these assay combinations, I extracted molecular in-

formation of the chemical hits shared by these pairs by annotating predicted

human drug targets of the compounds. For that, I applied the HitPick target

prediction method [96] to predict the molecular targets of hits with high con-

fidence (precision > 50%). Interestingly, I found the same predicted drug tar-

gets related to several assay pairs. For example, compounds specifically target-

ing the glucocorticoid receptor (NR3C1) are active in four consecutive assays in

the network, namely“Mycobacterium tuberculosis (M.tuberculosis) Macrophage”,

“Gamma Secretase Inhibitor (GSI) Synthetic Lethal (Cell growth)”, “Adipocyte

Differentiation” and “Unfolded Protein Response (UPR)” (Fig. 5.1.4A). The role

of NR3C1 in macrophages as the target of anti-inflammatory agents [149] and its

anticancer activity [150] provide an explanation for the molecular basis of the rela-

tionship between the “M.tuberculosis Macrophage”, that screened for inhibitors of

M.tuberculosis growth in macrophages and “GSI Synthetic Lethal (Cell growth)”,

a “control” assay that tested the growth inhibitory activity of molecules in T-cells.

Moreover, the known ability of NR3C1 to induce adipocyte differentiation [151]

explains the common link between the cell growth and differentiation activities

measured in“GSI Synthetic Lethal (Cell growth)”and“Adipocyte Differentiation”

assays, respectively. Interestingly, although the link between UPR and differen-

tiation processes has been proposed in the literature [152], the molecular basis

of this connection is not fully understood. Here, our result suggests the function

of NR3C1 as intermediary between UPR induction and differentiation. However,

this proposal should be taken with caution, as the specificity of the chemical

hits on UPR process cannot be assessed due to the lack of controls assay in the

project. In this context, the UPR assay is linked to a control assay of the “Wnt

Inhibitors (Wnt mutated vector)” project, that measures the promoter activity

of a mutated version of Wnt responsive construct (Fig. 5.1.4B). A closer look at

this relationship reveals that ATP1A1 (ATPase, Na+/K+ transporting, alpha 1
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polypeptide), CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1)

and ADORA2B (adenosine A2b receptor), are the predicted targets of the chem-

ical hits of this pair. The role in cancer of ATP1A1 [153], CYP1B1 [154] and

ADORA2B [155] indicate that the activity of compounds in the “Wnt Inhibitors

(Wnt mutated vector)” assay is likely due to their cytotoxicity. Although the

known role of UPR to induce cell cycle arrest [156] and the recently reported role

of ouabain, specific inhibitor of ATP1A1, on the modulation of UPR [157], would

suggest that the relationship between this assay pair is due to the UPR-dependent

growth inhibitory activity, further research is needed to assess the specificity of

the shared hits on the UPR assay.

The growth inhibition measured in the “Wnt Inhibitors (Wnt mutated vec-

tor)” assay is further confirmed by the association of this assay with the anti-

cancer “Gliobastoma Modulators” and“Genotype Specific Inhibitors in Non-Small

Cell Lung Cancer (NSCLC)” assays (Fig. 5.1.4C). Our target prediction approach

revealed that, within this group of growth inhibitory assays, the cytotoxic ac-

tivity is partly mediated through well-known anticancer targets, such as histone

deacetylases (HDACs) [158], ATP1A1 [153], farnesyltransferase, CAAX box, al-

pha (FNTA) [159] and mouse double minute 2 homolog (MDM2) [160]. Further-

more, the modulation of these targets also explains the link between the chemical

screens measuring stem cell differentiation [“Stem Cell Differentiation (Cell count)”

assay], and DNA methylation [by 4,6-diamidino-2-phenylidole (DAPI) staining in

“Histone Modification (DNA methylation)” assay]. Intriguingly, other predicted

targets behind the growth inhibition activity in this group of cancer related as-

says include adenosine receptor A3 (ADORA3), cannabinoid receptor 2 (CNR2),

cholesteryl ester transfer protein, plasma (CETP), 5-hydroxytryptamine receptor

6 (HTR6) and ATPase, Ca2+ transporting cardiac muscle, fast twitch 1 (ATP2A1).

The modulation of these targets in anticancer screens suggests the possible role of

these proteins in growth inhibition. In fact, the activity of ADORA3 as a potential

target for tumor growth inhibition has been proposed before [161].

Another well-known biological connection is represented by the link between

“Beta-Catenin” assay that measured the nuclear translocation of beta-catenin and

“Histone Modification (DNA methylation)” assay (Fig. 5.1.4D). HDAC, the pre-

dicted target of the common hits, has been shown to inhibit Wnt signaling through

disruption of the interaction between beta-catenin and T cell factor [162]. Thus,

the biological relationship between these two assays is explained by the known
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Figure 5.1.4: Enriched targets between assay pairs. (A, B, C, D) are the examples
of assay connections (shown by assay name). The size of each pie chart is pro-
portional to the logarithm of the number of shared hits. For simplicity, in the pie
charts I show the most frequently predicted targets (with a precision higher than
50%) of the shared chemical hits (see Appendix Table A.0.1 for the full target list
of each assay pair in Fig. 5.1.4). The fraction of the pie charts representing hits
with no predicted targets is shown in white as “No Information”. In Fig. 5.1.4C,
only those representative targets common to 3 hits for assays pairs in the group
are shown, and the remaining targets common to ≤ 2 hits are shown in black as
“Others”.
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relationship of HDACs.

In summary, after retrieving the chemical hits from the ChemBank assays, I

observed that biological activities measured in two assays sharing selective hits

are related. The close inspection of the assay pairs sharing specific hits in the

network is able to confirm the biological associations of assay pairs and reveal

molecular information underling the shared activity.

5.2 Discussion

In this work, I have integrated and analyzed the information stored in Chem-

Bank and demonstrated that biological activities of assay pairs sharing selective

chemical hits are often related. The biological relationships between phenotypic

assays are furthermore supported by the role of protein targets predicted for the

shared hits.

Fingerprint-based approaches, where profiles of a collection of predefined fea-

tures of an object such as a compound or protein is compared, have often been ex-

ploited in Chemistry and Biology fields to infer properties of compounds [100,112]

and genes [96]. These approaches are based on the observation that similar finger-

print profiles correlate with similar properties [163]. For example, compounds with

similar chemical fingerprint profiles tend to have similar biological activities [164].

Likewise, compounds with similar modes of action have also been observed to

exhibit similar behavior across multiple assays [165]. In contrast, in this study I

use chemical hit-based fingerprints constructed with selective compounds to in-

fer bioactivity relationships. Interestingly, I show that the relationships between

assays can only be captured when a stringent selectivity filter is applied to dis-

card promiscuous compounds from the chemical hit profile. Currently, there is no

consensus for the definition of compound promiscuity and different promiscuity

filters have been proposed in the literature. Schürer et al. [144] and Jacob et

al. [166] defined promiscuous compounds as those showing activity in more than

50% or 30% of the assays, respectively, while Gamo and colleagues [82] calculated

an ‘inhibition frequency index’ for each compound and applied a variable thresh-

old, ranging from 5 to 20% of screens, depending on the number of HTS screens

a given compound had been through. Although these studies have revealed inter-

esting chemical moieties associated to unspecific signals in chemicals screens, the

question of what level of selectivity is necessary to capture hits carrying informa-
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tion about specific biological signals has not been addressed yet. In this study, I

have shown that a stringent promiscuity filter that first selects hits active in less

than 20% of the projects (filter F2) and subsequently retains compounds with

activity in less than 20% of the assays within a project (filter F3) is necessary

to obtain hits with specific biological activities. I reason that the low number of

projects performed in the same experimental backgrounds generating the same

unspecific signals might be the cause for the lack of correlation between hit and

biological similarity of two assays after the application of filter F2. Although

this is partially overcome by discarding compounds active in several assays of the

same project and consequently, performed in similar experimental backgrounds

(filter F3), our approach also detects connections between cell-free assays that

are apparently unrelated. For example, the “Phospholypid Hydrolysis” assay is

associated to the “Deubiquitilation” assay (Fig. 5.1.3). A closer look at this con-

nection reveals artifactual yet non-promiscuous hits, as the shared hits of the two

connections appear active in the control assays of the project (termed “unspe-

cific” chemical hits, see Fig. 5.1.1A). This indicates that the stringent promiscuity

filters applied here might, for some experimental conditions, be insufficient to dis-

card unspecific hits, and additional control assays might be necessary to remove

non-selective chemical hits.

The presence of unspecific hits is also evidenced by the occurrence of edges

that connect “control” and “experiment” assays. For example, the “e-Cadherin

Synthetic Lethal (Cell growth)” “control” assay that controlled for the cytotox-

icity of compounds in the human mammary epithelial HMLE cell line is con-

nected to the “Wnt And Lithum Modulators (Wnt vector)” “experiment” assay

(Fig. 5.1.4), suggesting that the shared hits of the pair are not specific of the

Wnt signaling process. This hypothesis is further corroborated by the known or

suspected anti-cancer activity of the predicted targets (HDAC1 [158], FNTA [159]

and sigma non-opioid intracellular receptor 1 (SGIMAR1) [167], see Appendix

Table A.0.1) of the shared hits and the modulation of these targets in a control

assay of “Wnt Inhibitors (Wnt mutated vector)” (Fig. 5.1.4C, also see Appendix

Table A.0.1). Similarly, the link between the cytotoxic “control” assay of the “e-

Cadherin synthetic lethal (Cell growth)” project and the “Translation Inhibition

(Dengue replicon translation)” assay that detected inhibitors of the translation

of Dengue virus replicon (Fig. 5.1.3) points to the unspecificity of the chemical

hits in the “Translation Inhibition” assay. These examples illustrate the need of
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additional control assays in these screening projects to assess the specificity of the

compounds. Nonetheless, I show that this approach was able to capture meaning-

ful biological connections even between different types of assays, such as the link

between a microorganism assay with a cellular assay, which also able to inform

about biological connections. For example, the microorganism “Anti-Bacterial”

assay is connected with cellular “M.tuberculosis Inhibition” assay performed in

BG1 ovarian cancer cells.

I observe that many relationships between different phenotypic assays are es-

tablished based on the shared cytotoxicity of compounds in cell- or whole organism-

based assays. Cytotoxicity appears thus as underlying biological effect common

to phenotypic assays that accounts for the activity of many hits in these assays.

Interestingly, the target prediction for those “non-promiscuous” but “cytotoxic”

compounds reveals targets of drugs used as anticancer therapies, such as the

HDACs [158] and ATP1A1 [153], or targets that have been proposed for cancer

treatment such as FNTA [159] and MDM2 [160]. Hence, other predicted targets

connecting these assays might represent potential targets for the treatment of can-

cers, such as CNR2, CETP, HTR6, ATP2A1 and ADORA3. Indeed, ADORA3

has been proposed as a potential therapeutic cancer target [161].

In summary, this work shows the potential of integrative approaches dealing

with high-throughput chemical screening data to reveal novel biological connec-

tions. In the future, with the expected increase in HTS assay data available in

public repositories, it is envisioned that many more biological relationships will

be discovered with the application of this or similar computational approaches.

5.3 Conclusions

By integrating and analyzing the activity of small molecules across multiple

chemical assays stored in ChemBank repository, I observe that assay pairs that

share non-promiscuous chemical hits tend to be biologically related. A detailed

analysis of a network containing assay pairs with the highest hit similarity confirms

biological meaningful relationships. Furthermore, the biological roles of predicted

molecular targets of the shared hits reinforce the biological associations between

assay pairs, like the enrichment of known anticancer drug targets in growth in-

hibition assays. Thus, I show that the systematic comparison of the selective

hits of chemical screening assays is a promising approach to uncover relation-
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ships between biological activities, such as the potential growth inhibitory effect

of ATP2A1, etc.
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Chapter 6

Target Identification in

High-Throughput Phenotypic

Screens

The identification of pathways involved in human diseases forms the founda-

tion for designing mechanism-based therapies. Chemical genetic approaches allow

the detection of modulators of biological targets relevant for disease pathways by

target-based screens as well as the discovery of small molecules with a desired

outcome by phenotype-based screens. The latter biological genetic strategy is

re-emerging as a valuable drug discovery approach due to the reduced success

of target-based method to discovery of new medicines [59]. However, the cru-

cial challenge of phenotypic assays is the identification of the targets of hits and

subsequent validation of the relevant activity of the target on the phenotype.

Several target identification strategies have been followed to determine tar-

gets, including direct biochemical, genetic interaction, and computational infer-

ence methods (reviewed in Ref. [68]). Before identifying the targets of hits in

phenotypic assays, one important aspect to be considered is that hits from high-

throughput screening (HTS) have to be treated with caution, as they are not free

of experimental artifacts or specific enough for the seek of biological outcome. Fur-

thermore, since small molecules tend to interact with multiple targets [168] that

might represent the false positives, even if the target of a compound is known

or identified, it is necessary to prove the relationship between the protein targets

and the phenotype. In this work, I hypothesized that the enrichment of multiple
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compounds with the same molecular mechanism of action among the assay hits

is likely to indicate unanticipated connections between targets and biological pro-

cesses. Here, I explore this hypothesis by using a statistical method to determine

the targets that are enriched among the specific hits of an assay when compared

against targets of inactive compounds.

The results presented in this chapter are in preparation for submission in X.

Liu et al., ‘Target identification in high-throughput phenotypic screens’.

6.1 Results

To test and validate my approach, I carefully selected phenotypic projects

from ChemBank repository [65] where control assays accounting for non-specific

hit effects (hit identification see Chapter 3 Chemical Hit Identification) were in-

cluded. The “Modulators of lipid transfer”, “Modulators of PGC-1α expression”

and “Modulators of Wnt signaling” assays fulfilled this criterion as well as con-

stituted interesting phenotypes to be analyzed. “Modulators of Lipid Transfer”

project seeks regulators of the cholesterol transport mediated by scavenger recep-

tor, class B, type I (SCARB1) transporter; “Modulators of PGC-1α Expression”

project searches modulators of the PGC-1α expression and“Wnt Signaling Modu-

lators” is a gene reporter assay to identify modulators of Wnt pathway. Then, for

the three assay projects I defined the“Specific hits”and“Inactive compound” sets.

“Specific hits” set includes those compounds which are active in the experimental

assay measuring the phenotype of interest and inactive on corresponding control

assays (Fig. 6.1.1A, number of specific hits for each project see Fig. 6.1.2). The

“Inactive compounds” set contains all the remaining compounds that are inactive

in the experimental assay (Fig. 6.1.1A)

Next, I predicted the molecular targets of compounds in the two sets for every

project by applying HitPick [96], a ligand-based target prediction method that

combines 1-Nearest-Neighbour (1NN) similarity searching and Laplacian-modified

näıve Bayesian machine learning to predict direct human binding targets at a high

confidence level (precision > 50%). On average, I predicted targets for 57% of the

1,300 specific hits (Fig. 6.1.2) and for 54% of the 39,353 inactive compounds.

In order to determine the targets of hits enriched in specific hits of the as-

says, and thus, more likely to be relevant to the phenotypic response, I sub-

sequently applied the hypergeometric test to detect predicted target(s) that are
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Figure 6.1.1: Specific hits and inactive compounds sets. (A) Classification of
these two sets. (B) Scheme to get the significantly over-representative targets for
specific hits set.

Figure 6.1.2: Percentage of specific hits in three analyzed assay projects. The
number of specific hits in each assay project is displayed in brackets. The per-
centage of hits with predicted targets were compared with the percentage of hits
with significantly predicted targets, significantly known targets and significant
MeSH pharmacological action terms.
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over-represented in the“Specific hits” set when compared to“Inactive compounds”

set for each project. Targets with a resulting p-value lower than 0.05 after false

discovery rate (FDR) multiple testing correction [125] were selected for further

evaluation (Fig. 6.1.1B).

6.1.1 Molecular space explained by enriched targets

To evaluate the fraction of specific hits whose molecular action on the pheno-

type can be explained by the predicted targets obtained with my computational

target prediction approach, I calculated the fraction of selective hits with pre-

dicted activity on the significant targets. In total, I detected 26 significantly

over-represented targets for these three projects. I observed that on average, 18%

of the selective hits were predicted to have activity on at least one of those signifi-

cant targets (Fig. 6.1.2), indicating that I was able to explain the activity of up to

18% of the hits on the different phenotypic assays. In contrast, only 3% and 2%

the specific hits can be mapped, on average, to known targets (from STITCH 3

database [99]) and pharmacological action terms (from Medical Subject Headings

(MeSH) pharmacological action dictionary [169]), respectively. This implies that

the molecular space of hits covered using target prediction information is of a 7-

fold order magnitude higher than the space covered when using the information of

the known molecular activity of compounds (Fig. 6.1.2), demonstrating that the

use of target prediction information provides a better overview of the molecular

space covered by hits of a phenotypic project than the known activity of the hits.

6.1.2 Validation of the approach based on literature

In order to demonstrate whether my approach reveals protein targets relevant

to the measured phenotypes, I performed extensive literature searches for evi-

dences supporting the relationships between the enriched molecular targets with

the biological processes represented in the project. In total, I found well-supported

literature confirmation for 23 out of the 26 predicted targets of all projects.

Below I explain the biological relationships found between significant targets

and phenotype for the phenotypic assays.
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Case studies illustrating targets enriched in phenotypic assays

Modulators of lipid transfer

The first project that I analyzed is the “Modulators of lipid transfer” project,

that aimed to find selective modulators of the transfer of lipids mediated by

the high-density lipoprotein (HDL) receptor, scavenger receptor, class B, type

I (SCARB1), which functions both the selective uptake of HDL cholesterol esters,

from HDL to cells and the efflux of cholesterol from cells to lipoproteins [170].

Five significant targets enriched among the selective hits of this assay appear,

namely, the amyloid beta precursor protein (APP), the nuclear receptor coacti-

vator 2 (NCOA2), the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2),

the retinoid X receptor, alpha (RXRA) and the fms-related tyrosine kinase 3

(FLT3) related to lipid transfer (Fig. 6.1.3).

Out of the five proteins, three of them (AGPAT2, NCOA2 and RXRA) are

known to be involved in the lipid transfer process. AGPAT2 increases the acti-

vation of peroxisome proliferator-activated receptor γ (PPARG) [171]. PPARG

forms heterodimer with RXRA to control the expression of genes involved in

adipogenesis, among other metabolic process [172]. NCOA2, a coactivator for

steroid receptors, in turn, interacts with PPARG-RXRA complex [173] to alter

the expression of key regulatory genes of energy metabolism, such as increasing

the expression of SCARB1 [174]. Taken together, these evidences suggest that

knockout any of the predicted targets will inhibit SCARB1 activity, repress lipid

transferring process and further confirm the validity of my approach to detect

targets involved in the lipid transfer.

Modulators of peroxisome proliferator-activated receptor-γ

coactivator-1α (PGC-1α) expression

This project aimed to detect compounds modulating the expression of PGC-

1α, a transcriptional cofactor that plays a central role in the genetic regulation of

pathways, such as glucose homeostasis and mitochondrial biogenesis [175]. Here,

the targets predicted to be linked to the phenotype are the β adrenergic recep-

tors (ADRB1, ADRB2 and ADRB3), the glucocorticoid receptor (NR3C1), the

cytochrome P450, family 1, subfamily A and B, polypeptide 1 (CYP1A1 and

CYP1B1), the mitochondrial NADH dehydrogenase subunit 4 (ND4), the ser-

pin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 6
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Figure 6.1.3: Assay project of “Modulators of lipid transfer”. The blue colored
edge is the measured phenotype. In this graph, the phenotype is the transferring of
cholesterol mediated by the HDL receptor, SCARB1. Brown colored rectangles are
the background proteins and green colored rectangles are the chemical ligands of
the predicted targets. These two colored objects facilitate explaining the molecular
function of the predicted targets (orange).

(SERPINA6), the phospholipase A2, group IV A (PLA2G4A), Na+/K+ ATPase

subunit alpha 1 (ATP1A1) and the NAD(P)H dehydrogenase, quinone 2 (NQO2)

(Fig. 6.1.4).

Out of eleven targets, eight have been shown to related to modulate PGC-1α

expression. For example, glucocorticoids are transported in the blood by SER-

PINA6 [176]. They enter the cell and bind to their receptor (NR3C1, also known

as GR) in the cytoplasm. Upon ligand binding, NR3C1 translocates to the nu-

cleus [177], where it interacts with the glucocorticoid response elements (GRE) in

the promoter region of the ADRB2 gene, resulting in the increased transcription

ADRB2 [178]. The β adrenergic receptors (ADRB1, ADRB2 and ADRB3), in

turn, promote the expression of PGC-1α [179].
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Another target, ND4, a subunit of complex I of the mitochondrial respira-

tory chain, regulates the expression of PGC-1α via AMP-activated protein kinase

(AMPK) [180]. If complex I is inhibited, ATP will not be produced by the res-

piratory chain and thus AMP levels will stay high. High AMP levels induce

AMPK [181] which up-regulates the expression of PGC-1α. PGC-1α activates

the broad program of mitochondrial biogenesis, which equips the cell to meet the

energy demands (ATP) of the cell [182].

PLA2G4A and ATP1A1 are targets that affect the measured phenotype by

increasing the expression of cAMP responsive element binding protein 1 (CREB1),

a PGC-1α transcription factor [183]. PLA2G4A is an enzyme that catalyzes the

hydrolysis of cellular phospholipids to liberate arachidonic acid [184]. ATP1A1

is a subunit of the Na+/K+ ATPase that pumps sodium (Na+) out of the cell

and potassium (K+) into the cell. PLA2G4A activates the cAMP responsive

element binding protein 1 (CREB1) [185] and inhibition of ATP1A1 by ouabain

leads to low intracellular K+ levels [186] which further induce the expression of

CREB1 [186].

Modulators of Wnt signaling

Next project “Modulators of Wnt signaling” screened the chemicals modulat-

ing the Wnt pathway. Here I predicted 10 significantly over-represented targets

that specifically participate on the modulation of Wnt pathway, namely the APP,

the Bcr-Abl (ABL1), the mammalian target of rapamycin (MTOR), the dehy-

drogenase 2 (ALDH2), the melanin-concentrating hormone receptor 1 (MCHR1),

the monoamine oxidase B (MAOB), the cytochrome P450, family 1, subfamily

A and B, polypeptide 1 (CYP1A1 and CYP1B1), the acetaldehyde 3-hydroxy-

3-methylglutaryl coenzyme A reductase (HMGCR) and the cytochrome P450,

family 19, subfamily A, polypeptide 1 (CYP19A1) (Fig. 6.1.5).

All of these predicted targets are known to modulate the Wnt signaling path-

way with β-catenin being a key modulator [187]. For instance, APP is reported to

physically interact with presenilin 1 (PSEN1) [188] which negatively regulates β-

catenin (also known as CTNNB1) [189]. ABL1 physically interacts with β-catenin

and triggers its tyrosine-phosphorylation [190]. It was also shown that the in-

hibition of MTOR rapidly activates Wnt pathway [191]. The other three tar-

gets, ALDH2 [192], MAOB [192] and MCHR1 [193] are reported to regulate sero-

tonin, which is required for Wnt signaling in the early embryo [194]. Inhibition of
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HMGCR by the specific hit lovastatin, is known to modulate β-catenin via choles-

terol [195,196]. The remaining cytochrome P450 family members, CYP19A1 [197],

CYP1A1 [198] and CYP1B1 [199] have been shown to regulate the quantity of

estradiol. Binding of estradiol to its receptor (ESR1) leads to the interaction with

β-catenin [200] and further modulates the activity of β-catenin [201].

In summary, previous research literature reports confirm the relationship of

23 (88%) out of the 26 significantly over-represented targets in three chemical

screening assays, with the biological activity tested in the assay, thereby illus-

trating the effectiveness of my approach to predict the targets of the biological

pathways measured in bioassays.

6.1.3 Validation of the approach based on known activity

of hits

As an additional validation, I determined whether compounds with known

activity on those predicted targets were part of the specific hits of the assays. For

13 out of 26 targets, I observed that at least one of the compounds with known

activity on the targets showed specificity on the assays (Table 6.1.1). Furthermore,

for 54% of those targets, the relationship of the compounds (the drugs that are

labeled in bold in Table 6.1.1) with the phenotype has been previously reported

in the literature, supporting the validity of the approach to capture molecular

targets related to phenotypes.

Table 6.1.1: Predicted targets, specific hits with known
activity and false negatives of each assay project

Projects Predicted
targets

Among the specific hits,
drugs that are known to

interact with the
predicted target

False negatives

Modulators
of lipid
transfer

APP — —
NCOA2 — —
AGPAT2 — —
RXRA — —
FLT3 — —
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Modulators
of PGC-1α
expression

ADRB2

salbutamol (PMID:
16239931),

noradrenaline (PMID:
21151149), bisoprolol
(PMID: 18400557),

alprenolol, terbutaline,
fenoterol, orciprenaline,
tulobuterol, pindolol,

isoprenaline, procaterol,
dobutamine.

propranolol (PMID:
17446185), clenbuterol

(PMID: 22071161)

MT-
ND4

rotenone (PMID:
23930106)

ADRB3

noradrenaline (see
above), alprenolol,

terbutaline, fenoterol,
tulobuterol, pindolol,
isoprenaline, procaterol

propranolol (see
above), clenbuterol

(see above)

ADRB1

salbutamol (see
above), noradrenaline
(see above), alprenolol,
terbutaline, fenoterol,
tulobuterol, pindolol,

isoprenaline, procaterol,
dobutamine,

bisoprolol (see above)

propranolol (see
above), clenbuterol

(see above)

NR3C1 —

progesterone (PMID:
20133449),

spironolactone
(PMID: 20211973),
dexamethasone
(PMID: 17335662),

triamcinolone (PMID:
7929119)

NQO2*
melatonin (PMID:

20557470), primaquine

CYP1A1*

albendazole,
dicycloverine,
primaquine,
lansoprazole,
pentamidine

fluvastatin (PMID:
19150877), chrysin
(PMID: 11343698)

PLA2G4A mepacrine —
ATP1A1 — —

91



6. Target Identification in High-Throughput Phenotypic Screens

SERPINA6 —
hydrocortisone
(PMID: 7929119)

CYP1B1* apigenin, primaquine

chrysin (PMID:
11343698), quercetin
(PMID: 19211721),
luteolin (PMID:

19914244),
kaempherol (PMID:

21728151)

Modulators
of Wnt
signaling

APP
4-(1,3-benzothiazol-2-

yl)aniline
—

CYP19A1
clotrimazole, biochanin
A, 7-hydroxyflavone

flavone (PMID:
21652696)

CYP1B1
acacetin, luteolin
(PMID: 20013030)

quercetin (PMID:
19440933), galangin
(PMID: 21406604)

HMGCR
lovastatin (PMID:

17234346)
—

MCHR1 — —

MAOB —
fluoxetine (PMID:

20979321)
ALDH2 — —
ABL1 — —
MTOR — —

CYP1A1
acacetin, tiabendazole,

lansoprazole

riluzole (PMID:
21095567),

chloroquine (PMID:
23122960), galangin
(PMID: 21406604)

Note: Asterisks denote unexpectedly predicted targets involved in the biological
process of the assay. “—” denotes no specific hit or false negative result for the
target, respectively. The drugs that are labeled in bold are known to influence
the phenotype and the according PubMed IDs are given in brackets.

6.2 Discussion

The pure computational methods for target identification have been exploited

to predict previously unknown targets for drugs [73,96,98]. Here, I propose a new

application of these methods in combination with a statistical approach to predict
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proteins modulated by organic molecules influencing phenotypic readouts. This is

a simple and inexpensive strategy to establish new connections between proteins

and phenotypes such as diseases as well as propose novel mechanism of action of

hits.

For example, I have found the intriguing connection between FLT3, APP and

“Modulators of lipid transfer” process. FLT3 is a gene frequently mutated in

acute myeloid leukemia [202] and it is important for lymphocyte (B cell and T

cell) development. It has been recently found that ligands of PPARG, such as

rosiglitazone, are required for regulation of FLT3 that increases the proliferation

of hematopoietic stem cells [203] where low levels of cell membrane cholesterol

were observed [204]. In addition, it has been shown that the mutation of FLT3

exhibited a 1.5-fold decrease in their plasma HDL-cholesterol levels [205]. In my

approach, I have found that ligands of FLT3 modulate lipid transfer mediated by

the SCARB1. All this evidence suggests the connection between FLT3 and lipid

metabolism. As for APP, recently strong evidence has shown that APP decreases

the quantity of cholesterol [206], which then increases the expression of SCARB1

in brain [207], highlighting the role of APP in the lipid metabolism.

In the “Modulators of PGC-1α expression” project, although the induction of

PGC-1α by NQO2, CYP1A1 and CYP1B1 has not been reported in the literature,

indirect evidence shows the functional relationship of these proteins with PGC-1α.

For instance, the ligand of NQO2, melatonin, regulates the activity of CREB1

[208], the PGC-1α transcription factor. Furthermore, it has been shown that

melatonin plays a crucial role in the regulation of rhythmic clock gene expression

[209] and PGC-1α integrates the mammalian clock and the energy metabolism

[210], which indicates a possible connection between the target of melatonin and

PGC-1α. The remaining two targets, CYP1A1 and CYP1B1, are both involved

in the metabolism of arachidonic acid [211] that is released by PLA2G4A. Besides

both CYP1B1 [212] and PLA2G4A [213] affect the development of glaucoma that

is caused by mitochondrial dysfunction [212, 214]. Therefore, the regulation of

PGC-1α expression by NQO2, CYP1A1 and CYP1B1 definitely deserves more

investigation.

There are two known common issues of chemical screening hits that my ap-

proach is limited: (i) The appearance of false negatives is a general problem

in the screening that is commonly explained by the degradation of compounds

on screening plates, limited compound purity or concentrations [54]. Inglese et
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al. [215] quantitatively enumerated the frequency of false negatives from a tradi-

tional single-concentration screen and observed that 40% of the actives were scored

as false negatives when the 11 µM screening concentration and a three standard

deviation were used. In this regard, I noticed that some compounds part of the“In-

active compounds” set have activity on the significant targets and are reported to

have activity on the biological process as well. For example, riluzole [216], chloro-

quine [217], galangin [218] are all the regulators of Wnt signaling (False negatives

of the predicted targets see Table 6.1.1) which failed to be captured by my hit

identification method. (ii) The second common problem of chemical screening

assays is the presence of nonspecific or promiscuous compounds. The nonspecific

or promiscuous compounds are the major source of false positives that act non-

competitively on the targets [148], leading to that some of the identified targets

might have pleotropic activities leading to adverse reactions and not be optimal

to be considered as drug targets, or some compounds might have additional drug

targets causing toxic effects. In order to explain the molecular activity of specific

hits as much as possible, I did not apply any filter to remove the promiscuous

compounds. Thus, the biological experiments are still required to validate that

the gene product identified actually binds to the small molecule and is associated

with the biological process.

In summary, with my approach I was able to confidently explain the molecular

activity responsible for the phenotypic effects of around 18% of the hits for which

I can derive molecular information. This is a high number considering the scale

of current drug target identification methods that are limited to predict targets

with already known ligand information. With the rapid increase of drug-target

interaction information in public databases, I envisaged a higher coverage of the

molecular space related to phenotypes in the near future. Last but not least, the

application of this approach to phenotypic assays promise to reveal unexpected

connections between drug targets and disease phenotype such as the targets that

are found to be related to the modulation of PGC-1α expression.

6.3 Conclusions

After applying a computational method followed by a statistical approach to

three public screens, namely, modulation of lipid transfer, PGC-1α expression and

Wnt signaling, I predicted the association of 26 targets with these phenotypes. I
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have validated 23 target-phenotype predicted associations by two different meth-

ods. The first one uses previously reported associations, while the second one

explores the known activity of specific chemical hits in the screens. Both methods

clearly demonstrate the validity of such approach to detect drug targets related

to phenotypes. This computational protocol allows me to obtain an overview of

druggable molecular repertoire behind the phenotype and to propose novel asso-

ciations between targets and biological activities.
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Chapter 7

Summary and Outlook

Phenotypic chemical genetic screens use small molecules as tools to perturb

biological systems with the aim to investigate cellular pathways and identify key

protein targets underlying cellular processes [22]. Chemical genetic approaches

have been applied to discover novel human therapeutics in many disease areas,

such as cancer research [22], stem cell biology [219] and cell death [220]. How-

ever, the analysis of these assays is currently challenging due to the limitations

of available techniques. In this present thesis I have developed tools to facilitate

the analysis of these screens that overcome the current technical and conceptual

challenges of chemical biology approaches as well as applied these tools to existing

chemical screens to extract novel biological information. In the following sections

I summarize the main scientific contributions of this present thesis and discuss

the possible extensions and future directions.

7.1 Scientific achievements

Throughout the work of this thesis, the following novel scientific contributions

and insights were achieved:

• In order to develop new fast and efficient methods to identify chemical hits

of chemical genetic screens, I have compared eight different chemical hit

identification approaches to determine the method best suitable to retrieve

chemical hits and tested in the ChemBank dataset repository. The best

performing method, the modification of B-Score A, showed 79.6% sensitivity

and 97.4% specificity when applied to the positive and negative controls of
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all ChemBank assays.

• Another critical issue regarding chemical screening analysis that is addressed

here is the insufficient number of easy-to-use online tools for drug target pre-

dictive methods. Although both chemical similarity and ligand-based pre-

dictive modeling are well-established approaches to classify the compounds

and predict the protein targets of small molecules in computational chem-

istry, only few of them are implemented as easy-to-use online tools. In the

present thesis, two of these two approaches are combined into the ligand-

based target identification method – HitPick, which was applied in this thesis

to provide insights into the mechanisms of action of small molecules. Re-

lying on the ligand-protein interactions from the STITCH 3 database [99],

HitPick target prediction first searches the most similar compound to a

query compound by 1-nearest-neighbor (1NN) similarity searching [97], and

then predicts the targets based on the Laplacian-modified näıve Bayesian

target models [98]. On cross-validation, HitPick target prediction performs

better than 1NN similarity searching and Bayesian target models methods

separately, achieving 60.94% sensitivity, 99.99% specificity and 92.11% pre-

cision. To facilitate the analysis of chemical genetic screens the well-known

B-Score [61] chemical hit identification method is also implemented in Hit-

Pick along with this newly developed approach to predict targets of small

molecules. In summary, HitPick can be used to identify hits from chemical

screens and predict new ligand-target interactions. HitPick web server can

be accessed through http://mips.helmholtz-muenchen.de/proj/hitpick.

• The next crucial issue I tacked is the determination of the specificity of

the activity of hits of chemical genetic screens. It has been shown that

a great number of compounds tend to be promiscuous, that is, the small

molecules appear frequently as hits of many assays via interfering with the

assay signals or chemically binding to the tested targets of the assay, etc. The

promiscuous activity and hence, low selective activity of compounds could

translate into toxic effects when applied to complex living systems such as

mouse models or humans. Therefore, to select the right level of selectivity

to detect specific signals of chemical hits is of the highest relevance. In the

present thesis, a computational promiscuous filtering was proposed to detect

the selective chemical hits.
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• The integration and analysis of chemical screening assays stored in public

repositories have proven to be useful so far to determine chemical properties

of promiscuous compounds and to predict adverse drug reactions, demon-

strating the potential of computational analysis of high-throughput chemical

screening to extract novel chemical and biological information. Here, I tested

the hypothesis of whether the bioactivities measured in two assays sharing

selective chemical hits are related and used the publicly available chemi-

cal screening repository ChemBank to validate this hypothesis. Besides,

the biological associations between pairs of phenotypic assays are reinforced

by the analysis of the biological roles of the predicted molecular targets of

shared hits. Furthermore, the analysis of these targets help to better under-

stand the molecular basis of assay relationships. I show that the systematic

comparison of the selective hits of chemical screening assays is a promising

approach to uncover relationships between biological activities.

• As cell- or organism-based screens preserve native cellular environment of

protein function, these phenotypic assays are increasingly used in applica-

tions aiming at discovery of new therapeutic targets and new disease biol-

ogy [57, 68]. However, the cost paid for such benefit is that protein targets

and mechanism of action responsible for the observed phenotype needed

to be determined. In this thesis, I developed a method to detect targets

reliably associated to the phenotypic assays based on HitPick target predic-

tion followed by a statistical approach. Strikingly, it was found that 88%

of the predicted drug targets are reported to be associated with the mea-

sured phenotype in three different phenotypic assays, namely, modulation

of lipid transfer, PGC-1α expression and Wnt signaling, demonstrating that

this computational method allows to confidently relate the protein targets

to the observed phenotype, and to discover novel molecular mechanisms of

action of the chemical hits.

In summary, I have created a variety of powerful tools for tracking and analyzing

chemical screening data. These tools are particularly well suited to chemical ge-

netic screens because they offer new insights in identifying chemical hits, linking

different assays and associating protein targets with different phenotypes. Es-

pecially, the last two above findings of this work demonstrate how powerful the
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ability to systematically and effectively integrate chemical genetic screens becomes

in understanding the mechanisms of action of small molecules in biological sys-

tems. When done in a disciplined and thoughtful manner, the integration of HTS

data represents a modern and inexpensive approach to provide insights and clues

to novel targets and molecular mechanisms of small chemicals.

7.2 Final conclusions

In this thesis, several approaches to facilitate the analysis of chemical genetic

assays have been proposed. An optimal method to retrieve chemical hits from

assays was firstly introduced, later a target prediction method was developed to

predict the drug targets for the hits. Furthermore, an efficient filtering protocol

was proposed to remove the promiscuous compounds. Lastly, the integration of

the assays was presented as a valuable tool to find relationships between biological

activities, to understand better the molecular mechanisms of the chemical hits,

and also to relate drug targets to phenotypes.

7.3 Extensions and future directions

In this thesis, I mainly worked on the analysis of assays stored in ChemBank.

PubChem BioAssay [136] is another well-known publically available assay repos-

itory that, compared to ChemBank, contains much more data. However, several

peculiarities of this database such as the data structure (see Table 7.3.1) make the

analysis and integration of the information of this repository fairly complicated.

First of all, it is hard to compare the activity results between different assays

due to the inaccessibility of the raw activity values of assays of PubChem and the

fact that each assay depositor may use different method to identify the chemical

hits. Besides, a preliminary analysis of the assays reveals a high heterogeneous

structure of PubChem BioAssay, where projects often comprised assays developed

by different research groups that impede the identification of experiment and

control assays, complicating the definition of the specific and unspecific assay

connections.

To cope with the above-mentioned difficulties, it would be desired to set up

collaboration with some of the experimental depositors to get access to the original
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Table 7.3.1: Differences between ChemBank and PubChem BioAssay repositories

Method ChemBank PubChem BioAssay

Screening
data

It stores raw screening
data (in total 1,640
primary assays are

included).

The screening outcome, such as the
bioactivity summary, structure
clustering, etc., is available.

However, the raw values of HTS
experiments are inaccessible. The

primary,
secondary/confirmatory/counter
assays are included (in total 3,295

assays).

Assay
description

The assay description is
plain and brief, but

rigorous.

The lengthy assay description needs
to be extracted by users from the

protocols.

Projects

The assays of the same
experiment are

hierarchically organized
into screening projects.

According to the goal of the assay,
depositors classify the assays into

screening projects.

bioassay data and obtain a better understanding of the chemical screens. In the

framework of this collaboration, the hit identification method that I developed

could be applied to their raw assay data, allowing the comparison of the retrieved

hits from different groups and those from ChemBank assays. Furthermore, the

knowledge of the experimentalists about the assay protocols will be helpful for the

correct classification of the assays into experiment and control assays. Then, the

methods that I developed in this thesis could be applied to integrate and analyze

these assays and gain further insights into the relationships of their assays to

other assays, and also into the molecular activity of specific hits. However, based

on my experience and contact with depositors, few depositors would be willing

to disclose the assay data not only due to data sensitivity issues but also to the

high workload needed to prepare the raw assay data files. For these reasons, the

collaboration with the assay depositors is challenging.

Another interesting extension of this thesis will be the possibility to compare

the chemical and biological properties of compounds such as the promiscuity and

biological activity of hits obtained from the two different repositories. This will

reinforce the validity of the methods that rely on the integration and analysis of

chemical screening repositories to extract novel chemical and biological informa-
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tion of small molecules.
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(HDAC) inhibitors in recent clinical trials for cancer therapy. Clinical epi-

genetics 2010, 1, 117–136.

[159] E. K. Rowinsky, J. J. Windle, D. D. Von Hoff. Ras protein farnesyltrans-

ferase: a strategic target for anticancer therapeutic development. Journal of

clinical oncology 1999, 17, 3631–3652.

[160] S. Shangary, S. Wang. Targeting the MDM2-p53 interaction for cancer ther-

apy. Clinical cancer research 2008, 14, 5318–5324.

[161] L. Madi, A. Ochaion, L. Rath-Wolfson, S. Bar-Yehuda, A. Erlanger,

G. Ohana, A. Harish, O. Merimski, F. Barer, P. Fishman. The A3 adenosine

receptor is highly expressed in tumor versus normal cells potential target for

tumor growth inhibition. Clinical cancer research 2004, 10, 4472–4479.

[162] F. Ye, Y. Chen, T. Hoang, R. L. Montgomery, X.-h. Zhao, H. Bu, T. Hu,

M. M. Taketo, J. H. van Es, H. Clevers, et al.. HDAC1 and HDAC2 regu-

late oligodendrocyte differentiation by disrupting the β-catenin–TCF inter-

action. Nature neuroscience 2009, 12, 829–838.

[163] X.-H. Fan, Y.-Y. Cheng, Z.-L. Ye, R.-C. Lin, Z.-Z. Qian. Multiple chromato-

graphic fingerprinting and its application to the quality control of herbal

medicines. Analytica chimica acta 2006, 555, 217–224.

118



Bibliography

[164] P. M. Petrone, B. Simms, F. Nigsch, E. Lounkine, P. Kutchukian, A. Cor-

nett, Z. Deng, J. W. Davies, J. L. Jenkins, M. Glick. Rethinking molecular

similarity: comparing compounds on the basis of biological activity. ACS

chemical biology 2012, 7, 1399–1409.
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Appendix A

Additional data

Figure A.0.1: Distribution of cell-free, cell-based and microorganism assays for
projects.
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A. Additional data

Figure A.0.2: Different cut-offs on the number of shared hits in F3 of Chem-
Bank assay pairs. (A) Relationships indicated by GO terms and (B) relationships
indicated by text-mining.
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Table A.0.1: Shared hits with predicted targets between
two assays.

The shared ChemBank compound IDs along with HitPick predicted
targets (precision >50%) are shown below each assay combination.

The other hits without information are not shown.

M.Tuberculosis
Macrophage

GSI Synthetic Lethal
Share 7 chemical

hits

1000270 NR3C1;CYP1A1;CYP1A2;
1001967 NR3C1;CYP3A4;ABCB1;
3043 NR3C1;

3187752 SERPINA6;NR3C1;
3189180 SERPINA6;NR3C1;SLCO1A2;NR3C2;
2080102 NR3C1;SERPINA6;SLCO1A2;SHBG;
3616626 NR3C1;CYP3A4;

GSI Synthetic Lethal
Adipocyte

Differentiation
Share 8 chemical

hits

1045 SERPINA6;NR3C1;
1101 NR3C1;CYP3A4;
1136 NR3C1;CYP3A4;
1234 NR3C1;CYP3A4;ABCB1;
1455 NR3C1;SERPINA6;SLCO1A2;CYP3A4;
1457 NR3C1;ANXA1;
694 SERPINA6;NR3C1;CYP3A4;

3046112 NR3C1;SHBG;

Unfolded Protein
Response

Wnt Inhibitors
Share 14

chemical hits

3555011 ATP1A1;
3558737 ADORA2B;ADORA2A;
3559706 CYP1B1;
3616386 ATP1A1;
3616405 ATP1A1;

Wnt Inhibitors Histone Modification
Share 15

chemical hits

3213088 HDAC1;
3214216 HDAC1;
3214224 HDAC3;
3214240 HDAC1;
3214248 HDAC1;
3214418 HTR6;
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3214452 HDAC1;
3214496 HDAC1;

Histone Modification
Stem Cell

Differentiation
Share 15

chemical hits

3214216 HDAC1;
3214224 HDAC3;
3214248 HDAC1;
3214452 HDAC1;
3214478 HDAC1;
3214496 HDAC1;

Histone Modification
Genotype Specific
Inhibitors NSCLC

Share 10
chemical hits

3214216 HDAC1;
3214224 HDAC3;
3214240 HDAC1;
3214248 HDAC1;
3214452 HDAC1;

Genotype Specific
Inhibitors NSCLC

Stem Cell
Differentiation

Share 9 chemical
hits

3214216 HDAC1;
3214224 HDAC3;
3214248 HDAC1;
3214370 HDAC3;
3214452 HDAC1;

Genotype Specific
Inhibitors NSCLC

Glioblastoma
Modulators

Share 195
chemical hits

1102980 TOP2A;TUBA4A;
1134906 ADORA3;
1247906 HTR6;
1393431 CNR2;
1502789 TRPV1;
1511593 CA2;
1513405 CETP;
1524322 FLT3;
1612458 NPY5R;
1643016 MDM2;
1687915 ALOX5;
1862850 CETP;
1862851 CETP;
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1882538 MDM2;
1917199 CNR2;
1921581 OXTR;
1921765 MMP8;
3020708 HTR1A;
3026939 PTGS2;
3069277 MMP1;
3070282 MMP1;
3178168 ALOX5;
3179496 ADORA3;
3179707 DRD4;
3179710 GCGR;
3185117 ATP1A1;ATP1B1;
3214216 HDAC1;
3214224 HDAC3;
3214248 HDAC1;
3552203 PTGS1;
3554106 JUN;
3554291 ATP2A1;
3554523 FNTA;
3554525 FNTA;
3554998 ATP1A1;
3555011 ATP1A1;
3557708 ATP1A1;SLCO1A2;SLCO4C1;CYP11A1;
3557710 ATP1A1;
3557735 ATP1A1;
3558167 ATP2A1;
3558437 ATP1A1;
3558638 NR1H4;
3558693 FNTA;
3558697 FNTA;
3558877 FNTA;
3559060 MT-ND4;
3559282 SLC5A2;
3559706 CYP1B1;
3559721 FNTA;
3559755 UGT2B7;
3559863 SLC18A2;
3614482 DRD2;DRD4;
3615241 MBL2;
3616405 ATP1A1;
3622930 HDAC1;
3624592 CNR2;
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3625232 CETP;
3625266 MDM2;
3625359 FLT3;
3625448 CNR2;
3625502 HTR6;
3625991 ADORA2A;
3635064 HDAC6;HDAC1;
3635080 HDAC3;HDAC2;HDAC6;HDAC1;
3635093 HDAC6;HDAC1;
3635098 HDAC6;HDAC1;
3644448 DRD4;
3652467 CCR4;
3652509 HDAC6;
3652551 HDAC6;HDAC1;
3652574 HTR2C;
3544 DRD4;HTR7;HTR2A;SIGMAR1;

2082296 CYP2D6;ORM1;KCNH2;CHRM2;

Glioblastoma
Modulators

Wnt Inhibitors
Share 114

chemical hits

1054556 CA1;CA2;
1134906 ADORA3;
1241281 ALDOA;
1247906 HTR6;
1393431 CNR2;
1464378 SIGMAR1;
1511593 CA2;
1612458 NPY5R;
1687915 ALOX5;
3020702 DAPK3;
3020708 HTR1A;
3021158 IMPDH2;
3178168 ALOX5;
3185117 ATP1A1;ATP1B1;
3214216 HDAC1;
3214224 HDAC3;
3214248 HDAC1;
3554106 JUN;
3554523 FNTA;
3554525 FNTA;
3554998 ATP1A1;
3555011 ATP1A1;
3557708 ATP1A1;SLCO1A2;SLCO4C1;CYP11A1;
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3557710 ATP1A1;
3557735 ATP1A1;
3558167 ATP2A1;
3558437 ATP1A1;
3558638 NR1H4;
3558693 FNTA;
3558697 FNTA;
3558877 FNTA;
3559282 SLC5A2;
3559706 CYP1B1;
3615060 TUBB1;TUBA4A;
3615241 MBL2;
3616341 KCNA3;
3616405 ATP1A1;

Beta-Catenin Histone Modification
Share 8 chemical

hits

3214216 HDAC1;
3214224 HDAC3;
3214248 HDAC1;
3214452 HDAC1;

Wnt And Lithium
Modulators

E-Cadherin Synthetic
Lethal

Share 40
chemical hits

1021994 ESRRG;
1111942 SIGMAR1;
1112646 GRM5;
1118692 AVPR2;
1227426 PREP;
1285366 SIGMAR1;
1311944 HRH3;
1464378 SIGMAR1;
1570064 F2;
1733044 SCD;
3065778 HSD11B1;
3178349 SCN10A;
3554525 FNTA;
3558623 NR1H4;
3558693 FNTA;
3558697 FNTA;
3634663 HDAC1;
3634669 HDAC1;
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3634737 HDAC1;
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