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Abstract— This work presents a procedure of imitating
human walking motion online for a humanoid robot. Two
aspects are essential for a successful walking imitation: stable
footprints and motion similarity. The human footprints are
recognized from the captured motion data and imitated by the
robot through conventional zero-moment point (ZMP) control
scheme. For the motion similarity we focus on similar knee joint
trajectories, which are related to knee stretching and swing
leg motion. After human motion capturing and preprocessing,
the walking imitation problem is formulated as a quadratic
programming (QP) problem with inequality constraints and
dynamic equality constraints. The continuity of the control law
is ensured by introducing a task activation buffer and position
dependent velocity limit. Finally we evaluate the effectiveness
of the proposed approach on the DLR humanoid robot TORO

in dynamics simulation. Fig. 1. Snapshots of the simulation results. Top: Recordedanuwalking
motion in MVN Moven Studio: The walking frequency is aroun8<®c/step
I. INTRODUCTION and the human stride length is around 70cm; bottom: TORO robdatiesi
the human walking. The dynamics simulation is carried out in ribfieP
Based on the well established ZMP control scheme, sonma.

researchers have worked on mapping the human locomotion

to the humanoid robot. Several offline procedures [1], [2],

[3], [4] focused on extracting human walking features fronproblem with inequality constraints and dynamic equality
human motion data, such as knee stretching, toe-off and heebnstraints. The continuity of the control law is ensured by
down motions. These features are then applied to a ZMtroducing a task activation buffer and position depemnden
based pattern generator to realize human-like locomotiomglocity limit. Finally we evaluate the effectiveness okth
which requires intensive optimization or careful setuphef t proposed approach on the DLR humanoid robot TORO in
parametrization. Online footprint imitation was realized dynamics simulation (Fig. 1).

the MAHRU-R robot by recognizing and parameterizing the

human footprints during the walking [5]. The recognized !l. WALKING MOTION RECOGNITION AND PATTERN
human footprints are adapted for the robot and correspgndin GENERATION

robot walking pattern is generated. However the footpr&t p  Onjine human motion data are acquired by the MVN
rameters contain no information about the motion simyarit jnertial motion capture system from Xsens Technoldyies
In this research we propose an online walking imitation aljjyman motion data consist of position and orientation of
gorithm for a humanoid robot from human motion Capturin923 body parts are available through network Streaming in
We consider the walking imitation problem as two essentigkal-time. Human joint angle trajectories are calculatedf

parts: stable footprints imitation and motion similarifihe  orientation data and adapted according to the robot joit li
human footprints are recognized from the captured motiognd joint velocity limit.

data and imitated by the robot through conventional ZMP

control scheme. Since human and humanoid robot haye Foot Support Event and Footprint Extraction
similar kinematics, it is reasonable to evaluate the motion
similarity in joint space, which is similar to the joint spac

In order to extract suitable footprint trajectory for the
imitation of the upper body [6]. Especially we focus onrobot, we control the humanoid robot as a marionette by
- 1€ uppel Yy [0]. Esp y feeding the corresponding adapted human joint angles into
S|m|lar_ knee joint .trajectorles, .Wh'Ch are relfated. tq k.ne?he robot forward kinematics model. Different foot support
stretchmg and swing leg motion. The walking |m|tat|on vent are determined by examining the feet position and
problem iis formulated as a quadratic programming (ijelocity data and the transitions between different suppor
This work was supported by CoTeSys states are modeled as a finite state machine. The next
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B. Pattern Generation control task, we treat the foot height control as a dynamic
Mapping human’s ZMP to the robot is difficult becauseeduality constraint whose activation and deactivationedelp

there is a big gap of the dynamics properties between tif8 the walking states.
two subjects. Two principles are utilized to design themesi B. Sate-dependent Foot Height Control

ZMP trajectory for the robot: During single support phase we want to track the human

« Single Support: The ZMP moves along the main axis ofnee trajectory and achieve a human like walking. Therefore
the supporting foot forward with a predefined velocity.,ye deactivate the foot height constraint. In order to achiv

The maximal ZMP displacement is bounded by the footaple foot contact we design a foot landing trajectory from
sSize. the current foot states and activate the foot height coinstra

« Double Support: The ZMP jumps to the middle of theror smooth transition of the task activation, an activation
new supporting foot position at the beginning of theyyffer is introduced:

double support phase. , . .

The reference COM trajectory are then generated through Ttea 2q =2+ (1) Jreat 2qsatic (1)

ZMP preview controller proposed in [8] based on the lineamn which h is activation parameter changes smoothly from 0

inverted pendulum model. to 1 during task activation and 1 to O during task deactivatio
and ggaic represents the inverse kinematics solution with

1. WALKING IMITATION CONTROL only static constraints.
Compared with the human walking behavior, the conven-

tional ZMP-based walking control scheme has several factor IV. CONCLUSIONS

which make the resulted motion quite different. In order We propose to use quadratic programming to solve the

to avoid the knee stretching singularity, the COM/peMéNalking imitation problem. Stable footprints are imitated

height is usually set to be relatively low. Human howevefhrough the conventional ZMP control scheme. Knee sin-

walks with almost stretched knees and small vertical coNgularity problem can be solved easily by adding inequality

motion [9]. The robot upper body orientation is usually fixedfonstraints explicitly. The lower priority tasks are fortamed

because the LIPM neglects the angular momentum. Durirp SOft constraints in the cost function conveniently. Aesta

the human walking the whole-body angular momentum i epend foot height controller is designed to achieve human-

highly regulated but the body orientation is not strictlyefix ~like walking motions, finding compromise between walking

Based on the above two observations we can release thé&ability and motion similarity. Continuous control law of

strict constraints and make the biped system redundant. THs$K activation and deactivation is achieved by introdgcin

redundancy is resolved by designing suitable cost functioA" activation buffer.
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