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Abstract— Operating in unstructured dynamic human en-
vironments, it is desirable for a robot to identify dynamic
objects and robustly track them without prior knowledge. This
paper proposes a novel model-free approach for probabilistic
representation and tracking of moving objects from 3D point
set data based on Gaussian Mixture Model (GMM). GMM is
inherently flexible such that represents any shape of objects
as 3D probability distribution of the true positions. In order
to achieve the robustness of the model, the proposed tracking
method consists of GMM-based 3D registration, Gaussian Sum
Filtering, and GMM simplification processes. The tracking
performance of the proposed method was evaluated in the
moving two human hands with one object, and it performed
over 87% tracking accuracy together with processing 5 frames
per second.

I. INTRODUCTION

With the advent of 3D RGB-D cameras and improvements
to 3D data processing technologies [25], service robots
operating in unstructured human environments can capture
the environments as 3D point set data and its interpretation
technology have been explored in recent years. In particular,
identifying multiple objects from the data is an important
and challenging task for understanding the unstructured
environment such as reconstructing 3D indoor environments
[19] and representing the semantic information of a human
environment [5], and operating a robot manipulator for
manipulating multiple objects [6], [16].

In most cases in previous works, a robot has pre-
knowledge or uses a learned model of objects to recog-
nize and track them. In reality, however, the modeling and
learning of all objects in advance is not always possible,
and unforeseen objects might be present while performing
a tracking task. One approach to solve this problem is
to construct general models for arbitrary objects from the
appearances of shape and/or color information. [21], [26]
represented each object based on shape primitive models
such as a sphere, a plane, a cylinder, and a cone from
a point data set, and [24] obtained a more precise object
model by combining the primitives and triangular meshes
for the remaining point parts outside of the model. In more
recent robotics research, [16] suggested a graphical model to
represent the appropriate features of multiple objects, such as
supporting contacts, caging, and object geometry for placing
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(a) Two contacted objects (b) An occluded object by a human hand

Fig. 1. Two cases of falsely detected point data set in the dynamic
situations. In each case, point set data captured by two Kinect cameras
at time t−1 and t are displayed in the left and right figures, respectively.
The upper figures show the RGB data of each point, and the bottom figures
show the segmented points of each object by using euclidian clustering
methods in [25].

the objects into the another space. Another approach is to
construct a specific model for the unknown object by robot
itself in on-line manner. [18] modeled a new object in a robot
hand as a set of surfels that is robust to noise and occlusions
by using both the shape and appearance information, and
[13] proposed a method to construct complete 3D models of
articulated objects by interacting with objets.

When it comes to interacting with human in dynamic
environments such as learning actions from human demon-
stration and cooperating with human [1], [8], [20], [22], there
are many challenging issues of tracking moving objects in
the human environments. First, many 3D entities, including
human body, can be considered as articulated objects that
have components connected by joints and move with respect
to each other. In this case, the tracking problem involves
estimating position and orientation of the object and those of
all the components constructing the object [23]. In addition,
when moving objects become adjacent (contacted) to another
or when some parts of the object are undetected due to
occlusion or detection error, the observed point set data of
the object becomes distorted as shown in Fig. 1.

This paper aims to achieve both flexibility and robustness
for modeling and tracking multiple objects without prior-
knowledge of them. At first, we propose a novel object repre-
sentation approach from the point set data based on Gaussian
Mixture Model (GMM). The basic idea is that the estimated
position of an object is probabilistically distributed around
the true position and the distribution function represents the
shape of the object. GMM is not only good flexible stochastic
model to represent any 3D shapes of an object, but also
useful for manipulating the object models analytically owing
to its functional expression such as distance measure and
probabilistic multiplications. Second, in order to compensate
the weak robustness of the GMM representation due to
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the model’s adaptability to the falsely detected point set as
depicted in Fig. 1, we propose GMM-based robust tracking
method by using 3D registration method [14] and Gaussian
Sum Filtering [17]. The proposed tracking method represents
each object as a function of probability distribution and
performs tracking not only for the positions of the objects
but also for the shapes of them, which results in identifying
each detected point to be involved in which object. This
point-wise object shape tracking helps to segment objects
correctly even when they are in contact as shown in Fig.
1(a). The robustness of the proposed tracking method have
been evaluated by calculating the point tracking accuracy
in the dynamic situations of moving two hands with an
object. Finally, in order to investigate the relation of the
exactness and the computational efficiency according to the
expressiveness of the model, the tracking accuracy and the
computation time were measured according to the down-
sampling distance and the simplification ratio. As a result,
the optimal values of the two control parameters have been
found experimentally to achieve 87% accuracy and 5 frames
per second of computation time.

The remainder of this paper is structured as follows.
GMM-based object representation method is described in
chapter II, and the overview of the proposed tracking method
and the detailed explanations of the processes are delineated
in chapter III and chapter IV, respectively. In chapter V, the
results of the proposed methods are discussed with several
experiments involving various movements of human hands
with an object. Finally, a conclusion is given in chapter VI.

II. GMM-BASED OBJECT REPRESENTATION

With a 3D RGB-D camera, an object can be detected as
a point set data O = {p1, ..., pn}, in each of which contains
the 3D position and RGB color information of a point. In
order to describe an object only with shape information in
this research, the 3D position data of a point pi ∈R3 is used
for constructing probability distribution function of an object.
The most simple case is to design one multivariate Gaussian
distribution consisting of a mean (µ ∈ R3) and covariance
matrix (Σ∈R3×3). The probability density of a point (x∈R3)
belonging to the object can be represented as (1).

φ(x|µ,Σ) = 1√
(2π)3 |Σ|

exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(1)

In particular, the Gaussian Mixture Model, which is de-
fined as (2), can represent any arbitrary shape of functions
when the number of Gaussians, k, goes to infinity.

p(x) = ∑
k
i=1 wiφ(x|µi,Σi), ∑

k
i=1 wi = 1 (2)

This probability distribution function of GMM is defined
by a set of parameters G = {k,w,µµµ,ΣΣΣ}, where each of w,
µµµ , and ΣΣΣ has k components that represent k Gaussians.
Learning the parameters of G from the given set of points
has been investigated in many ways. One of the typical
methods involves using the Expectation-Maximization (EM)
algorithm [7], [4] given the number of Gaussians, k. In recent

(a) Simplified GMMs of a banana, n = 802

(b) Simplified GMMs of a cup, n = 1130

(c) Simplified GMMs of a bottle, n = 1919

Fig. 2. The first column denotes the n source points. The simplified GMMs
are displayed as a set of 3D ellipsoids with reduction ratios of 0.5, 0.3, 0.1,
0.05 and 0.01, respectively, from the second to the sixth column.

years, hierarchical GMM has been proposed to determine
the number of Gaussians efficiently through a hierarchical
clustering method [9]. On the other hand, if the assumption
that the point set of an object O is obtained using the
same sampling distance, the corresponding GMM can be
represented by evenly weighted n Gaussians centered at
each point with the same spherical covariance matrix [14].
Although a parameter learning process is not needed in such
a case, the model includes such a number of Gaussians as
much as points that related algorithms are inefficient due to
the expensive computational time.

For this reason, we construct an initial GMM directly
from the down-sampled point set with a constant sampling
distance using a VoxelGrid filter in [25], and simplify the
GMM with the given number of Gaussians. There have
been proposed several GMM approximation methods. Hi-
erarchical clustering (HC) method constructed local point
groups to approximate the original GMM by minimizing
the KL-divergence using EM-algorithm in [11], [10]. Later,
functional approximation (FA) method [27] which used the
measured L2 distance to minimize the upper bound of the
approximation error, showed better performance than the HC
method in terms of model approximation, but the computa-
tion time is nearly three times greater than that of HC. In this
research, HC method [11] is used with L2-distance measure
because of the fast computational time compared with other
methods, and its reasonable approximation performance with
L2-distance.

The simplified GMM consists of k 3D Gaussians with
different weight values. The GMM examples of three objects
that have different number of points are illustrated in Fig. 2
with different reduction ratio which determines the number
of Gaussians of the simplified GMM from the number of
original points. The 3D ellipsoid shows each Gaussian and
its transparency represent the corresponding weight value.
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Fig. 3. Overview of the proposed tracking processes

III. FRAMEWORK OF THE PROPOSED TRACKING METHOD

The aim of this research is to estimate the probability
distribution of the current position of object xn (filtering
distribution) from observations of the point set O0:n. As in the
Hidden Markov Model (HMM) formulation, the true position
of an object xn can not be detected directly, but the detected
point set On can be thought as the probability distribution
of the position of the observed object yn originated from
the hidden xn. With the assumption that the object position
probability is distributed on the arbitrary shape of the object,
the probability distribution of xn given the sequence of
observed object position y0:n can be expressed as the form
of GMM with the parameters of Gn = {kn,wn,µµµn,ΣΣΣn}.

p(xn|y0:n), ∑
kn
i=1 wniφ(xn|µni,Σni). (3)

The distribution of the measured point set (measurement
distribution) is also defined as the form of GMM with the
parameters of Ĝn = {k̂n, ŵn, µ̂µµn, Σ̂ΣΣn}.

p(yn|xn), ∑
k̂n
i=1 ŵniφ(xn|µ̂ni, Σ̂ni) (4)

Fig. 3 demonstrates the whole tracking process of estimating
the filtering distribution, Gn, from the measurement distribu-
tion, Ĝn, at every time n in iterative way.

A dynamic model of a moving object can be expressed as
the dynamic state-space (DSS) model,

xn = f(xn−1)+un−1

yn = h(xn)+vn
(5)

where f(·) and h(·) are possibly nonlinear functions, and
un−1 and vn are independent and identically distributed ran-
dom noise sequences. Once the dynamic model is obtained,

the target distribution can be estimated by Gaussian Sum
Filtering (GSF). In case of an unknown dynamic model,
Gaussian Sum Particle Filtering (GSPF) can be applied [17],
but, in this research, the unknown transition function f(·)
can be approximated as piece-wise linear between time n
and n− 1 with the assumption that the time step is small
enough in the real-time tracking task. The piece-wise linear
function f̃(·) between time n and n−1 is estimated by GMM-
based robust 3D registration method [14]. This method uses
the target distribution, Ĝn, and the model distribution, Gn−1
which is the filtering distribution at the previous time step,

p(xn−1|y0:n−1), ∑
kn−1
i=1 w(n−1)iφ(xn−1|µ(n−1)i,Σ(n−1)i) (6)

The estimated transformation parameter ΘΘΘ is used for the
time update step in GSF, which produces the predictive
distribution of the current position of the object from the
prior distribution (6). It is also expressed as the GMM form
with the parameters of G n = {kn,wn,µµµn,ΣΣΣn}.

p(xn|y0:n−1), ∑
kn
i=1 wniφ(xn|µni,Σni) (7)

In the measurement update step in GSF, the target distribu-
tion can be obtained from the measurement distribution and
the predictive distribution by Bayes’ theorem and Markov
property.

p(xn|y0:n) =Cn p(yn|xn)p(xn|y0:n−1) (8)

The next two chapters explain the details of the each step of
GMM-based registration and Gaussian Sum Filtering based
on GMM representation.

IV. GMM-BASED 3D REGISTRATION

The 3D registration is a process that finds the transforma-
tion parameter ΘΘΘ to minimize the distance or maximize the
similarity between the point set of the transformed model,
T (Om,ΘΘΘ) and the point set of the scene Os. With the piece-
wise linear assumption, the unknown parameter ΘΘΘ consists
of rotation and translation matrices, R and t, and each point
at n−1 can be transformed as following.

xn = f̃(xn−1) = Rxn−1 + t (9)

In dynamic situations, point set of an object at each time
step is easily distorted with many outliers as in the cases
of Fig. 1. Fig. 4(a) shows the case that the two objects (a
human hand and a cup) are detected correctly at time n−1
but are merged at time n, as shown in Fig. 4(b). In order
to track each object robustly at time n, the 3D registration
problem in this case is to register the two model distributions
in Fig. 4(a) to the integrated target distribution in Fig. 4(b).
For each model, the target data has numerous outliers, which
are points belonging to another object; therefore, a robust
registration method is necessary in this case.

Many 3D point set registration methods are based on the
iterative closest point (ICP) method [3], and they have been
successfully implemented and applied in many applications.
[15] showed that ICP-based registration methods have the
same effect of minimizing the KL-divergence between two
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(a) Two model data at time t−1 (b) A scene data at time t

Fig. 4. 3D point set registration task of the mergence case

GMMs of T (Om,ΘΘΘ) and Os. [14] proposed a GMM-based
registration method using the L2 distance of GMMs as a
cost function between the transformed model and the target
data. The L2 estimator is more robust against outliers than
the KL-divergence estimator and the maximum likelihood
estimator (MLE). Another advantage of the L2 distance is its
closed-form expression for GMMs. The L2 distance of two
GMMs (Ga,Gb) can be expressed as (10) with the property
of a Gaussian function of (1),

∫
φ(x|µ1,Σ1)φ(x|µ2,Σ2)dx =

φ(0|µ1−µ2,Σ1 +Σ2).

dL2 =
∫ (

∑
ka
i=1 waiφ(x|µai,Σai)−∑

kb
i=1 wbiφ(x|µbi,Σbi)

)2
dx

= ∑
ka
i=1 ∑

ka
j=1 waiwa jφ(0|µai−µa j,Σai +Σa j)

−2∑
ka
i=1 ∑

kb
j=1 waiwb jφ(0|µai−µb j,Σai +Σb j)

+∑
kb
i=1 ∑

kb
j=1 wbiwb jφ(0|µbi−µb j,Σbi +Σb j)

(10)

The numerical calculation of (10) consists of three forms
of discrete Gaussian transforms [12]. Apparently, however,
the performance in terms of the computational time depends
mainly on the number of Gaussians, ka and kb. Hence, a
reduction of the size by GMM simplification is necessary
for the implementation of the algorithm in real-time.

Fig. 5 shows the GMM-based registration results with the
KL-divergence distance while Fig. 6 shows the results when
the L2-distance is used with the same variance value of the
Gaussians without the simplification process. Obviously, the

(a) Registration result of a cup (b) Registration result of a hand

Fig. 5. 3D point set registration results using KL-divergence of the two
models

KL-divergence measure is more efficient to reflect the global
effects of the points, as it tries to maximize the likelihood
of the model matching to the scene and thus places the
model in the center of the scene, while L2-distance reflects

(a) Registration result of a cup (b) Registration result of a hand

Fig. 6. 3D point set registration results using L2-distance of the two models

local effects more than a global influence and the registration
results show that it is more robust against most of the outliers.

Another advantage of GMM-based 3D registration is its
closed expression of the gradient of the cost function. In
this research, we used rigid transformation, which is defined
by the rotation matrix R and the translation vector t. Let
P denotes a m× 3 matrix of the 3D point set P. The rigid
transformed model at time t can then be expressed as follows:

Pt
m = T (Pt−1

m ,ΘΘΘ) = Pt−1
m RT + t (11)

The gradient of the cost function (10) can be derived by
the chain rule ∂F

∂ΘΘΘ
= ∂F

∂Pt
m

∂Pt
m

∂ΘΘΘ
. The first derivative ∂F

∂Pt
m

is the
partial derivative of the cost function with respect to each
point. The derivatives of the first and the third terms of (10)
are zero due to the rigid transformation. The partial derivative
of the cost function at each point is determined as follows:

∂F
∂ µm

i,d
=−2wm

i ∑
n
j=1 ws

j
∂

∂ µm
i,d

φ(0|µm
i −µ

s
j ,Σ

m
i +Σ

s
j). (12)

The second derivative can be simply obtained by the linear
form of (11). The gradient of the cost function can be
expressed as

∂F
∂ t

=
∂F

∂Pt
m

T

1m

∂F
∂ ri

= 1T
d

((
∂F

∂Pt
m

T

Pt−1
m

)
⊗
(

∂R
∂ ri

))
1d ,

(13)

where 1m is a m dimensional column vector of all ones, and
⊗ denotes the element-wise multiplication. The main part
of the gradient calculation is the first partial derivative of
the cost function at each point of the model (12). This is a
similar form of the Gaussian transform between a point and
a GMM; thus, it can also be obtained using the same process
used to calculate the cost function (10).

In order to optimize the transformation parameter, any
gradient descent optimization algorithm can be used with the
help of the gradient of (13). In this research, we used the
Limited-Memory Broyden Fletcher Goldfarb Shannon (L-
BFGS) minimization algorithm, which is based on a quasi-
Newton algorithm for large-scale numerical optimization
problems 1. Moreover, this minimizer allows one to set the
constraints of the search space, which helps to find the local

1This is implemented in the vision-numerics library (vnl) in
http://vxl.sourceforge.net/
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minima around the initial point set because the global minima
is occasionally not the correct position when the true object
is merged with a relatively large object.

V. GAUSSIAN SUM FILTERING

Bayesian filtering is a probabilistic approach to estimate
probability distribution of a hidden variable from the obser-
vation sequences in the iterative way based on the Markov
property and Bayes’ theory. In the cases of the predictive
and filtering distribution can be approximated as Gaussian
Mixtures, the filtering methods are called Gaussian Sum
Filtering (GSF) in [2]. In particular, [17] proposed several
Gaussian Sum Particle Filtering (GSPF) methods for the
cases of nonlinear functions and non-Gaussian noises in
the DSS model of (5). In this research, GSF method can
be applied because of the assumption that the dynamic
motion of an object is piece-wise linear function and it can
be estimated in the 3D registration process. This chapter
illustrates GSF method with the GMM approximation of
the measurement distribution additional to the predictive and
filtering distributions.

A. Time update

The time update step is to estimate the predictive distribu-
tion G n from the prior distribution Gn−1, and the relationship
can be described as follows.

p(xn|y0:n−1)

=
∫

p(xn−1|y0:n−1)p(xn|xn−1)dxn−1

=
∫

∑
kn−1
i=1 w(n−1)iφ(xn−1|µ(n−1)i,Σ(n−1)i)p(xn|xn−1)dxn−1

, ∑
kn
i=1 wniφ(xn|µni,Σni)

(14)

Before observing a new measurement, the number of Gaus-
sians at time n, kn and each weight value, wni can be
thought as the same number of kn−1 and w(n−1)i, respectively.
Then, each Gaussian in the predictive distribution can be
approximated as,

φ(xn|µni,Σni)≈
∫

φ(xn−1|µ(n−1)i,Σ(n−1)i)p(xn|xn−1)dxn−1,

(15)
where each covariance Σ(n−1)i approaches to zero as shown
in [2].

With the piece-wise linear function between time n−1 and
n (11), and the model noise un−1 follows Gaussian noise with
3D covariance matrix Qn−1 ∈ R3×3, the time update step in
GSF follows the Extended Kalman Filtering (EKF) method,
and mean and covariance values of each predictive Gaussian
can be obtained by the following equations:

µni = f̃(µ(n−1)i) = Rµ(n−1)i + t
Σni = F(n−1)iΣ(n−1)iFT

(n−1)i +Qn−1, where,

F(n−1)i =
∂ f̃(x)

∂x
|x=µ(n−1)i = R.

(16)

B. Measurement update

When a new measurement Ĝn is obtained, the filtering dis-
tribution, Gn, is updated from the predictive distribution, G n,
that is calculated in the time update step by calculating the
posterior distribution of (8). Following GMM representation,
the three distributions have a relationship of (17).

p(xn|y0:n)

=Cn p(yn|xn)p(xn|y0:n−1)

=Cn ∑
k̂n
i=1 ∑

kn
j=1 ŵniwn jφ(xn|µ̂ni, Σ̂ni)φ(xn|µn j,Σn j)

, ∑
kn
i=1 wniφ(xn|µni,Σni)

(17)

By means of the property of Gaussian function, the product
of two Gaussians in (17) produces another Gaussian, which
results in the mixture of k̂n× kn Gaussians with parameters
in (18).

p(xn|y0:n)≈∑
k̂n
i=1 ∑

kn
j=1 Cnwni jφ(xn|µni j,Σni j), where

Σni j = (Σ̂−1
ni +Σ

−1
n j )
−1

µni j = Σni jΣ̂
−1
ni µ̂ni +Σni jΣ

−1
n j µn j

wni j = ŵniwn j
|Σni j|1/2|Σ̂ni +Σn j|

1/2

|Σ̂ni|
1/2|Σn j|

1/2
φ(0|µ̂ni−µn j, Σ̂ni +Σn j)

Cn =
1

∑
k̂n
i=1 ∑

kn
j=1 wni j

(18)

Because the number of Gaussians grows recursively as
kn = kn−1× k̂n, the GMM simplification process is needed
to limit the size of Gaussians to the given number. In this
research, HC method [11] with L2 distance is used for
the simplification process, and the number of Gaussians is
determined proportional to the size of point set constructing
an object with a simplification ratio λ ∈ R ranging between
0 to 1.

kn =
kn−1 +λ k̂n

2
(19)

As an example result of the proposed filtering method, the
integrated point set of two objects, On in Fig. 4(b) can be
separated correctly to Oh and Oc as shown in Fig. 7. The each
point Pi in the integrated point set is identified by comparing
the value of filtering distribution functions at that point.

pi ∈
{

Oh
n for ph(xn|y0:n)|xn=pi > pc(xn|y0:n)|xn=pi

Oc
n for ph(xn|y0:n)|xn=pi < pc(xn|y0:n)|xn=pi

(20)

VI. EXPERIMENTS AND RESULTS

The purpose of the proposed method is to represent any
arbitrary time-varying objects’ shape and position and track
them robustly. The proposed 3D GMM-based representation
is inherently and sufficiently flexible to describe any shape
of objects, but the expressiveness and the robustness depends
on how much one can reduce the size of Gaussians. There-
fore, in order to evaluate the robustness (tracking accuracy)
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Fig. 7. The result of correcting the false segments in the Fig. 4(b)

according to the proposed filtering methods, we performed
several experiments in dynamic situations. Fig. 8 shows six
movements of two hands translating or rotating a white box
in three dimensions. Two hands change their shapes and the
box changes its position and orientation at every moment,
and they are in contiguity with each other.

Table I shows the details of the six experiments. Each

TABLE I
AVERAGE NUMBER OF POINTS AT EACH FRAME OF THE SIX TEST DATA

ACCORDING TO THE SAMPLING DISTANCE

Task Time [s] # of frames Sampling distance [m]
0.01 0.015 0.02 0.025

translation in x 46.78 520 2092.28 975.05 551.09 352.52
translation in y 40.85 448 2181.45 1024.47 573.39 370.06
translation in z 37.77 416 2295.05 1062.85 595.43 380.43

rotation in x 39.40 432 2271.93 1064.02 610.74 396.70
rotation in y 44.27 480 2534.13 1183.50 673.85 433.80
rotation in z 47.68 533 2307.17 1086.04 617.30 399.00

action was repeated ten times, and it took around 40 seconds
in total. The human hands and the object were observed by
two Microsoft Kinect cameras, and each instance of captured
point set data were merged with a common 3D coordinate.
This massive point set data was then down-sampled with
a constant sampling distance by using a VoxelGrid filter
in [25]. This experiment was performed with four different
sampling distances ranging from 0.01m to 0.025m because
the size of the measurement GMM, k̂n, is a substantial control
parameter for the tracking performance. The filtered point
set data is passed to the tracking algorithm every 90ms, and
the measurement GMM is then constructed with a diagonal

Fig. 8. Six hand motions with a white box: translation in x, y, and z-
direction in the first row from left to right, and rotation in x, y, and z-axis
in the second row

Fig. 9. Illustrations of the tracking results in the sequence (from top to
down) of rotating in z-axis. The first column shows the original captured
point set data. The figures on the second column are initial segmentation
results. The third column illustrates Gaussian mixture models as a set of
3D ellipsoids. The tracking results of the proposed algorithm are depicted
in the figures on the fourth column

covariance of the σ2 value: σ is the value of corresponding
sampling distance.

In order to evaluate the proposed method, the tracking
accuracy was calculated by counting the number of points
matching to each object as (21). The accuracy demonstrates
the ratio of correctly segmented points to total points for
all frames. For the evaluation, we used a white box for the
moving object and it can be easily distinguished from the
human hand via the color data. In this way, the ground truth
object of each point was found using RGB data of each point.

accuracy =

1−
∑t

(
∑

nH
t

i w(pH
i )+∑

nB
t

i 1−w(pB
i )
)

∑t (nH
t +nB

t )

×100.

(21)
Here, p is the average value of the RGB data and w(p) is 1 if
p is close to color white. In these experiments, the threshold
value to divide the human hand color and white was 125
in grayscale. nH

t and nB
t are the numbers of points of the

human hand and the white box at time t, respectively. The
computation device is an Intel i7 2.8GHz CPU and RGB-D
point set data, size of 640 × 480, is captured at an average
of 30Hz frequency.

A. The tracking results and errors

Fig.9 shows the selected snapshots of the test movement
of z-axis rotation, with the sampling distance of 0.015m and
the simplification ratio (λ ) of 0.15. The figure on the first
column are original 3D RGB-D data, and the corresponding
segmentation results are shown on the second column. Ini-
tially, two hands and the white box are departed from each
other such that the three objects are segmented correctly as
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shown on the first row of Fig. 9. From the second row to
the forth row shows the sequence of the test motions with
multiple contacts between the three objects. The figures on
the third column illustrates GMM of each object, and the
final results of the proposed tracking algorithm are depicted
in the forth column. The tracking errors are induced by the
falsely identified points: a part of the right hand (id:23)
contacting to the box as in the third row of Fig. 9. The
size of error points are influenced by the filtering methods
and the simplification process.

B. The tracking accuracy according to the representation

Fig. 10 and Fig. 11 show the tracking accuracies and
computation times for the six tests (three translational and
three rotational motions). In order to find the optimal control
parameters of the sampling distance and simplification ratio,
the requirement of the computable frames per second was
set to a minimum of 5 FPS. In Fig. 11, the available
parameter values are 0.025m for the sampling distance with
any simplification ratio and 0.02m for the sampling distance
with a simplification ratio of less than 0.15. Among these
values the highest tracking accuracy can be obtained by the
parameters of 0.02m for the sampling distance and 0.15 for
the simplification ratio, thus achieving 90% accuracy for the
three translations and 87% accuracy for the three rotations.

VII. CONCLUSION AND FURTHER WORKS

In this paper, we presented a novel tracking method
for multiple moving objects from 3D point set data. In
particular, this method adopted Gaussian mixture model to
represent any arbitrary objects without prior knowledge. The
flexibility of the model-free approach suffers from the false
segmentations due to the contacts and occlusions among
multiple moving objects. The proposed method enhanced
the robustness of the tracking task by suggesting the GMM-
based 3D registration and the Gaussian Sum Filtering for
estimating GMM probability distribution of the true position
of the objects. In addition, GMM simplification method was
applied to improve real-time performance, and the tracking
performance was examined by the various experiments in
dynamic situations. The results showed that the tracking ac-
curacy increases up to 91% using as more Gaussians as 30%
of the number of points, while the real-time computation
is not possible in the setting. As investigating the trade-off
relation between the tracking accuracy and the computational
efficiency according to the control parameters, this method
is able to perform over 87% for the tracking accuracy with 5
FPS for the computation time. The optimal parameters were
simplification ratio of 0.15 in the cases of about 600 points
at every time frame that is reduced by down-sampling with
0.02m sampling distance from the original point data set.

Although the results showed the feasibility of the algo-
rithm, there are some supplement points for further works.
First, in order to enhance computational time for the real-
time task, the simplification of GMMs should be optimized
and GPU processing is required. Second, proper number of
Gaussians and their spatial structure should be considered

(a) Translation tests

(b) Rotation tests

Fig. 10. Tracking accuracy results for the six tests

Fig. 11. Computation time results for the six tests
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according to the shape of objects. Third, the proposed
object representation and tracking methods were tested in
the ’contact’ case of multiple objects as shown in Fig. 1(a),
but it needs to be extended to the cases of occlusion (Fig.
1(b)), split, addition, and removal of multiple objects. These
further research can achieve on-line structure modeling of
any articulated objects and robustly tracking them in real-
time without prior-knowledge. That is, a robot can learn new
objects and the related skills in an unstructured environment
merely by observing human demonstration.
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