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Abstract

This paper proposes a method for 3D whole-body motion recovery and motion recognition from a sequence of occluded monocular
camera images based on statistical inference using a motion database. In the motion database, each motion primitive (e.g., walk,
kick, etc) is represented in an abstract statistical form. Instead of extracting rich information by expensive computation of image
processing, we propose an inference mechanism from low level image features (e.g., optical flow), inspired by psychological
research on how humans perceive motion. The proposed inference mechanism recovers the 3D body configuration and finds the
closest motion primitive in the motion database. Observations in 2D camera image space can be recognized even though the motion
database is prepared in a different space (such as joint space) by coordinate transformation of the statistical motion representation.
The approach is view invariant since the demonstrator’s baselink position and orientation with respect to camera coordinates are
tracked using an extended particle filter. Finally, an experimental evaluation of the presented concepts using a 56-degree-of-freedom
articulated human model is discussed.

Keywords: statistical inference, motion recognition, motion recovery, motion capturing, optical flow, particle filter, monocular
vision

1. Introduction

Motion understanding of human movements from a camera
system which is mounted on a robot is important for realiz-
ing smooth and practical human-robot interaction. Although a
studio-type motion capture system with several cameras pro-
vides good tracking accuracy, the system is expensive and re-
quires a large set up in the environment. Also, human subjects
have to wear optical markers on their body and motions can
be captured only in the studio. Although a wearable type of a
motion capturing system can eliminate space restriction, sub-
jects still have to wear sensors on their bodies. Thereafter, it
is inconvenient to use them in daily life environments. There-
fore, a new technology for human motion understanding using
onboard camera systems seems beneficial for seamless human
robot interaction.

Perception of human motion has been studied in psychol-
ogy [1][2][3][4][5] in the framework of moving light display
(MLD). The moving light display is an experimental setup to
show a human motion by lights attached to various parts of
the body. These studies report that human can recover and un-
derstand three-dimensional human movements from the video
while a single static image of the lights is insufficient to find
the human shape. The experiments show that humans have
high sensitivity to human motion perception and can recover
3D motion from a temporal sequence of images without any
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structural information. Human motion perception includes spa-
tial and temporal understanding. This suggests that humans use
the temporal information and the memory of human motions to
recover missing spatial information.

With the final goal of capturing three-dimensional human
motions and recognizing action classes from an onboard cam-
era system, we focus on an inference mechanism from 2D op-
tical flow without structure information1. An approach is pro-
posed to use a human motion database of 3D motion to solve
lack of depth information of a monocular camera and occlusion
problems. Even a stereo camera system may suffer from depth
insensitivity2. Although the authors assume a single onboard
camera system composed of a monocular camera, the approach
can be extended to an onboard stereo vision system. While re-
cently 3D cameras became popular, the proposed technology
has benefits for recovering 3D information from 2D video im-
ages like film archives as well as smart surveillance systems.

The main contribution of this paper is 3D whole body motion
recovery from an occluded monocular image sequence, which
includes not only self occlusion but also occlusion by obstacles.
The following paragraphs summarize the technical characteris-
tics of the proposed method.

(1) Coordinate transformation of the statistical database: In
this work, human motion patterns in the database are repre-
sented by a time sequence of joint variables and the 3D posi-
tion/orientation of the basebody3 to allow for easy control of

1The kinematic structure of human is invisible.
2Even an onboard stereo camera may not achieve complete 3D information

of an object far in the distance because of its fixed baseline.
3To be precise, our motion database is represented in joint angles, joint ve-
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articulated body motions. For the human motion database, the
hidden Markov model (HMM) is adopted [6][7] because it uses
a concise representation of spatiotemporal patterns and has well
established computational methods. In order to recognize hu-
man motions (2D image observations from onboard camera)
without the need of a database with many different views, we
propose a method to transform the statistical database to an
appropriate coordinate. By the coordinate transformation, the
HMMs in joint space can be compared with 2D images from
any view point without the need of depth information.

(2) Concurrent motion recovery4 and motion recognition5:
One can find many publications of motion recovery [8][9][10]
and motion recognition [11][12][13] as independent problems.
In contrast, our algorithm emphasizes that recovery and motion
recognition are tightly coupled in a single framework, where re-
covery assists action recognition and vice versa. The inference
cost for motion recognition in a next time step is significantly
reduced by closing the computational loop using recovered mo-
tion. Computational concurrency of motion recovery and mo-
tion recognition is similar to that of localization and mapping
in SLAM (Simultaneous Localization and Mapping) [14][15].

(3) Inference from optical flow of feature points: The ap-
pearance of people in images varies due to different clothing
and lighting conditions [16]. Often used image descriptors in-
clude silhouettes [8][17], edges [18][19], color [20], and motion
[21][22]. A large computation for image processing of the 2D
image sequence would maximally extract information for 3D
recognition. Instead, this paper focuses on development of an
inference method from low level image features (e.g., optical
flow [23] of unlabeled features) without shape and structure in-
formation, inspired by human’s high perception ability shown
in the MLD experiments [1]. Note that the main objective of
this paper lies on the inference mechanism from partial monoc-
ular observations. In contrast, the reliable feature selection and
robust optical flow calculation from blurred images are not the
focus of this research. Such methods for image processing (op-
tical flow estimation) can be found in [24][25]. Therefore, to
separate these problems in our experiments, we attach artificial
markers to the subject as distinctive feature points. Note also
that the markers are placed at arbitrary points and neither la-
beled nor tracked, in contrast to optical markers in conventional
motion capturing. Thanks to these properties of random place-
ment of markers, and no need of tracking and labeling, the syn-
thetic observations can be easily replaced with the optical flows
from real images. Therefore this allows that the proposed in-
ference method can be directly integrated with 2D optical flows
processed from real images.

(4) Mimesis model: The basic framework used in this work
is the mimesis model [6], which was inspired by the mimesis
theory [26] and the mirror neurons [27] in cognitive and neuro
science. The mimesis model was proposed for imitation learn-

locities, and baselink velocities.
4Motion recovery denotes estimation of the sequence of joint angles and

basebody position/orientation from the 2D image sequence.
5Motion recognition denotes the search for the closest HMM (e.g. walk,

run, jump, etc.) to the 2D image sequence.

ing from human demonstrations, which consists of three com-
ponents: motion learning, recognition, and generation. This
model has been selected because the use of the mimesis model
for 3D recovery of human motion patterns may be natural if
we recall the fact that our skill of human motion perception is
based on tightly connected cognitive activity with learning and
reproduction.
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Figure 1: Overall architecture of the proposed method.

The overall data flow is shown in Fig. 1, consisting of the
learning procedure and the 3D whole body motion recovery
from 2D images. First, during the learning stage, a human per-
forms multiple demonstrations for each motion primitive using
conventional motion capturing system. The observed three di-
mensional Cartesian marker position data [x,y,z] on the human
body is converted to joint angle data for a chosen kinematic
model6 using inverse kinematics. The observations in the joint
angle space are embodied into the parameters of an HMM (Sec-
tion 3). The transformation matrix C

DT ∈ S E(3) between the
camera coordinates and the demonstrator baselink coordinates
is found by applying the extended particle filtering algorithm
(Section 5.1). In Section 4, the coordinate transformation of
the statistical database is described. Motion primitives λ are
converted from the demonstrator’s joint coordinates λ θ into the

6The kinematic model is chosen depends on an application: for example, a
humanoid robot kinematic model for robot imitation of human motions and a
human skeleton kinematic model for human motion reconstruction.
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demonstrator’s Cartesian coordinates Dλx by forward kinemat-
ics, into the camera coordinates Cλx by a transformation matrix
C
DT , and into 2D image Cartesian coordinates Iλx by perspec-
tive projection. Finally, both proto-symbols Iλx and observa-
tions Iox are represented in the 2D image Cartesian coordinates.
When all the markers are not visible, motion recognition from
partial observations are carried out as described in Section 5.2.
Section 6 explains how to recover 3D whole body motion close
to the 2D observed motion.

Note that there are two stages of motion recovery in this
work: one for human baselink position and orientation C

DT
(6DOF) and the other for joint angles (50DOF). The particle
filter represents a probabilistic distribution of C

DT and it influ-
ences coordinate transformation and thereafter motion recogni-
tion. Motion recognition results affect the prediction of parti-
cles at the next step and recovery of joint angles. In this regard,
concurrent motion recovery and recognition is implemented in
this work.

An earlier version of this work was presented in [28]. This
work is extended by in depth explanations of methodology and
new experimental results. A method to reproduce a motion se-
quence by manipulating proto-symbols in different coordinates
is newly proposed. While the previous work showed a recov-
ery result of only one occluded motion sequence, this paper
provides statistical analysis under different conditions, such as
multiple runs with different initialization, multiple motions for
a kind motion type, different numbers of particles, etc.

2. Related Research

2.1. Learning from human demonstrations

Imitation is considered as the most primitive and fundamen-
tal element of intelligence development for human beings [26].
Donald defined mimesis as the ability to produce conscious,
self-initiated, representational acts that are intentional but not
linguistic. Mimesis is the basis of human communication skills
[26]. Moreover, there is evidence that mimicry and imitation
play significant roles in the developmental stages of animals
and human beings. Neuroscientists [27][29] reported the mir-
ror neuron system in primates’ brains that activates both dur-
ing observation of other’s motions and self execution of simi-
lar tasks. The neuroscientific evidence of motor primitives and
mirror neurons inspired technical studies of imitation learning
in robotics.

Imitation learning in robotics, often referred as Program-
ming by Demonstration, provides a means of automatic pro-
gramming of complex systems such as dexterous anthropomor-
phic robots without extensive trials or complex programming
[30][31]. Bentivegna and Atkeson [32][33] used the idea of
primitives for motor learning to play air hockey and marble
maze. Billard and Matarić [34] used connectionist-based ap-
proaches to represent movements. Inamura et al. [6] proposed
the HMM based mimesis model. The mimesis model encodes
the time-series motion patterns as proto-symbol representations
and decodes motion primitives from the proto-symbols. The
authors [7] extended the mimesis model in order to recognize

and imitate whole body motions from partial observations. A
theory of human-robot communication was developed based on
the mimesis model [35][36].

In research on imitation learning for humanoid robots, mo-
tion capturing systems are widely used [6][7][37][38][39] to
acquire reference motion patterns, such as human beings’ mo-
tion patterns. Most motion capturing systems use optical de-
vices, consisting of reflective markers and multiple cameras
[40]. Some imitation research [38] adopts wearable motion
capturing systems. In both studio- and wearable-type systems,
subjects have to wear optical markers or sensors on their bod-
ies. Thereafter, they are inconvenient to use in daily life envi-
ronments. In order to realize intuitive and practical interaction,
a mimesis model using a simple onboard vision system on the
humanoid robot is beneficial.

One technical challenging issue in such applications is how
to deal with partial observations (i.e., incomplete depth infor-
mation, self-occlusion and occlusion by surrounding objects).
Ghahramani and Jordan [41] proposed using the expectation-
maximization (EM) algorithm to fill in missing feature values
of examples when learning from incomplete data for a classi-
fication problem. Humans show high robustness against in-
completeness in sensing information: Although human eyes
have low depth sensitivity, specially for objects at a distance,
human beings can recognize and imitate other’s motion, even
when a part of his/her body is occluded; Humans can recog-
nize 3D information from two-dimensional images, films and
video archives. The uniqueness of our work lies on an infer-
ence mechanism based on mimesis model, which can recog-
nize and reconstruct high dimensional human articulated move-
ments from incomplete sensing data of an onboard vision sys-
tem. In contrast to our previous work [42] where we proposed
full body imitation from partial observations, this paper deals
with a challenging problem where the input observation (im-
ages from an arbitrary view) and the output reconstruction (joint
angles for an articulated body) are not in the same space. Also,
we do not assume that the observation data is structured. A
complete observation is not necessarily defined as a vector with
one specific dimensionality, but varying dimensionality. For
example, in the case we got a full body image without occlu-
sion by external objects, the full body can be represented as
100 or 50 image features. This implies also that a complete ob-
servation representation vector cannot be uniquely divided into
an observed and missing subvector. Therefore the algorithm
should be able to handle a time-varying size of an observation.

2.2. 3D Motion Understanding from 2D Images
There has been a great deal of research on vision-based hu-

man motion capture [43][44][8][45]. A good review of early
works on motion understanding was made by Cedras and Shah
[46]. A detailed discussion of shape matching can be found
in [47]. See [48][45][16] for recent surveys on vision-based
human motion analysis. Due to the wide range of studies in
computer vision on this topic and the limited space, we focus
our survey to the most relevant works.

Full 3D pose reconstruction from single view images is a
considerably difficult and ill-posed problem, compared to the
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problem of 2D pose estimation or 3D pose estimation from
multiple views. To resolve the inherent ambiguity in monoc-
ular images, additional constraints on kinematics and move-
ment are typically employed [21][49][50][51][52]. Taylor [51]
and Barron & Kakadiaris [52] proposed reconstruction meth-
ods from a single uncalibrated image by considering the fore-
shortening of body segments in the image under assumption of
scaled orthographic projection. Our method resolves the prob-
lem by having a predefined 3D human articulated model and a
motion database. In our motion database, each motion prim-
itive embodies temporal and spatial variability of the motion.
Namely, kinematics constraints, and spatiotemporal constraints
of learned motions are applied to resolve the depth ambiguities
of monocular images. We design the human articulated model
by an average of human body data, and scaled it with the ratio
between the real human’s height and the model’s height so that
the both have the same height. The articulated model does not
need to be exactly same as the real human demonstrator.

The learning based methods [53][54][55][56][8] estimate
poses using exemplars. Brand [54] modeled a dynamical man-
ifold of human body configurations with an HMM, learned
it using entropy minimization, and used it to infer 3D body
pose from 2D shadows. Rosales and Sclaroff [57] employed
a learned mapping function from silhouettes to 2D poses by a
neural network. Agarwal and Triggs [56] proposed a learning
based method for 3D human pose recovery from a single 2D
image, using silhouettes. The relationship between the training
dataset of silhouette histograms and 3D poses is learned by the
relevance vector machine regressor on Kernel base. Rather than
learning the human motion, Sidenbladh et al. [9] developed an
implicit probabilistic model, searching binary trees among ex-
emplar, based on the coefficients of a low-dimensional approx-
imation to human motion data. Sminchisescu and Triggs [10]
recovered 3D human body motion from monocular video se-
quences based on an image matching metric and a sample-and-
refine search strategy. The image matching cost metric is de-
signed carefully combining optical flow, edge energy, and mo-
tion boundaries. In Ramanan et al. [18], under the assumption
that people tend to take on certain canonical poses, a human de-
tector is built by using a pictorial structure model on an edge-
based representation in lateral view of walking.

Among research for motion recognition, Yamato et al. [12]
proposed a motion recognition method from silhouettes using
HMMs. Davis and Bobick [11] proposed a motion recognition
method using two kinds of synthesized images, namely binary
motion energy image and motion history image. This method
is viewpoint dependent. In the work of Chomat and Crowley
[58], action recognition is processed statistically according to
the conditional probability that a measure of the local spatio-
temporal appearance is occurring for a given action. The mea-
sure of spatio-temporal structure is computed based on Gabor
energy filters. Multi-dimensional histograms of these measures
are used to estimate the probability of an action. Yang et al.
[59] proposed a method for gesture spotting and recognition
problem using stereo cameras. Manually segmented gestures
are trained into Gesture HMMs. The rest motions besides ges-
tures are modeled as transition gesture HMM. Given the trajec-

tories of 3D body parts positions, gesture spotting and recog-
nition is solved by using HMM classifier. In [60] [59] [61],
the 3D reconstruction (or tracking) problem and the recogni-
tion problem are completely separated: After solving the for-
mer completely, the latter starts. In [59], 3D position of labeled
body parts are estimated from stereo cameras by applying a re-
construction method in [62]. In [60] and [61], head and hands
are tracked from stereo images by using 3D colored blob track-
ing method. Afterwards the trajectories of labeled body parts
are used for detecting pointing gesture [61] and for recognizing
hand gestures [60] and whole body motion [59].

The above mentioned works successfully reported either 3D
pose recovery or motion recognition as independent problems.
In some research, the two problems are treated in a sequence.
However, if the algorithm for the first problem fails, the fol-
lowing problem also cannot be successful as a consequence.
Although the two problems are strongly interconnected to each
other, it is hard to find previous works solving both problems
simultaneously. In contrast, we aim to solve the both prob-
lems simultaneously, where recovery assists action recognition
and vice versa, because in most cases recovery is difficult if we
do not know activity clustering (recognition) and also activity
recognition is difficult if we do not know 3D whole body infor-
mation.

Similar approaches to ours are carried out in [63][20][22].
Lu et al. proposed methods for tracking and action recogni-
tion which are coupled. In [63], an athlete is represented by the
PCA-HOG descriptor and tracked by a particle filter. Based
on the tracking result, action is recognized by the forward-
backward algorithm of an HMM and a new template for track-
ing is updated based on the Viterbi algorithm. In [20], their
method is extended for multiple people tracking. However,
their method is limited to 2D tracking, not 3D recovery.

Fathi and Mori [22] developed a motion-exemplar approach
for tracking human figures. Similar to ours, they infer the pose
of the human figure by finding a sequence of exemplars which
matches a given input sequence, and then estimating body joint
positions using these exemplars. Similarity between an exem-
plar sequence and an input image sequence is calculated by the
motion consistency measure introduced in [64]. However, the
method requires manual labeling, and cannot solve the action
recognition problem.

3. Mimesis Model from Partial Observation

3.1. Mimesis Model
The mimesis model as shown in Fig. 2 was introduced

by Inamura et. al [6], inspired by the mirror neuron system
[27]. It is a bidirectional computational model which performs
three functions; motion learning, motion recognition, and mo-
tion generation with the concept of proto-symbols. The proto-
symbols are defined through the HMM parameters.

The advantages to have proto-symbols are summarized as
follows. The compactness of the representation is an efficient
computational strategy for large information spaces in the real
world. The learned proto-symbols are easy to reuse for recog-
nition of other’s motion and generation of self motion.
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Figure 2: The conceptual diagram of the mimesis model. It is a bidirectional
model which performs learning, recognition and generation functions through
proto-symbols. The proto-symbols are defined through the HMM parameters.

Motion Learning: The training data is provided from the hu-
man demonstrator’s motions. Motion learning means proto-
symbol acquisition that involves segmentation of observed mo-
tion data and stochastic modeling of each segment. In this work,
manually segmented motions are used in the learning. Never-
theless, the segmentation process can be easily automated by re-
cent segmentation algorithms [65][66][67][68][69]. In Takano
and Nakamura’s method [67], primitives are specified by the
designer a-priori, and segmentation is based on the compari-
son between the known motions and the incoming data. In Fod
et al. [66], a segmentation point is recognized when a zero
velocity crossing is detected in a sufficient number of dimen-
sions. Janus, Kulić, and Nakamura [68][69] investigated the
use of the Kohlmorgen and Lemm algorithm [65] for unsuper-
vised segmentation of on-line human motion data. After the
segmentation process, the inherent dynamics of the segmented
motion is modeled by an HMM, which is known as an efficient
stochastic model for spatiotemporal motion data.

A proto-symbol corresponds to a set of parameters of an
HMM λ = {A, B, π}. The vector π = {πi} is the initial state prob-
ability vector, where πi is the probability for the initial state to
be state i. The matrix A is the state transition probability matrix
A = {ai j}, where ai j is the probability of transition from state
i to state j. B = {bi} = {ci j, μi j,Σi j}, where bi(o) is the proba-
bility density function for the output of continuous vector o at
state i, is represented with a mixture of Gaussian distributions.
The function bi consists of the weight ci j, mean vector μi j, and
covariance matrix Σi j for the j-th mixture component at state i.
For simplicity, we write B = {c, μ,Σ}. Since many human mo-
tions are cyclic, periodic continuous HMMs as shown in Fig. 3
are used. The proto-symbols are obtained via the Baum-Welch
algorithm [70]. The motion database consists of a set of ac-
quired proto-symbols.

Motion Recognition: Motion recognition is to identify a
proto-symbol from the motion database that has the highest
likelihood for generating the observed motion. Unlikely to
the learning process, motion segmentation is not prerequisite
for motion recognition. Instead, a continuously incoming mo-
tion stream is observed through a fixed time window. Let
O = {ot−w, · · · , ot} represent an observed motion through the
w + 1 width window at each sampling time t. The likelihood
P(O|λ) to generate the fixed time window sequence O for each
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Figure 3: Periodic continuous HMM

proto-symbol λ is calculated. The proto-symbol that provides
the largest P(O|λ) is the result of the motion recognition.

Motion Generation: During motion generation, a motion pat-
tern is decoded from a selected proto-symbol by using the ex-
pectation operator in the stochastic model. The motion gener-
ation has two processes: generation of the state sequence and
generation of the output motion. The state sequence is decoded
from the state transition probability matrix A and the initial state
probability vector π. Once the state sequence has been gener-
ated, the output motion at each state is decoded from the obser-
vation emission probability distribution B. In order to eliminate
the artifacts caused by discrete state switching in the HMM, a
Monte Carlo sampling based technique [6, 42] and Gaussian
regression based technique [71, 72] have been proposed. Then,
the generated smooth motion trajectory can be used as a com-
mand input for a humanoid robot or a human figure in anima-
tion.

The fundamental imitation mechanism for a humanoid robot
(or a human figure) using the mimesis model is described be-
low. A humanoid robot has the motion database which consists
of hidden Markov models (HMMs). When the robot observes a
human’s motion, it compares the observation to each HMM in
the database and finds the best matching HMM. By generating
its own motion from the best HMM, the imitation of the ob-
served motion is realized. The mechanism enables the robot to
classify others’ motions and to generate its own motions using
knowledge called the motion database. The imitation mecha-
nism based on mimesis model is different from simple mimicry,
where human motions are simply mapped to the robot kine-
matic model without an inference mechanism. In our imitation
mechanism based on mimesis model, a different representation
of proto-symbols is chosen depending on the application. When
the HMMs in the robot kinematics are used, the imitation infer-
ence of a robot can be achieved. When the HMMs in the human
skeleton model is used, the reconstruction of the human motion
can be realized.

3.2. Mimesis Model from Partial Data [7]

In the original mimesis model [6], a motion is generated only
from the HMM with the highest likelihood. The generated mo-
tion pattern is simply one of the memorized motion patterns by
the proto-symbols.

Active use of stochastic models can enrich the repertoire of
the motion patterns [73][7]. One extension can be the proto-
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symbol based motion duplication method [7] which can per-
form close motion imitation of the partially occluded obser-
vation. The method consists of two step procedures: motion
recognition from partial observations and proto-symbol based
duplication of an observed motion. When the human motion is
partially visible, only visible parts are compared to the corre-
sponding parts of HMMs in the motion database. By estimat-
ing the optimal state sequence corresponding to the observation
using the Viterbi algorithm, the imitated motion pattern is tem-
porally synchronized with the observation. Different motion
patterns corresponding to the same proto-symbol can be imi-
tated with different temporal sequences. This allows situated
motion generation by temporal synchronization.

3.3. Mimesis Model from Monocular Observation

Understanding of human movements from an onboard cam-
era system is relevant to imitation from partial observations.
In general, imitation from partial observations is more compli-
cated than that of section 3.2 because observed sensory data
may not be in a desired form.

Observations: Being inspired by human’s highly sensitive
perception, as shown in the moving light display experiments
[1], we focus on an inference algorithm based on the 2D opti-
cal flow, which shows the velocities of distinctive feature points
by arrows computed from two succeeding images. Calculation
of robust optical flow from blurred images of a moving camera
are not our main interest in this work. Thus, we assume that
2D optical flow is calculated in advance and focus on inference
mechanism for 3D motion recovery from 2D optical flow. The
observation can be written as Iox, where {I} indicates “2D Im-
age” and x denotes “Cartesian space.”

Motion Database: A human motion pattern is represented
by a time sequence of joint angles, joint velocities, and ve-
locities of the basebody position/orientation. A segmented hu-
man motion sequence in joint space is embodied into a proto-
symbol which is represented by the parameters of an HMM
λθ = {Aθ, Bθ, πθ}. Note that λθ is a proto-symbol in the joint
space, where θ denotes “joint space.” The humanoid robot uses
the motion database, consisting of a set of proto-symbols, in
order to solve depth and occlusion problems.

The overview of the proposed method is described in Fig.
1. Because an observed human motion of a monocular im-
age sequence cannot be compared to the motion database in
joint space directly, the motion database is converted to im-
ages as seen from camera viewpoint. The basebody posi-
tion/orientation of the demonstrator is estimated by a particle
filter and used for the coordinate conversion. The partial obser-
vation is compared to the converted HMMs and the best match-
ing HMM is found. Then, by using the proto-symbol based du-
plication of observed motion, 3D full-body motion is imitated.
This whole-body imitation from a monocular image sequence
can be interpreted as the 3D motion recovery from the 2D im-
age sequence. The algorithm is summarized as follows:

(1) λθ → Dλx: The proto-symbols are converted from the
demonstrator’s joint coordinates into the demonstrator’s Carte-
sian coordinates by forward kinematics. (Sec. 4.2)

(2) The demonstrator’s basebody position/orientation C
DT ∈

S E(3), which is the homogeneous transformation matrix be-
tween the camera coordinates and the demonstrator coordi-
nates, is estimated via a particle filter. (Sec. 5)

(3) Dλx → Cλx → Iλx: The proto-symbols in the demonstra-
tor’s Cartesian coordinate Dλx are transformed into the cam-
era coordinates Cλx by the transformation matrix C

DT (section
4.3). By perspective projection, the proto-symbols in the cam-
era Cartesian coordinates Cλx are converted to proto-symbols
in the image Cartesian coordinates Iλx in the same way as in
section 4.3.

(4) After converting the proto-symbols into the same space as
the observations, the optical flow in the 2D-transformed proto-
symbol Iλx, corresponding to the observed optical flow, is cal-
culated (Sec. 5.3.3). The computed optical flow in the con-
verted proto-symbol and the observed optical flow are com-
pared to calculate the likelihood P( Iox|Iλx). The particle fil-
ter for the demonstrator’s basebody position/orientation is up-
dated based on the likelihood and the motion is recognized as
the HMM which has the highest likelihood.

(5) By adopting the proto-symbol based motion duplication
[74], a temporally synchronized motion pattern to the observed
motion pattern is generated. Section 6 describes how to extend
the algorithm for the 3D motion recovery in joint space from a
2D image sequence.

4. Coordinate Transformation of Proto-Symbols

4.1. Coordinate Transformation
Proprioception is an internal sense of the relative position

of neighboring parts of the body and exteroception sense is
the perception of the outside world through, for example sight,
taste, smell, touch, and hearing. One can learn a motion from
other people by relating exteroception to proprioception and
vice versa. Previous works of imitation research in robotics
[6][75][76][77][7] have not considered such conversions and
assumed same modality for simplicity.

This section proposes coordinate transformation of proto-
symbols, which implies the conversion between proprioception
and exteroception of the human. A proto-symbol is a proba-
bilistic form of a motion pattern and is represented by HMM
parameters λ = (A, B, π), as explained in section 3.1. When
converting a proto-symbol λ = {A, B, π} into different coordi-
nate spaces, the main difference among the proto-symbols in
the different spaces is the representation of motion patterns.
Thus, the state transition probability matrix A and the initial
state probabilities vector π can stay unchanged. Only the out-
put probability distribution B = {c, μ,Σ} is to be transformed,
where c, μ, and Σ are the weight scalar and the mean vector and
the covariance matrix for each Gaussian respectively. It is as-
sumed that the output probability is represented by a mixture of
Gaussians even after coordinate transformation.

Linear conversion by homogeneous transformation matrix is
detailed in section 4.3. Nonlinear conversion by kinematics is
explained in section 4.2. Conversion by perspective projection
is represented by the homogeneous transformation matrix dis-
cussed in section 4.3, if camera distortion is ignored. When
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considering camera distortion, this perspective projection is car-
ried out as a nonlinear conversion similarly to section 4.2. Here,
the camera is supposed to be calibrated.

4.2. Proto-Symbol Conversion by Kinematics

This section considers how to convert a proto-symbol λ from
the joint space λθ = {Aθ, Bθ, πθ}, Bθ = {cθ, μθ,Σθ} to the Carte-
sian space λx = {Ax, Bx, πx}, Bx = {cx, μx,Σx} by forward kine-
matics. Note that the proto-symbol in joint space λθ contains in-
formation of joint angles and joint angular velocities. The con-
verted proto-symbol λ x includes information (mean vector and
covariance matrix) of feature positions and their translational
velocities. In the following, two complementary approaches
for conversion by kinematics are given in the case of small and
large covariance.

4.2.1. Monte Carlo method

When the covariance Σθ is large, the mean vector μx and
covariance matrix Σx are calculated using the Monte Carlo
method. The Monte Carlo method estimates a continuous prob-
ability distribution function by using discrete samples. Sam-
ples oθ = {oθi} are generated from the probability distribution
Bθ = {cθ, μθ,Σθ} where oθi denotes the i-th sample of oθ. Each
sample is converted from the joint space (joint angles and joint
angular velocities) to the Cartesian space (feature positions and
their translational velocities) by forward kinematics f and the
uncertainty model of kinematics ε( f ) by

oxi = f (oθ i) + ε( f ), ∀i = 1, ...,Ns (1)

where Ns is the number of samples. The kinematic uncertainty
model ε( f ) due to computational errors is designed as a zero-
mean Gaussian distribution.

In eq. (1), oxi denotes the i-th sample which is converted
into the Cartesian space. Then, the converted mean vector and
covariance matrix are calculated from a set of samples o x =

{oxi}. For a single Gaussian model, the Gaussian distribution
becomes

cx = cθ = 1 (2)

μx =
1
Ns

∑
i

oxi (3)

Σx =
1
Ns

∑
i

(oxi − μx)(oxi − μx)
T . (4)

For a Gaussian mixture model [78], a clustering method [79] is
applied. The number of Gaussians becomes the number of clus-
ters and the weighting scalar of each Gaussian is proportional
to the number of samples in the corresponding cluster. For each
Gaussian, the mean vector and the covariance matrix are calcu-
lated from the samples in the corresponding cluster. Calculation
via the Monte Carlo method is simple. Its computational cost
is proportional to the desired accuracy, namely the number of
samples.

4.2.2. Linear approximation method
Although the kinematic model is a nonlinear function, if the

covariance Σθ is small enough, it can be approximated as a lin-
ear function. In such a case, the mean vector μ x is calculated
from μθ by eq. (5). The covariance matrix is converted by eq.
(6) using the Jacobian matrix of the forward kinematics at the
mean vector.

μx = f (μθ) (5)

Σx = J(μθ)ΣθJ(μθ)T (6)

where

J(θ) =
∂ f (θ)
∂θ

(7)

Most human motions in our experimental dataset show that
the standard deviation of proto-symbols λθ are less than 0.122
rad. This would justify applying the linear approximation
method to the data.

4.3. Proto-Symbol Conversion by Homogeneous Transforma-
tion Matrix

In order to handle the cases where a robot (an onboard cam-
era) and/or a human subject moves, the algorithm should be
view-point independent. Therefore, the proto-symbol conver-
sion by homogeneous transformation matrix is proposed.

With the homogeneous transformation matrix between the
demonstrator’s basebody Cartesian coordinates and the camera
Cartesian coordinates7, a proto-symbol Dλx = {DAx,

D Bx,
D πx},

DBx = {Dcx,
D μx,

D Σx} is converted to Cλx = {CAx,
C Bx,

C πx},
CBx = {Ccx,

C μx,
C Σx}. Parameter A and π stay unchanged,

CAx =
DAx and Cπx =

Dπx. If B is composed of one Gaussian,
the weight scalar for the Gaussian becomes 1, Ccx =

Dcx = 1.
Because conversion by the homogeneous transformation ma-
trix C

DT is linear, the mean vector and the covariance matrix are
converted as follows.[

Cμxi
1

]
= C

DT

[
Dμxi

1

]
(8)

CΣxi =
C
DRDΣxi

C
DR

T
(9)

where μxi ∈ R3 and Σxi ∈ R3×3 are the mean vector and the
covariance matrix of the i-th feature’s 3D Cartesian coordinates.
Because the covariance matrix is not related to the translation
vector, the covariance matrix is calculated by considering the
rotation parts C

DR ∈ S O(3) of C
DT .

5. Motion Recognition and Basebody Position/Orientation
Estimation

5.1. Particle Filter for Baselink Pose Estimation
In order to estimate the demonstrator’s basebody posi-

tion/orientation C
DT ∈ S E(3), a particle filter is implemented.

Based on Markov assumption, the particle filter is represented
as

p(st|o1:t, a1:t) = ηp(ot|st)
∫

p(st |at−1, st−1)p(st−1)dst−1 . (10)

7Calculation of this transformation will be given in section 5.
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• st: Demonstrator’s baselink position/orientation, Ct
Dt

T , with
respect to the onboard camera at time t, is represented in
a probabilistic way. Its probabilistic distribution is repre-
sented with a particle set st = {s j,t},∀ j = 1..Np, where Np

is the number of particles. Each particle s j,t is a 6 dimen-
sional vector which represents the basebody position and
orientation.

• at−1: at−1 is composed of the camera’s movement Ct
Ct−1

T and

demonstrator’s action Dt−1
Dt

T . Here Ct denotes camera coor-
dinate at time t and Dt denotes demonstrator coordinate at
time t.

• ot: An observation at time t is represented as ot.

In the paper, we call the case that particles are converged lo-
cally local tracking and the case when the particles are spread
widely global estimation [15]. At the initial step, if demonstra-
tor’s initial basebody position/orientation is known, particles
are located near the given position with small noises. Other-
wise, particles are spread globally.

5.1.1. Motion Model p(st|at−1, st−1)
The motion model of the demonstrator’s position/orientation

with respect to the humanoid position/orientation represents the
motion uncertainty at−1 based on the measurement of the cam-
era’s movement Ct

Ct−1
T and the expectation of demonstrator’s ac-

tion Dt−1
Dt

T .

p(st|at−1, st−1)←− Ct
Dt

T = Ct
Ct−1

TCt−1
Dt−1

T Dt−1
Dt

T (11)

The camera’s movement can be roughly estimated from the
motor command of the robot8. Strictly speaking, the demon-
strator action Dt−1

Dt
T is not observable. However, when the

demonstrator’s motion is known, the next movement can be
predicted. Therefore, during local tracking, the demonstrator’s
action is modeled as the human’s basebody motion of the rec-
ognized proto-symbol, which has the highest likelihood.

Dt−1
Dt

T =
Dq(t−1)

Dq(t)
T (12)

Herein q(t) denotes the state of the recognized proto-symbol
(HMM) at time t. On the other hand, when the demonstrator’s
motion is unknown, the demonstrator’s action Dt−1

Dt
T is hard to

predict. Therefore, during global estimation, it is modeled as a
possible random movement within a certain time period.

5.1.2. Sensor Model p(ot|st)
Belief p(s j,t) is the probability that the current demonstrator

position/orientation is the j-th particle s j,t at time t. For each
particle, the belief p(s j,t), ∀ j = 1..Np is calculated by

p(s j,t) = p(ot|s j,t) (13)

p(ot|s j,t) ∝ max P(O|Iλx,i j), ∀i = 1..Nλ (14)

8We assume that the onboard camera coordinates on the robot with respect
to the robot’s base link coordinates are known.

where O = {ot−w, · · · , ot} is a time-sequence of observation
through the window, whose width is w + 1 frames, at time
t. The belief p(ot|s j,t) is the maximum likelihood among all
proto-symbols by eq. (14), where i is the index of a proto-
symbol and Nλ is the number of proto-symbols. The i-th proto-
symbol λθ,i is converted to the image Cartesian coordinates by
forward kinematics, the j-th particle, and perspective projec-
tion. Namely, Iλx,i j represents the converted i-th proto-symbol
by the j-th particle. In the rest of this section, Iλx,i j is written as
λi j for the simplicity reason. The term P(O|λ i j) is the likelihood
to generate observation O from the converted proto-symbol λ i j.
The detailed calculation of P(O|λ i j) is explained in section 5.3.
Equation (13) is substituted into eq. (10). The belief p(s j,t) is
normalized by η so that

Np∑
j=1

p(s j,t) = 1 . (15)

5.2. Motion Recognition

The humanoid robot recognizes the demonstrator’s motion
by identifying the best proto-symbol in the motion database.
Time series of motion data O = {ot−w, · · · , ot} are observed
through a fixed width window. The best matching proto-symbol
for the observation is found by calculating eq. (16) for all proto-
symbols and all particles.

λ∗ = arg max
λi j

P(O|λi j) (16)

where i is the index of a proto-symbol and j is the index of a
particle.

5.3. Calculation of P(O|λi j)

5.3.1. Time-sequence of Demonstrator’s Position/Orientation
For the demonstrator’s position/orientation estimation (eq.

(13)) and motion recognition (eq. (16)), P(O|λ i j) should be cal-
culated for each particle (∀ j = 1..Np) and each proto-symbol
(∀i = 1..Nλ). Note that, in order to calculate P(O|λ i j), the
time-sequence of observation O = {ot−w, · · · , ot} and the time-
sequence of each particle S j = {s j,t−w, · · · , s j,t} are necessary.
In the conventional particle filter, the particles represent only
a probabilistic distribution of the current demonstrator posi-
tion/orientation, namely st = {s j,t},∀ j = 1..Np. Also, the sensor
model is updated based on observations at the current time step.
In the proposed approach, the time-sequence of the j-th particle
S j = {s j,t−w, · · · , s j,t} is calculated backward from time t to time
t − w using camera movement and demonstrator action of the
proto-symbol.

During local tracking, past time-sequences of all particles
are set to the time-sequence of the champion particle in the past.
The champion particle denotes the particle with the highest like-
lihood among all particles.

s∗j,m = arg max
sk,m

p(sk,m),∀k = 1..Np,∀m = t − w, ..., t − 1 (17)

where Np is the number of particles. Therefore, all particles
have the same past trajectory apart from current time t.
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During global estimation, the time-sequence of the each par-
ticle S j = {s j,t−w, · · · , s j,t} is calculated from each proto-symbol
λi by the following initialization and induction process.

Initialization: The proto-symbol λ i is converted into 2D
Cartesian space by using the particle s j,t at time t and the con-
verted proto-symbol is represented as λ i j. Let Ibk(ot) denote the
probability to generate ot from the output probability distribu-
tion of the k-th state in the 2D-converted λ i j. Thereafter, the
best matching state q(t) at time t is found by

q(t) = arg max
k

Ibk(ot),∀k = 1..N , (18)

where N is the number of states in HMM λi j.
Induction: From the best matching state q(t), the basebody

position/orientation at one-step prior s j,t−1 is estimated using

the demonstrator motion Dq(t−1)

Dq(t)
T in state q(t)9.

p(st−1|at−1, st)←− Ct−1
Dq(t−1)

T = Ct
Ct−1

T
−1Ct

Dq(t)
T

Dq(t−1)

Dq(t)
T
−1

(19)

The particle at one-step prior s j,t−1 is calculated based on the
mean values of motions of the camera and the demonstrator,
which is Ct

Ct−1
T and

Dq(t−1)

Dq(t)
T . After estimating s j,t−1, the i-th proto-

symbol is converted into 2D Cartesian space by using the par-
ticle s j,t−1. Let Ibk denote the output probability distribution of
the k-th state in the 2D-converted proto-symbol. Then, the best
matching state q(t − 1) at time t − 1 is calculated by

q(t − 1) = arg max
k

Ibk(ot−1)akq(t), ∀k = 1..N (20)

where N is the number of states in the proto-symbol. This in-
duction phase is iterated until obtaining s j,t−w.

5.3.2. Proto-symbol Conversion
Once the time-sequence of the demonstrator’s relative po-

sition/orientation S j = {s j,t−w, · · · , s j,t} is obtained, the proto-
symbol can be converted into the camera coordinates and subse-
quently into image coordinates. Since the demonstrator’s base-
body position/orientation with respect to the camera is time-
varying, we convert the proto-symbol at each time-step. At time
t, we focus on the state at time t, namely q(t). The demonstra-
tor’s basebody position/orientation is represented as a proba-
bility distribution by using particles. The proto-symbol is con-
verted at each time-step by each particle. At time t, the proto-
symbol is converted into camera coordinates {C t} by each par-
ticle s j,t, which is a candidate of Ct

Dt
T . The conversion by the

homogeneous transformation matrix is carried out as described
in section 4.3. Then, the proto-symbol is converted into the im-
age coordinates {It} at time t by the perspective projection with
calibrated camera parameters.

5.3.3. Optical flow in Proto-symbol
This section explains the calculation of Ibq(t)(Iot), the proba-

bility density function to generate an observed motion Iot from

9Please remind that proto-symbols contain information of the baselink ve-
locity as well as joint position and joint velocity.

(u,v)
,v)u,(uu

vl

v**
vo

Figure 4: Computation of a corresponding optical flow v∗ in a proto-symbol
(left) to the observed optical flow vo at pixel position (u, v) (right). If the proto-
symbol does not have the optical flow at the position (u, v), the corresponding
optical flow v∗ at (u, v) in the proto-symbol is calculated by interpolation of
nearby optical flows.

a state q(t) of the proto-symbol at time t. Let Iot be an observed
motion, which consists of makers’ 2D pixel positions and their
optical flow, at time t, as shown on the right sub-figure of Fig.
4.

Let vo be an optical flow at a pixel position po = (u, v) of
the observed image. The observed optical flow vo is compared
with an optical flow v∗ at the same position po = (u, v) in the
converted proto-symbol Iλx. The optical flow v∗ is calculated
by interpolation of nearby optical flow information as shown on
the left sub-figure of Fig. 4 and eq. (21).

v∗ = 1∑
l

1
dl

L∑
l=1

vl

dl
(21)

Let vl be a nearby optical flow, ∀l = 1..L at its pixel position pl,
whose distance dl from po = (u, v) is smaller than a predefined
threshold. Here, L is the number of the optical flows in the local
region.

Please remind that converted proto-symbols Iλx include the
mean vector and covariance matrix of both feature positions
and their optical flows. Feature points correspond to the act-
ing point pl and their optical flows correspond to vl, ∀l = 1..L.
In the same way as eq. (21), which is simple linear interpo-
lation, the mean and covariance for the corresponding optical
flow are calculated.

With the calculated mean and covariance of the output Gaus-
sian distribution function, output probability Ibq(t)(Iot) is calcu-
lated in terms of optical flows. The likelihood P(O|λ i j) is com-
puted by the forward algorithm [80]. Only observed optical
flows are compared with the corresponding ones of the proto-
symbol, when calculating the output probability Ibq(t)(Iot). In
this way (using only visible parts), the method can estimate
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whole-body motion even under occlusion. Note that the pro-
posed method does not require the solution of the feature label-
ing problem or continuous tracking of the features.

6. Motion Recovery using Proto-symbols in Multiple Coor-
dinates

Motion patterns are decoded using the expectation operator
in the stochastic model. The motion generation is a two-stage
stochastic process: state transition generation and motion out-
put generation.

Active use of stochastic models enriches the repertoire of
the motion patterns [73][7]. One approach is interpolation ap-
proach in [73]. This enables to generate motions which corre-
sponds to a mixture of existing proto-symbols. Using mixing
coefficients of multiple proto-symbols, a new proto-symbol is
calculated in the proto-symbol space and a corresponding mo-
tion is reproduced from the new proto-symbol. Another ap-
proach is proto-symbol based motion duplication [7], which can
perform complete motion generation which is close to the par-
tial observation using database.

The motion y for a humanoid robot or a human articulated
figure is generated by applying the best proto-symbol λ ∗ and
current observations o by eq. (22).

y = g(λ∗, o) (22)

It follows a two-step procedure: to estimate hidden state se-
quences in HMM for a partial observation sequence, and then
to reproduce a full motion sequence from the estimated states.
The original algorithm is modified in order to cope with the
motion recovery of a human articulated figure from an image
sequence.

Note that observation of a motion pattern at each time step
is an occluded 2D monocular image, o = Iox. The generated
motion y is desired to be represented in joint space, y = y θ,
because of the easy control for the articulated movements.

The state sequence is obtained by applying the Viterbi al-
gorithm [80], which finds the single best state sequence Q =
{qt}, 1 ≤ t ≤ T for the given observation sequence IOx. As a
result, the recovered motion pattern can be temporally synchro-
nized with the observation.

Q = max
q1,··· ,qT

P(Iox|Iλ∗x) (23)

Since the observation Iox is represented in 2D image coordi-
nates, the transformed proto-symbol in 2D image space Iλ∗x is
used for the Viterbi algorithm. This optimal state transition gen-
eration enables us to generate a motion pattern similar to the
observed target motion pattern. For the invisible motion ele-
ments, either eq. (24) or eq. (25) is substituted into the output
probability density function,

{xk}t − μi j = ∗ (24)

Σi j = ∞ (25)

so that the invisible motion elements do not affect the output
probability density function. In eq. (24), ∗ indicates a constant
value and it is set to zero10 in the experiments (Sec. 7).

After the optimal state sequence Q = {qt} is obtained, the
output observation sequence y is decoded according to Q by the
output probability distribution Bθ of the proto-symbol in joint
space. Note that Bθ is used in order to generate joint angles
yθ. In other words, the proto-symbols in 2D image coordinate
is used for the former step (estimating hidden states) and the
proto-symbols in joint space is used for the latter step (repro-
ducing complete human motions). Since the state transition
probability matrix A and the initial state probability vector π are
not changed for coordinate transformation of a proto-symbol,
the optimal state transition Q = Qx = Qθ is the same for both
Iλx and λθ.

7. Experiments

7.1. Experimental Setting

As shown in Fig. 1, the proposed architecture consists of
two main steps: learning and recognition & recovery. Dur-
ing the learning step, in order to acquire the 3D proto-symbols
for training data, accurate human motion patterns including
basebody position/orientation are captured by an optical mo-
tion capture system, which is composed of ten cameras. The
3D positions of the optical markers, which are attached to the
subject, are obtained by the capturing system (left in Fig. 5).
Then, the attachment points of the markers’ labels are specified
by a labeling procedure11 (middle in Fig. 5). Once the labeled
markers’ 3D positions are acquired, the subject’s motion can
be mapped into a humanoid robot model or a human skeleton
model by inverse kinematics (right in Fig. 5). In the exper-
iment, we use a skeleton model. The skeleton model has 56
DOF in total: 50 DOF for joint angles θ and 6 DOF for base
body position/orientation. Table 1 shows the details of the joint
configurations. The position/orientation of the base body can
be represented as the homogenous transformation matrix G

DT .
From the time-sequence of θ and G

DT , joint angular velocities
θ̇(t) and basebody position/orientation velocity Dt−1

Dt
T are calcu-

lated.
With the inverse kinematics results, proto-symbols are

trained with joint angles Dtθ (50 DOF), joint angular velocities
Dt θ̇ (50 DOF) and basebody position/orientation velocity Dt−1

Dt
T

(6 DOF). Six motions are trained as proto-symbols a-priori: (1)
STEP, (2) CHEER, (3) KICK, (4) SQUAT, (5) BOW, and (6)
RUN in a circle. The sampling time of motion data is 30ms and
the length of each motion pattern is 1000 frames (30 seconds)
except for the KICK. The length of the KICK motion pattern is
802 frames (24 seconds). Since people do not perform the same
motion twice in the exactly same fashion, it is useful to train
proto-symbols from multiple exemplars. Each motion pattern

10The value ∗ is not necessary to be zero, but any constant number.
11Labeling is needed only during the learning step. Neither the labels of

markers nor marker tracking is needed for motion recovery and recognition.
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Labeling
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matics

Figure 5: Computation flow to estimate motion from 3D marker position for
training data

Table 1: Degrees of Freedom : 50 DOF for joint angles

Joint name DOF Joint name DOF

Lumbar Vertebra 3 Left Hand 3

Rib Vertebra 3 Neck Vertebra7 3

Right Shoulder Clavicle 3 Head 3

Right Upper Arm 3 Right Leg Thigh 3

Right Fore Arm Elbow 3 Right Leg Shank 1

Right Hand 3 Right Foot 3

Left Shoulder Clavicle 3 Left Leg Thigh 3

Left Upper Arm 3 Left Leg Shank 1

Left Fore Arm Elbow 3 Left Foot 3

contains several periodic movements. The STEP motion pat-
tern contains 26 steps. The CHEER motion pattern contains 15
cheers. The KICK contains 14 kicks. The SQUAT contains 19
squats. The BOW motion pattern contains 12 bows. The RUN
motion pattern contains 35 steps.

In order to validate the proposed recognition and recovery
algorithm, six motions are demonstrated as test data: STEP,
CHEER, KICK, SQUAT, BOW, and RUN in a circle. Some of
the demonstration motions of the real human subject are shown
in Fig. 6. Time series of motion data are observed through a
fixed width window and the width is set to 70 frames. Each
motion length is 300 frames (9 sec). Some of the motions are
partially occluded.

The observed data from a monocular camera consist of pixel
positions of arbitrary feature points on the subject, as shown
in Fig. 7. In the experiments, a motion model of the camera
is not considered. The camera is not located on a real mov-
ing robot, but at a static position, since optical flow calculation
from blurred image of a moving camera is beyond our inter-
ests in this paper. The human’s baselink positions/orientations
for the initial 70 frames are given roughly by adding Gaussian
noises. 1000 particles are used for the particle filter estimating
the demonstrator position/orientation (6DOF). In order to eval-
uate the accuracy of 3D motion recovery from 2D images, the
true motion is computed by inverse kinematics from 3D posi-
tion of labeled markers, which are captured by ten cameras.

In order to separate image processing part from our main
focus on the inference mechanism, the monocular observa-
tion data are calculated in an artificial way in the experiments.

Thirty-four reflective markers are attached on the human body.
From the labeling, the linkage structure between the markers is
known. Virtual markers are added between two linked markers
in order to gather more features than the 34 attached markers.
The artificially obtained markers are displayed in Fig. 7. After
generating synthetic observation data we discard labeling infor-
mation. For motion recognition and morion recovery, features
do not need to be labeled nor tracked. Also, they can be located
at arbitrary positions. Thus, these artificially prepared 2D fea-
tures can be substituted with processed optical flows from real
images.

7.2. Evaluation of Motion Recovery
Here we show five recovery examples: (1) CHEER motion

without occlusion, (2) KICK motion with small occlusion on a
swinging right leg from time to time (22% occlusion), (3) RUN
around making a CIRCLE motion with occlusion of two lower
legs (36% occlusion), (4) STEP motion with occlusion of the
left half of the body (36% occlusion), and (5) BOW motion with
occlusion of the left half (51% occlusion). The observed data
are pixel positions of features on the subject. The observations
of the five motions at selected frames are shown in Fig. 7. From
the 2D monocular images, the proposed method recognizes the
subject’s motion by finding the proto-symbol with the highest
likelihood. A set of 1000 particles is used in the particle filter
for estimation of the subject’s position/orientation.

The recovered motion at selected frames is shown in Fig. 8.
The 3D motion recovery (blue, dark color) from 2D unlabeled
marker data is compared with the inverse kinematics results
(magenta, light color) from 3D labeled marker data, which are
assumed to be ground true. Figure 8 shows that the recovered
3D motions fit well to the true motions.

The estimated baselink position and orientation are shown in
Fig. 9. The light colored bold curves represent the true values.
The dark colored thin curves indicate the estimated poses from
2D partial observation of optical flows. The figure shows that
the particle filter estimates the human’s baselink position and
orientation generally well.

In addition, an analysis of how close the recovered motion
to the motion database is carried out. Please remind that the
motion database is not represented by static motion patterns, but
by stochastic forms (HMMs). In order to compare them, first,
each recovered motion is trained to a new HMM. Then, the new
HMMs are compared to HMMs in the database by Kullback
Leibler distance [81]. The Kullback Leibler distance D(λ i, λ j)
is a dissimilarity measure between two HMMs (λi and λ j). It is
calculated by

D∗(λi, λ j) = ln P(Oi|λi) − ln P(Oi|λ j) (26)

D(λi, λ j) =
D∗(λi, λ j) + D∗(λ j, λi)

2
(27)

where Oi denotes the motion patterns generated by the HMM
λi. The calculated Kullback Leibler distance is shown in Table
2. Each motion among five recovered results is compared to
the six HMMs in the database. From the table, each motion
has the smallest dissimilarity to the corresponding HMM in the
database.
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(a)

(b)

(c)

Figure 6: Subject’s demonstration. (a) KICK: at frame 80, 90, 100, · · · , 170. (b) RUN: at frame 80, 90, 100,· · · , 170. (c) BOW: at frame 70, 80, 90, · · · , 160.

Table 2: Comparison recovered motion to HMMs in database by Kullback
Leibler Distance

Motion STEP CHEER KICK SQUAT BOW RUN
HMM HMM HMM HMM HMM HMM

STEP 2.9×102 4.0×103 2.5×103 2.8×103 3.8×103 3.7×103

CHEER 6.5×103 1.7×10 2.3×103 1.7×103 3.1×103 4.1×103

KICK 1.1×104 1.2×104 1.4×103 8.7×103 1.2×104 7.5×103

BOW 1.2×104 6.4×103 7.0×103 4.0×103 2.9×102 1.1×104

RUN 6.8×103 6.4×103 3.1×103 6.8×103 1.1×104 8.5×10

Table 3: Mean errors of basebody position/orientation. Maximum errors are
shown in parentheses. (unit: meter and radian)

Motion x y height roll pitch yaw

CHEER 0.002 0.004 0.002 0.014 0.003 0.014
(0.011) (0.017) (0.008) (0.098) (0.020) (0.085)

KICK 0.010 0.018 0.013 0.043 0.051 0.092
(0.060) (0.147) (0.067) (0.286) (0.302) (0.627)

RUN 0.010 0.015 0.008 0.0194 0.019 0.001
(0.054) (0.069) (0.033) (0.080) (0.080) (0.029)

STEP 0.003 0.007 0.006 0.029 0.012 0.021
(0.012) (0.036) (0.029) (0.175) (0.053) (0.081)

BOW 0.003 0.012 0.008 0.019 0.005 0.014
(0.019) (0.062) (0.046) (0.139) (0.028) (0.065)

Finally a statistical analysis for estimation of human’s
baselink position and orientation is given. From five runs for
each motion type with different initialization parameters, the
mean and maximum errors of the estimated position and ori-
entation are shown in table 3. From the table, it can be shown
that the position and orientation are well estimated for various
motions including a dynamic occluded motion. The highly dy-
namic KICK motion has the maximum position error of 0.067
[m] and maximum angular errors of 0.627 [rad]. The BOW mo-
tion with 51% occlusion has 0.062 [m] and 0.139 [rad] errors
in the worst case.

7.3. Evaluation of Motion Recognition

Recognition rate is surveyed from multiple runs with differ-
ent initial conditions. Sixty runs are carried out as follows.

• for 6 motion types

• 5 exemplars for each motion type (the range of occlusion
levels is between 0 and 50%.)

• two cases of the number of particles in the particle filter:
100 particles and 1000 particles

The overall rate for successful motion recognition is 100 [%].
Since currently a small number (6) of motion types are consid-
ered, it is rather easy to classify the motion type out of the six.
However, as the number of motion types increases, successful
recognition ratio may decrease. In our previous work [42], we
evaluated recognition robustness with respect to partial obser-
vations. The average recognition success was 99.85% under
50% occlusion for 8 motion types. More detailed analysis for
recognition with respect to different occlusion levels, please re-
fer to [42].

7.4. Evaluation of Computational Cost

From 30 runs (6 motion types and 5 exemplars for each mo-
tion type) with different initial conditions, the overall rate for
computation time is calculated in the case of 1000 particles and
in the case of 100 particles. Since the recognition and recov-
ery is tightly coupled, the integrated computation time for both
procedures is measured. With 1000 particles, the total compu-
tation time takes 2769 [s] on an average. With 100 particles, the
averaged total computation time for motion recognition and re-
covery for a 9 [sec] motion is 538 [s] without the computational
optimization of code and parallel processing. The specification
of the computer used for the experiments is Intel(R) Core(TM)2
CPU 6700 @2.66GHz, 3.00 GB RAM. Real-time computation
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Figure 7: Unlabeled 2D markers in image coordinates. (1) CHEER without occlusion: at frame 80, 90, 100, · · · , 170. (2) KICK with small occlusion on a swinging
right leg from time to time: at frame 80, 90, 100, · · · , 170. (3) RUN with occlusion of two legs: at frame 80, 90, 100,· · · , 170. (4) STEP with occlusion of the left
half: at frame 70, 80, 90, · · · , 160. (5) BOW with occlusion of the left half: at frame 70, 80, 90, · · · , 160.

for the application to the human robot interaction is beyond the
scope of this study.

For reduction of computational cost, parallel computation us-
ing a PC cluster can be considered. The particle filter is suitable
for parallel computation since the computation for each particle
is done independently. The GPGPU computation as reported in
our previous work [82] reduced the computational time by an
order of ten. Further reduction and realtime computation will be
within the scope as we see the recent advance of GPU boards.

7.5. Discussions

In the current implementation, we assume that a proto-
symbol corresponding to the observed data exists. This does
not mean the exactly same motion pattern is observed during
online recognition as training data, because the same subject
may perform the same gesture in a slightly different manner.
Handling a completely unknown motion outside of the database
(learned proto-symbols ) is a difficult problem. A new mo-
tion types can be handled by linear interpolation between the
known proto-symbols in the symbol space [73]. Another ap-
proach may be the unsupervised incremental learning scheme
[83] where a completely unknown observation can be learned
incrementally in real-time. In the latter case, an important issue
is how to classify unknown movements. One way is to use a
ratio of maximum likelihood and the second highest likelihood,
called recognition ratio. Using this recognition ratio, the algo-
rithm can judge ”whether to learn a new proto-symbol” and act

as a trigger for online incremental proto-symbol acquisition, so
that proto-symbol acquisition can be performed automatically.
This approach for handling unknown motions by incremental
learning using the recognition ratio has been proposed in our
previous work [42].

Note that markers do not need to be placed at exact locations
for motion recognition in our proposed method. Same markers
were used for motion training only for comparison purpose with
the inverse kinematics solution. There is no need of to fix the
markers in specific locations in principle. As shown in Sec.
5.3.3, feature points at any locations can be compared with the
corresponding ones of the proto-symbol.

Motion recognition and recovery have been tested with dif-
ferent motions and occlusion levels. As we expected, the results
(Fig. 8 and Table 3) highly dynamic motions and large portion
of body occlusion make the recovery harder. In our previous
work [42], we analyzed the effect of different occlusion levels
where used motion types (e.g. walk, kick, raise arms, punch,
bow, squat, etc) were similar to those in this work. The statisti-
cal analysis (using 672 observations) showed the 99.85% recog-
nition success rate on average, when half of body was occluded.
When more than 75% information is missing, the recognition
becomes unstable and recovery error increases rapidly. For the
detailed experimental results and analysis, we referred the read-
ers to [42].
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Figure 8: Motion recovery in 3D space. The recovered motion (blue, dark color) from 2D occluded and unlabeled marker data is compared with the inverse
kinematics results (magenta, light color) from 3D labeled markers data. (1) CHEER: at frame 80, 90, 100, · · · , 170. (2) KICK: at frame 80, 90, 100,· · · , 170. (3)
RUN: at frame 80, 90, 100,· · · , 170. (4) STEP: at frame 70, 80, 90, · · · , 160. (5) BOW: at frame 70, 80, 90, · · · , 160.

8. Conclusion

An approach for 3D human motion capturing and recognition
from 2D partial observations of optical flow based on statisti-
cal inference using a database of 3D motion is proposed. The
motion database is composed of proto-symbols. Each proto-
symbol is defined through the HMM parameters. The proposed
inference mechanism solves both 3D motion recovery and mo-
tion recognition problems simultaneously. Instead of extracting
rich information by expensive computation of image process-
ing, this paper focuses on an inference mechanism from low
level image features (e.g., optical flow), inspired by human’s
high perception ability shown in the moving light display exper-
iments. Optical flows of unlabeled features are used for charac-
terizing the motion. The human basebody position/orientation
with respect to camera coordinates is estimated by the particle
filter. A 3D whole body motion is recovered by using the mo-
tion database. The proposed method is validated on a human
motion dataset with a 56DOF human articulated model. Ex-
perimental results show successful motion recognition and 3D
recovery from occluded 2D optical flows of unlabeled features.
Motion recognition is carried out 100 [%] successfully among
six motion types. A demonstrator’s basebody position and ori-
entation is estimated with an acceptable range of errors. The
maximum position and angular error is 0.067[m] and 0.627[rad]
in the case of the highly dynamic KICK motion. The recovered

50 DOF joint angles are reasonably well matched to the true
values.

The main contributions are summarized as follows.

1. Coordinate transformations of the HMM parameters,
which relate exteroception (monocular observation) to
proprioception (motor control), are proposed. Based on
these transformations the compact motion database in joint
space can be used for comparison with 2D images from
any view point without the need of depth information.

2. 3D whole body motion can be recovered from an occluded
monocular image sequence, which includes not only self
occlusion but also occlusion by obstacles.

3. In contrast to the conventional particle filter, the extended
particle filter can estimate explicitly a time series of the
human basebody position/orientation with respect to cam-
era coordinates. This enables view invariant method for
motion recognition and recovery.

While the current paper focuses on the inference mecha-
nism for 3D human motion capturing and recognition from
2D partial observations of optical flow, in the future work the
proposed method will be extended to realize a complete sys-
tem by addressing the following issues: (1) extraction of fea-
ture points [84] and optical flows [85][24][25] from texture
image sequences of onboard moving cameras on a humanoid
robot, and (2) real-time computation with parallel computation.
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Figure 9: Real Position/Orientation and Estimated Position/Orientation. The
horizontal axis is time (frame) and the vertical axis is base-link position and
orientation (unit: meter and radian). Light colored bold curves indicate real po-
sitions and orientations. Dark colored thin curves indicate estimated positions
and orientations. For each motion, the two axes with the largest changes are
displayed. (1) CHEER: roll and yaw, (2) KICK: pitch and yaw, (3) RUN: x and
yaw, (4) STEP: pitch and yaw, (5) BOW: y and roll.

Further, application for human-humanoid interaction using on-
board cameras will be handled, for example motion retargeting
to a humanoid robot by adopting the method in [86]. Although
there is the kinematic difference between a real human and a hu-
manoid robot (usually 20∼40 DOF), some recent methods [86]
[87] showed reasonable retargeting performance from humans
to humanoid robots.
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