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 Introduction 

 Macrophage migration inhibitory factor (MIF) was 
first described in 1966 as a molecule that inhibits the mi-
gration of macrophages  [1, 2] , thus giving rise to its name. 
Much research has been conducted on MIF since its dis-
covery and it has been revealed that it primarily acts as a 
proinflammatory protein  [3] . Furthermore, it has been 
shown that MIF not only acts on macrophages, but it is 
also produced by these cells in response to endotoxins, 
exotoxins and cytokines such as TNF �  and interferon- �  
 [4] . In addition, it has been demonstrated that MIF-neu-
tralizing antibodies protect mice against septic shock  [5] . 
Subsequently, investigators demonstrated that MIF defi-
ciency confers protection against lipopolysaccharide 
(LPS)-induced shock  [6] . Antibodies directed against 
MIF are also capable of preventing T-cell activation. Re-
cently, al-Abed et al.  [5]  provided evidence indicating in-
hibition of the immunological activity of MIF in a mouse 
model of septic shock. In this case, survival was signifi-
cantly increased in mice treated with the tautomerase in-
hibitor ISO-1.

  In addition to the previously described effects of MIF 
on innate immunity, its involvement in adaptive immune 
responses has also been proven. In 1996, investigators 
demonstrated that antibodies directed against MIF inhib-
it a delayed-type IV immune response. In vivo, T-cell ac-
tivation and antibody production is inhibited by MIF  [7] .
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 Abstract 

 MIF has been described as a protein that plays an essential 
role in both innate and acquired immunity. Previous studies 
have demonstrated that MIF activates lymphocytes, granu-
locytes and monocytes/macrophages. Furthermore, MIF 
can counteract the physiological function of steroids, thus 
playing a role in immune system regulation. Further evi-
dence for a role of MIF in immunity was obtained in mouse 
models of autoimmune disorders, where the inhibition of 
MIF resulted in a more benign disease progression. This ob-
servation made MIF an attractive therapeutic target for the 
treatment of these disorders. Moreover, MIF expression was 
found to be upregulated in a variety of different tumor cells, 
a finding that further attracted interest. This review provides 
an overview of the involvement of MIF in both autoimmune 
disorders and tumorigenesis and summarizes the molecular 
action of MIF in this context.  Copyright © 2008 S. Karger AG, Basel 
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  Molecular Basis of the Action Mechanism and 

Distribution of MIF within Various Cell Types 

 Structural analysis revealed that MIF is a molecule 
comprised of 115 amino acids with a molecular weight of 
12.5 kDa  [8] . The secondary structure of MIF consists of 
two antiparallel  � -helices and six  � -pleated sheets that 
are highly similar to MHC molecules  [9] . In the active 
form of MIF, three monomers align in order to form a 
homotrimeric molecule that has a strong homology with 
the enzyme  D -dopachrome-tautomerase  [10] . Therefore, 
it has been hypothesized that MIF also displays some en-
zymatic activity. Knowledge on the physiologic substrate 
of MIF and the importance of this enzymatic activity is 
scarce  [11] . However, when an inhibitor of the enzyme  D -
dopachrome-tautomerase (ISO-1) was employed, both 
human and murine wild-type and mutant MIF activity 
decreased in a system involving both human and murine 
mononuclear cells  [12] .

  Even though much is known about the effect of MIF 
on various immune cells, it has taken quite some time for 
scientists to understand the signal transduction pathway 
that operates in many immune cells in response to MIF 
activation, especially given that this activation requires 
an extracellular receptor.

  Initially, it was thought that there may be an interac-
tion between sarcolectin (a constituent of albumin) and 
MIF  [13, 14] . Though there were no immediate experi-
mental data to support the truth of this biological inter-
action, Kleemann et al.  [15]  provided proof that MIF is 
taken up by cells and binds to Jab-1, inhibiting the activa-
tion of the transcription factor AP-1.

  Experimental work from Leng et al.  [16]  extended the 
knowledge regarding MIF signalling by characterizing 
CD74 as a potential MIF receptor. CD74 is a nonpolymor-
phic type II integral membrane protein, which was ini-
tially considered to function predominantly as an MHC 
class II chaperone  [17] . Recently, CD74 was also found to 
play an additional role as an accessory signaling mole-
cule. In macrophages, CD74 demonstrates high-affinity 
binding to MIF. MIF binds to the extracellular domain of 
CD74; this complex is required for MIF-mediated MAPK 
activation and cell proliferation  [16] . Furthermore, CD 
44, a transmembrane coreceptor, is required for MIF-in-
duced ERK1 and ERK2 kinase phosphorylation. MIF 
binding was associated with serine phosphorylation of 
both CD74 and CD44 receptors  [18] . The activation of 
both receptors is required for MIF protection from apop-
tosis.

  In addition to this interaction with CD74 and CD44 
receptors, MIF was ascribed a role as non-cognate ligand 
for CXCR4 and CXCR2  [19] . These receptors were identi-
fied as functional receptors. MIF competed with known 
cognate ligands for these receptors and elicited monocyte 
arrest in inflamed atherosclerotic arteries, involving an 
interaction between CDCR2 and CD74 to form a receptor 
complex. Consequently, rapid integrin activation and 
calcium influx was observed. MIF deficiency impaired 
monocyte adhesion to cell walls in a mouse model of ath-
erosclerosis. The authors concluded that MIF displays 
chemokine-like functions and acts as a regulator of in-
flammatory cell recruitment.

  After receptor binding, the intracellular signalling 
cascade is activated via the ERK-MAP kinase pathway, 
resulting in increased cell proliferation via cyclin D1 
transcription and subsequent phosphorylation of the Rb 
gene  [16] . For fast and transient activation of this cascade, 
there is another pathway that involves Jab-1/CSN5, a pro-
tein that serves as an intracellular binding partner of 
MIF. In addition, a Src tyrosine kinase plays an important 
role and further enhances cell cycle progression  [20, 21] .

  Furthermore, it has been demonstrated that the action 
of MIF increases calcium ion stores. This action by MIF 
results in a further influx of calcium ions from the extra-
cellular space and most likely interacts via a second mes-
senger. However, thus far a second messenger has only 
been shown in cells of the testes  [22] .

  Abundance of MIF in Different Tissues 

 When MIF was first described  [1] , investigators hy-
pothesized that it is secreted by T lymphocytes and acts 
upon macrophages. However, following this discovery, 
scientists demonstrated that macrophages produce and 
secrete MIF  [4] . Some years later, expression of MIF was 
described in granulocytes and B lymphocytes  [4, 23] , 
thus indicating that the majority of inflammatory cells 
express MIF and that MIF plays a pivotal role in host de-
fense.

  MIF located in the brain contains mRNA that is pri-
marily found within the cell body whereas the protein 
itself is located in the axons, indicating that there is like-
ly a transport mechanism in place. Glial cells contain a 
rather homogenous distribution of MIF mRNA and a sig-
nificantly lower concentration of MIF compared to neu-
rons  [24] . Moreover, most epithelial cells seem to express 
and store MIF. Given that the epithelial cell lining pro-
vides a first mechanical barrier against pathogens, the 
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presence of MIF in these cells may indicate that MIF plays 
a role in the early innate host defense  [25] .

  Interestingly, the MIF protein has also been detected 
in the pituitary gland, specifically within ACTH-produc-
ing cells  [26] . Of note, MIF secretion occurs in a circa-
dian rhythmic pattern, with a late morning peak that co-
incides with peak cortisol levels  [27] .

  Given the above descriptions of MIF in these different 
tissues, it seems highly likely that MIF not only plays an 
important role in host defense within the immune system 
but also has other physiological functions that have not 
yet been well characterized.

  MIF and Its Role in Inflammation 

 MIF was first described as a soluble factor in the su-
pernatant of antigen-stimulated cells as a result of studies 
that sought to gain insight into type IV allergic reactions 
(delayed hypersensitivity)  [1, 2] . As a consequence, MIF 
was found to be produced by macrophages located in the 
cellular infiltrate following tuberculin injection. Inter-
estingly, when applying antibodies directed against MIF, 
there was a reduced allergic reaction and the cellular in-
filtrate decreased considerably compared to control. Be-
cause of these observations, investigators concluded that 
MIF has a proinflammatory effect on cells.

  The notion of MIF as a proinflammatory protein was 
further evaluated using a mouse model of septic shock 
 [28] . After applying LPS, a potent activator of the innate 
immune system, MIF secretion and production mea-
sured by mRNA and protein synthesis increased com-
pared to controls. However, when adding recombinant 
MIF, these effects were counterregulated. Use of anti-
sense MIF led to decreased MIF concentrations in treated 
macrophages while higher amounts of mitogen-activated 
protein kinase phosphatase and lower concentrations of 
cytokines such as TNF �  were observed. This study thus 
demonstrated the proinflammatory potential of MIF and 
stressed the importance of an autocrine action of MIF to 
override steroid-induced MKP-1 and to inhibit cytokine 
production  [29] .

  Increased MIF secretion in response to inflammatory 
stimuli could be detected in many other tissues, thus un-
dermining the function of MIF within the immune sys-
tem. Following these observations, knockout mice were 
generated by different groups in order to examine the 
possible effect of LPS on these animals with regard to the 
severity of sepsis. However, the data obtained were sub-
ject to controversy as different groups reported different 

results. Bozza et al.  [6]  reported a reduced mortality rate 
in these knockout mice in response to LPS when com-
pared to the control group. In contrast, Honma et al.  [30] 
 were not able to detect a significant difference in surviv-
al between the knockout mice and the controls.

  Bacher et al.  [7]  noted that MIF also influences the 
proliferation and activation of T cells. Interestingly, it was 
later demonstrated that MIF not only has a direct effect 
on macrophages but is also secreted by them. Moreover, 
MIF is released and its production is increased in re-
sponse to TNF and interferon  [4] . This leads to increased 
production of NO and TNF �  in an autocrine fashion, 
thus enhancing the removal of bacteria from infected tis-
sue  [31] . MIF was also shown to reduce the rate of apop-
tosis in neutrophil granulocytes  [29] .

  As mentioned previously, MIF secretion results in an 
increased production and release of proinflammatory 
cytokines such as TNF � , interleukins and IFN � . In a se-
ries of experiments by Roger et al.  [29] , MIF was found to 
influence the Toll-like receptor 4 (TLR4) located on mac-
rophages and monocytes. The ligand for this receptor is 
LPS and thus bacterial toxin. MIF knockout mice were 
reported to express only low levels of this receptor. This 
may contribute to the less pronounced effects of LPS and 
thus lethal outcomes in this group.

  Finally, MIF has been shown to be influenced by ste-
roid secretion. Steroids are known to exert anti-inflam-
matory effects both in vivo and in vitro. Paradoxically, 
Calandra et al.  [32]  demonstrated that MIF expression 
can be induced by glucocorticoid release. Several mecha-
nisms have been suggested to explain this mode of action 
 [30] . Upregulation of intracellular phospholipase A 2  is 
one potential mechanism of action. Furthermore, MIF 
counteracts steroid-induced induction of MAP kinase 
phosphatase  [29] .

  Physiological concentrations of glucocorticoids in-
crease MIF secretion from murine macrophages  [32]  and 
MIF secretion is closely regulated. At high anti-inflam-
matory concentrations of steroids, MIF secretion is in-
hibited. This circumstance coupled with the inability of 
MIF to override steroid action indicates that there is some 
kind of escape mechanism that prevents an overwhelm-
ing inflammatory reaction from taking place  [33] . In ad-
dition, MIF may regulate the degree of immune and in-
flammatory responses. This in turn would render MIF a 
powerful target for therapeutic modification since silenc-
ing the systemic effects of MIF could result in an unop-
posed anti-inflammatory response. This is especially im-
portant in the case of autoimmune disorders.
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  Several groups have provided evidence of MIF upreg-
ulation in atopic dermatitis, asthma, psoriasis, colitis ul-
cerosa and rheumatic arthritis  [32–37] . Becker et al.  [34]  
demonstrated a correlation between MIF and disease ac-
tivity in vasculitis. The potential of MIF inhibition to re-
duce immune response was shown in knockout mice af-
flicted with inflammatory bowel disease and sepsis  [6, 
35] .

  MIF and Tumorigenesis 

 Repp et al.  [36]  showed that MIF inhibits lysis of mel-
anoma cells by natural killer cells. This finding provides 
evidence that MIF may influence immune reactions re-
lated to tumor growth. Abe et al.  [37]  observed an in-
crease in cytotoxic T lymphocytes following MIF inhibi-
tion as a result of specific antibodies. Moreover, the num-
ber of apoptotic tumor cells increased following MIF 
inhibition. In case that these cytotoxic cells provide an 
efficient means of tumor defense, modulation by MIF 
may contribute to the proneoplastic activity of the cell. 
The work of several groups points to a correlation be-
tween MIF expression and cancer prognosis. Specifically, 
this correlation has been demonstrated for hepatocellular 
carcinomas, colon cancers and prostate cancers  [38–40] .

  Obviously, MIF also exhibits proneoplastic activity 
 [41] . In many tumor cells and pretumor states, increased 
MIF mRNA could be detected in prostate  [42] , colon  [40]  
and hepatocellular cancers  [43] , adenocarcinomas of the 
lung  [44] , glioblastomas  [45, 46]  and melanomas  [45] , for 
example. Recent research has focused on the understand-
ing of increased MIF expression in these tumors and cur-
rently it is commonly believed that MIF plays several dif-
ferent roles that are discussed in detail.

  Interestingly, MIF seems to affect both routes of the 
adaptive immune system. These two routes, namely the 
Th1 and the Th2 pathways, show varying cytokine pro-
files and induce different reactions. Th1 cells mainly se-
crete IL-2, IL-12, IFN �  and TNF � , which stimulate neu-
trophils and macrophages. In addition, IFN �  is a potent 
macrophage activator via the induction of MCP-1. The 
Th2 pathway counteracts the action of Th1. Cytokines 
include IL-4, IL-5, IL-10 and IL-13, with IL-10 being a 
potent endogenous immunosuppressant  [46] .

  MIF affects these pathways in many different ways. 
Importantly, MIF sustains macrophage viability since it 
was shown that macrophages lacking MIF are prone to 
apoptosis. The action of MIF therefore leads to a more 
sustained inflammatory reaction  [47] . It has been hy-

pothesized that tumor-associated macrophages are able 
to promote the malignant potential of tumor cells  [48] . 
The ability of MIF to preserve macrophage viability may 
therefore lead to tumor progression and the development 
of metastases. MIF also has a direct effect on T lympho-
cytes. Bacher et al.  [7]  showed that mitogen- and antigen-
induced activation of Th2 lymphocytes greatly depend 
upon autocrine MIF secretion. As mentioned before, Th2 
lymphocytes suppress the immune system, thereby fur-
ther enabling tumor growth and development. Evidence 
for a role of MIF in the suppression of Th1 lymphocytes 
is provided by Abe et al.  [37] . They observed that MIF in-
hibited the action of cytotoxic T lymphocytes. Since they 
are essential in antitumor activity via cytolysis of tumor 
cells, increased MIF levels in tumor cells may lead to re-
sistance to the immune system. Therefore, MIF seems to 
be an important modulator in the development of tu-
mors.

  In 1997, Onodera et al.  [49]  demonstrated that mono-
nuclear and multinuclear cells infiltrate inflamed pseu-
dosynovial tissue. They could also show that these cells 
stained positive for MIF. In vitro experiments revealed 
active secretion of MIF by macrophages in response to 
phagocytosis of particles. A role for MIF in autocrine ac-
tivation was postulated. These results can be adapted to 
tumor-infiltrating macrophages. This might be a possible 
first step in tumorigenesis. Using autocrine and para-
crine mechanisms, MIF might not also prolong survival 
of macrophages but also of mutated cells.

  One reason for the proneoplastic effect of MIF is its 
ability to proliferate. This was demonstrated for in vitro 
recombinant MIF in fibroblasts, where growth-factor-in-
duced stimulation of these cells resulted in increased MIF 
concentrations, activation of the ERK-MAP kinase path-
way and subsequent increase in cell proliferation  [50] . 
This was also shown in a colon cancer cell line where the 
addition of TGF �  resulted in increased MIF expression 
 [51] .

  In a recent study by Meyer-Siegler et al.  [52] , MIF in-
fluenced cell viability and invasiveness. In prostate can-
cer cells, androgen-independent prostate cancer cells re-
quired MIF-activated signal transduction pathways for 
both growth and invasion, which was in contrast to an-
drogen-dependent cells. They demonstrated that the MIF 
cell surface receptor CD74 was only detected in andro-
gen-independent tumor cells. Treatments directed against 
either CD74 or MIF resulted in decreased cell prolifera-
tion, MIF secretion and invasion. Further evidence for
a role of MIF was obtained by Rendon et al.  [53]  using 
siRNA technique in human lung adenocarcinoma and 
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subsequent MIF knockdown. This resulted in a  1 90% re-
duction in both cell invasiveness and cell migration, in 
parallel with a reduction of Rac1, a RhoGTPase member. 
Interestingly, adverse effects were observed when MIF 
overexpression was achieved. These data underline the 
importance of MIF in tumor progression since invasive-
ness is an essential feature of metastasis.

  Another important fact to note is that MIF is capable 
of inducing angiogenesis. Investigators demonstrated 
that MIF enhances the differentiation of endothelial cells 
to blood vessels  [54, 55] . Using MIF antibodies or anti-
sense mRNA, it has been possible to detect significant 
inhibition of angiogenesis in tumor cells. Furthermore, 
there is evidence that MIF might modulate VEGF func-
tioning. In glioblastoma cells, Bacher et al.  [56]  demon-
strated that MIF expression increased in cases of hypox-
ia and hypoglycemia, both of which are considered clas-
sical activators of angiogenesis. Further building on this 
work, Hira et al.  [39]  provided evidence of an increase in 
MIF expression and angiogenesis following hypoxia in 
hepatocellular carcinomas. One could therefore deduce a 
direct effect of MIF on angiogenesis. However, further 
research is required. In 2006, Baugh et al.  [57]  further re-
vealed a possible role of MIF under hypoxic conditions. 
They describe HIF-1 �  as a potent inducer of MIF expres-
sion in hypoxia. Interestingly, these data were comple-
mented by the works of Welford et al.  [58] . They described 
the importance of HIF-1 �  in preventing cell senescence 
in a fibroblast model. Using HIF-1 �  knockout mice, they 
were able to show that under aerobic conditions lack of 
HIF-1� resulted in accelerated cellular aging and de-
creased cell proliferation under hypoxic conditions. In 
addition, they portrayed MIF as a factor influencing HIF-
1 �  in delaying senescence. Evidence of the importance of 
MIF in the interaction between HIF-1� and tumorigen-
esis is provided by Winner et al.  [59] . MIF is necessary for 
binding and stabilization of HIF-1 �  by CSN5. After sta-
bilization, HIF-1 �  leads to transcription of oncogenes 
and growth factors and also of MIF. The authors propose 
that the MIF-HIF-1 �  interaction leads to amplification of 
hypoxia-dependent transcription.

  Another plausible mechanism for the proneoplastic 
effect of MIF could result from inhibition of p53 apopto-
sis. Initially, the interaction of MIF with p53 was shown 
by Hudson et al.  [60]  in 1999. They demonstrated that 
MIF treatment was able to overcome p53 activity and in-
hibited its transcriptional activity. Other groups provid-
ed further evidence for a role of MIF in influencing p53. 
Fingerle-Rowson et al.  [61]  used a MIF-knockout mouse 
model and examined mouse fibroblasts where they found 

p53-dependent growth alterations and an increase in 
transcriptional activity of p53. In addition, these fibro-
blasts were resistant to ras-mediated transformation. In-
terestingly, when p53 deletion occurred, the observed 
phenotype was reversed in vivo. Similar evidence was ob-
tained by Petrenko et al.  [62]  who used MIF null fibro-
blasts and described a growth retardation which corre-
lated with a decreased susceptibility to Ras-mediated 
transformation. E2F induction was reported as an impor-
tant feature, resulting in either G1 arrest or induction of 
apoptosis in p53-positive cells.

  Recently, further evidence of the effect of MIF on cell 
cycle regulation was gained by the groups of Nemajerova 
et al.  [63]  and Winner et al.  [64] .   This involved SCF, a 
multi-subunit complex composed of four polypeptides. It 
is part of the large group of E3 ubiquitin ligases. In brief, 
these enzymes covalently attach ubiquitin to substrate 
proteins, which in turn are recognized and degraded by 
the proteasome  [65] . It was recently shown  [63]  that MIF 
plays a role in regulating the activity of SCF, a known cell 
cycle regulator. Loss of MIF seems to disconnect certain 
DNA damage checkpoints and SCF-dependent degrada-
tion of specific cell cycle regulators, leading to a geneti-
cally instable situation.

  Another pathway involved is ERK activation and in-
duction of COX-2, both being expressed in colon carci-
noma  [66] , and there is evidence that blocking COX by 
nonsteroidal antiphlogistics is capable of reducing the 
likelihood of tumor development by inhibition of tau-
tomerase activity of MIF  [67] .

  In summary, MIF was initially described as a factor 
inhibiting macrophage migration  [1] . Further studies 
demonstrated that MIF exerts a proinflammatory action. 
Thus far, the signalling pathways activated by MIF have 
not been entirely elucidated; however, an extracellular re-
ceptor for MIF was recently found, indicating MIF as a 
potential target for pharmaceutical action. In addition, 
there is a role for MIF in tumor proliferation and angio-
genesis, thus rendering it an interesting oncological tar-
get.

  The involvement of MIF in both tumorigenesis and 
autoimmune disorders makes it a potential target for 
pharmaceutical inhibition. Several small molecules in-
hibiting MIF action have been developed and are cur-
rently being tested in clinical trials  [68, 69] . 
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