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Abstract
The propagation of acoustic waves in the inner ear in

vivo could not be quantified completely yet. This is in

particular true in conjunction with the micromechanical

structures of the organ of Corti, though these data are

important for the explanation and discussion of clinical

measurements like otoacoustic emissions and auditory

brainstem responses. To access these problems a three-

dimensional mechanical model of the cochlea including

the fluid-structure couplings is developed and evaluated

numerically by finite elements. Although the complex

cochlear partition is covered by passive mechanical ele-

ments, the results fit early experiments (1928), which

studied the wave propagation in the cochlea with fresh

human cadavers [G. von Békésy: Experiments in Hear-

ing. New York, McGraw-Hill, 1960]. Additionally it is now

easy to calculate the mechanical input impedance of the

cochlea. These results agree with recent experiments

[S.N. Merchant et al.: Hear Res 1996;97:30–45].

Introduction

The human ear processes acoustic signals for commu-
nication, warning and pleasure. It consists mainly of the
outer ear canal, the middle and the inner ear and the cen-
tral auditory system. The inner ear is separated into the
vestibular system, which is necessary for orientation in
space, and the cochlea (Latin: cochlea, the snail), which is
able to detect pressure with a frequency bandwidth of 10
octaves (20 Hz–20 kHz) and a dynamic range of 120 dB
(F = 106) in its healthy state.

The human cochlea has a spiral form with 2.5 wind-
ings. Its largest dimension is only about 4 mm and its
straight average length is 34 mm. The cochlea consists of
three channels which are filled with lymph. Two of these
channels are separated by the cochlear partition which
consists of the basilar membrane, the organ of Corti, the
stereocilia and the tectorial membrane. The organ of Cor-
ti contains about 3,000 inner hair cells, which transform
mechanical displacements into electrical currents, about
12,000 outer hair cells and a large number of mainly sup-
porting cells. All these cells work together highly nonlin-
ear. However, their precise interaction is not completely
understood.

For understanding the complex processes in the co-
chlea, the development and evaluation of a structural
mechanical finite element model is presented. The peri-
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Fig. 1. Mictrotomographic image of the fluid-filled caves of the
human inner ear.

Fig. 2. Geometric model of the scala tympani and scala vestibuli of
the human cochlea.

lymph is considered as inviscous and compressible. The
fluid-structure couplings between the perilymph and the
stapes footplate, the round window membrane and the
elastic cochlear partition are covered in three dimensions
for the first time.

Morphology and Methods

Figure 1 is a microtomographic image of the fluid-filled caves of
the human inner ear. Further information on the imaging of microto-
mographic pictures are given in this issue [1].

To simulate the propagation of mechanical waves in the human
cochlea we developed a three-dimensional finite element model
which neglects micromechanical elements of the cochlear partition
for the moment, but takes the three-dimensional fluid-structure sys-
tem with its curved geometry into consideration [2]. The three-
dimensional mechanical model of the cochlea is shown in figure 2.
The areas which cover the kidney-shaped cross-sections of the scala
vestibuli and scala tympani are located to form the curved geometry
of the cochlea. The points on the boundary of these cross-sections are
connected by spline functions. Because the model is built by a low
number of volumes (240), inadmissibly high curvatures may result.
Therefore the maximum physically permissible warping factors,
which are given by the finite element package, must not be ex-
ceeded.

Cochlear Partition
The cochlear partition is idealized by two orthotropic elastic

shells with variable width (80–500 Ìm) and thickness (7.5–2.5 Ìm)
from the base (stapes) to the apex (helicotrema) of the cochlea [3].

The cochlear partition is divided into two identical shells because the
fluid can be coupled to the upper or lower area of the shell solely with
the used FE package. Their Young’s moduli are Ex = 100 MPa in the
transverse and Ey = 10 kPa in the longitudinal direction according to
the stiff fibers embedded into the softer tissue of the basilar mem-
brane. Of course, the areas of the shells which are on the opposite side
of the adjoining fluid are coupled among themselves. Figure 3 shows
one of these shells which represents the cochlear partition. The con-
tinuous decrease of thickness and the increasing width from base to
apex can be seen.

All Poisson’s ratios (tranverse expansions) of the shell are set to
zero for the moment. This may result in a reduced accuracy of the
shell dynamics when the displacement based finite elements are used
because the elements may lock [4]. The damping is included specifi-
cally as material damping of the shell and chosen as ß = 10–5. It is
worth noting that this is the only damping considered and therefore
the cause for complex displacements and the phase shifts, which are
found in the results.

Stapes Footplate of the Oval Window and the Round Window
Membrane
The Young’s modulus of the shell which represents the stapes

footplate is ESt = 12 GPa. The Young’s modulus of the annular liga-
ment is EAL = 700 kPa, which was determined experimentally for
elastin [5]. The round window membrane is idealized by an elastic
shell with the lower Young’s modulus ERW = 9.8 MPa and an average
thickness tRW = 100 Ìm. The lowest thickness was determined to
56 Ìm in the center of the round window membrane [6].

Perilymphatic Fluid
For simplification, only two (scala tympani, scala vestibuli) of the

three fluid-filled channels (scala tympani, scala vestibuli and scala
media) are taken into account. The fluid is considered as linear,
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Fig. 3. Curved orthotropic shell representing
the basilar membrane. The thickness at the
base is 7.5 Ìm and continuously decreasing
to 2.5 Ìm at the helicotrema, which are half
the values of the human basilar membrane.
The width is continuously increasing from
80 Ìm at the base of the cochlea to 500 Ìm
near the helicotrema.

Fig. 4. Cochlear model discretized with finite elements.

inviscous and compressible and therefore we are able to cover fast
acoustic waves in the fluid. The bulk modulus K of the perilymphatic
fluid is equal to that of water K = 2,250 MPa. With the fluid density
ÚFl = 103 [kg/m3] the speed of sound in the fluid is:

cFl = ! K
ÚFl

= 1,500 
m
s

(1)

Fluid-Structure Coupling
It is necessary to couple the areas of the stapes footplate, the area

of the round window and both areas of the cochlear partition (upper
and lower) to the lymph. Because the location of the oval and the
round window are not orthogonal to the global Cartesian coordinate
system, two additional local Cartesian coordinate systems must be
introduced. Because shell elements may be coupled to the fluid with
only one of their areas, the cochlear partition is represented by two
double-curved shells. In each case the outer shell areas are coupled to
the fluid. On the opposite sides the shells are coupled to each other
and their distance is adjustable.

Figure 4 shows the complete cochlear model discretized with
finite elements. The chosen discretization leads to approximately
32,000 finite elements and therefore about 115,000 variables (active
degrees of freedom) must be evaluated.

Boundary Conditions
To solve the problem numerically, appropriate boundary condi-

tions must be introduced. The perilymph is enclosed by rigid bone.
Therefore, the normal components of the fluid displacements must
vanish at the bony surrounding areas. Because the fluid is assumed to
be inviscous the tangential components do not vanish. If viscosity is
covered it is essential to use special boundary conditions, which cov-
er the vanishing of all displacement components at rigid walls.

The shells which represent the cochlear partition must be sup-
ported correctly. The inner boundary at the lamina spiralis ossea is
clamped and therefore all displacements and rotations vanish there.
On the opposite side at the ligamentum spirale, the shells are simply
supported. Therefore, rotations relating to the longitudinal (cochlea)
direction may be different from zero. Rotations relating to the two
axes orthogonal to the longitudinal axis and all displacements vanish
at the outer border of the shells at the ligamentum spirale.

The boundaries of the shell, which represents the round window,
are clamped. Therefore, all displacements and rotations vanish at the
rim of the round window.

Acoustic Input Impedance of the Cochlea
The acoustic input impedance ZC of the cochlea is defined as the

ratio between the pressure PS at the stapes footplate and the velocity
vS of the displaced volume. Under the assumption of harmonic exci-
tation, this ratio becomes:

ZC = 
PS

jˆXSAS

(2)

XS is the displacement of the stapes in z-direction, AS is the stapes
area, ̂  is the circular frequency and j is the imaginary unit indicating
a complex value.
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Results

Wave Propagation in the Cochlea
The external load is applied as a pressure on the stapes

footplate area. Its amplitude is PS = 1 Pa, which is equal to
the sound pressure level Le = 94 dB(SPL) in all cases.

Our results show calculations using external harmonic
loads of three different frequencies: f1 = 100 Hz, f2 =
2,000 Hz and f3 = 10,000 Hz. The frequency range is not
limited, and therefore a static analysis and a frequency,
e.g. f = 20,000 Hz, could additionally be applied.

For the external pressure with the lowest frequency f1 =
100 Hz, the maximum absolute value of the displacement
(0.14 nm) of the cochlear partition is at a distance of
30 mm from the stapes footplate near the helicotrema
(fig. 5a). The horizontal line marks the constant phase
shift. The whole cochlear partition is moving in phase.
The phase is independent of the locus along the cochlear
partition. Figure 5b shows the pressure distribution at the
cochlear partition for the same frequency. The absolute
value of the pressure decreases continuously from 0.08 Pa
to a value near 0 Pa with a constant phase shift.

A harmonic pressure of frequency f2 = 2,000 Hz at the
stapes footplate leads to a maximum displacement
(0.2 nm) of the cochlear partition at approximately half
the cochlea length (fig. 6a). In this case the maximum
phase shift is at least –2,160° or –12 . The pressure is
mainly decreasing from the stapes (0.016 Pa) to the heli-
cotrema to a pressure near 0 Pa (fig. 6b, upper line). It is
interesting to note that the phase of the pressure (fig. 6b,
lower line) has both negative and positive slopes and does
not exceed –1.5 . At f3 = 10 kHz the maximum absolute
value of the displacement (0.23 nm) is at a distance of
only 5 mm from the stapes footplate and the maximum
phase shift is about –360° or –2  (fig. 7a). The pressure
decreases from 0.33 Pa at the stapes to a value near 0 Pa at
the helicotrema. There are only low variations of the pres-
sure phase from the constant shift (–0.6 ) in the basal
part of the cochlea (fig. 7b, lower line).

Acoustic Input Impedance of the Cochlea
For an external pressure of frequency f = 1,000 Hz and

amplitude 1 Pa at the stapes footplate, the displacement
of the stapes footplate is evaluated to 0.2 nm, which is also
determined from temporal bones of human cadavers [7].
It is interesting to note that this is only twice the diameter
of an atom. If the area of the stapes footplate is chosen as
As = 3.6 mm2, the acoustic input impedance of the co-
chlea model is:

ZC = –j 138.89 W109 Pa s/m3 = –j 138.89 Gø

Fig. 5. a Absolute displacement and phase of displacement along the
cochlear partition with external pressure amplitude 1 Pa and fre-
quency f1 = 100 Hz. b Absolute pressure and phase of pressure at the
cochlear partition with external pressure amplitude 1 Pa and fre-
quency f1 = 100 Hz.

which is the stiffness component. This value is a factor
1.38 above the experimental value [7] and therefore in
close proximity. The derived unit ohm (ø) indicates the
acoustic impedance in the meter-kilogram-second (mks)
system.

a

b
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Fig. 6. a Absolute displacement and phase of displacement along the
cochlear partition with external pressure amplitude 1 Pa and fre-
quency f2 = 2,000 Hz. b Absolute pressure and phase of pressure at
the cochlear partition with external pressure amplitude 1 Pa and fre-
quency f2 = 2,000 Hz.

Fig. 7. a Absolute displacement and phase of displacement along the
cochlear partition with external pressure amplitude 1 Pa and fre-
quency f3 = 10,000 Hz. b Absolute pressure and phase of pressure at
the cochlear partition with external pressure amplitude 1 Pa and fre-
quency f3 = 10,000 Hz.

Discussion

The calculated displacements and pressures are those
we expect in comparison with former experiments [7, 8].
The question for the existence of traveling or standing
waves can now easily be answered. The damping, which is

material damping here solely, is the cause for phase shifts
of the displacement of the cochlear partition and the pres-
sure in the lymph. If the damping is neglected, real dis-
placements and pressures result and in this case we find
standing waves in the cochlea.

a

b

a

b
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It is interesting to note that the maximum displace-
ment of the basilar membrane is of the same order of mag-
nitude (0.2 nm) for the three frequencies, which span a
frequency bandwidth of more than 6 octaves. This is in
contrast to the values for the pressure. We assume this is a
consequence of the dimensions of the basilar membrane,
which increases in width and decreases in thickness from
the base to the apex of the cochlea respectively.

The acoustic input impedance of the cochlea can be
determined numerically now. This is relevant for the real-
istic termination of middle ear models. A good agreement
with recent experimental values is found. The evaluated
displacement of the stapes footplate is only 0.2 nm with
an external applied pressure Le = 94 dB(SPL) at the stapes
footplate (f = 1,000 Hz). If an increase of the pressure
caused by the middle ear by 20 dB is assumed, this dis-
placement (0.2 nm) corresponds to 74 dB(SPL) in the ear
canal. The linear extrapolation of the stapes displacement
leads to an extremely small value for the hearing threshold
at LHS = 0 dB(SPL), namely 0.04 pm (picometer) or 40 fm
(femtometer, Fermi).

In a future investigation, the acoustic input impedance
of the cochlea will be evaluated in a wider frequency range
(20–20,000 Hz).

Because the viscosity of the fluid cannot be included
easily in a curved geometry by the finite element package
used, we are unable to calculate shearing forces in the
fluid. As a consequence, an incompatibility in the formu-
lation of the fluid-structure system results because the

equations describing the mechanical behavior of the shell
contain rotations. These cannot be coupled to a fluid
which is described by displacements and pressure solely.

Conclusions

(1) The 3D-finite element model allows the evaluation
of the passive mechanical behavior of the human cochlea
with arbitrary input pressure at the stapes footplate
including all kinds of slow and fast waves in the lymph
and the cochlear partition.

(2) The curved geometry of the cochlea and the fluid-
structure coupling is covered in three dimensions. There-
fore, the micromechanical structures of the organ of Corti
and those of the cochlear partition can be easily included
in further investigations.

(3) The linear solutions are in close agreement with ear-
ly experimental results taken from human temporal bones
[8]. To cover the nonlinear physical behavior of the co-
chlea, material and geometrical nonlinearities should be
included in future calculations.
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