
T E C H N I S C H E U N I V E R S I TÄT M Ü N C H E N
Lehrstuhl für Echtzeitsysteme und Robotik

A F R A M E W O R K F O R O P T I M A L D Y N A M I C
M O D E L I N G O F S E N S I N G M O D A L I T I E S

Artashes Mkhitaryan

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Daniel Cremers

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Darius Burschka

2. Univ.-Prof. Gudrun J. Klinker, Ph. D.

Die Dissertation wurde am 05.06.2014 bei der Technische Universität München
eingereicht und durch die Fakultät für Informatik am 22.10.2014 angenommen.

Artashes Mkhitaryan: A Framework for Optimal Dynamic Modeling of
Sensing Modalities, © April 2014

Life is what happens to you while you’re busy making other plans.

— Allan & Saunders

Dedicated to the loving memory of Anahit Mkhitaryan.

1951 – 2013

A B S T R A C T

Sensory substitution is a conversion of one sensory modality to another by means of

physical or mathematical transformations. Although the expression “sensory substitu-
tion” is generally used in context of neuroscience, its application range is much wider.

Any direct conversion of one sensory modality to another qualifies as substitution of

the former. This, involves such topics as digitization of acceleration, temperature,

force, etc. through corresponding sensors as well as emulation of one sensor based

on the data from another sensor that has undergone a series of physical and/or

mathematical transformations.

Sensory substitution in its broad meaning is one of the major topics of modern nat-

ural sciences. Although it has undergone a substantial growth during the course of its

modern history, there are many issues that remain open. Due to the fragmented na-

ture of the sensory substitution each discipline dealing with it treats the problems in

its narrow scopes. Since sensory substitution is a multidisciplinary topic, this results

in issues of choosing the correct interfaces that represent the transition between them.

The problem of choosing the correct physical and mathematical transformations to

get from one modality to another does not always have a unique solution. Thus, it

is hard to estimate which solution is the most optimal. Sometimes the estimated so-

lution is optimal for achieving results with minimum error; however, its complexity

is high enough to make it unusable in context of a sensor that provides real time

results. Other times the opposite is true, the complexity is low enough to provide

real time data; however, the error accumulation amounts to large values that make

the further processing of the data unfeasible. Finally, there are cases where multiple

solutions are present that provide reasonable results; however, some are better in a

certain set of conditions and others are better in other set of conditions. It is hard to

build systems that would account for all of them.

In this thesis, we present a framework for optimal registration of different sensory

modalities to each other. Our system is capable of finding the most advantageous

set of mathematical and physical transformations between the initial modalities and

the target modalities. It takes into account the requirements of the problem and can

optimize for minimum complexity, minimum error, or strike a balance in optimizing

for both in the resulting fusion. Our framework allows the creation of virtual sensors,

that may extend the sensing modalities of the current setup. The framework is ca-

pable of increasing the reliability of acquired data in multi-sensor systems by being

able to asses the amount of accumulated errors. We give two examples of real-world

v

applications of this framework in robotic environments as well as demonstrate how

the errors estimated through our framework compare to real world errors.

vi

Z U S A M M E N FA S S U N G

Sensor Substitution ist die Umwandlung einer Sensormodalität in eine andere durch

die Verwendung physikalischer und oder mathematischer Transformationen. Ob-

wohl Sensor Substitution generell im Zusammenhang mit Neurowissenschaften

benutzt wird, ist dessen Anwendung nicht auf dieses Gebiet begrenzt, sondern

wesentlich breiter einsetzbar. Jede direkte Umwandlung einer Sensormodalität in

eine andere kann als Substitution bezeichnet werden. Das beinhaltet Themen wie

das Erfassen von Beschleunigung, Temperatur, Kraft, etc. durch die dazugehörigen

Sensoren sowie die Emulation eines Sensors basierend auf Daten eines anderen Sen-

sors, die physikalisch und oder mathematisch transformiert worden ist.

Allgemein ist Sensor Substitution einer der wesentlichen Themen der modernen

Naturwissenschaften. Obwohl die Sensor Substitution in seiner jüngsten Geschichte

ein substantielles Wachstum vollzogen hat, existieren nach wie vor etliche Themen-

bereiche, die noch nicht behandelt wurden. Aufgrund seiner Fragmentierung behan-

delt jeder Zweig das Problem in seinem eigenen eingeschränkten Bereich. Da die

Sensor Substitution ein fachübergreifendes Thema ist, folgt daraus, dass das Problem

die richtige Wahl des Interfaces ist, welches den Übergang zwischen beiden darstellt.

Das Problem der richtigen Auswahl der physikalischen und mathematischen Trans-

formation, um von einer Modalität zu einer anderen Modalität zu gelangen, bein-

haltet nicht immer nur eine Lösung. Dadurch ist es schwer zu bestimmen, welche

die optimale Lösung ist. In manchen Fällen ist die zugrundegelegte Lösung das Op-

timum, um die geringsten Fehler zu gewährleisten und dennoch ist die gegebene

Komplexität zu hoch, um sie im Zusammenhang mit einem Sensor zu nutzen, das

Echtzeitergebnisse liefert. Das Gegenteil kann auch der Fall sein: Die Komplexität

ist gering genug, um Echtzeitergebnisse bereitzustellen allerdings ist die Anhäufung

der Fehler zu hoch, sodass die weitere Bearbeitung der Daten nicht möglich ist. Es

gibt auch Fälle in denen mehrere Lösungen vorkommen, die vernünftige Lösungen

bereitstellen. Einige Lösungen sind unter bestimmten Bedingungen besser anzuwen-

den und andere Lösungen unter anderen Bedingungen, daher ist es schwer, Systeme

zu bauen, die für den gesamten Lösungsraum darstellbar sind.

In dieser Dissertation wird ein Framework zur optimalen Registrierung von un-

terschiedlichen Sensormodalitäten präsentiert. Unser System ist in der Lage, die

beste Kombination mathematischer und physischer Transformationen zwischen der

Initialen- und der Zielkonfiguration zu finden. Es berücksichtigt die Anforderungen

des Problems und kann minimale Komplexität und minimale Fehler gewährleisten.

vii

Unser Framework gestattet die Erzeugung virtueller Sensoren, die Erfassungsmodal-

itäten des aktuellen Falls erweitern können. Das Framework ist imstande, die Zu-

verlässigkeit der in Multi-Sensor-Systemen erworbenen Daten zu erhöhen, indem

die Menge der angehäuften generierten Fehler bewertet werden. Wir geben zwei

Beispiele von Real-World-Applikationen dieses Framework in der Robotik und

zeigen wie sich Fehler, die durch unser Framework geschätzt werden, mit Real-World

Fehler vergleichen lassen.

viii

A rabbit that was running through the forest gets caught by a wolf:

Rabbit: Please do not eat me today, I have my PhD defense
tomorrow. I spent 4 years of my life writing the dis-
sertation, and I do not want to die a M.Sc.

Wolf: Whats is your topic?

Rabbit: “Superiority of Rabbit over Wolf”

The wolf, intrigued by the title, lets the rabbit go and decides to attend
the defense. Next morning, once the wolf enters the room, a lion jumps
out and eats him.

Moral: It does not matter what your topic is, what matters is who your
Professor is.

A C K N O W L E D G M E N T S

First of all, I would like to thank Prof. Drius Burschka for allowing me to work in his

chair, providing me with guidance, expertise and support. I would like to express my

gratitude to Dr. Konstantinos Dalamagkidis for helping me with paper writing and

being a friend and colleague.

Many thanks to my family and particularly to my wife Alina Mihaela Roescu for

standing next to me during hard times. I would not be able to complete my work

without their love and support.

Last but not least, I would like to express my gratitude to all of my colleagues at

Garching-Hochbrück. I enjoyed every second of working with you.

ix

C O N T E N T S

1 introduction 1

1.1 Sensory Substitution 1

1.2 Sensory Substitution vs Sensor Data Fusion 3

1.3 Previous Work in Sensory Substitution 5

1.4 Contributions 8

1.5 Structure of the Thesis 9

i the framework 11

2 overview of frameworks 13

2.1 Overview of Frameworks in Computer Science 13

2.2 Overview of the Framework for Sensory Substitution 15

3 connected graph 19

3.1 Choice of the Modes and Optimization Parameters 19

3.1.1 Dynamic Mode 19

3.1.2 Static Mode 20

3.2 Creation of the Connected Graph 21

3.2.1 Connection of Nodes 22

3.3 Description of Nodes 24

3.3.1 Transformation Blocks 24

3.3.2 Start Nodes 28

3.3.3 Goal Nodes 29

3.3.4 Error Profiles 29

3.4 Propagation of Information Through the Graph 31

3.4.1 Data Propagation 31

3.4.2 Uncertainty Propagation 34

3.4.3 Complexity Propagation 35

3.5 Edges and Weights 41

3.5.1 Additive Weights 43

3.5.2 Multiplicative Weights 44

4 search through the graph 47

4.1 Introduction and Overview 47

4.2 Dijkstra’s Search Algorithm 47

4.3 Extended Dijkstra’s Algorithm 48

4.4 Path Estimation for Different Optimization Parameters 49

4.4.1 Optimization for Minimum Error 52

xi

xii contents

4.4.2 Optimization for Minimum Complexity 52

4.4.3 Optimization for Both Minimum Complexity and Minimum Er-

ror 54

4.5 Optimization Modes 54

4.6 Specifications of the Transformation Graph 56

ii application examples 59

5 short introduction to the experimental validation 61

6 validation of the error estimation accuracy 63

6.1 Introduction and Overview 63

6.2 Transformation Graph Based Analysis 65

6.3 Experimental Validation 65

6.4 Experimental Results 68

7 optimization for minimal errors in dynamic mode 71

7.1 Problem Statement 71

7.2 The Transformation Graph 71

7.3 Computation of Error Profiles 73

7.3.1 Error Profiles of the "3D Reconstruction" Transformation 74

7.3.2 The Error Profile for Velocity and Acceleration Computation 76

7.3.3 Error Profile of the Cellphone Accelerometer 76

7.4 Final Result 77

8 optimization for both minimum error and complexity in static

mode 79

8.1 Introduction and Overview 79

8.2 Transformation Graph Based Analysis 79

8.3 Physical Implementation 82

8.3.1 Physical Setup 82

8.3.2 3D Reconstruction of the Surface of the Membrane 83

8.3.3 Computation of Force Distribution 87

8.4 Experimental Results 88

9 conclusion and future work 95

9.1 Conclusion 95

9.2 Future Work 96

bibliography 101

L I S T O F F I G U R E S

Figure 1 Paul Bach-y-Rita demonstrating a prototype of a device for

substituting vision through the feeling of touch. The image is

taken from [50]. 2

Figure 2 Visualization of the process of sensory substitution. Here the

red and cyan dots depict the initial and target modalities re-

spectively. The gray dots depict the individual transforma-

tions. 2

Figure 3 Challenges of sensory fusion illustrated on the example of

stereoscopic reconstruction. In all of the images the light green

areas represent the space that is visible to one camera, the

dark green area represents the space that both cameras can

see. The pink area represents the space where a particular

pixel detected by the camera can be located. Note that reg-

ular cameras detect the z dimension (depth) of the pixel with

infinite uncertainty. The red areas represent the intersection of

the spaces from both cameras where the particular pixel can

be located. 4

Figure 4 An example of a virtual force sensor constructed using our

framework. The latter is realized by an optical camera, which

registers the deformations of a plastic membrane. 8

Figure 5 Visualization of the graph based sensory substitution. The trans-

formation nodes are depicted in gray. Initial and target modal-

ities are depicted in red and cyan respectively. 15

Figure 6 Visualization of the classified paths in the graph. Each color

represents a single path that was given a certain classification

of the traversal quality. 15

Figure 7 Transformation Graph: The edge weights are computed based

on the inputs, complexity and errors of the corresponding

nodes. An optimal chain is obtained by using extended Di-

jkstra’s search algorithm. 16

Figure 8 Sets of steps for the construction of the graph 17

xiii

xiv LIST OF FIGURES

Figure 9 (A) An example case for usage of the dynamic mode. The task

is to increase the reliability of acceleration readings of an al-

ready constructed multi-sensor platform. (B) An example case

for usage of the Static mode. The task is to construct a 3D

surface force sensor, using the set of available initial sensors.

20

Figure 10 Illustration of all the three types of nodes, that are a part of a

transformation graph . First node on the left is a Start node, those

have only an output section, thus edges can only point out of

them. Second node in the middle is a regular transformation

node. Those nodes have both input and output sections, there-

fore edges can both point into them and out of them. Third

node on the right is a Goal node. Those nodes have only an

input section, hence edges point only into them. 21

Figure 11 Visualization of the edge insertion process. The edges are in-

serted between corresponding input and output pairs. 22

Figure 12 An illustration of the graph connection process. The nodes of

the graph are depicted on the right side. During the first loop

over the nodes the indices of the modalities are stored in a 1

dimensional array that contains two vectors: Input and Out-

put. The address of each modality is computed using a hash

function after which the index is either pushed into the In-

put or Output vector depending on the location of the consid-

ered modality. Further, a loop is performed over the array, and

edges are inserted into the graph based on the indices of Input

and Output vectors (Algorithm 2). 23

LIST OF FIGURES xv

Figure 13 Different classes of transformation blocks. (A) A transforma-

tion with a basic input block. Those are linear transformations

that require only one value as its input argument. Here b is

the multiplicative weight that is normally set to one for these

blocks. (B) A transformation with an iteration dependent input

block. Those represent the first class of non linear transforma-

tions that require sequential values of the input argument from

the previous and current iterations. Here ξ is the multiplica-

tive of the weight that is higher than one due to the non linear

nature of the transformation. (C) Transformations with high-

order input blocks. Those require multiple consecutive values

of the input argument, and do not retain state. Here Ω is the

multiplicative weight, usually higher than two. In all of the

cases above e is the additive weight. All of the weights depend

on the optimization parameters of the problem and will be

discussed in Section 3.5. 26

Figure 14 An example of a Start node creation, from a given set of initial

sensors. 28

Figure 15 Illustration of the information propagation mechanics though

the graph. The square boxes represent basic transformations,

the eight edge star represents an iteration dependent transfor-

mation. The twelve edge star represents a high-order transfor-

mation, which for simplicity reasons is of second order. 32

Figure 16 Illustration of the error propagation model through the trans-

formation chain. A) Depicts the transformation chain itself.

The latter consists of sequential basic transformations that are

all equivalent. Each transformation in the chain implements

the "(A/2) + 1" simple equation. A complete pseudo-code im-

plementation of the transformation chain is given in Algo-

rithm 3 34

Figure 17 Influence of the high-order transformation blocks on the com-

plexity of the transformation chain. Illustration of a sequen-

tial case where the initial sensors operate at a comparable fre-

quency to the processor and the transformations take equal

amount of time to perform. 37

xvi LIST OF FIGURES

Figure 18 Influence of the high-order transformation blocks on the com-

plexity of the transformation chain. Illustration of a sequential

case where the initial sensors operate at a significantly slower

frequency compared to the processor and the transformations

take equal amount of time to perform. 39

Figure 19 Influence of the high-order transformation blocks on the com-

plexity of the transformation chain. Illustration of a sequen-

tial case where the initial sensors operate at a comparable fre-

quency to the processor and the transformations take different

amounts of time to perform. 40

Figure 20 Illustration of the process of assigning additive weights to the

edges for the case of error optimization. A generic transforma-

tion graph is depicted on the right. The error profiles of the

transformation blocks are depicted on the left. 42

Figure 21 4.21(a) A depiction of the first step of the search algorithm,

here all of the path distances are assigned to inf expect the Start
node. 4.21(b) A depiction of an intermediate step of the search

algorithm. The step was selected to illustrate the handling of

multiple inputs of a transformation. 4.21(c) The final result,

after all the distances to the goal have been computed. 50

Figure 22 Effects of weight assignment 51

Figure 23 Optimization for minimum error and complexity 53

Figure 24 A Generic example to help illustrate the work-flow of the frame-

work in different modes. The system consists of two sensors

that have one overlaying modality "B". This results into two

Start nodes that are illustrated here as one for clarity pur-

poses. 55

Figure 25 Illustration of the setup for the experiments conducted to es-

timate the relation of the real world errors to the computed

global path distance. A ball was let to roll freely on the flat

surface. The acceleration of the ball was measured for differ-

ent angles of tilt. 63

Figure 26 The transformation graph for estimating the velocity of a rolling

ball. The framework is set to operate in dynamic mode with

the optimization set to only minimize errors. Some of the trans-

formations introduce no errors therefore their additive values

are set to zero in advance. 64

LIST OF FIGURES xvii

Figure 27 Sketch of the experimental setup. The ball was let free to roll

on the ramp, influenced only by gravity. The experiment was

repeated with different slopes. 66

Figure 28 Illustration of the experimental results. Here the ball was let

free to roll on a surface with a fixed slope. Figure 6.28(a) illus-

trates velocities of the ball that were computed using different

time-steps. Figure 6.28(b) illustrates the resulting relative er-

rors for different time-steps. 67

Figure 29 Illustration of the experimental results. Here the ball was let

free to roll multiple times on a surface. For each roll the slope

of the surface was altered. Figure 6.29(a) illustrates the esti-

mated velocities for different accelerations. Figure 6.29(b) il-

lustrates the occurring relative errors. 69

Figure 30 Depiction of the transformation graph designed to estimate

the best acceleration value of a cellphone. There are two ways

to perform. First, by reading the data directly from the ac-

celerometer located on the cellphone. Second, by computing

the accelerations based on the images acquired by the camera

located on the cellphone. 72

Figure 31 7.31(a) Sketch of the experimental setup for obtaining the error

profile. Note that the camera is placed in such a way that the

effective distance to the static and dynamic markers remain

practically constant. 7.31(b) Illustration of the experiment for

computing the [error/target distance] dependency. 7.31(c) Il-

lustration of the experiment for computing the [error/viewing

angle] dependency. 73

Figure 32 7.32(a) Illustrates the error dependency of the 3D reconstruc-

tion algorithm to the distance between the marker and the

camera. 7.32(b) Illustrates the error dependency of the 3D re-

construction algorithm to the angle of view. Here the pre-

sented angle is the out-of-plane angle between the cellphone

and the surface of the marker. Note that the in-plane rota-

tion angels are not presented since they do not add any er-

rors. 75

Figure 33 The error profile of the accelerometer that is embedded in the

cellphone. Here the red line illustrates the standard deviation

of the errors that is 1.43m/s2. 76

xviii LIST OF FIGURES

Figure 34 Final analysis for the two acceleration registration methods.

The green dots represent path distances of the data registered

by the accelerometer located on the cellphone. The red dots

represent the path distances of the accelerations computed

from the camera images. 77

Figure 35 7.35(a) Illustration of the registered accelerations. Here the data

registered from the industrial accelerometer (XSens) is plotted

in blue. The reconstructed accelerations from the cellphone-

camera are plotted in red and the accelerations registered from

the accelerometer located on the cellphone itself are in green.

Note that for lower accelerations the error from the cellphone

accelerometer is larger than the error from the camera; how-

ever, for large accelerations this changes. To ensure a better ob-

servability of the previous statement we provide two zoomed

sections 7.35(b), 7.35(c) of the 7.35(a) graph. 78

Figure 36 Figure 8.36(a) illustrates the blueprint of the finger: (1) LED,

(2) CCD camera, (3) a valve to regulate the amount of air

within the frame, (4) rigid circle markers, (5) rubber skin sur-

face, (6) the airtight frame of the finger, (7) glass, (8) air. Fig-

ure 8.36(b) illustrates the constructed prototype of the sensitive

fingertip sensor. 80

Figure 37 Transformation graph for a sensitive fingertip sensor. Here the

system is set up to sense forces using a regular CCD cam-

era. The graph contains two possible transformation chains.

The first chain (marked with cyan dots) contains the set of

transformations necessary to sense forces using Hook’s law.

The second chain (marked with red dots) contains the set of

transformations necessary for sensing forces using Newton’s

second law. 81

Figure 38 Step by step illustration of the membrane surface reconstruc-

tion process. The images have been copied from [1] 84

Figure 39 Here C is the camera center, Π is the image plane, a and b

are two points on the ellipse, and line ab passes through d.

The latter is the projection of circle center D, AD = DB. ρ =

180−φ−ω 85

Figure 40 Computation of the force acting on a node. Here F = F1+F2+

F3 + F4 87

Figure 41 Image 8.41(a) illustrates the locations of estimated (blue dots)

and known (red dots) circle centers. Image 8.41(b) illustrates

the computed (blue dots) and known (red dots) absolute dis-

tances of the circles to the camera center. 88

Figure 42 8.42(a) Illustrates the relation of the computed relative inte-

gral force to measured force. Note that it is clearly visible that

the relation between them is linear. Thus, the applied Hook’s

model within the scopes of this experiment holds. 89

Figure 43 Figures 8.43(c), 8.43(d) and 8.43(e) illustrate the captured and

processed images from the CCD camera for the three different

objects, and Figures 8.43(f), 8.43(g) and 8.43(h) illustrate the re-

spective 3D reconstructions and force distributions. Here the

direction of the force vectors are inverted to ensure better vis-

ibility. The pictures are taken from [1] 93

L I S T O F A L G O R I T H M S

Algorithm 1 A naive algorithm for connecting the transformation graph. The

algorithm requires as an input the unconnected nodes. The

latter will be referred to as: Graph 22

Algorithm 2 Hash function based algorithm for connecting the transforma-
tion graph. The algorithm requires as an input the unconnected

nodes. The latter will be referred to as: Graph 25

Algorithm 3 Implementation of the transformation chain in Figure 16 A) 35

Algorithm 4 Implementation of the transformation chains in Figure 17 A) 36

Algorithm 5 Dijkstra’s search algorithm for finding the shortest path in a

connected graph. The algorithm takes as an input a connected

graph, the index of the source node and the index of the target

node. Inputs: Graph, source, target 48

xix

1
I N T R O D U C T I O N

1.1 SENSORY SUBSTITUTION

definition : By definition sensory substitution is a conversion of one sensory

modality into another by means of transformations. Where "sensory modality" is de-

fined as a particular way of sensing, such as vision or hearing. The word "modality"

shall not be limited to the mentioned examples and can be extended to any mode

(state), such as special dimensions, force, velocity, smell, etc. The words "sensory sub-

stitution" are mainly used in medical lexicon under the context of restoring a certain

defective sensory modality of a handicapped person through another sensory modal-

ity. This is realized either biologically i.e. brain plasticity [9], or through some third

party devices, that is artificial skin [11], video camera [34] etc (Figure 1). However,

the range of applications covered by sensory substitution is much wider than pros-

thetics. Any conversion of one sensory modality into another qualifies as substitution

of the former. Such examples involve digitization of force, acceleration, torque, tem-

perature, etc. using various sensors. Other examples incorporate substitution of one

sensor by another though a chain of mathematical and or physical transformations

such as force estimation from sequential camera images [1] or distance through time

of flight. Due to its wide spread sensory substitution is one of the most important

topics in a vast range of natural sciences.

limitations : Paul Bach-y-Rita, the man who can be considered the father of

modern sensory substitution in context of neuroscience, wrote in his book “Brain

Mechanics in Sensory Substitution (1972)” [50]

“This monograph thus risks becoming outdated in a very short time since

the development of refined sensory substitution systems should allow

many of the questions raised here to be answered, and some of the con-

clusions may appear naive to future readers.”

Although sensory substitution in its broad definition has substantially matured dur-

ing the course of its modern history, it is still far from being perfect. One of the largest

problems of sensory substitution is its fragmented nature. Problems are treated on

a case by case basis and held strictly within the narrow bounds of the discipline

they occur in. The direct effect of this is what is widely known as “Reinventing the

1

2 introduction

Figure 1: Paul Bach-y-Rita demonstrating a prototype of a device for substituting vision
through the feeling of touch. The image is taken from [50].

wheel”, since in many cases a major problem of one discipline is already solved in

another one. An example of such a situation could serve the reinvention of numerical

integration in the medical domain [42] 210 years after the works of Lagrange and Sir.

Newton. Another consequence of the fragmented nature is that almost all of the re-

search in sensory substitution can be grouped into categories based on the modality

that is being substituted. A general approach, that covers all of the disciplines and

does not discriminate between the particular modalities that are being substituted,

is missing. Our goal is to provide a framework for sensory substitution that would

address the issues of generalization and abstraction of modalities as well as automate

the process of the substitution. Based on the definition of sensory substitution this

Figure 2: Visualization of the process of sensory substitution. Here the red and cyan dots de-
pict the initial and target modalities respectively. The gray dots depict the individual
transformations.

1.2 sensory substitution vs sensor data fusion 3

can be realized by solving the problem of finding the correct set of transformations

between the initial and target modalities, Figure 2.

Several issues emerge in complex cases where multiple physical and mathemati-

cal transformations are required to get from one modality to another. Most of the

time more than one possible set of transformations is present, which results in the

dilemma of choosing the optimal one. A set of transformations might result in a link

between two modalities with small error accumulations, but can have the drawback

of having a large complexity, which would render it as useless for constructing a real

time sensor. On the other hand the complexity might be fast enough for this pur-

pose, but the error accumulation amount to a large value thus making it unfeasible

to extract any useful information from the resulting data. Finally, several equivalent

sets of transformations might be present, which depending on the conditions could

provide more reliable results than the others. Thus, some sort of a decision making

mechanism to always pick the best results is needed.

1.2 SENSORY SUBSTITUTION VS SENSOR DATA FUSION

Sensory Fusion or Sensory Data Fusion is a branch of signal processing that con-

centrates on the combination of sensor data or data derived from sensor data. The

mentioned data is combined in such a way that the resulting data is in some way,

shape, or form better than the original data. Note that as a result of its definition,

sensor data fusion assumes that there is a way of comparing the initial sensor data to

the resulting fused data. The term “better” can be interpreted as more precise, more

complete or more reliable.

An example of data fusion can be the averaging of the position of the same object

detected by three different sensors with known positions in reference to each other.

Another example involves the stereo-reconstruction of an object using two cameras

located at different viewpoints [30], [43]. In both of the cases we have sensors that are

sensing in Cartesian space with some uncertainties depending on the sensing axis.

Let us discuss the stereo reconstruction example in detail. Each camera can sense in

3D Cartesian space with a certain uncertainty. This means that the camera determines

the position of a pixel as such p = {x+ δx,y+ δy, z+ δz}. Where {x,y, z} represent

the true coordinates of the pixel and the {δx, δy, δz} represent the uncertainties of

the measurement. Note that since a regular camera is a 2D sensor, i.e. it can only

determine rays pointing from its center in the direction of the object, the uncertainty

δz = ∞ is always infinite. Normally the goal of stereoscopic reconstruction problems

is the reduction of the uncertainty in z direction. Consider Figure 3, the light green

areas in all three of the images represent the space that can be sensed by a single

camera, the dark green areas represent the space that can be sensed with both cam-

4 introduction

eras at the same time. Further, the pink areas represent the space where a particular

pixel can be located when sensing with only one camera, and the red areas represent

the space where a particular pixel can be located after the introduction of the second

camera. In Figure 3 A) both cameras are placed parallel to each other. Note that such

a placement results in the largest space where both cameras can sense. However, this

placement does not really help in uncertainty reduction since the space where the

pixel can be detected by both cameras is also infinite. In Figure 3 B) both cameras are

placed perpendicular to each other. The resulting common space is small; however,

the uncertainty of the pixels in this area is the smallest possible for the cameras used.

Figure 3: Challenges of sensory fusion illustrated on the example of stereoscopic reconstruc-
tion. In all of the images the light green areas represent the space that is visible to
one camera, the dark green area represents the space that both cameras can see. The
pink area represents the space where a particular pixel detected by the camera can
be located. Note that regular cameras detect the z dimension (depth) of the pixel
with infinite uncertainty. The red areas represent the intersection of the spaces from
both cameras where the particular pixel can be located.

1.3 previous work in sensory substitution 5

Finally, Figure 3 C) depicts a case where both cameras are placed at an angle in ref-

erence to each other. This case is a compromise between the two extremes depicted

in A) and B). The resulting uncertainty reduction is in between the first two cases.

Finding the optimal placement and configuration of the sensors as well as method

for the maximal reduction of the uncertainties in the measurement is the main goal

of sensor data fusion. Sensory fusion is not limited to the case described. It can be

extended to fusion of data from a set of heterogeneous or homogeneous sensors, soft

sensors, and history values of sensor data.

There are multiple mathematical frameworks that are used for sensor data fusion

such as the Kalman filter [29], Bayesian networks [37], Dempster-Shafer [13] theory,

etc. The Kalman filter performs sensor data fusion based on noisy historic values of

the data acquired from the sensor itself. Results of the Kalman filter are more pre-

cise than the raw values. Bayesian networks perform data fusion on multiple similar

sensors using the belief/probabilistic approach. Dempster-Shafer theory is similar

to Bayesian in that it also uses probabilistic/belief based approaches for uncertainty

reduction. The inherit nature of sensor data fusion requires that the resulting data

be comparable to the original data. Therefore both the data before fusion and after

must have the same modality, since comparison of data in different modalities such

as meters to kilograms, is not well defined. Sensory Substitution on the other hand

concentrates on the transformation of the data modalities from one to the other. Thus,

both of the disciplines do not compete with each other but instead complement each

other. The results of sensory substitution can be fed into a system dealing with sensor

data fusion to increase the reliability of the overall system.

1.3 PREVIOUS WORK IN SENSORY SUBSTITUTION

overview : Due to the fragmentations in the topic of sensory substitution it can

be easily divided into categories. To retain structure we will initially categorize the

subject based on the type of a substituted signal, that is haptic, visual, audio, etc.

These will further be divided into subcategories based on the approaches they inherit

to tackle the problem. The two largest parts of the mentioned research focus on haptic

sensory substitution, aimed at the development of prosthetics, and visual sensory

substitution, aimed at the compensation of visual impairment.

substitution of haptic sensory signal : Haptic sensory substitution can

be further divided into subcategories: methods that inherit the electro-mechanical

approach and those that adopt the vision based approach. Damian et. al. [12] present

an artificial skin for prosthetic limbs, which is designed to help detect slippage. It

uses the electro-mechanical approach to compute the 2 dimensional friction forces

6 introduction

occurring over its surface. Another example of electro-mechanical force sensing is

described in [8]. The authors present a force sensor for teleoperation of remote limbs.

The former contains a number of hollow cylinders of different heights that are en-

closed in one another eventually forming a conical pyramid. Based on the number

of shifted cylinders and the magnitude of the shifts, the authors are able to estimate

the perpendicular force vector and the approximate area of the contact. Both of the

previous methods only succeed in extracting partial information regarding the con-

tact and forces acting on it. The latter is a result of solving the problem only from

the electro-mechanical point of view, which has an advantage of providing reliable

readings of data but struggles to operate in higher dimensions and resolutions.

Other disciplines specializing in haptic sensory substitution are concentrating on

vision based approaches. In their paper [10] Chorley et. al. present a biologically in-

spired tactile sensor. The latter consists of a CCD camera which is mounted on the

flat side of a half spherical clear silicon, and nodule markers that are mounted inside

the spherical surface of the clear silicon. Here the authors propose that the force and

contact area shape information be estimated based on the spacial shifts between nod-

ule markers. However, they fail to provide any mathematical, physical or algorithmic

suggestions as to how. A slightly different and more successful approach is described

in [23], [22], [21]. The authors present a sensitive fingertip sensor that consists of a

CCD camera mounted on one side of a clear silicon and two rows of colored spher-

ical markers that are located within the clear silicon. Based on the observed shifts

between the two rows of the markers, the authors present an algorithm for three

dimensional force distribution reconstruction. The presented force sensor only per-

forms well in estimating force distribution if the magnitudes of the applied forces are

relatively high. However, it struggles in dealing with smaller forces, and providing

fine detail. The reason behind this is that the clear silicon acts as a low pass filter.

Both of the described disciplines are able to solve only one or two discipline specific

aspects needed for a full haptic sensory substitution. The need for a framework that

will allow the combination of different aspects into one is apparent.

substitution of visual sensory signal : Most of the research on substitu-

tion of visual sensory signal is aimed at developing devices for the visually impaired.

Here too, there are two major disciplines trying to solve the issue: computer vision

and neuroscience. However, as in the case for substitution of haptic sensory signal no

global solution can be achieved by only considering one side of the equation. John-

son et. al. [31] describe a device for improving the navigation of visually impaired

people. The device consists of a stereo pair, a processing unit and a tactor belt. It op-

erates by converting the visual information into vibrations, which are performed by

the belt. The authors were successful at obstacle avoidance in sparse environments.

1.3 previous work in sensory substitution 7

However, the approach failed to provide reliable results in dense environments. Even

though a correct setup was used in the scopes of computer vision, that is the stereo

setup, this approach struggles with human-machine interface. According to [28],[16],

[27],[25],[26] and [24] the human tongue provides a better human-machine interface

due to its high sensitivity, which is the direct result of its sensory receptors being

closer to the surface.

In [51] another device is described for vision based visual sensory substitution in

the context of neuroscience. The authors use a camera mounted on the head of the

human user. The latter is connected to a processing unit which converts the images

into 144 low-voltage impulses that are sent into the mouth of the user by means

of a ribbon cable. As a result, the human operator was able to catch a rolling ball

solely based on the input from this device. The authors justify the usage of only

one camera by “Sensory Overload”. However, one can argue that the introduction of

the second camera in combination with stereo reconstruction and object recognition

could significantly reduce the amount of information provided to the tongue of the

user.

biology and nature : Many papers in biology discuss the mechanics behind

the sensory substitution for humans and animals who have lost their vision or never

had it. These mechanics can serve as a strong motivation for sensory substitution in

other disciplines. In his paper, Rauschecker [20] performs experiments on auditory

localization with cats that were blind since birth and sighted cats. The results have

shown that as a compensation to visual impairment, the blind cats were better at

auditory navigation. In his work Windsor [41] describes the navigation mechanism

used by the Blind Mexican cave fish (Astyanax fasciatus). Here the fish uses reflec-

tions of waves caused by its motions to successfully avoid obstacles and form an idea

regarding the surrounding terrain.

Other cases of sensory substitution in nature can also serve as a strong basis for

sensor development and substitution in man made devices. In [36] the authors de-

scribe the logistics behind auditory localization performed by snakes. Snakes lack

a tympanic membrane and the external ear openings, but are equipped with a per-

fectly functioning inner ear. They can locate the prey based on the vibrations of the

sand by placing their jaw on it, which allows the transfer of vibrations to the inner

ear. Farnosch [19] et. al. describe in their work the model by which a frog detects its

prey. Using many of its lateral organs it can not only determine the direction and the

nature of the motion occurring in the distance but can also distinguish between two

different sources of motions. In [7] the authors describe the mechanics by which the

snakes equipped with a poor infrared sensor determine their prey.

8 introduction

1.4 CONTRIBUTIONS

unification of interfaces between different disciplines : Although

current cognitive neuroscience research treats Sensory Substitution as visual input

substitution by either acoustic or tactile modalities, the goal of this thesis is to provide

a framework that generalizes this concept to any sensing modality. While there are

currently many approaches that specialize on substitution of individual classes of

sensory signals, a general method that unifies all the types into one framework is

missing. An introduction of such a framework will contribute to the reduction in

fragmentation of sensory substitution. A direct result of such unification will lead

to closing the knowledge gaps in individual disciplines by providing the interface

and transformations between them. Our framework helps to avoid situations such as

in the case described above for Visual sensory signal substitution, where computer

vision specialists were able to succeed in executing the computer vision part, but

struggled in human machine interface, and vice versa.

Figure 4: An example of a virtual force sensor constructed using our framework. The lat-
ter is realized by an optical camera, which registers the deformations of a plastic
membrane.

computation of the optimal chain of transformations between the

input and output modalities : Construction of virtual sensors from a set of

initial physical sensors is an integral part of our framework. It estimates the optimal

chain of transformations from the sensing domain of the original sensor(s) to the

desired sensing modality using a set of physical laws and mathematical operators.

The process of chain construction can be tuned to optimize for either minimum error,

minimum complexity, or to strike a balance between minimum error and complexity.

It takes into account not only the modality(ies) that the initial sensor(s) operate(s) in

but also its (their) operating range and expected errors. The chain of transformations

is established by applying the extended weighted Dijkstra’s [14] search algorithm

1.5 structure of the thesis 9

on a connected graph, the nodes of which are the available transformations. The

latter ensures that the constructed chain is the optimal one. In situations where the

initial operating range of the original sensors changes, our framework is capable of

dynamically reconfiguring the graph to the current conditions.

An example of this is illustrated in Figure 4 where a virtual force sensor is created

by means of an optical camera observing the deformations of an elastic membrane.

This example will be discussed in detail in Chapter 8.

dynamic optimization between multiple transformation chains for

multi-sensor platforms : Recently there is a trend of equipping various mo-

bile platforms with a number of sensors that operate in different modalities. Modern

vehicles are equipped with LiDAR, stereo cameras, ultrasound systems, accelerome-

ters, GPS, rotary encoders, etc. Similarly smart-phones are fitted with a monocular

camera, gyroscope, GPS, accelerometer, microphone and much more. Our approach

allows the fusion of sensory data from different modalities. It not only increases the

reliability of the acquired data by adding redundancy to the system, but also widens

the spectrum of sensible modalities using virtual sensors. It allows a dynamic read-

justment of the chain of transformations between the initial and target modalities

based on the current values of the perceived arguments.

1.5 STRUCTURE OF THE THESIS

The content of this thesis is divided into two parts. Part i concentrates on describing

the theoretical background and the framework itself. Part ii is the experimental part,

where different aspects of Part i are evaluated.

part i : Begins with the overview of the framework in Chapter 2, where a brief

introduction to the main steps of the framework as well as its operational modes and

optimization parameters are presented. This is followed by Chapter 3, where the

reader is presented with a detailed description of each individual aspect of the frame-

work, which involves the construction of the transformation graph with a strong fo-

cus on its individual parts, the different operational modes, and the optimization

parameters. Finally Chapter 4 begins by describing the process of estimation of the

optimal chain followed by the effects that the optimization parameters have on the

computation of the chain, and concludes with the illustration of differences of the

operation modes.

part ii : Begins with an example designed to illustrate how the error estimates

obtained using our framework compare to real world errors in Chapter 6. We demon-

10 introduction

strate how our framework operates in a multi-sensor environment. Where it has a

task to increase the reliability of a particular sensor reading in Chapter 7. We con-

clude this part by showing an example case for constructing a new sensor using the

framework in Chapter 8.

We provide conclusions and talk about the future work in Chapter 9

Part I

T H E F R A M E W O R K

2
O V E RV I E W O F F R A M E W O R K S

2.1 OVERVIEW OF FRAMEWORKS IN COMPUTER SCIENCE

In computer science there are multiple ways of implementing a framework. These

involve data-flow networks such as the ones described in [32] and [35] or functional

libraries such as [47] and [48] as well as object-oriented frameworks such as [39].

Each of these come with positive and negative attributes depending on the problem

being solved. In this section we will briefly describe each of them, talk about their

strengths and weaknesses as well as bring some examples of situations where they

are successfully used.

data-flow frameworks : Such frameworks are used for modeling systems

that deal with transmitting information between different static points. They are gen-

erally capable of retaining state and are good in constructing automated systems. The

main goal of such systems is finding the optimal set from a large cluster of choices

as well as modeling the flow of information through pivot processing units. These

systems tend to concentrate on the global picture of the problem, thus they are not as

flexible for low level adjustments and are very application specific. Examples of such

nets involve Petri nets [38] and Neural networks [33]. Petri nets are largely used for

modeling distributed systems. They were initially implemented for describing chem-

ical processes. The integrated binary logic in Petri networks makes them a perfect

candidate for describing a network of linked transformations. However, they lack in

mechanisms for automatic network construction and classification of individual sub-

networks. Neural networks are widely used in machine learning and are a family of

statistical learning algorithms. Such networks are great for the classification of the

data quality. However, they do not provide any tools for modeling transformations

and interfaces between them.

functional libraries : Such frameworks are usually abstract sets of func-

tions that are implemented to perform small mathematical or logical tasks optimally.

They allow low level adjustments, are highly configurable and reusable. Functional

libraries are widely used as additions and extensions to existing programming lan-

guages. Examples of functional libraries include pymunk [49] and XVision [46]. Py-

munk is a physics library for python. It is ideal for modeling simple physical transfor-

13

14 overview of frameworks

mations. However, it lacks mechanics for defining transitions from one transforma-

tion to another, or for dealing with multiple networks of transformations. XVision is

a well known C library for computer vision. It is ideally suited for performing image

processing tasks, and thus can serve well in the implementation of related transforma-

tions. In both cases functional libraries are simply not suited for defining interfaces

between different transformations as well as evaluating the different solutions of the

problem or automatically assembling sets of candidate solutions.

object-oriented frameworks : Such frameworks are ideal for modeling dif-

ferent real-world or abstract objects. They retain state and define interfaces of com-

munication with the object in question. Examples of such frameworks involve the

Open Dynamics Engine (ODE) [45] or Eigen [44]. ODE is a physics engine that mod-

els an open world with well defined physics and rigid objects located within it. As

one would expect, the interactions between the objects are well defined and opti-

mally implemented. However, due to its strict interface and functionality definition,

it is practically not possible to re-purpose the engine to any other task that does not

involve rigid body dynamics. The same could be said about Eigen, which is an object-

oriented framework designed to optimally implement a 2 dimensional matrix with

all the corresponding operations and interfaces.

required functionality for the framework : As mentioned in Chapter

1.1 the main goal of our framework is to establish an optimal chain of physical and

mathematical transformations between the initial sensing modalities of the available

sensors and desired target modalities. Note that the usage of the word “sensor” does

not discriminate between human sensory organs (eyes, skin, etc) and digital sensors.

There is a number of issues that need to be solved and defined by the framework to

be able to solve the problem. Since most of the time more than one transformation is

required to get from initial to target modalities, transformations need to have a well

defined and standardized interfaces between each other. The latter will allow them to

communicate information between each other. Often more than one way of achieving

a solution exists. The framework must define a metric for classifying each of the ways

of obtaining a solution. It should also provide a way of configuring the classification

criteria. Further the framework should allow the flexibility of reclassification of the

solutions, in case some of the configuration parameters change. All of this can be

achieved by using a data-flow framework based on such mathematical structures as

graphs [17]. By representing the transformations as graph nodes, the main problem

of finding a set of transformation between the initial and target modalities can be

reduced to graph construction and traversal, Figure 5.

2.2 overview of the framework for sensory substitution 15

Figure 5: Visualization of the graph based sensory substitution. The transformation nodes
are depicted in gray. Initial and target modalities are depicted in red and cyan
respectively.

Each traversal sequence (path) that results in getting from the initial node to the

target node represents a solution to the problem of sensory substitution. Further the

classification of the solutions can be achieved by the computation of the path dis-

tances, Figure 6. Paths that have a different path distance are colored in individual

colors. The red and cyan paths share common segments which are the first two seg-

ments of the cyan path.

Figure 6: Visualization of the classified paths in the graph. Each color represents a single path
that was given a certain classification of the traversal quality.

2.2 OVERVIEW OF THE FRAMEWORK FOR SENSORY SUBSTITUTION

In this section we provide a short introduction to the framework for sensory substi-

tution. It is represented as a connected graph, which includes the afore mentioned

16 overview of frameworks

physical and mathematical transformations as its nodes. The transformation nodes

are provided externally as a bag of transformations where each individual element is

a transformation from one modality to another: e.g. Newton’s second law, Hook’s

law, etc. The bag of transformations can be obtained from the knowledge base of the

considered area. Further the graph contains some special nodes i.e. Start and Goal,
that represent the modalities of the initial sensors and the desired sensing modalities

accordingly. We call this graph a transformation graph. The links between the nodes of

the graph are represented by edges that are equipped with weights.

The framework is flexible and can be calibrated to optimize for such parameters

as errors, complexity or both of them combined. This is done by manipulating the

reasoning process for weight assignment.

operation modes : Our framework can operate in two modes: dynamic or

static. The mode is determined based on the problem that needs to be solved. Dy-

namic mode is used for systems that are already constructed and all of the initial

sensors are set. In this mode for every iteration our framework uses a chain of trans-

formations to actively establish a link between the modalities in which the initial

sensors operate and the target modalities. Static mode is used for planning a con-

struction of new sensors. This mode aims to estimate a static optimal link between

the available and desired sensing modalities which is established only once. The main

difference between the two modes is in the computation of weights based on which

the optimal transformations chain is chosen. In static mode the weights are statically

set and are based upon the operating ranges with corresponding expected values of

the initial sensors. On the other hand in dynamic mode all the weights are recom-

puted during each iteration based on the current value of the argument that is being

processed.

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

as1|b a11|b

a11|b

a12|m a13|b

as2|m

a21|b a22|i

a23|b

Figure 7: Transformation Graph: The edge weights are computed based on the inputs, com-
plexity and errors of the corresponding nodes. An optimal chain is obtained by
using extended Dijkstra’s search algorithm.

2.2 overview of the framework for sensory substitution 17

construction of the connected graph : The process of constructing the

transformation graph can be split into three logical sets of steps shown in Figure 8.

The first set of steps is the global decisions where the problem is defined. One needs to

isolate the set of initial sensors that would be used and determine the target modality

that needs to be sensed. Further, one must determine the working mode of the frame-

work and define the optimization parameters. Once the global decisions are made,

the second set of steps the construction of the graph can be executed. Firstly, the Start
and Goal nodes need to be constructed based on the initial set of sensors and the tar-

get modality. Further, those nodes are connected to the relevant transformation nodes

from the bag of transformations, which results in a connected graph. Afterwards the

transformation nodes of the graph must be implemented and the error profiles for

each transformation must be computed. Finally, the construction of the graph is com-

pleted by the computation of edge weights, based on the optimization parameters.

This is followed by the third set of steps computation of the optimal chain. Where the

link between the initial and target modalities is established based on the operation

mode, using an extended weighted Dijkstra’s search algorithm (Figure 7).

The entire process of construction of the transformation graph can be summarized

in the following steps:

1. Choose:
•Initial Sensors.
•Target Modalities.
•Operation Mode.
•Optimization Parameters.

1. Construct:
•Start Nodes
•Goal Nodes

2. Connect the Graph.
3. Implement the nodes
4. Compute:

•Error profiles
•Weights

1. Consider the Operation Mode.
2. Use Extended Dijkstra’s search.

1. Global Decisions

2. Construction of the Graph

3. Computation of the Optimal Chain

Figure 8: Sets of steps for the construction of the graph

3
C O N N E C T E D G R A P H

3.1 CHOICE OF THE MODES AND OPTIMIZATION PARAMETERS

optimization for error minimization : The first step in the creation of the

transformation graph is the choosing of the optimization parameters. Depending on

the problem there are several available options. The first one is the optimization for

minimum errors. This means that the weights of the connected graph will only reflect

the occurring errors in them. Further, the path computation will only concentrate on

the error propagation.

optimization for complexity minimization : The second one is the op-

timization for minimum complexity. This means that the main focus of the weights

of the transformation graph will be on reflecting the complexity of each individual

transformation block. This is done by taking into account the amount of data that

is needed by the transformation block to perform. This is followed by a path com-

putation process, during which the complexity of each transformation block will be

considered. Hence the link between the Start and Goal with the least integral com-

plexity will be estimated.

optimization for both : The third one is the optimization for both minimum

error and complexity. This means that the weights of the graph will reflect both

of the parameters. The final optimal chain of transformations will reflect the best

compromise between the minimum error and complexity.

3.1.1 Dynamic Mode

Next is the selection of the operation mode based on the problem. There are two

possible scenarios. The first one is using the dynamic mode. In this mode the graph

contains all the possible paths for the current configuration. During each iteration

the optimal path is computed based on the current values of the sensor data. This

ensures the reliability of the final result independent of the operating range. The

drawback of this mode is the computational time. An example scenario where the

dynamic mode can be useful is the following: one has an already built multi-sensor

19

20 connected graph

Camera

Acceler.

Gyrosc.

Microp.

=>

T
ra
n
sf
o
rm

a
ti
o
n
G
ra
p
h

=>

A
cc
el
er
a
ti
o
n

C
a
m
era

F
o
rce

S
en

s.
M
a
rk.

=>

A B

Figure 9: (A) An example case for usage of the dynamic mode. The task is to increase the
reliability of acceleration readings of an already constructed multi-sensor platform.
(B) An example case for usage of the Static mode. The task is to construct a 3D
surface force sensor, using the set of available initial sensors.

platform that needs to be enhanced. This means that either an extra modality needs

to be sensed that is not accessible through the sensors directly, or the modality can be

sensed through one or more of the sensors; however, the values are unreliable. Such

an example can be sensing accelerations using a modern cellphone that is equipped

with a camera and an accelerometer, Figure 9(A). The latter example will be discussed

in great detail in Chapter 7.

3.1.2 Static Mode

The second scenario is using the static mode. In this mode the graph is initially con-

structed with all the possible connections using all of the initial sensors and all of the

relevant transformations. Further, the operating ranges of the sensors are considered

and the optimal chain of transformations is estimated based on the expected values

of the sensors. Note, the optimal chain is constructed only once in the beginning. This

ensures the low speed of consecutive measurements. The drawback of this mode is

that the system is calibrated for expected values, which means that the results are not

always optimal. An example scenario where a static mode can be of use is the follow-

ing. One needs to build a new sensor from scratch. Often there are some modalities

that are not easily accessible directly through a single standard sensor. To reach them,

one needs to perform some physical and mathematical transformations on the data

from the initial standard sensors. Such a case can be a 3D surface force sensor con-

struction using a camera, an elastic membrane and markers, Figure 9(B). The latter

example will be discussed in great detail in Chapter 8.

3.2 creation of the connected graph 21

Output

Start

Input Output Input

Goal

Start Node Transformation Node Goal Node

Figure 10: Illustration of all the three types of nodes, that are a part of a transformation graph .
First node on the left is a Start node, those have only an output section, thus edges
can only point out of them. Second node in the middle is a regular transformation
node. Those nodes have both input and output sections, therefore edges can both
point into them and out of them. Third node on the right is a Goal node. Those
nodes have only an input section, hence edges point only into them.

3.2 CREATION OF THE CONNECTED GRAPH

As mentioned before, we define the available mathematical and physical transforma-

tions as nodes of our transformation graph . We call those nodes " transformation blocks ".

Each transformation block contains two sections. The first section describes the input

arguments required by the transformation. The second section describes the output

values, i.e. the arguments that are a direct result of the transformation. An example

of a transformation block is illustrated in Figure 10. Since the aim of our framework

is to establish the most optimal set of transformations that link the modalities of the

initial sensors to the target modality, we define each transformation block in such a

way that the modalities of the input block are different than the modalities of the

output block. This means that a series of mathematical and physical equations can

be combined into a single transformation block only when the direct result of their ap-

plication is a modality change of the initial set of arguments. The transformation graph
is created by connecting the corresponding nodes to each other. The correspondence

between the nodes is defined based on the matching input and output pairs, i.e. if

the node N0 has an output "A", node N1 has an output "B" and the node N2 requires

"A,B" as an input. The three nodes will be connected by two edges. The first, pointing

from the output of the node N1 to the input of the N2, and the second one pointing

from the output of the node N0 to the input of the node N2, Figure 11.

The resulting connected graph is completed by the insertion of special Start and

Goal nodes. Insertion of the Start and Goal nodes into the graph is performed similar

to the connection process of regular nodes. The difference between the aforemen-

tioned special nodes and transformation blocks is that the Start nodes possess only

the output section and the Goal nodes possess only the input section. This results

in Start nodes only having edges that are pointing out of them and Goal nodes only

having edges that are pointing into them.

22 connected graph

X A

Y B

A
B

Z

Node N0

Node N1

Node N2

Figure 11: Visualization of the edge insertion process. The edges are inserted between corre-
sponding input and output pairs.

3.2.1 Connection of Nodes

There are multiple ways of finding and connecting the corresponding nodes of the

transformation graph. In this section we will discuss several approaches and suggest

what in our opinion is the best way to solve this problem. Consider Figure 12 for

visual support.

naive algorithm : A naive approach for connecting the nodes would be to

compare the output modalities of each node to the input modalities of each node

and insert an edge in between if they match (Algorithm. 1).

Algorithm 1 A naive algorithm for connecting the transformation graph. The algorithm

requires as an input the unconnected nodes. The latter will be referred to as: Graph

1: for all Vo ∈ Graph.nodes do

2: for all Mo ∈ Vo.Output.Modalities do

3: for all Vt ∈ Graph.nodes do

4: if Vt! = Vo then

5: for all Mt ∈ Vt.Input.Modalities do

6: if Mo ==Mt then

7: Graph.insertEdge(Vo.getIndex(),Vt.getIndex());

8: end if

9: end for

10: end if

11: end for

12: end for

13: end for

14: return Graph

3.2 creation of the connected graph 23

O
u
tp
u
t:

A
,B

,C

S
ta
rt

In
p
u
t:

A
,B

O
u
tp
u
t:

E

In
p
u
t:

B
,C

O
u
tp
u
t:

A

In
p
u
t:

K
,F

O
u
tp
u
t:

E

In
p
u
t:

G

G
oa
l

n

M
o
d
al
it
y

H
as
h

A
d
d
re
ss

In
p
u
t

O
u
tp
u
t

A
f
(A

)
1

1;
5;
7;
..

2;
6;
4;
..

B
f
(B

)
2

1;
2;
7;
..

3;
7;
5;
..

. . .
E

f
(E

)
p

4;
7;

1;
n
;

Fi
gu

re
1

2
:A

n
ill

us
tr

at
io

n
of

th
e

gr
ap

h
co

nn
ec

ti
on

pr
oc

es
s.

Th
e

no
de

s
of

th
e

gr
ap

h
ar

e
de

pi
ct

ed
on

th
e

ri
gh

ts
id

e.
D

ur
in

g
th

e
fir

st
lo

op
ov

er
th

e
no

de
s

th
e

in
di

ce
s

of
th

e
m

od
al

it
ie

s
ar

e
st

or
ed

in
a

1
di

m
en

si
on

al
ar

ra
y

th
at

co
nt

ai
ns

tw
o

ve
ct

or
s:

In
pu

ta
nd

O
ut

pu
t.

Th
e

ad
dr

es
s

of
ea

ch
m

od
al

it
y

is
co

m
pu

te
d

us
in

g
a

ha
sh

fu
nc

ti
on

af
te

r
w

hi
ch

th
e

in
de

x
is

ei
th

er
pu

sh
ed

in
to

th
e

In
pu

to
r

O
ut

pu
tv

ec
to

r
de

pe
nd

in
g

on
th

e
lo

ca
ti

on
of

th
e

co
ns

id
er

ed
m

od
al

it
y.

Fu
rt

he
r,

a
lo

op
is

pe
rf

or
m

ed
ov

er
th

e
ar

ra
y,

an
d

ed
ge

s
ar

e
in

se
rt

ed
in

to
th

e
gr

ap
h

ba
se

d
on

th
e

in
di

ce
s

of
In

pu
t

an
d

O
ut

pu
t

ve
ct

or
s

(A
lg

or
it

hm
2
).

24 connected graph

The provided naive algorithm will result in a graph that has all the corresponding

nodes connected. The positive side of this algorithm is the simplicity of implementa-

tion. The drawback of the algorithm is its complexity which is (n2 p2), where n is the

number of nodes and p is the number of modalities. On the other hand the algorithm

can be easily parallelized and the complexity can be reduced to (n p).

hash based algorithm : A more complex approach for achieving a connected

graph would be by using a hash function of the modalities. For each modality two

vectors containing the indices of the nodes are needed, where the modality is present

as an input or output. A single loop through all of the nodes will populate the input

and output vectors for each modality. An additional loop through input and out-

put vectors would be enough to insert all the edges. This approach is described in

Algorithm 2.

The drawback of this algorithm is the more complex implementation than in the

case of Algorithm 1; however, the complexity is significantly lower (2np). The latter is

comparable to the complexity of Algorithm 1 after parallelization. Thus, a preferred

way of connecting the graph would be using Algorithm 2.

3.3 DESCRIPTION OF NODES

The transformation graph is constructed using different types of nodes and different

types of edges. In this Section we will provide a detailed overview of all of them. We

distinguish between three types of nodes: transformation blocks, Start nodes, Goal
nodes, and three types of edges: basic edges, iteration dependent edges and high-

order edges. The type of an edge is determined based on the class of the input block

it connects to, and defines the weights that would be attached to it. Each node of

the transformation graph contains information regarding its error profile. The error

profiles correlate with the errors that either occur during sensing or because of the

transformation to the current values of the arguments that are being processed. The

profiles can be provided either in form of a function or of a look-up table.

3.3.1 Transformation Blocks

Transformation blocks represent a series of mathematical and physical transforma-

tions that result in a modality change between the initial and resulting arguments.

An example of a simple transformation block can be an implementation of Newton’s

second law, where the modalityN is obtained from the initial kg andm/s2 modalities.

As was mentioned before, each transformation block consists of two sections: input

3.3 description of nodes 25

Algorithm 2 Hash function based algorithm for connecting the transformation graph.

The algorithm requires as an input the unconnected nodes. The latter will be referred

to as: Graph

1: struct Mod # Container for indexes
2: vector<int> input;

3: vector<int> output;

4: end struct

5:

6: int nMod; # Amount of modalities
7: Hash hash; # Hash function
8: nMod = Graph.getNumberOfModalities();

9: Mod mod[nMod]; # Container for each modality

10: hash.init(nMod);

11: for all V ∈ Graph.Nodes do

12: for all Mo ∈ V .Output.Modalities do

13: int ind1 = hash.cmpIndex(Mo.Name);

14: int ind2 = V .getIndex();

15: mod[ind1].input.push_back(ind2);

16: end for

17: for all Mi ∈ V .Input.Modalities do

18: int ind1 = hash.cmpIndex(Mi.Name);

19: int ind2 = V .getIndex();

20: mod[ind1].output.push_back(ind2);

21: end for

22: end for

23: for all ind ∈ [0..nMod] do

24: int isz = mod[ind].input.size();

25: int osz = mod[ind].output.size();

26: for all o ∈ [0..osz] do

27: for all i ∈ [0..isz] do

28: int e1 = mod[ind].output(o);

29: int e2 = mod[ind].input(i);

30: Graph.insertEdge(e1,e2);

31: end for

32: end for

33: end for

34: return Graph;

26 connected graph

K
L

K ∗ L

Mi

Mi−1

δt

∆M
δt

m1; r1

...
mΩ; rΩ

∑Ω
i=0mir

2
i

A

B

E

e|b

e|ξ

e|Ω

Basic

Iteration Dependent

High-Order

Figure 13: Different classes of transformation blocks. (A) A transformation with a basic input
block. Those are linear transformations that require only one value as its input
argument. Here b is the multiplicative weight that is normally set to one for these
blocks. (B) A transformation with an iteration dependent input block. Those rep-
resent the first class of non linear transformations that require sequential values of
the input argument from the previous and current iterations. Here ξ is the multi-
plicative of the weight that is higher than one due to the non linear nature of the
transformation. (C) Transformations with high-order input blocks. Those require
multiple consecutive values of the input argument, and do not retain state. Here
Ω is the multiplicative weight, usually higher than two. In all of the cases above e
is the additive weight. All of the weights depend on the optimization parameters
of the problem and will be discussed in Section 3.5.

and output. The output section determines the nodes to which the current node will

be connected too. The role of the input section is more complex. It determines where

3.3 description of nodes 27

the connections can be received from as well as the amount and the re-usability of the

values of input arguments. Based on the type of input arguments that the transforma-

tion requires, we differentiate between three classes of input blocks: basic, iteration

dependent and high-order. Each of these classes is aimed at modeling a specific type

of mathematical or physical transformations. In addition, each transformation block

is equipped with an error profile. The error profiles aim to model the errors that oc-

cur due to the transformation and are used heavily when the goal of the framework

is to optimize for minimal error accumulation.

basic input blocks : Basic input blocks belong to transformations that require

only one unique value for each input argument. An example of a transformation

with such an input block can be a simple multiplication by a scalar. Figure 13 (A)

illustrates a case with a basic input block. Let node N1 require K and L arguments

as input, where K is provided from the output of node N2 and L is a constant that is

provided externally. Then, N1 will only need to receive one value of K from N2 and

one value of L externally to perform the transformation K ∗L. Transformations with a

basic input block can be used to model Newton’s second law, to compute force from

acceleration.

iteration dependent blocks : These input blocks belong to transformations

that, along side with the current value of the argument, require their value from previ-

ous iterations. An example of a transformation that has an iteration dependent input

could be a computation of a derivative, e.g. to determine velocity from displacement.

These transformations retain state. Let N1 be a node that computes derivatives and

requires Mi, Mi−1 and external constant δt as input arguments and N2 be a node

that provides Mi as output. During the first iteration N2 will provide N1 with M1.

However, since N1 requires two arguments to perform the transformation, it will not

proceed during this iteration and will be halted. Nonetheless, it will store the value

of M1 to be used in the next iteration. In the second iteration N2 will provide N1
with M2, this time N1 will have all the required input arguments and will perform

the transformation M2−M1. After the transformation is performed N1 will store the

value of M2 for further use in the next iteration. Further operation of the N1 node

will be similar to the second iteration. An example of an iteration dependent block is

illustrated in Figure 13 (B).

high-order input blocks : The third class of input blocks belongs to trans-

formations which require multiple consecutive values of their input argument and

do not retain state, see Figure 13 (C). A mathematical example of a transformation

requiring a high-order input block is numerical integration. Such a transformation

28 connected graph

block could be an implementation of discrete computation of the moment of inertia.

The order of the block is determined by the amount of required values. Let N1 be

a second order high-order node that requires [m1; r1], [m2; r2] pairs of arguments to

preform, and N2 provides [mi; ri] as output. During the first iteration N2 will pro-

vide the arguments [m1, r1] to N1. Since the latter needs two values to operate, it will

store the value but will not perform the transformation. During the second iteration

N2 will send [m2; r2] to N1. Now that both of the needed arguments are provided,

N1 will perform the transformation m1r21 +m2r
2
2; however, after the transformation

is performed N1 will delete both of the values. The following two iterations would

be performed similarly to the first and second iterations.

The difference between the high-order and the iteration dependent input blocks is

that the latter store the current value of the argument for use in the next iterations,

whereas the high-order input blocks do not maintain any state.

[A,BS1] [BS2,C] [D]

A,BS1,C,D

Start 1

A,BS2,C,D

Start 2

Sensor: S1 Sensor: S2 Sensor: S3

Figure 14: An example of a Start node creation, from a given set of initial sensors.

3.3.2 Start Nodes

Start nodes are special nodes that describe all of the available input sensors. In con-

trast to transformation nodes, these consist only from one section, i.e. output. As a

result all the edges of Start nodes are pointing out of them. These nodes are con-

structed using the operation modalities of the initial sensors. In cases when all of the

initial sensors have non-repeating operation modalities, they are all compiled into an

output block of a single Start node. In cases where some of the initial sensors have

the same sensing modality, more than one Start node must be created. The amount

of Start nodes needed is equal to the amount of the repeating modalities of the initial

sensors. Consider Figure 14. Let S1 be a sensor that can sense in [A,B] modalities,

sensor S2 in [B,C] modalities and sensor S3 in [D]. In this case all of the sensing

modalities of the initial sensors are unique except B, which can be sensed by two

separate sensors. For simplicity we will mark values of B sensed from S1 by BS1 and

from S2 by BS2. Because of the two repeating modalities, two Start nodes will be

created. The first with [A,BS1,C,D] and the second one with [A,BS2,C,D] output pa-

3.3 description of nodes 29

rameters. In case the framework is required to optimize for minimum error for each

Start node, a separate connected graph is needed. Note that even though each start

node is assigned to a separate transformation graph, they are all identical. The only

difference between the separate graphs is the weights assigned to the edges, since

they depend on the accuracy of the sensors. In cases where the framework needs to

optimize only for complexity, a single graph with a single Start node can be used.

3.3.3 Goal Nodes

Goal nodes describe the desired modalities that need to be sensed. They are similar

to Start nodes in the sense that they also have only one section, but in contrast to

Start nodes that section is the input section. The arguments of the input section are

set to the modalities that are needed to be sensed. As a result of having only an input

section, Goal nodes have only edges that go into them.

3.3.4 Error Profiles

Error profiles are an integral part of each transformation block. They represent the

error that occurs due to the transformation of the current values of the arguments that

are being processed. Those profiles are used during the computation of edge weights,

in cases where one of the optimization parameters is set to error minimization. After

the transformation blocks are implemented, the profiles must be computed. There are

several ways of obtaining the error profiles. In the case of Start nodes the error profiles

are usually given in the data-sheet of the sensors, if not they must be estimated

experimentally.

analytical estimation of error profiles : For some transformation blocks

that implement simple mathematical operations the error profiles can be estimated

analytically or are already known. We will demonstrate the estimation of the pro-

file with an example transformation that estimates velocities based on the spacial

changes in time. The mathematical implementation of the mentioned transformation

block is a numeric estimation of a derivative.

Assume a one dimensional case where we want to estimate the velocity of a point

that moves with constant acceleration a at time t2. Let the position of a point at time

t1 be estimated as d1+ δd1 and at time t2 be estimated as d2+ δd2, where d1 and d2

30 connected graph

are the actual positions of the point and δd1 and δd2 are the estimation errors. Then

the estimated velocity v ′ of the point at time t2 would be computed as:

v ′ = d2−d1+δd2−δd1
t2−t1

⇒
v ′ = d2−d1

t2−t2
+
δEd12
∆t

∆t ≡ t2 − t1 δEd12 ≡ δd2 − δd1

(1)

The actual velocity v and the position can be computed analytically from the acceler-

ation:
v =

∫
aδt⇒ v = at

d =
∫
vδt⇒ at2

2

(2)

The relation between the actual and estimated velocities would be:

v ′ = v+ Ev (3)

where Ev is the estimation error. Our goal is to estimate Ev. From Equation (2) we

can determine that the actual positions of the point at times t1 and t2 were:

d1 =
at21
2

d2 =
at22
2

(4)

If we plug Equation (4) into Equation (1) we will get:

v ′ = a(t22−t
2
1)

2(t2−t1)
+
δEd12
∆t ⇒

v ′ = a(t2−t1)(t2+t1)
2(t2−t2)

+
δEd12
∆t ⇒

v ′ = a
2 ∗ (t2 + t1) +

δEd12
∆t ⇒

v ′ = a
2 ∗ (2t2 − (t2 − t1)) +

δEd12
∆t ⇒

v ′ = at2 − a∆t
2 +

δEd12
∆t ⇒

(5)

Using Equations (5), (2) and (3) we can determine the error of velocity estimation:

Ev =
δEd12
∆t

−
a∆t

2
(6)

We can see that the error depends on three parameters: the time step ∆t, the errors

of position estimation δEd12 and the acceleration a of the point. Depending on the

problem, the value of acceleration might not always be available. In such cases we

recommend an adaptive estimation of its value: initially make a rough estimate of

the acceleration based on current and previous velocities and store the value. Then

refine the value of the rough estimate by averaging it with the rough estimates from

future iterations.

3.4 propagation of information through the graph 31

numerical estimation of error profiles : It is not always possible to

estimate the error profile of a transformation block analytically. There are cases where

either the complexity of the mathematical implementation of the block or the degree

of the resulting equations is too large. For those cases we recommend the numerical

estimation of the error profile. The estimation process varies on a case to case basis;

however, it is possible to draw general guidelines for it. Initially one needs to isolate

the set of variables that influence the occurring errors. Further, the operation range

with a sampling rate for the mentioned variables must be determined. Once all of

the above preparations are made, one must design an experiment that can determine

the error-variable correlation in their operation range with the selected sampling

rate. The collected data from the experiment needs further processing, where an "n"

dimensional curve must be fitted to it. This results in a mathematical representation

of error-variable correlation which can be used as an error profile for the considered

transformation block. All of the guidelines can be summarized as follows:

1. Isolate variables influencing errors.

2. Determine their operation range and sampling rate.

3. Perform an experiment to establish error-variable correlation

4. Fit an "n" dimensional curve to the data

3.4 PROPAGATION OF INFORMATION THROUGH THE GRAPH

Now that all of the integral parts of the graph are known we will discuss the mechan-

ics behind the information propagation through the transformation graph. To form a

general idea on how the data spreads through the transformation graph and how dif-

ferent types of transformation blocks affect its spread we will discuss the mechanics

of data propagation. To develop a better understanding of the nature of uncertainty

propagation, we will consider a simple transformation graph and illustrate how the

errors propagate through it. Finally, we will illustrate how the high-order transfor-

mation blocks influence the performance of the chain by discussing the mechanics of

complexity propagation.

3.4.1 Data Propagation

Consider Figure 15. The figure depicts basic transformation blocks as squares, itera-

tion dependent transformation blocks as 8 edge stars and high-order transformations

as 12 edge stars. For simplicity reasons the high-order transformation block is set to

32 connected graph

(a) First Iteration (b) Second Iteration

(c) Third Iteration (d) Fourth Iteration

(e) Fifth Iteration

Figure 15: Illustration of the information propagation mechanics though the graph. The
square boxes represent basic transformations, the eight edge star represents an
iteration dependent transformation. The twelve edge star represents a high-order
transformation, which for simplicity reasons is of second order.

second order. The transformation nodes that have not been active are depicted in

gray and the transformation nodes that are currently active or have been active are

represented in green. The data is depicted as red circles where the numbers in the

circle correspond to the iteration during which the data was created. After the first

3.4 propagation of information through the graph 33

iteration 3.15(a) all of the nodes in the first column receive the data from the initial

sensor. The first basic transformation at (1, 1) is ready to perform, the iteration depen-

dent at (2, 1) and high-order at (3, 1) transformations save the current data and do not

proceed any further. After the second iteration 3.15(b) the second basic block at (1, 2)

is activated and a new set of data is generated by the initial sensors and passed to

the transformation blocks at (1, 1),(2, 1) and (3, 1). Now both, the iteration dependent

and the high-order transformations are activated and can perform. After the third

iteration 3.15(c) the basic transformation blocks (1, 3),(2, 2) and (3, 2) are activated.

Both, the iteration dependent as well as high-order blocks have performed at least

once. The iteration dependent block has stored the data from the second iteration,

has received the data from the third iteration and is ready to perform. The high-

order block received the third iteration data from the initial sensors and is waiting

for further data to perform. After the fourth iteration 3.15(d) all of the transformation

blocks in the graph have been activated. Note that both transformations at (2, 3) and

at (3, 3) are active and are ready to process the data from the first iteration. In con-

trast to them the transformation at (1, 3) has already been active and is processing

the data from the second iteration. Similar to the second iteration the iteration depen-

dent transformation block has saved the data from third iteration, has received the

new data from the fourth iteration and is ready to perform. In all further iterations

the iteration dependent transformation block will perform similarly, thus we will not

discuss it further. The basic transformation block at (3, 2) is idle since the high-order

transformation did not perform during the last iteration. The high-order block has

received the fourth iteration data and combined with the saved third iteration data is

ready to perform. After the fifth iteration 3.15(e) the situation is similar to the third

iteration 3.15(c), with the exception that all of the transformation blocks have been

activated now. The further flow of the information through the graph would either

look like the fourth iteration or the fifth iteration. Consider the transformation blocks

at (1, 2),(2, 2) and (3, 2) in the fifth iteration, Figure 3.15(e). All of them have data to

process and are active. However, the transformation at (1, 2) is already processing the

data from the fourth iteration, the transformation at (2, 2) is processing the data from

the third iteration and the transformation at (3, 2) is only processing the information

from the second iteration. In all the further iterations the transformation at (2, 2) will

be processing data with a delay of one in comparison to the transformation at (1, 2).

The transformation at (3, 2) will be processing data half as old as the transformation

at (1, 2), i.e. if the transformation at (1, 2) is processing data from iteration eight, then

the transformation (3, 2) is only processing information from iteration four. The rea-

son is that the non basic transformations introduce delays in the system. The iteration

dependent transformations introduce a delay of one. The high-order transformations

cut the rate of the information m times, where m is the order of the transformation.

34 connected graph

3.4.2 Uncertainty Propagation

Uncertainty or error propagation through the chain of transformations is a complex

issue. To get a good understanding of its nature, we will conduct a thought experi-

ment by considering a simple hypothetical transformation chain. The chain consists

of five basic transformation blocks, Figure 16. Each transformation block is identical

to the next one and implements a simple mathematical equation "(A/2) + 1". The

pseudo-code of the entire transformation chain is provided at Algorithm 3. Line 2 of

the algorithm reveals that in cases where the input variable A is not divisible by 2

the node introduces a rounding error due to the conversion to integer.

Figure 16: Illustration of the error propagation model through the transformation chain. A)
Depicts the transformation chain itself. The latter consists of sequential basic trans-
formations that are all equivalent. Each transformation in the chain implements
the "(A/2) + 1" simple equation. A complete pseudo-code implementation of the
transformation chain is given in Algorithm 3

Let us consider Figure 16 A) for the case where the value of the initial input variable

is 129. The values depicted in green are the values that the variable would have taken

in the case where there were no rounding errors and the values in blue are the values

computed with the rounding error. We can see that the error occurring due to the first

transformation is equal to 0.5, Figure 16 B). Further, one can see that each additional

3.4 propagation of information through the graph 35

Algorithm 3 Implementation of the transformation chain in Figure 16 A)

1: function processRed(A)

2: int res = int(A/2) + 1

3: return res

4: end function

5: main(A = 129)

6: for all V ∈ Range[0 : 4] do

7: A = processRed(A)

8: end for

9: return A

block introduces more errors, so that at the end of the transformation chain the error

produced by the system is 0.96875. Note that every single transformation is adding

to the previous uncertainty, and that with each additional transformation the error

increases due to this addition. Further we can see from the graph that although each

transformation in the chain is implementing the same algorithm, the amount of the

added uncertainty is not the same. This is due to the fact that the added errors are

dependent on the value of the input parameter. As a result of our thought experiment

we can see that the nature of the uncertainty/error propagation through the chain is

additive and depends on the input value of the variable.

3.4.3 Complexity Propagation

In this section we will discuss the effects on the complexity of the entire chain due to

the addition of high-order transformation blocks. To do so it is important to under-

stand the difference between run-time and complexity. Run-time is the time it takes

for a program to run on a computer. Although at first glance this seems to be the

logical way of measuring the efficiency of an algorithm, it is not. The problem with

run-time is that it is very hardware specific. The same algorithm can run fast on a

modern i7 processor and run very slowly on an older Pentium 166. Ever since the

transition from assembler to high level programming languages such as C, C++, Java,

etc. the algorithms are being developed on an abstraction level that does not take

into account the underlying processor architecture. Therefore a new metric such as

complexity has been introduced. This measure is designed to count the number of

steps an algorithm has to take to be able to perform. Using the number of steps as a

measure of algorithm efficiency is a more logical way of generalization independent

of the underlying processor architecture. The complexity of an algorithm is a part of

36 connected graph

a broader computational complexity theory [6] which is too complex to be explained

within the scopes of this thesis.

Algorithm 4 Implementation of the transformation chains in Figure 17 A)

1: Transformation chain with basic transformations only

2: main(A)

3: B = basicONE(A)

4: C = basicTWO(B)

5: D = basicTHREE(C)

6: E = basicFOUR(D)

7: return E

1: Transformation chain with one high-order transformation

2: main(A)

3: Static D1 = None

4: Static D2 = None

5: B = basicONE(A)

6: C = basicTWO(B)

7: D = basicTHREE(C)

8: if D1 == None then

9: D1 = D

10: return None

11: end if

12: D2 = D

13: E = high-orderONE(D1,D2)

14: D1 = None

15: D2 = None

16: return E

To get more acquainted with the terms, as well as to understand the effects on

complexity increase caused by the addition of high-order transformation blocks, let

us consider Algorithm 4 and Figure 17 A). The transformation graph consists of two

transformation chains which share the first three basic transformations. The fourth

transformation in one case is a basic transformation and in the other case a high-

order transformation. We will be referring to the latter chain as non-linear and to

the former chain as linear. For the sake of simplicity lets first assume that all of

the transformations have a similar run time, e.g. 1 second, and that the high-order

transformation is of second order. Further the architecture on which the algorithms

are executed carries a sequential nature and has no parallel elements.

3.4 propagation of information through the graph 37

Figure 17: Influence of the high-order transformation blocks on the complexity of the trans-
formation chain. Illustration of a sequential case where the initial sensors operate
at a comparable frequency to the processor and the transformations take equal
amount of time to perform.

We can see that both the linear and non-linear chains have exactly the same ex-

ecution sequence and run-time for the first three seconds, Figure 17. In the fourth

38 connected graph

second the fourth transformation in both of the chains receives the data to process.

The transformation in the linear chain is a basic one, thus it can execute and the

algorithm will provide a return value. Whereas the transformation in the non-linear

chain needs an additional value, thus it is halted and the algorithm returns a blank.

Further in the interval from fifth to ninth seconds the linear algorithm processes and

returns the data a second time. Contrary to that, the non-linear algorithm uses the

time in the interval from fifth to eighth seconds to process the sensory data through

the chain and to provide enough information to the high-order transformation in

order for it to execute. This results in the non-linear chain returning the first valid

value after 9 seconds whereas in the same time the linear chain has returned twice.

The main reason why the non-linear chain has needed twice as much time to return

than the linear chain is that the high-order transformation was located at its end

and the information had to be processed through it twice in order for the high-order

transformation to execute. Due to the fact that each transformation takes 1 second to

execute the execution time and the number of statements in both of the algorithms

are equal.

In the above provided example we assumed that both the initial sensors and the

processor on which the algorithms are executed have similar clock frequencies. Lets

consider a case where the initial sensors operate at a very slow rate, Figure 18.

Here we have the same scenario with linear and non-linear transformation chains,

with the difference that the initial sensors provide information every 30 seconds. In

the first four seconds both of the algorithms run as it was in the previous case. After

the fourth second the linear algorithm returns a value and the non-linear returns a

blank. For the next 25 seconds both of the chains are still and are waiting for the initial

sensors to provide data. Once the sensors generate the data, both of the algorithms

process and return a value in the 33rd second. Next, both of the transformation chains

are still and are waiting for the sensors to provide data in the 60th second. We can see

that in the case with slow sensors both transformation chains have exactly the same

amount of operations as in the case of fast sensors. The non-linear transformation

chain returns values two times slower than the linear one. However, in this case the

location of the high-order transformation does not play a role. In such situations the

bottleneck of the system is the amount of times the initial sensors need to provide

information and not the complexity of the chains themselves. Thus optimization of

the chain for complexity does not make much sense.

Finally lets consider the same two transformation chains with the same complexity

for the case where the sensors are fast and the transformations take non uniform

amounts of time to execute, Figure 19. In this case the shared first three basic trans-

formations take 4, 3 and 1 seconds to execute respectively. Whereas the fourth trans-

formation in the linear chain takes 3 seconds and in the non-linear chain 2 seconds

3.4 propagation of information through the graph 39

Figure 18: Influence of the high-order transformation blocks on the complexity of the transfor-
mation chain. Illustration of a sequential case where the initial sensors operate at a
significantly slower frequency compared to the processor and the transformations
take equal amount of time to perform.

to execute. Note that due to the increased amount of data to process, the high-order

transformations typically take longer to execute than the basic transformations. How-

40 connected graph

Figure 19: Influence of the high-order transformation blocks on the complexity of the trans-
formation chain. Illustration of a sequential case where the initial sensors operate
at a comparable frequency to the processor and the transformations take different
amounts of time to perform.

ever, in this case we chose a faster high-order transformation to emphasize the im-

portance of its location in the transformation chain. To avoid confusion we will first

3.5 edges and weights 41

consider the linear transformation chain. We can see that the linear transformation

chain returns a value after the first 12 seconds, Figure 19 B). After the first 20 seconds

the linear transformation chain has processed the data through the shared transfor-

mations and will return the second value 3 seconds later once the transformation

executes, i.e. it will begin the new processing cycle in the 24th second. It is easy to

show that the total time of execution tlinear of the linear chain is equal to the sum

of execution times of all the individual transformations:

tlinear = tshared + tself (7)

where tshared is the total execution time of the shared transformations, and tself

is the execution time of the fourth basic transformation itself. The non-linear chain

will get the first value to the high-order transformation in the first 9 seconds and

starting from the 10th second it will begin processing the second value through the

chain. In the 20th second the non-linear chain will return a value. Note that in this

case the execution time of the non-linear transformation chain is not 2 times longer,

but instead 1.6 times as long. Although the complexities of the algorithms remain

the same in all the three cases the execution time differs. It is easy to show that the

execution time tnon−linear of the non-linear chain can be computed as follows:

tnon−linear = 2 ∗ tshared + tself (8)

where tshared is the total execution time of the shared segment of the transformation

chain and tself is the execution time of the high-order transformation itself. From

Equation 7 and Equation 8 we can derive that a high-order transformation increases

the run-time of the system n ∗ tprev times, where n is the order of the transformation

and tprev is the total execution time of the transformations located before the high-

order transformation.

3.5 EDGES AND WEIGHTS

We distinguish between three classes of edges. The class of the edge is determined

based on the class of the input block they connect to and is named accordingly. Fig-

ure 13 illustrates all three classes. Basic edges are depicted as a single line, iteration

dependent edges are depicted as a double line with one of the lines dashed, and

the hight-order edges are depicted as two solid lines. Each edge of the transformation
graph is equipped with a weight. The weights of edges consist of two parts: additive

and multiplicative. The values of the weights can depend on several parameters such

as: the class of the input block they connect to, the errors that occur in the block they

originate from, the parameters that need to be optimized and the operation mode.

The weights are usually depicted as light red ovals such as shown in Figure 13. The

42 connected graph

left argument in the oval represents the additive part of the weight and the right one

represents the multiplicative part of the weight. Each of these parts is designed to

model a specific attribute of the transformation they are associated with.

v1

W
or
k
in
g
R
a
n
ge

Value

v1

e1

E
rr
o
r

Value

e2

v2

E
rr
or

Value

Start

A

A B

B D

D

Goal

a0|b

a1|b

a2|b

Figure 20: Illustration of the process of assigning additive weights to the edges for the case of
error optimization. A generic transformation graph is depicted on the right. The
error profiles of the transformation blocks are depicted on the left.

3.5 edges and weights 43

3.5.1 Additive Weights

The additive weights are meant to model the occurring errors due to the transforma-

tion and are associated with edges leading out from the transformation. Thus, when

the optimization parameter of the system is set to minimize complexity alone, all of

the additive weights are set to 1. When one of the optimization parameters is set to

minimize error, each additive weight is computed using the error profile of the corre-

sponding transformation node. There are several ways of computing these additive

weights, and each of them comes with its advantages and disadvantages. We will

discuss two extreme cases here. Consider Figure 20, where the transformation graph
for a generic case is depicted on the right and the error profiles for the Start, first and

second nodes are depicted on the left accordingly. Here, we will show the process of

additive weight computation for static mode only, as computation for dynamic mode

is done in a similar fashion. Our optimization is set only for minimum error. The

Start node represents a sensor that is operating without errors and has an expected

value of v1. Thus the first additive weight a0 will be set to null. Since we are consider-

ing dynamic mode we will propagate the value v1 with modality "A" to compute the

additive weight of the next transformation block. Because of the transformation from

modality A to modality B the value v1 will also change to value v2 with modality B.

To compute the additive weight a1 we take a look at the error profile and see that

the error magnitude for value v1 is e1. Since v1 was estimated with no errors there is

only one way for computing a1:

a1 =
e1
v1

(9)

Further, in the second transformation block the value v2 of the modality B will be

converted to value v3 of the modality D. Since the v2 was estimated with errors, there

are two ways to compute the additive a2. First, we could use the same technique as

we used for computation of a1. Second, we consider the region [v2 − e1, v2 + e1] of

the error profile of the second transformation, and compute the additive weight a2
as follows:

a2 =
max(f(x))

x x ∈ [v2 − e1, v2 + e1] (10)

where f(x) is a function representing the error profile of the second transformation.

The difference between the two methods for computing a2 is as follows. The first

method is computationally fast and does not have a complex implementation. How-

ever, the produced error estimates are quite liberal. In contrast to the first method,

our second method is more computationally intensive and has a complex implemen-

tation. However, the error estimates computed using this method are higher. Thus it

puts stricter limitations on the transformation block. In the case that the optimization

parameters are set to both minimum error and minimum complexity the additive

44 connected graph

weights are computed similarly. The one difference being that they all have an addi-

tional value of one added to them.

3.5.2 Multiplicative Weights

The multiplicative weights are designed to emulate data-flow through the transforma-
tion graph. Accordingly, they can be used to model the complexity of a particular node.

There are two factors that influence the complexity of said node. First, the amount

of data required on the input block, as it is directly correlated with the amount of

data that needs to be processed at least once. Second is the number of loops that

occur within the node itself. This factor is not explicit and varies on a case to case

basis since it depends on the implementation of the node itself. Hence, it is hard to

provide generic guidelines for it. In the case where the optimization parameter is set

to only minimum error the multiplicative nodes are all set to one.

optimization only for minimum complexity : Consider the case of a

transformation node that computes the pose of a camera from a single image. Here,

the node will require (m× n) pixels as input and will provide the pose [R|T] of the

camera as output. Where R is a 3 × 3 rotation matrix and T is a 3 × 1 translation

vector. Then the first factor of representing the complexity will be (m× n). If no fur-

ther information is available about the implementation of the node then the best case

scenario complexity would be (m× n) and the multiplicative weight can be set to

this value. On the other hand, if it is known that the node contains l loops, stricter

restrictions can be used. An (m×n× l) would be the worst case complexity. It is pos-

sible to directly correlate the first factor influencing the complexity to the class of the

input block. By definition, transformations with Basic input blocks require only one

value per argument, thus a liberal estimate of the multiplicative weight would be one,

while a conservative estimate would be equal to the number of input arguments. Iter-

ation dependent blocks require one value of the argument from the current iteration

and have already stored the value of the argument from the previous iteration. This

means that in the best case scenario the transformation has to process only two val-

ues, therefore even the liberal estimate of the multiplicative weight has to be greater

than one. However, since the transformation did not have to wait for the second

value to arrive, a tolerant estimate for the multiplicative weight would be less than 2.

A strict estimate of the multiplicative weight (i.e. worst case scenario) would be to set

to the amount of input arguments plus stored arguments multiplied by the amount

of loops, if any are present. Lastly, high-order transformation blocks require Ω input

argument values in order to function. This case is similar to calculating camera pose

3.5 edges and weights 45

estimation from an image. Thus a tolerant multiplicative weight would be equal to

the order of the block, and a strict one would be equal to the order multiplied by the

number of loops.

optimization for minimum complexity and error : Since there is no

strong physical or mathematical correlation between the error accumulation of an

algorithm and its complexity, it is hard to strike an exact balance in the assignment

of individual multiplicative weights. Therefore a normalized approach is needed. To

do so, one needs to consider all of the transformation nodes of the transformation
graph and isolate the three classes of the transformation blocks into three weight

ranges. This means that the multiplicative weights would have values in the following

span: basic ∈ [1 : b1], iteration dependent ∈ (b1 : b2] and high-order ∈ (b2 : ∞],

where 1 6 b1 6 b2 6 b3. The actual values of each weight would depend on the

problem. If error minimization has a higher priority than complexity minimization,

the multiplicative weights must be assigned liberally. If the opposite prioritization is

desired, then a stricter assignment of multiplicative weights is needed. For a balanced

approach we will suggest the assignment of all the multiplicative weights of basic

edges to one. The amount of processing required by them is minimal; however, they

still require time and therefore need weights assigned to them. For multiplicative

weights of iteration dependent nodes we would suggest a value between 1 and 2.

The individual weights should be computed as relative values where the complexity

of the most complex basic node is taken as minimum and the complexity of the

most complex iteration dependent block is taken as maximum. If all of the iteration

dependent blocks have the same complexity then all of them should be assigned the

same weight. Finally, the high-order blocks would get multiplicative weights of 2

and higher, ideally between 2 and 3. Here, the weights are also computed as relative

values, similar to the case of iteration dependent nodes.

4
S E A R C H T H R O U G H T H E G R A P H

4.1 INTRODUCTION AND OVERVIEW

introduction : In this Chapter we discuss generic examples, which illustrate

all the modes and steps of our framework. Throughout the process we emphasize

the significance of our weight assignment process. Note that all of the weights and

values used here will be generic and will not carry any physical or mathematical

meaning. The graphs are designed to contain all of the previously described trans-

formation block classes. The latter being placed both at the begging of the graphs as

well as at the end in order to accentuate the effects of corresponding weights on the

computation of global path distance.

overview : Initially we describe Dijkstra’s search algorithm, which will be fol-

lowed by the discussion on modifications that we have made to it. Further we demon-

strate the entire work-flow of our framework by using a generic transformation graph.

Next, we illustrate the path computation of the transformation graph, using a variety of

optimization parameters. Finally, we conclude by presenting differences in work-flow

for static and dynamic operation modes.

4.2 DIJKSTRA’S SEARCH ALGORITHM

Dijkstra’s search algorithm is the most popular algorithm in computer science for

single source, shortest path estimation. It is an iterative algorithm with a worst case

complexity of O(n2). It requires a connected graph, where the indices of the source

and target nodes are known. The algorithm can be divided into three logical parts:

preprocessing, distance computation and reasoning. The preprocessing part is per-

formed only once at the beginning of the execution. At this point, all nodes of the

graph, except the source node, are marked as unvisited and their distance is set to

infinity. The distance of the source node is set to zero and the node itself is tagged

as current. During the computation segment the distance between the current node

and all of its adjacent not visited nodes is computed. Further if the newly computed

distance to the adjacent node is shorter than the one already present, the adjacent

node is updated with the new value. The current node is then tagged as visited and

the node with the smallest path distance becomes the current node. This is followed

47

48 search through the graph

by the reasoning segment, where the current node is compared to the target node. If

the match is made then the system returns, if not then the computation segment for

the new current node is executed. The path distance to an adjacent node is computed

as follows:

d = pc +nd (11)

where d is the path distance to the adjacent node, pc is the path distance of the

current node and nd is the distance between the current and the considered adjacent

nodes. The algorithm is presented in Algorithm 5

Algorithm 5 Dijkstra’s search algorithm for finding the shortest path in a connected

graph. The algorithm takes as an input a connected graph, the index of the source

node and the index of the target node. Inputs: Graph, source, target

1: for all V ∈ Graph do

2: dist[V.index] = inf;

3: visited[V.index] = false;

4: end for

5: dist[source] = 0;

6: C = Graph[start];

7: label: 1;

8: if C.index = target then

9: return dist[C.index];

10: end if

11: for all N ∈ V .neighbors do

12: if not visited[N.index] then

13: d = distance(N,C);

14: if dist[N.index] > d then

15: dist[N.index] = d;

16: end if

17: end if

18: end for

19: visited[C.index]=true;

20: C = Graph[index(min(dist[]))];

21: goto 1;

4.3 EXTENDED DIJKSTRA’S ALGORITHM

As already mentioned, we use an Extended Dijkstra’s algorithm with amended as-

signment of weights, and computation of the path distance value to establish the

4.4 path estimation for different optimization parameters 49

set of optimal transformations. We modified the equation for distance computation

between the current and an adjacent node to:

d = (pc + a) ∗m (12)

where d is the newly computed path distance to the adjacent node, pc is the

path distance value of the current node, and a, b are the additive and multiplica-

tive weights of the edge that connects the current and the adjacent nodes.

application example of the extended search algorithm : Figure 21

illustrates the generic graph that was constructed according to the rules described in

Chapter 3. For ease of describing the process we assigned coordinates to all of the

nodes, that can be seen at the bottom right corner. Note that the coordinates are not a

part of the framework and are only provided here to simplify explanations. As in the

case with the standard Dijkstra’s algorithm we begin by assigning the path distances

of all the nodes to inf, with the exception of the Start node, Figure 4.21(a). Those

nodes that are connected to more than one node require an additional individual

subpath distance for each connection. For those cases the path distance to the node

would be calculated as the summation of the subpath distances. Following this, the

path distance is computed to all the nodes of the transformation graph using the

same steps as in the standard algorithm.

Figure 4.21(b) depicts an intermediate case where transformation 22 requires two

inputs that are provided from different sources. In this case we compute the distance

to the considered node as a summation of the two subpath distances. According to

the illustration, the distance to one of the inputs is already computed and is set to

p ′22; however, the distance of the second input is not computed yet and is infinite.

Therefore, the global distance to the node is set to p ′22 + inf = inf.

Finally the chain with the shortest path distance is selected as the optimal chain

of transformations. Consider Figure 4.21(c), if p ′′g < p ′g then the optimal link would

consist of (11, 12, 13) transformations. If the opposite is true, then the optimal link

would consist of (11, 21, 22, 23) transformations.

4.4 PATH ESTIMATION FOR DIFFERENT OPTIMIZATION PARAMETERS

In this section, we will discuss how the "spacial" occurrence of different classes of

transformation blocks influence the global path distance computation, considering

all three cases of the optimization parameter. We will be using the same generic

graph from Section 4.3. Since we are using a purely generic transformation graph we

will not be addressing the physical meaning behind the transformations. However,

50 search through the graph

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

as1|b a11|b

a11|b

a12|m a13|b

as2|m

a21|b a22|i

a23|b

0 inf
inf

inf
inf

inf inf inf
inf

inf

inf

inf11
12

13

21 22 23

(a) First Step

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

as1|b a11|b

a11|b

a12|m a13|b

as2|m

a21|b a22|i

a23|b

0 inf
p11

inf
inf

p21 inf inf

p′22

inf

inf

inf11
12

13

21 22 23

(b) Intermidiat Step

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

as1|b a11|b

a11|b

a12|m a13|b

as2|m

a21|b a22|i

a23|b

0 P
p11 p12

p13

p21 p22 p23
p′22

p′′22

p′′g

p′g11
12

13

21 22 23

(c) Final result of the search

Figure 21: 4.21(a) A depiction of the first step of the search algorithm, here all of the path
distances are assigned to inf expect the Start node. 4.21(b) A depiction of an in-
termediate step of the search algorithm. The step was selected to illustrate the
handling of multiple inputs of a transformation. 4.21(c) The final result, after all
the distances to the goal have been computed.

we will give some mathematical explanations to illustrate the complexity of the non

basic blocks. The generic graph in Figure 22 contains three non basic transformation

4.4 path estimation for different optimization parameters 51

blocks, out of which two are high-order (21, 13) and one is an iteration dependent (13).

The first high-order transformation block (21) computes a simple average of both of

the input values and contains only one loop. Where the second transformation block

(13) computes a weighted average of the input values and contains 2 loops. The

transformation with the iteration dependent input block (23) represents a numerical

derivative. In this case the derivative is computed according to Equation 13, where

the Mi+1 and Mi are the values of the argument from current and previous iteration

steps and h is the step of the function. Since the operation between the two values is

a scaled subtraction the complexity of this block is not large. However, it is still an

iteration dependent transformation and has a disadvantage to basic transformations.

M
′
=
Mi+1 −Mi

h
(13)

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

7|1 1|1

1|1

0|1 0|1

1|1

1|1 0|1

3|1

0 8
7

8
8

1 10 10
2

8

8

1311
12

13

21 22 23

(a) Optimization for minimum error

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

1|1 1|1

1|1

1|4 1|1

1|2

1|1 1|1.1

1|1

0 7.6
1

2
12

2 5 6.6
3

2

13

7.611
12

13

21 22 23

(b) Optimization for minimum complexity

Figure 22: Effects of weight assignment

52 search through the graph

4.4.1 Optimization for Minimum Error

Consider Figure 4.22(a). We have two possible chains: one with a lesser amount of

transformations (marked with red dots) and one with more (marked with blue dots).

Since in this particular case we are only interested in the minimization of error, all

of the multiplicative weights would be set to one. Thus, they will not have any ef-

fect on global path distance computation. The initial sensors do not have repeating

modalities, therefore we have only one Start node. The latter provides [A,B] as output

arguments and has its distance set to 0. The initial sensor that senses in B modality,

has a relatively small error. In contrast to that, the sensor that senses in A modality

has a comparatively large error. The Start is connected to two transformations (11)

and (21). Since (11) requires both high error A and low error B arguments as its input,

the additive weight is set to a comparably high value of 7. On the other hand, (21)

only requires B as its argument, therefore its additive weight is set to a low value of

1. The transformations (12), (13) and (22) do not introduce any errors, therefore their

additive weights are set to 0. This results into them not contributing to the global

path distance computation (see path distance change from (12) to (13) or from (13)

to Goal). From the final result one can see that the global path distance of the link

marked with red dotes is significantly smaller than that of the link marked with blue

dots. There are two main reasons behind it. First, the red link contains only three

transformations, out of which only one contributes to error accumulation. In contrast

to that, the blue link contains 4 transformations. The second reason is that the trans-

formation with most error (11) is shared between the two links. Note that the sole

reason for error accumulation is the existence of transformation blocks with nonzero

additive weights. Thus the error accumulation in the chain is directly correlated to

the amount of transformation blocks with nonzero additive weights.

4.4.2 Optimization for Minimum Complexity

Consider Figure 4.22(b), since the optimization parameters are set to minimum com-

plexity only, all of the additive weights are assigned a value of one. For reasons

described in Section 3.5.2 we assign all of the multiplicative weights of all the ba-

sic transformation blocks to one. As was mentioned before, the high-order transfor-

mation block (21) only contains one loop, thus its multiplicative weight would be

equal to the amount of arguments it requires on the input. On the other hand, the

high-order transformation (13) contains two loops, therefore its multiplicative weight

would be equal to the amount of arguments multiplied by the amount of loops, i.e.

4. Further we consider the iteration dependent transformation (11), where we assign

4.4 path estimation for different optimization parameters 53

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

8|1 2|1

2|1

1|2 1|1

2|2

2|1 1|1.1

4|1

0 23
8

10
22

4 16 22.7
6

10

23

26.711
12

13

21 22 23

(a) Liberal

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

8|1 2|1

2|1

1|3 1|1

2|2

2|1 1|1.5

4|1

0 29.5
8

10
33

4 16 25.5
6

10

34

29.511
12

13

21 22 23

(b) Balanced

Figure 23: Optimization for minimum error and complexity

the multiplicative weight to 1.1, since it is not a complex block that contains only

one scaled subtraction. After the computation of global path distance for both of the

chains (red and blue) we can see that the blue chain has a smaller path distance than

the red one, although it is considerably longer. The reason behind this is that the

high-order transformation block (13) is located almost at the end of the blue chain.

Since it requires two values of the same argument at its input, the information has

to travel through the chain two times, thus the actual length of the entire chain turns

from 5 (i.e. Start -> 11 -> 12 -> 13 -> Goal) into effectively 8 (i.e. | Start -> 11 -> 12|

& |Start -> 11 -> 12| -> 13 -> Goal). Further, because of the two loops inside (13) the

information that arrives on the input of the block must be processed twice, which

introduces more complexity. Whereas the blue chain has the high order transforma-

tion at its source, which means its effective length is 8 (i.e. || Start & Start | -> 21

| & | Start -> 11 | -> 22 -> 23 -> Goal), but in contrast to the red chain the last

transformation is a relatively low complexity iteration dependent block.

54 search through the graph

4.4.3 Optimization for Both Minimum Complexity and Minimum Error

The final example (Figure 23) is set to optimize for both minimum complexity and

error. As we discussed in Section 3.5, it is hard to strike a balance for the assignment

of weights since the errors and complexity are not strongly correlated. Thus we will

demonstrate two cases: First, where the weights are assigned liberally, i.e. the loops

in high-order blocks are not considered and iteration dependent loops are only at a

slight disadvantage to basic blocks. Second, a balanced approach where the weights

for non basic blocks are assigned based on their comparative complexity in their

category. All of the additive weights are incremented by one. This is done because of

the nodes that introduce no errors but have complexity, e.g. (22), (13) and (12).

liberal weight assignment : Figure 4.23(a) demonstrates the results for the

liberal weight assignment. We can see here, that the chain with small error accumu-

lation (red chain) has the smaller global path distance. Which means that as a result

of liberal weight assignment the optimization for minimum error was given a higher

priority. This is due to the fact that for this case, the multiplicative of the node (13)

has a smaller impact than it would have for a stricter weight assignment.

balanced weight assignment : In the second example (Figure 4.23(b)) we

used a balanced approach for weight assignment. Here the multiplicative weights of

the high-order blocks were assigned in the range of [2− 3], according to their relative

complexity to each other. The iteration dependent blocks were assigned weights be-

tween [1− 2] based on their relative complexity. Note that since the node (13) has a

higher impact value now, the global path distance is shorter for the link with smaller

complexity (blue chain). This means that in this case, the optimization for minimum

complexity was given a higher priority.

4.5 OPTIMIZATION MODES

Our framework can operate in two modes: static and dynamic. As in case of optimiz-

ing for minimum complexity or error there is a trade-off here as well. The dynamic

mode estimates the additive weights of the nodes based on the current values of the

argument. This means that during every iteration it computes the additive weight for

each node and recomputes the optimal path distance. This results in more accurate

results with a drawback of longer execution time. Because of its nature, the dynamic

mode only makes sense for the cases where optimization for minimum error has

high priority. In contrast to dynamic mode, static mode estimates the optimal chain

4.5 optimization modes 55

only once in the beginning. It computes the additive weights only once based on the

expected values from the sensor. As a result static mode has a short execution time,

but the provided results for the minimization of error are less reliable. Thus, it is

preferable to use the system in static mode when the emphasis is on minimization

of complexity. We will describe the operation for both of the modes based on the

generic example illustrated in Figure 24. Here we have two sensors that have one

overlapping modality "B", which results into two Start nodes. For visual purposes

only we depict both of the start nodes as one.

[A,BS1]

[BS2,C]

Start 1

A,BS1,C

Start 2

A,BS2,C

Start 1,2

A,BS1/S2,C

A,BS1/S2,C

Start 1,2

A
B

D
Di

Di−1
E

E
F

G

B
C

M
M1

M2

M3

G
G

Goal

a|b a|i a|b

a|ba|b

a|h a|b

11 12 13

21
22

C

a|m

P

b

h

i

F

0
p1s1|s2 p2s1|s2 p3s1|s2

p4s1|s2 p5s1|s2

P 1
s1|s2 P 1

s1|s2

Sensor: S1

Sensor: S2

Weights

External Constants

Path Distance

Basic Mult.

High-Ord. Mult.

Iter.-Dep. Mult.

Figure 24: A Generic example to help illustrate the work-flow of the framework in differ-
ent modes. The system consists of two sensors that have one overlaying modality
"B". This results into two Start nodes that are illustrated here as one for clarity
purposes.

dynamic mode : We begin with the dynamic mode. Since we have two Start
nodes we have to repeat the entire process twice. Initially we consider the first Start
node. It has two edges pointing out of it: one into node (11) and one into (21). Node

(11) requires "A,BS1" arguments; thus, we use their current values and the error pro-

file of node (11) to compute the additive weight p1s1. Further, we use the current

values of "BS1,C" combined with the error profile of node (21) to compute the ad-

ditive weight p4S1. This concludes the computations for the Start node. Further, we

consider the first adjacent node to the Start node, i.e. node (11). It has only one node

56 search through the graph

pointing out of it into node (12). We use the current value of the output argument

of node (11) combined with the error profile of node (12) and compute the additive

weight p2S1. Next, node (21) is considered and its additive weight p5S1 is computed

using the same technique. We repeat the process until all of the p∗S1 additive weights

are computed. Once done, we consider the second Start node and use the same tech-

nique as in the case for the first Start node to compute all of the additive weights

p∗S2. Once all of the additive weights are established, we run the extended Dijkstra’s

search algorithm on both of the graphs. Finally we pick the result that originates

from the link with the shortest path distance in both of the graphs. During the next

iteration we repeat the entire process again for the new values from the sensor.

static mode : As in the dynamic mode, we begin with the first Start node and

its adjacent nodes. In contrast to the dynamic mode, we use the working range of

the sensors to establish the expected values for each sensing modality. We compute

the additive weights p1S∗ to p5S∗ (Figure 24) using the same techniques as before with

the difference between them being the values used. Once all of the additive weights

p∗S1|S2 are computed we run the extended Dijkstra’s search algorithm and establish

the optimal link based on the shortest global path distance. Further, once the link is

established we discard all of the transformations and Start nodes that are not a part

of the link. Finally, during the entire operation of the constructed sensor we use only

the values resulting from the optimal link.

4.6 SPECIFICATIONS OF THE TRANSFORMATION GRAPH

In this section we will provide the specifications of the framework for dynamic sen-

sory substitution. The information provided here is the result of a statistical summa-

tion for the experiments that will be discussed in the following chapters.

complexity of the graph creation and search : Based on the Algo-

rithm 2 it is easy to show that the worst case scenario complexity of the graph creation

algorithm is directly correlated to the following expression n(p+ k). Where n is the

number of available transformations in the bag of transformations, p is the maximum

number of input parameters a node can have and k is the maximum number of out-

put parameters a node can have. The maximum number of input parameters that

have been encountered in our experiments was equal to 3 and the maximum number

of output parameters was equal to 2. Since the maximal number of the input and

output parameters is at least by a magnitude smaller than the number of the transfor-

mations in a bag of transformations, the complexity of the graph creation algorithm

can be written in O notation as O(n). The latter means that the graph creation algo-

4.6 specifications of the transformation graph 57

rithm has a linear complexity. Each of the connections in the transformation graph

are established automatically. The original Dijkstra’s algorithm has a complexity of

O(v2) where v is the number of nodes in the transformation. Since our extension to

the Dijkstra’s algorithm does not result in an introduction of additional loops, the

complexity stays the same O(v2). Since the path creation and establishment is only

done once in the static mode, the run-time of the system is merely dependent on

individual execution times of each of the transformations as well as their type. The

dynamic mode requires a reclassification of the paths during each iteration. Thus, the

run-time of the evaluation algorithm with quadratic complexity will be added to the

run-time of the system.

system specifications : On average 10 connections are established between

8 transformation blocks in a typical transformation graph. In all of the experiments

that we conducted the maximum number of alternative transformation chains in the

graph was 2. During the course of our experiments we distinguished between 25

modalities that are listed in Table 1.

N Name Representation N Name Representation

1 Gray Image {u, v,g} 14 2D Force { fx, fy }

2 Color Image {u, v, r,g,b} 15 3D Force { fx, fy, fz }

3 Time t 16 Circle {x,y, r}

4 1D Point p 17 Rectangle {x,y,w,h}

5 2D Point {u, v} 18 Ellipse {x,y,w,h,α}

6 3D Point {x,y, z} 19 Square {x,y,a}

7 1D Acceleration a 20 1D Translation {T }

8 2D Acceleration { ax,ay } 21 2D Translation {tx, ty}

9 3D Acceleration { ax,ay,az } 22 3D Translation {tx, ty, tz}

10 1D Velocity v 23 2D Rotation {R2D}

11 2D Velocity vx, vy 24 3D Rotation {R }

12 3D Velocity vx, vy, vz 25 External Constant K

13 1D Force f

Table 1: Table of modalities used during the experimentation process

Part II

A P P L I C AT I O N E X A M P L E S

5
S H O RT I N T R O D U C T I O N T O T H E E X P E R I M E N TA L

VA L I D AT I O N

In the second part of this dissertation, we will provide some application examples

of our framework as well as experimental evaluation. We begin with a validation of

error estimation accuracy, where we demonstrate how the absolute errors estimated

using our framework compare to the real world errors. Following this, we demon-

strate how our framework performs in optimization for minimal errors in dynamic

mode, where the framework is tasked to dynamically select the most optimal chain

of transformations depending on the operation mode of the initial sensors. We will

conclude this part by demonstrating the usage of our framework in the design and

construction of a sensor. The constructed sensor is first analyzed using our frame-

work to pick the most optimal chain of transformations. Next, a real world sensor is

constructed based on the prior analysis. Finally, we present the characteristics of the

constructed sensor.

61

6
VA L I D AT I O N O F T H E E R R O R E S T I M AT I O N A C C U R A C Y

6.1 INTRODUCTION AND OVERVIEW

introduction : In this chapter we will experimentally demonstrate how the

errors estimated using our framework compare to real world errors. To do so we de-

signed an experiment where a solid ball is let to freely roll down a slope influenced

only by the force of gravity, Figure 25. The ball is simultaneously observed by a high

frame-rate camera that estimates its velocity using some mathematical and physi-

cal manipulations. This experiment is modeled after a well known physics problem

which allows us to analytically determine the acceleration and the velocity of the ball

at any given point in time.

overview : We will initially discuss the transformation graph, its operation mode

and the optimization parameters. Following this, we will analytically compute the

error profiles of the transformation blocks. Next we will describe in detail the exper-

imental setup and the conducted experiments that are based on the error profile of

the entire transformation chain. We will conclude by demonstrating the results from

the experiments.

(a) Different angles of tilt (b) Setup

Figure 25: Illustration of the setup for the experiments conducted to estimate the relation of
the real world errors to the computed global path distance. A ball was let to roll
freely on the flat surface. The acceleration of the ball was measured for different
angles of tilt.

63

64 validation of the error estimation accuracy

C
a
m
era

{
xz }

i , {
yz }

i ,{g}
i ,t

i
{

xz }
i

{
yz }

i
{g}

i



uvhwα


i

r, 

uvhwα


i


xyz


i

p
i


xyz


i 

x
0

y
0

z
0


V

p
i

p
i−

1

δt

t
i

t
i−

1
δtG

oa
l

V

r

x
0

y
0

z
0

0|1
s|1

0|1

0|1

0|1

0|1

E
a
,t |1

E
llip

se
D
etection

3D
R
econ

stru
ction

C
on

version
to

1D
V
elo

city
E
stim

ation

T
im

esta
m
p
E
stim

ation

Figure
2

6:T
he

transform
ation

graph
for

estim
ating

the
velocity

ofa
rolling

ball.The
fram

ew
ork

is
setto

operate
in

dynam
ic

m
ode

w
ith

the
optim

ization
set

to
only

m
inim

ize
errors.Som

e
of

the
transform

ations
introduce

no
errors

therefore
their

additive
values

are
set

to
zero

in
advance.

6.2 transformation graph based analysis 65

6.2 TRANSFORMATION GRAPH BASED ANALYSIS

Figure 26 illustrates the transformation graph of the experiment. Since the goal of our

experiment is to determine the relation of the estimated errors to real world errors,

the operation mode is set to dynamic and the optimization parameters are set for

error minimization. This results in all of the multiplicative weights being set to one.

The only sensor of our system is a high frame-rate camera. Therefore, we have only

one Start node that provides the rays pointing from camera center to the environment

alongside with color and timestamps. The data provided by the Start node is sensed

without errors. Therefore, the additive weights of the edges pointing out of it are set

to zero. Since the angle and the distance between the camera and the rolling ball is

fixed, the only errors occurring in the transformation responsible for "Ellipse Detec-
tion" are due to the flickering of light and discrete nature of the input data. Those

errors have a static nature. Thus, the additive weight of the edge pointing out of the

transformation is set to a constant "s". A projection of a sphere on a plane is always

a circle; therefore, the transformation responsible for "3D Reconstruction" implements

scaling of the input data and does not introduce any errors of its own. The transfor-

mation responsible for "Conversion to 1D" implements a vector subtraction and norm

computation. It too does not introduce any new errors; thus, the weight of the edge

pointing out of it is set to zero. The errors occurring due to numeric derivation (trans-

formation responsible for "Velocity Estimation") where computed in Section 3.3.4 and

are equal to:

Ea,t =
δEd12
∆t

± a∆t
2

(14)

where Ea,t is the error of velocity estimation, δEd12 is the error with which the

pose was detected, a is the acceleration of the ball and ∆t is the time-step. Since

we only have one chain we can estimate an analytical equation for computing the

amount of the global error accumulation using the rules described in Chapter 3:

L = Ea,t + s =
δEd12
∆t

± a∆t
2

+ s (15)

where Ed12 is directly related to the static error s. Therefore, it has a static nature.

Hence the only variables influencing the error are the acceleration a and the time-step

∆t.

6.3 EXPERIMENTAL VALIDATION

experiments : As it was shown in the previous Section there are two parameters

that are influencing the error of the system: the time-stamp ∆t and the acceleration of

66 validation of the error estimation accuracy

the ball a. Therefore, the conducted experiments are split into two parts. In the first

part we let the ball roll down the ramp with a fixed tilt. We register the entire motion

using our high frame-rate camera which captures 120 frames per second. Further

we use the captured data and compute the velocity of the ball during rolling. This

is repeated several times for different values of ∆t. In the second part we conduct

the same experiment. However, now we keep the time-step ∆t constant and alter

the acceleration a of the ball. This is realized by altering the tilt angle of the ramp,

Figure 6.25(a). Further, the errors for both cases are computed using the relations of

current measured values to the ones that are analytically estimated.

αh
l

~v

m~g

Figure 27: Sketch of the experimental setup. The ball was let free to roll on the ramp, influ-
enced only by gravity. The experiment was repeated with different slopes.

analytical estimation of the acceleration : Consider a solid ball with

a mass m and radius r that was let to roll freely on a ramp with height h and length l,

Figure 27. The goal is to estimate the acceleration a of the ball, since it will completely

determine its velocity at any given point in time v = at. According to the law of

energy conservation:

mgh =
mv2

2
+
Iω2

2
(16)

where g is the magnitude of the gravity vector, I is the moment of inertia of the

ball, ω is the angular and v is the linear velocity of the ball at the bottom of the

slope. Since the forward propulsion of the ball is solely due to its rotation, the linear

velocity of the ball is equal to the linear velocity of the surface of the ball:

v = ωr (17)

Thus we can write the Equation (16) as follows:

mgh = v2(
m

2
+

I

2r2
) (18)

The moment of inertia for a solid ball can be computed as such:

I =
2

5
mr2 (19)

We combine Equations (19) and (18), which results into:

mgh = v2(
m

2
+
2mr2

10r2
) (20)

6.3 experimental validation 67

(a) Alternating Time-Steps

(b) Resulting Errors

Figure 28: Illustration of the experimental results. Here the ball was let free to roll on a sur-
face with a fixed slope. Figure 6.28(a) illustrates velocities of the ball that were
computed using different time-steps. Figure 6.28(b) illustrates the resulting rela-
tive errors for different time-steps.

Finally after canceling the m and r2 we get the following equation for the velocity

of the ball at the bottom of the ramp:

v2 =
10

7
gh (21)

68 validation of the error estimation accuracy

The exit velocity v can be defined as a time integral of acceleration a; thus, for the

entire time of travel it is equal to v = at. h can be represented as l cosα where l is the

length of the ramp. In this particular case l is also equal to the distance that the ball

has traveled to achieve velocity v thus it can be computed as an integral of velocity

over time or a second integral of acceleration over time l = at2

2 . After plugging the

mentioned values into Equation (21) we get the following:

a2t2 =
5

7
at2g cosα (22)

which results into an equation for computing the acceleration of the ball:

a =
5

7
g cosα (23)

6.4 EXPERIMENTAL RESULTS

We conducted the first set of experiments for altering time-steps and fixed acceler-

ation. Figure 6.28(a) illustrated the computed velocities. The velocities depicted in

bright green have the smallest time-step ∆ t = 1
120 . For the consecutive measure-

ments the time-step was increased to 2
120 , 3120 , 4

120 , 5120 accordingly (see the legend of

the illustration). Figure 6.28(b) demonstrates the comparison of the measured errors

(red line) to the analytically calculated errors (blue line). According to the Equa-

tion (15) the error dependency to the time-step is a summation of a linear and an

inverse functions. For small time-steps the error behaves similarly for both of the

cases. The small drift in measured errors can be explained with some noise that was

not taken into account.

Figure 6.29(a) illustrates the estimated velocities for the case when the tilt of the

ramp was altered (i.e. the acceleration of the ball) and the time-stamp was kept con-

stant. According to Equation (15) the error dependency to the acceleration is linear

(Figure 6.29(b), blue line). This corresponds to the actual measured errors (red dots),

with an addition of some noise that was not taken into consideration. Note that

in both cases [fixed acceleration/altering time-step] and [altering acceleration/fixed

times-step] the error estimating using our framework relate quite closely to the real

world errors.

6.4 experimental results 69

(a) Alternating Time-Steps

(b) Resulting Errors

Figure 29: Illustration of the experimental results. Here the ball was let free to roll multiple
times on a surface. For each roll the slope of the surface was altered. Figure 6.29(a)
illustrates the estimated velocities for different accelerations. Figure 6.29(b) illus-
trates the occurring relative errors.

7
O P T I M I Z AT I O N F O R M I N I M A L E R R O R S I N D Y N A M I C M O D E

7.1 PROBLEM STATEMENT

In this chapter we will demonstrate how the framework performs in a multi-sensor

environment. The goal is to show how the selection of the optimal path is conducted

in dynamic mode. We use a modern cellphone as a multi-sensor platform. The latter

is equipped with a camera and an accelerometer that are treated as the initial sensors.

We set the desired modality to the acceleration of the cellphone. The accelerations

registered from the accelerometer on the cellphone have a low signal to noise ratio

for smaller accelerations and a large signal to noise ration for large acceleration. On

the other hand, accelerations computed from the camera have lower errors for smaller

accelerations but tend to be unreliable for large acceleration. This is due to the fact

that the derivation error due to time discretization is directly proportional to the

magnitudes of acceleration and jerk, Equation (24).

ET =
f
′′
(ξ) ∗∆t
2

(24)

where ET is the error due to the derivation, f
′′
(ξ) is the second time derivative of the

function and ξ is just a number in the range [t0;∆t] (t0 being current time).

7.2 THE TRANSFORMATION GRAPH

overview of the graph : The transformation graph of the system is illustrated

in Figure 30. For simplicity of visualization we have divided the Start node into two

parts. The part responsible for data acquired from the camera is depicted at the top

of the image and is marked as "Camera", the part responsible for data collected from

the accelerometer is depicted at the bottom left corner and is marked as "Accelerom-

eter". As it was mentioned before, there are two ways of obtaining the accelerations

of the cellphone: directly through the accelerometer, or through a set of transforma-

tions performed on the camera image. Since the system operates in dynamic mode,

the additive weights are determined online based on the error profiles for each trans-

formation. The obtaining of the error profiles will be discussed in Section 7.3. In

each iteration the system computes the path value for both of the chains. Further, it

estimates which value is more reliable based on the computed path values.

71

72 optimization for minimal errors in dynamic mode

Camera

{u, v}i, t

ti
ti−1

∆t

{[R|T]}i
{[R|T]}i−1

∆t
Vi

Vi

Vi−1

∆t
{a}i

{u, v}i
K

{
x
z
y
z

}

i

{
x
z
y
z

}

i
S

{[R|T]}i

Accelerometer

{a}i

{a}i
Goal

K

S

Figure 30: Depiction of the transformation graph designed to estimate the best acceleration
value of a cellphone. There are two ways to perform. First, by reading the data di-
rectly from the accelerometer located on the cellphone. Second, by computing the
accelerations based on the images acquired by the camera located on the cellphone.

the transformation nodes : Since the camera is only registering images

with timestamps, the first transformation (left) is a conversion from the image coor-

dinate system to the world coordinate system. Here (u,υ) are the image coordinates,

K is the intrinsic camera matrix, {xz }i and {yz }i are the pixels in world coordinate sys-

tem. The second step in the chain is the reconstruction of the camera pose (second

transformation left). We obtain the rotation and the translation [R|T] pair that describe

the pose of the cellphone by means of a square marker tracking approach, Figure 31.

The input parameters of the transformation are the rays that point from the camera

center to the corners of the marker {xz }i, {
y
z }i and the Σ scale of the marker, i.e. the

actual physical size of one of the edges of the square marker. The transformations

on the right side have a physical nature. The first one on top is just a mathematical

subtraction that computes the time-step from two consecutive timestamps ti; ti−1. It

7.3 computation of error profiles 73

Camera

Static Marker

Dynamic Marker

(a) (b) (c)

Figure 31: 7.31(a) Sketch of the experimental setup for obtaining the error profile. Note that
the camera is placed in such a way that the effective distance to the static and
dynamic markers remain practically constant. 7.31(b) Illustration of the experiment
for computing the [error/target distance] dependency. 7.31(c) Illustration of the
experiment for computing the [error/viewing angle] dependency.

is followed by velocity ~v estimation from two consecutive positions and a time-step,

which in its turn is succeeded by acceleration a estimation from two consecutive

velocities and a time-step.

7.3 COMPUTATION OF ERROR PROFILES

There are two ways of computing the error profiles of the transformation blocks either

analytically or numerically (Section 3.3.4). In scopes of this example we conducted

a series of experiments to determine the error profiles of each block. The errors that

occur in the transformation block responsible for the conversion of the image coor-

dinates into the world coordinates are constant, and mainly occur because of the

discretization of space by the camera itself. These errors can be estimated through

a regular camera calibration process using a chessboard. The second transformation

block describes the detection of the markers in the image plane and the consecutive

3D reconstruction of their poses. In this case the magnitude of the occurring errors

depends on two factors: the distance between the marker and the camera center, and

the orientation of the marker in reference to the camera center. To compute those

errors two experiments were conducted.

74 optimization for minimal errors in dynamic mode

7.3.1 Error Profiles of the "3D Reconstruction" Transformation

experimental setup : The experimental setup is depicted in Figure 31. We

used a high-resolution and high-framerate camera (from now on Camera) to record

the ground truth. The Camera was placed two meters away from the main scene in

such a way that it could observe it entirely. In the middle of the scene we placed a

cube that had two square markers printed on two of its sides, Figures 7.31(b) and

7.31(c). The positions of the latter in reference to each other are known. During the

experiment the cube was static with one of the mentioned markers facing the Camera.

It is marked with a red rectangle in the image and from now on will be referred to

as Static Marker. For simplicity we will refer to the second marker as Cell Marker. The

Cell Marker is only visible to the cellphone camera during both of the experiments. To

track the motions of the cellphone camera a third marker was statically attached to

the cellphone itself in such a way that it was visible in the image plane of the Camera
during the entire experiment (marked with a blue rectangle). We will be referring to

the cellphone camera as Dynamic Marker.

error dependency to the distance : The first experiment is designed to

measure the error dependency to the distance between the target object and the cell-

phone camera, Figures 7.31(a) and 7.31(b). We begin by holding the cellphone close

to the static cube and gradually move it away on a straight line without changing

the orientation of the phone. During the entire experiment the cellphone camera is

registering the Cell Marker in its image plane and computing the 3D distance to it.

On the other hand the Camera is simultaneously computing the ground truth. The

latter is achieved by registering the Static Marker and the Dynamic Marker in its im-

age plane and computing the 3D distance between the cellphone and the static cube.

This is possible since the positions of the cellphone camera center in reference to the

Dynamic Marker and the position of the Cell Marker in reference to the Static Marker
are known. Note that the distance between the Static Marker and the Camera remains

constant and the change in distance between the Dynamic Marker and the Camera is

small enough to be negligible (6 cm), while the distance between the cellphone cam-

era and the Cell Marker changes from around 10 cm to 50 cm. Therefore, the above

described method can qualify as ground truth registration.

error dependency to the angle : The second experiment is designed to

measure the error dependency to the angle between the target object and the cell-

phone camera Figures 7.31(a) and 7.31(c). We use the same experimental setup as

in the previous experiment. The difference is that this time rather than changing the

distance between the cellphone and the Cell Marker, we keep it constant and instead

7.3 computation of error profiles 75

10−1

Distance (cm)

E
rr
o
r
(c
m
)

10 15 20 25 30 35 40 45 50 55
-.5
0

0.5
1

1.5
2

(a)

10−1

Angle (rad)

E
rr
or

(c
m
)

0 2 4 6 8 10 12
-.5

0

0.5

1

(b)

Figure 32: 7.32(a) Illustrates the error dependency of the 3D reconstruction algorithm to the
distance between the marker and the camera. 7.32(b) Illustrates the error depen-
dency of the 3D reconstruction algorithm to the angle of view. Here the presented
angle is the out-of-plane angle between the cellphone and the surface of the marker.
Note that the in-plane rotation angels are not presented since they do not add any
errors.

change the angle between them. There are three axes along which we can rotate the

cellphone. The first is the z axis, this will result into an in-plane rotation of the marker

in the image plane of the cellphone camera, and will not be adding any errors. The

other two axes: x and y, will result in an out of plane rotation and will cause errors.

Similar angles of rotation would have an equivalent error magnitude for both axes

due to their homogeneity. Thus, we perform the experiment for one of the mentioned

axes and use the same profile for both of them. Note that the rotations registered by

the Camera are all in-plane rotations, whereas the rotations registered by the cell-

phone are out of plane rotations. Therefore the described experiment can qualify for

ground truth registration.

Figure 32 illustrates the error dependency of the pose reconstruction to the distance

and the viewing angle between the camera and the marker. Note that since the error

76 optimization for minimal errors in dynamic mode

Acceleration (m/s2)

E
rr
or

(m
/
s2
)

-10 -8 -6 -4 -2 0 2 4 6
0

1

2

3

4

Figure 33: The error profile of the accelerometer that is embedded in the cellphone. Here the
red line illustrates the standard deviation of the errors that is 1.43m/s2.

does not depend on in-plane rotations the provided dependency is only for out-of-

plane rotations.

7.3.2 The Error Profile for Velocity and Acceleration Computation

The third step in our chain (second transformation from the right) is the computa-

tion of the velocity (Vi) of the camera. This is done based on the current and previous

poses of the camera and the time that elapsed between their registration. The error

in this case can be computed analytically using Equation (24). Note that mathemati-

cally the computation of the acceleration based on the velocity from the current and

previous timestamps is the same as the computation of the velocity based on the

position change. Therefore, the same equation is used to compute the error profile of

the transformation responsible for computation of acceleration (third transformation

from the right).

7.3.3 Error Profile of the Cellphone Accelerometer

We constructed the error profile of the accelerometer of the cellphone using an in-

dustry grade accelerometer (XSense). We attached the latter to the cellphone and

performed random motions, simultaneously measuring the accelerations from both

devices. The computed error profile of the accelerometer is illustrated in Figure 33.

The red line depicts the standard deviation of the error, which is 1.43m/s2.

7.4 final result 77

Acceleration (m/s2)

P
at
h
D
is
ta
n
ce

0 1 2 3 4 5 6
0

1

2

3

Figure 34: Final analysis for the two acceleration registration methods. The green dots rep-
resent path distances of the data registered by the accelerometer located on the
cellphone. The red dots represent the path distances of the accelerations computed
from the camera images.

7.4 FINAL RESULT

The results for acceleration measurement for both of the methods plus the ground

truth are illustrated in Figure 35. The blue line represents the ground truth, the red

line the computed accelerations and the green line the accelerations registered by

the cellphone accelerometer. Note that as it was expected for low accelerations, the

measured data from the cellphone accelerometer are quite unreliable, while the com-

puted accelerations are closer to the truth, Figure 7.35(b). On the other hand, for

the high accelerations the opposite takes place, Figure 7.35(c). The results of path dis-

tance analysis are illustrated in Figure 34. The green dots represent the path distances

of the accelerometer measurement and the red dots represent the path distances of

the reconstruction from the camera. Overall our system was able to pick the most

accurate solution in around 75% of the cases. The decisions were mostly inaccurate

in places where the path distances from both methods had similar magnitudes.

78 optimization for minimal errors in dynamic mode

s

m/s2

0
50

100
150

200
250

300
-5 -3 -1 1 3 5 7

(a)

s

m/s2

1
0

2
0

3
0

4
0

5
0

6
0

-1 -0 1 2 3

(b)

s

m/s2

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

-3 -2 -1 0 1 2 3

(c)

Figure
3

5:
7.

3
5(a)Illustration

ofthe
registered

accelerations.H
ere

the
data

registered
from

the
industrialaccelerom

eter
(X

Sens)is
plotted

in
blue.The

reconstructed
accelerations

from
the

cellphone-cam
era

are
plotted

in
red

and
the

accelerations
registered

from
the

accelerom
eter

located
on

the
cellphone

itself
are

in
green.N

ote
that

for
low

er
accelerations

the
error

from
the

cellphone
accelerom

eter
is

larger
than

the
error

from
the

cam
era;how

ever,for
large

accelerations
this

changes.To
ensure

a
better

observability
of

the
previous

statem
ent

w
e

provide
tw

o
zoom

ed
sections

7.
3

5(b),
7.

3
5(c)

of
the

7.
3

5(a)
graph.

8
O P T I M I Z AT I O N F O R B O T H M I N I M U M E R R O R A N D

C O M P L E X I T Y I N S TAT I C M O D E

8.1 INTRODUCTION AND OVERVIEW

introduction : The goal of this chapter is to demonstrate how our framework

performs for optimizing both error and complexity in static mode. This is illustrated

with an example of a sensor creation. The resulting sensor is a sensitive fingertip

(Figure 36) that is capable of estimating the force field applied on its surface as well

as the shape of the object that the sensor is interacting with. Our sensor consists of

a CCD Camera that performs a marker based 3D reconstruction of the membrane.

Following this, the system approximates the membrane by a grid of springs and

based on its physical deformations it estimates the acting forces. There are two main

ways for estimating the acting forces, Figure 37. The first is using Hook’s law (marked

by cyan dots), where the system estimates the acting forces on each node of the grid

based on the stretches of adjacent springs. The second one is using Newton’s second

law (marked by red dots), where the acting forces on each node are estimated based

on their accelerations and mass. This method is at a disadvantage to the one based

on Hook’s law since it requires a dynamic system. Nevertheless, we discuss both

of the cases and illustrate the nature of the error accumulation, complexity and the

reliability of the results for both of them. Based on the most optimal approach we

construct the real world sensor and present the data it sensed along side with its

error profiles.

overview : Initially we will present the transformation graph and discuss the na-

ture of path distance computation for both of the chains it contains. Further we will

present the physical setup of the sensor, that was constructed based on the optimal

chain. This will be followed by the characteristics of the newly constructed sensor.

8.2 TRANSFORMATION GRAPH BASED ANALYSIS

Figure 37 illustrates the transformation graph of our setup. Since we are optimizing for

minimum error and minimum complexity all of the additive weights are incremented

by one. This is done to ensure that the nodes that do not introduce errors still con-

tribute to the global path computation due to their complexity. Since we have only

79

80 optimization for both minimum error and complexity in static mode

8
6 7

1

2

3

4

5

(a) (b)

Figure 36: Figure 8.36(a) illustrates the blueprint of the finger: (1) LED, (2) CCD camera,
(3) a valve to regulate the amount of air within the frame, (4) rigid circle mark-
ers, (5) rubber skin surface, (6) the airtight frame of the finger, (7) glass, (8) air.
Figure 8.36(b) illustrates the constructed prototype of the sensitive fingertip sen-
sor.

one initial sensor (CCD camera) there is only one Start node that provides data in

[u,υ, t] dimensions. Where (u,υ) are the pixel coordinates on the image plane of the

camera, and t is the time of image registration. The chains for both of the methods

start with the same two transformations. Those are the conversion from the image

coordinate system to the world coordinate system, and the 3D reconstruction of the

markers.

additive weights : Due to the image discretization and bad lighting condi-

tions the 3D reconstruction algorithm operates with 2% relative error, therefore the

additive weights of the edges pointing out of this transformation are set to 2+ 1. As

was shown in Section 6.3 the errors for computing derivation can amount up to 8%.

Therefore, assuming Gaussian distribution we assign the additive weight of the edges

pointing out of transformations that implement numerical derivative to 4+ 1. Finally,

the two transformations responsible for implementing Hook’s and Newton’s laws

operate under the assumption that the elastic membrane is a grid of springs. Which

results in around 2% expected errors in force computation. Thus, the additive weights

are set to 2+ 1 for the edges pointing out of them. All of the other transformations

whose additive weights are set to 1 do not introduce any errors.

8.2 transformation graph based analysis 81

Camera

{u, v}it

ti
ti−1

∆t

{x, y, z}i
{x, y, z}i−1

∆t
{V}i

{V}i
{V}i−1

∆t
{a}i

{a}i
δ{m}i {F}i

{u, v}i
K

{x/z}i
{y/z}i

{x/z}i
{y/z}i
S

{x, y, z}i

{x, y, z}i
{x, y, z}i−1

∆{x, y, z}i

∆{x, y, z}i
k

{F}i

{Fi}
Goal

K

S

k
{δm}i

1|1.1

1|1

1|1

5|1.2

5|1

3|1

1|1

1|1

3|1.1

3|1.2

1|1

3|1

0

1

2

5.5

6.5

1.1

8.1

17.82

22.82

25.829.5

2.1

6

2.115.72

Figure 37: Transformation graph for a sensitive fingertip sensor. Here the system is set up
to sense forces using a regular CCD camera. The graph contains two possible
transformation chains. The first chain (marked with cyan dots) contains the set
of transformations necessary to sense forces using Hook’s law. The second chain
(marked with red dots) contains the set of transformations necessary for sensing
forces using Newton’s second law.

multiplicative weights : The first two transformation blocks from the left

side are high-order transformation blocks. We decided to discard their high-order

nature since both of them belong to both of the possible transformation chains. Thus,

their contributions to the complexity are equal for both of the chains and therefore ir-

82 optimization for both minimum error and complexity in static mode

relevant. The other four non basic transformation blocks are iteration dependent, out

of which two are just responsible for a numerical subtraction and the other two are re-

sponsible for numerical derivation. Since the subtraction is a less complex operation

the multiplicative weights for those transformations are set to 1.1. The multiplicative

weights for the other two transformations are set to 1.2 since they are only at a slight

disadvantage to those who implement subtraction.

Note, the final distance to the goal of the chain based on Hook’s law is signifi-

cantly smaller than the second chain. There are a couple of reasons behind it. The

large errors that result due to the transformations in the beginning belong to both

of the chains. However, the chain describing the method based on Newton’s law is

longer than the other one. Therefore, the path distance computation in it will amount

to a larger value. The second reason is that due to their dynamic nature, the transfor-

mations describing the two derivatives responsible for computation of acceleration

from the spacial change, result in two iteration dependent transformations in a row.

The latter significantly increases the path distance of the chain making it unfeasi-

ble to use. On the other hand, the chain describing Hook’s law proceeds with two

transformations, out of which only one is iteration dependent.

8.3 PHYSICAL IMPLEMENTATION

As a result of the analysis based on the transformation graph we have constructed the

sensitive fingertip sensor using the model based on Hook’s law. The resulting sensor

(Figure 36) is capable of dynamically measuring the force fields over its fingertip with

a relatively small error of 0.04N. It can reconstruct the shape of the target object and

determine the nature of its deformations by dynamically sensing the changes in its

shape.

8.3.1 Physical Setup

The design of our multisensor is rather simple. It consists of a thin white rubber mem-

brane that has rigid black circles attached to its surface. The membrane is mounted

on a hollow rectangular frame. The other side of the frame is sealed with a glass.

The rectangular frame is also equipped with a small valve that allows to control the

amount of air within the frame (Figure 8.36(a)). By increasing and decreasing the

amount of air within the frame we can regulate the shape of the rubber membrane

as well as its sensitivity to deformations caused by external forces. From the other

side of the glass (outside of the rectangular frame) a CCD camera is mounted com-

8.3 physical implementation 83

bined with a few LEDs to provide lighting. This is done in such way that it is always

possible to keep the membrane in the image plane of the camera.

8.3.2 3D Reconstruction of the Surface of the Membrane

The 3D reconstruction of the surface of the membrane consists of several steps. First,

we detect all the ellipses in the image and based on their radius and locations in the

image we determine the position of the circle centers of the corresponding markers.

Second, we compute the 3D coordinates of the markers using previously determined

circle centers combined with their real world radius. The latter results into an un-

structured point-cloud which is further sorted using simple triangulation and inter-

polation techniques. Lastly we describe the surface of the membrane using a SPLINE

surface fitted to the structured point-cloud obtained from the previous step.

extraction of the circle centers : It is a well known fact that the pro-

jection of a circle is always an ellipse unless the projection surface is parallel to the

surface of the circle. Thus, given the image Ij captured from the camera we extract

all the black ellipses {ei} ∈ Ij (Figure 38) according to [40] that correspond to the

projections of the circles {ci}. Since an ellipse is a conic section, in the most general

case it is possible to write the ellipse equation in this form:

m1x
2
i +m2xiyi +m3y

2
2xi +m4xi +m5yi +m6 = 0 (25)

where xi and yi are the coordinates of all the points on the considered ellipse. The

matrix representation of the conic section can be written as follows:

M =




m1 m2/2 m4/2

m2/2 m3 m5/2

m4/2 m5/2 m6


 (26)

where the matrix elements are the corresponding coefficients from Equation (25).

Since M is a symmetric matrix its eigenvector matrix V will be orthogonal and the

following will hold:

M = V ∗Λ ∗ VT Λ =




λ1 0 0

0 λ2 0

0 0 λ3


 (27)

here λ1 > λ2 > λ3 are the eigenvalues of M. As it is shown in [18] it is possible to

estimate the position Pi = {u, v, 1}t of the projection of the center of the circle ci in

the image plane (Figure 8.38(b)) by:

84 optimization for both minimum error and complexity in static mode

(a)
Ellipse

detection
(b)

C
om

putation
of

the
circle

centers
(c)

Triangulation
and

m
ashing

(d)
Initial

3D
reconstruction

(e)
M

ashing
and

biliniar
triangulation

(f)
B-SPLIN

E
fitting

Figure
3

8:Step
by

step
illustration

of
the

m
em

brane
surface

reconstruction
process.The

im
ages

have
been

copied
from

[
1]

8.3 physical implementation 85

C

A

B

D

Π a bd

ρ− ν

ν

φ
ω

Figure 39: Here C is the camera center, Π is the image plane, a and b are two points on the
ellipse, and line ab passes through d. The latter is the projection of circle center D,
AD = DB. ρ = 180−φ−ω

Pi = ±V




−
√

−λ3/λbegin1sinψ

0
√
−λ1/λ3cos(ψ)


 (28)

where:

ψ = arccos
√
(
λ2 − λ3
λ1 − λ3

) (29)

reconstruction of the 3d pose of the circle : Consider Figure 39, here

D is the center of the circle, A and B are two points on the circle such that line AB

passes through the center of the circle. This results in AB = BA = r, where r is the

radius of the circle, Π is the image plain and C is the camera center, a,b, and d are the

projections of A, B and D on the image plane correspondingly. Hence, a and b are

located on the ellipse, and d is inside (Figure 8.38(b)). We are interested in computing

the length of CD to determine the 3D pose of the circle. This can be computed by

applying the sine rule:

86 optimization for both minimum error and complexity in static mode

sin (φ)

r
=

sin (ρ− ν)

CD
(30)

sin (ω)

r
=

sin (ν)

CD
(31)

where ρ = 180−φ−ω. By dividing Equation (30) by Equation (31) we obtain:

sin (φ)

sin sin (ω)
=

sin (ρ− ν)

sinν
(32)

By simplifying Equation (32) we can derive ν to:

cotν =
sin (φ)

sin (ω) sin (ρ)
+ cot (ρ) (33)

Further we combine Equation (33) and Equation (31) to derive equation for CD:

CD =
r ∗ sin (ν)

sin (ω)
(34)

Here the remaining unknowns are the angles ω and φ that can be computed from

(Ĉa · Ĉd) and (Ĉd · Ĉb) dot products correspondingly, where "̂" indicates a unit vector.

a can be chosen as an arbitrary point on an ellipse, where b will be defined as a point

that is located on the intersection of the ellipse and a line that passes through a and

d. For best accuracy we suggest to pick the line ab such that it is parallel to the major

axis of the ellipse. After the depth CD of the center of the circle is known it is possible

to re-project the point into 3D using the inverse of the intrinsic camera matrix and

obtain the unstructured point cloud {pi} Figure 8.38(d).

mashing and surface fitting : Only the point cloud {pi} is not sufficient to

extract information regarding the contact area of the sensor. Thus, as a next step we

perform B-spline surface fitting. The point cloud {pi} is not structured and hence it

requires some processing for the surface fitting. We consider the set {pi} of projected

circle centers in the image plain and the rectangular profile of the frame which will

be later used as boundary conditions. We assume that the pose of the rectangular

profile in reference to the camera center is known. The former can be obtained by

running the 3D reconstruction described in the previous chapter with an open valve.

First, we obtain triangulation {ti} ∈ T by performing Delaunay triangulation for {pi}

(Figure 8.38(c)). Next, we generate a 2D low resolution Cartesian grid within the

frame. For each node vi ∈ ti of that grid we compute its 3D pose by performing

barycentric interpolation in ti using the frame and the points located on the frame as

boundary conditions (Figure 8.38(e)).

8.3 physical implementation 87

F1
F3

F2

F4

F

Figure 40: Computation of the force acting on a node. Here F = F1 + F2 + F3 + F4
is the overall force acting on the considered node.

8.3.3 Computation of Force Distribution

In the final step we fit a B-spline surface to the 3D structured point cloud obtained

from the grid (Figure 8.38(f)).

Due to its molecular structure the rubber is not a Hookean material, i.e. the relation

between the stretch and the applied force is not linear [15], hence it is not possible to

analytically compute the force distribution. To compute the relative force distribution

over the surface of the membrane we make some assumptions. First we assume that

the membrane has a uniform thickness (d). The thickness is considerably smaller

then the width (w) and the length (l) of the membrane (w� d, l� d). The thinning

of the thickness due to stretches is neglectful and the external forces are small, i.e.

in the range of [0.5− 2]N. Based on this assumptions we claim that the elasticity of

the rubber membrane is constant within a small stretch range (proof by experiment

Section 8.4). If the volume of air remains constant within the frame of the sensor the

following is true:

∆F = c∆A (35)

where c is a constant, ∆F is the overall change in the external forces acting on

the membrane and ∆A is the change of the area of the membrane due to ∆F. From

(35) and the above made assumptions, it follows that the membrane is stretching

uniformly. Therefore to compute the direction and magnitude of forces over the entire

surface we can approximate the membrane by a grid of springs (Figure 40). Since

88 optimization for both minimum error and complexity in static mode

px

px

140 180 220 260 300
150

190

230

270

310

350

390

(a) Circle center detection error in the
image plane

Distance mm

N
u
m
b
er

of
P
oi
n
t

0 2 4 6 8 10 12 14

-56

-55.5

-55

(b) Error of the initial 3D reconstruction

Figure 41: Image 8.41(a) illustrates the locations of estimated (blue dots) and known (red
dots) circle centers. Image 8.41(b) illustrates the computed (blue dots) and known
(red dots) absolute distances of the circles to the camera center.

the surface is stretching uniformly, each node of the grid will be equidistant to its

neighbor. Thus the direction and magnitude of the force at that node will only depend

on the curvature of the surface at that point (Figure 40).

8.4 EXPERIMENTAL RESULTS

evaluation of the 3d reconstruction : The 3D reconstruction of the elas-

tic membrane is computed based on the projected ellipsoidal silhouettes of the circle

markers on the image plane of the camera. As mentioned above in Section 8.3.2 the

algorithm consists of several steps. Initially, a detection of all the ellipsoidal shapes in

the camera image is performed. The latter is followed by computation of the location

of the circle center projections, which is used to obtain an unstructured 3D point-

cloud that is further sorted using simple triangulation and interpolation techniques.

Lastly the elastic membrane is represented by a B-Spline surface that is obtained from

the structured point-cloud. Examples of the final 3D reconstructions are presented for

qualitative evaluation in Figure 43.

evaluation of the circle center detection and initial reconstruc-

tion : To evaluate the circle center detection part of our algorithm we generated

8.4 experimental results 89

(a
)

Fo
rc

e/
R

el
at

iv
e

Fo
rc

e
Pr

ofi
le

fo
r

a
so

lid
ob

je
ct

(b
)

Fo
rc

e/
D

ef
or

m
at

io
n

pr
ofi

le
fo

r
so

ft
(c

ya
n)

an
d

so
lid

(b
lu

e)
ob

je
ct

s

Fi
gu

re
4

2
:8

.4
2

(a
)

Il
lu

st
ra

te
s

th
e

re
la

ti
on

of
th

e
co

m
pu

te
d

re
la

ti
ve

in
te

gr
al

fo
rc

e
to

m
ea

su
re

d
fo

rc
e.

N
ot

e
th

at
it

is
cl

ea
rl

y
vi

si
bl

e
th

at
th

e
re

la
ti

on
be

tw
ee

n
th

em
is

lin
ea

r.
Th

us
,t

he
ap

pl
ie

d
H

oo
k’

s
m

od
el

w
it

hi
n

th
e

sc
op

es
of

th
is

ex
pe

ri
m

en
t

ho
ld

s.

90 optimization for both minimum error and complexity in static mode

15 synthetic images. Each of the images contains 16 ellipses that represent the projec-

tions of the circle markers with known and varying poses and orientations. Further

we have processed the mentioned images using the algorithm described in Section

8.3.2. The results are illustrated in Figure 8.41(a), where the red dotes illustrate the

locations of estimated and the blue dots illustrate the locations of the known circle

centers. As a consequence we achieved sub-pixel accuracy for circle center detection,

meaning that the average error was approximately 0.5 px. Further, we used the above

mentioned generated images and reconstructed the 3D positions of the circular mark-

ers. The latter is performed to evaluate the accuracy of the initial 3D reconstruction

algorithm. The results from one of the images are depicted in Figure 8.41(b). Here the

"x" axis represents the number of the markers, and the "y" axis the absolute distance

to the camera center in mm. The standard deviation of the reconstructed points was

computed to be approximately 0.39mm.

evaluation of force computation : Since the rubber is not a Hookean ma-

terial the force to strain relation is generally nonlinear. Thus, it is not possible to

analytically compute force from strain. However, we claim that for small strains the

Hook’s model holds. To support this we conducted an experiment where we attached

a force sensor to our sensor and drove a cylindrical solid object into the rubber mem-

brane with 1mm increments. For each increment we registered the force from the

force sensor and the estimated integral force acting on the membrane using our as-

sumption of linearity. Figure 8.42(a) depicts the relationship between the measured

force and the computed relative integral force. Note that the relation between the two

forces is linear. Thus, the assumption of force/deformation linearity holds. Further it

is possible to compute the strain coefficient by fitting a line to the gathered data. The

overall average error from this experiment is equal to 0.04N. To further reinforce the

feasibility of our assumption we conducted the same experiment using two different

materials (a solid cylinder and a soft sponge). The resulting force to deformation

graph is illustrated in Figure 8.42(b). Here the blue line represents the solid cylinder

and as was expected the relation of force to deformation is linear. The cyan line rep-

resents the results from the experiment with the soft sponge. Note, since the sponge

has stiffness of itself the force/deformation graph is not a line anymore.

determination of the material type : To determine the type of the mate-

rial the sensor is interacting with, we performed a series of similar experiments to the

ones described above. The difference is that this time the time to relative force profile

was registered. Experiments were performed for 3 types of objects: solid, soft and

amorphous. Soft and solid target objects were driven into the sensor continually. The

results are illustrated in Figure 8.43(a). Note that from the shape of the profile it is

8.4 experimental results 91

(a
)

Fo
rc

e/
Ti

m
e

pr
ofi

le
fo

r
so

ft
(c

ya
n)

an
d

so
lid

(b
lu

e)
ob

je
ct

s

(b
)

Fo
rc

e/
Ti

m
e

pr
ofi

le
fo

r
an

d
am

or
ph

us
ob

je
ct

92 optimization for both minimum error and complexity in static mode

easy to determine that the blue line represents the profile for the solid and the cyan

line for the soft objects. In case of the amorphous object, the target was iteratively

driven continually into the sensor and than left to relax. The results are illustrated in

Figure 8.43(b). Note that in the section of the curve where the target was continually

driven the force is increasing. However, in sections where the system was left to relax

the force is decreasing. This is due to the fact that when the system is in the relaxation

stage the amorphous object is deforming under the forces acting from the membrane

itself and trying to come to a stage of a minimum energy.

8.4 experimental results 93

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

Fi
gu

re
4

3
:F

ig
ur

es
8
.4

3
(c

),
8
.4

3
(d

)
an

d
8
.4

3
(e

)
ill

us
tr

at
e

th
e

ca
pt

ur
ed

an
d

pr
oc

es
se

d
im

ag
es

fr
om

th
e

C
C

D
ca

m
er

a
fo

r
th

e
th

re
e

di
ff

er
en

t
ob

je
ct

s,
an

d
Fi

gu
re

s
8
.4

3
(f

),
8

.4
3

(g
)a

nd
8
.4

3
(h

)i
llu

st
ra

te
th

e
re

sp
ec

ti
ve

3
D

re
co

ns
tr

uc
ti

on
s

an
d

fo
rc

e
di

st
ri

bu
ti

on
s.

H
er

e
th

e
di

re
ct

io
n

of
th

e
fo

rc
e

ve
ct

or
s

ar
e

in
ve

rt
ed

to
en

su
re

be
tt

er
vi

si
bi

lit
y.

Th
e

pi
ct

ur
es

ar
e

ta
ke

n
fr

om
[1

]

9
C O N C L U S I O N A N D F U T U R E W O R K

9.1 CONCLUSION

In this thesis, we described a framework for optimal dynamic modeling of sensing

modalities and sensory substitution. Sensory substitution is widely understood as

the substitution of one sensing modality by another for humans or animals with im-

pairments. Albeit in its general definition any conversion of one sensory modality to

another through means of mathematical or physical transformations is a substitution

of the former. This involves all the basic physical sensors that digitize such signals as

temperature, acceleration, torque, etc. as well as more complex virtual sensors that

extend the range of sensing modalities of basic sensors through mathematical and

physical transformations. Due to its nature, sensory substitution is one of the most

widely used topics in modern sciences. Although lately there have been major ad-

vancements in sensory substitution there are still several questions that remain open.

Firstly, sensory substitution is a multidisciplinary topic that is currently being

treated by each discipline within its narrow bounds. This results in the problems

of choosing correct connecting interfaces between separate disciplines. We have pre-

sented a framework for optimal dynamic modeling of sensing modalities and sensory

substitution. Our framework is capable of dynamically establishing optimal connec-

tions between different sensory modalities through a set of physical and mathemati-

cal transformations. The latter are picked from a “bag of transformations” that con-

tains known transformations that occur in multiple disciplines. Therefore, it is the

inherit nature of our framework to treat the target problem in scopes of all the rele-

vant disciplines.

Second, it is the automation of the construction process for virtual sensors. Since

the construction of virtual sensors oftentimes has more than one solution, there is the

major issue of selecting the optimal solution for the current problem. Depending on

the problem definition the precision of the sensed data in the target modality could be

of high priority; thus, the optimization needs to be done for minimum error. Equally,

the speed of obtaining data in the target modality could be of high priority; thus,

the optimization needs to be done for minimum complexity. Finally, some problems

might require precise data in small time intervals; thus, the optimization needs to

strike a balance between minimum error and minimum complexity. The main focus

of our framework is the selection of the most optimal chain of mathematical and

95

96 conclusion and future work

physical transformations between the initial and goal modalities. The latter allows

the creation of virtual sensors that are able to sense in modalities that the original

sensors were not designed to operate in. The selection of the set of transformations

takes into account the problem specifications and makes automated decisions not

only based on the amount of transformations but also on the expected errors that

occur due to the transformation and the complexity of the entire transformation

chain.

Third, complex multi-sensor platforms generally have more than one way of obtain-

ing the target modality. The quality of the obtained data through a certain chain of

transformations depends on the operation range of the initial physical sensors. Thus,

a sudden change of the operation range will result in the increase of data quality

through one transformation chain and decrease through another one. Hence, is the

problem of dynamically adapting the system to current conditions. Our framework

is capable of dealing with such issues when operating in dynamic mode which al-

lows a dynamic reconfiguration of the transformation chains to adapt to the current

operating ranges of the initial basic sensors.

We have experimentally demonstrated that the error estimates obtained through

our framework relate quite closely to the real world errors as well as that our frame-

work is capable of selecting the best measurement in cases where there is more than

one initial sensor available. It selected the best possible solution in 75% of the cases

and struggled only in cases where both of the possible solutions had very close val-

ues. Finally, we have shown how the framework can be used in the construction of

new sensors on an example of the construction of a sensitive fingertip force sensor.

9.2 FUTURE WORK

Even though our framework is capable of successfully solving many issues associ-

ated with sensory substitution there are still several improvements that could be

made. While the Goal nodes are completely satisfactory for modeling virtual sensors

they struggle in representing real world input interfaces. The issue of such interfaces

is that they not only require precise, robust information flow in a particular modality,

but also impose limitations on the bandwidth of the information. An example of such

interfaces is described in the Section 1.3, in problems dealing with visual sensory sig-

nal compensation. Thus an introduction of an additional weight unit that represents

the bandwidth of the information is apparent. However, this will lead to additional

compromises for the cases where all three parameters need to be minimized due to

low correlation between them.

As shown in the experimental section, the framework is capable of successfully

optimizing for minimum errors and minimum complexity. It can also strike a bal-

9.2 future work 97

ance between optimizing for minimum errors and minimum complexity at the same

time. However, in this case neither the errors are minimum, nor is the complexity

minimum. The reason behind this is that the complexity and errors do not have a

strong correlation between each other. Thus, our approach, which tries to treat them

within the scope of a single path computation equation, must find a compromise

between them. Therefore a decoupling of global path computation would lead to a

better flexibility in prioritizing between minimum errors and minimum complexity.

This would also ease the introduction of additional optimization parameters such as

the ones representing bandwidth.

Our system is capable of operating in two modes, dynamic and static. Both have

their advantages and disadvantages. Dynamic mode computes the edge-weights of

each transformation during every iteration based on the current value of the con-

sidered argument. This means that it puts the emphasis on error minimization at a

cost of execution time and makes most sense when used in cases where the execu-

tion time is not as important as the precision of the results. Static mode computes

the edge-weights only once at the beginning based on the expected values of the

arguments provided by the initial sensors. This results in the static mode being sig-

nificantly faster than the dynamic mode at the cost of accuracy. Thus, it makes sense

to use it for cases where the execution time is most valuable. Naturally, both of these

cases can be used for cases where the optimization must be done for minimum error

and minimum complexity. However, in static mode the error minimization would be

given a smaller priority, and in dynamic mode the execution time would be given a

smaller priority. Thus, an introduction of an additional operation mode that is tuned

for the case of minimizing both complexity and errors would contribute to better

results in such a case. There are several ways of implementing the additional mode.

One can be to split the entire operation range into segments and only recompute the

edge-weights once the value of the initial sensor arguments switches from one seg-

ment into other. The second would be to initially compute the edge-weights of the

transformation based on the first value of the argument and recompute them once

the difference between the current and first values is larger than a certain threshold.

There are many more improvements that can be made to better the framework and

after their implementation many more would be left. We would like to conclude with

words of Leonardo da Vinci:

“Art is never finished, only abandoned”

P U B L I C AT I O N S

[1] Artashes Mkhitaryan and Darius Burschka. Vision-based haptic multisensor for

manipulation of soft, fragile objects. In IEEE SENSORS, 2012.

[2] Artashes Mkhitaryan and Darius Burschka. Rgb-d sensor data correction and

enhancement by introduction of an additional rgb view. In IEEE IROS, 2013.

[3] Artashes Mkhitaryan and Darius Burschka. Visual estimation of object density

distribution through observation of its impulse response. In VISAPP, 2013.

[4] Artashes Mkhitaryan and Darius Burschka. A framework for dynamic sensory

substitution. In IEEE IROS, 2014.

[5] Artashes Mkhitaryan and Darius Burschka. 3d reconstruction of dynamic scenes

from two asynchronous video-streams. In VISAPP, 2014.

99

B I B L I O G R A P H Y

[6] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge, 2009.

[7] Schert A. B., Friedel P., and Hemman J. L. Snake’s prespective on hear: Recon-

struction of input using an imperfect detection system. Phys, 2006.

[8] A. Bicchi, E. P. Scilingo, and D. De Rossi. Haptic discrimination 70 of softness

in teleoperation: The role of the contact area spread rate. In IEEE Transactions on
Robotics and Automation, 2010.

[9] E. Bruel-Jungerman, S. Davis, and S. Laroche. Brain plasticity mechanisms and

memory: A party of four. The Neuro scientist, 2007 October.

[10] Chorley C., Melhuish C., Pipe T., and Rossiter J. Development of a tactile sen-

sor based on biologically inspired edge. In International Conference on Advanced
Robotics ICAR., 2009.

[11] G. Cannata, M. Maggiali, G. Metta, and G. Sandini. An embedded artificial skin

for humanoid robots. In Multisensor Fusion and Integration for Intelligent Systems,
2008. MFI 2008. IEEE International Conference on, 2008.

[12] Damian D.D, Martinez H., Dermitzakis K., and Hermandez-Arieta A. Artificial

ridged skin for slippage speed detection in prosthetic hand applications. In

Artificial Ridged Skin for Slippage Speed Detection in Prosthetic Hand Applications,

2010.

[13] A. P Dempster. Upper and lower probabilities induced by a multivalued map-

ping. The Annals of Mathematical Statistics, 1967.

[14] E. W. Dijkstra. "a note on two problems in connexion with graphs". Numerische
Mathematik 1: 269 271, (1959).

[15] Merritt D.R. and Weinhaus F. The pressure curve for a rubber balloon. American
Journal of Physics, 1987.

[16] H. Kajimoto et al. optimal design method for selective nerve stimulation and its

application to electrocutaneous display. Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 2002.

101

102 bibliography

[17] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commen-
tarii academiae, August 26, 1735.

[18] Philip Johan. An algorithm for determining the position of a circle in 3d from

its perspective 2d projection. Technical report, KTH, Stockholm, 1997.

[19] Franosch J.P., Sobtka M. C., Elepfandt A., and Hemman J. L. Minimal model of

pray localization through the lateral-line systems. PhysRev Letters, 2003.

[20] Rauschecker J.P. Compensatory plasticity and sensory substitution in the cere-

bral cortex. TINS, ELSAVIER, 1995.

[21] Kamiyama K., Kajimoto H., Inami M., Kawakami N., and Tachi S. A vision-based

tactile sensor. In ICAT, 2001.

[22] Kamiyama K., Vlack K., Mizota T., Kajimoto H., Kawakami N., and Tachi S.

Vision-based sensor for real-time measuring of surface traction fields. IEEE Com-
puter Graphics and Applications, 2005.

[23] Sato K., Kamiyama K., Kawakami N., and Tachi S. Finger-shaped gelforce: Sen-

sor for measuring surface traction fields for robotic hand. In IEEE Transactions
on Haptics, volume 3, 2010.

[24] P. Bach-y-Rita K. Kaczmarek. Tactile displays. W. Barfield, T. Furness-IIIrd (Eds.),
Advanced Interface Design and Virtual Environments, Oxford University Press, 1995.

[25] S.J. Haase K.A. Kaczmarek. Pattern identification as a function of stimulation

current on a fingertip-scanned electrotactile display. IEEE Trans. Neural Syst.
Rehabil., 2003.

[26] S.J. Haase K.A. Kaczmarek. Pattern identification and perceived stimulus quality

as a function of stimulation current on a fingertip-scanned electrotactile display.

IEEE Trans. Neural Syst. Rehabil., 2003.

[27] K.A. Kaczmarek. Electrotactile adaptation on the abdomen: preliminary results.

IEEE Trans. Rehabil, 2000.

[28] H. et al Kajimoto. Smarttouch augmentation of skin sensation with electrocu-

taneous display. Proceedings of the 11th Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, IEEE, pp. 40 46., 2003.

[29] R.E. Kalman and R.S. Bucy. New results in linear filtering and prediction theory.

Journal of Basic Engineering, March 1961.

[30] E. Kruppa. Zur ermittlung eines objektes aus zwei perspektiven mit innerer

orientierung. Sitz.-Ber.Akad.Wiss., Wien, 1913.

bibliography 103

[31] Johnson L.A. and Higgins C.H. A navigation aid for the blind using tactile-visual

sensory substitution. In Proceedings of the 28th IEEE EMBS Annual International
Conferece, 2006.

[32] Mason and J. Samuel. "feedback theory - some properties of signal flow graphs".

Proceedings of the IRE, 1953.

[33] Warren McCulloch and Walter Pitts. A logical calculus of ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 1943.

[34] N. Molton, S. Se, J.M. Brady, D. Lee, and P. Probert. A stereo vision-based aid

for the visually impaired. Image and Vision Computing, 1998.

[35] M. E. J Newman. "The structure and function of complex networks". PhD thesis,

Department of Physics, University of Michigan., 2004.

[36] Friedel P., Young B. A., and Hemman L. Auditory localization of ground-borne

vibrations in snakes. PhysRev Letters, 2008.

[37] J. Pearl. Bayesian networks: A model of self-activated memory for evidential

reasoning. Proceedings of the 7th Conference of the Cognitive Science Society,, 1985.

[38] Petri. Communication with automata. Technical report, DTIC, 1966.

[39] Dirk Riehle. Framework Design A Role Modeling Approach. PhD thesis, Swiss

Federal Institute of Technology Zurich, 2000.

[40] Suzuki S. and Abe K. Topological structural analysis of digitized binary images

by border following. CVGIP, 1985.

[41] Windsor S. Hydrodynamic imaging by blind Mexican cave fish. PhD thesis, Univer-

sity of Auckland, 2008.

[42] M. M. Tai. A mathematical model for the determination of total area under

glucose tolerance and other metabolic curves. Diabetes, 1994.

[43] C. Tomasi and T. Kanade. Shape and motion from image streams under orthog-

raphy: A factorization approach. nternational Journal of Computer Vision, 1992.

[44] Web, 2015. URL http://eigen.tuxfamily.org/index.php?title=Main_Page.

[45] Web, 2015. URL http://www.ode.org/.

[46] Web, 2015. URL http://www.cs.jhu.edu/CIPS/xvision/.

[47] Web, 2015. URL https://www-s.acm.illinois.edu/webmonkeys/book/c_guide/

index.html.

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.ode.org/
http://www.cs.jhu.edu/CIPS/xvision/
https://www-s.acm.illinois.edu/webmonkeys/book/c_guide/index.html
https://www-s.acm.illinois.edu/webmonkeys/book/c_guide/index.html

104 bibliography

[48] Web, 2015. URL http://opencv.org/.

[49] Web, 2015. URL http://www.pymunk.org/en/latest/.

[50] Paul Bach y Rita. Brain Mechanisms in Sensory Substitution. Academic Press, 1972.

[51] Bach y Rita P. and Kercel W.S. Sensory substitution human-machine interfaces.

TRENDS in Cognitive Science, ELSAVIER, 2013.

http://opencv.org/
http://www.pymunk.org/en/latest/

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Sensory Substitution
	1.2 Sensory Substitution vs Sensor Data Fusion
	1.3 Previous Work in Sensory Substitution
	1.4 Contributions
	1.5 Structure of the Thesis

	 The Framework
	2 Overview of Frameworks
	2.1 Overview of Frameworks in Computer Science
	2.2 Overview of the Framework for Sensory Substitution

	3 Connected Graph
	3.1 Choice of the Modes and Optimization Parameters
	3.1.1 Dynamic Mode
	3.1.2 Static Mode

	3.2 Creation of the Connected Graph
	3.2.1 Connection of Nodes

	3.3 Description of Nodes
	3.3.1 Transformation Blocks
	3.3.2 Start Nodes
	3.3.3 Goal Nodes
	3.3.4 Error Profiles

	3.4 Propagation of Information Through the Graph
	3.4.1 Data Propagation
	3.4.2 Uncertainty Propagation
	3.4.3 Complexity Propagation

	3.5 Edges and Weights
	3.5.1 Additive Weights
	3.5.2 Multiplicative Weights

	4 Search Through the Graph
	4.1 Introduction and Overview
	4.2 Dijkstra's Search Algorithm
	4.3 Extended Dijkstra's Algorithm
	4.4 Path Estimation for Different Optimization Parameters
	4.4.1 Optimization for Minimum Error
	4.4.2 Optimization for Minimum Complexity
	4.4.3 Optimization for Both Minimum Complexity and Minimum Error

	4.5 Optimization Modes
	4.6 Specifications of the Transformation Graph

	Application Examples
	5 Short Introduction To the Experimental Validation
	6 Validation of the Error Estimation Accuracy
	6.1 Introduction and Overview
	6.2 Transformation Graph Based Analysis
	6.3 Experimental Validation
	6.4 Experimental Results

	7 Optimization for Minimal Errors in Dynamic Mode
	7.1 Problem Statement
	7.2 The Transformation Graph
	7.3 Computation of Error Profiles
	7.3.1 Error Profiles of the "3D Reconstruction" Transformation
	7.3.2 The Error Profile for Velocity and Acceleration Computation
	7.3.3 Error Profile of the Cellphone Accelerometer

	7.4 Final Result

	8 Optimization for both minimum Error and complexity in Static Mode
	8.1 Introduction and Overview
	8.2 Transformation Graph Based Analysis
	8.3 Physical Implementation
	8.3.1 Physical Setup
	8.3.2 3D Reconstruction of the Surface of the Membrane
	8.3.3 Computation of Force Distribution

	8.4 Experimental Results

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work
	Publications

	Bibliography

