Computer Aided Medical Procedures
Prof. Dr. Nassir Navab

D

Fakultat fur Informatik
Technische Universitat Minchen

Dissertation

Learning-based Approaches for
Template Tracking and Interest Point Detection

Stefan Johannes Josef Holzer

TECHNISCHE UNIVERSITAT MUNCHEN

Fakultat fir Informatik
Computer Aided Medical Procedures & Augmented Reality / 116

Learning-based Approaches for Template Tracking and
Interest Point Detection

Stefan Johannes Josef Holzer

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. D. Cremers
Priifer der Dissertation:
1. Univ.-Prof. Dr. N. Navab

2. Prof. J. Matas, Ph.D.,
TU Prag / Tschechien

3. Priv.-Doz. Dr. S. Ilic

Die Dissertation wurde am 16.06.2014 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultéat fiir Informatik am 16.12.2014 angenommen.

To Ruosi Li

Abstract

This thesis is concerned with problems in the field of learning-based template tracking
and in the field of 3D data processing.

The goal of template tracking is to follow the position of an object or region within
a sequence of images. It is an extensively studied field in computer vision with many
possible applications in areas such as automobile, medicine, military or robotics. Since
the seminal work of Lukas and Kanade [52], a lot of advances have been made in the field
of template tracking, ranging from increased tracking and learning speed, over improved
handling of motion, occlusions, noise, or lighting changes, to the ability to adjust to
long-time changes of the real world object of interest. More importantly the works in
learning-based template tracking approaches led to a significant increase in tracking speed
and robustness. While these methods show superior characteristics in certain areas, they
have problems in others. These problems include learning speed, flexibility, or occlusion
handling. Therefore, the first part of this thesis focuses on improving these characteristics.
Specifically, a new flexible method for learning and adapting linear predictors for template
tracking is introduced. It demonstrates how it can be used to improve learning speed and
handle occlusions. However, since learning time is still not optimal for online learning,
two further approaches are presented which show how the learning time can be reduced
by either reformulating the learning process or by applying a dimensionality reduction.
These lead to a learning time that is two orders of magnitude faster than for the original
approach. While both approaches show different characteristics with respect to robustness
to object motion or low signal-to-noise ratio, a combined approach is also introduced which
allows a trade-off between their characteristics.

Furthermore, the field of 3D data processing has recently obtained a boost in attention
due to the introduction of low cost depth sensors such as the Microsoft Kinect. Therefore,
the second part of the thesis focuses on fast methods for 3D data processing. First, a
fast and robust normal estimation method is introduced which makes the computation
of surface normals independent of the size of the neighborhood considered for its compu-
tation. Since normal estimation is often used as a pre-processing step for 3D processing
algorithms, this helps to significantly improve many approaches in the field. Finally, a
learning-based approach for interest point detection is presented. Current state-of-the-art
methods are either robust but slow, or fast but significantly less robust. The introduced
interest point detection method is based on decision trees, which not only mimics robust
detection methods with significantly improved speed but also learns artificial interest
point response maps which are optimized for specific characteristics.

Keywords:
Real-Time Tracking, Markerless Tracking, Optical Tracking, Depth Data, Surface
Normal Estimation, Interest Point Detection

Zusammenfassung

Diese Doktorarbeit befasst sich mit Problemen im Bereich der Bildverfolgung mittels
Lernverfahren sowie im Bereich der 3D Datenverarbeitung.

Das Ziel der Bildverfolgung ist es, die Position eines Objekt oder eine Region in einer
Sequenz von Bildern zu verfolgen. Bildverfolgung ist ein eingehend erforschter Bereich der
Bildverarbeitung und weifit eine Grofizahl an verschiedenen Anwendungsmoglichkeiten in
Bereichen wie zum Beispiel der Automobilindustrie, der Medizin, im militarischen Be-
reich oder in der Robotik auf. Seit der grundlegenden Arbeit von Lukas und Kanade [52]
gab es eine Vielzahl an Fortschritten im Bereich der Bildverfolgung. Diese reichen von
einer erhohten Verfolgungs- und Erlernungsgeschwindigkeit, tiber verbesserten Umgang
mit Bewegungen, Verdeckungen, Bildrauschen oder Beleuchtungsanderungen, bis zu der
Fahigkeit sich and langsame Anderungen des zu verfolgenden Objektes anzupassen.

Besonders die Einfiihrung von lern-basierten Verfahren zur Bildverfolgung fiithrte zu
einer drastischen Verbesserung der Verfolgungsgeschwindigkeit und -robustheit. Obwohl
diese Verfahren iiberlegene Eigenschaften in bestimmten Bereichen aufweisen, zeigen sie
allerdings auch Nachteile in anderen. Diese Nachteile beinhalten die Lerngeschwindigkeit,
ihre Flexibilitat oder das Behandeln von Verdeckungen. Deshalb konzentriert sich der ers-
te Teilbereich dieser Arbeit auf die Verbesserung dieser Eigenschaften von lern-basierten
Bildverfolgungsverfahren. Im Speziellen wird zunéchst eine flexible Methode fiir das Ler-
nen und Anpassen von Linearen Pradiktoren zur Bildverfolgung vorgestellt und gezeigt
wie diese verwendet werden kann um die Lerngeschwindigkeit zu erhéhen und um sich an
Verdeckungen anzupassen. Da die Lerngeschwindigkeit durch dieses Verfahren allerdings
immer noch nicht ausreichend schnell ist werden zwei weitere Verfahren vorgestellt welche
zeigen wie die bendtigte Zeit zum Lernen entweder durch eine Umformulierung des Lern-
prozesses oder durch die Anwendung einer Dimensionalitatsverringerung weiter reduziert
werden kann. Dies fithrt zu einer Lernzeit die um das hundertfache schneller ist als fiir
das urspriingliche Verfahren. Da beide Verfahren unterschiedliche Eigenschaften beziiglich
Robustheit gegentiber Objektbewegungen oder einem geringen Signal-Rausch-Verhéltnis
aufweisen, wird zudem ein kombinierter Ansatz prasentiert, welcher eine Abstimmung
zwischen einiger dieser Eigenschaften erlaubt.

Der Bereich der 3D Datenverarbeitung erfihrt durch die Einfithrung giinstiger Tie-
fensensoren, wie zum Beispiel dem Microsoft Kinect Sensor, seit kurzem einen Auftrieb
an Aufmerksamkeit. Deshalb beschaftigt sich der zweite Teil dieser Arbeit mit schnellen
Methoden zur 3D Datenverarbeitung. Zunachst wird ein schnelles und robustes Verfah-
ren zum Berechnen von Oberflichennormalen vorgestellt, welches die Grofie der fiir die
Berechnung der Normalen verwendeten Nachbarschaftsregion automatisch bestimmt und
deren Berechnungszeit unabhéngig von der Grofle dieser Nachbarschaftsregion ist. Da die
Normalenberechnung haufig als Vorverarbeitungsschritt fir 3D Verarbeitungsalgorithmen
angewendet wird, hilft dies um viele Methoden in diesem Gebiet signifikant zu verbessern.
Als letztes wird ein lern-basiertes Verfahren zur Erkennung von interessanten Punkten
vorgestellt. Wahrend die aktuellen Verfahren entweder robust aber langsam oder schnell
aber deutlich weniger robust sind, erlaubt das vorgestellte, auf Entscheidungsbaumen

basierende Verfahren, robuste Erkennungsverfahren mit deutlich erhohter Effizienz nach-
zuahmen. Zudem ermoglicht es das Erlernen von kiinstlichen Wahrscheinlichkeitsfelder
fiir interessante Punkte, welche auf spezielle Eigenschaften optimiert sind.

Schlagworter:
Echtzeit Tracking, Markerloses Tracking, Effizientes Lernen, Tiefendaten

viii

Acknowledgements

I want to thank my supervisors Prof. Nassir Navab and PD. Slobodan Ilic for the fruit-
ful discussions and their continuous support throughout my studies. Further, I want to
thank Stefan Hinterstoifler, Jiirgen Sotke, Pierre Georgel, and David Tan for the great time
as well as the fruitful discussions while sharing an office. I also want to thank Ahmed Ah-
madi, Selen Atasoy, Maximilian Baust, Vasileios Belagiannis, Ali Bigdelou, Tobias Blum,
Richard Brosig, Cedric Cagniart, Victor Castaneda, Stefanie Demirci, Benoit Diotte,
Danilo Djordjevic, Alexandru Duliu, Bertram Drost, Jose Gardiazabal, Ben Glocker, Mar-
tin Groher, Vladimir Haltakov, Hauke Heibel, Martina Hilla, Stuart Holdstock, Martin
Horn, Chun-Hao Paul Huang, Athanasios Karamalis, Andreas Keil, Wadim Kehl, Tassilo
Klein, Silvan Kraft, Oliver Kutter, Joe Lallemand, Tobias Lasser, Bastian Lieberknecht,
Diana Mateus, Olivier Pauly, Kristof Ralovich, Tobias Reichl, Pierre Schroeder, Loren
Schwarz, Jakob Vogel, Christian Wachinger, Mehmet Yigitsoy, Darko Zikic, as well as all
my other collegues at the chair of Computer Aided Medical Procedures for the great time
and discussions.

For the support and great time I had during my stays at Willow Garage I want to thank
Radu Rusu, Steve Cousins, Gary Bradski, Kurt Konolige, Suat Gedikli, [oan Sucan, Stefan
Leutenegger, Jonathan Bohren, Lorenz Mosenlechner, Hauke Strasdat, Michael Dixon,
Dirk Holz, Caroline Pantufaro, Vincent Rabaud, Matthew Robards, Mac Mason, Bastian
Steder, Aaron Blasdel, Tobias Kunz, Alex Trevor, Daniel Hennes, and Troy Straszheim.

For my time at the Imperial College London I want to thank Prof. Andrew Davison,
Hauke Strasdat, Richard Newcombe, Adrien Angeli, Ankur Handa, Steven Lovegrove,
Gerardo Carrera, Margarita Chli, and Klaus Strobl.

I want to thank Jamie Shotton, Pushmeet Kohli, Indy, Nevena Lazic, Olga Nikolova,
Ben Glocker, Ender Konukoglu, Olivier Pauly, Gerard de Melo, Johannes Feulner, Malte
Weiss, Ali Eslami, Giuseppe Ottaviano, Min Sun, and Mat Cook for the great and fruitful
time I spent in Cambridge during my stay at Microsoft Research Cambridge.

Further I want to thank Marc Pollefeys for the fruitful discussions which led to a
publication. I also want to thank Juri Platonov, Radu Rusu, Suat Gedikli, Alex Ichim,
Steven Miller, and Pantelis Kalegoris for the adventures that we had besides my PhD
studies.

Last but not least, I want to thank my family, my parents Hannelore and Alfred, my
sisters Christina and Sylvia as well as my brother Andreas for their support and believe
in me during my whole life, and especially my love Rosie for her patience and support.

CONTENTS

Thesis Outline 1
1 Introduction 3
1.1 Visual Tracking o 3
1.1.1 Problem Definition 0oL 3
1.1.2 Motivationo 4
1.1.3 Applications 5
1.1.4 Challenges 6
1.1.5 Related Worko 8
1.1.6 Linear Predictors for Template Tracking 11
1.2 3D Point Cloud Processing 13
1.2.1 Problem Definition and Motivation. 13
1.2.2 Applications 14
1.2.3 Challenges 15
1.24 Related Worko 16
2 Contributions 19
2.1 Visual Tracking 19
2.1.1 CVPR 2010: Adaptive Linear Predictors for Real-Time Tracking . . 19
2.1.2 TPAMI 2012: Multi-Layer Adaptive Linear Predictors for Real-
Time Tracking 22
2.1.3 ECCV 2012: Online Learning of Linear Predictors for Real-Time
Tracking 24
2.1.4 ACCV 2012: Efficient Learning of Linear Predictors using Dimen-
sionality Reduction L 25
2.1.5 1JCV 2014: Efficient Learning of Linear Predictors for Template
Tracking L 26
2.2 3D Point Cloud Processing 28
2.2.1 IROS 2012: Adaptive neighborhood selection for real-time surface

normal estimation from organized point cloud data using integral
IMAGES . . . o v v e e 28

iii

2.2.2 ECCV 2012: Learning to Efficiently Detect Repeatable Interest

Points in Depth Data 29

3 Conclusions & Outlook 31
3.1 Visual Tracking 31
3.1.1 Conclusion 31

3.1.2 Outlook 32

3.2 3D Point Cloud Processing, 33
3.2.1 Conclusion 33

3.2.2 Outlook 33

A Adaptive Linear Predictors
for Real-Time Tracking 35

B Online Learning of Linear Predictors
for Real-Time Tracking 45

C Efficient Learning of Linear Predictors
using Dimensionality Reduction 61

D Multi-Layer Adaptive Linear Predictors
for Real-Time Tracking 77

E Efficient Learning of Linear Predictors
for Template Tracking 93

F Adaptive Neighborhood Selection
for Real-Time Surface Normal Estimation
from Organized Point Cloud Data
Using Integral Images 111

G Learning to Efficiently Detect Repeatable Interest Points in Depth Data119
List of Figures 134
Authored and Co-Authored Publications 139

References 141

THESIS OUTLINE

The following gives a brief outline of the single chapters of this thesis:

Chapter 1: Introduction. The first chapter gives an introduction to the fields of
visual tracking and 3D point cloud processing. It points out possible applications as well
as challenges that have to be faced. Further, related work is provided to give an overview
of the current state of the art.

Chapter 2: Contributions. The second chapter discusses the publications that are
part of this thesis. This includes work on adapting templates online for efficient learning
and handling of occlusions as well as methods that significantly improve the learning speed
for learning-based template tracking using linear predictors. Further, 3D point cloud
processing methods are discussed. Those include a highly efficient normal estimation
method as well as a learning-based approach for detecting interest points in depth data.

Chapter 3: Conclusions & Outlook. The final chapter concludes the presented work
and gives an outlook to possible future research directions.

CHAPTER
ONE

INTRODUCTION

This thesis addresses the fields of visual tracking as well as processing of organized three-
dimensional point clouds. The following gives an overview over both fields, including
the definition of the problems considered in these fields, motivations and applications,
challenges present in these fields, as well as related work.

1.1 Visual Tracking

1.1.1 Problem Definition

Given an image sequence, the goal of visual tracking is to estimate the motion of one or
multiple objects or persons visible in the sequence of images (see Fig. 1.1), or to estimate
the motion of the recording camera itself (see Fig. 1.2).

Initialization and Tracking. After initialization of the tracking, e.g. after a user
manually selected the target region or object that should be tracked, visual tracking prop-
agates information from frame to frame and uses this propagated information to search
for the tracking target in a new image. This propagation of information is usually based
on the assumption that the state of the considered system does not change significantly
within a small time window.

Motion model. The propagation itself is based on a motion model which describes
the expected change in the state of the tracking target over time. There is a wide range
of possible motion models, e.g. assuming constant velocity or constant acceleration.
However, often the explicit use of a motion model is omitted when a constant position
model is assumed, i.e. when the search for the tracking target in the new frame is
initialized at the same position as it was found in the previous frame.

Parameter space. The tracking target can depend on a large variety of parameters, in-
cluding its position and orientation, its appearance, or possible deformations.While many
methods focus on estimating the two-dimensional location of the tracking target within an

CHAPTER 1: INTRODUCTION

Figure 1.1: Tracking the keypad of a phone (©2010 IEEE).

Figure 1.2: Tracking camera motion around an object (created using VisualSFM [88]).

image, others also estimate a bounding box which separates the target from background,
or its three-dimensional orientation with respect to the recording camera. Yet others try
to estimate the deformations a target undergoes or changes in appearance. Although not
limited to it, the contributions within this thesis focus on estimating the eight-dimensional
homography which describes the current location of the object of interest within the image
space.

1.1.2 Motivation

The alternative to visual tracking are visual detection algorithms. These algorithms
directly estimate the location of the target object or the camera pose from the current

4

1.1 VISUAL TRACKING

input image without use of information from previous frames. The advantage of detection
methods is their independence from previous frames. This way they can find the target at
any position within the input image without having to rely on a motion model. However,
this also comes with some drawbacks. Besides the significantly higher need in processing
resources for purely detection-based tracking systems, visual tracking often shows an
improved visual quality due to smoother pose transitions between frames. Here, using
the pose from the previous frame for estimating the new one reduces jittering. Further,
detection-based approaches are generally restricted in absolute pose while tracking-based
approaches restricted only in relative pose and therefore, can often cover a larger pose
space.

1.1.3 Applications

Visual tracking has a wide range of applications. In the following, several of these possible
applications are discussed to present further motivation as well as future potentials for
this field of research.

Augmented Reality. Augmented Reality (AR) becomes more and more present in
people’s lives. New devices, such as the newest generations of mobile phones as well
as the Google Glasses, bring improved processing power and usability which makes AR
interesting for daily use. In the consumer space, applications such as navigation, games, or
ads are of particular interest. Navigation profits from AR by directly displaying navigation
information over the real environment, e.g. showing which door to enter, which lane to
use, or where exactly the destination is located. Similar holds for games. With AR
technology they are able to integrate the user’s surrounding into the game play, melting
virtuality and reality together. In advertisements, having virtual data attached to a
physical ad motivates a possible customer to interact with it and therefore, pay more
attention to it. This is especially true at recent times where this kind of technology is
just about to rise.

However, Augmented Reality is not only of interest for the end user but also for a
variety of industrial and medical applications. In medical applications, for example, the
doctor or surgeon can see additional information about his current patient using AR. An
example could be the patients internal bones and organs, which helps to plan further
steps during a surgery. Another application for AR at work is training. A mechanic can
use an AR device to get used to a service or repair procedure of a new car, for example.
This way, the mechanic can perform tasks on cars without prior training on this specific
car

Car sensor systems. More and more cars, especially in higher class models, use cam-
eras as input sensors for various tasks. Examples are to detect and follow the street lane
or to monitor other traffic participants to detect possible threats, e.g. a person entering
the street. Since cars are produced in high numbers and criteria like power consumption
are extremely important, it is necessary to process the computer vision tasks as fast and
with as few resources as possible. Visual tracking is extremely important here as it saves

CHAPTER 1: INTRODUCTION

processing resources by using information about the previous states of the car and its
surrounding.

Personal robotics. Personal robotics has many applications for computer vision tasks,
from detecting humans for interaction purposes, including their pose, mood, and so forth,
to detecting objects in order to pick them up, to navigation which includes to build maps
of the environment and to locate itself within these maps. All these tasks highly benefit
from visual tracking as it helps to decrease the necessary processing power after the initial
detection phase and therefore, the processor of the robot can focus more on other tasks,
such as motion planning.

Surveillance. In surveillance, cameras are often mounted either at elevated positions,
e.g. at a lantern looking at a parking lot, or mounted on airborne vehicles, e.g. a
helicopter or a drone. The common goal there is to either find out whether an object is
present in the observed area or to monitor the movements of objects, e. g. cars on a street
or a suspect in a police chase.

Human-Machine Interaction. The field of human-machine interaction ranges from
action and gesture recognition to things like detecting the mood of the user. User actions
are usually built from a sequence of motions and therefore, it is important to follow the
user and its state over time. Similar holds for gesture recognition. Although not all
human-machine interaction tasks are based on a sequence of states, e.g. mood detection,
they still benefit from tracking by reducing the processing costs.

1.1.4 Challenges

The following discusses the challenges present in the field of visual tracking.

Initialization. The first problem that arises in visual tracking is the problem on how
to initialize the tracking. Depending on the application this is usually either done by user
selection, e.g. if the object to track is not known a-priori, or by detecting the already
known object of interest.

Parameter space. The next question that comes up when considering different tracking
approaches is what type of transformation is important for the task, e.g. is it only
important to know the x-y-location of the object within the image or is a full 3D pose of
the object necessary. In general it holds that the more degrees of freedom the parameter
space has the more challenging the tracking becomes.

Changing appearance. After initializing the visual tracking the appearance of the
object of interest might change over time. In this case, the appearance model of the
object, often directly encoded within the tracker, has to be updated accordingly. This is
problematic as this might lead to drift in the tracking due to imprecisions in alignment
when selecting new appearances.

6

1.1 VISUAL TRACKING

Deformable objects. Another cause for a changing appearance is if the object of inter-
est is deformable. Although a similar strategy as for simple appearance changes could be
applied the knowledge of the possible deformations can help to improve tracking results.
Furthermore, many applications explicitly need to know in which specific way the object
deforms, e. g. if information has to be projected on the deforming surface.

Unpredictable motions. As mentioned in the definition of the visual tracking prob-
lem, visual tracking uses a motion model, implicitly or explicitly, to carry tracking infor-
mation from one to the next frame. In certain applications however, the motion of the
object to track is hard or even nearly impossible to predict, e.g. if either the camera
or the object is hand-held. This leads to problems when the real motion is significantly
different than the expected motion as then the tracking can be either lost or trapped in a
local minima. Additionally, the search space has to be increased in such a scenario, which
effects tracking speed.

Motion blur. Another problem of fast motion is that motion blur is likely to occur,
especially under low light conditions. This can lead to a loss in accuracy or a total loss
in tracking.

Occlusions. Occlusions are problematic in multiple ways. If only parts of an object are
visible and the rest is occluded by some other object the tracker needs to be able to follow
the object only with the available information while ignoring the information of the other
object. However, especially in the case of tracking based on error minimization it is hard
to distinguish between image differences due to a large motion and the image differences
created by occlusions. Additionally, occlusion is usually only a temporary phenomenon
and if the tracker adapts to changes of the appearance of the object it might actually get
confused and drift towards tracking the occluding object. Finally, if the object of interest
is completely occluded it is not possible to follow the object based on image information,
at least if it is assumed that the motion or position of the object can not be inferred
from the surrounding of the object. Possible solutions to a full occlusion are that either
a motion model is applied until the object is visible again or that a detection algorithm
is used to re-initialize the tracking after the occlusion vanishes.

INlumination changes. The appearance of an object is strongly dependent on the light-
ing present in its environment and on the reflection characteristics of the object. While
indirect light provides a rather uniform illumination of the objects surface, a directed
light can cause brighter spots and specularities. While uniform illumination changes usu-
ally can be handled by normalizing the image data of the object of interest, non-uniform
illumination changes are harder to compensate. Extreme cases are shadows casted over
the object or specularities which create strong bright areas on the object. In this case a
global normalization of the image data is no longer sufficient.

Texture. There are many different types of objects with all kinds of textures. Tracking
becomes especially problematic if the object of interest either has no or highly repetitive

7

CHAPTER 1: INTRODUCTION

texture. Depending on which type of texture is present, different kinds of tracking ap-
proaches are more or less suitable. For example, if no texture is present a tracking based
on the shape of the object is better suitable than a tracking based on image value differ-
ences, if the object is single colored with a unique color in its environment then color-blob
tracking is promising.

Available processing resources. A rather significant criteria for practical tracking
applications is the problem of limited resources. This includes the necessary processing
time as well as storage such as memory or disk space requirements.

1.1.5 Related Work

Methods for template tracking can be divided into two main categories, namely tracking-
by-detection (TBD) and frame-to-frame tracking. Tracking-by-detection [25, 27, 28,
26, 29, 30, 61] methods do not rely on a motion model, i.e. they do not apply con-
straints on the possible location of the template based on its location in previous im-
ages, but search the whole image space for the object of interest. While TBD methods
can find the object of interest anywhere in the image, this usually also makes them
significantly slower than frame-to-frame tracking methods, which consider only a small
region around the expected location of the object. Furthermore, tracking-by-detection
methods often use a time consuming training phase to be able to detect the template
under different poses. As the extent of this training phase also defines the space of
poses under which the template can be detected TBD methods usually also have a
stronger restriction on the possible pose space than frame-to-frame tracking methods.
Frame-to-frame tracking methods can be further categorized into methods based on en-
ergy minimization [52, 75, 22, 10, 13, 2, 3, 53, 6, 12, 64] and methods based on learn-
ing [19, 45, 43, 44, 21, 63, 54, 56, 90, 31, 32]. While energy-minimization-based methods,
in general, are faster and more flexible when creating and modifying templates, learning-
based methods can achieve higher tracking speed and robustness. For example, in [43]
and [31] it was demonstrated that a learning-based method, Linear Predictors, is superior
to energy minimization using Jacobian approximation or using the Efficient Second-order
Minimization [6] (ESM) approach.

Tracking-by-detection-based approaches. TBD methods can further be sub-
categorized into approaches based on interest point detection, where interest points are
detected and matched against a reference set of interest points in order to find the loca-
tion and pose of an object, and sliding-window-based approaches, where a set of template
images is compared with the image of interest at every possible location.

The task of tracking an object or template using interest points consists of multiple
stages: interest point detection, matching, and pose estimation. There exists a large
set of different interest point detection approaches. Prominent examples are SIFT [51],
SURF [5], the Harris interest point detector with it’s variations [23, 73], or FAST and
it’s extensions [66, 68]. After detecting interest points for the reference object as well as
for the current input image, the interest points have to be matched together. A common

8

1.1 VISUAL TRACKING

approach is to do this by computing descriptors for each point and matching interest
points by finding nearest neighbors in descriptor space. There exists a large set of dif-
ferent descriptors. Examples are the SIFT [51] and SURF [5] descriptors, Histogram of
Oriented Gradients (HOG) [11], or BRIEF [8]. In [61], Ozuysal et al. presented an interest
point matching approach, called FERNs, based on classification where for each reference
interest point a class is learned and then for each input interest point a probability is
computed which states how likely it is that it belongs to that class. For pose estimation it
is necessary to be able to deal with outliers in the matching process. Probably the most
prominent approach for this is RANSAC [14], an approach that uses random sampling
to iteratively compute different pose estimates, looking for the one with the most inliers.
One of the main disadvantages of interest-point-based methods is that they usually re-
quire a significant number of interest points for a robust detection. To overcome this
limitation, Hinterstoisser et al. [25, 27] introduced methods where single interest points
are used to initialize a patch-based pose estimation and therefore, tracking-by-detection
is possible with only a single interest point. However, similar to the other interest-point-
based methods, those methods are limited by the detection rate of the underlying interest
point detector. Instead of using interest points it is also possible to use other features,
such as shapes or closed contours. An example for such a method are Distance Trans-
form Templates (DTT), which were presented in [30]. There, closed contours are robustly
extracted and matched with a reference set of contours using FERNs [61].

A common way to get past the dependency on interest points is to densly search for a
patch that describes the object of interest from a specific view-point. An early approach
on this was presented by Olsen et al. [58] where the target object was found by looking for
the minimal Chamfer distance between the template and the input image contours. Since
then, many advances have been proposed, including coarse-to-fine approaches [16, 7], use
of different distance measures [7, 69, 41, 30], or using the Hough transform [4]. Since
many of these methods are based on a contour extraction method, such as Canny [9],
they tend to be sensitive to illumination changes, noise and blur. For this reason, other
methods directly rely on image gradients [71, 11, 1, 28, 26, 29] where the dot product
between template and input gradients is used as similarity measure. Learning-based
approaches [19, 84, 39, 62] try to build classifiers that help to identify the object of
interest.

While tracking-by-detection methods can lead to a robust tracking, e.g. if a suffi-
cient number of interest points are available, in general they require a higher amount of
processing than frame-to-frame tracking methods.

Keyframe-based approaches. If no prior model of the object or scene to track is
available, keyframe-based methods are a common way to build a model of the object
and to track it at the same time. These methods rely on creating a set of keyframes
that represent the object or scene. If these keyframes are available through a offline
process, the pose is estimated based on the iteratively computed model [82]. Otherwise, a
map of the tracked environment is created at run-time using interest points [48] or other
discriminative image features, e.g. edges [49]. Keyframe-based approaches show similar
problems as some of the Tracking-by-Detection-based methods. If the number of available

CHAPTER 1: INTRODUCTION

interest points or features is limited they tend to become error-prone, which is especially
a problem for small objects or scenes.

Energy-minimization-based approaches. In energy-minimization-based tracking, a
set of pose parameters is optimized such that the image value differences between an
input image and a reference image, which is warped according to the pose parameters,
is minimized. Since the early work of Lucas and Kanade [52], a significant number of
energy-minimization-based tracking approaches has been proposed with improvements in
different areas. These areas include the use of different update rules for the warp func-
tion [52, 22, 10, 75, 13, 2], the explicit handling of occlusions and illumination changes [22],
and the use of different orders of approximation of the error function [53, 6]. When opti-
mizing pose parameters, this is usually done by computing a parameter difference which
is then applied on the initial pose parameters. Over time, different update rules have
been proposed on how these parameter differences are applied on the initial pose param-
eters. These update rules can be categorized into four different categories: the additive
approach [52], the compositional approach [75], the inverse additive approach [22, 10]
and the inverse compositional approach [13, 2]. The advantage of the inverse approaches
is that they switch the roles of the current and the reference image. This modification
makes it possible to pre-compute a certain amount of the necessary computation during
the initialization phase and therefore, makes the tracking phase less computationally de-
manding. The problems of changing illumination as well as occlusions that partially hide
the object of interest are addressed by Hager and Belhumeur [22]. In [53, 6], the first-order
approximation originally used in the optimization process is replaced by a second-order
approximation, leading to larger convergence areas and an improved speed in reaching
convergence. Another common technique to increase the region of convergence is to apply
smoothing on the energy term, which is generally done by smoothing the image data [79].
However, this smoothing can lead to loss of image information important for the optimiza-
tion and therefore, cause the optimization to not lead to the desired minimum. Recently
proposed methods reduce this problem by computing multi-dimensional descriptors for
each image pixel on which they then apply smoothing [72, 57]. This way the smoothing
is applied separately on each dimension, which helps to keep important information. A
more detailed overview of energy-minimization-based tracking methods can be found in
Baker etal. [3].

Learning-based approaches. In learning-based tracking it is distinguished between
approaches that require an offline learning phase and approaches that can learn online at
run-time. In online learning, it has to be distinguished between learning the necessary
data for tracking completely online or updating the tracking information in order to adapt
to changes in the object of interest. Online learning of the complete tracking information
is essential for applications where formerly unknown objects have to be tracked. The
approaches of Grabner etal. [19] and Kalal et al. [45] are prominent examples for state-of-
the-art methods on learning-based tracking that are able to learn objects online. For both
approaches, the tracking process is separated into a frame-to-frame tracking, a detection
which localizes the previously seen appearances of the tracked object and corrects the

10

1.1 VISUAL TRACKING

tracking information if necessary, and a learning procedure that updates the detector in
order to minimize it’s detection errors. The semi-supervised online boosting strategy of
Grabner etal. [19] is replaced by a PN-learning strategy in Kalal etal. [45]. The PN-
learning uses two sets of experts to estimate missed detections as well as false alarms.
The combination of tracking, learning and detection is especially of advantage when an
object changes it appearance online or if occlusions occur. A significant disadvantage of
these methods is however, that they only give good results when tracking a bounding box
but not when the full pose of the object of interest has to be estimated over time.

Jurie and Dhome [43] introduced a learning-based template tracking approach using
hyperplane approximation which can be seen as a linear prediction process where im-
age value differences are linearly mapped onto the corresponding parameter differences.
In order to train this mapping, a set of randomly warped image samples of the initial
template is generated and stored together with the parameter differences used to cre-
ate these samples. From this a Linear Predictor is computed and used online to predict
parameter updates. This Linear Predictors replace the role of Jacobians used in energy-
minimization-based methods and have to be computed only once offline instead of newly
at every iteration online. A more comprehensive introduction into this approach is given
in Sec. 1.1.6. The work of Jurie and Dhome [43] was extended in [44] in order to handle
occlusions. Obtaining invariance with respect to changes in illumination is achieved us-
ing the approach presented in [20]. An intelligent selection process for choosing sample
points for sampling the image data to compute the image differences is described in [21].
While [43] uses a single large template, Zimmermann etal. [90] uses a large number of
small templates which are tracked individually and their different motion estimates are
combined back into a single one at the end. Instead of explicitly learning a predictor,
Mayol and Murray [56] create and store a set of training samples which are then queried
online in order to compute the parameter update using general regression.

1.1.6 Linear Predictors for Template Tracking

Before getting into more details on the contributions of this thesis an introduction on
template tracking using Linear Predictors is given, as the presented visual tracking meth-
ods are based on them. The key idea behind Linear Predictors is to learn a relationship
between an image value difference, between a template and the current image, and the
template parameter changes that would align that template with the current image.

Template. A template is represented by a set of n, sample points located within a
reference image. For simplicity, these sample points are often arranged uniformly in a
regular grid. The sample point locations are used to sample the image data which is
stored in an ng X 1 vector i = [i,)]"* ;.

Pose parametrization. Within this thesis, the pose of the template is represented by a
homography which is defined by four control points. The pose parameters are stored in an
8x 1 vector p = [pn]izl, where p,, are the locations of the control points used to define the
homography. In practice, these four control points are often chosen to be the four corner

11

CHAPTER 1: INTRODUCTION

points of the rectangular area in which the sample points are located. However, please
note that Linear Predictors are neither limited to homographies nor to the representation
using four corner points and that other transformations and representations are possible
too.

Tracking. For estimating the pose parameters p; at the current time step ¢, a parameter
update dp is estimated which updates the pose parameters p;_; of the previous time step
t—1:

e = i1+ Op. (1.1)

As shown in [43], the parameter update o can be directly estimated using the image
difference vector di = i; — ir, where ig are the image values sampled from the reference
template and i; are the image values sampled from the image given at the current time
step. The position of the sample points is hereby defined by the pose parameters p; 1
obtained at the previous time step or iteration. The relation between the parameter
update and the image difference vector is given by a Linear Predictor A as:

dp = Adi. (1.2)

Learning. The goal of the learning stage is to find a Linear Predictor A which obtains
good results for Eq. (1.2). In the learning stage, tuples of corresponding d0i; and Ju;
vectors are precomputed by perturbing the reference parameters dp and extracting the
image value differences from the accordingly rendered template image. These tuples are
then stacked into matrices Y = [dp1,...,01,,] and H = [0iy, ..., di,,], where n; is the
number of training tuples. Along the lines of Eq. (1.2) these two matrices can be related
as:

Y = AH. (1.3)

By applying the pseudo-inverse of H the Linear Predictor A can be computed as [43]:
T ™!
A=YH'(HH') . (1.4)

Normalization. To gain robustness against uniform illumination changes a normaliza-
tion is applied on the sampled intensity vectors such that they show zero mean and unit
standard deviation. The resulting rank-deficiency of the matrix HH', which needs to be
inverted during the learning process, can be resolved by adding small amounts of random
noise to the normalized intensity vectors.

Coarse-to-fine strategy. The goal of robust tracking is to find the correct pose param-
eters in the current image as precisely as possible and to do that even if a large motion
is present. Because of this, a coarse-to-fine strategy or multi-level tracking is applied.
For this, a cascade of Linear Predictors is learned where the first one is trained for large
motions while the subsequent ones are trained for less and less motion. This way, the first
Linear Predictor will roughly align the template in the current image while the following

12

1.2 3D PoiNnT CLOUD PROCESSING

Linear Predictors keep refining the results. Additionally to this multi-level tracking, mul-
tiple iterations are applied per Linear Predictor. Although this strategy is not explained
in the original paper of Jurie and Dhome [43] it is a common way to improve tracking
robustness.

1.2 3D Point Cloud Processing

1.2.1 Problem Definition and Motivation.

A 3D point cloud is a set of data points in a 3-dimensional coordinate system, usually
acquired using a 3D scanner or manually constructed using a CAD! software. Nowadays,
a large variety of different kinds of devices is available to create a 3D point cloud of a real
object or scene. These include laser scanners, structured light cameras, stereo cameras
and more generally multi-view camera setups, texture projectors, time-of-flight (TOF)
cameras, and so on. Especially the recent development in cheap and broadly available
3D sensors (such as the Microsoft Kinect) boosted the interest and applicability of 3D
point cloud processing techniques. However, to be able to use 3D point clouds in useful
applications they often need to be further processed, e.g. by computing a corresponding
mesh or finding a transformation between the given point cloud and a reference model.

Normal Estimation. One of the most common basic operations on 3D point clouds is
to estimate the corresponding normal orientations. That is to find the unit length three-
dimensional vector which is perpendicular to the tangential plane of the local surface
defined by the 3D point cloud. Since 3D point clouds are only a sparse representation
of a surface in space, this tangential criterion is only a weak constraint which is usually
controlled by how smooth the surface is to be expected. Estimating surface normals builds
the base for many other tasks and algorithms and it is therefore highly important that
it is achieved as efficiently as possible and with high robustness, as errors in the normal
estimation will propagate further in the processing pipeline. Failing to compute robust
normals can lead to significant problems in higher-level approaches.

Interest Point Detection. The detection of interest points in 3D point clouds aims to
select a subset of discriminative and uniquely identifiable points out of the available set of
3D points. This is important as common 3D sensor devices used for scanning objects or
scenes provide 3D point clouds which contain a huge amount of points and are therefore
computationally expensive to process if all points would be considered. What is usually
looked for in this context are points that are easy to re-localize, e. g. points at corners or
locations with maximal curvature, and for which meaningful descriptors can be computed
such that when comparing the descriptors of several interest points together only those
have a small difference which belong to the same physical location.

!Computer Aided Design (CAD)

13

CHAPTER 1: INTRODUCTION

1.2.2 Applications

3D point cloud processing has many fields of application and especially since the intro-
duction of cheap and small sensor devices it starts to affect more and more application
areas.

Robotics. Robotics is usually divided into industrial and personal robotics. 3D point
cloud processing has applications in both. In industrial robotics it can, amongst other
things, be used for motion planning, obstacle avoidance, or part inspection. In personal
robotics it is used for things such as navigation, including motion planning and obstacle
avoidance, object detection, place recognition, mapping, and many more.

Automotive. Car companies put more and more sensor technology into their cars in
order to be able to better observe the surrounding of the car. This includes video cam-
eras, ultra sonic senors, radar, as well as more advanced sensors, such as laser scanners.
Although in the automotive field 3D laser scanners are currently mainly used in research
projects, technologies like depth from stereo can create 3D point cloud data already with-
out having to rely on expensive laser scanners. These research efforts reach into applica-
tions such as automated parking, autonomous driving, or threat detection.

Construction. When building large factories or renovating large buildings, a problem
that often occurs is that the reality does not exactly fit to the plans of the buildings. 3D
scanning can be used in order to incorporate such differences into the technical drawings
of the building. This makes it easier to plan future changes and to make sure that e.g. a
power plant can operate within its specifications using the given structure.

Gaming/Entertainment. The gaming and entertainment industry especially profited
from the raise of cheap 3D sensing devices such as the Microsoft Kinect. Here, these
sensors have multiple possible use cases. One is to capture the player and its motion such
that the player can control the game using his body. But, 3D sensing can also be used to
create a 3D map of the users environment in order to integrate it into the game dynamics.

Human-Machine Interaction. Besides controlling computer games using 3D sensors,
3D sensing technology also becomes interesting in other fields for human-computer in-
teraction. In medicine, for example, 3D sensing can enable doctors to control electronic
devices without having to touch them, which simplifies the process of keeping objects
sterile. This also applies to all kinds of scenarios where people would have to touch input
devices in public areas, where a touch-less approach will help to decrease spreading of
diseases. Further, being able to control devices using hand motions makes interfaces feel
more natural and more complex scenarios than it would be possible with restricted input
devices, such as a computer mouse, can be handled.

14

1.2 3D PoiNnT CLOUD PROCESSING

1.2.3 Challenges

There is a wide variety of challenges that have to be faced when working with 3D point
cloud data. The following tries to list the main challenges, starting with general challenges
that are induced by the sensor devices and other hardware limitations, and going over to
more specific challenges for normal estimation as well as interest point detection. Hereby,
the general challenges tend to be more or less of a problem depending on the 3D sensing
device used for capturing the object or scene of interest, while the later ones are more
specific to the processing tasks. Often it is the case that choosing one or another sensor
will lead to a compromise between these challenges. For example, while Kinect like sensors
provide decent sensor resolution they show problems at occluding borders. On the other
hand, Time-Of-Flight cameras have lower resolution but do not suffer from the occluding
borders problem.

Sensor resolution. The resolution of the obtained 3D point cloud defines the amount of
detail that can be extracted out of the scanned data. For example, navigation tasks often
do not need a very high resolution while tasks like object detection and pose estimation
profit from higher resolution.

Depth resolution. Another resolution that is of interest is the resolution in depth, i.e.
the minimum possible distance in depth between two measured points. While a rough
depth resolution can be sufficient to estimate the boundaries of an objects it would not
be sufficient to get a detailed model of the complete 3D shape of it.

Noise. If the signal-to-noise ratio becomes too small a significant smoothing has to be
applied to still get valuable information. However, this is time-intensive and can cause
distortions.

Motion. If fast motion is present then certain sensors can show distortions in the 3D
point cloud caused by the different locations of the sensor when measuring the 3D data.
This, for example, can be a problem in automotive applications where lasers are mounted
on cars.

Occluding borders. Occluding borders occur on the borders of an object and are
caused by the structure of certain sensor devices. For example for the Kinect sensor the
projector for the texture pattern is translated from the camera sensor. This leads to blind
spots next to object borders.

Missing data. Besides the occluding borders, other factors can cause the sensor not to
return 3D data for certain locations. For example if the surface of interest is too reflective,
or not reflective enough, it can cause the sensor not to be able to capture 3D information
there.

15

CHAPTER 1: INTRODUCTION

Data sparseness. Normal estimation depends on the local neighborhood of a point.
If the obtained 3D data is too sparse this usually leads to a strong smoothing of the
estimated normals.

Data organization. For finding local neighbors of a point, organized point cloud data,
arranged similar to an image, helps to greatly improve processing speed.

Interest point sparseness. The goal of interest point detection is to find a sparse set
of points to represent the current scene. However, if the selected points are too sparse
then a robust alignment, for example, is no longer possible. On the other hand, if too
many points are selected, follow-up algorithms will take too much time to handle them.
This is a thin line that has to be considered when designing a detection algorithm.

Locality. Another important factor in interest point detection is the determination of
how much of its neighborhood should be considered when searching for interest points. For
example, if only a very small neighborhood is considered then it is more likely that noise
can create interest points too, while when large neighborhoods are considered significant
geometry changes have to be present to trigger an interest point to be detected and usually
the accuracy of the detected interest points degrades.

Processing time. Since 3D sensors in general provide a large amount of data it is key
to have efficient processing algorithms.

1.2.4 Related Work

Normal estimation. Methods for estimating 3D surface normals are often categorized
into averaging and optimization-based methods [47]. Methods based on averaging com-
pute the normal using the (weighted) average of the point of interest’s neighborhood. Typ-
ical choices for a neighborhood are points within a certain distance or points connected
to the point of interest, e.g. neighbors in a triangulated mesh. In case of a weighted
average, the weights define the influence of the information taken from the local neigh-
borhood. Typical methods for computing a weighted average include weighting all points
equally [18], weighting by angle [80], weighting by sine and edge length reciprocals [55],
weighting by areas of adjacent triangles [55], weighting by edge length reciprocals [55],
and weighting by square root of edge length reciprocals [55]. A more detailed overview of
methods based on averaging is given in [42].

Optimization-based methods are often based on fitting geometric primitives, such
as a plane, to the point of interest using its local neighborhood or by penalizing other
criteria, such as the angle between the desired normal and the tangential vectors. Tools
like the singular value decomposition (SVD) or the principal component analysis (PCA)
can be used to directly obtain the desired minimal solution if the optimization can be
formulated as a linear problem [47]. Existing methods rely on fitting planes [40, 38, 87, 46],
maximizing the angle between the tangential vectors and the normal vector [17], or trying

16

1.2 3D PoiNnT CLOUD PROCESSING

to estimate the orientation of the tangent plane as well as its curvature at the same
time [89, 59, 83]. For a more detailed comparison the reader is referred to [47].

Interest point detection. The field of 3D interest point detection in depth data re-
ceived surprisingly little attention in the past. While research in 2D interest point detec-
tion significantly advanced in the past decades, the number of available 3D interest point
detection methods is still very limited. Besides the additional processing complexity of 3D
data this can mainly be explained by the missing availability of cheap 3D sensors. In the
following, existing 3D interest point detection methods as well as general learning-based
interest point detection methods are reviewed.

3D interest point detection. In [77], Steder etal. introduced a method to compute
interest points in range image data using the Laplacian-Of-Gaussian method. However,
due to its computational complexity it is not suitable for real-time or near-real-time
processing. Their later work, [78], presents an significantly more efficient method that
locates interest points by finding and classifying different kinds of 3D object borders.
However, due to its focus on range data characteristics the method only provides reduced
robustness on depth maps, such as provided by the Kinect sensor. Unnikrishnan [81]
presented a method that extracts interest points from unorganized 3D point cloud data
and automatically estimates its scale. Due to its operation on unorganized 3D data it
does not take any view-point related information into account.

Learning-based interest point detection. Using machine learning approaches is not
completely new in the field of interest point detection. A number of approaches has
been proposed for extracting interest points from color or gray value images. FAST, Fea-
tures from Accelerated Segment Test, is an interest point detector introduced by Rosten
etal. [65]. It uses the pixels on a circle around each point to determine whether the point
is an interest point or not. The approach does not explicitly involve machine learning,
however, it can be seen as a manually designed decision tree. Based on this, Rosten et al.
proposed an extension in [67] where the manual design of the decision tree is replaced
by a learning phase. Rosten etal. further improved their detector in [68] by considering
more pixel locations for testing and using simulated annealing to optimize the decision
tree with respect to repeatability and efficiency. This is done by randomly changing the
initially learned decision tree and evaluating whether the applied change improves the
repeatability and efficiency of the detector.

Sochman et al. [86] presented a learning-based approach where a WaldBoost [76] clas-
sifier is learned to emulate an existing binary-valued decision algorithm, which is acting
as a black box. The binary-valued decision algorithm can hereby be a interest point de-
tector that tells if there is a interest at a specific pixel location or not. The WaldBoost
learning algorithm greedily emulates a given binary-valued decision problem by finding a
quasi-optimal sequential strategy. The learning algorithm performs feature selection using
the AdaBoost [70] algorithm and finds the thresholds used for making the decisions using
Wald’s sequential probability ratio test (SPRT). To demonstrate the usefulness of the
method, they learned the Hessian-Laplace as well as the Kadir-Brady saliency detectors.
While being able to emulate the detectors, their detection speed is too slow to process an
image at a reasonable frame rate.

17

CHAPTER 1: INTRODUCTION

Taking a more broader look at detection algorithms, one can categorize high-level
algorithms such as an object or a face detector as an interest point detector too. An
example for such a high-level algorithm is the face detector presented by Viola et al. [85].
A further example is the method presented by Foresti etal. [15] which uses preceptron
trees to classify surface types, such as planes or valleys, in range data. Although this
identifies regions of interest it can also be considered as an interest point detector in a
broader sense.

In image space, Lepetit etal. [50] estimated the probability that a considered point
corresponds to a specific class by training classification trees. While the authors did not
present this method as an interest point detector, but as a method for interest point
matching, it can also be seen as a detector if densely applied on an input image. The
same task was solved in [60] by making use of Ferns. In [74], body parts are estimated
using decision trees, which were trained using artificially rendered humans under different
poses.

The work on interest point detection performed as part of this thesis (see [37]) advances
the above mentioned work by optimizing artificial interest point response maps such that
they increase the detection performance and by using these artificial response maps to
learn to detect interest points in depth data using regression trees.

18

CHAPTER
TWO

CONTRIBUTIONS

In the following the contributions of the publications contained within this thesis are
discussed.

2.1 Visual Tracking

2.1.1 CVPR! 2010: Adaptive Linear Predictors for Real-Time
Tracking

Although the standard learning method of Linear Predictors, as explained in Section 1.1.6,
allows fast and robust tracking of a template, it is limited by the computational costs it
needs for the learning itself. Computing the Linear Predictor matrix A using Eq. (1.4) is
not sufficiently fast for learning it online on-the-fly, as it involves computing the inverse
of a large matrix. Having such high demands on processing time, modifying the shape of
a once learned template is not feasible using the standard approach.

Therefore, [31] presents methods for dynamically adapting Linear Predictors online
(see Appendix A). This includes enlarging and shrinking of the template area, as well as
evaluating the suitability of certain portions of the scene for tracking. Using this suitability
criterion, a proper region can be selected for enlarging the template. These proposed
methods show several advantages: since dynamically adapting a Linear Predictor can be
done efficiently, a new learning strategy is possible where tracking starts with a small
template and then new parts are added to the template on the fly. Furthermore, by being
able to shrink the template online, without the need of re-learning the template in an
computationally expensive way, the template can be adapted to potential changes in the
scene as well as to visibility constraints caused by the sensor limitations, i.e. if parts of
the template leave the visible image region.

The key idea for fast and efficient template adaption is to consider the template as a
set of subsets (see Fig. 2.2). When enlarging or shrinking the template, one of those sets
is either added or removed from it. This way, a new corresponding Linear Predictor can

HNEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)

19

CHAPTER 2: CONTRIBUTIONS

Figure 2.1: (a) A small initial template is (b) enlarged according to a tracking quality measure. The
template is tracked over time and (c) reduced if parts of it go out of sight. The removed parts are
reinserted (d) as soon as they become visible again. ©@2010 IEEE

be computed by adapting the inverted matrix (HH")™! of Eq. (1.4) instead of having to
recompute it. If we consider H; to be the image sample data of a large template area and
Hpg the image sample data of an extension or reduction subset then we can write:

C[Sny S| ([HHE] HEL]N\T
S‘[sm SQQ]‘QHEHI meH,)~ HED 21)

where the goal of template enlargement would be to compute S given (H;H])™! and
the goal of template shrinking would be the vice versa. In case of template enlargement,

the parts of S can be computed making use of formulas presented by Henderson and
Searle [24]:

20

2.1 VISUAL TRACKING

extension
extension area templates
N\ /
OobooOOOOOO
template sample point ©000000O0O0 O/g
subset O OJO O O O O Ofo
(Po. P1) O (P2, P3) oooooooooz
= oolooooooloo
o o oolooooooloo
o o oolooooooloo
o o oolooooooloo
° ° oooo?ooooo
© © 000O0®OO0O0O0 O
(Ps. P7) (P4, Ps) 7

initial template

Figure 2.2: A template is represented by a set of regularly placed sample points, which are grouped
into subsets of four points. The pose of a template is parametrized using four corner points. ©2010 IEEE

S, = (HH;)!

+ (H/H))'H/H.S,,H;H (HH;) " (2.2)
S, = —(HMH;)"H/H.Sy, (2.3)
Sy = S, (2.4)
S» = (HpHj—HyH] (H/H])'HH]) . (2.5)

For template reduction, further formula provided by Henderson and Searle [24] can be
used to compute the desired result:

(HyHY)™' = S;1 — S HyHLDHRHRLS,, (2.6)
-1
D = (HzH}+HzH S HyHE) (2.7)

This significantly decreases the necessary learning time (see Fig. 2.3) as the matrix
inversion is the computationally most expensive part of the learning, especially for large
templates. A more detailed derivation of the formulas for template extension and re-
duction, a method for computing the suitability of extension regions for tracking, notes
on practical issues that have to be considered, and a more thorough experimental anal-
ysis can be found in Holzer etal. [31]. The corresponding publication can be found in
Appendix A.

21

CHAPTER 2: CONTRIBUTIONS

7 ‘ ‘ ‘ ‘ ‘ 0.06 ‘ ‘ ‘
v-JD from scratch v — AL Ps extension
o -©-AL Psfl’om Scratch 7 0.05! AL Psreduction 74
- ALP extension '
2,50 @
® > 0.04r
E 4t ¥ £ v
> ©0.03
S3 o s 4
8, gooz
1 v | 0.01} 4
. et
0 — * * 7 ‘ ‘ i i
0 100 200 300 400 500 600 G0 100 200 300 400 500 600
template size [sample points] template size [sample points]

(a) (b)

Figure 2.3: Comparison of the computation time necessary for learning a linear predictor using the Jurie-
Dhome [43] (JD) approach (green) and using ALPs (red and blue). (a) For the latter case we distinguish
between learning the predictor from scratch (red) and adding only one extension subset (blue) at a time.
Learning from scratch means that we consider the entire time necessary to build up the template of the
specified size. (b) Computation times for template extension and reduction, when one extension subset
is added at a time. The blue curve corresponds to the blue curve at (a). ©2010 IEEE

2.1.2 TPAMI? 2012: Multi-Layer Adaptive Linear Predictors
for Real-Time Tracking

Building on top of Holzer etal. [31] , [32] adds a multi-layer concept which detects and
handles occlusions while tracking and also introduces an extension which robustifies the
tracking with respect to large motions (see Appendix D). In this multi-layer approach for
occlusion detection the first layer contains a large template which is then sub-subsequently
divided in the following layers (see Fig. 2.4). When tracking, the first layer is used to align
the template and the subsequent ones are used to further refine the pose and especially
to detect occlusions. Since present occlusions would also influence the tracking of the
original first layer template, it is important do adapt the shape of it when occlusions
occur. For this, the methods presented in Holzer et al. [31] are used.

However, to adapt the template the occlusions have to be detected first. This is done
using the introduction of secure, insecure, and occluded regions in the template area (see
Fig. 2.5). Initially, when the first layer template is not occluded, the inner parts of the
template are considered as secure and a certain area around it is considered as insecure.
Insecure regions are monitored while tracking and continuously checked for whether an
occlusion, i.e. a change in intensities, is present. If so, the insecure region is marked as
occluded and all its neighboring regions are marked as insecure. If a region changes from
secure to insecure then it is removed from the template and if it changes back to secure
it is added again.

To achieve the earlier mentioned robustification of the tracking process the tracking
is initialized at multiple locations for the first layer and only the best performing result
is considered further in the tracking pipeline. This significantly increases the amount of
motion that can be handled by the tracking (see Fig. 2.6). The corresponding publication

2IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

22

2.1 VISUAL TRACKING

Figure 2.4: (a) The organization of the multiple layers used for tracking. The sub-figures (b), (c) and
(d) show different transformed templates of the top layer used to increase the robustness against large
motion. (b) shows differently rotated, (c) differently translated and (d) differently scaled templates.
©2013 IEEE

A —

eopono | Observed
O [T DEE) [EVER region
oo Coleol
0j|lo O o Ol
e | |
oojoo o ool
ooo0ooog)
o000 ool oo

Insecure
region
Occluded
region

Template

EE|

Occlusion

Figure 2.5: The left figure shows the multi-layered template with its observation region depicted as green
area. The middle figure shows the different layers and their contribution to the observed region from a
side-view. The right figure illustrates insecure regions, which are areas around the detected occlusions.
©2013 TEEE

23

CHAPTER 2: CONTRIBUTIONS

1 AN AN A e “semm— 5
v
vV

o
»
o
®

0.8

o
@

v-ML-ALPs
—+ML-JD

success rate [%]
success rate [%]

success rate [%]
success rate [%]

-
<

¥

=

v v

o
¢

g v v v v v

0.4 0. 0.4
‘% A4
0.2 0.2 0.2 04
v-ML-ALPs v-ML-ALPs v-ML-ALPs
—+ML-JD —+ML-JD —+ML-JD
l‘O 10 20 30 40 50 60 50 100 150 200 0 10 20 30 40 50 60 0'7) 20 40 60 80
viewing angle [°] scale [%] rotation angle [°] displacement [pixel]

_ _5 _ _25
E v-ML-ALPs E E’ v-ML-ALPs E
& 2. ~ML-ID 2, 225 —+ML-JD i,
8 g g 14
£ 9 = £ o £
5 53 5 S 15
€15 € V-ML-ALPs 14 € V-ML-ALPs
8 8 3 —+ML-JD 8 38 1 —+ML-JD
% % 3 %
© @ @ «©
£ £ £ £
c c c <
o @ @ @
o 53 © o
£ £ £ £

v vV
y—v ¥ Vg vy v VY Vv vV v VvV

o
gk

oo

40 50 60 0 100 150 200 10 20 30 40 50 60 0
[l scale [%] rotation angle [°]

=

60 80

20 30 20 40
viewing angle displacement [pixel]

Figure 2.6: Results of the comparison between the ML ALPs approach and the ML approach of Jurie
and Dhome [44] with respect to different types of motion without occlusion. The first row shows the
tracking success rate and the second row the corresponding mean maximum corner errors. ©2013 IEEE

can be found in Appendix D.

2.1.3 ECCV? 2012: Online Learning of Linear Predictors for
Real-Time Tracking

Although the work in [31] improved the speed of the learning process significantly it is still
not capable of learning larger templates at speeds that are acceptable for user interaction.
This holds especially for lower powered devices such as mobile phones. Therefore, [35]
introduces a reformulation of the learning equations which allow efficient training that is
up to two orders of magnitude faster than the original approach (see Appendix B).

The key idea behind the original learning strategy was to solve for the Linear Predictor
matrix A, which relates image differences values H and parameters updates Y as Y =
AH, by using the right pseudo-inverse to bring H on the left side. Alternatively, it is
possible to bring Y on the right side first using the left pseudo-inverse and then to use the
right pseudo-inverse to bring it together with H back on the left side [35]. The difference
between both approaches is in the size of the matrices that have to be inverted.

Assume that Y is of size 8 x n; and H of size n, x n;, where n; is the number of
training samples and n, the number of image sample points, i. e. the template size. Then,
the original approach has to invert a matrix of size n, X n,, where in practical cases
n, is usually significantly larger than 100 and therefore, the inversion takes a significant
amount of processing time.

The alternative approach, as proposed in [35], first computes the left pseudo-inverse

of Y, which is YT (YYT)_l. This can be efficiently computed as it only involves the

-1
inversion of an 8 x 8 matrix. Next, the right pseudo-inverse of B = Y' (YY" has
to be computed, where B is of the size of n, x 8. This way, the Linear Predictor matrix

3European Conference on Computer Vision (ECCV)

24

2.1 VISUAL TRACKING

+-Jurie and Dhome/ our approach|
v-ALPs

g
\
<
PR
N oo

learning time [msg]
Sm
Y
t
+
speed-up in learning time
~
o
Y
<
tracking time [ms]
= N w B (9] o)) ~
<
<
q

+-our appr. vs. Jurie and Dhome +
Vv-our appr. vs. ALPs

=
o
Q

%

10"
/“/6
v
10°

hv + 50 » Y ; v
1] * § v v
10 b —%-Jurie and Dhome| ¥ oo v
: v-ALPs 25 (5 v R
o +our approach 4 ot
10 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

template size [sample points] template size [sample points] template size [sample points]

(a) (b) ()

Figure 2.7: (a) Comparison of the necessary learning time with respect to the number of sample points
used within the template for the approach proposed by Jurie and Dhome [43], by Holzer et al. [31] (referred
as “ALPs") and our approach. (b) The corresponding speed-up in learning obtained by our approach.
(c) The tracking time per frame with respect to the number of sample points used for the template.
Copyright notice: Springer and the original publisher (Computer Vision - ECCV 2012, 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I, pp 470-483,
Online Learning of Linear Predictors for Real-Time Tracking, Stefan Holzer, Marc Pollefeys, Slobodan
Ilic, David Joseph Tan, Nassir Navab) is given to the publication in which the material was originally
published, by adding: With kind permission from Springer Science and Business Media.

is computed as A = (BTB) B'. Again, the necessary inversion involves only an 8 x 8
matrix. Therefore, the Linear Predictor can be computed significantly more efficient than
using the original approach (see Fig. 2.7).

While this alternative formulation of the learning equations achieves similar robustness
in tracking under regular conditions, it shows a significant improvement in conditions
where a significant amount of noise is present, e.g. under low light conditions. This
behavior can be explained by the projection of the training data on low-dimensional
spaces. More details on this and further experimental evaluation is given in [35]. The
corresponding publication can be found in Appendix B.

2.1.4 ACCV* 2012: Efficient Learning of Linear Predictors us-
ing Dimensionality Reduction

Another alternative for computing a Linear Predictor is given in [33] (see Appendix C).
There, dimensionality reduction is used to reduce the dimensionality of the training matrix
H such that the necessary inversion in the standard learning approach can be applied on
a smaller matrix. Therefore, the goal is to reduce the size of H from n, x n; to n, x n,
where n, < n,.

In order to achieve this, a matrix W of size n, x n, can be created which maps the
original training data onto a lower-dimensional space. The original training data H is then
mapped to H = WH, which shows the desired size. Computing a Linear Predictor from

N P |
this results in A = YH' (HHT‘2 . To be able to use the obtained Linear Predictor in
the standard framework for tracking, i.e. where no dimensionality reduction is explicitly
applied, it has to be multiplied on the right hand side with the mapping W, such that

4Asian Conference on Computer Vision (ACCV)

25

CHAPTER 2: CONTRIBUTIONS

10 T T T T 150 7 T T .
: -©-DCT-25 vs. JO +JD/DCT
k v £ 125|-8-DCT-49 vs. JQ 6/ v ALPs v
7 10° ; v = "|l%-DCT-81 vs. 30 7 v 7
E £ 100 E v
= [}
.GE_) 3 ; E4 v
=107t E - 75 = v
j=2] = j=2}
£ =-JD =y £3 e
< = X a4
5.5 v ALPs L 50 85 v
=10} -©-DCT-25 3 = X
o 25 al]
8-DCT-49) v e
. ~-DCT-81 O
10 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Num. of template sample points Num. of template sample points Num. of template sample points

(a) (b) (c)

Figure 2.8: Comparison of timings for the approach proposed by Jurie and Dhome [43] (‘JD’), the
approach of Holzer etal. [31] (‘ALPs’), and our approach (‘DCT-z’). (a) Comparison of learning time.
(b) Obtained speed-up of our approach with respect to Jurie and Dhome [43]. (¢) Comparison of tracking
time. Copyright notice: Springer and the original publisher (Computer Vision - ACCV 2012, 11th Asian
Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part
ITI, pp 15-28, Efficient Learning of Linear Predictors using Dimensionality Reduction, Stefan Holzer,
Slobodan Ilic, David Joseph Tan, Nassir Navab) is given to the publication in which the material was
originally published, by adding: With kind permission from Springer Science and Business Media.

the dimensionality reduction is implicitly applied on the image difference data during
tracking. Therefore, the final Linear Predictor is obtained as A = AW.

In [33], it is shown how the Discrete Cosine Transform can be used to construct the
desired mapping W. This way, the learning procedure can be tailored to the available
amount of processing power by selecting an appropriate value for the reduced dimension-
ality n,. Similar to the approach of [35], a speed-up of about two orders of magnitude can
be reached, where the exact speed-up depends on n, and the template size (see Fig. 2.8).
Depending on the choice of n,, a tracking robustness similar to the original approach can
be achieved. The corresponding publication can be found in Appendix C.

2.1.5 IJCV® 2014: Efficient Learning of Linear Predictors for
Template Tracking

In [34], a combination of both approaches for speeding up learning [35, 33] is presented and
a thorough comparison between those three approaches is conducted (see Appendix E).

The combination of both approaches is achieved by plugging in H = WH from [33]
into the learning equation from [35]. This leads to a computation of the Linear Predictor
matrix as A = (BTﬂTﬂB)_l B HT, where B = YT (YYT)_I. Again, all inversions
are applied on small matrices.

As the experiments in [34] show, this ends in a compromise between the advantages
and disadvantages of both approaches. The experiments further show that while the
reformulation approach of [35] shows a slight drop in tracking robustness under regular
conditions it leads to a significantly better robustness under noisy conditions. The ap-
proach based on dimensionality reduction [33] on the other hand shows the best results

SInternational Journal of Computer Vision

26

2.1 VISUAL TRACKING

under regular conditions, even better than the original learning approach, while it can
handle noisy conditions only at a level similar to the original approach. The combined
approach shares the slightly reduced tracking robustness under regular conditions while
it has improved robustness under noisy conditions, although it can not quite reach the
robustness of [35]. More details on the evaluation as well as on the derivation of the
combined approach are given in [34]. The corresponding publication can be found in
Appendix E.

27

CHAPTER 2: CONTRIBUTIONS

I:a(ms, Ng)=>(Me, Ne)

(Me, Ne)

()

Figure 2.9: (a) The sum of a 2D region can be efficiently computed from an integral image by accessing
only four data elements in memory which correspond to the for corners of the rectangular region. (b)
Estimating a surface normal as cross-product of the vectors between the horizontal and vertical neighbors
of the point of interest. ©2012 IEEE

2.2 3D Point Cloud Processing

The following discusses the contributions of this thesis in the field of 3D point cloud
processing.

2.2.1 TIROS® 2012: Adaptive neighborhood selection for real-
time surface normal estimation from organized point cloud
data using integral images

In [36], a highly efficient and robust method for estimating surface normals from organized
point clouds is introduced, where a dynamic smoothing is applied that adapts based on
the depth and neighborhood of the considered points (see Appendix F). An organized
point cloud is a cloud where the points can be organized in a regular grid similar to an
image. An example for a 3D sensor which provides organized point clouds is the Microsoft
Kinect. It provides a 2-dimensional depth map which then can be transformed into a point
cloud.

The presented method for surface normal estimation is based on integral images. Inte-
gral images are created from an source image by computing for each image pixel location
the sum of all pixel values located in the rectangular area between the origin and the
current image pixel location (see Fig. 2.9). The advantage is hereby that this computes
the sum of pixel values within an area in constant time. Therefore, it is ideally suited for
applying a dynamic smoothing.

For estimating the size of the smoothing area for every pixel, [36] uses two different
indicators. The first is based on the observation that noise increases with increasing dis-
tance from the sensor. Therefore, the further away a point is the larger the smoothing area
for the normal estimation will be. However, a problem that arises with large smoothing
areas is that if smoothing is applied over objected borders, indicated by jumps in depth,

SIntelligent Robots and Systems (IROS)

28

2.2 3D PoIiNT CLOUD PROCESSING

the estimated normals will be inaccurate. Therefore, the distance to the closest object
border or significant depth change is computed and used when determining the smoothing
area size. The computation of the distance to the closest object border is done by first
estimating all object borders and then computing a corresponding distance map. This
can again be done in constant time.

Using these smoothing area sizes, two different ways for computing surface normals
using integral images are shown in [36]. The first one is by computing the surface normals
from smoothed changes in depth, by computing the perpendicular vector to the depth
change in horizontal and vertical direction. The second approach uses covariance matrices,
where the single entries of the covariance matrices are computed using integral images.

The experiments, see [36], show that the introduced methods outperform a state-
of-the-art k-nearest-neighbors method by computing surface normals much faster while
achieving smaller error rates. The corresponding publication can be found in Appendix F.

2.2.2 ECCV7 2012: Learning to Efficiently Detect Repeatable
Interest Points in Depth Data

The work in the field of interest point detection from 3D point clouds is rather limited.
The existing approaches mainly follow the rule of being good, in terms of repeatability
and accuracy, but slow, or fast, but then lack robustness in repeatability and accuracy.
In [37], a new interest point detector is introduced which is learned using regression trees
in order to achieve high robustness as well as real-time performance (see Appendix G).
Although this is not the first work on learning-based interest point detection it is the first
that has the explicit goal of not only mimicking an existing detector but also to optimize
the detection with respect to some optimality criteria.

The optimality criteria that are considered are common goals of interest point detec-
tors: sparseness, repeatability, distinctiveness, and efficiency. The work hereby focuses
on repeatability as sparseness is usually controlled using thresholds, distinctiveness is de-
pendent on the used descriptors, and efficiency is implicitly obtained by using regression
trees.

As a baseline, the learning approach uses an interest point detector based on high
curvature, i.e. a detector that gives high responses for points with high curvature, e. g.
corner points, and low responses for planar regions. Since this detector is not optimized
for repeatability, a training data set is used to estimate a response which maximizes
repeatability. For this, a set of pre-registered 3D point clouds is used. First, the base
line detector is applied to obtain its responses for each point. Then, these responses are
accumulated in a volume by summing up the response values of all points that fall into
the same voxel of the volume. Using this and a visibility count for every voxel, a synthetic
response volume is created and mapped back into the single point clouds of the training
sets. This way a point receives a high response if it is likely to obtain high scores in
many of the point clouds. The pipeline for computing these artificial responses is shown
in Fig. 2.10. To further emphasize these characteristics, a non-max suppression is applied
on the resulting responses (see Fig. 2.11).

"European Conference on Computer Vision (ECCV)

29

CHAPTER 2: CONTRIBUTIONS

1 1
1 1
1 1
1 1
1 1
1 Accumulation 1 3 i
: Volume : y? "% \
e y | | ! .
y : / Response : Sequence of
f Curvature i Volume | Accumulated
Sequences of Responses |= ===~ ===-=-—-=--"- " - TTT-TT======" Responses
Reconstructed -:l : —P
Data 1 Visibility-Counter

: Volume

1

1

Mappings between Voxels Mappings between Voxels
and Image Data | L and Image Data 1

Sequence of

-

Figure 2.10: Illustration of the synthetic response computation. Copyright notice: Springer and the
original publisher (Computer Vision - ECCV 2012, 12th European Conference on Computer Vision,
Florence, Italy, October 7-13, 2012, Proceedings, Part I, pp 200-213, Learning to Efficiently Detect
Repeatable Interest Points in Depth Data, Stefan Holzer, Jamie Shotton, Pushmeet Kohli) is given to
the publication in which the material was originally published, by adding: With kind permission from
Springer Science and Business Media.

Sequence of Accumulated Responses Sequence of Artificial Binary Point Responses

Figure 2.11: Computing artificial response maps from accumulated responses. Copyright notice:
Springer and the original publisher (Computer Vision - ECCV 2012, 12th European Conference on Com-
puter Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I, pp 200-213, Learning to Efficiently
Detect Repeatable Interest Points in Depth Data, Stefan Holzer, Jamie Shotton, Pushmeet Kohli) is
given to the publication in which the material was originally published, by adding: With kind permission
from Springer Science and Business Media.

Experiments show that the resulting interest point detector outperforms state-of-the-
art approaches in robustness and speed [37]. The corresponding publication can be found
in Appendix G.

30

CHAPTER
THREE

CONCLUSIONS & OUTLOOK

3.1 Visual Tracking

3.1.1 Conclusion

The contributions of this thesis in the field of visual tracking addressed several major chal-
lenges and limitations of learning-based template tracking. The introduction of Adaptive
Linear Predictors (ALPs) [31] demonstrated that Linear Predictors can be adapted in a
flexible and efficient way without the need to recompute them completely. This helps
tracking in multiple ways: templates can be efficiently learned by starting with a compa-
rably small template and growing it over time, such that learning unknown objects and
scenes becomes feasible without interrupting the flow of a process or application. Further,
the template can freely adapt on the shape of the object of interest by choosing the parts
of the object that are best suited for robust tracking and it can adapt to occlusions, either
caused by other objects, self-occlusion, or by moving the object partly out of the field of
view.

In [32], it was demonstrated that occlusions can efficiently and robustly be identified
using the concept of secure, insecure, and occluded regions. This way, occlusions can be
handled using Adaptive Linear Predictors by tracking only secure regions and temporarily
removing insecure and occluded regions from the template. Furthermore, a robustification
approach was presented which improved the robustness with respect to large motions.

Although Adaptive Linear Predictors made it possible to learn template efficiently over
time, an instant learning was still not possible at run-time. Therefore, a reformulation
of the learning process was introduced in [35], which bypasses the computationally most
expensive part of the learning, the inversion of very large matrices. This showed that
the speed of learning Linear Predictors can be increased by a factor of two orders of
magnitude while keeping a similar robustness in tracking. Even more, this introduced
a significant improvement in robustness with respect to image noise. Therefore, it is of
advantage when tracking in low-light conditions is necessary.

An alternative way of improving the learning speed was presented in [33] where it
was demonstrated that a dimensionality reduction can be applied on the learning data

31

CHAPTER 3: CONCLUSIONS & OUTLOOK

without loosing robustness in tracking. It was shown that the Discrete Cosine Transform
(DCT) is a suitable technique for achieving the task of dimensionality reduction and that,
depending on the template size and the number of used DCT-coefficients, a speed-up in
learning in the range of two orders of magnitudes can be obtained. Furthermore, the
obtained tracking robustness was superior to the original learning approach.

A combination of both the reformulation and the dimensionality reduction meth-
ods [34] allows a trade-off between robustness under noisy image conditions, e.g. in
low-light, and tracking robustness in general cases, as the reformulation approach tends
to be slightly less robust under these conditions.

3.1.2 Outlook

Despite the advances in learning-based tracking provided by this thesis, there is still need
for improvements in certain areas. In the following, open problems and interesting future
directions for research are identified.

One major limitation of Linear Predictors is that, up to now, they can only be applied
on planar regions. Being able to track non-planar regions would allow tracking of complete
scenes without having to divide the scene into single small planar templates. Having a
large single template for this is likely to increase tracking robustness [31]. One could even
think of having a SLAM system running on this where new parts are continuously added
to the template. Parts that get out of the field of view can be removed from the template
and stored in a database until they become visible again.

Another interesting direction of research would be the type of transformation used for
tracking. So far, it has only been demonstrated that transformations up to homographies
can be successfully modeled using Linear Predictors. However, it has not been shown yet
whether or how they can cope with transformations in 3D space. Tracking a 3D pose
would also be necessary for using Linear Predictors in SLAM approaches. Furthermore,
deformable models could be considered for tracking objects. This would significantly
increase the possible areas where Linear Predictors can be used for. Applications can be
in the field of augmented reality where deformable surfaces are tracked and replaced by
a different content, or in the field of human-computer interaction where a face can be
tracked.

Since specific deformable objects, such as faces, are often treated using a special
parametrization model, and not only a general deformable model, another direction for
research is to investigate in how far the parameters of such models can be estimated and
tracked using Linear Predictors.

Besides using image data for tracking, it would be interesting to figure out whether
Linear Predictors can also efficiently be used for tracking in 3D data or depth maps, as
they are provided by the Microsoft Kinect. Tracking 3D objects in 3D data is still a very
computationally expensive task and having a fast and robust method for tracking those
objects would benefit a large area of applications. Especially robotic applications, which
often have access to 3D sensors, such as object detection and tracking, navigation, scene
mapping would greatly benefit from this.

Finally, a new trend in template tracking is to use channel-based methods. These are

32

3.2 3D PoiNnT CLOUD PROCESSING

methods that, instead of using image intensity values for tracking, use multi-dimensional
vectors which are comparable to histograms. These histograms contain only a single entry
at the bin which belongs to the intensity value present at the pixel while all other entries
are zero. For increased robustness, blurring is applied on the histogram. It would be
interesting to see whether this concept can be used together with Linear Predictor and if,
what the impact on the robustness of the tracking would be.

3.2 3D Point Cloud Processing

3.2.1 Conclusion

Surface normal estimation is a fundamental technique in 3D point cloud processing and
builds the foundation for a large set of higher level approaches. In [36], it was demon-
strated that the speed of the computation of surface normals from organized point cloud
data can be significantly increased by using integral images. This allows flexible smoothing
areas for every 3D point and therefore provides robust normal estimates.

In the field of 3D interest point detection, a new way of learning optimal interest points
was shown to be superior to existing detectors [37]. Instead of trying to only mimic the
response of an existing interest point detector, as done in previous work in the 2D image
domain, it was shown that optimizing for specific intended characteristic of an interest
point, such as repeatability, leads to a significant improvement. This way, a fast and
reliable detection of interest points was made possible.

3.2.2 Outlook

While surface normal estimation can be done efficiently now, the presented method still
shows problems at the borders of objects, where the smoothing area is reduced and there-
fore, noise is still an issue. This especially holds as a problem for object detection tasks
where small objects have to be found. If an object only covers a small area in the resulting
3D data, almost no smoothing can be applied with the presented method. This becomes
even more problematic if the object is built from small thin structures.

A problem that is present in the current work in designing interest point detectors
and feature descriptors is that both approaches are usually done in different, indepen-
dent steps. Only later it is checked which detectors fit well with which descriptors. For
example, the presented approach for learning to detect interest points only optimizes the
repeatability of a specific existing interest point detector. However, since it is highly im-
portant that the used interest point detector fits optimally to the used feature descriptor,
an interesting future direction of research is to consider both concepts in the learning
approach. A first step would be to learn a detector which is optimally suited for a specific
descriptor, which could be done by training for points that are robust to local changes,
in terms of stable descriptor values, but unique in a global perspective. If this is success-
ful, a learning approach where both, the interest point detector and the corresponding
descriptor are learned at the same time, could be thought of.

33

APPENDIX
A

ADAPTIVE LINEAR PREDICTORS
FOR REAL-TIME TRACKING

©2010 IEEE. Reprinted, with permission, from Stefan Holzer, Slobodan Ilic, and Nassir
Navab, Adaptive Linear Predictors for Real-Time Tracking, 2010 IEEE Conference on
Computer Vision and Pattern Recognition, June 2010.

Own contributions. My contributions to this work include the core idea, the design,
and implementation of the methods for adapting Linear Predictors online as well as the
evaluation of those. The core idea of the paper was refined in collaboration with the other
co-authors. All co-authors were involved in the writing of the paper.

35

Adaptive Linear Predictors for Real-Time Tracking

Stefan Holzer, Slobodan Ilic, Nassir Navab

Department of Computer Science, Technical University of Munich (TUM)
Boltzmannstrasse 3, 85748 Garching, Germany

{holzers,slobodan.ilic,navab}@in.tum.de

Abstract

Enlarging or reducing the template size by adding new
parts, or removing parts of the template, according to their
suitability for tracking, requires the ability to deal with the
variation of the template size. For instance, real-time tem-
plate tracking using linear predictors, although fast and re-
liable, requires using templates of fixed size and does not
allow on-line modification of the predictor. To solve this
problem we propose the Adaptive Linear Predictors (ALPs)
which enable fast online modifications of pre-learned lin-
ear predictors. Instead of applying a full matrix inversion
for every modification of the template shape as standard ap-
proaches to learning linear predictors do, we just perform a
fast update of this inverse. This allows us to learn the ALPs
in a much shorter time than standard learning approaches
while performing equally well.

We performed exhaustive evaluation of our approach
and compared it to standard linear predictors and other
state of the art approaches.

1. Introduction

Template tracking has been extensively studied and used
in many computer vision applications such as vision-based
control, human-computer interfaces, surveillance, medical
imaging and visual reconstruction.

While there are many template tracking approaches
based on the analytical derivation of the Jacobian [14, 19,
9,5,6,1,2,15, 3, 4], learning-based methods [12, 13, 8, 18,
16, 17, 20] have proved to allow faster tracking and are gen-
erally more robust with respect to large perspective changes.

A very successful learning based template tracker was
proposed by Jurie and Dhome [12]. It is based on learning
linear predictors to efficiently compute template parameter
updates. The costly off-line learning phase, however, pro-
hibits this method from computing templates of varying size
online.

Figure 1. An initial small template is enlarged according to a track-
ing quality measure. The template is tracked over time and re-
duced if parts of it go out of the image. The removed parts are
reinserted as soon as they become visible.

Yet, the ability to dynamically change the template size
is necessary in applications such as indoor SLAM. The fact
that the 3D geometry of the scene is a priori unknown makes
it necessary to initially rely on planar structures. In this
case it is preferable to start from small-sized templates, in
order to reduce the risk of loosing track due to non-planar
structures, and to grow or shrink them online. Thus, the
learning of large templates can be distributed over multiple
frames while keeping the failure rate low. In combination
with a planarity check this strategy enables online segmen-
tation of planar structures and the reliable maintenance of
large templates. As a result, the set of initially tracked tem-
plates evolves towards a relatively small number of compa-
rably large, optimally shaped templates, yielding increased
robustness.

Current learning based tracking approaches, like [12],
use templates of fixed size, because the computation of the
linear predictors requires the costly inversion of a large,
template specific matrix. Since this is the computation-
ally most expensive part of the learning process, the ef-

fort for changing the template size is nearly equivalent
to that of learning a new template from scratch. There-
fore, to overcome the limitations of fixed size template ap-
proaches, while maintaining their robustness to large per-
spective changes, we propose an extension to linear predic-
tors which allows efficient online modification of the tem-
plate size. Instead of computing the inversion of the whole
matrix every time the template shape changes, we introduce
a way to update the inverse computationally efficient which
dramatically reduces the time needed for learning. We start
with a small initial template and grow it by small extension
templates as defined in Fig. 3 according to their suitabil-
ity for tracking. As long as the object to track is planar,
our approach can grow the template in any direction which
can result in an arbitrarily shaped template, as shown in
Fig. 1. This breaks the standard, rectangular shape assump-
tion widely used in current template tracking approaches
and can be seen as a first step towards a dense SLAM sys-
tem.

We perform extensive quantitative testing and com-
pare our approach to the standard approach of Jurie and
Dhome [12] under different transformations and noise lev-
els, and to other state-of-the-art approaches in template
tracking. We demonstrate that our approach performs
equally well while requiring much shorter learning time.
In the remainder of the paper we will discuss related work
on template tracking, give a detailed description of our ap-
proach, present our results and show examples on real world
sequences.

2. Related Work

A lot of effort has been made in the field of template
tracking and image alignment since the work of Lucas and
Kanade [14]. Most of the presented approaches can be put
into one of the two categories: template tracking based on
the analytical derivation of the Jacobian [14, 19,9, 5,6, 1,
2, 15, 3, 4] or based on learning [12, 13, 8, 18, 16, 17, 20].
While the analytical approaches generally are more flexible
with respect to the template shape modification at run-time,
learning approaches enable higher tracking speed and are
more robust with respect to large perspective changes.

Since the seminal work of Lucas and Kanade [14] a
large variety of analytical tracking approaches has been pre-
sented. Amongst others, these variations include different
update rules of the warp [14, 9, 5, 19, 6, 1], different or-
ders of approximations of the error function [15, 3, 4], oc-
clusion and illumination change handling [9]. Basically,
there are four different types of update rules, the additive
approach [14], the compositional approach [19], the inverse
additive approach [9, 5], and the inverse compositional ap-
proach [6, 1]. In the latter two, the roles of the reference
and current image are switched, which makes it possible
to move some of the computations into an initialization

phase, that makes the tracking computationally very effi-
cient. Faster convergence rate for a larger convergence area
can be additionally obtained by using a second-order in-
stead of a first order approximation of the error function
[15, 3, 4]. Furthermore, Hager and Belhumeur [9] show
how illumination changes and occlusions can be efficiently
handled. For a more detailed overview over analytical track-
ing methods refer to Baker and Matthews [2].

In contrast to analytical tracking methods, Jurie and
Dhome [12] propose an approach that learns linear predic-
tors using randomly warped samples of the initial template.
The linear predictors are then used to predict the parameter
updates during tracking. This allows a very fast tracking,
since the “Jacobians” are initially computed once and for
all and the update parameters can be obtained by simple ma-
trix vector multiplications. In [13] the authors also extend
the approach in order to handle occlusion. GraBl ef al. [7]
additionally shows how the robustness of the linear predic-
tor based approach can be further increased with regard to
illumination changes. They [8] also present an intelligent
way how to select the points for sampling the image data,
such that the accuracy of the tracking is increased. Another
linear predictor approach [20] describes a template using
many small templates and tracks these small templates in-
dependently. Based on the local movements of these small
templates they estimate the movement of the large template.
Instead of using linear predictors, Mayol and Murray [17]
present an approach that fits the sampling region to pre-
trained samples using general regression.

All the proposed learning approaches, however, do not
deal with templates of variable size. To overcome this lim-
itation we developed a method that extends the approach of
Jurie and Dhome [12] to allow online template size adapta-
tion.

3. Background and Terminology

In this section we introduce notation and, for the sake
of completeness, review the original template tracking ap-
proach proposed by Jurie and Dhome [12].

3.1. Template and Parameter Description

A template consists of a set of n,, sample points, which
are distributed within the template region and are used to
sample image data. The template parameters p describe
the current deformation of the template within an image.
Within this paper we use a homography to represent the cur-
rent perspective distortion of a planar template and parame-
terize it using four points as shown in Fig. 2. Note that our
approach can also be easily adapted to any other parameter-
izable template deformation.

The sample points are arranged in a regular grid and
grouped together into subsets of four points as shown in

template

(Po, P1)

sample point

o (P2, P3)

subset

Q OO0 O0OO0O0O0O0

(Ps, P7) (P4, Ps)

Figure 2. A template is represented by a set of regularly placed
sample points, which are grouped into subsets of four points. The
pose of a template is parameterized using four corner points.

Fig. 2. The usefulness of this grouping will be justified
later in Section 4.1, when we describe our approach for
template extension. However, neither the approach of Ju-
rie and Dhome [12] nor our approach are restricted to this
special kind of sample point arrangement. The image val-
ues obtained from the sample points, warped according to
the current template parameters p, are arranged in a vector

i= (in,i9, i)

3.2. Template Tracking based on Linear Predictors

The goal of template tracking is to follow a reference
template, defined by a vector ir of reference image values
and an initial parameter vector pp, over a sequence of im-
ages. The basic approach for this is to compute a vector
0i = ig — i of image differences, where the vector ic
stores the image values extracted from the current image.
This vector is then used to estimate a vector of parameter
differences o used to update the current template parame-
ters p such that the position of the template within the cur-
rent image is optimized.

Instead of explicitly minimizing an error function, e.g.
by iteratively solving a first- or second-order approxima-
tion of it, Jurie and Dhome [12] use a learned matrix A to
compute dp based on the vector di as:

Sp = Adi. ey

Here, the matrix A can be seen as a linear predictor. In order
to learn A we apply a set of n; random transformations to
the initial template. This is done by applying small distur-
bances dpt,, ¢ = 1,...,ny, to the reference parameter vector
p . Then, each of these transformations is used to warp the
sample points in order to obtain the corresponding vectors i;
of image values. The image value vector ig, obtained using
the reference parameters p , is used to compute the image
difference vectors di; = i; —ig for each of the random trans-
formations. These vectors of parameters and image differ-
ences are combined in the matrices Y = (py,...,0p,,,)
and H = (4iy, ..., di,,). In general, n; is chosen such that

extension
extension area templates
An
0o00O0OO0OOO0OO0OO
ooooooooo/g Ae
oofcooo o o]o
o ofloooooo]o
oofloooooofoo
O Oflo o oo 0o]oo A
0 oloooooofoo
0 oloooooo]oo
oooo?ooooo
0 000®OO0O0O0O0
/

initial template

(@) (b)

Figure 3. (a) The initial template together with possible extension
templates defined by the corresponding extension area. (b) Difter-
ent template areas and their corresponding linear predictors. The
red border defines the initial template with its predictor A, the
light green border defines an extension template with its predictor
A g and the blue border defines the new extended template with its
predictor A .

it is much bigger than n,,. Using these matrices Equ. 1 can
be written as Y = AH. Finally, the matrix A is learned
using

A=YH" (HHT) .)

In practice, we normalize the extracted image data with zero
mean and unit standard deviation, which increases the ro-
bustness against illumination changes. In order to prevent
HH” from being rank deficient we add random noise to
the obtained image value difference vectors. Additionally,
we apply a multi-predictor approach, where multiple linear
predictors Aq,...,A,, are learned for one template, with
n; being the number of predictors per template. Thereby,
the first linear predictor A; is learned for large motions s,
and the following predictors are learned for subsequently
smaller motions. During tracking we iteratively apply the
linear predictors. Additionally, every predictor is used mul-
tiple times. Within this paper we use five different predic-
tors per template and three iterations for each of the predic-
tors.

4. Template Adaption

In this section we describe our approach for adapting the
template by extending or reducing its size. This enables
to start tracking with a small-sized template and grow or
shrink it over time, automatically adapting its size and cor-
responding linear predictor according to the tracked scene.

4.1. Template Extension

In the following we denote the linear predictor of an ini-
tial template with Ay, and the linear predictor of an exten-
sion template with A g as depicted in Fig. 3. Using the stan-
dard approach of Sec. 3.2, the separate predictors would be

learned as:

A;r = YH! (HH!)™ and 3)
-1
Ap = YHp (HpHE))
where Y stores the same random transformations for both

linear predictors. The standard approach for learning a com-
bined predictor A y for the entire template leads to:

Ay = YH] (HyHE)™ 5)
-1

— v H,] H; H, ")

o Hg Hg Hg

o, 1" /7w’ wHL 1\
= Y| g4 T T (1)
E HryH; HgHj;

Now, instead of directly updating the old linear predictor
A; we will update the matrix S; = (H/H?) ' using the

formulas presented by Henderson and Searle [10], such that

we obtain the matrix Sy = (HNH}C,)A. Let S11, S12, So1
and So5 be the four sub-matrices of Sy:

-1
§o— | Su S| _ ([HH] HH
N So1 Soo HzH? HpHL '

8

Then, we can update Sy to S using ®
Si1 = (HHH!

+ (HHD)'HHLS,HH (HHD)™T (9)

S = —(HHI)"'H;/HELS,, (10)

So1 = S, (11)

S»y = (HgHS — HgHY (HHY)'HHE) ™' (12)

where (H;H;)™! is known from the learning of the initial
predictor. Therefore, the only inversion that has to be ap-
plied is for the computation of Sa2. However, this inversion
is not a problem since the extension templates are always of
smaller size than the entire extended template and therefore
So5 1s small, as well.

The approach as presented up to now is limited by the
number of random transformations n;, used for learning.
Since n; has to be the same for all extension templates as
well as for the initial template, and since the number of ran-
dom transformations has to be greater or at least equal to
the number of used sample points, n; > n,, the maximum
number of random transformations has to be known a pri-
ori. In order to remove this restriction we use the approach
presented by Hinterstoisser et al. [11], which allows to up-
date the matrix S; in a way such that we can increase the
number of random transformations n; without the necessity
to recompute the updated S; from scratch. This is done by

using the Sherman-Morrison formula:

(s;1 + i, 11018 +1) (13)

S16in, 161, 1S
= § - T 1B (14)
1+ 6i,, 1810l 11

S =

where di,,, 41 is a vector of image value differences obtained
from a new random transformation applied to the sample
points. In practice, the number of random transformations
is increased each time before a new extension template is
added.

4.2. Template Reduction

In case that already learned templates have to be reduced,
e.g. due to the presence of non-planarity or shortcoming for
tracking, the corresponding linear predictors can be com-
puted by updating the linear predictor of the larger template.
For this, we denote the linear predictor of the large template
with Ay, the predictor of the new reduction template with
A g and the predictor of the reduced template with A .

In order to reduce the matrix Sy, it has to be rearranged
first, such that the data corresponding to the reduction tem-
plate is positioned in the last rows and columns of S;,. After
the rearrangement, the reduction template can be removed
using the following approach. First, let us consider the sub-
matrices of the matrix Sy,

S _[Sn S12:|_(|:HNH71\}
L= —

HyHES 1)
So1 Sao HpzHY ’

HpzHE

(15)
where all the sub-matrices S11, S12, So1, Soo, HNH%,
HNHT, HRH]TV and HRH£ are available from the large
template. The goal is to compute

Ay = YHY (HyHE) ™ (16)

without the need of inverting H NH%, since this is a large
matrix in general. Similar to the Equations 9-12 Henderson
and Searle [10] also presents the formula

S = (HyHE — HyHE(HgHE) 'HEHE) ™' (17)
which can be reformulated as
HyHY = ST + HyHL(HRHE)'HgHY,. (18)
Taking the inverse leads to the desired result:
-1
(19)
Since we, however, have to invert a big matrix in this case,

namely Spi, this is not suitable for online computation.
Therefore, we use the following formula presented in [10]:

X+uYyuh)t = x7!'-x"'vzu'xT!, (20)
z = (Y'+U'x'u)T. @

(HyHY) ™! = (Si)' + HyHE (HpHE) 'HRHY)

By setting X = 8;', Y = (HzgH%) ! and U = HyH% we
obtain our desired result:

(HyHY)™' = Si1 —SiiHyHEDHRHL S, (22)
-1
D = (HgH, +HzHLS, HyHE) '(23)

Now, the necessary inversion is no longer a problem since
the reduction template is chosen to be of small size and
computing D is not expensive.

4.3. Practical Issues

In this section we discuss practical issues. These are the
normalization of the image data and the estimation of the
subset quality, which is used for the selection of the next
extension template.

4.3.1 Normalization

As mentioned before, the image values are normalized to
zero mean and unit standard deviation. However, instead of
doing this globally by considering all image values of the
template we apply a local normalization, where each subset
is normalized by considering only its image values and the
image values of its direct local neighboring subsets. This
normalization is applied to the reference data, the learning
data and the current image data during tracking. The local
normalization is superior to the global normalization since
in case of the global normalization the mean and standard
deviation of the whole image data change if new parts are
added to the template or some parts are removed.

4.3.2 Suitability Criterion for Subset Selection

In order to decide which subset should be chosen for extend-
ing the current template we compute a quality measure for
each of the potential extension templates in the local neigh-
borhood of the current template. This is done by learning
a local predictor Ag = YgHZ (HsHZ)~! for this subset at
first, where the image data Hg is collected using the set of
random transformations represented by Y. Then, using this
predictor together with the collected image data we com-
pute a prediction Ys of Y as

Ys = AgHs. (24)
Finally, we compute a similarity measurement, which de-

fines the quality gg of the corresponding subset as

ne o~

1 \na
g = — I8t , (25)
N ; |¥illyl

where y; and ¥,; are the i-th column vector of Y respectively
Ys. The current template will then be extended using the
subset with the highest quality measure.

7~ JD from scratch v ~#- ALPs extension
-©-ALPs from scratch V- ALPs reduction

% ALP extension 0.05|

learning time [s]

I S S Y
<
m
<

H] v
X 3002
v 0.01 A

4 v ¥
lgee e Y
077 U100 200 300 400 500 600 07 100 200 300 400 500 600

template size [sample points] template size [sample points]
(@) (b)

Figure 4. Comparison of the computation time necessary for learn-
ing a linear predictor using Jurie-Dhome approach (green) and us-
ing ALPs (red and blue). (a) For the later case we distinguish
between learning the predictor from scratch (red) and adding only
one extension subset (blue) at a time. Learning from scratch means
that we consider the whole time necessary to build up the template
of the specified size. (b) Computation times for template extension
and reduction, when one extension subset is added at a time.

5. Experimental Results

In this section we perform extensive comparison of our
approach with several state of the art approaches on tem-
plate tracking. This includes comparisons with the standard
learning approach of Jurie and Dhome [12], the analytical
approach of Benhimane and Malis [4] and a recent approach
called NoSLLip of Zimmermann et al. [20]. The compar-
isons are done in terms of tracking precision and compu-
tational efficiency. In the end we show several qualitative
results from real video sequences showing tracking results
with one and several templates. All experiments are per-
formed on a 2.66 GHz Intel(R) Core(TM)2 Quad CPU with
8 GB of RAM, where only one core is used for the compu-
tations.

In all experiments the maximum random perturbation
applied for learning the linear predictors is set to 21 pixels
except for the comparison with NoSLLip, where we slightly
increased the perturbation by 10% to make the tracking
more robust against large motions.

5.1. Comparison with Jurie-Dhome Approach

Computational Complexity of Learning In Fig. 4 we
show computation times for learning the linear predictors
with respect to different template sizes. We compare our
ALPs method, shown in red and blue, with the standard ap-
proach of Jurie and Dhome [12], depicted as green curve
in Fig. 4(a). For our approach we distinguish between two
cases. In the first case, shown as a red curve, the computa-
tion of the linear predictor is done iteratively from scratch.
In that case we start with a small initial template, whose size
is equal to the size of an extension template of Fig. 3. Such
a small template is then grown until the specified size is
reached. The obtained results reveal clearly that the adap-
tive learning of the linear predictor, which starts with the
small sized template, is much more efficient than learning
a linear predictor for the fixed size template. This proves

that our approach can also be used to efficiently learn linear
predictors for templates of fixed size, starting from small
templates and adapting their linear predictors until the de-
sired template size is reached. In the second case, shown
as a blue curve, we show the time necessary to add one ex-
tension template. This is a typical case during online track-
ing, where the template is grown step by step. As to be
expected, adding the extension template does not signifi-
cantly increase computation time, when changing the tem-
plate size. In Fig. 4 (b) we show computation times for ex-
tension and reduction of templates. Note that the necessary
time to grow or reduce the template by an extension tem-
plate consisting of four sample points is around 0.05s for
initial templates of sizes around 600 sample points, whereas
the computation from scratch would need over 1s using
ALPs and more than 6s when using the approach of Jurie
and Dhome [12].

Robustness To evaluate the robustness of our approach
we compare the tracking success rate of our approach
with that of the standard approach proposed by Jurie and
Dhome [12] for different template sizes and with respect to
changes in translation (Fig. 7 (a)), in-plane rotation (Fig. 7
(b)), viewing angle (Fig. 7 (c)), and scale (Fig. 7 (d)). In ad-
dition we compare ALPs to Jurie and Dhome in respect to
noise and different number of random transformations used
for learning. The results are shown in Fig. 6.

For all experiments, we use synthetic images, corrupted
by noise and warped according to the specific experiments.
Noise is added according to I,,(x) = I(x) + ¢, with ¢ €
[—0Lrange /100, ol pange /100], and ov = 5 for all experiments.
An exception is the noise experiment, where different lev-
els of noise were applied. I;ange specifies the possible range
of image values, e.g. Irange = 255 holds for image values
between 0 and 255. In all experiments we also add a ran-
dom displacement in the range of [—5, 5] pixels, with the
exception of the displacement experiments, and a random
change in the view-point angle ranging between [—5, 5] de-
gree, again with the exception of the view-point angle ex-
periments.

The results show that both approaches, the standard
Jurie-Dhome approach as well as ALPs, yield similar suc-
cess rates. The only exception is the sensitivity to noise,
where the Jurie-Dhome approach performs better than
ALPs. This performance difference, however, can be re-
duced by increasing the number of random warpings used
for learning the linear predictors, as demonstrated in Fig. 6

(b).
5.2. Comparison with ESM

To demonstrate the usefulness of learning-based ap-
proaches we compare our approach with the analytical
method of Benhimane and Malis [4]. For this, we have

00 = %
F Fow S LT
,’/ r
/% I x
! [-¥ ALPs 10px|
* « /|9 ALPs 20px|
/ ! %]+ ALPs 30px|
4 ! /| < ALPs 40px|
4 ALPs 50px|
X -¥-ESM 10px
« T4 q%ESM20px
20 o 2 |-+-ESM 30px
LTS L |<4-EsM 4opx
ﬁ‘:: - _IT%-ESM S0px
0 100 300" 5 600
template size [sample points]
(a) (b)

Figure 5. Comparison of success rates with respect to different
displacements and template sizes. (a) Performance of ESM vs.
ALPs. (b) Performance of ESM for further displacements.

A NP = San s
'*..+—»+-r-+ 4 | ¥ AT + <%
R s/ =<
— ST L g Yy _14”4.,»4’ <
<TG ALPs 5% = = A V-ALPs 5%
- #-ALPs 12.5% o 60y Ly <& & ALPs 12.5%
< e |+ ALPs20% E gy 7 <4 7]+ ALps20%
S F e ALk 5% g e, <+-ALPs 27.5%
+ ALPs 35% g Al s * *ALPs 35%
* * “¥-ID 5% H %*i’ * “v-ID 5%

* -%-JD 12.5% €y -&-JD 125%
~+-JD 20% 20| *,* +-JD 20%
~<4-JD27.5% <-JD27.5%
-%-JD 35% -*%-JD 35%

200 300 400 500 600) 100 200 300 400 500 600
template size [sample points] template size [sample points]

(a) (b)

Figure 6. Comparison of success rates of ALPs and linear pre-
dictors of Jurie and Dhome(JD) with respect to different levels of
noise and different template sizes. (a) Success rates of ALPs using
1000 random warpings and (b) using 2000 random warpings.

chosen ESM, a state of the art approach that minimizes the
energy function using a second order approximation. In
Fig. 5 we compare the success rate of the ESM tracking
to that of ALPs regarding different magnitudes of displace-
ments and different template sizes. Our learning-based ap-
proach clearly outperforms ESM, especially for larger tem-
plate sizes.

5.3. Comparison with NoSLLiP

We also compare ALPs to the approach of Zimmermann
et al. [20] using the phone sequence provided by the au-
thors'. Example images of the tracking are shown in Fig. 8.
The comparison between the tracking results of [20] and
those obtained using ALPs are shown in Table 1. Although
the number of provided images is larger than the number of
images used by Zimmermann et al. [20], we still obtain a
better loss-of-locks count. The given error values are rela-

!Zimmermann et al. [20] provide three different video sequences. One
of them, however, includes occlusion, which can not yet be handled by our
approach, and for another one the supplied ground truth data is erroneous.
Therefore, we compare only to one of the provided sequences.

- Ak k& & - - -
A o s e o 100 44— —g——*— 10 PEF A A 10— g% T
- / G-~ ~¢~ /f ~ — / e
¥ A » ¥ ¢ < ¢ & < e v/ e
s e [A 901 / B e / -
o4 ! S0l b -~ 301 *
7 ! sof*| w ¥
9 / / V- ALPs 10px s [2 ALPs 5° 9 1/ 2 ALPs 10° 9 / V- ALPs 0.9
s / « 2 ALPs 20px 5 6o o % | ALPs15° = 700 ¥ ° -+ ALPs 20° PR 2 ALPs 0.8
H / %~ ALPs 30px H | PN 7\ |<-ALPs 25° Y 008087 ¢ aLps 30°] / | AvLpso7
2 g /¥ <4~ ALPs 40px 2 4 ¥ .oy | -%-ALPs 35° % 60 | 9-0 - ALPs 40° % &----< | <4-ALPs 0.6
g {7 / /7| -%- ALPs 50px g 40 :*' * |©O-ALPs 45° g ',‘ / ©-ALPs 50° g 400+ 5 < <7 | % ALPs 0.5
H &/ / i “7-JD 10px Z) -%-JD 5° 7 ol/d -%-JD 10° 2 @s -7-1D 0.9
T/ / -%-JD 20px / 8 -+-JD 15° PA -+-JD 20° / o -%-JD 0.8
200/ ¥ -+-JD 30px 204 g:’ e ~4-JD 25° / ~4-JD 30° 200/ -+-JD 0.7
[/ ~<4-JD 40px 8¢ <) \‘8 .0 |-#-JD35° 4o ~%-JD 40° 4 <4-JD 0.6
03’54_,,' -%-JD 50px g 0o In4s L -0-JD 50° kg B |#JDOS
0 100 200 300 400 500 600 N 400 3500 600 0 100 200 300 400 500 600 Y0 50 250 300

200 300
template size [sample points] template size [sample points]

100 150 200
template size [sample points] template size [sample points]

(a) b)

(©) d

Figure 7. Comparison of success rate of ALPs and JD linear predictors with respect to changes in translation (a), in-plane rotation (b),
viewing angle (c), and scale (d). In all four cases the results of both approaches are approximately equal. The lower row shows more

detailed results of ALPs.

Method Frame-rate | Loss-of-locks | Error

[fps] -1 | [%]
NoSLLiP | 16.8 20/1799 1.8
ALPs 96.7 10/2299 1.2

Table 1. Comparison between the tracking results of NoSLLiP
(Matlab implementation) given in [20] and results obtained using
ALPs (C++ implementation).

tive to the upper edge of the template. A frame is counted
as loss-of-lock if one of the template corners has an error
larger than 25%. Note that the template is reduced when it
partially goes out of sight and enlarged again as it becomes
visible again (see Fig. 8).

5.4. Usefulness of larger templates

As shown in Figures 5, 6 and 7, the success rates in-
crease with increasing template sizes. The only exception
are changes in the in-plane rotation angle, where the suc-
cess rate reaches a maximum for templates with a size of
approximately 100 to 200 sample points.

5.5. Qualitative Evaluation

In Fig. 1, 8 and 9 we show different image sequences,
which demonstrate the processing of the proposed ap-
proach. In Fig. 1 and 9 we start with templates of size 10
by 10 sample points and iteratively grow them by adding
the neighboring extension template with the highest quality.
In Fig. 9 we demonstrate the use of multiple templates. In
Figures 1 and 8 we track the templates, reduce them if they
partially go out of sight and grow them back to the original
size when their hidden parts become visible again.

6. Conclusion and Future Work

We introduced an efficient method for adapting linear
predictors used in real-time template tracking to dynami-
cally change the template shape. Our method allows both,
enlargement and reduction of the template size. We demon-
strated that our ALPs approach can also be used to effi-
ciently learn linear predictors for templates of fixed size.
In that case we start from small templates and adapt their
linear predictors until the desired template size is reached.
This resulted in much shorter learning time compared to the
standard approach of Jurie and Dhome [12]. The efficiency
of the presented approach derives from the special compu-
tation of the matrix inverse. In the standard approach the in-
verse has to be recomputed from scratch after each change
of the template size. In contrast, our approach updates the
matrix according to the change in the template shape.

We demonstrated that our ALPs yield tracking results
comparable to those of the standard approaches, while
learning is much faster. The current approach, however,
lacks robustness against occlusion. Therefore, the next step
will be to provide some means of occlusion handling for
large templates.

Acknowledgments

We want to thank Stefan Hinterstoisser and Jiirgen Sotke
for prove-reading the paper. The project was partially
funded by the Bayerische Forschungsstiftung.

References

[1] S. Baker and I. Matthews. Equivalence and efficiency of
image alignment algorithms. In Conference on Computer

Figure 8. Result images of the phone sequence, which is provided by Zimmermann et al. [20]. Note that the template is reduced if it goes
out of the image and grown again of it gets visible again.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Figure 9. Iterative growing of two independent templates.

Vision and Pattern Recognition, volume 1, page 1090, Los
Alamitos, CA, USA, 2001.

S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-
fying framework. International Journal of Computer Vision,
56:221-255, March 2004.

S. Benhimane and E. Malis. Real-time image-based tracking
of planes using efficient second-order minimization. In Con-
ference on Intelligent Robots and Systems, volume 1, pages
943-948 vol.1, Sept.-2 Oct. 2004.

S. Benhimane and E. Malis. Homography-based 2d visual
tracking and servoing. International Journal of Robotics Re-
search, 26(7):661-676, July 2007.

M. Cascia, S. Sclaroff, and V. Athitsos. Fast, reliable head
tracking under varying illumination: An approach based on
registration of texture-mapped 3d models. [EEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(4),
April 2000.

F. Dellaert and R. Collins. Fast image-based tracking by se-
lective pixel integration. In ICCV Workshop of Frame-Rate
Vision, pages 1-22, September 1999.

C. GriBl, T. ZinBer, and H. Niemann. Illumination insen-
sitive template matching with hyperplanes. In Proceedings
of Pattern recognition: 25th DAGM Symposium, pages 273—
280, Magdeburg, Germany, September 2003.

C. GriaBl, T. ZinBer, and H. Niemann. Efficient hyperplane
tracking by intelligent region selection. In Image Analysis
and Interpretation, pages 51-55, March 2004.

G. Hager and P. Belhumeur. Efficient region tracking with
parametric models of geometry and illumination. [EEE
Transactions on Pattern Analysis and Machine Intelligence,
20(10):1025-1039, 1998.

H. V. Henderson and S. R. Searle. On deriving the inverse of
a sum of matrices. SIAM Review, 23(1):53-60, 1981.

S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and
V. Lepetit. Online learning of patch perspective rectifica-

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

tion for efficient object detection. In Conference on Com-
puter Vision and Pattern Recognition, pages 1-8, Anchorage,
Alaska, 2008.

F. Jurie and M. Dhome. Hyperplane approximation for tem-
plate matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(7):996-100, 2002.

F. Jurie and M. Dhome. Real time robust template matching.
In British Machine Vision Conference, pages 123-131, 2002.
B. Lucas and T. Kanade. An Iterative Image Registration
Technique with an Application to Stereo Vision. In Interna-
tional Joint Conference on Artificial Intelligence, pages 674—
679, 1981.

E. Malis. Improving vision-based control using efficient
second-order minimization techniques. In [EEE Interna-
tional Conference on Robotics and Automation, volume 2,
pages 1843-1848 Vol.2, 26-May 1, 2004.

J. Matas, K. Zimmermann, T. Svoboda, and A. Hilton.
Learning efficient linear predictors for motion estimation.
In Computer Vision, Graphics and Image Processing, pages
445-456, 2006.

W. W. Mayol and D. W. Murray. Tracking with general
regression. Journal of Machine Vision and Applications,
19(1):65-72, 2008.

P. Parisot, B. Thiesse, and V. Charvillat. Selection of reli-
able features subsets for appearance-based tracking. Signal-
Image Technologies and Internet-Based System, 0:891-898,
2007.

H.-Y. Shum and R. Szeliski. Construction of panoramic im-
age mosaics with global and local alignment. International
Journal of Computer Vision, pages 101-130, 2000.

K. Zimmermann, J. Matas, and T. Svoboda. Tracking by an
optimal sequence of linear predictors. /[EEE Transactions on
Pattern Analysis and Machine Intelligence, 31(4):677-692,
2009.

CHAPTER A: ADAPTIVE LINEAR PREDICTORS
FOR REAL-TIME TRACKING

44

APPENDIX
B

ONLINE LEARNING OF LINEAR PREDICTORS
FOR REAL-TIME TRACKING

Springer and the original publisher (Computer Vision - ECCV 2012, 12th European Con-
ference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I,
pp 470-483, Online Learning of Linear Predictors for Real-Time Tracking, Stefan Holzer,
Marc Pollefeys, Slobodan Ilic, David Joseph Tan, Nassir Navab) is given to the publi-
cation in which the material was originally published, by adding: With kind permission
from Springer Science and Business Media.

Own contributions. The core idea of the publication, an efficient and robust learning
method for Linear Predictors, was created in a conversation between Marc Pollefeys and
me. My further contributions to this work include the design and implementation of the
method. The evaluation was performed together with David Tan and Slobodan Ilic. The
core idea of the paper was refined in collaboration with all co-authors. All co-authors
were involved in the writing of the paper.

45

Online Learning of Linear Predictors for
Real-Time Tracking

Stefan Holzer!, Marc Pollefeys?, Slobodan Ilic', David Tan!, and
Nassir Navab!

!Department of Computer Science, Technische Universitit Miinchen (TUM),
Boltzmannstrasse 3, 85748 Garching, Germany
{holzers,slobodan.ilic,tanda,navab}@in.tum.de
2Department of Computer Science, ETH Zurich, CNB G105,
Universitatstrasse 6, CH-8092 Zurich, Switzerland
marc.pollefeys@inf.ethz.ch

Abstract. Although fast and reliable, real-time template tracking using
linear predictors requires a long training time. The lack of the ability to
learn new templates online prevents their use in applications that require
fast learning. This especially holds for applications where the scene is not
known a priori and multiple templates have to be added online. So far,
linear predictors had to be either learned offline [1] or in an iterative
manner by starting with a small sized template and growing it over
time [2]. In this paper, we propose a fast and simple reformulation of the
learning procedure that allows learning new linear predictors online.

Key words: template tracking, template learning, linear predictors

1 Introduction

Template tracking is an extensively studied field in Computer Vision with a wide
range of applications such as augmented reality, human-computer interfaces,
medical imaging, surveillance, vision-based control and visual reconstruction.
The main task of template tracking is to follow a template in an image sequence
by estimating parameters of the template warping function that defines how the
pixel locations occupied by the template are warped to the next frame of the
image sequence. Examples for such warping functions are affine transformations
or homographies.

Most approaches to template tracking are based on energy minimization [3—
11], where the image intensity differences between template areas of two consec-
utive frames have to be minimized in terms of the template warping parameters.
In many cases, analytical derivation of the Jacobian is used in order to provide
real-time tracking capabilities. Alternative approaches to template tracking are
based on learning [1, 2, 12-17], where the relation between image intensity differ-
ences and template warping parameters is learned. While energy minimization
approaches are flexible at run-time, learning based methods have proven to allow
much faster tracking.

2 Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David Tan, Nassir Navab

A very successful learning based template tracker was proposed by Jurie
and Dhome [1]. It is based on learning linear predictors to efficiently compute
template warp parameter updates. Thanks to extensive training, this approach
is very fast and tends to avoid local minima. The costly learning phase, however,
prohibits this method from computing templates online.

In many applications, such as simultaneous localization and mapping (SLAM),
the ability to learn new templates at run-time is crucial, since they have to deal
with data, which is not available for prior offline learning. Contrary to the cur-
rent development of methods for highly parallelized systems, which e.g. rely on
modern graphics cards, most consumer-oriented applications, especially those
placed on mobile devices, do not have such a huge processing power available.

We, therefore, propose a reformulation of the linear predictor learning step
that drastically improves the learning speed. Although this way of training brings
a small decrease in tracking robustness, it helps to improve robustness against
image noise. However, we demonstrate how the tracking robustness can be in-
creased online during tracking and how the tracking performance of the original
approach of Jurie and Dhome [1] can be achieved.

2 Related Work

Since the seminal work of Lucas and Kanade [3], a large variety of template
tracking approaches have been presented. They can be classified into three main
categories: tracking-by-detection (TBD) [18-22], energy minimization [3-11] and
learning [1,2,12-17]. In contrast to others, TBD-based approaches track a tem-
plate over the whole image independent from the previous position. Nonetheless,
they often require a time consuming training procedure and can hardly achieve
the processing speed of frame-to-frame tracking. Furthermore, their possible pose
space is limited.

On the other hand, the latter two categories use frame-to-frame tracking.
Between them, energy minimization-based approaches are generally more flex-
ible at run-time while learning-based approaches enable higher tracking speed.
Additionally, Jurie et al. [12] demonstrated that Linear Predictors (LPs) are
superior to Jacobian approximation and Holzer et al. [2] showed an experiment
where LPs are superior to Efficient Second-order Minimization (ESM) [11].

Tracking-by-Detection-based approaches. Ozuysal et al. [18] presented a TBD-
based approach called FERNs where they extract keypoints from an image and
match them using a classification-based approach by estimating the probability
on which class the keypoints belong. However, it needs a time consuming learn-
ing stage and requires a sufficient number of visible keypoints which makes it less
useful in tracking small regions. Another approach is DTTs from Holzer et al. [19]
which builds on finding closed contours and matches them using a similar ap-
proach as the keypoint matching in [18]. Thus, this also needs a time consuming
learning stage while detection speed was reported at only 10 fps. Furthermore,
prominent advances in this field are reflected from the works of Hinterstoisser et

Online Learning of Linear Predictors for Real-Time Tracking 3

al. [20-22]. Their earlier works called Leopard [20] and Gepard [21] make use
of the image patch that surrounds a keypoint. These patches are then used for
matching and pose estimation. Hence, their methodology suggests that they ben-
efit from any advancement in template tracking. Moreover, although they achieve
a near real time performance, these approaches heavily rely on the repeatabil-
ity of the underlying keypoint detector. In their recent work, DOT [22] aims
to overcome the dependency on keypoint detection. It is a template matching
based approach that learns templates for every pose. Due to this, it restricts the
application space and is comparably slow in contrast to frame-to-frame tracking.

Energy minimization-based approaches. Numerous approaches have followed the
work of Lucas and Kanade [3]. They consist of different update rules of the
warp function [3-8], different orders of approximation of the error function [10,
11], and occlusion and illumination change handling [5]. The different update
rules of the warp function can be classified into four types, namely, the additive
approach [3], the compositional approach [4], the inverse additive approach [5, 6],
and the inverse compositional approach [7, 8]. Among these types, the interesting
component in the inverse additive and inverse compositional approach is that it
switches the functions of the reference and current image. As a consequence, it
is possible to transfer some of the computation to the initialization phase and to
make the tracking computationally more efficient. Faster convergence rates for
larger convergence areas can be additionally obtained by using a second-order
instead of a first-order approximation of the error function [10, 11]. Lastly, Hager
and Belhumeur [5] established a method to compensate for illumination changes
and occlusions. A more detailed overview of energy-based tracking methods is
given by Baker and Matthews [9].

Learning-based approaches. In contrast to energy minimization approaches, Jurie
and Dhome [1] proposed a method that learns linear predictors using randomly
warped samples of the initial template while using the learned linear predictors
to predict the parameter updates in tracking. This simplifies the tracking process
from the previous approach by using a matrix vector multiplication. Here, the
“Jacobians” are computed once for the whole method. Furthermore, the same
authors extended their approach to handle occlusions [12]. Other authors such
as Gréafl et al. [23] demonstrated how linear predictors can be made invariant
to illumination changes. In addition, to further increase accuracy in tracking,
they [13] also formulated a method on how to select the points for sampling
from the image data. Zimmermann et al. [17] use numerous small templates and
track them individually. Based on the local movements of these small templates,
they estimate the movement of a large template. Holzer et al. [2] start with
a small template and grow it until a large template is constructed online. This
idea showcased a way to adapt existing linear predictors to modify the shape of a
template at run-time. Mayol and Murray [16] stepped back from linear predictors
by presenting an approach that fits the sampling region to pre-trained samples
using general regression.

4 Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David Tan, Nassir Navab

All the proposed learning approaches, however, are not able to learn large
templates online. To overcome this limitation, we introduce a learning scheme,
which is different to the one proposed by Jurie and Dhome [1] and enables online
learning of templates.

3 Background and Terminology

This section aims to introduce our notations and to summarize the fundamental
aspects of the template tracking approach proposed by Jurie and Dhome [1],
which is used in comparison to our approach as introduced in Sec. 4.

3.1 Template and Parameter Description

Without loss of generality, we define a template as a rectangular region in the
first frame of a video sequence, which defines the region of interest that we
want to track. Note that the method is not limited to rectangular regions and is
capable of dealing with arbitrary shapes. The location of the region within the
image is defined by the variable p. In this paper, p is an 8 X 1 vector that stores
the position of the four 2D corner points of the template region in the image.
Thus, p has to be estimated in every new frame. Furthermore, to find the image
intensities in the template, n, sample points are positioned on a regular grid
instead of using all the pixels in the template region. These intensities are stored
in an n, x 1 vector i, where i = (i1,i27 .. ,inp)T.

3.2 Template Tracking based on Linear Predictors

Given a template region in a reference image, the corresponding initial parameter
values and reference image intensities are stored in pt and ir, respectively. The
template parameter values . define the location of the template in the current
image; henceforth, tracking is done by computing p. The value of p~ depends
on the previously computed parameter values g _, the image intensities in the
reference image ip and the image intensities in the current image ic. Jurie and
Dhome [1] simplified this relation as:

S = Adi, (1)

where dp are the template parameter updates, i = ic — ig and A is a linear
predictor matrix. It is important to mention that the image intensities ic are
extracted from the current image using the sample points from the previously
computed parameter values po_;. Therefore, in order to compute the update
of the template parameters du, one needs to pre-compute the matrix A. In this
case, A is called a linear predictor since it establishes a linear relation between
the image differences and the parameter updates.

A is a constant matrix of size 8 x n,, which is computed during the learning
phase. The learning process uses n; random transformations on the reference

Online Learning of Linear Predictors for Real-Time Tracking 5

template, where n; is much larger than n,. These transformations are small dis-
turbances dp;, i = 1,...,ny, to the reference parameters pp. As a consequence,
this introduces a change in the image intensities di; = i; — ig for each random
transformation. The vectors of those small disturbances to the template position
parameters are concatenated into an 8 x n; matrix Y, while the corresponding
image intensity differences are stored in an n, x n; matrix H. These can be
written as Y = (8pty,0p,,...,0p,,) and H = (8iy, is, ..., 6i,,). Using Y and
H, Eq. (1) is modified and becomes:

Y = AH. (2)
Finally, A is learned by minimizing:

L~ . 12
arg min ,;,1 (Opy, — Adiy) (3)
which results in the closed-form solution:

A=YH' (HHT> - (4)

This leads to an inverse-compositional tracking approach, where the parame-
ter updates, obtained from Eq. (1), have to be applied to the reference parameters
pr and a corresponding transformation has to be estimated. The inverse of this
transformation is then used to update the current template parameters. In our
implementation, we compute a homography to represent the current perspective
distortion.

To improve invariance to illumination changes, normalization is used on the
extracted image data by imposing zero mean and unit standard deviation. As
a consequence, zero mean makes H lose one rank and the resulting HH' rank-
deficient. In order to prevent this rank-deficiency, random noise is added to H
after normalization.

3.3 Multi-Layered Tracking

In order to make tracking more robust, we use a multi-predictor approach where
we compute n; linear predictors: Aq,...,A,,. Among the linear predictors, A;
has learned large template distortions, while A,,, has learned smaller parameter
changes. Intuitively, A; accounts for large movements of the template and the
subsequent linear predictors further refine the results of the previous predictor.
In practice, each linear predictor is utilized several times before the next level is
used. In this paper, we used n; = 5 and three iterations for each predictor.

4 Fast Learning Strategy

Considering Eq. (4), it is evident that the computation of the linear predictor
A using Jurie and Dhome [1] is time-consuming due to the pseudo-inverse of H.
This involves the inverse of an n, x n, matrix HH'.

6 Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David Tan, Nassir Navab

To increase the speed, we propose to use the pseudo-inverse of Y, instead
of H, in order to generate a much faster learning process. Using this approach,
Eq. (2) leads to:

I=AHY' (YY')"! = AB, (5)

where B = HYT(YYT)*1 is an m, x 8 matrix; henceforth, to learn A, we
compute:

A=B'B)'B'. (6)

The pseudo-inverse is applied differently in Egs. (5) and (6), since for matrix Y,
the rows are linearly independent while for matrix B, the columns are linearly
independent; and therefore, computing it the same way leads to a rank-deficient
inversion in one of the two cases [24].

It is noteworthy to mention that the computation of the matrix A involves
two matrix inverse, but both YY" and B'B are 8 x 8 matrices. However,
computing the inverse of two 8 x 8 matrices is much faster in comparison to
computing the inverse of an n, x n, matrix. In fact, YY ' can be precomputed.
Therefore, only a single 8 x 8 matrix has to be inverted online.

Since the linear mapping denoted by the linear predictor should never encode
fixed offsets, we normalize Y such that each parameter has zero mean and unit
standard deviation; while de-normalizing dp when solving Eq. (1) in tracking.
It is interesting to note that unlike the normalization used in Sec. 3.2 to obtain
invariance on changes in lighting conditions, this normalization does not generate
a rank-deficient matrix YY ' because the normalization is applied on the rows
of Y. The difference in performance using normalized and unnormalized Y is
shown in Sec. 5.

Moreover, solving Eq. (4) in the approach of Jurie and Dhome [1] actually
corresponds to approximating Y by orthogonally projecting it on H. On the
other hand, solving Eq. (6) in our approach approximates H by orthogonally
projecting it on Y. Given that we project H on Y, all noise outside of the low-
rank space represented by Y has no effect; while in case of Jurie and Dhome,
the noise has more effect. This makes their approach more sensitive to noise. We
also prove this in our experiments.

Updating Linear Predictors. Hinterstoisser et al. [20] showed that new training
samples can be added to a linear predictor even after learning by making use
of the Sherman-Morrison formula. It relies on the original way of computing
linear predictors as A = YH' (HH')™! and efficiently updates the inverse
S = (HHT)*I. In contrast to this, our method does not compute for S in the
learning phase as Jurie and Dhome [1] do. We propose to derive S from an
existing linear predictor A using Eq. (4):

A=YH'(HH')"'=YH'S = DS, (7)

where D = YH' is an 8 X n; matrix. From this, S can be computed using the
pseudo-inverse of D:
S=D'(DD")'A. (8)

Online Learning of Linear Predictors for Real-Time Tracking 7

In this computation, we are using the matrix inverse of DD . Again, this is
an 8 X 8 matrix and can be inverted very fast.

Sec. 5 shows that updating S by adding training samples using the Sherman-
Morrison formula helps to further improve the tracking performance. The update
is done by:

. .T
-1 Sdin, 101,151

1+ 01, S0, 41

S = (87" + bin, 1101, (9)
where 0y, +1 is a vector of image value differences obtained from a new random
transformation applied to the sample points. Note that before computing the
updated linear predictor using Eq. (7), we also have to update the matrices H and
Y by concatenating them with the new training samples. For the normalization
of the parameter differences, we use the normalization as applied to the original
learning.

5 Experiments

In this section, we evaluate our proposed approach for efficient learning of linear
predictors by comparing it to the original learning approach proposed by Jurie
and Dhome [1] and the iterative approach of Holzer et al. [2]. These compar-
isons are done using two kinds of evaluation — timing and accuracy. The former
shows the difference in learning and tracking times; while the latter involves the
computation of tracking robustness with respect to different types of motion as
well as its sensitivity to noise. Additionally, we also compare the accuracy of our
approach to the non-linear method of Benhimane et al. [11]. Moreover, we show
several qualitative results from real video sequences. They show the algorithm
used on a mobile phone for learning and tracking a single template as well as
handling multiple templates. This demonstrates the need for fast learning in
unknown environments.

All the algorithms are implemented in C++. For the implementation of
Holzer et al. [2], we used the binaries provided by the authors; while the im-
plementation of Benhimane et al. [11] is from the publicly available binaries!.
The evaluation of these algorithms are conducted using a notebook with a 2.26
GHz Intel(R) Core(TM)2 Quad CPU and 4 GB of RAM, where only one core is
used for the computation.

5.1 Computational Complexity

In the first evaluation we investigate the computational complexity of our ap-
proach in contrast to the approach of Jurie and Dhome [1] and Holzer et al. [2].
Our algorithm is divided into three parts — learning linear predictors, tracking
using the learned linear predictors and updating the linear predictors while track-
ing. This section mainly focuses on the amount of time that each part requires
to finish in relation to the number of sample points used.

! See version 0.4 available at http://esm.gforge.inria.fr/ESM.html.

8 Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David Tan, Nassir Navab

=
@

+-our appr. vs. Jurie and Dhome + T+ Jurieand Dhome/ our approach
10 g 125|°v-our appr. vs. ALPs 6 v ALPs v
£ 2 Zs v
v10Y £ 100 + =
£V g E4 7
= c 75 =
21¢° g * v 23 ¥
£ e v
g I 50 + v g, v
T 10 e -%-Jurie and Dhome| 8 X o v = v v
v ALPs 25 v it v PR
ol +-our approach v sttt *
10 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
template size [sample points] template size [sample points] template size [sample points]
(a) (b) ()

Fig.1. (a) Comparison of the necessary learning time with respect to the number
of sample points used within the template for the approach proposed by Jurie and
Dhome [1], by Holzer et al. [2] (referred as “ALPs”) and our approach. (b) The cor-
responding speed-up in learning obtained by our approach. (c¢) The tracking time per
frame with respect to the number of sample points used for the template.

o)
®
o3}

+

o
®

successrate [%]
N
8 8

updatetime[s]
SN IS
*

~
e}

S

1500 1500

num%%’o of updatelsg?nopls
(a) (b)

Fig. 2. (a) The time necessary to update an existing tracker with respect to number

of update samples. This update can be performed in parallel with tracking. (b) The

corresponding improvement in success rates with increasing number of updates.

500 1000
number of update samples

Learning. Our main contribution is reflected on the learning time. We show in
Fig. 1 (a) that, as the amount of sample points increases, the time required for
learning using our approach increases much slower in comparison to the approach
of both, Jurie and Dhome [1] and Holzer et al. [2]. This difference is emphasized
in Fig. 1 (b) where it is evident that for templates with more than 800 sample
points (e.g. 30 x 30), our approach is more than two orders of magnitude faster,
i.e. almost 120 times faster, than Jurie and Dhome [1] and more than 50 times
faster than the approach of Holzer et al. [2].

Tracking. Both the original approach [1] and our approach have similar tracking
time because the time needed to de-normalize the parameter updates in our
approach is negligible. Furthermore, the measure of tracking time per frame with
respect to template size in Fig. 1 (¢) demonstrates that our approach can easily
reach frame rates higher than 1000 fps even with large templates. In contrast
to Holzer et al. [2], their method is slightly slower and the necessary time for
tracking increases faster as the template size increases. In comparison to this,
the non-linear approach of Benhimane et al. [11] takes about 10 ms for tracking
the same template.

Online Learning of Linear Predictors for Real-Time Tracking 9

Updating. The updating process is a way of adding new training samples to
a learned linear predictor during tracking. Fig. 2 (a) shows the time necessary
to update an existing tracker with respect to the number of update samples,
where the number of update samples corresponds to the number of random
transformations applied to the template. Note that this is the same template
as used for the initial learning. This result illustrates that by adding a small
number of training samples at each time, we can keep the computational cost
low while improving the performance of the tracker over time. In Fig. 2 (b),
we show an exemplary improvement of tracking robustness when updating the
linear predictors with a specific number of update samples. Sec. 5.2 discusses
more on the tracking robustness in updating.

5.2 Robustness

In this section, we analyze the influence of our learning approach on the ro-
bustness of tracking with respect to different movements and different levels of
noise. We measure accuracy by finding the correct location of the template af-
ter inducing random transforms to several test images. The images used in the
evaluation are taken from the Internet (see supplementary material®). Moreover,
the random transforms include translation, rotation, scale and viewpoint change.
Using the test images and random transforms, tracking is considered successful
if the mean pixel distance between the reference template corner points and the
tracked template corner points, that is back-projected into the reference view,
is less than 5 pixels. Hence, robustness is measured as the percent of success-
fully tracked templates after applying several random transforms to each test
image. For measuring the robustness in relation to noise we corrupted the image
with noise sampled from a Gaussian distribution before applying the random
transform.

At this point, it is important to mention that the goal of this type of evalu-
ation is to generate more accurate comparison with the ground truth measure-
ments. Indeed, there are other methods of testing such as using markers on real
scenes to find the camera motion. However, this approach includes markers that
generate its own error and limit the amount of motion available for testing. In
addition, our evaluation also has the benefit of control which means that it is
done by changing only variables that are being tested while keeping the others
constant throughout the experiment. We can also specify the amount of change
to fairly evaluate at which value the algorithm failed.

Here, we compare our approach to the methods of Jurie and Dhome [1],
Holzer et al. [2], and Benhimane et al. [11]. For our approach, we considered
three different cases:

— Unnormalized: we do not normalize the parameter differences;
— Normalized: we normalize the parameter differences before learning the
linear predictors and de-normalize them during tracking; and,

2 The supplementary material, which includes the images used for evaluation as well
as videos, can be found at http://campar.in.tum.de/Main/StefanHolzer.

10 Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David Tan, Nassir Navab

— Updated: we normalize the parameter differences and update the linear
predictors with 1000 training samples before performing the experiments.

Given the learned linear predictor of a test image, the experiment starts by
applying a random transform to the image and use the linear predictor to track
this movement. This transform includes translation, rotation, scale and viewing
angle. Therefore, after imposing several random transforms to a set of images,
robustness is measured as the percent of successful estimation of the applied
motions. For the evaluation with respect to noise, we corrupted the test image
with Gaussian noise before applying the random transforms. Unless otherwise
stated, the experiments are applied on templates of size 150 x 150 pixels with
18 x 18 sample points, and the initial learning of the linear predictors use 3-18-
18 = 972 training samples; while for the non-linear approach of Benhimane et
al. [11], we use the complete template without subsampling.

Normalization of parameter differences. As we mentioned in Sec. 4, normalizing
the parameter difference matrix Y before learning is important for our approach.
To emphasize this, we included the results of the unnormalized approach in
Fig. 3. It clearly shows that the unnormalized approach is not suitable for track-
ing. In contrast to that, the normalized approach gives results which are close to
the original approach while the updated approach gets even closer to the results
of Jurie and Dhome [1]. On the other hand, the outcome from Holzer et al. [2]
also shows that it performs similarly well as Jurie and Dhome [1]. All the learn-
ing based approaches, except for the unnormalized version of our approach, give
superior results compared to the non-linear approach of Benhimane et al. [11].

Number of samples points. In Fig. 4, we compare the tracking robustness in
relation to the number of sample points. It is important to note that all the
results show similar behavior across different transformations. Our normalized
approach replicates the results of Jurie and Dhome [1] when the number of
sample points per template is above 325. In all the results, the updated approach
does not lose tracking robustness and performs consistently equal to the original
approach.

Updating. Fig. 2 (b) depicts the change in robustness when we add new train-
ing samples to a learned linear predictor with normalization during tracking.
In this experiment, we applied several random translations of approximately 30
pixels on the set of test images. After applying the updated linear predictors
to the transformed images, we checked how often the translation was correctly
estimated. This was done for linear predictors updated with different numbers
of update samples, where the number of update samples is the number of ran-
dom transformations applied to the template. The results show that tracking
robustness increases as the number of update samples increases. We also show
in Fig. 3 that updating brings the tracking performance closer to the original
learning approach of Jurie and Dhome [1].

Online Learning of Linear Predictors for Real-Time Tracking 11

108 100 9
A4
_ 8g 4 80 *
<) g < W
2 60 T 60
s v 8
§ ~&-Jurie and Dhome| < -#-Jurieand Dhome
g 401-v ALPs g 40 v ALPs
2 < ESM \ E <4 ESM
201+ our normalized 20| +-our normalized
—#-our unnormalized| =*=our unnormalized
-©-our updated o -©-our updated
0 20 40 60 8 0 ~05 1 15 2
viewing angle [°] scale
(a) Viewing Angle) Scale
1 99 10 @99y
80y _, 80
g \ g
T 60 2 60
8 s
-%-Jurie and Dhome ﬁ -#-Jurie and Dhome
g 4017 ALPs g 40 v ALPs
el < ESM 2 < ESM
20} =+ our normalized 20 -+-our normalized
—*-our unnormalized ¥ =#-our unnormalized|
-©-our updated < -©-our updated
0 10 20 30 40 50 oo 0 500 T 100
translation [px] rotation angle []
(c¢) Translation (d) In-plane Rotation

Fig. 3. Comparison of the approach of Jurie and Dhome [1], Holzer et al. [2] (referred as
“ALPs”), Benhimane et al. [11] (referred as “ESM”), as well as our approach with and
without normalization, and with updated predictors. We consider four different types
of motions as specified. The success rate indicates the percent of successful estimation
of the applied motions.

Sensitivity to Noise. A comparison among the different methods with respect to
noise sensitivity is presented in Fig. 5. This experiment corrupts the input image
by Gaussian noise with zero mean and varying standard deviation. After that,
we impose a small translation to the corrupted image and measure the accuracy
of the tracker for each algorithm. The noise parameter in Fig. 5 corresponds
to the standard deviation of the Gaussian noise and the image intensity of the
uncorrupted image ranges from 0 to 255.

While our approach had a slightly worse tracking robustness for large mo-
tions as shown in Fig. 3, we illustrate in Fig. 5 (a) that the tracking robustness of
our approach outperforms the original approach in terms of sensitivity to noise.
An evidence for this is shown in Fig. 5 (b) where we analyze the average distance
between the reference template corner points and the predicted template corner
points that is back-projected into the reference view. Based on the figure, the
prediction error of Jurie and Dhome [1] is smaller compared to our approach for
small noise levels, but rapidly increases as the level of noise increases. Contrary
to this, our approach has a higher error if no or only a small amount of noise is
present, but the error increases slower when more noise is added. For a discus-
sion on why our approach is less sensitive to noise in comparison to Jurie and
Dhome [1], refer to Sec. 4.

It is noteworthy that being less sensitive to noise is an advantage in envi-
ronments with bad lighting conditions, e.g. at night when the signal-to-noise
ratio of cameras usually decreases. This is especially the case for cameras used
in mobile devices.

12 Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David Tan, Nassir Navab

. e o—r—o—o—o—so —s
< + * — F
80| 8o/ 80| 80)
< - L =
g E_ - g £
% 60 % 60] % 60y % 60f
8 40 g a0 8 40 g a0
3 3 3 3
2l ~>-Jurie and Dhomd 20 ~>-Jurieand Dhome] 2 ~-Jurieand Dhomd 20 ~-Jurieand Dhomd
+-our normalized ~our normalized +-our normalized ~our normalized
[-e-our updated -©-our updated |-6-our updated -©-our updated
?)0 200 300 400 500 600 700 i) 200 300 400 500 600 700 800 ?)0 200 300 400 500 600 700 i) 200 300 400 500 600 700 800
aum of sample points ‘num of sample points number of sample points ‘num of sample points
(a) Viewing Angle (b) Scale (c) Translation (d) Rotation

Fig. 4. Comparison of the success rate in tracking with respect to the number of
sample points for the approach of Jurie and Dhome [1], as well as our approach with
normalization and with updated predictors.

1 2
-#-Jurieand Dhome| -&Jurieand Dhome|
+-our normalized -+ our normalized
80 -e-our updated 15/-8-our updated
) =
% 60) B
= 5 10¢
g 40 o
a 5t
20
0 50 100 150 200 0 50 100 150 200
noise noise
(a) (b)

Fig. 5. Comparison of our approach to the approach of Jurie and Dhome [1] with
respect to sensitivity to noise in tracking. (a) shows the success rate for different noise
levels. (b) shows the average error in the predicted corner points of the template.

5.3 Application: Tracking on a Mobile Phone

Due to the high efficiency of learning and tracking using the proposed approach,
it is optimally suited for applications running on mobile devices. In order to
demonstrate this, we implemented it on a mobile phone with a 1.2 GHz dual core
processor and 1 GB of RAM. Note that we only used a single core for learning
and tracking, and that we directly used our implementation without optimizing
it for the special processor technology used in mobile phones. Sample images of
tracking using a mobile phone are shown in Fig. 6, and a video that demonstrates
the learning and tracking can be found in the supplementary material.

Exemplary learning times for [1] are approximately 18000 ms for a template
with 16 x 16 sample points, whereas our approach needs only approximately 350
ms. Therefore, our approach is more than 50 times faster than the approach of
Jurie and Dhome [1], but more importantly, allows interactive applications to
start tracking almost immediately. For tracking, both approaches need about 2.5
ms per frame for a template with 16 x 16 sample points.

5.4 Application: Tracking of Multiple Templates Simultaneously

In Fig. 7, we demonstrate the simultaneous tracking of multiple templates. The
first row in this figure shows the tracking of three templates on a mobile phone
while the second row demonstrates tracking of a large number of templates and
shows that the use of multiple templates helps to handle occlusions. Because of

Online Learning of Linear Predictors for Real-Time Tracking 13

Fig. 6. Tracking on a mobile phone. The upper row shows tracking a non planar surface
while the lower row shows tracking a planar scene.

Fig. 7. Learning and tracking of multiple templates. The upper row shows tracking of
multiple templates on a mobile phone while the lower row shows tracking of a large
number of templates on a standard PC. This helps to handle occlusions.

the fast learning characteristic of our approach, we are able to learn such a large
number of templates online. This can be useful for a SLAM and similar systems
where a patch-based reconstruction of a scene is performed.

6 Conclusion

We introduced an efficient method for online learning of linear predictors for
real-time template tracking by reformulating the original learning procedure
presented by Jurie and Dhome [1]. This removes the time consuming inversion
of large matrices and dramatically reduces the learning time. In addition, our ap-
proach yields tracking results comparable to those of the standard approach while
sensitivity to image noise is reduced. Furthermore, the robustness in tracking
can be increased by adding new training samples to an already learned tracker.
Lastly, we demonstrated the usefulness of the proposed learning approach in a
tracking application for mobile devices, where online learning is necessary.

References

1. Jurie, F., Dhome, M.: Hyperplane approximation for template matching. PAMI
(2002)

14

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David Tan, Nassir Navab

Holzer, S., Ilic, S., Navab, N.: Adaptive linear predictors for real-time tracking. In:
CVPR, San Francisco, CA, USA (2010)

Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Applica-

tion to Stereo Vision. In: International Joint Conference on Artificial Intelligence.
1981)

(Shum, H.Y., Szeliski, R.: Construction of panoramic image mosaics with global
and local alignment. IJCV (2000)

Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of

geometry and illumination. PAMI (1998)

Cascia, M., Sclaroff, S., Athitsos, V.: Fast, reliable head tracking under varying
illumination: An approach based on registration of texture-mapped 3d models.
PAMI (2000)

Dellaert, F., Collins, R.: Fast image-based tracking by selective pixel integration.

In: ICCV Workshop of Frame-Rate Vision. (1999)

Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms.
In: Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA,

USA (2001)
Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. 1JCV
(2004)

Malis, E.: Improving vision-based control using efficient second-order minimization
techniques. In: ICRA. (2004)

Benhimane, S., Malis, E.: Homography-based 2d visual tracking and servoing.
International Journal of Robotics Research (2007)

Jurie, F., Dhome, M.: Real time robust template matching. In: BMVC. (2002)
Grafll, C., Zinfler, T., Niemann, H.: Efficient hyperplane tracking by intelligent
region selection. In: Image Analysis and Interpretation. (2004)

Parisot, P., Thiesse, B., Charvillat, V.: Selection of reliable features subsets for
appearance-based tracking. Signal-Image Technologies and Internet-Based System
(2007)

Matas, J., Zimmermann, K., Svoboda, T., Hilton, A.: Learning efficient linear
predictors for motion estimation. In: Computer Vision, Graphics and Image Pro-
cessing. (2006)

Mayol, W.W., Murray, D.W.: Tracking with general regression. Journal of Machine
Vision and Applications (2008)

Zimmermann, K., Matas, J., Svoboda, T.: Tracking by an optimal sequence of
linear predictors. PAMI (2009)

Ozuysal, M., Fua, P., Lepetit, V.: Fast Keypoint Recognition in Ten Lines of Code.
In: CVPR, Minneapolis, MI, USA (2007)

Holzer, S., Hinterstoisser, S., Ilic, S., Navab, N.: Distance transform templates for
object detection and pose estimation. In: CVPR. (2009)

Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., Lepetit, V.: Online learning
of patch perspective rectification for efficient object detection. In: CVPR. (2008)
Hinterstoisser, S., Kutter, O., Navab, N., Fua, P., Lepetit, V.. Real-time learning
of accurate patch rectification. In: CVPR. (2009)

Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant orientation
templates for real-time detection of texture-less objects. In: CVPR. (2010)

Grafll, C., Zinfer, T., Niemann, H.: Illumination insensitive template matching
with hyperplanes. In: Proceedings of Pattern recognition: 25th DAGM Symposium,
Magdeburg, Germany (2003)

Penrose, R.: A generalized inverse for matrices. In: Proceedings of the Cambridge
Philosophical Society. (1955)

CHAPTER B: ONLINE LEARNING OF LINEAR PREDICTORS
FOR REAL-TIME TRACKING

60

APPENDIX
C

EFFICIENT LEARNING OF LINEAR PREDICTORS
USING DIMENSIONALITY REDUCTION

Springer and the original publisher (Computer Vision - ACCV 2012, 11th Asian Confer-
ence on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers,
Part I11, pp 15-28, Efficient Learning of Linear Predictors using Dimensionality Reduction,
Stefan Holzer, Slobodan Ilic, David Joseph Tan, Nassir Navab) is given to the publication
in which the material was originally published, by adding: With kind permission from
Springer Science and Business Media.

Own contributions. My contributions to this work include the core idea, the design,
and the implementation of the method for efficient learning of Linear Predictors using
dimensionality reduction. The evaluation was performed together with David Tan and
Slobodan Ilic. The core idea of the paper was refined in collaboration with the other
co-authors. All co-authors were involved in the writing of the paper.

61

Efficient Learning of Linear Predictors using
Dimensionality Reduction

Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

Department of Computer Science, Technische Universitat Miinchen (TUM),
Boltzmannstrasse 3, 85748 Garching, Germany

Abstract. Using Linear Predictors for template tracking enables fast
and reliable real-time processing. However, not being able to learn new
templates online limits their use in applications where the scene is not
known a priori and multiple templates have to be added online, such
as SLAM or SfM. This especially holds for applications running on low-
end hardware such as mobile devices. Previous approaches either had to
learn Linear Predictors offline [1], or start with a small template and
iteratively grow it over time [2]. We propose a fast and simple learning
procedure which reduces the necessary training time by up to two orders
of magnitude while also slightly improving the tracking robustness with
respect to large motions and image noise. This is illustrated in an ex-
haustive evaluation where we compare our approach with state-of-the-art
approaches. Additionally, we show the learning and tracking in mobile
phone applications which demonstrates the efficiency of the proposed
approach.

1 Introduction

Template tracking is an extensively studied field in Computer Vision with a wide
range of applications such as augmented reality, human-computer interfaces,
medical imaging, surveillance, vision-based control and visual reconstruction.
The main task of template tracking is to follow a template in an image sequence.
This is done by estimating the parameters of the template warping function
that defines how the pixel locations, occupied by the template, are warped to
the next frame of the image sequence. Examples for such warping functions are
affine transformations or homographies.

Recently, tracking-by-detection methods became popular since they reached
a state where they are able to track close to or at real-time performance. How-
ever, they show some limitations which we further address in Sec. 2. In frame-
to-frame template tracking, image intensity differences between template areas
of two consecutive frames have to be minimized in terms of the template warp-
ing parameters. Most of them are based on energy minimization [3-11] and in
many cases, an analytical derivation of the Jacobian is used in order to provide
real-time tracking capabilities. Alternative approaches are based on learning [1,
12-17,2] where the relation between image intensity differences and template

2 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

warping parameters is learned. While energy minimization is flexible at run-
time, learning based methods have proven to allow much faster tracking.

Jurie and Dhome [1] proposed a very successful learning based template
tracker which learns Linear Predictors to efficiently compute template warp pa-
rameter updates. This is very fast in tracking and tends to avoid local minima.
But, due to the computationally expensive learning phase, online-creation of
templates is hardly possible. This, however, is a crucial ability for many applica-
tions that have to deal with data which is not available for prior offline learning.
Some examples for such applications are Simultaneous Localization and Map-
ping (SLAM) and Structure from Motion (SfM). We address this limitation by
introducing a more efficient learning procedure for creating Linear Predictors.
This not only improves the learning speed drastically, but also brings a small
improvement in robustness of tracking with respect to large motions and image
noise.

The remainder of the paper is structured as follows: first, we discuss related
work on template tracking (Sec. 2) and introduce the original approach of Jurie
and Dhome (Sec. 3). This is followed by a detailed description of our approach
(Sec. 4) and an extensive quantitative testing (Sec. 5.1 and Sec. 5.2). Finally,
we demonstrate that the proposed approach can be used for efficient template
learning and tracking on mobile phones, as well as applications similar to SLAM
where multiple templates are being tracked simultaneously (Sec. 5.3).

2 Related Work

The existing template tracking approaches can be categorized in mainly three
different sets of methods: tracking-by-detection (TBD) [18-22], template track-
ing based on energy minimization [3—11, 23, 24], and methods that utilize learn-
ing [1,12-17]. While tracking-by-detection methods are able to track a template
over the whole image independent of the previous position, they hardly achieve
the processing speed of frame-to-frame tracking. Additionally, they often re-
quire a time consuming training procedure and are limited in their possible pose
space. For frame-to-frame tracking, energy minimization-based approaches are
generally more flexible at run-time by allowing fast creation and modification of
templates, while learning-based approaches enable higher tracking speed. Look-
ing at tracking performance, it has been shown in the past that learning-based
approaches outperform methods based on energy minimization. Jurie et al. [12]
demonstrated that Linear Predictors are superior to Jacobian approximation
and Holzer et al. [2] showed an experiment where Linear Predictors are superior
to Efficient Second-order Minimization (ESM) [11]. We further fortify the latter
by showing additional comparisons in Sec. 5.2.

Tracking-by-Detection-based approaches. Some of the most prominent work on
patch-based TBD was recently proposed by Hinterstoisser et al. [18-20]. Their
former two methods, called Leopard [18] and Gepard [19], use the patch around
detected keypoints for matching and pose estimation. While these methods en-
able near real-time performance, they heavily rely on the repeatability of the

Efficient Learning of Linear Predictors using Dimensionality Reduction 3

underlying keypoint detector. Additionally, they apply template tracking ap-
proaches for pose refinement, which means that these approaches also benefit
from advances in template tracking. To overcome the dependency on keypoint
detectors, they proposed a template matching based approach (DOT) [20]. How-
ever, this requires to learn templates for every possible pose, which restricts the
application space and makes it comparably slow in contrast to frame-to-frame
tracking. Ozuysal et al. (FERNs) [22] extract keypoints and match them using
a classification-based approach by estimating the probability on which class the
keypoints belong to. Although this gives real-time performance, it includes a
time consuming learning stage and needs a sufficient number of keypoints visi-
ble. This makes it less useful to track small regions. Holzer et al. (DTTs) [21]
proposed a detection based approach which builds on finding closed contours
and matches them using a similar approach as [22] used for keypoint matching.
However, this includes a time consuming learning stage and detection speed was
reported at 10 fps only.

Energy minimization-based approaches. Numerous approaches have followed the
work of Lucas and Kanade [3]. They consist of different update rules of the warp
function [3,5,6,4,7,8], handling of occlusions and illumination changes [5], as
well as considering different orders of approximation of the error function [10,
11]. The different update rules of the warp function can be classified into four
types, namely, the additive approach [3], the compositional approach [4], the
inverse additive approach [5,6] and the inverse compositional approach [7,§],
where the inverse approaches switch the roles of the reference and current image.
As a consequence, it is possible to transfer some of the computation to the
initialization phase, which makes the tracking computationally more efficient.
Compensation of illumination changes and occlusions was addressed by Hager
and Belhumeur [5]. Faster convergence rates as well as larger convergence areas
can be additionally obtained by using a second-order instead of a first-order
approximation of the error function [10, 11]. A more detailed overview of energy-
based tracking methods is given by Baker and Matthews [9].

Learning-based approaches. Jurie and Dhome [1] proposed a method that learns
Linear Predictors using randomly warped samples of the initial template, while
using the learned Linear Predictors to predict the parameter updates in tracking.
Here, the “Jacobians” are computed once for the whole method and a param-
eter update is computed using a simple matrix multiplication. More details on
this are given in Sec. 3.2. The same authors extended their approach to handle
occlusions [12]. Invariance to illumination changes was introduced by Gréafl et
al. [25]. They [13] also formulated a method on how to select the points for sam-
pling from image data to further increase accuracy in tracking. Zimmermann et
al. [17] use numerous small templates and track them individually. Based on
the local movements of these small templates, they estimate the movement of
a large template. Holzer et al. [2] start with a small template and grow it until
a large template is constructed online. This idea showcased a way to adapt ex-
isting Linear Predictors to modify the shape of a template at run-time. Mayol

4 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

(p01 pl)

(P2, P3)

(Ps; p7) 2=>(P4, Ps)

Fig. 1. A template is represented by a set of regularly placed sample points. Its pose
is parameterized using its four corner points.

and Murray [16] stepped back from Linear Predictors by presenting an approach
that fits the sampling region to pre-trained samples using general regression.

All the proposed learning approaches, however, are not able to learn large
templates online. To overcome this limitation, we introduce a learning scheme,
which is different to the one proposed by Jurie and Dhome [1] and enables online
learning of templates.

3 Tracking Framework

Our proposed template tracking approach is based on the work of Jurie and
Dhome [1]. While we introduce a new learning method in Sec. 4, the tracking
stage itself stays the same as in [1]. Therefore, we first introduce our notations
and review the method proposed by Jurie and Dhome [1].

3.1 Template and Parameter Description

Without loss of generality, we consider a w x h template with an area of ng =
w - h pixels within an image. Instead of using the full-resolution template, we
apply a uniform subsampling as shown in Fig. 1 to obtain a grid of n, sample
points. However, neither the approach of Jurie and Dhome [1] nor our approach
is restricted to this sample point arrangement or rectangular shapes.

The pose of the template is described using the parameter vector p. Within
this paper, we use a homography to represent the current perspective distortion
of a planar template and parameterize it using the four corner points of the
template. This leads to an 8-dimensional vector pu = (po, p1, P2, D3, Pa, P5, D6, D7) |
(see Fig. 1). Note that our approach is not limited to this type of transformations
and can be easily adapted to any other parameterizable template deformation.

3.2 Template Tracking based on Linear Predictors

The goal of template tracking is to follow a reference template over a sequence
of images. This reference template is defined by an initial parameter vector pp

Efficient Learning of Linear Predictors using Dimensionality Reduction 5

that corresponds to the location of the template in the reference image, and a
vector ip = (ir1,iR2, " ,iRynp)T that corresponds to the image intensity at
the sample points of the template.

Assuming that the reference template is located in the first frame of a video
sequence, the location of the sample points is defined by the initial parameter
vector pp while the parameter vector po defines the location of the template
in the current image. Henceforth, tracking is done by computing p. The basic
approach for this is to first compute a vector §i = ic — ir of image differences
and then to use this to compute a parameter update du which accounts for the
present pose difference. Note that the vector ic stores the image values extracted
from the current image and is extracted by computing the sample point locations
using the template pose p_; of the previous image frame.

Instead of explicitly minimizing an error function, e.g. by iteratively solving
a first- or second-order approximation of the function, Jurie and Dhome [1] use
a learned matrix A (also called as Linear Predictor) to compute du based on
the vector i as:

Sp = Adi. (1)

In order to compute du, one needs to precompute the matrix A. This is done
by collecting a set of n; random transformations, where n; is significantly larger
than n,, together with its corresponding image difference vectors. These random
disturbances dp; and image difference vectors di; are then combined in two
matrices Y = (0p1, 0489, ...,0,,) and H = (31, iy, ..., 0i,,). Using these
matrices, Eq. (1) can be written as:

Y = AH (2)

which solves for A using a closed-form solution:
-1
A=YH' (HHT) . (3)

In practice, we normalize the extracted image data with zero mean and unit
standard deviation. This increases the robustness against illumination changes.
Note that, to prevent HH' from being rank-deficient due to the zero mean of
the data, we have to add random noise to the obtained image value difference
vectors.

3.3 Multi-Layered Tracking

For improved tracking performance, we use a multi-predictor approach where
multiple Linear Predictors Aj,..., A, are learned for one template. Among
these, A; is trained for large distortions and the subsequent ones for smaller
distortions. Intuitively, A; accounts for large motions but is less accurate, while
A,,, can handle only small template motions but has improved accuracy. During
tracking, each Linear Predictor is utilized several times before the next level is
used. Within this paper, we use n; = 5 and three iterations for each predictor.

6 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

4 Efficient Predictor Learning using Dimensionality
Reduction

As we show in Sec. 5.1, the original approach for learning Linear Predictors as
proposed by Jurie and Dhome [1] is very time consuming and not applicable for
learning on the fly. Therefore, we propose a simple yet powerful way of learning
Linear Predictors that is much faster than [1]. The main idea behind our new
learning approach is to compress the image difference vectors di; before using
them to learn the Linear Predictor matrix. By reducing the dimensionality of
0i; from n, to n,, the size of HH' gets reduced to n, x n, and therefore, the
necessary matrix inversion (HHT)_1 becomes less computational expensive.
We propose to reduce the dimensionality of di; by using Discrete Cosine
Transform (DCT). This transform is known to give good results for compress-
ing image data by removing DCT coefficients that correspond to high frequen-
cies. Keeping only low-frequency information makes it well-suited for template
tracking, since high-frequency information tends to de-stabilize tracking. In the
following, we first introduce the 2-dimensional DCT, then show how we apply
it on the 1-dimensional vectors di; which are sampled from the 2-dimensional
templates. Mathematically, the 2-dimensional DCT U of a k X k matrix V is:

U =DCT(V) =CVvC’ (4)
where the elements of the matrix C are defined as:

i 2j+1)i
Cij= %COS {TF(JQZ)Z]

1ifi=0,
= {2 otherwise. (6)

®)

with

After transforming 8i; as di; = DCT(6i;), we form H :((5%1, Sia,. .., 5im). How-
ever, since we reshaped the samples from a 2D template into a vector, Eq. (4)
can not be directly applied to 6i;. Therefore, we create an n, x n, matrix Wpcr
which maps the difference 6i; of the sampled vectors directly to their DCT coun-
terparts 0i;. Assuming that the vector di; is reshaped from the 2D matrix V;
written as di; = reshape(V;), we compute W por as:

Woer = (b1,bg, -+ ,by,) (7)

where b,,, = reshape(CB,,C") and B,, is a matrix with all elements set to 0
except for the m-th element which is set to 1. By setting a single element to 1,
the set of matrices {By,...,B,,} are a base of the image space of the template
and the set of vectors {by,..., b, } are the DCT projections of this base. This
way, we can directly compute the 2-dimensional DCT of our image difference
vectors as:

(51, = WDCT(Sii = I:I = WpcerH. (8)

Efficient Learning of Linear Predictors using Dimensionality Reduction 7

In relation to the original learning formula in Eq. (3), we reformulate this by
using the relation: R
H=(Wper) 'H. (9)

Thus, we subsitute H from Eq. (9) to Eq. (2) and solve for the Linear Predictor
matrix A as follows:

AW, L H=Y
_ AT (o TN T
AWpt, = YH (AR)
-1 AT (o TN L
AWLL Wper = YH (HH) Wpor
AT /o T\ 1L
A=YH (HH) Woer (10)

To reduce the necessary computational load, we apply a dimensionality reduction
by defining an n, x n, submatrix ng)T with n, < n,, such that the necessary
matrix inversion is no longer applied to an n, x n, matrix but rather to an
n, X n, matrix. The final Linear Predictor is then computed as:

A (g A (np) o (g -1 n
A =yt (ECET) Wi, (11)

with I:I(nr) = Wgé)TH We show in Sec. 5.1 that by keeping n, small, the
learning time for large templates is significantly reduced. Moreover, depending
on the size of n,., the reduction in learning even increases tracking robustness.

5 Experiments

In this section, we evaluate our approach for efficient learning of Linear Predic-
tors, as proposed in Sec. 4, by comparing it to the original learning approach
proposed by Jurie and Dhome [1], the iterative approach of Holzer et al. [2]
which is also referred to as Adaptive Linear Predictors (ALPs), as well as the
approach of Benhimane et al. [11] known as Efficient Second-order Minimization
(ESM). For the comparison, we use two kinds of evaluation — timing and track-
ing performance. The former shows the difference in learning and tracking times
(see Sec. 5.1); while the latter involves the computation of tracking robustness
with respect to different types of motion as well as its sensitivity to noise (see
Sec. 5.2). Finally, we demonstrate the usefulness of fast template learning using
tracking on mobile devices (see Sec. 5.3).

All algorithms used in this experiment are implemented in C++. For our
approach, we consider three different instances where the difference is in the
number of DCT coefficients used for learning. Specifically, we use varying DCT
coefficients with values of 25, 49, and 81. The evaluation of Holzer et al. [2]
is performed using binaries kindly provided by the authors while the approach
of Benhimane et al. [11] is evaluated using publicly available binaries!. The

! See version 0.4 available at http://esm.gforge.inria.fr/ESM.html

8 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

Fig. 2. The data set used for synthetic experiments. These images are randomly taken
from the Internet.

evaluations of these algorithms are conducted using a notebook with a 2.26GHz
Intel(R) Core(TM)2 Quad CPU and 8 GB of RAM, where only one core is used
for the computations. The images used for evaluation on synthetic data are taken
from the Internet (see Fig. 2). For all synthetic experiments, the template size is
150 x 150 pixels. A template is located at the center of the image and tracking
is applied on its warped versions.

We want to emphasize that the reason for focusing on synthetic experiments
in Sec. 5.1 and 5.2 is to generate a more accurate comparison using ground
truth measurements. Using other methods of testing, such as using markers on
real scenes to find the camera motion, generates its own error and limits the
amount of motion available for testing. In addition, our evaluation also has the
benefit of control which means that it is done by changing only variables that
are being tested while keeping the others constant throughout the experiment.
Furthermore, it allows to precisely specify the amount of change to fairly evaluate
at which value the algorithm failed.

In addition to the synthetic evaluation, we also show several qualitative re-
sults from real video sequences in Sec. 5.3. These demonstrate the proposed ap-
proach used on a mobile phone for learning and tracking templates in unknown
environments.

5.1 Computational Complexity

In the first evaluation, timing is measured by counting the amount of time to
finish a specific part of the algorithm, i.e. learning and tracking. We compare
the computational complexity of our approach with the approach of Jurie and
Dhome [1] as well as Holzer et al. [2].

Learning. Our main contribution is reflected on the learning time. In Fig. 3 (a),
we evaluate the amount of time necessary for learning with respect to the num-
ber of sample points. It shows that as the amount of sample points increases,
the time required for learning using our approach increases much slower in com-
parison to the approach of both, Jurie and Dhome [1] and Holzer et al. [2]. As

Efficient Learning of Linear Predictors using Dimensionality Reduction 9

10° 15¢ 7
-©-DCT-25vs. JO +JD/DCT
£ 125|-8 DCT-49vs. JO 6] v ALPs .
10" ‘é ~-DCT-81vs. JQ 7 v
= £ 100 s v
° c
£ 8 E4 of
£10 - 75 1= 4
‘a v
E -JD S £9 v
P v ALPs & 50 85 v
<1 ©-DCT-25 & = ol
o a-DCT-49 & 25 I v RS
10 ~-DCT-81 R
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Num. of template sample points Num. of template sample points Num. of template sample points
(a) (b) (c)

Fig. 3. Comparison of timings for the approach proposed by Jurie and Dhome [1]
(‘JD’), the approach of Holzer et al. [2] (‘ALPs’), and our approach (‘DCT-z’). (a)
Comparison of learning time. (b) Obtained speed-up of our approach with respect to
Jurie and Dhome [1]. (¢) Comparison of tracking time.

10° 20
-©-DCT-25|
! g 8-DCT-49
710" / = 150 --DCT-81)
E £
o £
E. s 8
> 10 a = 100
c
§ o & %
< -%-JD el =
Q< @
10 = ©o-DCT-25 & 5 a
8-DCT-49 o a
1 ~<-DCT-81 o
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Num. of training samples Num. of training samples
(a) (b)

Fig. 4. Evaluation of learning time depending on the number of training samples used
for training. (a) Learning time of our approach (‘DCT-2’) in comparison to the ap-
proach of Jurie and Dhome [1] (‘JD’) and (b) the speed-up obtained by our approach
with respect to the number of DCT coefficients used for training. The experiments
were performed with a template-size of 150 x 150 pixels, where 22 x 22 sampling points
were used.

expected, using less DCT coefficients for learning decreases the necessary time.
This difference is emphasized in Fig. 3 (b) where it is evident that for templates
with more than 800 sample points (e.g. 30 x 30), our approach is more than
two orders of magnitude faster, i.e. almost 150 times faster, than Jurie and
Dhome [1] if 25 DCT coefficients are used. Using 81 DCT coefficients, it is still
approximately 70 times faster.

Fig. 4 compares the necessary learning time with the number of random
samples used for training. Reducing the number of random samples drastically
reduces the necessary time for learning Linear Predictors. Although this comes
hand in hand with a decrease in tracking performance, we show in Sec. 5.2 that
our approach is much more robust against this kind of reduction compared to
the original approach of Jurie and Dhome [1].

10 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

Tracking. Both the original approach [1] and our approach share the same ap-
proach for tracking and therefore, have equal tracking times. Furthermore, the
measure of tracking time per frame with respect to template size in Fig. 3(c)
demonstrates that our approach can easily reach frame rates higher than 1000
fps even for templates with a high number of sample points. In contrast to Holzer
et al. [2], their approach is slightly slower and the necessary time for tracking
increases significantly faster as the template size increases. Considering a non-
linear template tracking approach, the method of Benhimane et al. [11] takes
about 10 ms for tracking the same templates.

5.2 Robustness

In this section, we measure the tracking performance by finding the correct
location of the template after inducing random transformations and noise to
several test images. These random transformations include translation, rotation
(in-plane rotation), scale and viewpoint changes (out-of-plane rotation). For the
experiments on the influence of noise, we corrupted the images with noise sam-
pled from a Gaussian distribution before applying the random transformation.

Applying these disturbances to the test images, tracking is considered suc-
cessful if the mean pixel distance between the reference template corner points
and the tracked template corner points, which are back-projected into the refer-
ence view, is less than 5 pixels. Hence, robustness is measured as the percentage
of successfully tracked templates after applying several random disturbances to
each test image.

Number of sample points. In Fig. 5, we compare the tracking robustness using
different types of transformations in relation to the number of sample points.
Here, we evaluate our approach with different numbers of DCT coefficients as
well as the approach of Jurie and Dhome [1], Holzer et al. [2], and the non-linear
approach of Benhimane et al. [11]. Hereby, the training stage as it is applied for
the methods based on Linear Predictors leads to significantly better results than
obtained using the non-linear approach of Benhimane et al. [11]. Comparing
our approach with that of Jurie and Dhome [1] reveals that our approach is
always better or comparable, except for the variant where we use only 25 DCT
coefficients. This gives slightly worse results for large changes in viewing angle
and scale. The approach of Holzer et al. [2] tends to give slightly worse results
than that of Jurie and Dhome [1]. The improvement in tracking robustness using
our approach can be explained by the fact that only low-frequency data is kept
during the compression using the DCT and high-frequency data of the template
is removed. As a result, noise and fine details, which tend to de-stabilize tracking,
are removed.

Having a look at the tracking performance when varying the number of ran-
dom transformations used for training (see Fig. 6), we see that the approach
of Jurie and Dhome [1] lacks robustness when reducing the number of training
samples while our approach still keeps high tracking performance even with re-

Efficient Learning of Linear Predictors using Dimensionality Reduction 11

-0 = = e -
= JD
—+ALPs
= = <-ESM
=) 4 |||-e-DCT-25
2 & 8-DCT-49
g E -<-DCT-81
2 —%JD \u] 2
§ 401+ ALPs 4 §
2 <-ESM 7
20l ©-DCT-25
8-DCT-49 q
o ~-DCT-81 g
0 10 20 30 40 50 0 .0
translation [px] rotation angle [°]
(a) Translation (b) In-plane Rotation
10 &0 ¢ O—0—+% 10
80 ~ 80
= S
2, 4 =)
Q Q
ks 60 <« & 60
3 —--JD a D
g 40 —+ALPs g 401 +ALPs
2 <-ESM 2 <-ESM
20 --DCT-25 20|©-DCT-25
4 |-=-DCT-49 8-DCT-49
--DCT-81] --DCT-81]
0 44 < 0
0 0.5 1 15 2 0 20 40 60 80
scale viewing angle [°]
(c) Scale (d) Out-of-plane Rotation

Fig. 5. Comparison of tracking performance for the approaches proposed by Jurie and
Dhome [1] (‘JD’), Holzer et al. [2] (‘ALPs’), Benhimane et al. [11] (‘ESM’), and our
approach (‘DCT-z’). Four different types of motions are considered: (a) translation,
(b) in-plane rotation, (c) scale and (d) out-of-plane rotation. The experiments were
performed with a template size of 150 x 150 pixels, where 20 x 20 sampling points are
used for JD, ALPs and our approach. ESM uses the complete template. For training
we used 1200 training samples.

duced training examples. This property is useful to even further decrease the
learning time if necessary, as we showed in Fig. 4.

Sensitivity to Noise. The results presented in Fig. 7 compare our proposed ap-
proach with Jurie and Dhome [1] with respect to sensitivity to noise, where the
noise parameter specifies the standard deviation of the Gaussian noise and is with
respect to an image value range from 0 to 255. Fig. 7 (a) shows that increas-
ing the number of used DCT coefficients also increases the robustness against
noise. Using 81 DCT coefficients, we obtain a template tracking approach which
is more robust against noise than the one of Jurie and Dhome [1]. Looking at
Fig. 7 (b), we see that our approach, in general, gives a smaller mean error in
the tracking results.

It is noteworthy that being less sensitive to noise is an advantage in envi-
ronments with bad lighting conditions, e.g. at night when the signal-to-noise
ratio of cameras usually decreases. This is especially the case for cameras used
in mobile devices.

12 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

10 T T T . 9
_ 90 gfg : _ 80 g
£ e’/’d& s 70
Q Q
s 80 <
2 g0
g 70]
o o 50
2 =JD 2 *JD
60 -©-DCT-25 -©-DCT-25
40
8-DCT-49 8-DCT-49
5 —~-DCT-81 3 ~<-DCT-81]
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Num. of training samples Num. of training samples
(a) (b)

Fig. 6. Evaluation of tracking success rate with respect to the number of training
samples. The left graph shows success rates for random translations in the range of 30
to 40 pixels while the right one shows them for random translations in the range of 35
to 45 pixels. For these experiments we used templates with 22 x 22 sample points.

108 25
=JD 1D x
-0-DCT-25 -0-DCT-25
= 80 8-DCT-49 201-a-DCT-49 3
&, ~-DCT-81 ~-DCT-81
I} —
g 60 1 51
o =
2 g
8 40 51
>
2
20
0 : : ‘ B=8—0 0 : : : :
0 20 40 60 0 100 0 20 40 60 80 100
noise noise
(a) (b)

Fig. 7. Comparison of sensitivity to noise for the approach proposed by Jurie and
Dhome [1] and our approach.

5.3 Exemplary Applications on Mobile Phones

To demonstrate the efficiency of the template learning and tracking, we imple-
mented it on a standard mobile phone with a 1.2 GHz dual core processor with
1 GB of RAM. Note that we did not optimize the implementation for processor
specific technology and used only a single core for the learning and tracking.

Tracking of a Single Template In Fig. 8, we show exemplary images demon-
strating the tracking of a single template on a mobile phone. Learning times for
a single template are approximately 18000 ms for the original approach of Jurie
and Dhome [1] and about 600 ms for our proposed approach. To estimate the
learning time, we trained a template with 16 x 16 sample points, 16-16-3 = 768
training samples, and used 25 DCT coefficients in our approach. As a result, the
tracking takes about 2.5 ms for both approaches.

Efficient Learning of Linear Predictors using Dimensionality Reduction 13

Fig. 9. Tracking of multiple templates on a mobile phone. The most right template
shown in the first row failed during tracking and was replaced by a new template in
the second row.

Tracking of Multiple Templates Fig. 9 shows the tracking of multiple tem-
plates. This can be useful for applications like SLAM or similar systems where
a patch-based reconstruction of a scene is performed.

6 Conclusion

We proposed an efficient method for learning Linear Predictors for real-time
template tracking by making use of the Discrete Cosine Transform for dimen-
sionality reduction. This reduces the necessary computation dramatically and
enables to learn Linear Predictors at run-time. We demonstrated that the intro-
duced learning procedure leads to an improvement in handling of large motions
and image noise, and showed its usefulness for mobile applications.

References

1. Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2002)

2. Holzer, S., Ilic, S., Navab, N.: Adaptive linear predictors for real-time tracking. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA (2010)

3. Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Applica-
tion to Stereo Vision. In: International Joint Conference on Artificial Intelligence.
(1981)

4. Shum, H.Y., Szeliski, R.: Construction of panoramic image mosaics with global
and local alignment. International Journal of Computer Vision (2000)

5. Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of
geometry and illumination. IEEE Transactions on Pattern Analysis and Machine
Intelligence (1998)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

Cascia, M., Sclaroff, S., Athitsos, V.: Fast, reliable head tracking under varying
illumination: An approach based on registration of texture-mapped 3d models.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2000)

Dellaert, F., Collins, R.: Fast image-based tracking by selective pixel integration.
In: ICCV Workshop of Frame-Rate Vision. (1999)

Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms.
In: Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA,
USA (2001)

Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Inter-
national Journal of Computer Vision (2004)

Malis, E.: Improving vision-based control using efficient second-order minimiza-
tion techniques. In: IEEE International Conference on Robotics and Automation.
(2004)

Benhimane, S., Malis, E.: Homography-based 2d visual tracking and servoing.
International Journal of Robotics Research (2007)

Jurie, F., Dhome, M.: Real time robust template matching. In: British Machine
Vision Conference. (2002)

GraBl, C., Zinfler, T., Niemann, H.: Efficient hyperplane tracking by intelligent
region selection. In: Image Analysis and Interpretation. (2004)

Parisot, P., Thiesse, B., Charvillat, V.: Selection of reliable features subsets for
appearance-based tracking. Signal-Image Technologies and Internet-Based System
(2007)

Matas, J., Zimmermann, K., Svoboda, T., Hilton, A.: Learning efficient linear
predictors for motion estimation. In: Computer Vision, Graphics and Image Pro-
cessing. (2006)

Mayol, W.W., Murray, D.W.: Tracking with general regression. Journal of Machine
Vision and Applications (2008)

Zimmermann, K., Matas, J., Svoboda, T.: Tracking by an optimal sequence of
linear predictors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2009)

Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., Lepetit, V.: Online learning
of patch perspective rectification for efficient object detection. In: Conference on
Computer Vision and Pattern Recognition, Anchorage, Alaska (2008)
Hinterstoisser, S., Kutter, O., Navab, N., Fua, P., Lepetit, V.: Real-time learning
of accurate patch rectification. (2009)

Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant orientation
templates for real-time detection of texture-less objects. (2010)

Holzer, S., Hinterstoisser, S., Ilic, S., Navab, N.: Distance transform templates for
object detection and pose estimation. (2009)

Ozuysal, M., Fua, P., Lepetit, V.: Fast Keypoint Recognition in Ten Lines of
Code. In: Conference on Computer Vision and Pattern Recognition, Minneapolis,
MI, USA (2007)

Dame, A., Marchand, E.: Accurate real-time tracking using mutual information. In:
Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International Symposium
on. (2010) 47 —56

Richa, R., Sznitman, R., Taylor, R., Hager, G.: Visual tracking using the sum of
conditional variance. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on. (2011) 2953 —2958

GraBl, C., Zinfler, T., Niemann, H.: Ilumination insensitive template matching
with hyperplanes. In: Proceedings of Pattern recognition: 25th DAGM Symposium,
Magdeburg, Germany (2003)

CHAPTER C: EFFICIENT LEARNING OF LINEAR PREDICTORS
USING DIMENSIONALITY REDUCTION

76

APPENDIX
D

MULTI-LAYER ADAPTIVE LINEAR PREDICTORS
FOR REAL-TIME TRACKING

©2013 IEEE. Reprinted, with permission, from Stefan Holzer, Slobodan Ilic, and Nassir
Navab, Multi-Layer Adaptive Linear Predictors for Real-Time Tracking, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Jan 2013.

Own contributions. My contributions to this work include the core idea, the desig,n
and the implementation of the methods for adapting Linear Predictors online, the handling
of occlusions, as well as the evaluation of those. The core idea of the paper was refined
in collaboration with the other co-authors. All co-authors were involved in the writing of
the paper.

7

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Multi-Layer Adaptive Linear Predictors for
Real-Time Tracking

Stefan Holzer, Student Member, IEEE, Slobodan llic, Member, IEEE, and Nassir Navab, Member, IEEE

Abstract—Enlarging or reducing the template size by adding new parts, or removing parts of the template according to their suitability
for tracking requires the ability to deal with the variation of the template size. For instance, real-time template tracking using linear
predictors, although fast and reliable, requires using templates of a fixed size and does not allow on-line modification of the predictor.
To solve this problem we propose the Adaptive Linear Predictors (ALPs), which enable fast online modifications of pre-learned linear
predictors. Instead of applying a full matrix inversion for every modification of the template shape, as standard approaches to learning
linear predictors do, we just perform a fast update of this inverse. This allows us to learn the ALPs in a much shorter time than standard
learning approaches, while performing equally well. Additionally, we propose a multi-layer approach to detect occlusions and use ALPs
to effectively handle them. This allows us to track large templates and modify them according to the present occlusions.

We performed exhaustive evaluation of our approach and compared it to standard linear predictors and other state of the art

approaches.

Index Terms—Template tracking, linear predictors.

1 INTRODUCTION

Template tracking has been studied extensively and used
in many computer vision applications such as vision-
based control, human-computer interfaces, surveillance,
medical imaging and reconstruction.

While there are many template tracking approaches
based on the analytical derivation of the Jacobian [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], learning-based
methods [11], [12], [13], [14], [15], [16], [17] have proved
to be faster and generally more robust with respect to
large perspective changes.

A very successful learning-based template tracker was
proposed by Jurie and Dhome [11]. It is based on
the learning of linear predictor to efficiently compute
template parameter updates. The costly off-line learning
phase, however, prohibits this method from computing
templates of varying sizes online.

Yet, the ability to dynamically change the template
size is necessary in many applications. In indoor SLAM,
e.g., the 3D geometry of the scene is a priori unknown
making it necessary to initially rely on planar structures.
In this case it is preferable to start from small-sized
templates, in order to reduce the risk of loosing track
due to non-planar structures, and to grow or shrink them
online. Thus, the learning of large templates can be dis-
tributed over multiple frames, while keeping the failure
rate low. In combination with a planarity check this strat-
egy enables online segmentation of planar structures and
the reliable maintenance of large templates. As a result,

e S. Holzer, S. llic and N. Navab are with the Department of Computer
Science, Technical University of Munich (TUM), Boltzmannstrasse 3,
85748 Garching, Germany.

E-mail: {holzers,slobodan.ilic,navab}@in.tum.de

Fig. 1. (a) A smallinitial template is (b) enlarged according
to a tracking quality measure. The template is tracked
over time and (c) reduced if parts of it go out of sight. The
removed parts are reinserted (d) as soon as they become
visible again.

the set of initially tracked templates evolves towards a
relatively small number of comparably large, optimally
shaped templates, yielding increased robustness.
Current learning-based tracking approaches, like [11],
use templates of a fixed size, because the computation
of the linear predictors requires the costly inversion of a
large, template-specific matrix. Since this is the compu-
tationally most expensive part of the learning process,
the effort for changing the template size is nearly equiv-
alent to that of learning a new template from scratch.
Hence, to overcome the limitations of fixed size template
approaches, while maintaining their robustness to large

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

perspective changes, we propose an extension to linear
predictors which allows efficient online modification of
the template size. Instead of computing the inversion of
the whole matrix every time the template shape changes,
we present a computationally efficient way of updating
the inverse which dramatically reduces the time needed
for learning. We start with a small initial template and
enlarge it by small extension templates, as shown in
Fig. 4, according to their suitability for tracking. As long
as the object to track is planar, our approach can expand
the template in any direction, resulting in an arbitrarily
shaped template, as shown in Fig. 1. This breaks the
standard, rectangular shape assumption widely used in
current template tracking approaches and can be seen as
a first step towards a dense SLAM system.

Moreover, the ability to shrink and grow templates
also enables us to handle occlusions. This, however,
requires to detect occlusions in the first place, since it
is usually barely possible to distuinguish between errors
caused by occlusions and those caused by motions. We
use an occlusion detection technique based on multi-
ple layers of differently sized templates. In contrast to
previous approaches [12], [17] which track all templates
simultaneously, we track them sequentially. This means
that the results of the tracking at higher layers are used
to initialize the tracking of smaller templates at lower
layers. If due to occlusion tracking at some layer fails,
the smaller templates at the next lower layer are used
for tracking. The tracking failure of some templates at
the lowest layer indicates occlusion and corresponding
regions are removed from the largest template of the top
layer. This allows us to benefit from the stable tracking
of a large template while using smaller templates for
occlusion detection, which guide the change of the shape
of the large template.

To further maximize the robustness of the template
tracking with respect to large motion in case of occlu-
sions, we introduce the concept of observed and insecure
regions. These regions are used to detect incoming occlu-
sions before they influence the tracking process. Finally,
to achieve high tracking robustness we track a number
of large, shifted templates at the top layer in parallel
fashion.

We perform extensive quantitative evaluations and
compare our approach to the standard approach of
Jurie and Dhome [11] under different transformations
and noise levels and with other state-of-the-art tem-
plate tracking approaches [10], [17]. We demonstrate
that our approach performs better or equally well with
respect to the related approaches, while requiring much
shorter learning times when templates are extended
and shrinked. In case of occlusions, where we explicitly
detect and handle them, it is superior to the other related
works. In the remainder of the paper we will discuss
related work on template tracking, give a detailed de-
scription of our approach on template extension and re-
duction, introduce our approach for occlusion detection,
present our results and show examples on real world

sequences.

2 RELATED WORK

Since the seminal work of Lucas and Kanade [1], many
efforts have been made in the field of template tracking
and image alignment. Most of the presented approaches
can be put into one of two categories: template tracking
based on the analytical derivation of the Jacobian [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10] or based on learning
[11], [12], [13], [14], [15], [16], [17]. While analytical ap-
proaches are generally more flexible regarding template
shape modifications at run-time, learning approaches
enable higher tracking speed and are more robust in
terms of large perspective changes.

A large variety of analytical tracking approaches have
been presented since the work of Lucas and Kanade [1].
Amongst others, the variations in the presented analyt-
ical tracking approaches include different update rules
of the warp [1], [3], [4], [2], [5], [6], different orders of
approximations of the error function [8], [9], [10], occlu-
sion [3], [12], [16], [17], [18], [19] and illumination change
handling [3]. Basically, there are four different types of
update rules, the additive approach [1], the composi-
tional approach [2], the inverse additive approach [3],
[4], and the inverse compositional approach [5], [6]. In
the latter two, the roles of the reference and current
image are switched, which allows to do some of the
computations during an initialization phase, making the
tracking computationally very efficient. Faster conver-
gence rate can additionally be obtained by using a
second-order instead of a first order approximation of
the error function [8], [9], [10]. Furthermore, Hager
and Belhumeur [3] showed how illumination changes
and occlusions can be efficiently handled using iterativly
reweighted least squares for occlusion handling. The
weights are determined using a robust error function
treating large image intensity differences as occlusions.
Baker et. al [18] describe how such robust error functions
can be incorporated into the inverse compositional tem-
plate tracking framework. However, since large motion
as well as occlusions generally result in large image
intensity differences it is hardly possible to distinguish
between them. For a more detailed overview of analyti-
cal tracking methods refer to Baker and Matthews [7].

In contrast to analytical tracking methods, Jurie and
Dhome [11] proposed an approach for the learning of
linear predictor using randomly warped samples of the
initial template. The linear predictors are then used to
predict the parameter updates during tracking. This al-
lows very fast tracking, since the “Jacobians” are initially
computed once and for all and the parameter updates
can be obtained by simple matrix vector multiplications.
In [12] the authors also extend the approach in order to
handle occlusion. This extension uses multiple layers of
differently sized trackers, which are applied in parallel
fashion. All available trackers then vote for their result-
ing pose change and the final pose change is found by it-
eratively subdividing the space of possible pose changes

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Fig. 2. Shows the tracking and adaption of a template according to present occlusions.

and selecting the N best sub-spaces. This is repeated
until the resulting sub-spaces are sufficiently small so
that they can be considered as a single pose change.
However, as soon as occlusion occurs and tracking the
largest template fails the robustness of the tracking is
reduced. Grafil et al. [20] show how the robustness of the
linear-predictor based approach can be further increased
with regard to illumination changes. In [13] they also
present an intelligent way of selecting the points for sam-
pling the image data, in order to increase the tracking ac-
curacy. Another linear predictor approach [17] describes
templates consisting of many small templates and tracks
these small templates independently. The approach uses
one layer of small-sized trackers, which allows for the
computation of independent pose updates. A common
pose is computed using RANSAC, which makes the
approach robust against occlusions. However, due to the
small size of the trackers this approach is less robust
against large motion. Instead of using linear predictors,
Mayol and Murray [16] present an approach that fits the
sampling region to pre-trained samples using general
regression. In order to increase the robustness against
occlusions they use two filters. The first filter uses a
weighted scheme in order to define whether the current
scene fits the training samples or not. In case that it does
not fit, it is considered as an occlusion. The second filter
prohibits using the updated parameters from one itera-
tion, if the obtained image value error increases. In both
cases, the parameters from the previous frame iteration
are kept. Therefore, this only works if the tracked object
does not significantly move while occlusion is present.
Patras and Hancock [19] use a particle filter approach
that samples multiple observations and estimates the
relevance of each of these observations. For each of the
observations considered relevant they then use Bayesian
Mixtures of Experts to compute a probabilistic prediction
of the new pose. In that way, observations which include
occlusions are avoided.

All of the proposed learning approaches, do not deal
with templates of variable sizes. To overcome this limita-
tion we developed a method that extends the approach
of Jurie and Dhome [11] to allow online template size
adaptation. We also propose a multi-layer approach
for occlusion detection which, by contrast to other ap-
proaches based on linear predictors, is stable and precise.
This is achieved by using relatively large templates for

template

sample point

subset

Q@ OO0 O0OO0OO0OO0O0
Q@ OO0 O0OO0OO0OO0O0

(s, P7) (Pa, Ps)

Fig. 3. A template is represented by a set of regularly
placed sample points, which are grouped into subsets of
four points. The pose of a template is parameterized using
four corner points.

tracking, compared to other approaches which rely on
tracking multiple small templates. Tracking small-sized
templates is sensitive to large motion and such motion
can be confused with occlusions. We benefit from the in-
creased robustness against large motion and successfully
handle detected occlusions by employing the proposed
method for fast on-line adaption of the template size.

3 BACKGROUND AND TERMINOLOGY

In this section we introduce our notation and, for the
sake of completeness, review the original template track-
ing approach proposed by Jurie and Dhome [11].

3.1 Template and Parameter Description

A template consists of a set of n, sample points, which
are distributed over the template region and are used to
sample image data. The template parameters p describe
the current deformation of the template within an image.
Within this paper we use a homography to represent the
current perspective distortion of a planar template and
parameterize it using four points as shown in Fig. 3.
Note that our approach can also be easily adapted to
any other parameterizable template deformation.

The sample points are arranged in a regular grid and
grouped together into subsets of four points as shown in
Fig. 3. The usefulness of this grouping will be justified
later in Section 4.1, when we describe our approach for
template extension. However, neither the approach of

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Jurie and Dhome [11] nor our approach are restricted
to this special kind of sample point arrangement. The
image values obtained from the sample points, warped
according to the current template parameters p, are
arranged in a vector i = (il, 12, .. - ,inp)T

3.2 Template Tracking based on Linear Predictors

The goal of template tracking is to follow a reference
template, defined by a vector ip of reference image val-
ues and an initial parameter vector puy, over a sequence
of images. The basic approach for this is to compute
a vector 6i = ic — ip of image differences, where the
vector ic stores the image values extracted from the
current image. This vector is then used to estimate a
vector of parameter differences dp used to update the
current template parameters p so that the position of
the template within the current image is optimized.

Instead of explicitly minimizing an error function, e.g.
by iteratively solving a first- or second-order approxima-
tion of it, Jurie and Dhome [11] use a learned matrix A
to compute du based on the vector di as:

Sy = Adi. Q)

Here, the matrix A can be seen as a linear predictor. In
order to learn A, we apply a set of n; random transfor-
mations to the initial template. This is done by applying
small disturbances dp;, i =1, ..., ny, to the reference pa-
rameter vector pp. Then, each of these transformations
is used to warp the sample points in order to obtain
the corresponding vectors i; of image values. The image
value vector ir, obtained using the reference parameters
Br, is used to compute the image difference vectors
0i; = i; — i for each of the random transformations.
These vectors of parameters and image differences are
combined in the matrices Y = (6py,0py,...,0p,,) and
H = (diy, diz, . .., 0ip,). In general, n; is chosen so that it
is much bigger than n,. Using these matrices Eq. 1 can
be written as Y = AH. Finally, the matrix A is learned
by minimizing;:
g 9
arg min ; (Opy, — Adiy) 2

which results in the closed-form solution:

A = YH” (HHT) - 3)

In practice, we normalize the extracted image data with
zero mean and unit standard deviation, which increases
the robustness against illumination changes. In order
to prevent HH” from being rank deficient, we add
random noise to the obtained image value difference vec-
tors. Additionally, we apply a multi-predictor approach,
where multiple levels of linear predictors Ay, ..., A, are
learned for one template, with n; being the number of
predictors per template. Thereby, the first linear predic-
tor A; is learned for large motions and the following
predictors are learned for subsequently smaller motions.

extension

extension area templates

Ay

3
o/g Ae

A

[¢]
O OjJ0 OO0 OOQJ0OO
O OJ0 OO0 00O

ol
feglooooooloo

OO0OO0O0O0O0O0O0O0OO0
OO0O0000O0O0O0
O OjJ0 OO0 O0O0|O0O0
O OO0 OO0 00|00
O 0|00 0 0000 O0
OO0OO0O000O0O0

O O 0 0 0 0OTe-Q

initial template

(a) (b)

Fig. 4. (a) The initial template together with possible ex-
tension templates defined by the corresponding extension
area. (b) Different template areas and their correspond-
ing linear predictors. The red border defines the initial
template with its predictor A;, the light green border
defines an extension template with its predictor Ax and
the blue border defines the new extended template with
its predictor Ay.

During tracking we sequentially apply the linear pre-
dictors. Additionally, every predictor is iteratively used
n; times. Within this paper we use five different levels
of predictors per template and three iterations for each
of the predictors. Alg. 1 formalizes the applied tracking
approach.

Algorithm 1 Tracking without Occlusion Handling

function Track (in Image I,
in/out TemplateParameters p)
Compute homography T,, from .
for level =1 — n; do
for iteration = 1 — n; do
Extract image data from I at sample points
warped with T,,.
Normalize image data.
Compute image difference vector Ji.
Compute parameter update dp = Ajeperdi.
Compute homography T;,, from dp.
Ty, < TpuTs,.
end for
end for
Compute p from T,,.

4 TEMPLATE ADAPTION

In this section we describe our approach for adapting the
template by extending or reducing its size. This enables
us to start tracking with a small-sized template and grow
or shrink it over time, automatically adapting its size and
corresponding linear predictor according to the tracked
scene.

41

In the following we denote the linear predictor of an
initial template with A;, and the linear predictor of an

Template Extension

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

extension template with A as depicted in Fig. 4. Using
the standard approach of Sec. 3.2, the separate predictors
would be learned as:

-1
A, = YHT (H,H?) and @)

~1
Ap = YH} (HgHE))
where Y stores the same random transformations for
both linear predictors. The standard approach for learn-
ing a combined predictor Ay for the entire template
leads to:

Ay = YHY (HNHJTV)_1 ©)
T T\ ~!
A AN
B o, 17 /[1T HHE]\
“ln) (g we]) o

Now, instead of directly updating the old linear predictor
—1
H IH? using

the formulas presented by Henderson and Searle [21],

A; we will update the matrix S; = (

—1
so that we obtain the matrix Sy = (H NH%) . Let Sq1,
Si2, S21 and Ssy be the four sub-matrices of Sy:

Si1 Si HHT HHL]\
Sy = S S = T T)]
21 22 HgH; HgHp
Then, we can update S; to Sy using
S = (HH)™!
+ (HH]) 'H;HLS»HHT (HHY)"T (10)
S = —(H/H]) 'H/HS:, (11)
Sai = Si,, (12)
—1
S» = (HgHf—HgH] (H/H])'H/HE) (13)

where (H;H;)™! is known from the learning of the
initial predictor. Therefore, the only inversion that has
to be applied is for the computation of Syy. However,
this inversion is not a problem since the extension
templates are always of a smaller size than the entire
extended template and therefore Sgo is small as well.
In case the template is already known before run-time,
i.e. if template extension and reduction is only used to
handle occlusions, the necessary inversions can even be
precomputed in order to further speed up processing. In
practice, we use templates for extension and reduction
which consist of 4 sample points.

Note that for the computation of the image value
differences Hr we have to use the same random trans-
formations as used for computing H;. The same holds
for Hy in case of template reduction (see Section 4.2).

The approach as presented up to now is limited by the
number of random transformations n;, used for learning.
Since n; has to be the same for all extension templates
as well as for the initial template, and since the number
of random transformations has to be greater or at least

equal to the number of used sample points, n; > n,, the
maximum number of random transformations has to be
known a priori. In order to remove this restriction we
use the approach presented by Hinterstoisser et al. [22],
which allows us to update the matrix S; in such a way
that we can increase the number of random transfor-
mations n; without having to recompute the updated
S; from scratch. This is done by using the Sherman-
Morrison formula:

S, = (s;1+6im+16i£t+1)7
S10in, 1101}, 1St

1+ 061 1 Sroin, 41

(14)

= S (15)
where §i,, 11 is a vector of image value differences
obtained from a new random transformation applied to
the sample points. In practice, the number of random
transformations is increased each time before a new
extension template is added, such that n; = 3n,,.

4.2 Template Reduction

In the case when already learned templates have to be
reduced, e.g. due to the presence of non-planarity or
tracking failure, the corresponding linear predictors can
be computed by updating the linear predictor of the
larger template. For this, we denote the linear predictor
of the large template with Ay, the predictor of the new
reduction template with Ar and the predictor of the
reduced template with Ay.

In order to reduce the matrix Sy, it has to be re-
arranged first, so that the data corresponding to the
reduction template is positioned in the last rows and
columns of Sy,. After the rearrangement, the reduction
template can be removed using the following approach.
First, let us consider the submatrices of the matrix Sy

-1
s, — | Sn _ ([HyHy HyHp (16)
S HzHY, HzHE ’

Si2
Soo

where all the sub-matrices Si1, Si2, S21, S22, HNH]T\,,

HyH}, HRH} and HzHY, are available from the large
template. The goal is to compute

-1

Ay = YH}, (HyHY) (17)

without the need of inverting HNHE, since this is a
large matrix in general. Similar to the Equations 10-13
Henderson and Searle [21] also present the formula

-1

S, = (HNHﬁ — HNHﬂ(HRHﬂ)*lHRH?\}) . (18)
which can be reformulated as

HyHY =S + HyHEL(HRHE) 'HRzHY. (19)

Taking the inverse leads to the desired result:

-1
(HyHE) ™ = (S5 + HyHE(HeHE) 'HRHY)
(20)

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Since we, however, have to invert a big matrix in this
case, namely S;;, this is not suitable for online computa-
tion. Therefore, we use the following formula presented
in [21]:

X+uyu)!
7 =

X' —xtuzutx!,
-1
(Y‘l n UTX_lU) .

2D
(22)

By setting X = S}, Y = (HgHE) ! and U = HyHE we
obtain our desired result:

(HyHY) ' =

D =

Si1 — S HyHLDHRHL S, (23)

-1
(HRHE +H RHTI\}SHHNHE) (4)

Now the necessary inversion is no longer a problem
since the reduction template is chosen to be of small size
and computing D is not expensive.

4.3 Practical Issues

In this section we discuss practical issues. These are the
normalization of the image data and the estimation of
the subset quality, which is used for the selection of the
next extension template.

4.3.1 Normalization

As mentioned before, the image values are normalized
to zero mean and unit standard deviation. However,
instead of doing this globally by considering all of the
image values of the template we apply a local normal-
ization, where each subset is normalized by considering
only its image values and the image values of its direct
local neighboring subsets. This normalization is applied
to the reference data, the learning data and the current
image data during tracking. The local normalization is
superior to the global normalization since in the case of
the global normalization the mean and standard devia-
tion of the whole image data change, if new parts are
added to the template or some parts are removed.

4.3.2 Suitability Criterion for Subset Selection

In order to decide which subset should be chosen for
extending the current template, we compute a quality
measure for each of the potential extension templates in
the local neighborhood of the current template. This is
done by learning a local predictor As = YsHg (HgHE) !
for this subset at first, where the image data Hg is
collected using the set of random transformations rep-
resented by Y. Then, using this predictor together with
the collected image data we compute a prediction Yg of
Y as

Ys = AgHs. (25)

Finally, we compute a similarity measurement, which
defines the quality ¢g of the corresponding subset as
IR A
=y (26)
e Vsillyil

where y, and y_, are the i-th column vector of Y and
Ys respectively. This measures the similarity of the pre-
diction and the data used for learning by computing
the mean angle between the corresponding parameter
vectors. This way an extension template is chosen which
ensures best that each tracking iteration brings the tem-
plate parameters closer to the desired result. The current
template will then be extended using the subset with
the highest quality measure. The suitability criterion is
only computed on a subset, which consists of 4 sample
points, and not on the whole resulting template, since
this would be computationally to expensive. In practice,
we use the suitability criterion to select the best sub-
templates within a user-defined area such that we obtain
a template with a certain number of sample points,
which is also defined by the user.

5 OccLUSION-AWARE TRACKING

In order to make template tracking robust against oc-
clusions, we detect occlusions and consider them dur-
ing the computation of the template pose parameters.
Since this computation depends on the image differences
between the current image and the template warped
according to the pose parameters of the previous frame,
the difficulty is to distinguish whether these differences
come from the camera/template motion or from real
occlusions. To distinguish this, we propose a multi-layer
approach where on the top level we use a relatively
large template for tracking and on the lower levels
smaller sized templates are used to detect occlusions.
Tracking a large template is more stable compared to
multiple smaller sized templates, thus we always track
a large template while failures in tracking of small sized
templates indicate presence of occlusions. We use the
technique proposed in Sec. 4 to remove the occluded
parts from the large top level template and add them
back as soon as they are visible again. This allows us
to handle complex situations, such as occlusions passing
over the entire template or moving templates with a hole
as demonstrated in the results section. In the remainder
of this section we discuss the proposed approach. An
overview over the proposed approach is given in Alg. 2.

5.1

Similar to the approach of Jurie and Dhome [12] we
propose to use multiple layers of linear predictor grids,
where the sizes of the templates, which correspond to the
linear predictors, vary over the different layers. Fig. 5(a)
shows such a layered organization. The size of the tem-
plates decreases with the depth of the layer. The template
of the top layer (Layer 1 in Fig. 5(a)) corresponds to the
actual template size. The template is subdivided in the
next level (Layer 2 in Fig. 5(a)) to four equally sized
templates. Every template is further subdivided into four
new templates at the next layer. In practice, we use only
three layers. This is sufficient to handle occlusions. In
contrast to Jurie and Dhome [12] who applied linear

Multi-Layer Approach

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Layer 1

Layer 2

,,,,,,,,,,

,,,,,,,,,,,,,,

(b) (© (d)

Fig. 5. (@) The organization of the multiple layers used for
tracking. The sub-figures (b), (¢) and (d) show different
transformed templates of the top layer used to increase
the robustness against large motion. (b) shows differently
rotated, (c) differently translated and (d) differently scaled
templates.

predictors for each template at the same time, we do it
sequentially. This means that in the first layer, we track a
single large template. The resulting pose is then used as
an initialization for the grid of trackers in the next layer.
This is repeated for all available layers.

Occluded and non-occluded case. During the track-
ing, we can distinguish two possible scenarios. One is
when there are no occlusions present and the other
when occlusions intervene. If there are no occlusions, the
successful tracking result at a higher level is forwarded
to the next lower level. In general, the tracking of small
templates can fail in the case of large motion. That is
where the approach of Jurie and Dhome [12], in which all
the templates at all the layers are tracked simultaneously,
tends to fail. In our approach, the tracking of small
templates at lower levels is preconditioned by the result
of the preceding tracker layer. In the other scenario we
consider that occlusions happen. In this case, depending
on the size of the occluded area, the trackers at higher
levels fail. Those on lower levels are then used to directly
estimate the pose initialized by the resulting pose in the
previous frame. The failure detection is done using a
simple threshold applied on the mean image intensity
differences of the normalized image data. In practice, we
use different thresholds for each layer, for the first layer
we use 0.03 as threshold on the mean image intensity
differences of the normalized image data, 0.08 for the
second layer and 0.15 for the third layer.

5.2 Combining multiple pose estimates.

Since the layers which consist of more than one template
can lead to different pose parameters, an outlier rejection

has to be applied, which removes erroneous results. For
this, we consider the corner points of each template
as single feature points and use RANSAC to robustly
estimate a homography from them. Based on this, we
only consider a template to be successfully tracked if
its corner points are not rejected as outliers after the
homography estimation. The final homography of each
layer is then computed by considering the corner points
of all the successfully tracked templates. In order not to
replace a successful homography of a higher level by a
failed tracking at a lower level, the homography is only
updated if the change is not too big. The homography
computed in the last layer is used for both pose estima-
tion of the top layer template as well as for occlusion
detection.

In order to increase robustness in the case of occlusions
and large motion, we adapt the template size of the
top layer using our approach discussed in the previous
section. However, this has to be done before an occlusion
occurs. Therefore, we introduce the concept of observed
and insecure regions.

5.3 Observed and Insecure Regions
5.3.1

The observed regions are placed within an area around
the top layer template, as shown in Fig. 6, similar to
the extension area in [23]. Here, these regions are used
for early detection of incoming occlusions. In order to
detect occlusions within the observed regions, we add
corresponding trackers to the lower layers so that they
cover these regions as depicted in Fig. 6. Then, these
additional trackers are used together with the other
trackers of the specific layer for multi-layer tracking. Suc-
cessful trackers are considered in the RANSAC-process
described in Sec. 5.1.

Detecting occlusions. After estimating the global pose
using the multi-layer approach, we re-evaluate the image
intensity differences of the lowest-layer templates as well
as of the small subsets of the top layer template using the
corresponding mean image intensity differences. These
errors are then used to decide whether an occlusion
is present or not. In practice, we use a value of 0.2
as threshold on the mean image intensity difference to
decide whether a subset is occluded or not. In order to
reduce the impact of noise we only consider subsets to
be occluded if they are not covered by a successfully
tracked template at one of the layers.

Observed Regions

5.3.2 Insecure Regions

Knowing the positions of present occlusions, we define
insecure regions around these occlusions as shown in
Fig. 6. These insecure regions are considered as having
a high chance of becoming occluded in the next frame.
Therefore, the occlusions as well as the corresponding
insecure regions are removed from the top layer template
using techniques outlined in Sec. 4 as described below.

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

oo oo Observed
OO0 oloo region
Template

[

e i
. .D | .
(I | o
00N OfN&g O

(| |
DOooogog

1
1
ii==— = ———— .

Insecure
region
Occluded
region

Occlusion

Fig. 6. The left figure shows the multi-layered template with its observation region depicted as green area. The
middle figure shows the different layers and their contribution to the observed region from a side-view. The right
figure illustrates insecure regions, which are areas around the detected occlusions.

5.4 Template Adaption

Once the occlusions and their corresponding insecure
regions are detected, the shape of the top level template
Ty and its corresponding linear predictors are adapted.
This means that as soon as a subset of Ty is covered
by an occluded part or a insecure region, it is removed
from Ty. When the occlusion disappears and no longer
covers the previously occluded parts of the template,
they are added back to the template 7j. This enables
us to continuously use a large template for tracking
even in the case of occlusion and therefore, to maintain
robustness against large motion.

5.5 Increased Robustness against Large Motions

To increase the tracking robustness in case of large
motions we introduce multiple transformed versions of
the template at the top layer (see Figures 5(b), (c) and
(d)), which are tracked in parallel. For this, we use
the same linear predictors for each of the transformed
templates. However, since the multi-predictor approach
as stated in Sec. 3.2 would be computationally expensive
in this case we use only the first linear predictor, which
is learned for the largest motions, for the transformed
templates. Then, the parameters of the template that is
best according to the resulting mean image intensity
differences are selected and used to process the best
template only. For this best template we continue with
applying the remaining linear predictors of the multi-
predictor approach.

6 EXPERIMENTAL RESULTS
6.1 Template Adaption

In this section we evaluate the template adaption pro-
posed in Sec. 4 about template adaption. For this pur-
pose, we perform an extensive comparison with several
state-of-the-art approaches on template tracking. This in-
cludes comparisons with the standard learning approach
of Jurie and Dhome [11], the analytical approach of
Benhimane and Malis [10] and a recent approach called
NoSLLip of Zimmermann et al. [17]. The comparisons are
done in terms of tracking precision and computational
efficiency. In the end we show several qualitative results
from real video sequences showing tracking results with
one and several templates. All of the experiments are

Algorithm 2 Tracking with Occlusion Handling

function TrackWithOcclusionHandling (
in Image I, in/out TemplateParameters p)
Compute homography T,, from .
for layer =1 — 3 do
for each template ¢ of this layer do
Compute p; from homography T,,.
Track (I, p;) (see Alg.1).
Compute homography T; from p,.
end for
Combine pose estimates T; to T,y e, (Sec. 5.2)
if Tiqyer is valid (Sec. 5.2) then
Tp, < Tlayer'
end if
end for
Detect occlusions (Sec. 5.3).
Adapt top-layer template (Sec. 5.4).

performed on a 2.66 GHz Intel(R) Core(TM)2 Quad CPU
with 8 GB of RAM, where only one core is used for the
computations.

In all of the experiments the maximum random per-
turbation applied for learning the linear predictors is set
to 21 pixels except for the comparison with NoSLLip,
where we slightly increased the perturbation by 10%
since this sequence contains very large motions.

The probably most important results for this section
are shown in Fig. 10, where we demonstrate that our
ALPs method gives similar tracking results as the ap-
proach proposed by Jurie and Dhome [11].

6.1.1

6.1.1.1 Computational Complexity of Learning:
In Fig. 7 we show computation times for learning the
linear predictors with respect to different template sizes.
We compare our ALPs method, shown in red and blue,
with the standard approach of Jurie and Dhome [11], de-
picted as a green curve in Fig. 7(a). For our approach we
distinguish between two cases. In the first case, shown
as a red curve, the computation of the linear predictor is
done iteratively from scratch. In this case we start with
a small initial template, which size is equal to the size
of an extension template of Fig. 4. Such a small template
is then grown until the specified size is reached. The

Comparison with Jurie-Dhome Approach

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

0.0

7,
v-JD from scratch v [~ AL Ps extension
6{-©-AL Psfrom scratch 005/ AL Psreduction| v
—~*-ALP extension)
@5 @
) 2004
E4 ¥ £ ¥
E’3 gOUS
= o z v
g, §002
4
0.0
i E_x.:;'e/e/e/@ M'/v
[R o o — g
0 100 200 = 300 400 500 600 Q" 100 200 300 400 500 600
template size [sample points] template size [sample points]
(@) (b)

Fig. 7. Comparison of the computation time necessary
for learning a linear predictor using the Jurie-Dhome [11]
(JD) approach (green) and using ALPs (red and blue).
(a) For the latter case we distinguish between learning
the predictor from scratch (red) and adding only one
extension subset (blue) at a time. Learning from scratch
means that we consider the entire time necessary to build
up the template of the specified size. (b) Computation
times for template extension and reduction, when one
extension subset is added at a time. The blue curve
corresponds to the blue curve at (a).

obtained results clearly reveal that the adaptive learning
of the linear predictor, which starts with the small sized
template, is much more efficient than learning a linear
predictor for the fixed size template. This proves that our
approach can also be used for efficiently learning of a lin-
ear predictor for templates of a fixed size, starting from
small templates and adapting their linear predictors until
the desired template size is reached. In the following
experiments for ALPs we always use this procedure
for creating the linear predictors for a template. In the
second case, shown as a blue curve and labeled as
ALP extension, we show the time necessary to add one
extension template. This is a typical case during online
tracking, where the template is grown step by step. As
to be expected, adding the extension template does not
significantly increase computation time, when changing
the template size. In Fig. 7 (b) we show computation
times for the extension and reduction of templates. Note
that the necessary time to grow or reduce the template by
an extension template consisting of four sample points
is around 0.05s for initial templates of sizes around 600
sample points, whereas computation from scratch would
need over 1s using ALPs and more than 6s when using
the approach of Jurie and Dhome [11].

6.1.1.2 Robustness: To evaluate the robustness of
our approach, we compare the tracking success rate
of our approach with that of the standard approach
proposed by Jurie and Dhome [11] for different template
sizes and with respect to changes in translation (Fig. 10
(a)), in-plane rotation (Fig. 10 (b)), viewing angle (Fig. 10
(c)), and scale (Fig. 10 (d)). In addition we compare ALPs
to Jurie and Dhome in respect to noise and different
number of random transformations used for learning.
The results are shown in Fig. 9. The robustness is mea-
sured using the tracking success rate. The accuracy is
measured using the maximum mean template corner er-
ror. That is, after each tracking experiment the resulting

POEs e
& R

A [-9-ALPs 10px
| ALPs 20px
+ AL Ps 30px
. |~<+ALPs 40px
/ /| -% ALPs 50px|
/" |-v-ESM 10px
-%-ESM 20px
Z-# |-+-ESM 30px
| <-ESM 40px
* |-*-ESM 50px
600

(a) (b)
Fig. 8. Comparison of the success rates with respect to
different displacements and template sizes. (a) Perfor-
mance of ESM vs. ALPs. (b) Performance of ESM for
further displacements.

successrate [%]
successrate [%]

Rt s S Sl s IR DA0CS = S o
| ¥ B e il b) [¥ T
80y A 4+ |'9-ALPs5% 807y / 3+ [ALPs5%
S g AN ;__4_ % ALPs12.5% < g 4/ 4w ALPs125%
S el [F¥ e +ALPs20% Tl F 4 +ALPs20%
01/ Fg <-ALPs27.5% 8 1) et El<aLps2zsn

4/aq SHF % ALPsIN Mad, v | ALPsIwn

g a0 JFT -9-JD 5% 2 L AR |7 ID5%
3 AR a eI 1R25% 3 e * -#-JD 125%

zog*' ¥ -+-JD 20% 2014¥ -+-JD 20%
~4-JD 27.5% « ~4-JD 27.5%

-#-JD 35% -+-JD 35%

0 100 200 300 400 500 600
template size [sample points]

lqoemplélog si zeﬁosgm prtleogow mgiw

(a) (b)
Fig. 9. Comparison of the success rates of ALPs and
linear predictors of Jurie and Dhome(JD) with respect to
different levels of noise and different template sizes. (a)
Success rates of ALPs using 1000 random warpings and

(b) using 2000 random warpings.

template position is warped onto the original frame and
the corner with the highest error is selected and used
to compute the mean error. A template is considered
as successfully tracked, if the maximum corner error is
below 5 pixels.

For all of the experiments, we use synthetic im-
ages, corrupted by noise and warped according to
the specific experiments. Noise is added according to
I.(x) = I(x) + ¢ with € € [~alrange/100, aIrange/100],
and a = 5 for all experiments. An exception is the noise
experiment, where different levels of noise were applied.
Liange specifies the possible range of image values, e.g.
Liange = 255 holds for image values between 0 and 255.
In all of the experiments we also add a random displace-
ment in the range of [—5, 5] pixels, with the exception of
displacement experiments, and a random change in the
view-point angle ranging between [—5°,5°], again with
the exception of the view-point angle experiments.

The results show that both approaches, the standard
Jurie-Dhome approach as well as ALPs, yield similar
success rates. The only exception is the sensitivity to
noise, where the Jurie-Dhome approach performs bet-
ter than ALPs. This performance difference, however,
can be reduced by increasing the number of random
warpings used for the learning of linear predictors, as
demonstrated in Fig. 9 (b).

6.1.2 Comparison with ESM

To demonstrate the usefulness of learning-based ap-
proaches, we compare our approach with the analytical

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

1009V g ¥ * %% ¥ o 100 4% gt g4 g% 4
i F ',G . % P 4-—3--—3 <4
7 pa [

80r | ,:3 v-ALPs 10px _ 8ot 4 ALPs 5°

s |1$ 7 - AL Ps 20px S +ALPs 157

Sl |/ 4 + ALPs 30px 2 oo | P | <-ALPs 25

A Y / <AL Ps 40px| i Pt M4 ALPs 359
| +*- AL Ps 50px| a N’ ©-ALPs 45¢]

é T |70 100 8 40€;;~1 i P

3 | &/ / A |#-0D 20px ER - ~+-JD 15°

ol /A ~+-JD 30px W o Ve <-JD 25°
[/ 4-JD 40px 3g° o 4-%-JD 35°
L -#-JD 50px oL Exg./crermw’

100 200 300 400 500 0 100 200 300 400 500 600
template size [sample points] template size [sample points]
(a) (b)

100 4H G 100 o
Jerrree LT
90 PO S i
= | % ALPs 107 oy v-ALPs0.9
(S + ALPs 20° o ¥ % ALPs08|
s |/ <+ALPs 30° S el / +ALPs0.7]
< 70T o-0=g-0--§*ALPs 40° B <+ALPs0.6|
2 60“:‘ o © ALPs 50°) 4 / &---- <]*ALPs05
s 1/ 4-JD 10° § o4 |- 09
2 509 ~+-JD 20° 2 g -#-JD 0.8
* ~4-JD 30° 200 / < ~+-JD0.7
a0/ -*-JD 40° 4 <-JD 06
| -0-JD 50° e - |*JDO5
306 o= oy -
0 100 200 300 400 500 600 0 50 100 150 200 250 300
template size [sample points] template size [sample points]
(© (d)

Fig. 10. Comparison of the success rate of ALPs and JD linear predictors with respect to changes in translation (a), in-
plane rotation (b), viewing angle (c), and scale (d). In all four cases the results of both approaches are approximately

equal.
Method Frame-rate | Loss-of-locks | Error
[fps] [-/-] [%]
NoSLLiP | 16.8 20/1799 1.8
ALPs 96.7 10/2299 1.2
TABLE 1

Comparison between the tracking results of NoSLLiP
(Matlab implementation) given in [17] and results
obtained using ALPs (C++ implementation) using the
PHONE sequence.

method called ESM of Benhimane and Malis [10]. This
approach minimizes the energy function using a second
order approximation. In Fig. 8 we compare the success
rate of the ESM tracking to that of ALPs regarding differ-
ent magnitudes of displacements and different template
sizes. Our learning-based approach clearly outperforms
ESM, especially for larger template sizes.

6.1.3 Comparison with NoSLLiP

We also compare ALPs to the approach of Zimmermann
et al. [17] using the PHONE sequence provided by the
authors. Example images of the tracking are shown in
Fig. 11. The comparison between the tracking results
of [17] and those obtained using ALPs are shown in
Table 1. Although the number of provided images is
larger than the number of images used by Zimmermann
et al. [17], we still obtain a better loss-of-locks count. The
given error values are relative to the upper edge of the
template. A frame is counted as loss-of-lock if one of the
template corners has an error larger than 25%. Note that
the template is reduced, when it partially goes out of
sight and enlarged again as it becomes visible again (see
Fig. 11).

6.1.4 Usefulness of larger templates

As shown in Figures 8, 9 and 10, the success rates in-
crease with increasing template sizes. The only exception
are changes in the in-plane rotation angle, where the
success rate reaches a maximum for templates with a
size of approximately 100 to 200 sample points.

6.1.5 Qualitative Evaluation

In Fig. 1, 11 and 12 we show different image sequences,
which demonstrate the processing of the proposed ap-
proach. In Fig. 1 and 12 we start with templates of
size 10 by 10 sample points and iteratively grow them

by adding the neighboring extension template with the
highest quality. In Fig. 12 we demonstrate the use of
multiple templates. In Figures 1 and 11 we track the
templates, reduce them if they partially go out of sight
and grow them back to the original size when their
hidden parts become visible again.

6.2 Occlusion-Aware Tracking

In this section we compare our occlusion-aware track-
ing presented in Sec. 5 with different state-of-the-art
linear predictor based tracking approaches in terms of
robustness and accuracy with respect to different types
of motion using ground truth data. This is done both in
the case of the presence of occlusions and without them.
Additionally, we show several qualitative results from
real video sequences. All of the experiments are again
performed on a 2.26GHz Intel(R) Core(TM)2 Quad CPU
with 4 GB of RAM, where only one core is used for the
computation.

The robustness is again measured using tracking suc-
cess rate and accuracy is computed using the maxi-
mum mean template corner error as explained in Sub-
sec. 6.1.1.2 on robustness. For all ground truth exper-
iments, we again use synthetic images, corrupted by
noise and warped according to the specific experiments
as already described in Subsec. 6.1.1.2. In this case the
size of the templates used for all ground truth experi-
ments is 16 x 16 sample points. The tracking speed for
such a template is approximately 45 frames per second.

The probably most important results for this section
are shown in Fig. 15, where we demonstrate that our
multi-layered approach gives better tracking results in
presence of occlusion compared to the approach of Jurie
and Dhome [12].

6.2.1 Experiments without Occlusion

In Fig. 13 we compare our multi-layered ALP approach
of Sec. 5 with the ALP approach proposed in Sec. 4.
For the ML-ALPs approach we distinguish between the
one as described in Sec. 5 (‘Robustified ML-ALPs’) and
the one without the use of the transformed versions of
the top layer template as described in Sec. 5.1 ('ML-
ALPs’). The results show that in most cases both versions
perform better than ALPs. Only the accuracy of ALPs is
sometimes better in case of large motion.

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Tae i\

Fig. 11. Result images of the phone sequence, which is provided by Zimmermann et al. [17]. Note that the template

is reduced if it goes out of the image and grown again if it once again becomes visible.

Fig. 12. lterative growing of two independent templates.

A © ﬁ\\ I 99999 % N v\\ © 4 I—e—=e \g\—o
’_0.9 \ N _o08 _og _og
S S S S
o8 5 \ s \ 5 N
| K 0.6 1 ® 0.6 & 0.8
207 2 2 @
8 go4 g04 o7
209 2 7 s 7
v ML-ALPs \ 03 v ML-ALPs 0.2/ 7 ML-ALPs 0.6]V- ML-ALPs
0.51-e-Robustified ML-ALPs \ -©-Robustified ML-ALPs -©-Robustified ML-ALPs -©-Robustified ML-ALPs \t
o - ALPs i % ALPs “#ALPs o % ALPs
‘o 10 20 30 40 50 60 gO 100 150 200 0 10 20 30 40 50 60) 20 40 60 80
viewing angle [] scale [%] rotation angle [°] displacement [pixel]
1.4 2.5 1 0.5
5 |[vML-ALPs 3 v ML-ALPs 3 3
il.z iiﬁgustified ML-ALPs 1 i ZV -6-Robustified ML-ALPs EO q v ﬁ
@ ﬂ) @ @
508 J 5L 5 08 5 -v-ML-ALPs
£ ¥ £ s £03 Robustified ML-ALPs
S 0.6 o =) 9 o —=ALPs
god £ £ €02
c c < 0.2 -V-ML-ALPs c
§0.2 3 SR -o-Robustified ML-ALPs| & g’_‘;’__g:z:ﬂj
£ £ £ -#-ALPs £
I
O0 10 20 30 40 50 60 gO 100 150 200 0 10 20 30 40 50 60 o'b 20 40 60 80
viewing angle [°] scale [%)] rotation angle [°] displacement [pixel]

Fig. 13. Results of the comparison between the ML ALPs

approach and the ALPs approach with respect to different

types of motion without occlusion. The first row shows the tracking success rate and the second row the corresponding

mean maximum corner errors.

In Fig. 14 we compare ML-ALPs ('ML-ALPs’) with the
approach of Jurie and Dhome ('ML-JD’) [12]. To evaluate
our method we do not use the transformed versions
of the top layer template as described in Sec. 5.1 in
order to present a fair comparison with the multi-layered
approach of Jurie and Dhome [12]. The results show
that our approach performs better than the one of Jurie
and Dhome [12] with respect to robustness as well as
accuracy.

6.2.2 Experiments with Occlusion

In Fig. 15 we compare our ML ALPs approach with the
one of Jurie and Dhome ("ML-JD’) [12] in the presence of
occlusions. Again, we do not use multiple transformed
versions of the top layer template for the sake of fair
comparison. The results show that our approach per-
forms better than the approach of Jurie and Dhome [12]
with respect to robustness as well as accuracy. The only

exception is the view-point angle experiment, where
ML-JD gives better accuracy for large occlusion and
better robustness for large occlusion and small motion.
Note also that the results of the approach of Jurie and
Dhome [12] with respect to changes in the view point
angle are stable for varying amounts of occlusion.

6.2.3 NoSLLiP with Occlusion

In this section we compare ML-ALPs to the approach of
Zimmermann ef al. [17] using the MOUSEPAD sequence,
which contains occlusion and is provided by the authors.
Example images of the tracking are shown in Fig. 16.
The comparison between the tracking results of [17] and
those obtained using ML-ALPs are shown in Table 2. The
given error values are relative to the upper edge of the
template. A frame is counted as loss-of-lock if one of the
template corners has an error larger than 25%.

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

1 VIV] V— 1 [A A - e a—
vV V.
0.8 0.8 0.8 1 v
g g |y g £04
Q Q Q Q
= 0.6 < 0.6 1 =06 v =
g ¢ v ML-ALPs| £ g4
3 Y 3 ~~ML-JD 2 a0
80.4 1§04 1 804 8
3 sy 5] 5]
3 3 > A4 5
n " n n 0.4
0.2 0.2 0.2 :
V-ML-ALPs V-ML-ALPs V-ML-ALPs
o ~+ML-JD o —+ML-JD o —+ML-JD
0 10 20 30 40 50 60 0 100 150 200 0 10 20 30 40 50 60 0 20 40 60 80
viewing angle [°] scale [%] rotation angle [°] displacement [pixel]

3 5 3 25
3 v ML-ALPs 3 5 v ML-ALPs|| =
& 28/ ~+ML-ID §4 225 ~+ML-JD 3) S
8 8 8 8
S = S £
€15 c V-ML-ALPs €15 c V-ML-ALPs
g™ S X —+ML-JD | 8 S 1 —+ML-JD
3 1 1 8 3 1 L B
E y Elx £ €
c - v] c 1 = 0.5
§0.5 v g W i g 05 7 v v v v k54
E yv—v 7V 3 v v vV E v E vV vV vV V

0 i " v A 0

0 10 20 30 40 50 60 %O 100 150 200 0 10 20 30 40 50 60 0 20 40 60 80

viewing angle [] scale [%)] rotation angle [°] displacement [pixel]

Fig. 14. Results of the comparison between the ML ALPs approach and the ML approach of Jurie and Dhome [12] with
respect to different types of motion without occlusion. The first row shows the tracking success rate and the second

row the corresponding mean maximum corner errors.

@ 1 2 14—y
« # < % ML-ALPS 10% occl.
4 o g <4~ ML-ALPs 30% occl.

0.8 08 o 08 Q ©-ML-ALPs 50% occl. 0.8

= = = ~%-ML-JD 10% occl. =

2 S S S

s = s . o % q s ~<4-ML-JD 30% occl. s «

3D 509

gos 9 go. go QML;D 50% occl. $o

” ® o ®y ? pt

4 8 8] <

§ 0-4] & ML-ALPs 10% occl. g 04 * #-ML-ALPs 10% occl. g 04 i § 04 & ML-ALPs 10% occl. +

S || <+ML-ALPs 30% occl E ol <tML-ALPs 30% occl. 5 B S ||<-ML-ALPs 30% occl.

@ ||-o-ML-ALPs 50% occl @ ©-ML-ALPs 50% occl.| @ @ |l-o-ML-ALPs 50% occl.

0.2} %-ML-JD 10% occl. 0.2/ 4 ~4-ML-JD 10% occl. 0.2 X 0.21 %-ML-JD 10% occl. 1
~<¢-ML-JD 30% occl. R * ~<-ML-JD 30% occl. 5 4 ~<-ML-JD 30% occl. k\S\e‘e
-6-ML-JD 50% occl. -©-ML-JD 50% occl. o = § -©-ML-JD 50% occl.

% 10 20 30 40 50 60 - 0 =TT 200 % 10 20 30 40 50 0 20 30 40 50 60 70
viewing angle [°] scale [%)] rotation [°] displacement [pixel]

3. 4

= |[¥ ML-ALPs 10% occl = % ML-ALPs 10% occl. = %-ML-ALPs 10%occl]| =" |[%ML-ALPs 10% occl. \e/
£ 4{<-ML-ALPs 30% occl o 1 L35 <&~ ML-ALPs 30% occl. L <-ML-ALPs 30%occl.| % gll<t-ML-ALPs 30% occl. |
2 “[-o-ML-ALPs 50% occl. ° 2 3 ©-ML-ALPS 50% occl. 8 ©-ML-ALPs 50% occl.f & "||-0-ML-ALPs 50% occl.
5 5.4 ¥ ML-JD 10% occl ¥ 53 ~&-ML-JD 10% occl. 5 ~%-ML-JD 10% occl. 5 54| ML-JD 10% occl. M‘ﬁ/ﬂ |
£ 7| <-ML-JD 30% occl £ ~<~ML-JD 30% occl. £ ~<~ML-JD 30% occl. £ 9| <-ML-JD 30% occl. o
® 4-9-ML-JD 50% occl. 025 -©-ML-JD 50% occl. o4 -©-ML-JD 50% occl. 9 ||-o-ML-JD 50% occl. ©
815 8 8 4 815
i f 5 L)i
£ < 1 € f <« E £ 1 4«
< - - 2 c - P < c1 & < > = < < <t
0.5 1 % <4<« 4 0.5
2 . S gog L SN EE R 2 VS DS - 2 PR a
% 10 60 % 200 % 10 2 50 60] 70

20 30 40 100 150
viewing angle [°] scale [%]

Fig.

0 30 40 20 30 40 50
rotation [°] displacement [pixel]

15. Results of the comparison between the ML ALPs approach and the approach of Jurie and Dhome [12] with

respect to different types of motion with occlusion. The first row shows the tracking success rate and the second row

the corresponding mean maximum corner errors.

Method Frame-rate | Loss-of-locks | Error

[fps] [-/-] [%]

NoSLLiP 18.9 13/6935 1.5

ML-ALPs | 17.2 1/6945 2.1
TABLE 2

Comparison between the tracking results of NoSLLiP
(Matlab implementation) given in [17] and results
obtained using ML-ALPs (C++ implementation) using the
MOUSEPAD sequence.

6.2.4 Qualitative Evaluation

Fig. 16 and 17 demonstrate the performance of the
proposed method on different image sequences. Fig. 16
shows several cases of partial occlusion, caused by a
hand and a pen moving through the template from
one side to the other. Fig. 17 shows a paper with a
rectangular hole moving over a background surface. In
this case the initially learned template, which includes
the backround visible through the hole, is removed

automatically when moving.

7 CONCLUSION

In order to support the dynamic change of the template
shape, we introduce an efficient method for adapting
linear predictors use for real-time template tracking .
Our method allows both, the enlargement and reduction
of the template size. We demonstrate that our ALPs
approach can also be used to efficiently learn linear
predictors for templates of a fixed size. In this case
we start from small templates and adapt their linear
predictors until the desired template size is reached.
This results in much shorter learning time compared
to the standard approach of Jurie and Dhome [11].
The efficiency of the presented approach derives from
the special computation of the matrix inverse. In the
standard approach the inverse has to be recomputed
from scratch after each change of the template size. In

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Fig. 16. Tracking with occlusions. Upper two rows: The upper left image shows the initially learned template. The
other images show the template when occluded by a hand and when occluded by a pen which is moving through the
template, both while the camera is moving. In both cases the shape of the template is automatically adapted according
to the present occlusions. Lower row: The left image shows the initially learned template. The template is tracked over
time, where occlusion occures at the end of the sequence.

Fig. 17. Tracking a template with a hole inside. The first image shows the template on a white background to show
the hole in the middle. The second image shows the background. In the right image the template is learned with the
background image. In the remaining images the template tracking results are shown. Note that the background behind
the hole is changing, thus the hole is removed from the template and does not disturb the tracking.

contrast, our approach updates the matrix according to
the change in the template shape.

In this context we also introduce a robust method
for detecting and handling occlusions. The multi-layer
approach enables tracking of a template in the case of
the abrupt occurence of occlusions. Early detection of
incoming occlusions is necessary to adapt the top layer
template before it is occluded, so that occlusion is pre-
vented. The use of multiple transformed versions of the
top layer template significantly increases the robustness

with respect to large motions.

We demonstrate that our ALPs yield tracking results
comparable to those of the standard approaches, while
learning is much faster, and that the occlusion-aware
tracking yields superior tracking results with respect to
robustness and accuracy.

ACKNOWLEDGMENTS

This project was partially funded by the Bayerische
Forschungsstiftung.

JOURNAL OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

B. Lucas and T. Kanade, “An Iterative Image Registration Tech-
nique with an Application to Stereo Vision,” in International Joint
Conference on Artificial Intelligence, Vancouver, BC, Canada, August
1981, pp. 674-679.

H.-Y. Shum and R. Szeliski, “Construction of panoramic image
mosaics with global and local alignment,” International Journal of
Computer Vision, vol. 36, no. 2, pp. 101-130, February 2000.

G. Hager and P. Belhumeur, “Efficient region tracking with para-
metric models of geometry and illumination,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no. 10, pp.
1025-1039, October 1998.

M. Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head tracking
under varying illumination: An approach based on registration of
texture-mapped 3d models,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 4, April 2000.

E. Dellaert and R. Collins, “Fast image-based tracking by selective
pixel integration,” in ICCV Workshop of Frame-Rate Vision, Kerkyra,
Greece, September 1999, pp. 1-22.

S. Baker and I. Matthews, “Equivalence and efficiency of image
alignment algorithms,” in Conference on Computer Vision and Pat-
tern Recognition, vol. 1, Los Alamitos, CA, USA, December 2001,
pp- 1090-1097.

——, “Lucas-kanade 20 years on: A unifying framework,” Inter-
national Journal of Computer Vision, vol. 56, pp. 221-255, March
2004.

E. Malis, “Improving vision-based control using efficient second-
order minimization techniques,” in IEEE International Conference
on Robotics and Automation, vol. 2, New Orleans, LA, USA, May
2004, pp. 1843-1848.

S. Benhimane and E. Malis, “Real-time image-based tracking of
planes using efficient second-order minimization,” in Conference
on Intelligent Robots and Systems, vol. 1, New Orleans, LA, USA,
Sept 2004, pp. 943-948.

——, “Homography-based 2d visual tracking and servoing,” In-
ternational Journal of Robotics Research, vol. 26, no. 7, pp. 661-676,
July 2007.

E. Jurie and M. Dhome, “Hyperplane approximation for template
matching,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 996-100, July 2002.

——, “Real time robust template matching,” in British Machine
Vision Conference, Cardiff, UK, September 2002, pp. 123-131.

C. Grafll, T. Zinfser, and H. Niemann, “Efficient hyperplane
tracking by intelligent region selection,” in Image Analysis and
Interpretation, Lake Tahoe, NV, USA, March 2004, pp. 51-55.

P. Parisot, B. Thiesse, and V. Charvillat, “Selection of reliable
features subsets for appearance-based tracking,” in Signal-Image
Technologies and Internet-Based System, Shanghai, China, December
2007, pp. 891-898.

J. Matas, K. Zimmermann, T. Svoboda, and A. Hilton, “Learning
efficient linear predictors for motion estimation,” in Proceedings
of 5th Indian Conference on Computer Vision, Graphics and Image
Processing, Madurai, India, December 2006, pp. 445-456.

W. W. Mayol and D. W. Murray, “Tracking with general regres-
sion,” Journal of Machine Vision and Applications, vol. 19, no. 1, pp.
65-72, January 2008.

K. Zimmermann, J. Matas, and T. Svoboda, “Tracking by an op-
timal sequence of linear predictors,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 99, no. 1, pp. 677692, April
2009.

S. Baker, R. Gross, I. Matthews, and T. Ishikawa, “Lucas-kanade
20 years on: A unifying framework: Part 2,” Robotics Institute,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-03-01, February 2003.

I. Patras and E. Hancock, “Regression-Based Template Tracking
in Presence of Occlusions,” in Proceedings of the Eight International
Workshop on Image Analysis for Multimedia Interactive Services,
Santorini, Greece, June 2007, p. 15.

C. Grafll, T. ZinBer, and H. Niemann, “Illumination insensi-
tive template matching with hyperplanes,” in Proceedings of Pat-
tern recognition: 25th DAGM Symposium, Magdeburg, Germany,
September 2003, pp. 273-280.

H. V. Henderson and S. R. Searle, “On deriving the inverse of a
sum of matrices,” SIAM Review, vol. 23, no. 1, pp. 53-60, January
1981.

[22] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and V. Lepetit,
“Online learning of patch perspective rectification for efficient
object detection,” in Conference on Computer Vision and Pattern
Recognition, Anchorage, AK, USA, June 2008, pp. 1-8.

S. Holzer, S. Ilic, and N. Navab, “Adaptive linear predictors for
real-time tracking,” in Conference on Computer Vision and Pattern
Recognition, San Francisco, CA, USA, June 2010, pp. 1807-1814.

[23]

Stefan Holzer is a PhD student at the insti-
tute for Computer Aided Medical Procedures
(CAMP) at the Technische Universitat Miinchen
(TUM) where he is part of the Computer Vision
group. He received his diploma in Computer
Science from the University of Applied Sciences
Landshut in 2006 and his M.Sc. in Computer
Science from the TUM in 2009. He was affiliated
with the group of Dr. Andrew Davison at the
Department of Computing at Imperial College
London, with Willow Garage where he worked
on object detection in the context of robot based object grasping, and
more recently with Microsoft Research Cambridge where he worked on
learning-based approaches. Stefan Holzer’s current research interests
include reconstruction, object detection, tracking, and pose estimation
for 2D/3D objects. You can find out more about his work by visiting
http://campar.in.tum.de/Main/StefanHolzer.

Slobodan llic is senior research scientist work-
ing at TU Munich, Germany. Since February
2009 he is leading the Computer Vision Group of
the CAMP Laboratory at TUM. Form June 2006
he was a senior researcher at Deutsche Telekom
Laboratories in Berlin. Before that he was a
postdoctoral fellow for one year at Computer
Vision Laboratory, EPFL, Switzerland, where he
received his PhD in 2005. His research interests
include: deformable surface modeling and track-
ing, 3D reconstruction, real-time object detection
and tracking, object detection and classification in 3D data. Slobodan llic
serves as a regular program committee member for all major computer
vision conferences, such as CVPR, ICCV and ECCV as well as journals,
such as TPAMI and IJCV. Besides active academic involvement Slobo-
dan has strong relations to industry and supervises a number of PhD
students supported by industry.

Nassir Navab is a full professor and director
of the Computer Aided Medical Procedures &
Augmented Reality institute at Technische Uni-
versitdt Minchen. He also has a secondary
faculty appointment at TU Miinchen’s Medical
School. Nassir has a PhD in computer science
from INRIA and the University of Paris Xl. In
2006 he was elected as a member of board of
director of the MICCAI society. He also served
on steering committee of IEEE Symposium on
Mixed and Augmented Reality 2000-2008. He
acts as associated editor of IEEE Transactions on Medical Imaging and
serves on the editorial board of Medical Image Analysis. Nassir is the
author of more the 50 US and international patents. He received the
Siemens Inventor of the Year Award in 2001 and the SMIT Society
Technology Award in 2010. His PhD students have received many pres-
tigious awards including four MICCAI young scientist awards, ISMAR,
ISBI, DAGM, VOEC-ICCV and AMDO best paper awards. His research
interests include computer vision, augmented reality, computer-aided
surgery and medical image registration.

CHAPTER D: MULTI-LAYER ADAPTIVE LINEAR PREDICTORS
FOR REAL-TIME TRACKING

92

APPENDIX
E

EFFICIENT LEARNING OF LINEAR PREDICTORS
FOR TEMPLATE TRACKING

Springer and the original publisher (International Journal of Computer Vision, May 2014,
Efficient Learning of Linear Predictors for Template Tracking, Stefan Holzer, Slobodan
Ilic, David Joseph Tan, Marc Pollefeys, Nassir Navab) is given to the publication in which
the material was originally published, by adding: With kind permission from Springer
Science and Business Media.

Own contributions. The core idea of the efficient and robust learning method based on
a reformulation of the original learning process was created in a conversation between Marc
Pollefeys and me. My further contributions to this work include the idea for the efficient
learning method based on dimensionality reduction, the design and implementation of
all included methods. The evaluation of those was performed together with David Tan
and Slobodan Ilic. The core ideas of the paper were refined in collaboration with all
co-authors. All co-authors were involved in the writing of the paper.

93

Int J Comput Vis
DOI 10.1007/s11263-014-0729-1

Efficient Learning of Linear Predictors for Template Tracking

Stefan Holzer - Slobodan Ilic -
Marec Pollefeys - Nassir Navab

David Tan -

Received: 3 June 2013 / Accepted: 6 May 2014
© Springer Science+Business Media New York 2014

Abstract The research on tracking templates or image
patches in a sequence of images has been largely dominated
by energy-minimization-based methods. However, since its
introduction in Jurie and Dhome (IEEE Trans Pattern Anal
Mach Intell, 2002), the learning-based approach called linear
predictors has proven to be an efficient and reliable alternative
for template tracking, demonstrating superior tracking speed
and robustness. But, their time intensive learning procedure
prevented their use in applications where online learning is
essential. Indeed, Holzer et al. (Adaptive linear predictors
for real-time tracking, 2010) presented an iterative method
to learn linear predictors; but it starts with a small template
that makes it unstable at the beginning. Therefore, we pro-
pose three methods for highly efficient learning of full-sized
linear predictors—where the first one is based on dimen-
sionality reduction using the discrete cosine transform; the
second is based on an efficient reformulation of the learn-
ing equations; and, the third is a combination of both. They

Communicated by Cordelia Schmid.

S. Holzer (X)) - S. Ilic - D. Tan - N. Navab

Fakultit fiir Informatik, 1-16, Technische Universitit Miinchen,
Boltzmannstr. 3, 85748 Garching b. Miinchen, Germany

e-mail: holzers @in.tum.de

S. Ilic
e-mail: Slobodan.Ilic @in.tum.de

D. Tan
e-mail: tanda@in.tum.de

N. Navab
e-mail: navab@in.tum.de

M. Pollefeys

Computer Vision and Geometry Lab (CVG), Department of Computer
Science, Institute of Visual Computing, ETH Zurich, CNB G105
Universitatstrasse 6, 8092 Zurich, Switzerland

e-mail: marc.pollefeys @inf.ethz.ch

Published online: 27 May 2014

show different characteristics with respect to learning time
and tracking robustness, which makes them suitable for dif-
ferent scenarios.

Keywords Template tracking - Linear predictors -
Learning - Dimensionality reduction - Discrete cosine
transform (DCT)

1 Introduction

Due to its large range of applications, template tracking has
been extensively studied in the past. The main task of tem-
plate tracking is to follow a specified template over time,
i.e. over a sequence of consecutive images. This is done by
estimating the parameters of the template warping function,
defining how the image data occupied by the template is
warped from one frame to another. Examples of such warp-
ing functions are affine transformations or homographies.
Applications can be found in areas such as augmented reality,
human-computer interfaces, medical imaging, surveillance,
vision-based control, or visual reconstruction.

While energy minimization has become a common tech-
nique for estimating template parameters from frame to
frame, tracking-by-detection methods became popular recen-
tly, as they reached a state where template parameter estima-
tion is possible at or close to frame rate. A further alter-
native are learning based approaches, where the relation
between image intensity differences and template parameters
is learned using exemplary data. While energy minimization
approaches are flexible at run-time and tracking-by-detection
methods do not put constraints on inter-frame motions, learn-
ing based techniques have shown to allow much faster online
tracking.

@ Springer

Int J Comput Vis

One of the most successful learning based approaches for
template tracking are linear predictors, or template track-
ing using hyper-plane approximation, proposed by Jurie and
Dhome (2002a). Although fast and robust, it contains a com-
putationally expensive learning phase which prohibits it from
being used in scenarios where new scenes need to be handled
online. We address this limitation by presenting three learn-
ing approaches which lead to learning times that are up to two
orders of magnitude faster than Jurie and Dhome (2002a).

In the remainder of this paper, we first discuss related work
(Sect. 2) and introduce the original approach as proposed
by Jurie and Dhome (2002a) (Sect. 3). We then present our
learning approaches starting with a dimensionality reduction
approach which makes use of the discrete cosine transform
(Sect. 4), introduced in Holzer et al. (2012); followed by a
reformulation of the learning process (Sect. 5), introduced
in Holzer et al. (2012); and finally a combination of the two
(Sect. 6). New training data is added by updating an existing
linear predictor (Sect. 7) (Hinterstoisser et al. 2008). We then
demonstrate the usefulness of our proposed approaches using
mobile applications (Sect. 9). In the experiments (Sect. 8) we
analyze the characteristics of the proposed approaches under
different scenarios and with respect to the related work.

2 Related Work

Template tracking approaches can be categorized in three
different sets of methods: tracking-by-detection (TBD) (Hin-
terstoisser et al. 2008, 2009, 2010, 2011, 2012; Holzer et al.
2009; Ozuysal et al. 2007), template tracking based on energy
minimization (Lucas and Kanade 1981; Shum and Szeliski
2000; Hager and Belhumeur 1998; Cascia et al. 2000; Del-
laert and Collins 1999; Baker and Matthews 2001, 2004;
Malis 2004; Benhimane and Malis 2007; Dame and Marc-
hand 2010; Richaetal. 2011), as well as learning based meth-
ods (Grabner et al. 2008; Kalal et al. 2012; Jurie and Dhome
2002a,b; Grafl et al. 2004; Parisot et al. 2007; Matas 2006;
Mayol and Murray 2008; Zimmermann et al. 2009; Holzer
et al. 2010, 2013). While tracking-by-detection methods do
not put constraints on the possible location of the template
to track, i.e. the template is searched in the whole image
independent of its location in the previous frame, they are,
in general, significantly slower than frame-to-frame track-
ing approaches. The time consuming training procedure and
the restrictions in the possible pose space further limit these
approaches. Energy minimization based approaches usually
have the advantage in creating and modifying templates
online, while learning based methods are significantly better
in tracking speed. Additionally, Jurie and Dhome (2002a)
showed that linear predictors are superior to Jacobian approx-
imation in terms of tracking speed and robustness, and we
showed in Holzer et al. (2010) that linear predictors outper-

@ Springer

form methods based on energy minimization such as Efficient
Second-order Minimization (Benhimane and Malis 2007)
(ESM).

Tracking-by-Detection-based approaches. We can further
categorize TBD approaches into methods that are based
on keypoint detection and on a sliding window which is
also known as template matching. Ozuysal et al. (2007)
introduced FERNs where keypoints are extracted and then
classified by estimating the probability of each keypoint
falling under a specific class. Unfortunately, the correspond-
ing learning process is time consuming and is error-prone if
the number of available keypoints is limited, which is the case
if small regions are considered. Holzer etal. (2009) presented
an approach called Distance Transform Templates (DTTs),
where the distance transform is used to extract closed con-
tours, and to describe and match the extracted contours using
FERNSs (Ozuysal et al. 2007). This approach needs a signif-
icant amount of time in learning, and detects objects only
at about 10 frames per second. Hinterstoisser et al. (2008,
2009) proposed two patch-based TBD methods, where key-
points are used as starting point to match patches and estimate
their pose. Although the use of keypoints enables process-
ing at almost video frame-rate, it constrains its repeata-
bility by the underlying keypoint detector. In their recent
work, Hinterstoisser et al. (2010, 2011, 2012) overcome the
limitations of keypoint detectors by using sliding window
approaches. Indeed, this allows a robust object detection;
however, it imposes restrictions on the possible pose space
since the necessary processing increases with the amount
of covered poses. Even with reasonable constraints on the
pose space, it is still significantly slower than frame-to-frame
tracking.

Keyframe-based approaches. This type of approach relies
on creating a set of keyframes that represent the object or
scene and are used in an optimization in order to obtain
stable pose estimation (Vacchetti et al. 2004) and, if the
model of the object or scene is not available, create a map
of the tracked environment (Klein and Murray 2007). The
keyframes are hereby either created in an offline process from
a known model (Vacchetti et al. 2004) or selected online in
case the model needs to be created while tracking (Klein
and Murray 2007). These keyframe-based approaches usu-
ally rely on keypoints or other discriminative image fea-
tures, e.g. edges Klein and Murray (2008), which are tracked
from frame to frame and matched against keyframes. Sim-
ilar to some of the Tracking-by-Detection-based methods,
keyframe-based approaches tend to become error-prone if
the number of available keypoints or features is limited. This
especially holds if the object or region of interest is small.
However, if sufficient image features are available, these
approaches provide very stable and robust tracking.

Int J Comput Vis

Energy minimization-based approaches. These approaches
build upon the early work of Lucas and Kanade (1981).
Improvements since then include: different update rules of
the warp function (Lucas and Kanade 1981; Hager and Bel-
humeur 1998; Cascia et al. 2000; Shum and Szeliski 2000;
Dellaert and Collins 1999; Baker and Matthews 2001), han-
dling of occlusions and illumination changes (Hager and
Belhumeur 1998), as well as considering different orders of
approximation of the error function (Malis 2004; Benhimane
and Malis 2007). When looking at the different update rules
that have been proposed over time, we can classify them
into four categories, which are the additive approach (Lucas
and Kanade 1981), the compositional approach (Shum and
Szeliski 2000), the inverse additive approach (Hager and
Belhumeur 1998; Cascia et al. 2000) and the inverse com-
positional approach (Dellaert and Collins 1999; Baker and
Matthews 2001). The inverse approaches hereby switch the
roles of the reference and the current image, which allows
to move some of the computations into the initialization
phase, making the tracking phase more efficient. Hager
and Belhumeur (1998) addressed the problems in illumi-
nation changes and occlussions. The usage of second-order
instead of first-order approximations led to a faster conver-
gence speed and larger convergence areas (Benhimane and
Malis 2007; Malis 2004). For a more detailed and complete
overview of energy-based tracking methods, we refer the
readers to Baker and Matthews (2004).

Learning-based approaches. Learning-based approaches can
be divided into approaches that apply offline or online learn-
ing. Online learning is often used to track objects that are
not known a-priori or change appearance over time. Promi-
nent examples of an online learning approach is the tracking
approach of Grabner et al. (2008), as well as the Tracking-
Learning-Detection approach of Kalal et al. (2012). Both
approaches are semi-supervised approaches where the track-
ing process is split into a frame-to-frame tracker, a detector
that localizes all observed appearances of the tracked object
and corrects the tracker if necessary, as well as a learning pro-
cedure which estimates the errors of the detector and updates
itin order to avoid them in future. While Grabner et al. (2008)
uses a semi-supervised online boosting strategie for learning,
Kalal et al. (2012) uses so called PN learning where two sets
of experts are used to estimate missed detections and false
alarms. These combinations of tracking, detection and learn-
ing allow to handle changes in appearance as well as occlu-
sions. However, while they give good results when tracking
a bounding box around an object they are not suited to track
the full pose of objects.

A prominent approach in tracking based on offline learn-
ing is tracking using linear predictors. Linear Predictors
for template tracking or template tracking using hyperplane
approximation was first introduced by Jurie and Dhome

(2002a). Their proposed method uses randomly warped sam-
ples of the initial template to learn linear predictors and
applies them to predict the parameter updates in template
tracking. In contrast to previous methods, the “Jacobians”
are here computed once during the learning phase and the
parameter updates are computed using simple matrix mul-
tiplications. A more detailed description of this method is
in Sect. 3.2. An extension of this method in order to handle
occlusions has been presented in Jurie and Dhome (2002b).
GribBl et al. (2003) showed how invariance with respect to
illumination changes can be achieved and how tracking accu-
racy can be increased by intelligently selecting the points for
sampling from the image data (Grafl et al. 2004). Zimmer-
mann et al. (2009) moved away from using one big single
template into numerous small templates, track them individ-
ually, and combine their seperate motion estimates into a
single one. Holzer et al. (2010, 2013) presented a method for
adapting existing linear predictors in order to modify online
the covered area of template while tracking. This reduces the
initial learning time by start tracking with a small template
and grow it over time. Instead of creating a predictor, Mayol
and Murray (2008) collect a set of training samples in order
to fit the current sampling region to this pre-trained set using
general regression.

Among the learning based approaches using linear pre-
dictors, none of them can learn large templates at run-time.
Therefore, we present learning approaches with this criterion.

3 Tracking Framework

Our proposed template tracking approaches are built from the
work of Jurie and Dhome (2002a). While we introduce new
learning procedures that significantly reduce the necessary
learning time, we keep the tracking stage the same. In this
section, we introduce our notations and review the method
proposed by Jurie and Dhome (2002a).

3.1 Template and Parameter Description

Without loss of generality, we use a rectangular template
that covers an area of ny = w - h square pixels and
locate sample points that uniformly subsample the template
into a grid of n, points as shown in Fig. 1. The sam-
ple points are used to efficiently describe the image inten-
sities in the template instead of using its full resolution.
From the template in Fig. 1, we define the parameter vec-
tor o = (po. P1. P2, P3. P4» P5. Pe. p7) | that contains the
image coordinates of the four corners which are used to
parameterize a homography. Note that neither our proposed
approaches nor the approach of Jurie and Dhome (2002a) are
limited to this type of sample point arrangement, rectangular
shape or transformation.

@ Springer

Int J Comput Vis

(Po, P1)

(P2, P3)

o,
5 template
Q

O
O
..Q.}'
.

X)Ji

Fig. 1 A template is represented by a set of regularly placed sample
points. Its pose is parameterized using its four corner points

sample point

P

(va p7) (p4’ p5)

3.2 Template Tracking based on Linear Predictors

Given a template in the reference image, the goal of template
tracking is to follow the selected template from one frame to
the next and to estimate its pose in each frame.

In the reference image, we define the initial location of the
template using the parameter vector p p that stores the eight
parameters from the four corners of the template, and the
image intensity vectorig = (ig.1, ir2, ..., iR,np)T that has
the image intensity at the corresponding sample points; while
we assign i as the current parameter vector and ic as the
image intensity vector in the current frame. However, unlike
ir, the elements of i¢ are the image intensities extracted from
the current frame at the sample point locations of the template
pose from the previous frame or previous iteration po_;.

To track the location of the template and estimate the pose
in the current frame, Jurie and Dhome (2002a) introduce the
linear predictor matrix A that relates the parameter vectors
and the intensity vectors as:

S = Asi 1

where §i = ic —ip is the image intensity difference and S u is
the parameter update. This tracking algorithm is summarized
in Alg. 1.

The 8 xn , matrix A is precomputed by imposing n;, where
n; > np, random transformations du; fori = 1,...,n,
on pp and computing the corresponding image difference
vectors 8i;. These vectors are concatenated into an 8 x n;

matrix Y = (8t1, 8, ..., 81,) and np x n, matrix H =
(8iy, 8ip, ..., 8iy,), which are used to reformulate Eq. (1) as:
Y = AH. (2)

Using a closed-form solution, we solve for A as:
-1
A=YH' (HHT) . 3)

@ Springer

Algorithm 1 Tracking using Linear Predictors

function Track (in Image I,
in TemplateParameters wc_,
out TemplateParameters p¢)
Compute homography T, from pc_;.
for level =1 — n; do
for iteration =1 — n; do
Extract image data from I at sample points warped with T,.
Normalize image data.
Compute image difference vector §i.
Compute parameter update it = Ajeyerdi.
Compute homography Ts, from su.
Ty < TyTsy.
end for
end for
Compute uc from Ty,

This formulation requires to invert an ., x n,, matrix HH "
where a typical value of), is 20 - 20 = 400. Due to the large
size of this matrix, learning linear predictors using Eq. (3)
is computationally expensive, and limits their use in real-
time applications where the environment is unknown and
templates have to be learned online.Throughout the paper,
we focus on reformulating the learning procedure to find A
in Eq. (3) and to evaluate the robustness in tracking for each
learning procedure.

In practice, the image data vector i is normalized such that
the elements have zero mean and unit standard deviation,
which increases the robustness against illumination changes.
Furthermore, to prevent HH ' from being rank-deficient due
to the zero mean of the vectors, we add random noise to the
normalized image intensity difference vectors in H.

3.3 Multi-layered Tracking

To improve the tracking performance, we apply a multi-layer
approach where we compute n; linear predictors Ap, ..., Ay,
and use one linear predictor per layer. Each of these linear
predictors is trained for different amounts of motion where
the first one is trained for large motions and the latter ones
for consecutively smaller motions. Additionally, each of the
linear predictors is applied multiple times in tracking. Within
this paper, we use n; = 5 and three iterations for each pre-
dictor. The complete algorithm for learning linear predictors
is given in Alg. 2.

4 Efficient Predictor Learning using Dimensionality
Reduction

Our first approach reduces the size of 8i; from n, to n, by
applying the discrete cosine transform (DCT). As a conse-
quence, it reduces the number of rows in H from n, to n,
and the size of HH' from np X Npton, X n.

Int J Comput Vis

Algorithm 2 Learning Linear Predictors

function Learn (in Image I,
in TemplateParameters g,
out Set of linear predictors A = {A;})
for level =1 — n; do
Create set of random transformations and put them into the matrix

Y = (81,800, ..., 81y,).
Apply random transformations on u and extract image differences
H = (siy, 8ia, ..., 8iy,) from L

Normalize image data and add random noise.
Compute linear predictor Ajeye;
Add Ajeper to A.

end for

In general, DCT is known to give good results in image
compression. This process involves transforming the image
into the frequency space and removing the DCT coeffi-
cients that correspond to high frequencies. In relation to our
approach, it is advantageous to filter the high frequencies
because they tend to include noise and de-stabilize tracking.

Mathematically, the 2-dimensional DCT U of a k x k
matrix V is defined as:

U = DCT(V) = CVC' 4)

where the elements of the matrix C are defined as:

o (2] + 1)i
Cij = /7 cos [’z—k} (5)
with
1if i =0,
= [2 otherwise. ©)

Contrary to Eq. (4) where the 2D DCT is applied on a 2D
matrix, our approach needs to apply the DCT on a reshaped
1D vector 8i; as 8i; = DCT(Si;) to form the matrix H =
(81, 8y, ..., 8iy,).

Therefore, we define an n, x n, matrix Wpcr that
directly maps the image difference vectors §i; to their DCT

counterparts 8i; (see Fig. 2). By using a function that con-
verts the elements of a 2D matrix V; into a 1D column vector
8i; as 6i; = reshape(V;), where V; is the 2D template image
data in frame i, we can compute Wpcr as:

Woer = (b, b2,by,) 7)

where b,, = reshape(CBmCT) and B,, is a matrix with all
elements set to 0 except for the m-th element which is set
to 1. This makes the set of matrices {By, ..., B,,p} as the
base of the template in the image space and the set of vectors
{b1,...,b, p} as their DCT projection. As a result, the 2D
DCT of the image difference vectors is computed as:

Sii =Wpcrdi;, = ﬁ = WpcerH. ®)

In order to integrate this into the original learning formula
in Eq. (3), we reformulate this by using the relation:

H=(Wpcr) 'H.)

Thus, we subsitute H from Eq. (9) to Eq. (2) and solve for
the linear predictor matrix A as follows:

1 B
AWLL H=Y

-1 AT (A AT 1
AWl Wper = YH (HH) Woer

A=YH' (}‘nﬁIT)f1 Woer. (10)

Note that by integrating the DCT computation directly
into the linear predictor matrix A we do not have to modify
the tracking procedure.

We induce the dimensionality reduction by defining an
ny X np submatrix Wg’C)T with n, < n,. In this case, the
necessary matrix inversion is no longer applied to ann, x n,
matrix but rather to an n, x n, matrix. Hence, the final linear
predictor is computed as:

Fig. 2 Demostration of how
the 2D-DCT is applied on
reshaped image data

DCT(V)
DCT(E8)

2D Discrete Cosine Transform:
el =10

W=
o B
=N-1

"
Apply 2D DCT on reshaped data using Wy

6i = DOT(8i) = W perdi

Wper = (b1,ba, -+ ,by,)

Image Bases

b,, = reshape(C CT)

Reshaping of image data:
01 = reshape (&~

b, = reshape(

by = reshape(-

b; = reshape(&

bys = reshape(-

@ Springer

Int J Comput Vis

~ ()T (() 5 (2)T

-1
.)
A =y (AR) woe (11)

where A" = W(D"’C)TH.

The experiments in Sect. 8.1 show that keeping 7, signif-
icantly small reduces the learning time for large templates.
Moreover, depending on the size of n,, the reduction in learn-
ing even increases tracking robustness.

5 Reformulating the Learning Equations

Another way to increase the learning speed is to reformulate
the learning equations such that it is no longer necessary to
compute the pseudo-inverse of H. Starting from Eq. (2), we
first apply the pseudo-inverse of Y from the right which leads
to:

Isxs = AHY ' (YY)~ ! = AB, (12)
where
B=HY (YY"H)™! (13)

isann, x 8 matrix. Hence, the linear predictor A is computed
as:

A=B'B)'BT. (14)

Note that the pseudo-inverse is applied differently in
Egs. (12) and (14) because the rows are linearly indepen-
dent in Y while the columns are linearly independent in B
(Ben-Israel and Greville 2003).

Now, the learning process involves the inversion of the
matrices YY ' and B'B in Egs. (12) and (14), respectively.
However, both are 8 x 8 matrices and can be quickly calcu-
lated. Additionally, YY" can be precomputed which requires
us to invert a single 8 x 8 matrix online.

To avoid encoding of fixed offsets in the linear mapping,
Y is normalized such that each parameter has zero mean and
unit standard deviation. Accordingly, §u is de-normalized
after using Eq. (1) in tracking. Unlike the normalization
in Sect. 3.2 where we aim to obtain invariance on changes
in lighting conditions, this normalization does not generate
a rank-deficient matrix YY | because the normalization is
applied on the rows of Y.

If we compare the formulation of A, we can see that in
Eq. (12) from our approach, H is approximated by orthog-
onally projecting it on Y; while in Eq. (3) from the original
approach of Jurie and Dhome (2002a), Y is approximated by
orthogonally projecting it on H. Given that we project H on
Y, all noise outside the low-rank space represented by Y has
no effect; while in the case of Jurie and Dhome (2002a), the

@ Springer

noise has more effect. Therefore, this learning process sig-
nificantly improves tracking robustness with respect to noise
as validated in Sect. 8.3.

6 Combining Dimensionality Reduction
and Reformulation of Learning

To combine the dimensionality reduction in Sect. 4 with the
reformulation in Sect. 5, we replace H in Eq. (13) by the
dimensionality reduced version B= WBICTI:IYT (YYT)’] ;
thus, similar to Eq. (14), we obtain:

AT A\~ &
A= (BTB) B (15)
By assigning the n; x 8 matrix Z as:

Z=Y" (YYT)il , (16)

AT A
we can write B B in the form of:

AT ~ ~T N

BB=2"H W,., W, HZ (17)

and since Wpcr is orthogonal (i.e. its inverse is equal to its
transpose), this can be simplified to:

B'B=z"H AZ (18)
Therefore, the final learning equation then becomes:

AT oA\l .
A=(z"'z) zTh' (19)

Again, this formulation only requires us to invert an 8 x 8

matrix ZTI:ITI:IZ which can be quickly calculated.

As we will show in the experiments, this leads to an
compromise between the strengths and weaknesses of both
approaches.

7 Online Updating

After learning a linear predictor, new training samples can
be added using the Sherman-Morrison formula as demon-
strated in Hinterstoisser et al. (2008). However, this relies on
the original approach of computing linear predictors by effi-
ciently updating § = (HH')~!. Since in our reformulated
learning approach the matrix S is not computed as an inter-
mediate result, we find a way to derive it from an existing
linear predictor A. Thus, using Eq. (3),

A=YH' HH")"' = YH'S = DS, (20)

Int J Comput Vis

Fig. 3 A set of images selected from the internet, which is used for synthetic experiments

where D = YH' is a 8 x n,, matrix. This implies that S can
be directly computed using the pseudo-inverse of D as:

S=D"(D")'A. (1)

Here, DD is again an 8 x 8 matrix and therefore, can be
efficiently inverted. Therefore, we update S as:

& fael . T —1
S=(S7" + 8y, 4181, | (22)

SSi, 181! .S
=5 T 2 (23)
14+ 81nt+1581,,t+1

where 8i,, 41 is a vector of image intensity differences
obtained from a new random transformation applied to the
sample points.

Note that we also have to update the matrices H and Y
before computing the updated linear predictor in Eq. (20).
This is done by concatenating them with the new training
samples where the parameter differences are normalized in
the same way as in the initial learning.

8 Experiments

In this section, we evaluate our approaches for efficient learn-
ing of linear predictors as proposed in Sect. 4 (DCT), Sect. 5
(HP) and Sect. 6 (DCTHP), and compare them to the origi-
nal approach of Jurie and Dhome (2002a) (JD) as well as to
Efficient Second-order Minimization (ESM) introduced by
Benhimane and Malis (2007). Our comparison is based on
two kinds of evaluation—timing and tracking performance.
The former is used to evaluate the differences in tracking and
learning time while the latter reveals the impact gained from
the learning performance on the tracking robustness with
respect to different kinds of motions as well as its sensitivity
to noise.

We used C++ implementations for all algorithms. The
Efficient Second-order Minimization (Benhimane and Malis

2007) is from the publicly available binaries' and the orig-
inal approach of Jurie and Dhome (2002a) is from our own
implementation where it is similarly optimized as the pro-
posed approaches. For the evaluations, we used a standard
notebook with a 2.26 GHz Intel(R) Core(TM)2 Quad CPU
and 8 GB of RAM with only a single core used for compu-
tations.

All synthetic experiments are done using a template size
of 150 x 150 pixels, the template is taken from the center
of an image and tracking is applied on its warped versions.
Figure 3 shows the images used for the synthetic experiments
which were selected randomly from the internet. The reason
for focusing on synthetic experiments is that these allow an
accurate comparison using ground truth. This also has the
benefit that it is simple to estimate the influence of single
parameters, compared to other methods of testing, like using
markers on real scenes, which generate their own error and
limit the amount of available motion. It further makes it pos-
sible to specify the exact amount of change. This allows a
fair evaluation between the different approaches.

The homographies for the various tests are compute as
follows:

— Translations. For a specified reference amount of a trans-
lation by 7 pixels we compute a set of random translations
values in the range of t+ &= 5 pixels. The translation is
applied in a random direction.

— Scale. For a specified scale s we compute a set of random
scale values in the range [7, ¢ - 1.2]. The scaling is applied
relative to the center of the template.

— Rotation. For a specified angle « in degree we compute
a set of random rotation values in the range of o &+ 5
degree. The center of the rotation is equal to the center
of the template.

— In-plane rotation. For the viewing angle. For the view-
ing angle tests we rotate the plane of the template around

1 See version 0.4 available at http:/esm.gforge.inria.fr/ESM.html.

@ Springer

Int J Comput Vis

10 150
-o-HP
-8-DCT-81
Z 10 o ~-DCTHP-81
£ 10 s
= < 100
Q <
£ =
< 10 ; : =
.%‘3 9 I
£ = JD g %0
g &

-©-HP
-8-DCT-81
~-DCTHP-81

~-JD

©-HP

0.8 & DCT-81
~-DCTHP-81

0.6

0.4

tracking time [ms]

200 300 400 500
template size [sample points]

600 700

(a) Learning times

200 300 400
template size [sample points]

(b) Speed-up

500 600 700 200 300 400 500 600 700
template size [sample points]

(¢) Tracking times

Fig. 4 Evaluation of learning and tracking times. a Learning times. b Speed-up obtained by the proposed methods, where for the dimensionality
reduction based approaches 81 DCT-coefficients are used. ¢ Tracking times

arandom axis which is lying in the template plane. For a
specified angle 8 in degree we compute a set of random
rotation values in the range of 8 £ 5 degree. The axis of
the rotation goes through the center of the template.

In Sect. 8.6 we analyse our approaches on real data and
compare them to several state-of-the-art approaches (Zim-
mermann et al. 2009; Holzer et al. 2010, 2013; Jurie and
Dhome 2002a,b; Lucas and Kanade 1981; Lowe 2004; Kalal
et al. 2012).

8.1 Computational Complexity

In order to analyze the computational complexity, we mea-
sure the time a specific phase of the approaches, i.e. learning
and tracking, needs to complete.

Learning The necessary learning time reflects our main con-
tribution. In Fig. 4a, we compare the learning times with
respect to the template size in number of sample points for the
approach of Jurie and Dhome (2002a) (JD), our dimensional-
ity reduction approach with 81 DCT-coefficients (DCT-81),
our approach with reformulated learning (HP), and our com-
bined approach with 81 DCT-coefficients (DCTHP-81). All
our proposed methods are significantly faster in learning
than the original approach. Figure 4b compares the speed-
up of the different proposed approaches with respect to
Jurie and Dhome (2002a). This also shows that for larger
templates the difference between the learning times gets
even bigger. In detail, the reformulation approach (HP) is
the fastest if considering 81 DCT-coefficients for the other
approaches, while the combined approach (DCTHP) is the
second fastest, followed by the pure dimensionality reduc-
tion. Note that by using less DCT-coefficients, the DCT-based
approaches can achieve a similar speed-up as the reformula-
tion in Fig. 5. Considering template sizes with more than 800
sample points, e.g. for a 30 x 30 template, our approaches

@ Springer

150

100 |

S0

speed—up [factor]

0 200 300 400 500 600 700
template size [sample points]
(a) Speed-up of DCT
150 T
-©-DCTHP-25
-8-DCTHP-49

~<-DCTHP-81

100 1

50

speed—up [factor]

200 300 400 500 600 700
template size [sample points]
(b) Speed-up of DCTHP

Fig. 5 Analysis of speed-ups for both DCT-based approaches with
respect to the original approach of Jurie and Dhome (2002a). a Speed-
up of the approach only based on dimensiontality reduction (DCT). b
Speed-up of the combined approach (DCTHP)

reach learning times which are more than two orders of mag-
nitude faster than the approach of Jurie and Dhome (2002a).

Tracking When we compare the tracking times with respect
to the template size in Fig. 4c, all proposed approaches need

Int J Comput Vis

Fig. 6 Evaluation of tracking 1¢ 2 1
success rate with respect to
di.ffer.ent types of motion. a _ 08} _ 08
Viewing angle, b scale, ¢ S R
translation, d in-plane Rotation = >
= 0.6 = 0.6
< =
S S
w v
g 04 8 04t
g ™ = JD g = JD
2 -o-HP Z -©-HP
0218 DCT-81 021+ 5-DCT-81 |
—~<-DCTHP-81 \ —~<-DCTHP-81
0 x ESM 0 x ESM
0 20 40 60 80 0 0.5 1 1.5 2
view point angle [°] scale
(a) Viewing Angle (b) Scale
1 ? 1
— 0.8 — 0.8 F
8 R
2 067 2 06
S 1
W v
wn wn
§ 0.4 | % JD § 0.4t = JD
E -o-HP z -©-HP
0218 DCT-81 0.2 8-DCT-81 |
--DCTHP-81 X --DCTHP-81
o L ESM < x o ood x ESM
0 10 20 30 40 50 -100° =50 0 507 7 100

translation [px]
(C) Translation

approximately the same amount of time for tracking as the
approach of Jurie and Dhome (2002a) and can even track
large templates at more than 1, 000 fps. In contrast to this,
the energy minimization based approach of Benhimane and
Malis (2007) needs approximately 10 ms to track the same
template.

8.2 Robustness

We analyze the success rates in tracking, where all approaches
are considered in Fig. 6 and the effect of the number of DCT-
coefficients n, used in dimensionality reduction influences
the tracking robustness of both DCT-based approaches is
evaluated in Fig. 7.

The success rate in tracking is measured by finding the
correct location of the template after the introduction of ran-
dom transformations to several test images. The considered
random transformations contain translation, rotation, scale,
and viewpoint change. Tracking is considered successfull
by computing the mean pixel distance between the refer-
ence template corner points and the tracked template corner
points, which are back-projected into the reference view. If
this mean difference is less than 5 pixels then the tracking
is considered to be successful. The template size for the fol-
lowing experiments is 150 x 150 pixels with 20 x 20 sample
points, if not otherwise mentioned. The initial learning of
the linear predictors is done using 3 - 18 - 18 = 972 train-

rotation angle [°]
(d) In-plane Rotation

ing samples. For the non-linear approach of Benhimane and
Malis (2007) the complete template without sub-sampling is
used.

Our experiments show that the approach of Benhimane
and Malis (2007) gives the worst results, our approach based
on dimensionality reduction using the DCT gives the best
results, followed by the original approach of Jurie and Dhome
(2002a). The approaches using the reformulation of the learn-
ing process give slightly worse results than Jurie and Dhome
(2002a). However, as we show in Sect. 8.5, this can be com-
pensated by adding new training samples to the linear pre-
dictors.

When evaluating the influence of the number of used
DCT-coefficients in Fig. 7, we see that the pure DCT-based
approach gives similar results when using 81, 49, or 25
DCT-coefficients, while the combined approach shows a
significant drop in success rate when using only 25 DCT-
coefficients.

8.3 Noise

Figure 8 shows the influence of noise on the tracking
process. In order to measure the robustness of the consid-
ered approaches with respect to noise we corrupt the test
images with noise drawn from a Gaussian distribution. The
evaluation is done by increasing the standard deviation of
the Gaussian distribution. This is similar to decreasing the

@ Springer

Int J Comput Vis

N 1 :
~ 08} ~ 08 v\% — 09| -
& s S osl s
8 06] 206 2 =
= < = | ®
= = = 0.7 =
2 04 2 041} 2 2
g g g 0s) g
<9 13 9 <
2 o.2[=DCT=2d 2 02} %DCT-28| = - DCT-2§ E =% DCT-2§
@ -0-DCT-49) @ -opcr-49| “ 0.5 l-0-DCT-49) @ -0-DCT-49)
ol=per-st 0 = DCT-81 04 = DCT-81 -e-DCT-81
0 20 40 60 80 0 0.5 1 1.5 2] 10 20 30 40 50 0 50 100
view point angle [°] scale translation [px] rotation angle [°]
1 - 1 1 1
~ 08} N ~ 08 —08f — 08}
g 06} 206 20671 2067
= \ = = I
St \ St i St
g 04} A\ g 0.4 %04 g 04}
o4 A] > >4
2 .2 [~DCTHP2S S 02 “DCTHP-23| 3 (. [~+-DCTHP-25 2 02 % DCTHP-25|
@ -0 DCTHP-49| \ @ o DCTHP-49| “ 77 [[-o-DCTHP-49) i -0- DCTHP-49|
o l=perip-s1 0 -e-DCTHP-81 -=-DCTHP-81| 0 g = DCTHP-81|
0 20 40 60 80 0 0.5 1 1.5 2 0 10 20 30 40 50 -100 -50 0 50 100
view point angle [°] scale translation [px] rotation angle [°]
(a) Viewing Angle (b) Scale (¢) Translation (d) In-plane Rotation

Fig. 7 Evaluation of tracking sucess rate for both DCT-based
approaches in order to analyse the effect of the used number of DCT-
coefficients. The first row shows the approach which is only based on

dimensionality reduction and the second row the combined approach.
a Viewing angle, b scale, ¢ translation, d in-plane Rotation

success rate [%]

-%-DCTHP-25

_ — 0.8
IS IS
2 £ 06
St St
2 2
51 S 04
9 9
= =
w w
0.2 [l-==DCT-25
-©-DCT-49,
0 -8-DCT-81
0 50 100 150 0 50
noise
(a)

Fig. 8 Evaluation of the influence of noise on tracking success. a All
approaches, where for the DCT-based approaches 81 DCT-coefficients
are used. The evaluation of the influence of different numbers of DCT-

signal-to-noise ratio. An example where this is important
is in low-light conditions. This noise is added before we
apply the random transformations. While Fig. 8a compares
all considered learning approaches, Fig. 8b,c focus on DCT
and DCTHP, respectively, in order to show how the number
of DCT-coefficients influences the robustness with respect
to noise. Here, JD gives the worst results and HP clearly
the best. The pure dimensionality reduction approach gives
results that are slightly better than the approach of Jurie and
Dhome (2002a) and the combined approach gives results
approximately in the middle between DCT and HP. In both
DCT-based approaches, using more DCT-coefficients helps
to improve the robustness with respect to noise.

@ Springer

-©-DCTHP-49
0 -8-DCTHP-81
100 150 0 50 100 150
noise noise
(b) (©)

coefficients for b the approach only based on dimensionality reduction
and for ¢ the combined approach. The shown results were compute from
translation tests where a random translation of 10 & 5 pixels is applied

8.4 Number of Training Samples

In Fig. 9 we evaluate the necessary learning time with respect
to the number of random training samples used for training.
By reducing the number of training samples used for learn-
ing we can significantly reduce the necessary learning time.
However, this can produce linear predictors that result in less
stable tracking. When looking at Fig. 10, we see that reduc-
ing the number of training samples has different effects for
different approaches. While JD, DCT, and DCTHP show a
certain variance in the resulting tracking success rate, the
pure HP approach shows only a marginal difference between
using 150 training samples and 1200 training sample. The

Int J Comput Vis

4

10 M/a

)

E 10°}

-]

£

o0

£

= 2

5 107 % JD

= -©-HP

-8-DCT
o' --DCTHP
0 500 1000 1500 2000 2500

training samples

Fig. 9 Evaluation of the influence of the number of training samples
on the necessary learning time

variance in the JD approach seems not to be related to the
number of the training samples, while DCT and DCTHP
show a clear relation between tracking robustness and the
number of training samples.

8.5 Online Updating

In Fig. 11 we analyse the influence of updating linear predic-
tors after learning, as described in Sect. 7. While the tracking

robustness of JD and DCT is not influenced by updating, the
HP-based approaches both significantly improve when being
updated. However, this can be done online while tracking and
therefore, does notinfluence the initial learning time. The rea-
son for the improvement for the HP-based approaches can be
seen in the fact that in the reformulated learning process of
HP the training data is first projected onto a low-dimensional
space, which makes the learning step less dependent on the
number of training samples. However, the online updating is
done in a different way where the training data is not pro-
jected onto a low-dimensional space and therefore, shows a
more significant impact.

8.6 Real Data

In this section, we evaluate our proposed approaches on real
data and analyze their results in relation to other state-of-the-
art approaches. This includes quantitative evaluations on the
datasets of Zimmermann et al. (2009) and Lieberknecht et
al. (2009).

8.6.1 Zimmermann Dataset

In Table 1, we evaluate our approaches on the datasets
provided by Zimmermann et al. (2009) and compare it to

14
0.8
2 2 06 2
< <]
S St S
w w w
g % 04 g
= g =150 S
- “ 0.2 1l-e-300 “
-8-600 -8-600
0 -©-1200 0 -©-1200 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
translation [px] translation [px] translation [px]
(a) JD (b) HP (¢) DCT-25
14
p— p— 0.8 —
53 53 S
8 2 06 8
]]]
St St 1]
w w w
X
1 1 150 =
“ “ 0.2]©-300 “
-8-600
0 -<-1200 0 -<-1200
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
translation [px] translation [px] translation [px]
(d) bCT-81 (e) DCTHP-25 (f) DCTHP-81

Fig. 10 Analysis of the influence of the number of training samples
on the tracking success rate for a Jurie and Dhome (2002a), b the refor-
mulated learning, the dimensionality reduction based approach for ¢

25 DCT-coefficients and d 81 DCT-ceofficients, and for the combined
approach for e 25 DCT-coefficients and f 81 DCT-coefficients

@ Springer

Int J Comput Vis

§
2
]
B
2
3
Q
2
0.7 1 : : “|-o-HP
-8DCT
--DCTHP
0.6 0 ‘ 1 ‘ 2 3
10 10 10 10
num. of update samples
(a)

learning time [ms]

10’ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000

num. of update samples

(b)

Fig. 11 a Evaluation of the influence of online updating on tracking
robustness in case of random translations. The shown values are com-
puted as average success rate of translation tests for translations ranging
from O to 45 pixels. These average success rates are computed for dif-
ferent numbers of training samples. b Necessary time for updating

the results of other approaches as reported in Zimmermann
et al. (2009), Holzer et al. (2010, 2013). Apart from our
approaches, we include the results from Zimmermann et
al. (2009) (NoSLLiP), Adaptive linear predictors (Holzer et
al. 2010) (ALPs), Multi-Layered Adaptive linear predictors
(Holzer et al. 2013) (ML-ALPs), an extension of the orig-
inal linear predictor approach that is able to handle occlu-
sions (Jurie and Dhome (2002b)) (LLiP LS, LLiP LS 1/2),
Lukas-Kanade template tracking (Lucas and Kanade 1981)
(LK), SIFT (Lowe 2004), as well as the tracking approach
of Kalal et al. (2012) (TLD). Figure 12 shows a repre-
sentative image for each of the (Zimmermann et al. 2009)
datasets.

Speed is the most obvious difference between our appro-
aches and the other approaches. Similar to Jurie and Dhome
(2002a), we achieve processing frame rates of about 1, 800
fps. While the ALPs approach still achieves almost 100
fps, all the others show frame rates below 25 fps and are

@ Springer

Table 1 Comparison between the tracking results of NoSLLiP, SIFT,
an extension of the original linear predictor approach that is able to
handle occlusions (Jurie and Dhome 2002b) (LLiP LS, LLiP LS 1/2),
Lukas-Kanade template tracking (Lucas and Kanade 1981) (LK), all as
given in Zimmermann et al. (2009), as well as results for ALPs, Multi-
layered ALPs (ML-ALPs), the approach of Jurie and Dhome (JD), TLD
(Kalal et al. 2012), and our proposed approaches (HP, DCT, DCTHP)

Method Object Frame-rate Loss-of-locks Error (%)
(fps) (-1-)

NoSLLiP Towel 21.8 5/3,229 2.1
D Towel 1,887.8 74/3,230 1.8
HP Towel 1,785.2 731/3,230 32
DCT-81 Towel 1,888.5 62/3,230 22
DCT-49 Towel 1,875.9 75/3,230 29
DCT-25 Towel 1,871.2 474/3,230 5.5
DCTHP-81 Towel 1,879.9 558/3,230 2.6
DCTHP-49 Towel 1,849.5 1628/3,230 4.7
DCTHP-25 Towel 1,839.8 2819/3,230 8.8
TLD Towel 11.0 2,967/3,230 12.3
NoSLLiP Phone 16.8 20/1,799 1.8
ALPs Phone 96.7 10/2,299 1.2
ID Phone 1,861.7 99/2,299 2.0
HP Phone 1,758.8 1,765/2,299 4.0
DCT-81 Phone 1,862.4 214/2,299 3.8
DCT-49 Phone 1,883.7 2,018/2,299 5.1
DCT-25 Phone 1,886.1 1,951/2,299 14.5
DCTHP-81 Phone 1,827.7 2,271/2,299 2.0
DCTHP-49 Phone 1,869.8 2,203/2,299 11.7
DCTHP-25 Phone 1,871.6 2,299/2,299 16.0
TLD Phone 7.7 1,623/2,299 11.7
NoSLLiP MP 18.9 13/6,935 1.5
ML-ALPs MP 17.2 10/6,945 2.1
SIFT MP 0.5 281/6,935 1.4
LK (IC) MP 2.6 (25) 398/6,935 24
LLiP LS MP 24.4 1,083/6,935 6.3
LLiPLS 172 MP 24.2 93/6,935 3.0
ID MP 1,773.2 249/6,945 2.0
HP MP 1,666.9 524/6,945 22
DCT-81 MP 1,779 260/6,945 2.5
DCT-49 MP 1,799.6 254/6,945 29
DCT-25 MP 1,877.6 1,579/6,945 6.0
DCTHP-81 MP 1,776.3 619/6,945 2.6
DCTHP-49 MP 1,794 466/6,945 34
DCTHP-25 MP 1,868.9 1,378/6,945 43
TLD MP 8.5 6,150/6,945 12.5

ALPs, ML-ALPs, JD, and our approaches are implemented in C++. For
the evaluation of SIFT, Zimmermann et al. (2009) used a publicly avail-
able implementation. All other methods were implemented in Matlab

therefore significantly slower. Note, that all three datasets
(TOWEL, PHONE, MP) include frames where the template
partly leaves the visible image region or is partly occluded.

Int J Comput Vis

Fig. 12 Representative images of the three datasets provided by Zimmermann et al. (2009). From left to right the towel-, phone-, and mouse-pad-

dataset

Therefore, approaches that are able to handle occlusions or
out-of-image-scenarios (NoSLLiP, ALPs, ML-ALPs, LLiP
LS 1/2) show the best loss-of-locks numbers.

For our algorithms, we see that the HP approach shows
significant problems with the provided datasets. Among the
datasets, it performs best in the MOUSEPAD sequence. The
purely DCT-based approach performs well, compared to the
original approach of Jurie and Dhome (2002a) (JD), in the
TOWEL and MOUSEPAD sequences, but shows problems
in the PHONE sequence.

As we confirm in Sect. 8.6.2, all presented approaches
seem to have problems with repetitive textures. The DCTHP
approach performs in a range between the HP and DCT
approach, except for the phone sequence, where it fails in
most cases. Since both, HP and DCT have problems with
repetitive texture, this seems to add up in the combined
approach. Again, similar observations can be made in Sect.
8.6.2.

In defense of TLD, we have to note that despite the high
loss-of-locks numbers it is able to track the approximate loca-
tion of the object of interest in the PHONE and MOUSEPAD
datasets. But, it fails to do this most of the times in the
TOWEL dataset. TLD is able to redected the tracked object
when they lose tracking which poses a significant advan-
tage. However, if other tracking approaches are combined
with a detector a re-detection is possible for them too. While
TLD is not able to track the full pose of the objects in the
sequences, it also shows a tendency to drift apart from the
initally selected template. Although it does not lose track of
the template, the center of the bounding box can not be used
to mark the center of the object in a stable way. The same
holds for the extent of the bounding box which fluctuates
over time. Its processing speed ranges within approximately
5 — 151ps and therefore, our proposed approaches are up to
two orders of magnitude faster in tracking than TLD. In gen-
eral, TLD might be well suited for tracking deformable or
unconstrained objects that change their appearance online.
However, if the change in appearance can be described via a
model, e.g. a homography, other algorithms such as the ones
shown in Table 1 seem more suitable.

8.6.2 Lieberknecht Dataset

For the evaluation in Table 2, we applied the original
approach of Jurie and Dhome (2002a) as well as our pro-
posed approaches on the datasets provided by Lieberknecht
et al. (2009). For this evaluation, ground truth data is given
every 250th frame and therefore, if tracking is lost, it can
only be reinitialized at every 250th frame. The final evalua-
tion results are obtained by providing the tracking results to
the authors of the dataset. A frame is counted as successfully
tracked if the average error of its tracked corners is less than
10 pixels. These corners are at an artificial position outside
of the actual image data. Although this increases the effect
of small misalignments, it prohibits from tracking data close
to these control points in order to falsely improve results.

The (Lieberknecht et al. 2009) dataset considers four
different texture scenarios (low, repetitive, normal, high)
and five different motion and illumination scenarios (angle,
range, fast far, fast close, illumination). For each texture sce-
nario, two different scenes are provided (see Fig. 13). Exem-
plary changes for the motion and illumination scenarios are
shown in Fig. 14. Before going into details of the evaluation,
we want to note that a exact comparison between the success
rates of the different approaches has to be done with caution,
as the success percentage heavily depends on which of the
250 frame window the tracking failure occurs.

In general, the presented methods show good results on
the low and normal texture scenarios. The success rate drops
for DCT-based methods if the number of DCT-coefficients is
reduced. In the ‘Low-1" dataset, the original approach of Jurie
and Dhome (2002a) (JD) is actually outperformed by the
presented methods. In the case of ‘Low-2’, ‘Normal-1’, and
‘Normal-2’ similar results as achieved by JD are obtained.
In the cases where the refumulated learning approach (HP)
works well, it outperforms the other method in the illumina-
tion scenarios. This can be accounted to the increased robust-
ness with respect to low signal-to-noise ratios, as shown in
Sect. 8.3.

For the repetitive scenarios, we see that the reformu-
lated learning (HP) shows significant problems. The purely

@ Springer

Int J Comput Vis

Table 2 Comparison of the approach of Jurie and Dhome (2002a) (JD) with our proposed approaches (HP, DCT, DCTHP) on the datasets of
Lieberknecht et al. (2009)

Low-1 Angle Range Fast far Fast close Illum. Low-2 Angle Range Fast far Fast close Illum.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
ID 71.2 57.8 25.5 12.2 61.8 JD 100 73.6 335 31.6 79.2
HP 98.1 71.5 49.8 15.8 86.9 HP 98.6 75.3 21.2 27.6 79.6
DCT81 90.6 70.6 51.8 12.9 82.2 DCTS81 96.0 73.7 28.4 27.8 76.2
DCT49 62.3 532 19.0 12.2 57.3 DCT49 92.8 72.2 26.9 17.4 74.2
DCT25 62.5 50.1 16.2 11.0 69.3 DCT25 28.0 8.2 2.7 4.3 19.2
DCTHP81 90.6 70.6 51.8 12.9 82.2 DCTHPS81 99.6 73.7 21.1 23.4 75.7
DCTHP49 90.3 56.8 21.9 132 774 DCTHP49 89.3 78.8 20.3 16.6 73.8
DCTHP25 74.0 51.7 21.1 11.5 75.1 DCTHP25 6.8 6.2 4.8 2.4 7.5
Repetitive-1 Angle Range Fast far Fast close Illum. Repetitive-2 Angle Range Fast far Fast close Illum.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
ID 70.1 69.1 334 20.6 78.0 D 84.1 47.8 9.4 34.8 92.5
HP 18.2 9.4 7.8 42 18.8 HP 6.1 1.5 23 0.6 10.2
DCT81 69.8 62.8 28.3 15.2 74.2 DCTS81 76.9 35.6 10.1 19.9 79.6
DCT49 68.4 54.2 352 14.0 67.5 DCT49 76.6 21.8 7.8 132 71.8
DCT25 28.0 8.2 2.7 43 19.2 DCT25 18.7 6.2 1.2 22 22.5
DCTHP81 14.2 5.0 3.8 2.5 9.2 DCTHP81 24 0.3 0.2 0.9 0.4
DCTHP49 3.0 1.6 4.2 0.1 2.1 DCTHP49 0.4 0.2 0.2 0.3 0.8
DCTHP25 1.7 6.6 33 1.8 2.5 DCTHP25 0.3 1.0 0.6 0.6 0.3
Normal-1 Angle Range Fast far Fast close Illum. Normal-2 Angle Range Fast far Fast close Illum.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
ID 96.8 60.4 23.6 13.7 72.8 D 97.8 552 17.2 12.3 82.2
HP 99.4 51.2 21.7 15.8 75.5 HP 75.3 552 15.5 11.3 96.9
DCT81 94.0 46.2 22.8 124 71.8 DCTS81 96.5 54.6 20.4 12.0 71.1
DCT49 63.3 15.8 6.1 11.6 65.1 DCT49 54.1 36.6 12.7 11.2 72.2
DCT25 37.1 4.8 4.7 6.9 19.7 DCT25 322 4.9 4.0 6.3 18.8
DCTHP81 96.8 54.2 8.8 12.8 69.8 DCTHPS1 88.5 54.9 15.0 10.9 74.0
DCTHP49 559 33.1 7.9 12.2 51.0 DCTHP49 75.9 51.2 14.5 10.8 82.0
DCTHP25 27.5 5.0 4.6 7.0 15.9 DCTHP25 9.8 0.8 0.4 2.8 2.5
High-1 Angle Range Fast far Fast close Illum. High-2 Angle Range Fast far Fast close Illum.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
D 442 8.2 5.8 5.1 67.4 JD 29.6 14.8 8.1 19.2 50.8
HP 17.2 4.0 4.3 33 334 HP 6.8 6.2 4.8 24 7.5
DCTS81 9.4 4.7 22 32 36.1 DCTS81 26.8 12.2 7.8 13.5 50.9
DCT49 1.7 1.8 1.8 2.3 15.2 DCT49 29.5 12.2 72 9.6 49.1
DCT25 0.5 04 0.3 0.7 2.7 DCT25 10.4 4.0 6.0 4.8 22.7
DCTHPS1 3.5 45 2.5 2.4 48.7 DCTHPS1 20.3 6.3 6.0 9.8 21.1
DCTHP49 0.8 1.8 0.4 0.7 6.1 DCTHP49 134 3.7 43 3.6 0.5
DCTHP25 0.1 0.2 0.1 0.5 04 DCTHP25 1.8 0.4 0.9 24 1.8

The results show the tracking success rate under different texture, motion, and illumination conditions. Results for other approaches can be found
in Lieberknecht et al. (2009)

DCT based methods still perform acceptable and in a similar ~ proposed methods show a significant drop in performance
range as JD. However, the combination of both approaches on ‘High-1’. This can be explained by the fine details of the
(DCTHP) also fails in these scenarios. The most challeng- texture which are necessary to be considered for successfull
ing sequences are the high texture sequences. While DCT81 tracking. Due to the compression applied in the DCT-based
and DCT49 still achieve similar results as JD in "High-2" all ~ approaches, they tend to lose these details and therefore fail.

@ Springer

Int J Comput Vis

Low-1

Repetitive-2

Low-2

Fig. 13 Representative images of the datasets provided by Lieberknecht et al. (2009). From left to right column: low, repetitive, normal, and high

texture

’
\

Angle

Range

Fast Far

Tlum.

Fast Close

Fig. 14 Representative images of the Low-2 dataset provided by Lieberknecht et al. (2009) to illustrate the different motion and illumination

scenarios used in Table 2

9 Applications

Due to their high efficiency, our proposed approaches are
well-suited for applications using mobile devices. Therefore,
we implemented them on a standard mobile phone with 1 GB
of RAM and a 1.2 GHz dual core processor where no opti-
mization for processor specific technology is implemented,
and only a single core is used for learning and tracking.
The learning process for a template with 16 x 16 sample
points and 16 - 16 - 3 = 768 training samples took approx-
imately 18000 ms for the original approach of Jurie and
Dhome (2002a), about 600 ms for our proposed approach

using dimensiontality reduction, and roughly 350 ms for the
approach using the reformulation of the learning equation.
Based on these results, the reformulated approach is more
than 50 times faster than the approach of Jurie and Dhome
(2002a) and allows interactive applications to start tracking
almost immediately. On the other hand, tracking takes about
2.5 ms for all approaches.

10 Conclusions

Linear predictors were first introduced by Jurie and Dhome
(2002a) and enable robust tracking at very high frame rates.

@ Springer

Int J Comput Vis

The main goal of this paper is to overcome the long learning
time which was the main drawback of their approach. Thus,
we proposed three different methods to speed-up this learning
procedure for template tracking. While they all significantly
reduced learning time in two orders of magnitude range, they
individually have different properties that makes them suited
for different application scheme.

Our dimensionality reduction based approach in Sect. 4
gives the highest tracking success rate. By choosing an appro-
priate number of DCT-coefficients in learning, it reaches sim-
ilar learning speeds as the other approaches and even works
with a very low number of training samples. However, if a
significant amount of noise is present, the reformulation of
the learning process in Sect. 5 gives the best results. But this
approach leads to a slightly decreased success rate in track-
ing. Lastly, the combined approach in Sect. 6 is acompromise
between the two other approaches and has the advantage of
learning speed, robustness to noise and robustness to large
motions.

Acknowledgments
Inc., California, USA.

This work was partly funded by Willow Garage,

References

Baker, S., & Matthews, 1. (2001). Equivalence and efficiency of image
alignment algorithms. In Conference on Computer Vision and Pat-
tern Recognition.

Baker, S., & Matthews, I. (2004). Lucas-kanade 20 years on: A unifying
framework. International Journal of Computer Vision, 56(3), 221—
255.

Ben-Israel, A., & Greville, T. N. (2003). Generalized inverses. Berlin:
Springer.

Benhimane, S., & Malis, E. (2007). Homography-based 2d visual track-
ing and servoing. International Journal of Robotics Research, 26(7),
661-676.

Cascia, M., Sclaroff, S., & Athitsos, V. (2000). Fast, reliable head track-
ing under varying illumination: An approach based on registration of
texture-mapped 3d models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22, 322-336.

Dame, A., & Marchand, E. (2010). Accurate real-time tracking using
mutual information. In 2010 9th IEEE International Symposium on
Mixed and Augmented Reality (ISMAR).

Dellaert, F., & Collins, R. (1999). Fast image-based tracking by selective
pixel integration. In ICCV Workshop of Frame-Rate Vision.

Grabner, H., Leistner, C., & Bischof, H. (2008). Semi-supervised on-
line boosting for robust tracking. In: D. Forsyth, P. Torr & A. Zisser-
man (Eds.), Computer vision ECCV 2008. Lecture notes in computer
science (Vol. 5302, pp. 234-247). Berlin Heidelberg: Springer.

GriBl, C., ZinBer, T., & Niemann, H. (2003). Illumination insensi-
tive template matching with hyperplanes. In Proceedings of Pattern
recognition: 25th DAGM Symposium.

GriBl, C., ZinBer, T., & Niemann, H. (2004). Efficient hyperplane track-
ing by intelligent region selection. In Image Analysis and Interpre-
tation.

Hager, G., & Belhumeur, P. (1998). Efficient region tracking with para-
metric models of geometry and illumination. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 20(10), 1025-1039.

@ Springer

Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., & Lepetit, V.
(2008). Online learning of patch perspective rectification for efficient
object detection. In Conference on Computer Vision and Pattern
Recognition.

Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab,
N., & Lepetit, V. (2011). Multimodal templates for real-time detec-
tion of texture-less objects in heavily cluttered scenes. In IEEE Inter-
national Conference on Computer Vision (ICCV).

Hinterstoisser, S., Kutter, O., Navab, N., Fua, P., & Lepetit, V. (2009).
Real-time learning of accurate patch rectification. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P,, & Navab, N. (2010).
Dominant orientation templates for real-time detection of texture-
less objects. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige,
K., & Navab, N. (2012). Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes. In
Asian Conference on Computer Vision.

Holzer, S., Hinterstoisser, S., Ilic, S., & Navab, N. (2009). Distance
transform templates for object detection and pose estimation. In
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition.

Holzer, S., Ilic, S., & Navab, N. (2010). Adaptive linear predictors for
real-time tracking. In: IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition.

Holzer, S., Ilic, S., & Navab, N. (2013). Multi-layer adaptive linear pre-
dictors for real-time tracking. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(1), 105-117.

Holzer, S., Ilic, S., Tan, D., & Navab, N. (2012). Efficient learning of lin-
ear predictors using dimensionality reduction. In Asian Conference
on Computer Vision.

Holzer, S., Pollefeys, M., Ilic, S., Tan, D.J., & Navab, N. (2012). Online
learning of linear predictors for real-time tracking. In /2th European
Conference on Computer Vision (ECCV).

Jurie, F., & Dhome, M. (2002). Hyperplane approximation for template
matching. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24(7), 996—1000.

Jurie, F., & Dhome, M. (2002). Real time robust template matching. In
British Machine Vision Conference.

Kalal, Z., Mikolajczyk, K., & Matas, J. (2012). Tracking-learning-
detection. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 34(7), 1409-1422.

Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small
ar workspaces. In 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, 2007. ISMAR 2007, pp. 225-234.

Klein, G., & Murray, D. (2008). Improving the agility of keyframe-
based slam. Computer Vision ECCV 2008. Lecture Notes in Com-
puter Science (Vol. 5303, pp. 802-815). Berlin Heidelberg: Springer.

Lieberknecht, S., Benhimane, S., Meier, P., Navab, N. (2009). A dataset
and evaluation methodology for template-based tracking algorithms.
In ISMAR, pp. 145-151.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2), 91-110.
Lucas, B., & Kanade, T. (1981) An Iterative Image Registration Tech-
nique with an Application to Stereo Vision. In International Joint

Conference on Artificial Intelligence.

Malis, E. (2004). Improving vision-based control using efficient second-
order minimization techniques. In /[EEE International Conference on
Robotics and Automation.

Matas, J., Zimmermann, K., Svoboda, T., Hilton, A. (2006). Learning
efficient linear predictors for motion estimation. In Computer Vision,
Graphics and Image Processing.

Mayol, W.W., & Murray, D.W. (2008). Tracking with general regres-
sion. Journal of Machine Vision and Applications, 19(1), 65-72.

Int J Comput Vis

Ozuysal, M., Fua, P, Lepetit, V. (2007). Fast Keypoint Recognition in
Ten Lines of Code. In Conference on Computer Vision and Pattern
Recognition.

Parisot, P., Thiesse, B., & Charvillat, V. (2007). Selection of reliable fea-
tures subsets for appearance-based tracking. In Signal-Image Tech-
nologies and Internet-Based System, 16—18 Dec 2007, pp. 891-898.

Richa, R., Sznitman, R., Taylor, R., Hager, G. (2011). Visual tracking
using the sum of conditional variance. In 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

Shum, H.Y., & Szeliski, R. (2000). Construction of panoramic image
mosaics with global and local alignment. International Journal of
Computer Vision, 36(2), 101-130.

Vacchetti, L., Lepetit, V., & Fua, P. (2004). Stable real-time 3d tracking
using online and offline information. /[EEE Transactions on Pattern
Analysis and Machine Intelligence, 26(10), 1385-1391.

Zimmermann, K., Matas, J., & Svoboda, T. (2009). Tracking by an
optimal sequence of linear predictors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(4), 677-692.

@ Springer

APPENDIX
F

ADAPTIVE NEIGHBORHOOD SELECTION

FOR REAL-TIME SURFACE NORMAL ESTIMATION
FROM ORGANIZED POINT CLOUD DATA

USING INTEGRAL IMAGES

©2012 IEEE. Reprinted, with permission, from Stefan Holzer, Radu Bogdan Rusu,
Michael Dixon, Suat Gedikli, and Nassir Navab, Adaptive neighborhood selection for
real-time surface normal estimation from organized point cloud data using integral im-
ages, 2012 IEEE /RSJ International Conference on Intelligent Robots and Systems (IROS),
October 2012.

Own contributions. My contributions to this work include the core idea, the design,
and the implementation of the methods for adaptive neighborhood selection and efficient
computation of surface normals. The core idea of the paper was refined in collaboration
with the other co-authors. All co-authors were involved in the writing of the paper.

111

Adaptive Neighborhood Selection for Real-Time Surface Normal
Estimation from Organized Point Cloud Data Using Integral Images

S. Holzer’? and R. B. Rusu? and M. Dixon? and S. Gedikli2 and N. Navab!

Abstract—1In this paper we present two real-time methods
for estimating surface normals from organized point cloud
data. The proposed algorithms use integral images to perform
highly efficient border- and depth-dependent smoothing and
covariance estimation. We show that this approach makes it
possible to obtain robust surface normals from large point
clouds at high frame rates and therefore, can be used in real-
time computer vision algorithms that make use of Kinect-like
data.

I. INTRODUCTION

The recent development of a new class of affordable
depth sensors, like the Kinect, has been of great interest
to the robotics community. These new sensors are able
to simultaneously capture high-resolution color and depth
images at high frame rates. When the camera’s intrinsic
calibration parameters are known, these depth images can
be converted into organized point clouds (i.e., clouds of 3D
points sampled from a regular 2D grid), which are useful in
a wide array of important robotics applications, such as 3D
registration and object recognition.

Besides depth, surface normal orientation is one of the
most discrimative information that can be obtained from
point clouds and is therefore optimally suited to be used
in object detection approaches. However, state-of-the-art
normal estimation algorithms are often slow when operat-
ing on large and/or noisy point clouds. Thus, for robotics
applications that require real-time performance, fast normal
estimation is essential.

In this work, we present two algorithms for estimating
surface normals in organized point clouds. Both methods
employ an adaptive window size to analyze local surfaces,
which allows us to effectively handle depth-dependent sen-
sor noise and to avoid common artifacts caused by depth
discontinuities. Typically, multi-scale algorithms come with
increased computational costs, especially when large window
sizes are used; however, because of the point clouds’ inherent
grid structure, we are able to use integral images to perform
the necessary computation in constant time, independent of
the window size.

II. RELATED WORK

Normal estimation methods can be divided into two dif-
ferent categories: averaging and optimization-based meth-

*This work was supported by Willow Garage Inc.

LS. Holzer and N. Navab are with the Department of Computer Science,
Technische Universitit Miinchen, 85748 Garching bei Miinchen, Germany
{holzers, navab}@in.tum.de

2S. Holzer, R. B. Rusu, M. Dixon and S. Gedikli are with Willow Garage
Inc., Menlo Park, CA 94025, USA {holzers , rusu, mdixon,
gediklil}@willowgarage.com

(b)

Fig. 1. (a) PR2 robot with a Kinect depth sensor mounted on its head. (b)
Color-coded surface normals estimated using the proposed approaches.

ods [1]. Averaging methods [1], [2], [3], [4], [5], [6] compute
the normals at a certain point as a (weighted) average of
point data within a certain neighborhood. Examples for these
neighboring points can be the nearest neighbors, all points
within a certain region of interest, or points that are in some
other way connected to the point of interest, e.g. neighbors
in a triangulated mesh. The weights, which define how
strong the influence of particular information taken from the
local neighborhood is, can be computed in different ways.
Common ways of computing the weighted mean include
weighting all points equally [2], weighting by angle [5],
weighting by sine and edge length reciprocals [4], weighting
by areas of adjacent triangles [4], weighting by edge length
reciprocals [4], and weighting by square root of edge length
reciprocals [4]. In [6], Holz et al. presented how integral
images can be used in the efficient averaging for normal
estimation process. For a more detailed overview of methods
based on averaging please refer to [3].

Optimization-based methods usually try to fit geometric
primitives, e.g. a plane, into the local neighborhood of
the point of interest or penalize other criteria, e.g. the
angle between the estimated normal vector and tangential
vectors. If the optimization is formulated as a linear problem
in matrix-vector notation, the desired minimization can be
directly obtained from the result of a singular value decom-
position (SVD) or a principal component analysis (PCA) [1].
Amongst others, existing methods try to fit planes [7], [8],
[9], [10], maximize the angle between the tangential vectors
and the normal vector [11], or try to estimate not only the
orientation of the tangent plane but also the curvature [12],
[13], [14]. A more detailed comparison of these methods can
be found in [1].

III. NORMAL ESTIMATION

In the following we will describe the different steps we
use to compute surface normals from organized point clouds
based on integral images. First, we will describe the basic
principle of integral images. Then we introduce the pre-
processing step used to estimate the neighborhood size for
each pixel. Finally, we introduce two different approaches for
computing surface normals: a method based on averaging as
well as an optimization-based method. Both techniques make
use of integral images to improve processing speed. The first
approach (see Sec. III-C) uses a single integral image for
depth and border aware smoothing of the depth map, while
the second approach (see Sec. III-D) computes covariance
matrices using integral images and obtains the normals from
the covariance matrices.

A. Integral Images

An integral image Z corresponding to an image O makes
it possible to compute the sum of all values of O within
a certain rectangular region Ry, n,)—s(m.,n.) (se€ Fig. 2)
by accessing only four data elements in memory. This not
only makes the computation very efficient but also makes the
computational costs independent of the size of the rectangle.
We will use this property later for smoothing since it allows
us to use smoothing areas which differ in size for every point.
To be able to compute the area sum of an image O each pixel
element (m,n) " in the integral image Zp is defined as the
sum of all elements which are inside of the rectangular area
between O(0,0) and O(m,n):

To(m,n) =Y > O(i,j). (1)
i=0 j=0

This can be efficiently computed iteratively as

Zo(m,n) = O(m,n) 2)
+ ZO(m - 17”)
+ Zo(m,n—1)

—Zo(m—1,n—-1),

where Zp(u,v) = 0 if (u,v) is not in the domain of O.
Therefore, a single pass over the input image is sufficient
to compute the corresponding integral image. The average
value within a region can then be computed as

1

S(IO7man7r):7' (

e Io(m+rn+r) 3)

—Zo(m—r,n+r)

—Zo(m+mr,n—r)

+ Zo(m—r,n—r1)),
where (m,n)T defines the center and r the inner radius of
the rectangular region.

B. Smoothing

Data obtained from a 3D sensor typically contains noise.
The standard approach for reducing the effect of noise is to
use smoothing. A big advantage of using integral images for

0.1

0.00 L —— fitted curve

depth change [m]

in
o

25 3 35 4
depth [m]

Fig. 3. Visualization of depth changes (blue circles) depending on the depth
at which they occur. The minimal depth changes are fitted by a parabola
(red line).

averaging is hereby that its processing speed is independent
of the size of the smoothing area since we always need the
same amount of memory accesses. Therefore, we can use
varying smoothing sizes depending on the characteristics of
the considered point and its neighborhood.

In the following we will use two different indicators for
estimating the size of the smoothing area for a certain point
of interest. The first indicator is the depth of the point of
interest, since the noise usually depends on the depth of the
perceived data, i.e. if data is acquired at a far distance then it
has a worse signal-to-noise ratio than data that is acquired at
close distances. However, if the size of the smoothing area is
determined based only on the depth of the point of interest
we would also smooth over object borders. This would merge
information across two distinct surfaces and lead to incorrect
normal estimates. In order to prevent this, we make the size
of the smoothing area also dependent on large depth changes
which are likely to be object borders. Both indicators are then
combined into a single Smoothing Area Map which defines
the smoothing area for each point of the organized point
cloud.

1) Depth-Dependent Smoothing Area Map: Fig. 3 shows
the minimal depth change (blue circles) that can occure
at a specific depth. As shown, the value gets bigger with
increasing depth. The red curve shows that the relationship
between depth and minimum depth change can be described
using the function

foc(d) =a-d?, “4)

where d is a depth value. For the device used in our exper-
iments we estimated ov = 0.0028. Based on this observation
it is clear that the smoothing area has to get bigger with
increasing depth in a similar way. Therefore, we define
the response of the depth-dependent Smoothing Area Map
B(m,n):

B(m’n) =B fpc (D (m7n))a &)

()

Fig. 2.

(b)

(a) The sum of a 2D region can be efficiently computed from an integral image by accessing only four data elements in memory which correspond

to the for corners of the rectangular region. (b) Estimating a surface normal as cross-product of the vectors between the horizontal and vertical neighbors

of the point of interest.

where 3 is a user specified value to control the increase of
the smoothing area size and D(m,n) is the depth value at
the image point (m,n)".

2) Depth Change Indication Map: The simplest solution
for computing the Depth Change Indication Map would be
to apply a threshold on the first derivative of the depth map.
However, as we just saw, the minimum possible depth change
depends on the depth and therefore, a simple threshold would
only be valid at a specific depth. Instead, we create a binary
Depth Change Indication Map C by using a depth change
detection threshold ¢p¢(d) which is dependent on the actual
distance:

tpc(d) =~ fpc (d), (6)

where « is a scale factor which defines how sensitive the
depth change detection will be. Assuming that §D, (m,n) =
D(m + 1,n) — D(m,n) and dDy(m,n) = D(m,n +
1) — D(m,n), the depth change indication map C is then
computed as

{ if |6D,(m,n)|| > tpc(D(m,n))
C(m,n) = or [[6Dy(m, n)|| = tpc(D(m,n))

0 otherwise.

@)
3) Final Smoothing Area Map: Using the depth-
dependent Smoothing Area Map B and the Depth Change
Indication Map C we then compute the final Smoothing Area
Map R. For this, we first compute the distance transform
map [15] corresponding to C, which gives us for each
point (m,n) " the 2D distance to the next depth change as

T (m,n). R is then computed as

: T(m,n)

R(m,n) = min(B(m,n), 7), 8)
where min(a,b) returns the minimum of « and b. The
distance values 7 (m, n) are divided by the square root of 2
since we do not use circular but rectangular smoothing areas.

C. Normal Estimation based on Smoothed Depth Changes

A standard way of estimating the surface normal 77, at
a point p at image location (m,n)" is to compute the 3D

vector v, ;, between the left and right neighbor as well as the
vector ., between the upper and lower neighbor of p and
then computing the cross-product between these two vectors:

Tlp = Up,h X Upw €))

Due to the noise characteristics of depth sensors, e.g. the
Kinect, this would lead to noisy normals. Smoothing the
depth data before computing the normals is a common
approach to reduce the influence of noise. However, smooth-
ing with a fixed window size also smoothes over object
boundaries, which leads to undesired artifacts. Therefore,
we use the smoothing area map described in Sec. III-
B.3 to prevent from smoothing over object boundaries and
efficiently compute the vectors @, 5, and ¥, , as:

Pr(m+r,n)—Py(m—r,n)

6p,h,z = 2 5 (10)
. Py,(m+7r,n)—P,(m—mrn
= PATERI=Pimnn)
R SZp,,m+1,n,r—1
Bpe = S 5) (12)
S(Zp,,m—1,n,r—1)
2
N Pe(m,n+1)—Pr(m,n—r
T = L2)Pl Ly
Tomy = ’Py(m,n+r)g7)y(m7nfr)’ (14)
R SZp,,mn+1,r—1
Upw,z = (P 9) (15)
S(Zp,,m,n—1,r—1)
2)

where P,, P,, and P, are two-dimensional maps storing the
2-, y-, and z-coordinates of the organized point cloud, Zp, is
the integral image of the z-components of the point cloud,
and r = R(m,n). The normals are then computed using
Eq. (9).

D. Normal Estimation based on Covariance Matrices

Our second method is an optimization-based method,
where we estimate surface normals by trying to fit a plane

into the local neighborhood N, of the point of interest p. This
is done by computing the eigenvectors of the corresponding
covariance matrix C,. The size of the neighborhood is esti-
mated using the smoothing area map as described in Sec. III-
B.3. Neighboring points are commonly found by performing
a nearest neighbor search or selecting all points within a
certain distance. This, however, is an expensive operation
and therefore, we make use of the method described by
Porikli and Tuzel [16] for efficient computation of covariance
matrices using integral images. For this we have to compute
nine integral images, where three of them, namely Zp_,
I’py, and Zp_, are for the x-, y- and z-coordinates of the
points of the point cloud and the remaining six are for all
possible combinations of the point-coordinates: Zp, , Zp_,,
Ip,.. Ip,,, Ip,., Ip,., where Ip,, is the element-wise
multiplication of Zp, and Zp,. The covariance matrix C,
for a point p at (m,n)' can then be computed as:

yz? zz?

Cp = Cyz Cyy Cyz - Cy Cy , (16)
Czxz Czy Czz C, Cy
with
Cze = STp,,,m,n,R(m,n)), (17)
Coy = Cyz = S(Ip,,,m,n,R(m,n)), (18)
Crz = Czpp = S(Ipmz7m n, R()) (19)
cyy = S(Zp,,,m,n R(mﬂl)) (20)
Cyr = Coy = S(Ipuz,m n R(m, n)) (21)
Cz: = S(Zp,. ,m,n,R(m,n)), (22)
and
¢z =S@p,, m,n, R(m,n)), (23)
Cy = S(Ipy7 m,n, R(m7 n))’ (24)
¢, =S8(Tp,,m,n, R(m,n)). (25)

Finally, we compute the normal 7, from the covariance
matrix C, as the eigenvector which corresponds to the
smallest eigenvalue. Although this method is computationally
more expensive than the method described in Sec. III-C it has
the advantage that the eigenvalues of the covariance matrix
can be directly used to get information about the planarity
of the neighborhood around the point p at image location
(m,n)T. This can be used for plane fitting as well as efficient
edge or corner detection.

IV. RESULTS

In this section we show how the presented surface normal
estimation methods perform under various conditions and
compare them to a state-of-the-art KNN-based implementa-
tion [17]. All experiments are performed on a standard laptop
with a 2.26 GHz Intel(R) Core(TM)2 Quad CPU and 4 GB
of RAM, where only one core is used for the computations.
An open-source implementation of our approach is available
in the Point Cloud Library (PCL)' [18].

Processing time (ms)

++ + o+ o+ + + + +

107 4
+—CM
—©—SsDC
e —»— kNN
0 200 400 600 800 1000 1200 1400 1600

Num of considered points

Fig. 4. Processing time of different normal estimation methods with respect
to the size of the smoothing area. Note that the processing time is given in
log-scale.

Angular error (deg)

1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Num of considered points

Fig. 5. Normal estimation error for different normal estimation methods
with respect to the size of the smoothing area.

A. Processing Speed

Fig. 4 shows the processing time with respect to the
number of points considered for smoothing for the ap-
proaches introduced in Sec. III-C (SDC), Sec. III-D (CM),
and a state-of-the-art kKNN-based approach (kNN) of Rusu et
al. [17], which uses the k-nearest neighboring points for
normal estimation. While the necessary processing time is
constant for our approaches the processing time of et al. [17]
increases with the number of considered neighboring points.
The experiment is done using synthetic data by rendering a
mesh model into a depth map of size 640 x 480 which is then
converted into a point cloud of 307200 points. The average
processing time for CM is approximately 151 ms and for
SDC approximately 28 ms. Therefore, by using the SDC
method we can obtain surface normals for full-resolution
Kinect-data at around 35 Hz.

B. Normal Estimation Error

In Fig. 5 we compare different normal estimation methods
with respect to the angular error between the ground truth

Uhttp://www.pointclouds.org

Fig. 6.
bunny.

Surface normals estimated from a partial view of the Stanford

Fig. 7. Visualization of the difference between the normals estimated using
our covariance matrix approach and the approach of [17]. For every point in
the point cloud we visualize the dot-product between the normals estimated
with the different methods, where blue color corresponds to a small and red
corresponds to a large difference between the normals.

normal vectors and the estimated ones. As in Sec. IV-A this
experiment is done using synthetic data without added noise.
While the proposed methods (CM, SDC) behave similarly
for different numbers of considered neighbors, the error
obtained by the kNN-based approach increases faster when
larger neighborhoods are used. An explanation for this is that
the kNN-based approach uses a fixed number of neighbors
independent of the presence of possible object borders. The
proposed methods, on the other hand, adapt the number of
considered points according to the specific depth as described
in Sec. III-B.3.

Fig. 8 addresses the sensitivity to noise. As we see,
our approach based on smoothed depth changes (SDC)
has significantly better abilities to handle noise than our
approach based on covariance matrices (CM) or the kNN-
based approach, which both use the covariance matrix to
estimate surface normals.

C. Qualitative Results

In Fig. 9 we show qualitative results of three different
scenes. The first row shows the data which we get from
a Kinect sensor, that is a color image and a depth map.
The second row shows resulting normals that we get without
depth-dependent smoothing (left) and with depth-dependent
smoothing (right). The normals are color-coded, where each
vector component is represented by a different color channel.
It is easily visible that the depth-dependent smoothing helps
to dramatically reduce the noise in the resulting normal
vectors. Fig. 6 shows surface normals estimated from a point
cloud of a partial view of the Stanford bunny. In Fig. 7 we
visualize the difference between the normals obtained using
the method of [17] and our covariance matrix based method.

V. CONCLUSION

In this paper we presented new methods for fast and
robust estimation of surface normals from organized point
cloud data. The use of integral images makes it possible to
adapt the considered neighborhood size according to depth
and object borders without any additional cost in terms of
processing speed. We demonstrated that this way of normal
estimation enables dense normal estimation at high frame
rates and therefore, makes it possible to integrate surface
normal information into vision based applications which
need to run at a reasonable speed. However, the proposed
approach shows two weaknesses: the lack of ability to
compute normals for points very close to a depth change and
the fact that it smoothes over edges where no depth change
is present. Although not considered within this paper, the
first problem can be easily addressed by using a different
normal estimation method for close to a depth change. For
the edge-smoothing problem, a two-pass approach can be
applied where in the second pass areas with high variations
in surface normal orientations are treated as object borders
similar to high changes in depth.

REFERENCES

[1] K. Klasing and D. Althoff and D. Wollherr and M. Buss, Comparison
of surface normal estimation methods for range sensing applications,
IEEE International Conference on Robotics and Automation (ICRA),
2009, Kobe, Japan.

[2] H. Gouraud, Continuous Shading of Curved Surfaces, IEEE Trans.
Comput., June 1971.

[3] S. Jin and R. R. Lewis and D. West, A comparison of algorithms for
vertex normal computation, The Visual Computer, 2005.

[4] N. Max, Weights for computing vertex normals from facet normals,
J. Graph. Tools, March 1999.

[5] G. Thiirmer and C. A. Wiithrich, Computing vertex normals from
polygonal facets, J. Graph. Tools, March 1998.

[6] D. Holz and S. Holzer and R. B. Rusu and S. Behnke, Real-Time
Plane Segmentation using RGB-D Cameras, Proceedings of the 15th
RoboCup International Symposium, July 2011, Istanbul, Turkey.

[7] J. Huang and C. H. Menq, Automatic data segmentation for geometric
feature extraction from unorganized 3-D coordinate points, IEEE
Transactions on Robotics and Automation, 2001.

[8] H. Hoppe and T. Derose and T. Duchamp and J. J. Mcdonald and
W. Stuetzle, Surface reconstruction from unorganized points, Annual
Conference on Computer Graphics, 1992.

[9] C. Wang and H. Tanahashi and H. Hirayu and Y. Niwa and K.
Yamamoto, Comparison of Local Plane Fitting Methods for Range
Data, Computer Vision and Pattern Recognition, 2001.

Anguiar error (deg)

Fig.

8.

Angular error (deg)

"0,
K3 1000 o

(b) SDC

Anguiar error (deg)

ge o, qse
woee! % 1000 o nos®

(c) kNN

Normal estimation error for different normal estimation methods with respect to the size of the smoothing area and the noise in the z-component.

Fig. 9. Comparison of normal estimation with fixed and variable smoothing area size for real scenes. The first two columns show color images together
with their corresponding depth maps. The third column shows normals estimated using a smoothing area of fixed size and the fourth column shows results
using a variable smoothing size following our proposed approach. The normals are color-coded, where each vector component is represented by a different
color channel.

[10] K. Kanatani, Statistical Optimization for Geometric Computation:

[11]

[12]

[13]

[14]

Theory and Practice, 1996.

M. Gopi and S. Krishnan and C. T. Silva, Surface Reconstruction
Based on Lower Dimensional Localized Delaunay Triangulation,
Computer Graphics Forum, 2000.

M. Yang and E. Lee, Segmentation of measured point data using
a parametric quadric surface approximation, Computer-aided Design,
1999.

D. Ouyang and H. Feng, On the normal vector estimation for point
cloud data from smooth surfaces, Computer-aided Design, 2005.

M. Vanco, A Direct Approach for the Segmentation of Unorganized
Points and Recognition of Simple Algebraic Surfaces, PhD thesis,

[15]

[16]

[17]

[18]

University of Technology Chemnitz, 2003.

G. Borgefors, Distance Transformations in Digital Images, Computer
Vision, Graphics, and Image Processing, 1986.

F. Porikli and O. Tuzel, Fast Construction of Covariance Matrices
for Arbitrary Size Image Windows, IEEE International Conference on
Image Processing, 2006.

R. B. Rusu and Z. C. Marton and N. Blodow and M. Dolha and
M. Beetz, Towards 3D Point cloud based object maps for household
environments, Robot. Auton. Syst., 2008.

R. B. Rusu and S. Cousins, 3D is here: Point Cloud Library (PCL),
IEEE International Conference on Robotics and Automation (ICRA),
2011.

CHAPTER F: ADAPTIVE NEIGHBORHOOD SELECTION
FOR REAL-TIME SURFACE NORMAL ESTIMATION
FROM ORGANIZED POINT CLOUD DATA

USING INTEGRAL IMAGES

118

APPENDIX
G

LEARNING TO EFFICIENTLY DETECT REPEATABLE
INTEREST POINTS IN DEPTH DATA

Springer and the original publisher (Computer Vision - ECCV 2012, 12th European Con-
ference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I, pp
200-213, Learning to Efficiently Detect Repeatable Interest Points in Depth Data, Stefan
Holzer, Jamie Shotton, Pushmeet Kohli) is given to the publication in which the material
was originally published, by adding: With kind permission from Springer Science and
Business Media.

Own contributions. The idea of using decision trees to mimic the characteristics of
an existing 3D interest point detector came from Jamie Shotton and Pushmeet Kohli.
My contributions to this work include the ideas for improving the detector performance
by creating and learning artificial interest point response maps as well as the design and
implementation of the method. The core ideas of the paper were refined in collaboration
with all co-authors. All co-authors were involved in the writing of the paper as well as in
the evaluation.

119

Learning to Efficiently Detect Repeatable
Interest Points in Depth Data

Stefan Holzer!?**, Jamie Shotton?, and Pushmeet Kohli?

'"Department of Computer Science, CAMP, Technische Universitit Miinchen (TUM)
holzers@in.tum.de
2Microsoft Research Cambridge
Jamie.Shotton@microsoft.com, pkholi@microsoft.com

Abstract. Interest point (IP) detection is an important component of
many computer vision methods. While there are a number of methods for
detecting IPs in RGB images, modalities such as depth images and range
scans have seen relatively little work. In this paper, we approach the IP
detection problem from a machine learning viewpoint and formulate it
as a regression problem. We learn a regression forest (RF) model that,
given an image patch, tells us if there is an IP in the center of the
patch. Our RF based method for IP detection allows an easy trade-off
between speed and repeatability by adapting the depth and number of
trees used for approximating the interest point response maps. The data
used for training the RF model is obtained by running state-of-the-art
IP detection methods on the depth images. We show further how the
IP response map used for training the RF can be specifically designed
to increase repeatability by employing 3D models of scenes generated
by reconstruction systems such as KinectFusion [1]. Our experiments
demonstrate that the use of such data leads to considerably improved IP
detection.

1 Introduction

Recent developments in depth sensor technology have enabled the widespread
use of inexpensive consumer devices such as the Kinect that is able to capture
dense depth data at 30fps. This opens a wide range of opportunities for new
applications based on depth information such as real time localization and object
or scene reconstruction. Methods proposed for this and other such applications
involve estimating the pose of the camera by matching the current depth map
against a database of previously seen depth maps.

A common approach for solving the above-mentioned problem is to extract
interest points in order to reduce the computational burden necessary to per-
form this matching task. A recent example where such a technique is of interest
is the KinectFusion system [1], which demonstrated that depth sensors paired
with efficiently parallelized programs running on high-end graphics cards allow

** This research was performed while Stefan Holzer was an intern at Microsoft Research.

2 Stefan Holzer, Jamie Shotton, Pushmeet Kohli

to perform dense frame-to-frame depth tracking and enable accurate 3D recon-
struction in real-time. However, memory restrictions force the reconstruction
to be limited to small office-like environments. For reconstructing larger envi-
ronments, e.g. complete buildings, the scene has to be split into several pieces,
which by themselves, can be handled by the reconstruction system. A common
way to connect such pieces is to extract interest points which can then be effi-
ciently queried. However, estimating good interest points in noisy depth data is
computationally expensive and therefore, only of limited use in online systems.

We reduce the computational load necessary to compute interest points by
efficiently approximating response maps of interest point detectors using re-
gression trees. We demonstrate the effectiveness of our approach by learning to
predict the response of an interest point detector based on surface curvature.
For training and evaluating the regression trees, we use a data set of depth and
color image sequences, obtained using a Kinect sensor. Our data set also includes
volumetric reconstructions of the recorded scenes as well as synthetic depth and
surface normal maps. These have been created from the reconstructed data given
by KinectFusion [1], and are therefore more accurate and include less noise than
the raw images. Finally, we introduce a way of creating optimized response maps
for interest point estimation and show that, by using these maps for training the
regression forest model, we can improve the repeatability of online interest point
detection.

2 Related Work

Although there has been a lot of research on interest point extraction in 2D
color images, there is surprisingly little work on interest point extraction in
dense depth data, as supplied for example by the Kinect depth sensor.

3D Interest Point Extraction. Steder et al. [2] used an approach based on the
Laplacian-Of-Gaussian method to compute interest points in range images. How-
ever, this is computationally very expensive and not suitable for real-time or
near-real-time operation. In [3], Steder et al. presented an interest point de-
tector which first finds and classifies different kinds of 3D object borders and
then locates interest points based on this information. Although efficient, this
method is specifically designed for range images, which have different charac-
teristics compared to the depth maps obtained from the Kinect sensor. In [4],
Unnikrishnan presented a method for extracting interest points with automatic
scale selection in unorganized 3D point clouds. However, this work does not take
any view-point related information into account.

Learning-based Interest Point Extraction. A number of learning-based approaches
have been proposed for efficient estimation of interest points in color or gray value
images. Rosten et al. [5] introduced FAST (Features from Accelerated Segment
Test), a interest point extraction method which considers all pixels on a circle
around the current point to decide whether this point is a feature or not. Al-
though no learning is involved in this approach, it can be seen as a manually

Learning to Efficiently Detect Repeatable Interest Points in Depth Data 3

designed decision tree. In [6], Rosten et al. extend their work such that the out-
put of FAST is learned using a decision tree. Again, pixels on a circle around
the center pixel are used in the tree features. In [7], Rosten et al. try to improve
the repeatability of the interest point detection. In contrast to the previous ap-
proaches they consider more test pixels and use simulated annealing to optimize
the decision tree with respect to repeatability and efficiency. The optimization is
done by randomly modifying an initially learned tree and by checking whether
this modification improves repeatability and efficiency.

The core idea of [8] is to take an existing binary-valued decision algorithm as
a black box performing some useful binary decision task and to train the Wald-
Boost [9] classifier as its emulator. WaldBoost is a greedy learning algorithm
which finds a quasi-optimal sequential strategy for a given binary-valued deci-
sion problem. It combines the AdaBoost [10] algorithm for feature selection and
Wald’s sequential probability ratio test (SPRT) for finding the thresholds that
are used for making the decision. As examples, they learned the Hessian-Laplace
and Kadir-Brady saliency detector. However, the resulting emulators are slow
and not able to process images at reasonable frame rates.

Considering more high-level interest points, the face detector of Viola et
al. [11] can also be seen as a detector of interest points, where the interest
points are actually faces. In [12], the authors try to classify surface types, e.g.
planes or valleys, in range data using perceptron trees. This does not fit exactly
into the category of interest point detection, but it identifies regions of interest
which can be used for similar tasks as interest points. In [13], Lepetit et al. train
trees such that they output the probability that the considered interest point
corresponds to a specific class. Although not intended by the authors, this might
be seen as kind of an interest point detector for every class if applied densely on
an image. Similar things have been done in [14] using Ferns. Shotton et al. [15]
use decision trees to estimate body parts and use artificially rendered humans
to train their trees.

However, the above-mentioned approaches neither consider learning the de-
tection of interest points in depth data using regression trees, as we do in Sec. 5,
nor creating artificial interest point response maps (for training the regression
model) that are optimized to increase the detection performance, as we propose
in Sec. 5.

3 High Curvature as Baseline Interest Point Detectors

A common approach [16,17] used for estimating interest points in 3D data is to
consider surface curvature and select points where curvature reaches a maximum.
In the following, we explain how curvature can be computed using the normal
vectors of the surface surrounding the point of interest. For this, we first describe
the process for estimating surface normals and then discuss how these estimates
can be used to compute a curvature response.

4 Stefan Holzer, Jamie Shotton, Pushmeet Kohli

3.1 Normal Estimation

For surface normal estimation from a depth map, we use a modified version of
the approach proposed in [18]. They consider the first order Taylor expansion of
the depth function D(z)

D(z + dz) — D(z) = dz" AD + O(dz?), (1)

where x is the 2D coordinate in the depth map, dx is a 2D offset, AD is a 2D
depth gradient, and O(dx?) represents higher order terms. To estimate the value
of the gradient AD they use 8 neighboring points around the point of interest
to create a stack of equations. A neighbor is only considered if the difference in
depth is below a certain threshold «. In our experiments we use « = 5 cm. From
AAD, one can then compute three 3D-points as

X =v(z)D(x), (2)
X1 =wv(x+[1,0]")(D(x) + [1,0]4D), (3)
Xy = v(z+[0,1]T)(D(x) + [0,1]AD), (4)

which form two vectors vx_ x, and vx_, x, between X and X; as well as X and
X5. The desired normal can be computed from these two vectors by computing
the cross-product n = vx_,x, X Vx_,x,.

In contrast to [18], we compute the position of the 8 neighboring points
based on the inverse of the depth of the point of interest instead of using a fixed
position. This means, that we take a bigger image region into account for points
further away. We do this, since the depth of 3D points located at further distance
to the depth sensor is disturbed by stronger noise and discretization effects than
that of 3D points close to the sensor.

3.2 Curvature Response

Having computed the normals, we select all neighboring points within a 15 x 15
pixel image window and project all their normals onto the plane defined by the
normal of the point of interest. From these projected normals, we then compute
the covariance matrix C' and use its second eigenvalue as curvature response.

4 Learning Interest Point Detectors

In this Section we introduce the learning procedure for our proposed interest
point detectors based on decision trees. For this, we first present the dataset we
used for training (see Sec. 4.1), then introduce the learning procedure for ob-
taining regression trees which approximate the interest point response estimation
process (see Sec. 4.2), and finally, explain the post-processing steps we use in or-
der to obtain the interest points from the interest point response approximation
provided by the regression trees (see Sec. 4.3).

Learning to Efficiently Detect Repeatable Interest Points in Depth Data 5

Fig. 1. The shown color images present representative frames of each sequence used
for training and testing. The first 23 images represent the training sequences while the
last 10 images represent the test sequences.

Sequence of

Sequence of Mappings between Voxels

Reconstruction

Sequence of
Raw Data Volume Reconstructed Reconstructed and Image Data

Depth Maps Normals

Fig. 2. The different types of data each test and training sequence contains.

4.1 Data Set

In total, we use 33 video sequences captured from the Kinect sensor: 23 sequences
for training, and 10 sequences for testing (see Fig. 1). Each video sequence con-
sists of approximately 900 continuously recorded color images and corresponding
depth images. Both, the training as well as the test set of sequences depict typical
real world scenes expected to be encountered in an office-like scenario, including
desks, specialized work spaces, recreational areas as well as meeting rooms. To
ensure a fair evaluation, we ensured that the test sequences did not record any
of the same volume of 3D world space.

Each of the available sequences contains not only the raw data obtained
from the Kinect sensor but also a volumetric reconstruction obtained using the
KinectFusion [1] reconstruction system. Fig. 2 shows the different types of data
we have available in the sequences. These include the raw depth and image data,
the reconstructed volume, synthetic depth and normal maps obtained from the
reconstructed volume, and for each frame, a mapping between the volume voxels
and the pixels in the images. This volumetric mapping will let us create optimized
synthetic interest point response maps as described in Sec. 5.

6 Stefan Holzer, Jamie Shotton, Pushmeet Kohli

4.2 Learning using Regression Trees

In the following we describe the process for learning the structure of a binary
regression tree that approximates interest point responses from depth maps.
Every non-leaf node of the tree uses a depth comparison between two sample
positions relative to the point under consideration to decide whether to follow
the left or right tree branch emanating down from the node. Every leaf node of
the tree stores an interest point response value which is the mean of the responses
of all the training pixels that reached that leaf node. This leads to the following
parameterization of a node:

_ (f) nz,n,-) if n is node
"= { (m.) if n is leaf (5)

where f is a feature, n; and n, are the left and right child node respectively, and
m. is the mean interest point response of the training examples that fall into the
corresponding node. The feature f implements the depth comparison between
two sample positions and is defined as

f= (21,91, 22,92, 1), (6)
where p; = (21,71)" and py = (72,92) " are the sample positions for the depth
values and ¢ is a threshold which is applied on the depth difference D(p1)—D(p2).
The sample points are placed within a wp X hp window. The first sample point
p1 is either placed in the center or randomly within this window around the
center point, where both of these possibilities have equal chance. The second
sample point po is placed randomly within the window. In our experiments, we
use wp = hp = 41 at a depth of 1 meter and we scale the window according to
the depth. The thresholds as well as the offsets of the feature sample positions
are selected automatically during the training.

During the learning, we select for every node n; a feature f; € F and a
threshold t; which best separate the set £ of examples. We consider an example
as a quintuple e with

e=(q,m,2,y,0), (7)

where ¢ is the index of training sequence, 7 the index of the frame within this
sequence, p = (x,)' is the location of the example within the image r of
sequence ¢, and ¢ is the corresponding interest point response value. A feature
fj separates the set £ best if it minimizes

Nl Nr

E_UZNZ+NT+UTNZ+NT’ (8)
where v, and v; are the variances of the examples that fall into the left re-
spectively right child node, and N; and N, are the corresponding numbers of
examples. This variance reduction objective follows the standard entropy mini-
mization strategy used for regression tree learning [19]. In our experiments we
sample 1000 feature tests ie. |F| = 1000 and select 10 thresholds which are

Learning to Efficiently Detect Repeatable Interest Points in Depth Data 7

Fig. 3. Left to right: exemplary depth map with corresponding surface curvature map,
the unfiltered response obtained from regression trees as well as its median filtered
counterpart.

distributed over the range of the possible feature results. The example set £
is created by selecting every second pixel in x and y from approximately 1000
images taken from our training sequences. However, we use an example only if
curvature information is available and the depth is not larger than 4 meters.

At test time, for every image position, we follow the path down from the
root to the leaf, and return as the result, the response m, corresponding to the
reached leaf. In case of multiple trees, the results of the individual trees are
combined together by averaging them.

4.3 Post-processing

Fig. 3 shows the interest point response map approximation obtained from a
depth map using a regression tree. As one can easily see it contains a significant
amount of salt-and-pepper-like noise which has to be filtered out in order to get
a stable response over multiple frames. Therefore, we apply a median filter of size
5 x 5 and then a Gaussian filter with sigma 3 in order to get distinctive peaks.
Finally, the interest points are extracted as maxima of the resulting map.

5 Designing Optimal Interest Point Detectors

In Section , we have shown how random forests can be trained to predict the
response of any existing curvature-based interest point detector. This process
however, does not in itself lead to better interest points. In this section we show
how to compute desirable interest points for training the random forest that may
not be obtained from existing methods. For this, we first discuss the properties
desired from a good interest point and then show how to compute such response
maps from 3D reconstructions of the scenes.

5.1 Optimality Criteria

In the following we define interest points as a set of points in the image coordinate
system which fulfil certain specific properties. We will use these properties to
select an evaluation criteria. The following list of properties are desirable for a
set of scene elements in order to be useful as interest points:

8 Stefan Holzer, Jamie Shotton, Pushmeet Kohli

i False Negative
True Positive 8

_ _ False Positive

False 2T
Positive \
Projected 4
point \ I

Source points (projected) N .
®9 Destination points

Fig. 4. Illustration of IP repeatability. The evaluation always considers a source frame
and a destination frame. All the extracted interest points in the source frame are pro-
jected into the destination frame using the provided reconstruction. For every projected
source point we search for corresponding destination points within a radius of 1.5 cm.
Only the closest match within this radius is considered as a true positive and the others
are considered as false positives. If no point is present, we count it as a false negative.
If a destination point is not assigned to any projected source point then it is considered
a false positive.

— Sparseness: there should be only a small number of points in the scene.
— Repeatability: the points should be detected in all views of the scene.
Distinctiveness: the area around an interest point should be unique.
Efficiency: points could be estimated efficiently.

While analyzing the criteria, one sees that sparseness is hard to evaluate since
it is usually defined using a threshold. Distinctiveness is highly dependent on the
matching method, especially on the construction of the descriptor and thus is
difficult to evaluate objectively. Repeatability of an interest point, however, is
easy to measure since we have access to the reconstruction of the scene depicted
in every training/test sequence. This enables us to propagate interest points
from one frame to any other frame of the sequence and check the consistency of
results.

We also evaluate repeatability with respect to the number of extracted in-
terest points (see Sec. 6.1 and 6.2), which provides us with information about
the detection performance with respect to sparseness. Furthermore, we evaluate
repeatability with respect to the number and depth of trees in Sec. 6.3 and 6.4.
Since the efficiency of the presented approach depends on the number and depth
of trees used for detecting interest points, this allows us to quantify the trade-off
between efficiency and repeatability. The influence of the tree parameters on the
interest point detection performance is discussed in detail in Sec. 6.5.

As a measure for repeatability we use the number of true-positives, false-
positives and false-negatives. The estimation of these numbers is described in
Fig. 4. Repeatability is computed for a 5 frame difference as well as a 40 frame
difference between compared images. This was done to compare repeatability for
both, small- as well as wide-baseline matching applications.

5.2 Creating a Response Tailored for High Repeatability

In order to create a response which leads to highly repeatable interest points we
make use of the mapping between pixels of the input depth maps and the vox-

Learning to Efficiently Detect Repeatable Interest Points in Depth Data 9

Accumu\at\on)
| . \
/ Response

Volume
N J Volume

1 [/ 1
[1
1 = 1
1 Visibility-Counter 1 /F/
: Volume b
1
1 1
1

Sequence of
Curvature
Sequences of Responses
Reconstructed
Data

Sequence of
Accumulated
Responses

1
1
1
1
1
1
>
1
1
1
1
1

Mappings between Voxels Mappings between Voxels
and Image Data

1
[I i o ! L__andimageData __ _,

Sequence of Accumulated Responses Sequence of Artificial Binary Point Responses

Fig. 6. Computing artificial response maps from accumulated responses.

els of the reconstruction volume, as shown in Fig. 5. For this, we first compute
the curvature response for every image of each sequence based on the synthetic
surface normals, which are obtained from the reconstruction. These curvature re-
sponses are then accumulated in an accumulation volume. A second accumulator
volume is used to count how often a voxel was visible in one of the images of the
sequence. Finally, we project the resulting accumulation volume into each frame
of the sequence and select the best IV interest points from the rendered image.
Note that this procedure also correctly handles occlusions. The final response
map is then created by creating a Gaussian response for each of the selected
interest points, as shown in Fig. 6. This artificial response gives high responses
for repeatable points and is then approximated using a regression tree. Results
for this are given in Sec. 6.2.

6 Results

In the following we evaluate our proposed approach against the baseline method
using the test set introduced in Sec. 4.1. As discussed in Sec. 5.1, the evaluation
is based on the basis of repeatability of the obtained interest points. If not other-
wise mentioned, the evaluations are done with respect to the number of interest
points obtained from the detectors. The number of IPs is controlled by changing
the threshold which is applied on the response map created by the specific TP
detector. Selecting a high threshold results in only a few, but very stable IPs,
while choosing a lower threshold increases the number of points. A higher num-
ber of points, on the other hand, generally leads to a worse true-positive rate.

10 Stefan Holzer, Jamie Shotton, Pushmeet Kohli

0. 0.5

o *ok g —%-original-raw —%-original-raw
oo * original-rec 0.5 ooy * original-rec
0.8 (RS S, + learn-raw-raw| * |+ learn-raw-raw|
5 " -~ 0 learn-raw-rec 045 @ O learn-raw-rec
L ; x-learn-rec-raw L x-|earn-rec-raw
207 2 -
n? -B-learn-rec-rec glg“’ 04 °© “E. -B-learn-rec-rec
dod & 0.35 e
+ o a
+
0.3 .
b I Gy + 025 FHE—e,
x N —
) e * x I
04 0.
0 50 100 150 200 D 50 100 150 200
Number of points Number of points

Fig. 7. Comparison of repeatability of detected interest points with respect to different
training and test data characteristics. True-positive rate with image pairs with 5 frames
difference (left) and 40 frames difference (right).

0.65 0.3
0.6 032 4
0.3
% 0.5% -%-original % -%-original
x +learned % 0.28 +learned
£ o5 0—\\ 'e'\ngiQHEL g -©-designed
N 0.26 u—\
0.45 0.24
\ .
.2,
0 1) 50 200 250 0 50 0 200 250

100 150 100 15
Number of points Number of points
Fig. 8. Comparison of the interest point detector trained using designed response maps
(described in Sec. 5 and Fig. 6) with the original curvature-based approach for a 5
frames difference (left) and a 40 frames difference (right).

The drop in the true-positive rate with increasing number of obtained interest
points is explained by the fact that a lower threshold applied on the response
map results in more but less reliable points. The evaluation is conducted using
a notebook with a 2.26GHz Intel(R) Core(TM)2 Quad CPU and 4 GB of RAM,
where only one core is used for the computation.

6.1 Learning Interest Point Detector Responses

Fig. 7 compares the repeatability of results obtained from learned and hand-
coded detectors on both, raw and reconstructed data!. The results of the cur-
vature-based interest point detector applied on the raw Kinect depth map are
annotated by original-raw, while those obtained by applying it on the rendered
depth map (obtained from the 3D model KinectFusion system) are annotated
by original-rec. As expected, original-rec results are better than original-raw
because the rendered depth maps have less noise, are smoother, and do not
suffer from missing data.

! This section deals only with the input data. The use of designed response maps (the
training labels) as described in Sec. 5 will be analyzed below in Sec. 6.2.

Learning to Efficiently Detect Repeatable Interest Points in Depth Data 11

0.7 0.3!
0.6 * . 8 0.3
*
0.5 - 1 0.25
o Q
T 0.4 T 0.2
¥ ¥
o o
= 03 -#-original = 013 -%-original
0.2 +learned 0.1 +learned
-©-designed -©-designed|
0.3 -+ Steder(2] 0.04 4\/4 —Steder[2]
<& Steder([3] o ~&Steder[3]
0 50 100 150 200 250 0 50 100 150 200 250
Number of points Number of points
250
%-original %-original
® —+learned ® —+learned
& 400/o-designed & 200/ designed
E —*Steder([2] E —*Steder[2]
z 300 < Steder([3] g 150 <+ Steder[3]
Q Q
o o
w w
5 200] 5 100
£ £
=1 =1
Z 100| Z 50

p=]

250 50 200 250

=)

50 100 150 100 150
Num. of points Num. of points
Fig. 9. Comparison of the interest point detector trained using designed response maps
(described in Sec. 5 and Fig. 6) with the original curvature-based approach, its learned
counterpart, as well as the detectors of Steder et al. [2,3]. Results are for a 5 frames

difference (left) and a 40 frames difference (right).

We now analyze the effect of using raw depth (learn-raw-...), as well as
rendered depth (learn-rec-...) for training the regression forest. These two dif-
ferent cases are then evaluated on raw depth data (learn-. .. -raw) as well as on
reconstructed depth data (learn-...-rec). This leads to a total of four different
possibilities. Note that the curvature response used for training the regression
trees is always computed from the reconstructed data given by the KinectFusion
system. We are changing here only the data on which the tree features are evalu-
ated in order to decide on the split. As one would expect, training the regression
tree using the data type it is later applied to gives superior results compared to
training it from a different type of data.

Comparing the IP repeatability of the original surface curvature estimation
approach (original-raw) with our proposed approximation using regression trees
(learn-raw-raw) in Fig. 7, one can see that our approach is not only able to
approximate the behaviour of the curvature-based IP detector with respect to
repeatability, but it even gives better results. The improvement can be explained
by the fact that we use the curvature estimated from the reconstructed data
instead of the raw data for training our regression trees.

6.2 Learning Designed Response Maps

In Fig. 8 we compare the results obtained by a regression forest trained using
the artificial IP response maps (which we introduced in Sec. 5 and Fig. 6) with
the results of the original interest point detector based on curvature as well
as the regression forest trained using its IP responses. Our results show that

12 Stefan Holzer, Jamie Shotton, Pushmeet Kohli

" %5 frames skip
% —+40 frames skip

0.5 tt“’“”

3
%5 frames skip
—+40 frames skig

o
%
g

N
a

TP-Rate

Y
*
\/t—:_j_i
5

15 20

Num. of FP per image
8 & 8

o

i
N
a

n
Pl

°% 10 15 20 10
Tree depth Treedepth

Fig. 10. Evaluation of the influence of the depth of trees on the true-positive rate and
the number of false positives per image.

o

0.55 4
R e e) %5 frames skip
0.5 * —+40 frames skip
2,23 i !
0.45 £ .
@ B
= o 22
g o4 -5 frames skip = R e
] —+40 frames skip o
& 0.35 521
0.3 E
| Z 20
0.25 +— i i i
. 1
%% 2 4 6 8 10 % 2 4 6 10
Num. of trees Num. of trees

Fig. 11. Evaluation of the influence of the number of trees on the true-positive rate
and the number of false positives per image.

it is possible to train a regression forest to output such desired IPs resulting in
better repeatability performance compared to the curvature-based interest point
detector.

In Fig. 9 we additionally compare to [2] and [3]. Although [2] tends to have
a higher true-positive rate for large numbers of points, it also shows a higher
number of false-positives. The approach presented in [3] on the other hand has
a very low number of false positives, but also a far worse true-positive rate.

6.3 Depth of Trees

Fig. 10 evaluates the influence of the depth of a regression tree on the perfor-
mance of the interest point detector. While the true-positive rate drops until a
depth of 7 and then increases slowly with increasing depth, the number of false
positives per image is high for trees with a depth less than 7.

6.4 Number of Trees

As Fig. 11 indicates, the number of trees has only a small effect on the resulting
detection performance. While the true-positive-rate stays almost constant, the
number of false-positives per image drops only by a value of less than 2 when
going from a single tree up to ten trees. This can be explained by the applied

Learning to Efficiently Detect Repeatable Interest Points in Depth Data 13

10°

* original
- Steder[2]
< Steder[3]
10%©1tree

t2trees |4 4 g qagadadd
*-3trees :

R S . N S

Time (in ms)
Time (in ms)

15 0 15

10
Treedepth

10
Treedepth

Fig.12. Timings for interest point detection. Left: comparison of the original
curvature-based approach with learned interest point detectors using different numbers
of trees and tree depths as well as the detectors of Steder et al. [2, 3]. Right: zoomed-in
version where we only the learned approaches are compared. For our approach we used
the regression trees learned from the designed response maps (see Sec. 5), including
the post-processing step (see Sec. 4.3).

filters (see Sec. 4.3), which are used to remove different types of noise from the
obtained response maps, since adding more trees to the evaluation process has
a similar effect on the response. Note, however, applying the described filters is
computationally more efficient than using a large number of trees (see Sec. 6.5).

6.5 Processing Time

In Fig. 12 we compare the computation time of the original curvature-based
IP detector with our random forest based detector using different number of
regression trees with different depths and with the detectors of Steder et al. [2,
3]. As one can see, the processing time for our proposed approach using regression
trees is much less than for the original approach based on surface normals. It
is also faster than the approach of Steder et al. [3]. The single tree or low
depth forest variants of our approach are faster than [2] also. Note that for
the processing time of the original approach as well as for the approaches of
Steder et al. [2,3] we estimated only a single value since it does not depend
on the depth of a tree. We visualize it as a line for better comparison. For the
evaluation of [3], we used an open-source implementation which is available in
the Point Cloud Library?.

7 Conclusion

In this paper, we presented a novel regression forest based approach to effi-
ciently detect interest points in depth maps. Our experimental results show that
a curvature-based interest point detector can be approximated using the regres-
sion forest model. Furthermore, we show that by using a reconstruction of the
available scenes we can create an improved interest point detector which gives
interest points with higher repeatability.

2 http://www.pointclouds.org.

14

Stefan Holzer, Jamie Shotton, Pushmeet Kohli

Acknowledgements. The authors would like to thank Rasmus Kyng, Shahram
Izadi, David Kim, Dave Molyneaux, and Otmar Hilliges for the inspiring discus-
sions and for help in obtaining the training and test data.

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense
surface mapping and tracking. In: ISMAR. (2011)

Steder, B., Grisetti, G., Burgard, W.: Robust place recognition for 3D range data
based on point features. In: ICRA. (2010)

Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Point feature extraction on 3D
range scans taking into account object boundaries. In: ICRA. (2011)
Unnikrishnan, R.: Statistical approaches to multi-scale point cloud processing.
(2008)

Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking.
In: ICCV. (2005)

Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
ECCV. (2006)

Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning
approach to corner detection. PAMI (2010)

Sochman, J., Matas, J.: Learning a fast emulator of a binary decision process. In:
Proceedings of the 8th Asian Conference on Computer vision - Volume Part II.
(2007) 236245

Sochman, J., Matas, J.: Waldboost - learning for time constrained sequential
detection. In: CVPR. (2005)

Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. In: Machine Learning. (1999) 80-91

Viola, P., Jones, M.: Fast and robust classification using asymmetric adaboost
and a detector cascade. In: Advances in Neural Information Processing System 14,
MIT Press (2001) 1311-1318

Foresti, G.: Invariant feature extraction and neural trees for range surface classi-
fication. IEEE Transactions on Systems, Man, and Cybernetics (2002)

Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. PAMI (2006)
OZuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using
random ferns. PAMI (2010)

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip-
man, A., Blake, A.: Real-time human pose recognition in parts from a single depth
image. In: CVPR. (2011)

Stiickler, J., Behnke, S.: Interest point detection in depth images through scale-
space surface analysis. In: ICRA. (2011)

Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration.
In: Eurographics Symposium on Geometry Processing. (2005)

Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab, N., Lepetit,
V.: Multimodal templates for real-time detection of texture-less objects in heavily
cluttered scenes. In: ICCV. (2011)

Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for
classification, regression, density estimation, manifold learning and semi-supervised
learning. In: Foundations and Trends in Computer Graphics and Vision. (2012)

CHAPTER G: LEARNING TO EFFICIENTLY DETECT REPEATABLE INTEREST POINTS
IN DEPTH DATA

134

1.1
1.2

2.1

2.2

2.3

24

2.5

LIST OF FIGURES

Tracking the keypad of a phone (©2010 IEEE). 4

Tracking camera motion around an object (created using VisualSFM [88]). 4

(a) A small initial template is (b) enlarged according to a tracking quality
measure. The template is tracked over time and (c) reduced if parts of it go

out of sight. The removed parts are reinserted (d) as soon as they become
visible again. ©2010 IEEEo oo 20

A template is represented by a set of regularly placed sample points,
which are grouped into subsets of four points. The pose of a template
is parametrized using four corner points. ©2010 IEEE 21

Comparison of the computation time necessary for learning a linear pre-
dictor using the Jurie-Dhome [43] (JD) approach (green) and using ALPs
(red and blue). (a) For the latter case we distinguish between learning the
predictor from scratch (red) and adding only one extension subset (blue)
at a time. Learning from scratch means that we consider the entire time
necessary to build up the template of the specified size. (b) Computation
times for template extension and reduction, when one extension subset is
added at a time. The blue curve corresponds to the blue curve at (a).
©2010 IEEE 22

(a) The organization of the multiple layers used for tracking. The sub-
figures (b), (c) and (d) show different transformed templates of the top
layer used to increase the robustness against large motion. (b) shows dif-
ferently rotated, (c) differently translated and (d) differently scaled tem-
plates. ©2013 IEEE 23

The left figure shows the multi-layered template with its observation region
depicted as green area. The middle figure shows the different layers and
their contribution to the observed region from a side-view. The right figure
illustrates insecure regions, which are areas around the detected occlusions.
©@2013 IEEE 23

135

LIST OF FIGURES

136

2.6

2.7

2.8

2.9

2.10

Results of the comparison between the ML ALPs approach and the ML
approach of Jurie and Dhome [44] with respect to different types of motion
without occlusion. The first row shows the tracking success rate and the

second row the corresponding mean maximum corner errors. ©2013 IEEE .

(a) Comparison of the necessary learning time with respect to the num-
ber of sample points used within the template for the approach proposed
by Jurie and Dhome [43], by Holzer etal. [31] (referred as “ALPs") and
our approach. (b) The corresponding speed-up in learning obtained by
our approach. (c) The tracking time per frame with respect to the num-
ber of sample points used for the template. Copyright notice: Springer
and the original publisher (Computer Vision - ECCV 2012, 12th Euro-
pean Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part I, pp 470-483, Online Learning of Linear Predictors for
Real-Time Tracking, Stefan Holzer, Marc Pollefeys, Slobodan Ilic, David
Joseph Tan, Nassir Navab) is given to the publication in which the material
was originally published, by adding: With kind permission from Springer

Science and Business Media.o

Comparison of timings for the approach proposed by Jurie and Dhome [43]
(‘JD’), the approach of Holzer et al. [31] (‘ALPs’), and our approach (‘DCT-
z’). (a) Comparison of learning time. (b) Obtained speed-up of our ap-
proach with respect to Jurie and Dhome [43]. (c) Comparison of tracking
time. Copyright notice: Springer and the original publisher (Computer Vi-
sion - ACCV 2012, 11th Asian Conference on Computer Vision, Daejeon,
Korea, November 5-9, 2012, Revised Selected Papers, Part I1I, pp 15-28,
Efficient Learning of Linear Predictors using Dimensionality Reduction,
Stefan Holzer, Slobodan Ilic, David Joseph Tan, Nassir Navab) is given to
the publication in which the material was originally published, by adding:

With kind permission from Springer Science and Business Media.

(a) The sum of a 2D region can be efficiently computed from an integral
image by accessing only four data elements in memory which correspond
to the for corners of the rectangular region. (b) Estimating a surface
normal as cross-product of the vectors between the horizontal and vertical

neighbors of the point of interest. ©2012 IEEE

[lustration of the synthetic response computation. Copyright notice:
Springer and the original publisher (Computer Vision - ECCV 2012, 12th
European Conference on Computer Vision, Florence, Italy, October 7-13,
2012, Proceedings, Part I, pp 200-213, Learning to Efficiently Detect Re-
peatable Interest Points in Depth Data, Stefan Holzer, Jamie Shotton,
Pushmeet Kohli) is given to the publication in which the material was orig-
inally published, by adding: With kind permission from Springer Science

and Business Media.

24

LIST OF FIGURES

2.11 Computing artificial response maps from accumulated responses. Copy-
right notice: Springer and the original publisher (Computer Vision - ECCV
2012, 12th European Conference on Computer Vision, Florence, Italy, Oc-
tober 7-13, 2012, Proceedings, Part I, pp 200-213, Learning to Efficiently
Detect Repeatable Interest Points in Depth Data, Stefan Holzer, Jamie
Shotton, Pushmeet Kohli) is given to the publication in which the material
was originally published, by adding: With kind permission from Springer
Science and Business Media. oL 30

137

AUTHORED AND CO-AUTHORED PUBLICATIONS

[Bohren et al., 2011] Bohren, J., Rusu, R. B., Jones, E. G., Marder-Eppstein, E., Panto-
faru, C., Wise, M., Moesenlechner, L., Meeussen, W., and Holzer, S. (2011). Towards
autonomous robotic butlers: Lessons learned with the pr2. In IEEE International
Conference on Robotics and Automation, Shanghai, China.

[Hinterstoisser et al., 2011] Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige,
K., Navab, N., and Lepetit, V. (2011). Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes. In IEEE International Conference on
Computer Vision, Barcelona, Spain.

[Hinterstoisser et al., 2012] Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski,
G., Konolige, K., ; and Navab, N. (2012). Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes. In Asian Conference
on Computer Vision, Daejeon, Korea.

[Holz et al., 2011] Holz, D., Holzer, S., Rusu, R. B., and Behnke, S. (2011). Real-Time
Plane Segmentation using RGB-D Cameras. In Proceedings of the 15th RoboCup In-
ternational Symposium, Istanbul, Turkey.

[Holzer et al., 2009] Holzer, S., Hinterstoisser, S., Ilic, S., and Navab, N. (2009). Distance
transform templates for object detection and pose estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, Miami Beach (Florida), USA.

[Holzer et al., 2010] Holzer, S., Ilic, S., and Navab, N. (2010). Adaptive linear predictors
for real-time tracking. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, San Francisco (California), USA.

[Holzer et al., 2013] Holzer, S., Ilic, S., and Navab, N. (2013). Multi-layer adaptive linear
predictors for real-time tracking. IEEFE Transactions on Pattern Analysis and Machine
Intelligence.

[Holzer et al., 2012a] Holzer, S., Ilic, S., Tan, D., and Navab, N. (2012a). Efficient learning
of linear predictors using dimensionality reduction. In Asian Conference on Computer
Vision, Daejeon, Korea.

139

AUTHORED AND CO-AUTHORED PUBLICATIONS

[Holzer et al., 2014] Holzer, S., Ilic, S., Tan, D., Pollefeys, M., and Navab, N. (2014).
Efficient learning of linear predictors for template tracking. International Journal of
Computer Vision.

[Holzer et al., 2012b] Holzer, S., Pollefeys, M., Ilic, S., Tan, D. J., and Navab, N. (2012b).
Online Learning of Linear Predictors for Real-Time Tracking. In Furopean Conference
on Computer Vision, Firenze, Italy.

[Holzer et al., 2012¢] Holzer, S., Rusu, R. B., Dixon, M., Gedikli, S., and Navab, N.
(2012¢). Real-Time Surface Normal Estimation from Organized Point Cloud Data
Using Integral Images. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, Vila Moura, Algarve, Portugal.

[Holzer et al., 2012d] Holzer, S., Shotton, J., and Kohli, P. (2012d). Learning to Effi-
ciently Detect Repeatable Interest Points in Depth Data. In Furopean Conference on
Computer Vision, Firenze, Italy.

140

1]

REFERENCES

AwMIT, Y., GEMAN, D., AND FAN, X. A coarse-to-fine strategy for multiclass shape
detection. IEEFE Transactions on Pattern Analysis and Machine Intelligence 26, 12
(2004), 1606-1621.

BAKER, S., AND MATTHEWS, I. Equivalence and efficiency of image alignment al-
gorithms. In IEEE Conference on Computer Vision and Pattern Recognition (Kauai,

HI, USA, December 2001).

BAKER, S., AND MATTHEWS, . Lucas-kanade 20 years on: A unifying framework.
International Journal of Computer Vision 56, 3 (2004), 221-255.

BALLARD, D. H. Generalizing the hough transform to detect arbitrary shapes. In
Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, M. A.
Fischler and O. Firschein, Eds. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1987, pp. 714-725.

BAy, H., Ess, A., TUYTELAARS, T., AND VAN GooL, L. Speeded-up robust
features (surf). Computer Vision and Image Understanding 110, 3 (June 2008), 346
359.

BENHIMANE, S., AND MALIS, E. Homography-based 2d visual tracking and servo-
ing. International Journal of Robotics Research 26, 7 (July 2007), 661-676.

BORGEFORS, G. Hierarchical chamfer matching: A parametric edge matching algo-
rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 6 (Nov.
1988), 849-865.

CALONDER, M., LEPETIT, V., STRECHA, C., AND FUA, P. Brief: Binary ro-
bust independent elementary features. In Furopean Conference on Computer Vision

(Heraklion, Crete, Greece, September 2010).

CANNY, J. A computational approach to edge detection. IEEFE Transactions on
Pattern Analysis and Machine Intelligence 8, 6 (June 1986), 679-698.

141

REFERENCES

[10]

[15]

[16]

[17]

[21]

[22]

142

CAsCIA, M., SCLAROFF, S., AND ATHITSOS, V. Fast, reliable head tracking under
varying illumination: An approach based on registration of texture-mapped 3d mod-
els. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 4 (2000),
322-336.

DavrAL, N., AND TRIGGS, B. Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition (San Diego, CA,
USA, 2005).

DaME, A., AND MARCHAND, E. Accurate real-time tracking using mutual infor-
mation. In IEEE International Symposium on Mized and Augmented Reality (2010).

DEeLLAERT, F., AND CoLLINS, R. Fast image-based tracking by selective pixel
integration. In ICCV Workshop on Frame-Rate Vision (1999).

FiscHLER, M. A., AND BoLLES, R. C. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.

Communications of the ACM 24, 6 (June 1981), 381-395.

ForesTI, G. Invariant feature extraction and neural trees for range surface classifi-
cation. IEEFE Transactions on Systems, Man, and Cybernetics, 3 (June 2002).

GAVRILA, D., AND PHILOMIN, V. Real-time object detection for "smart" vehicles.
In International Conference on Computer Vision (1999), pp. 87-93.

Gori, M., KRISHNAN, S., AND SiLvA, C. T. Surface reconstruction based on lower
dimensional localized delaunay triangulation. Computer Graphics Forum 19 (2000),

467-478.

GouRrAUD, H. Continuous shading of curved surfaces. IEEE Transactions on Com-
puters 20 (June 1971), 623-629.

GRABNER, H., LEISTNER, C., AND BisSCHOF, H. Semi-supervised on-line boosting
for robust tracking. In Furopean Conference on Computer Vision (Marseille, France,

October 2008).

GRASSL, C., ZINSSER, T., AND NIEMANN, H. Illumination insensitive template
matching with hyperplanes. In Proceedings of Pattern Recognition: 25th DAGM
Symposium (Magdeburg, Germany, September 2003).

GRASSL, C., ZINSSER, T., AND NIEMANN, H. Efficient hyperplane tracking by in-
telligent region selection. In Image Analysis and Interpretation (Lake Tahoe, Nevada,

USA, March 2004).

HAGER, G. D., AND BELHUMEUR, P. N. Efficient region tracking with parametric
models of geometry and illumination. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20, 10 (1998), 1025-1039.

REFERENCES

[23]

[24]

[25]

[26]

[27]

28]

[29]

[33]

[34]

HARrRIS, C., AND STEPHENS, M. A combined corner and edge detector. In Pro-
ceedings of the 4th Alvey Vision Conference (1988), pp. 147-151.

HENDERSON, H. V., AND SEARLE, S. R. On deriving the inverse of a sum of
matrices. SIAM Review 23, 1 (January 1981), 53-60.

HINTERSTOISSER, S., BENHIMANE, S., NAvAB, N., FuA, P., AND LEPETIT, V.
Online learning of patch perspective rectification for efficient object detection. In
IEEE Conference on Computer Vision and Pattern Recognition (Anchorage, Alaska,
USA, June 2008).

HINTERSTOISSER, S., HOLZER, S., CAcGNiaArT, C., Iric, S., KoNoLIGE, K.,
NavaB, N., AND LEPETIT, V. Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes. In International Conference on Com-
puter Vision (Barcelona, Spain, November 2011).

HINTERSTOISSER, S., KUTTER, O., NavAB, N., FuaA, P., AND LEPETIT, V.
Real-time learning of accurate patch rectification. In IEEE Conference on Computer

Vision and Pattern Recognition (Miami Beach (Florida), USA, June 2009).

HINTERSTOISSER, S., LEPETIT, V., ILIiC, S., FUA, P., AND NAVAB, N. Dominant
orientation templates for real-time detection of texture-less objects. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (San Francisco (California), USA,
June 2010).

HINTERSTOISSER, S., LEPETIT, V., ILIC, S., HOLZER, S., BRADSKI, G., KONO-
LIGE, K., , AND NAVAB, N. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian Conference on Computer
Vision (Daejeon, Korea, November 2012).

HoLzER, S., HINTERSTOISSER, S., ILIC, S., AND NAvAB, N. Distance transform
templates for object detection and pose estimation. In IEEE Conference on Computer
Vision and Pattern Recognition (Miami Beach (Florida), USA, June 2009).

Horzer, S., ILic, S., AND NAvAB, N. Adaptive linear predictors for real-time
tracking. In IEEE Conference on Computer Vision and Pattern Recognition (San
Francisco (California), USA, June 2010).

HorzEer, S., IrLic, S., AND NAvAB, N. Multilayer adaptive linear predictors for
real-time tracking. IEEFE Transactions on Pattern Analysis and Machine Intelligence

35,1 (2013), 105-117.

Horzer, S., Iuic, S., TaN, D., AND NAVAB, N. Efficient learning of linear pre-
dictors using dimensionality reduction. In Asian Conference on Computer Vision
(Daejeon, Korea, November 2012).

HorLzer, S., ILic, S., TAN, D., POLLEFEYS, M., AND NAvVAB, N. Efficient
learning of linear predictors for template tracking. International Journal of Computer

Vision (2014).

143

REFERENCES

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

144

HorLzER, S., POLLEFEYS, M., ILic, S., TaN, D. J., AND NavaB, N. Online

Learning of Linear Predictors for Real-Time Tracking. In 12th European Conference
on Computer Vision (ECCYV) (Firenze, Italy, October 2012).

HorzEer, S., Rusu, R. B., DixoN, M., GEDIKLI, S., AND NAVAB, N. Real-Time
Surface Normal Estimation from Organized Point Cloud Data Using Integral Images.
In International Conference on Intelligent Robots and Systems (Vila Moura, Algarve,

Portugal, October 2012).

HoLZzER, S., SHOTTON, J., AND KOHLI, P. Learning to Efficiently Detect Repeat-

able Interest Points in Depth Data. In Furopean Conference on Computer Vision
(Firenze, Italy, October 2012).

Hoppe, H., DEROSE, T., DucHAMmP, T., MCDONALD, J. J., AND STUETZLE,
W. Surface reconstruction from unorganized points. In ACM SIGGRAPH (Chicago,
USA, July 1992).

Huang, C., A1, H., L1, Y., AND LAO, S. Vector boosting for rotation invariant

multi-view face detection. In International Conference on Computer Vision (Bejing,
China, October 2005).

Huang, J., AND MENQ, C.-H. Automatic data segmentation for geometric feature
extraction from unorganized 3-d coordinate points. IEEE Transactions on Robotics
and Automation 17 (2001), 268-279.

HUTTENLOCHER, D. P., KLANDERMAN, G. A., AND RUCKLIDGE, W. A. Com-

paring images using the hausdorff distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence 15, 9 (Sept. 1993), 850-863.

JIN, S., LEwis, R. R., AND WEST, D. A comparison of algorithms for vertex
normal computation. The Visual Computer 21 (2005), 71-82.

JURIE, F., AND DHOME, M. Hyperplane approximation for template matching.
IEEFE Transactions on Pattern Analysis and Machine Intelligence 24, 7 (2002), 996
1000.

JURIE, F., AND DHOME, M. Real time robust template matching. In British
Machine Vision Conference (Cardiff, UK, September 2002).

KALAL, Z., MIKOLAJCZYK, K., AND MATAS, J. Tracking-learning-detection. I[EEFE
Transactions on Pattern Analysis and Machine Intelligence 34, 7 (2012), 1409-1422.

KanaTani, K. Statistical optimization for geometric computation: Theory and
practice.

Krasing, K., ArTHOFF, D., WOLLHERR, D., AND Buss, M. Comparison of
surface normal estimation methods for range sensing applications. In International
Conference on Robotics and Automation (Kobe, Japan, May 2009).

REFERENCES

[48]

KLEIN, G., AND MURRAY, D. Parallel tracking and mapping for small ar

workspaces. In International Symposium on Mized and Augmented Reality (Nara,
Japan, November 2007).

KrEIN, G., AND MURRAY, D. Improving the agility of keyframe-based slam. In
FEuropean Conference on Computer Vision. Marseille, France, October 2008.

LepETIT, V., AND FUA, P. Keypoint recognition using randomized trees. [EFEFE
Transactions on Pattern Analysis and Machine Intelligence 28, 9 (2006), 1465-1479.

Lowg, D. G. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60, 2 (Nov. 2004), 91-110.

Lucas, B., AND KANADE, T. An Iterative Image Registration Technique with

an Application to Stereo Vision. In International Joint Conference on Artificial
Intelligence (1981), vol. 2, pp. 674-679.

MarLis, E. Improving vision-based control using efficient second-order minimization
techniques. In International Conference on Robotics and Automation (Barcelona,
Spain, April 2004).

Martas, J., ZIMMERMANN, K., SVOBODA, T., AND HILTON, A. Learning efficient

linear predictors for motion estimation. In Computer Vision, Graphics and Image
Processing (2006), vol. 4338, pp. 445-456.

Max, N. Weights for computing vertex normals from facet normals. Journal of
Graphics Tools 4 (1999), 1-6.

MAayorL, W. W., AND MURRAY, D. W. Tracking with general regression. Journal
of Machine Vision and Applications 19 (2008), 65-72.

MEARS, B., SEVILLA-LARA, L., AND LEARNED MILLER, E. Distribution fields
with adaptive kernels for large displacement image alignment. In British Machine
Vision Conference (Bristol, UK, September 2013).

Owrson, C., AND HUTTENLOCHER, D. Automatic target recognition by matching
oriented edge pixels. IEEE Transactions on Image Processing 6, 1 (Jan 1997), 103
113.

OUuUYANG, D., AND YUNG FENG, H. On the normal vector estimation for point
cloud data from smooth surfaces. Computer-aided Design 37 (2005), 1071-1079.

OzuysaL, M., CALONDER, M., LEPETIT, V., AND Fua, P. Fast keypoint recog-

nition using random ferns. IFEE Transactions on Pattern Analysis and Machine
Intelligence 32, 3 (2010), 448-461.

OzuvsaL, M., Fua, P., AND LEPETIT, V. Fast Keypoint Recognition in Ten

Lines of Code. In IEEE Conference on Computer Vision and Pattern Recognition
(Minneapolis, Minnesota, USA, June 2007).

145

REFERENCES

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

146

OzuysaL, M., LEPETIT, V., AND Fua, P. Pose estimation for category specific
multiview object localization. In IEEE Conference on Computer Vision and Pattern

Recognition (Miami Beach (Florida), USA, June 2009).

PArisoT, P., THIESSE, B., AND CHARVILLAT, V. Selection of reliable features

subsets for appearance-based tracking. Signal-Image Technologies and Internet-Based
System (December 2007), 891-898.

RicHA, R., SzniTMAN, R., TAYLOR, R., AND HAGER, G. Visual tracking using
the sum of conditional variance. In International Conference on Intelligent Robots
and Systems (Seoul, Korea, October 2011).

ROSTEN, E., AND DRUMMOND, T. Fusing points and lines for high performance

tracking. In International Conference on Computer Vision (Bejing, China, October
2005).

RosTEN, E., AND DRUMMOND, T. Machine learning for high-speed corner detec-
tion. In European Conference on Computer Vision (Graz, Austria, May 2006).

RosTEN, E., AND DRUMMOND, T. Machine learning for high-speed corner detec-
tion. In European Conference on Computer Vision (Graz, Austria, May 2006).

RosTEN, E., PORTER, R., AND DRUMMOND, T. Faster and better: A machine

learning approach to corner detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32 (2010), 105-119.

RuckLIDGE, W. Efficiently locating objects using the hausdorff distance. Interna-
tional Journal of Computer Vision 24, 3 (1997), 251-270.

SCHAPIRE, R. E., AND SINGER, Y. Improved boosting algorithms using confidence-
rated predictions. In Machine Learning (1999), pp. 80-91.

SERRE, T., AND RIESENHUBER, M. Realistic modeling of simple and complex cell

tuning in the hmax model, and implications for invariant object recognition in cortex,
2004.

SEVILLA-LARA, L. Distribution fields for tracking. In IEEFE Conference on Computer
Vision and Pattern Recognition (Providence, RI; USA, June 2012).

SHi, J., AND TowmAsI, C. Good features to track. In IEEE Conference on Computer
Vision and Pattern Recognition (Seattle, Washington, USA, June 1994).

SHoTTON, J., FirzciBBON, A., Cook, M., SHArRP, T., FINOCCHIO, M.,
Moorg, R., KiPpMAN, A., AND BLAKE, A. Real-time human pose recognition
in parts from a single depth image. In IEEE Conference on Computer Vision and
Pattern Recognition (Colorado Springs, CO, USA, June 2011).

REFERENCES

[75]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

SHUM, H.-Y., AND SzZELISKI, R. Construction of panoramic image mosaics with
global and local alignment. International Journal of Computer Vision 36, 2 (2000),
101-130.

SOCHMAN, J., AND MATAS, J. Waldboost - learning for time constrained sequential
detection. In IEEE Conference on Computer Vision and Pattern Recognition (San

Diego, CA, USA, june 2005).

STEDER, B., GRISETTI, G., AND BURGARD, W. Robust place recognition for 3D

range data based on point features. In International Conference on Robotics and
Automation (Anchorage, Alaska, USA, May 2010).

STEDER, B., Rusu, R. B., KoNOLIGE, K., AND BURGARD, W. Point feature
extraction on 3D range scans taking into account object boundaries. In International
Conference on Robotics and Automation (Shanghai, China, May 2011).

SZELISKI, R. Image alignment and stitching: A tutorial. Foundations and Trends
in Computer Graphics and Vision 2, 1 (Jan. 2006), 1-104.

THURMER, G., AND WUTHRICH, C. A. Computing vertex normals from polygonal
facets. Journal of Graphics Tools 3 (1998), 43-46.

UNNIKRISHNAN, R. Statistical approaches to multi-scale point cloud processing.

VAccHETTI, L., LEPETIT, V., AND FuA, P. Stable real-time 3d tracking using
online and offline information. IEEE Transactions on Pattern Analysis and Machine

Intelligence 26, 10 (2004), 1385-1391.

VANCO, M. A direct approach for the segmentation of unorganized points and recog-
nition of simple algebraic surfaces. PhD thesis, University of Technology Chemnitz
(2003).

Viora, M., JoNESs, M. J., AND VIOLA, P. Fast multi-view face detection. In IEFE
Conference on Computer Vision and Pattern Recognition (Madison, Wisconsin, USA,
June 2003).

ViorLA, P., AND JONES, M. Fast and robust classification using asymmetric ad-
aboost and a detector cascade. In Neural Information Processing Systems (Vancou-
ver, British Columbia, Canada, December 2001).

SOCHMAN, J., AND MATAS, J. Learning a fast emulator of a binary decision process.
In Asian Conference on Computer Vision (Tokyo, Japan, November 2007).

Wang, C., TANAHASHI, H., HIRAYU, H., NI1wA, Y., AND YAMAMOTO, K. Com-
parison of local plane fitting methods for range data. In IEEE Conference on Com-
puter Vision and Pattern Recognition (Kauai, HI, USA, December 2001).

147

REFERENCES

[88] Wu, C., AGARWAL, S., CURLESS, B., AND SEITZ, S. M. Multicore bundle adjust-
ment. In IEEE Conference on Computer Vision and Pattern Recognition (Colorado

Springs, CO, USA, June 2011).

[89] YANG, M., AND LEE, E. Segmentation of measured point data using a parametric
quadric surface approximation. Computer-aided Design 31 (1999), 449-457.

[90] ZIMMERMANN, K., MATAS, J., AND SVOBODA, T. Tracking by an optimal sequence

of linear predictors. IEEFE Transactions on Pattern Analysis and Machine Intelligence
31, 4 (2009), 677-692.

148

	Abstract
	Contents
	Thesis Outline
	Introduction
	Visual Tracking
	Problem Definition
	Motivation
	Applications
	Challenges
	Related Work
	Linear Predictors for Template Tracking

	3D Point Cloud Processing
	Problem Definition and Motivation.
	Applications
	Challenges
	Related Work

	Contributions
	Visual Tracking
	CVPR 2010: Adaptive Linear Predictors for Real-Time Tracking
	TPAMI 2012: Multi-Layer Adaptive Linear Predictors for Real-Time Tracking
	ECCV 2012: Online Learning of Linear Predictors for Real-Time Tracking
	ACCV 2012: Efficient Learning of Linear Predictors using Dimensionality Reduction
	IJCV 2014: Efficient Learning of Linear Predictors for Template Tracking

	3D Point Cloud Processing
	IROS 2012: Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images
	ECCV 2012: Learning to Efficiently Detect Repeatable Interest Points in Depth Data

	Conclusions & Outlook
	Visual Tracking
	Conclusion
	Outlook

	3D Point Cloud Processing
	Conclusion
	Outlook

	Adaptive Linear Predictors for Real-Time Tracking
	Online Learning of Linear Predictors for Real-Time Tracking
	Efficient Learning of Linear Predictors using Dimensionality Reduction
	Multi-Layer Adaptive Linear Predictors for Real-Time Tracking
	Efficient Learning of Linear Predictors for Template Tracking
	Adaptive Neighborhood Selection for Real-Time Surface Normal Estimation from Organized Point Cloud Data Using Integral Images
	Learning to Efficiently Detect Repeatable Interest Points in Depth Data
	List of Figures
	Authored and Co-Authored Publications
	References

