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Abstract—The problem of communicating over a multiple
access channel with cooperative encoders is studied. A new upper
bound is derived on the capacity which is motivated by the
regime of operation where the relays start to cooperate. The
proof technique is based on a wringing lemma by Dueck and
Ahlswede which was used for the multiple description problem
with no excess rate. Previous upper bounds are shown to be loose
in general, and may be improved.

I. INTRODUCTION

Consider a multiple access channel (MAC) with cooperative

encoders, where cooperation is facilitated through the two-hop

network of Fig 1. Over this network, the source communicates

with a sink with the help of two relay nodes that have no

information of their own to communicate. The problem of

interest is a special case of the diamond network [1], where

the broadcast channel is modelled by independent bit-pipes.

The problem was initially studied in [2] where lower and

upper bounds were derived on the ultimate rate of communi-

cation. The bounds are improved in the recent works of [3],

[4]. In particular, the cut-set bound is shown to be loose for a

Gaussian MAC and a binary adder MAC for certain regimes

of the bit-pipe capacities.

The problem of finding the capacity of this network is unre-

solved in general. The underlying challenge may be described

as follows. In order to fully utilize the MAC to the receiver,

we would ideally like full cooperation between the relays. On

the other hand, in order to communicate the maximum amount

of information and better use the diversity that is offered by

the relays, we would like to send independent information to

the relays over the broadcast channel.

In this work, we use a wringing lemma [5], [6] to study the

regime of operation where independent inputs to the MAC

stop being optimal, and cooperation between the relay nodes

becomes necessary. Using this technique, we show through an

example that previous bounds (the cut set bound in [2] and the

bound in [4]) are not generally tight and may be improved.

The paper is organized as follows. We first formally describe

the problem in Section II. In Section III, we study a regime of

operation where the target communication rate is close to the

total capacity of the bit pipes. We find necessary and sufficient

conditions for achievability of such rates. As a by-product, we

show that the upper bounds in [2], [4] are not always tight.
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Fig. 1: Problem setup

Finally, in Section IV we use a wringing lemma to characterize

a new upper bound on the achievable rate.

II. PROBLEM FORMULATION

A. Notation

We use standard notation for random variables, e.g., X ,

probabilities, e.g., pX(x) or p(x), entropies, e.g., H(X) and

H(X |Y ), and mutual information, e.g., I(X ;Y ). We denote

the sequence X1, . . . , Xn by Xn. Sets are denoted by script

letters.

B. Model

Consider the diamond network in Fig. 1. A source commu-

nicates a message of rate R to a sink. The source is connected

to two relays via noiseless bit-pipes of capacities C1 and C2,

and the relays communicate with the receiver over a MAC.

The source encodes a message W with nR bits into a

sequence V n
1 , which is available at encoder 1, and a sequence

V n
2 , which is available at encoder 2. V n

1 and V n
2 are such that

H(V n
1 ) ≤ nC1 and H(V n

2 ) ≤ nC2.

Each relay i, i = 1, 2, maps its V n
i into a sequence Xn

i

which is sent over the MAC. The MAC is characterized by its

input alphabets X1 and X2, output alphabet Y , and transition

probabilities p(y|x1, x2), for each x1 ∈ X1, x2 ∈ X2. From

the received sequence, the sink puts out an estimate Ŵ of W .

We are interested in finding the highest rate R that permits

arbitrarily small positive error probability Pr(Ŵ 6= W ).

III. THE CUT-SET BOUND IS NOT TIGHT

A. The regime of operation where R ≈ C1 + C2

We find necessary and sufficient conditions for the rate R =
C1 + C2 to be approachable. Our approach is similar to and



motivated by [5] that treats the multiple description problem

with no excess rate.

Theorem 1. The rate R = C1+C2 is achievable if and only if

there exists a pmf p(u)p(x1|u)p(x2|u)p(y|x1, x2) so that the

following inequalities hold.

C1 ≤ I(X1;Y |X2U) (1)

C2 ≤ I(X2;Y |X1U) (2)

C1 + C2 ≤ I(X1X2;Y |U) (3)

In the above characterization, we have U ∈ U where |U| ≤ 2.

The sufficiency part of Theorem 1 follows from [2, Theorem

1]. We prove the necessity next; i.e., we prove that the

conditions in Theorem 1 are necessary for R = C1 + C2.

Although these conditions resemble those of the standard

cut-set bound, we remark that the optimization is over the

product distribution p(u)p(x1|u)p(x2|u) rather than the joint

distribution p(u, x1, x2).

Proof of the necessity of the conditions in (1)-(3): First,

we have the following chain of inequalities

nR ≤ H(V n
1 V n

2 )

= H(V n
1 ) +H(V n

2 )− I(V n
1 ;V n

2 )

≤ nC1 + nC2 − I(Xn
1 ;X

n
2 ) (4)

where the last step follows because I(V n
1 ;V n

2 ) ≥ I(Xn
1 ;X

n
2 )

by the data processing inequality.

So in order to approach R = C1 + C2 − γ for any γ > 0,

we need to have

I(Xn
1 ;X

n
2 ) ≤ nγ. (5)

We now use a wringing lemma [5] to construct a random

variable U and make Xn
1 and Xn

2 conditionally almost inde-

pendent on a letter-by-letter basis. More precisely, we use the

following lemma.

Lemma 1 (Dueck). Suppose I(Xn
1 ;X

n
2 ) ≤ σ. For any δ > 0,

there exist k indices t1, . . . , tk ∈ {1, . . . , n} such that

I(X1,i;X2,i|U) ≤ δ ∀i ∈ {1, . . . , n}, (6)

where U = (X1,t1 , . . . , X1,tk , X2,t1 , . . . , X2,tk), and k < σ
δ

.

Setting σ = nγ and δ =
√
γ, Lemma 1 provides us with a

random variable U such that (6) is satisfied and

H(U) = H(X1,t1 , . . . , X1,tk , X2,t1 , . . . , X2,tk)

≤ k log |X1||X2|
<

nγ

δ
log |X1||X2|

≤ n
√
γ log |X1||X2|. (7)

Now, for every ǫ > 0, we have

nR ≤ H(V n
1 V n

2 )

= I(V n
1 V n

2 ;Y n)−H(V n
1 V n

2 |Y 2)

(a)

≤ I(V n
1 V n

2 ;Y n)− nǫ

= I(V n
2 ;Y n) + I(V n

1 ;Y n|V n
2 )− nǫ

(b)

≤ I(V n
2 ;Y n) + I(V n

1 Xn
1 ;Y

n|V n
2 Xn

2 )− nǫ

≤ nC2 + I(Xn
1 ;Y

n|Xn
2 )− nǫ

= nC2 + I(UXn
1 ;Y

n|Xn
2 )− nǫ

= nC2 + I(Xn
1 ;Y

n|Xn
2 U) + I(U ;Y n)− nǫ

≤ nC2 + I(Xn
1 ;Y

n|Xn
2 U) +H(U)− nǫ

(c)
< nC2 + I(Xn

1 ;Y
n|Xn

2 U)

+ n
√
γ log |X1||X2| − nǫ

≤ nC2 +

n
∑

i=1

I(X1i;Yi|X2iU)

+ n
√
γ log |X1||X2| − nǫ.

In the above chain of inequalities (a) follows from Fano’s

inequality, (b) follows because each Xn
i , i = 1, 2, is a function

of V n
i , and (c) follows from (7).

Similarly, we have

nR < nC1 +
n
∑

i=1

I(X2i;Yi|X1iU) + n
√
γ log |X1||X2| − nǫ,

and

nR < I(Xn
1 , X

n
2 ;Y

n)

≤
n
∑

i=1

I(X1i, X2i;Yi|U) + n
√
γ log |X1||X2| − nǫ.

Finally, a standard time sharing argument and small γ and ǫ

give the converse part of Theorem 1.

B. Example: the binary adder MAC

Consider a binary adder MAC, where X1, X2 are the binary

inputs and Y = X1+X2 is its ternary output. Let C1 = C2 =
C. We show that the bounds in [2], [4] are not tight for some

ranges of C.

For this symmetric diamond network, [4] gives an upper

bound which does not match the lower bound for 0.75 ≤ C ≤
0.7928. The regime where

C ≤ h2(
1

1 +
√
2
)− 1

2 + 2
√
2
≈ 0.7716

is particularly interesting in that the upper bound is character-

ized by R ≤ 2C and matches the cut-set bound. We wonder

if the bound is tight in this regime.

We apply Theorem 1 and characterize all C for which R =
2C is approachable. This is given by

C ≤ max

p(u)p(x1|u)p(x2|u)

min

{

H(X1|U), H(X2|U),
1

2
H(Y |U)

}

.



It is easy to calculate the right hand side (RHS) and see its

equality to 0.75. Hence, the bounds in [2], [4] are not tight

for

0.75 < C ≤ .7716.

IV. AN UPPER BOUND

We generalize the proof technique of Section III to find a

new upper bound. For simplicity, consider |X1| = |X2| and

relabel so that X1 = X2 = X for some X .

Theorem 2. The rate R is achievable only if for every

γ, 0 ≤ γ ≤ 1, there exists a pmf p(u, x1, x2, y) =
p(u, x1, x2)p(y|x1, x2) for which the following conditions

hold:

I(X1;X2|U) ≤ γ log |X | (8)

R ≤ C1 + C2 (9)

R ≤ C2 + I(X1;Y |X2U) +
1− γ

γ
(C1 + C2 −R) (10)

R ≤ C1 + I(X2;Y |X1U) +
1− γ

γ
(C1 + C2 −R) (11)

2R ≤ C1 + C2 + I(X1X2;Y |U) + 2
1− γ

γ
(C1 + C2 −R)

(12)

R ≤ I(X1, X2;Y ) (13)

In the above bound, U takes its values in U that can be chosen

to satisfy |U| ≤ min{|X1||X2|+ 2, |Y|+ 4}.

Before proving the theorem, we state the following reformu-

lation of Lemma 1. The proof is the same as that of Lemma 1

and is given in the Appendix.

Proposition 1. Suppose I(Xn
1 ;X

n
2 ) ≤ σ. For any δ > 0,

there exist k indices t1, . . . , tk and random variables U1 =
X1,t1 , . . . , X1,tk , U2 = X2,t1 , . . . , X2,tk , and U = (U1, U2),
such that

I(X1,i;X2,i|U) ≤ δ, ∀i = 1, . . . , n (14)

I(U1;U2) > kδ, (15)

k <
σ

δ
. (16)

Proof of Theorem 2: The idea is to constrain the input

distribution. From inequality (4) we have

I(Xn
1 ;X

n
2 ) ≤ n(C1 + C2 −R).

We replace the σ in Proposition 1 by n(C1+C2−R) and obtain

that for every δ > 0, there exist k indices t1, . . . , tk and ran-

dom variables U1 = X1,t1 , . . . , X1,tk , U2 = X2,t1 , . . . , X2,tk ,

and U = (U1, U2), such that

I(X1,i;X2,i|U) ≤ δ ∀i = 1, . . . , n (17)

I(U1;U2) > kδ, (18)

k <
n(C1 + C2 −R)

δ
. (19)

Choose δ as follows:

δ = γ log |X |. (20)

We now prove inequalities (10)-(13).

To derive (10) we write:

nR ≤ nC2 + I(Xn
1 ;Y

n|Xn
2 )− nǫ

= nC2 + I(UXn
1 ;Y

n|Xn
2 )− nǫ

≤ nC2 + I(Xn
1 ;Y

n|Xn
2 U) +H(U1|Xn

2 )− nǫ

(a)
< nC2 + I(Xn

1 ;Y
n|Xn

2 U)

+ k (log |X | − δ)+ − nǫ

(b)
< nC2 + I(Xn

1 ;Y
n|Xn

2 U)

+
n(C1 + C2 −R)

δ
(log |X | − δ)

+ − nǫ

(c)

≤ nC2 + I(Xn
1 ;Y

n|Xn
2 U)

+ n
(1− γ)+

γ
(C1 + C2 −R)− nǫ

≤ nC2 + n

n
∑

i=1

1

n
I(X1i;Yi|X2iU)

+ n
(1− γ)+

γ
(C1 + C2 −R)− nǫ. (21)

In the above chain of inequalities, step (a) holds by Proposi-

tion 1 as follows.

H(U1|Xn
2 ) = H(U1)− I(U1;X

n
2 )

≤ H(U1)− I(U1;U2)

< k (log |X | − δ)
+

Also, step (b) follows from (19) and step (c) from (20).

A similar bound may be written for (11).

The bound in (12) is derived in two steps. First, we refine

inequality (9) as follows:

nR ≤ nC1 + nC2 − I(Xn
1 ;X

n
2 )

≤ nC1 + nC2 − I(U1;U2). (22)

We further have

nR ≤ I(Xn
1 X

n
2 ;Y

n)− nǫ

= I(Xn
1 X

n
2 U ;Y n)− nǫ

≤ I(Xn
1 X

n
2 ;Y

n|U) +H(U)− nǫ. (23)

Then, we combine (22) and (23) to obtain

2nR ≤ nC1 + nC2 + I(Xn
1 X

n
2 ;Y

n|U)

+H(U)− I(U1;U2)− nǫ

< nC1 + nC2 + I(Xn
1 X

n
2 ;Y

n|U)

+ 2k(log |X | − δ)+ − nǫ

≤ nC1 + nC2 + n

n
∑

i=1

1

n
I(X1,i, X2,i;Yi|U)

+ 2k(log |X1| − δ)+ − nǫ

< nC1 + nC2 + n

n
∑

i=1

1

n
I(X1,iX2,i;Yi|U)

+ 2n
(1− γ)+

γ
(C1 + C2 −R)− nǫ. (24)



To prove (13), we write

nR ≤ n

n
∑

i=1

1

n
I(X1iX2i;Yi). (25)

It is easy to see that there is no loss of generality in assuming

γ ≤ 1 in (21) and (24).

To conclude the proof, we use a standard time sharing

argument.

I(X1;X2|UQ) ≤ γ log |X | (26)

R ≤ C1 + C2 (27)

R ≤ C2 + I(X1;Y |X2UQ) +
1− γ

γ
(C1 + C2 −R) (28)

R ≤ C1 + I(X2;Y |X1UQ) +
1− γ

γ
(C1 + C2 −R) (29)

2R ≤ C1 + C2 + I(X1X2;Y |UQ) + 2
1− γ

γ
(C1 + C2 −R)

(30)

R ≤ I(X1X2;Y |Q) (31)

Note that I(X1X2;Y |Q) ≤ I(X1X2;Y ) and thus renaming

UQ to U concludes the proof.

The cardinality bound on the auxiliary random variable

is derived using the standard techniques via Carathéodory’s

theorem.

A. Example

Let us revisit the example in Section III-B. We use Theorem

2 to obtain an upper bound on the communication rate in

Table I (for three different values of C). The optimizing γ⋆

which leads to the corresponding bound is also shown in this

table. We note that Theorem 2 gives tighter bounds compared

TABLE I: Upper bound of Theorem 2

C Cut Set bound Bound of [4] Theorem 2 γ
⋆

.75 1.5 1.5 1.5 0
.7716 1.5432 1.5432 1.5431 .003
.7925 1.5850 1.5641 1.5832 .028

to the cut set bound, and improves the bounds of [4] in the

regime where .75 < C ≤ .7716. Although the improvement is

small, the underlying technique allows us to study the regime

where cooperation between the encoders start to be effective.

Remark 1. Every choice of 0 ≤ γ ≤ 1 gives an upper bound

on R.

Remark 2. The choice γ = 1 gives the cut-set bound.

Remark 3. For the case R ≈ C1 +C2, we obtain Theorem 1

by choosing γ arbitrarily small.

APPENDIX

The proof to Proposition 1 is straightforward and along the

same lines of the proof of Lemma 1. E.g., see [6], [7] . U is

constructed from Xn
1 and Xn

2 algorithmically as follows.

1) Set U = {} and j = 1.

2) If I(X1i;X2i|U) ≤ δ for all i = 1, . . . , n, then we are

done.

3) Otherwise, there exists an index t such that

I(X1t;X2t|U) > δ. Set U1 = U1 ∪ X1t and

U2 = U2 ∪X2t. Set tj to t.

4) increase j and go to step 2.

We now show that the three properties stated in Proposition 1

hold.

Recall that U1 = X1t1 , . . . , X1tk and U2 = X2t1 , . . . , X2tk .

The first property holds by construction and using the chain

rule of mutual information. The second property also holds by

construction. The third property is shown as follows.

σ ≥ I(Xn
1 ;X

n
2 ) (32)

≥ I(X1t1 ;X2t1) + I(Xn
1 ;X

n
2 |X1t1X2t1) (33)

≥ I(X1t1 ;X2t1) + I(X1t2 ;X2t2 |X1t1X2t1) (34)

+ I(Xn
1 ;X

n
2 |X1t1X2t1X1t2X2t2) (35)

≥ . . . (36)

≥ I(X1t1 ;X2t1) (37)

+

k
∑

j=2

I(X1tj ;X2tj |X1t1X2t1 . . .X1tj−1
X2tj−1

) (38)

+ I(Xn
1 ;X

n
2 |U1U2) (39)

(a)
> kδ. (40)

In the above chain of inequalities, (a)
holds because I(X1t1 ;X2t1) > δ and

I(X1tj ;X2tj |X1t1X2t1 . . . X1tj−1
X2tj−1

) > δ by the

way U1 and U2 are formed in each step.
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