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ABSTRACT

We infer the size of weak-annihilation contributions in the framework of QCD factori-

sation from latest data of decay rates, strong phases and CP asymmetries of charm-

less hadronic B → M1M2 decays that are mediated by b → (d, s) QCD- and QED-

penguin operators, such as B → (Kπ,Kη(′),KK), B → (Kρ,Kφ,Kω,K∗π,K∗η(′)),

B → (K∗ρ, K∗φ, K∗ω, K∗K∗) and, Bs → (ππ, Kπ, KK, K∗φ, K∗K∗, φφ), admitting

one phenomenological parameter per final state system M1M2. Beyond the Standard

Model, we study the possibility to determine simultaneously the phenomenological weak-

annihilation and new-physics parameters from data, employing model-independent sce-

narios with an enhanced electroweak Standard Model sector, an enhanced Z-penguin

coupling and an extended operator basis, with Ob = (s̄b) (b̄b) as well as including com-

plementary constraints from b→ sγ and b→ s`+`−. The impact of these scenarios on so

far unmeasured CP-violating observables in, for instance, B̄s → φφ and B̄s → K̄∗0K∗0,

which will become available in the foreseeable future from the LHCb and Belle II col-

laborations, is discussed.

ZUSAMMENFASSUNG

Wir leiten die Größe von weak-annihilation Beiträgen im Kontext von QCD Faktorisierung

anhand aktueller Daten bezüglich Zerfallsraten, starken Phasen und CP Asymmetrien

für charmlose, hadronische B → M1M2 Zerfälle, welche mittels b → (d, s) QCD- und

QED-Pinguinoperatoren vermittelt werden, wie zum Beispiel B → (Kπ,Kη(′),KK),

B → (Kρ,Kφ,Kω,K∗π,K∗η(′)), B → (K∗ρ, K∗φ, K∗ω, K∗K∗) sowie auch

Bs → (ππ, Kπ, KK, K∗φ, K∗K∗, φφ), ab, wobei jeweils ein phenomenologischer Pa-

rameter für jedes Endzustandssystem angenommen wird. Jenseits des Standard Mod-

els studieren wir die Möglichkeit, die phenomenologischen weak-annihilation und Neuen

Physik Parameter gleichzeitig aus den Daten zu bestimmen, wobei wir modelunabhängige

Szenarien mit einem verstärkten elektroschwachen Standard Model Sektor, einer ver-

stärkten Z-Pinguin Kopplung, sowie einer erweiterten Operatorbasis mit Ob = (s̄b) (b̄b),

verwenden, als auch die Hinzunahme von komplementären Einschränkungen von b→ sγ

und b → s`+`−. Die Auswirkungen dieser Szenarien auf bisweilen ungemessenen CP

verletzenden Observablen für z.B., B̄s → φφ und B̄s → K̄∗0K∗0, die in absehbarer Zeit

vom LHCb und Belle II Experiment verfügbar sein werden, werden diskutiert.
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Chapter 1

Introduction

The Standard Model of particle physics (SM) describes successfully the interactions of

fundamental particles under the strong, weak, and electromagnetic forces, which are

embedded through local gauge invariance under the gauge group GSM = SU(3)C ×
SU(2)I × U(1)Y. This symmetry group can be separated into two distinct sectors. The

strong interaction give rise to hadronic bound states, such as mesons, baryons, and

nuclei. The dynamics of the constituents, quarks and gluons, is created by the colour

charge they carry and determined by the local SU(3)C gauge group, usually denoted

by the theory of quantum chromodynamics (QCD). Due to its non-Abelian nature,

QCD is asymptotically free, which means that it becomes strongly coupled below and

weakly coupled above some energy scale ΛQCD. As a consequence of this, colour charged

objects, like quarks and gluons, cannot be separated and only occur in colour-singlet

combinations as mesons and baryons, which is known as colour confinement. Strongly

coupled theories do in principle not allow to calculate scattering amplitudes at low

energies in ordinary perturbation theory. This implies that determining observables of

processes in which QCD interactions at small momentum transfer are involved become

a rather complicated problem.

The residual symmetry is part of the electroweak theory from Glashow, Wein-

berg, and Salam [5–7]. It successfully describes the unification of the weak and elec-

tromagnetic interaction of particles through the spontaneously symmetry breaking of

SU(2)I × U(1)Y → U(1)Q by the vacuum expectation value of a scalar field. This

mechanism is known as the Brout-Englert-Higgs mechanism [8–13], which predicts the

existence of a fundamental scalar particle and was originally invented to obtain fermion

masses in a local gauged theory. The fermion masses are obtained from the interaction

terms in the Lagrangian between two fermions and a scalar, so called Yukawa interac-

tions, when the scalar field takes on its vacuum expectation value and are sources of

interesting observations in the SM. For instance, the rotation of the quark fields into

1
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their physical mass eigenbasis generates, on the one hand, a CP-violating phase, rep-

resented through the Cabibbo-Kobayashi-Maskawa-matrix (CKM-matrix), and on the

other hand, flavour-violating charged currents which subsequently introduce flavour-

violating neutral currents (FCNCs) at the loop level.

After the discovery of the top quark in 1995 [14, 15] and the tau neutrino in 2000

[16], both at the Tevatron, the scalar particle of the SM — the Higgs particle — was

for a long time the solely unobserved piece of this theory. Roughly 50 years after its

postulation, finally a boson with spin 0 and mass mS ' 126 GeV was found in 2012 by

the two experiments CMS [17] and ATLAS [18] of the large hadron collider (LHC) at

CERN. Experimental effort was made on the measurement of its coupling to the known

particle content and will carry on in the future. Due to the confirmation of its SM-

like nature within today’s available precision, the discovery of the Higgs particle was

claimed, whereupon Englert and Higgs were awarded with the Nobel Prize in 2013. Due

to the outstanding success of the SM in describing the fundamental nature of particle

interactions and after it had been experimentally fully established, the question arises

whether this is the end of the story about particle physics. The answer to this is no.

Apart from the above-described forces, we also know of gravitation, which is not

included into the SM. This force is extremely weak at energies accessible at particle

accelerators, but becomes strongly coupled at the Planck scale, ΛPl. ∼ 1019 GeV. This

implies that the SM can only be an effective description, valid within a certain en-

ergy range. Therefore, the question that physicists are concerned with nowadays is

not whether the SM has to be extended, but rather at which scale. One hint towards

the scale of new-physics, ΛNP, delivers the stability condition of the Higgs particle vac-

uum expectation value against the age of the universe. However, this was studied with

the quoted experimental value for the Higgs particle mass [19] and no additional new-

physics (NP) below the Planck scale seems to be required. Further intriguing hints can

be grouped into either conceptional or observational issues. Examples for the latter are

the observation of neutrino oscillation, which implies that neutrinos necessarily have to

be massive, the existence of dark matter and dark energy in the universe, for which no

appropriate candidate in the SM exists, and, the matter anti-matter asymmetry, which

requires more CP violation (Sakharov conditions [20]) than present in the SM.

All these observational facts are indeed true deficits of the theory, but unfortu-

nately do also not require NP to enter below the Planck scale. Contrary, conceptional

issues are somehow more vague and it is not clear if these problems should be treated

seriously. They mainly concern the question whether certain parameters or patterns of

the theory are just needed to be put in by hand or can be generated through dynamical

assumptions. Lets discuss here two examples, whereas indeed more can be found. The

existence of exactly three generations of leptons and quarks and the fact that the order

of magnitude of their Yukawa couplings, which determine the masses of the fermions,
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ranges for example for the masses of the quarks from mu ∼ 2 MeV up to mt ∼ 173 GeV

is often referred to the flavour puzzle of the SM. The separation of scales by five orders of

magnitude might hint towards a more fundamental theory that could explain this puzzle.

Also the mass of the Higgs particle obeys a naturalness problem. Whereas the masses

of the fermions and gauge bosons are protected from quantum corrections by the chiral,

respectively gauge symmetry of the SM, the mass of the scalar is not. It is linked to the

largest scale involved in the fundamental theory and connected to the scalar sector. If

the largest scale is indeed given by ΛPl., some miracle cancellation between 17 orders of

magnitude has to be present to obtain a Higgs particle mass of the electroweak scale.

The most promising extensions of the SM which addresses the hierarchy problem are

Composite Higgs Models, postulating the Higgs particle to be not fundamental (inspired

by QCD with pions as light scalar particles), as well as supersymmetric models. Due to

the strong coupling of the top quark to the Higgs particle field, the former class of models

imply that the top quark necessarily has to be a composite particle, too. These theories

typically require a top partner with mt′ . 1 TeV. Supersymmetric models imposes a

symmetry between fermions and bosons which, in case of an exact symmetry, lead to a

complete cancellation of radiative corrections to the Higgs particle mass. We know that

supersymmetry must be broken, but if the mass splitting between SM particles and their

super-partners (msusy ∼ TeV) is not too far from the electroweak symmetry breaking

scale, quantum corrections still sufficiently cancel to explain the hierarchy problem. Both

theories then imply the extension of the SM spectrum with sub-TeV particles, which can

be directly searched for in high-energy collisions, as it is done at the LHC. So far, no

further resonances have been found and bounds for masses of exotic particles are being

pushed towards the TeV scale.

Complementary to direct searches of new particles are the indirect footprints of

potential NP at high-energies in low-energy phenomena as, for instance, in electroweak

precision observables, higgs, and flavour physics. Although the impact of a particular

model on those observables strongly depend on the underlying dynamics, they have been

extremely successful in constraining the structure and energy scale of physics beyond the

SM. Observables in flavour physics, in particular from loop- and CKM-suppressed FCNC

processes, are interesting because NP could become competitive to the SM contribution.

B mesons, which contain one b quark, are the heaviest mesons. They offer the richest

phenomenological playground in flavour physics. Their rare decays are triggered at the

quark level by b→ (d, s) transitions and were extensively studied in the past for various,

radiative, (semi-)leptonic and hadronic decay modes. Most observables concerning these

decay systems were measured during the last decade by the two electron-positron collider

experiments BaBar at PEP-II (USA) and Belle at KEKB (Japan), taking data with an

integrated luminosity of L = 424 fb−1, respectively L = 1 ab−1. At the end of 2009,

also LHC entered the stage of flavour physics with a B physics program at the LHCb
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detector. So far, data according to an integrated luminosity of L = 1 fb−1 at a centre-

of-mass energy
√
s = 7 TeV and L = 2 fb−1 at

√
s = 8 TeV were recorded. Due to the

higher production cross section, the experiments at LHC were already able to quote some

most precise measurements for decay modes that can be measured despite the “dirty

environment” at a hadron-collider. Examples are B̄s → K̄∗0K∗0 and B̄s → K+π−.

The experimental efforts will continue at the LHC, running between 2015–2018 at the

designed centre-of-mass energy of 14 TeV and taking data at the LHCb experiment

with an expected integrated luminosity of 2 fb−1. After a main shutdown in 2018 and

major LHCb detector upgrades, in order to collect data with a higher luminosity, further

L = 45 fb−1 are expected after roughly ten years. Together with the continuation of the

Belle experiment by Belle II at SuperKEKB, with an expected 50 times larger integrated

Luminosity of 50 ab−1 until 2021/2022, observables in heavy flavour physics will become

precisely measured.

With regard to the upcoming experimental precision, the key issue to indirect

searches of new fundamental interactions is a profound control of SM contributions on

the theory side. The source of uncertainties for both leptonic and semi-leptonic observ-

ables mainly originate from hadronic inputs, like the decay constant of the B meson or

form factors for which substantially improvements are expected in the future from lattice

calculations. However, for hadronic decays we rely on calculations in the framework of

QCD factorisation (QCDF) which suffers from some conceptual issues. In this frame-

work, certain corrections to the decay amplitude elude from a consistent description

in ordinary perturbation theory due to low-scale QCD interactions and are, although

subleading in a power expansion of ΛQCD/mb, essential for a reliable phenomenological

analysis. The most relevant power corrections are classified according to their Feynman

diagram topologies. There are weak annihilation (WA) and hard-spectator scattering

(HS) interactions. The attempt of a perturbative calculation results in a infrared di-

vergence which is regularised by some uncontrolled soft gluon interaction and needs

to be estimated through power counting arguments. These contributions are modelled

through additional phenomenological parameters ρA,H and typically included into the

observables as uncorrelated source of uncertainty due to which NP contributions are

hardly distinguishable from SM background. The present thesis addresses this problem

through a simultaneous fit of NP and WA parameters under the assumption of universal

WA among decay systems that are related via (u ↔ d) quark exchange. We give our

results according to this assumption within the SM in Chapter 5. Even though such

a test does not rely on first principle calculations, but it can still be checked, whether

the data renders power corrections subleading, as postulated by QCDF. We therefore

introduce the ratio ξA3 (M1M2) which describes the relative amount of power corrections

to the leading decay amplitude and determined its value from data for each decay sys-

tem. Since we almost exclusively investigate QCD-penguin-dominated decay modes,
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one naively expect similar contour regions from the individual decay systems. That

this does not to be the case in general is discussed among pure WA-dominated decays

in Section 5.2. Typically, a decay system contains up to eight observables which can

be utilised to infer one complex WA parameter. Most fits are therefore tightly over-

constrained and we would expect to observe discrepancies in the data if the assumption

of universality were unjustified. Currently B → Kπ is the only decay system with

serious tensions. Our prediction and the measured value for the difference of the two

CP asymmetries in B̄0 → K−π+ and B− → K−π0 differ significantly from each other.

This result confirms the ∆AKπCP puzzle, known from the literature. The discrepancy also

occurs in other approaches that determine decay amplitudes as for example through

symmetry arguments and is unlikely to be caused by underestimated WA contributions

only. A potential solution to this due to other power corrections (HS) will be discussed in

Section 5.1.4. Because our approach of fitting power corrections eliminates the largest

source of uncertainty, we gain an additional tension in the ratio of branching ratios

RBn (Kπ).

This motivated us to confront hadronic data with model-independent contributions

to certain effective couplings in the SM, in particular, to the Wilson Coefficients of the

4-quark QED-penguin operators in Section 6.1, to the effective Z-boson coupling to

the flavour violating b → s transition in Section 6.2 and, at last, through an extended

operator basis, Ob = (s̄b) (b̄b), in Section 6.3. The latter two scenarios can also be related

to the above-mentioned (semi-)leptonic decays. We exclusively choose NP in b → s

transition because these decay systems offer more data to infer NP and WA parameter

simultaneously. The advantage of a model-independent approach is the tremendous

simplification of the analysis. Whereas a specific model can obtain a large number of

various new parameters, we concentrate on a rather small subset that can effectively

account for the impact of several particular NP models on hadronic decays without

the need of concerning constraints from for example direct searches. We quantify our

results through bounds on these effective couplings and check whether the above-denoted

tensions can be resolved. Because contributions to CP asymmetries naively requires new

CP-violating phases, the NP couplings are left complex. This will have visible effects

in certain not-yet-measured observables of semi-leptonic and hadronic decays which will

be predicted for each considered scenario.

The concept and technical details of the Effective Weak Hamiltonian and QCDF

approach, needed for the calculation of (semi-)leptonic and hadronic B-meson decays, are

reviewed in Chapter 2 and Chapter 3, whereas the phenomenological interested reader

might like to skip these chapters. An overview of the experimental data, available for

(semi-)leptonic and hadronic decays, and the definition of the corresponding observables

as well as the sets, used in our fits, are summarised in Chapter 4. Various technical de-

tails are collected in the appendices, describing the statistical treatment of our fit in
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Appendix A and the anomalous dimension matrix (ADM) and NLO QCDF corrections

for the new introduced operators Ob in Appendix C. Studying a total of twenty different

QCD-penguin- and WA-dominated hadronic decay systems, we moved for the sake of

clarity the SM fits of certain decay modes into Appendix B.



Part I

Theory

7





Chapter 2

Effective Weak Hamiltonian

The main work of solving physical problems is to find a theory that describes the un-

derlying physics at its intrinsic scale (length, energy, velocity, . . .) and to adopt the

right approximations when discarding irrelevant physical phenomena at different scales,

thereby simplifying also calculations. The energy E of a car, moving with velocity v,

can be calculated by means of classical mechanics. Although we know that special rel-

ativity is a more fundamental theory in nature, classical mechanics can be seen as an

effective description to lowest order in O (|v/c|), where c is the speed of light. As long as

our desired precision does not undershoot this order parameter, the effective description

prevents us from calculating tiny, unimportant corrections.

Similar simplifications for the calculation of low-energy amplitudes in Quantum

Field Theory can be made by means of Effective Field Theory (EFT). Typically, the

physical process of interest can be separated by a certain energy threshold Λ, which

divides heavy degrees-of-freedom χ with masses Mχ > Λ from light degrees-of-freedom

φ with masses mφ < Λ. If the fundamental theory is known, we can write down the

Hamiltonian

Hfund. = H(χ, φ). (2.1)

Being interested in processes taking place at energy scales much below the scale Λ,

we can integrate out the heavy spectrum from the theory and write down the most

general Hamiltonian respecting the symmetries of the underlying fundamental theory

and containing only the light degrees-of-freedom

Heff. = Heff.(φ) = lim
E<Mχ

H(χ, φ). (2.2)

An expansion in powers of external momenta of the light fields φ introduces a finite

number of local operators with dimension d ≤ 4 (relevant/marginal) and an infinite

number of local operators with dimension d > 4, irrelevant. At energies below the

9
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threshold the irrelevant operators become less important with increasing dimension,

such that we can truncate the series for a given accuracy [21]. The remnant of the

high-energy physics manifest itself by the choice of allowed operators (symmetry) and

the magnitude of their coefficients (energy scale), determined by a matching calculation

or taken from data.

There are typically two reasons for the use of an EFT, for which Chiral Perturbation

Theory [22, 23] and Fermi’s Theory of Weak Interactions [24] are cited here as examples.

The former is the low-energy EFT of Quantum Chromodynamics (QCD) and permits in

many cases reliable calculations of decay properties for pions and kaons [25]. Although

the fundamental theory of hadrons is known, perturbative QCD does not provide insights

into the physics at energies below the charm quark mass due to the non-perturbative

nature of its coupling constant αs at low energies which necessitates the use of the

effective description. Contrary to that, the underlying fundamental forces of the decay

rate of a neutron into a proton, electron, and anti-electron neutrino were not known at

the beginning of the last century, but could be correctly described by Fermi through the

introduction of a local 4-fermion interaction in the Hamiltonian, written in a modern

perspective,

Heff =
GF√

2
(ū γµ(1− γ5)Vud d) (ν̄l γ

µ(1− γ5) l) , (2.3)

with Vud the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [26, 27]

and the effective coupling constant GF = 1.16637× 10−5 GeV−2 (Fermi constant) with

mass dimension [GF ] = −2. Because Fermi’s theory was yet a suitable, but effective

description of some low-energy phenomena, identifying GF with the energy scale up to

which its effective description is valid

GF√
2

=
1

M2
Λ

, (2.4)

Fermi would have claimed the existence of a fundamental theory at the scale ofO(102) GeV

— the scale of electroweak symmetry breaking of the Standard Model (SM). The ad-

vantages of effective theories can be summarised as follows:

• Effective theories separate the dynamics at different distance scales and as such

simplify — or enable — practical calculations.

• Effective theories allow to facilitate a bottom up approach. Instead of modelling

physics at some high scale and investigating its effects on low-energy observables,

we can use measurements to extrapolate to the high-energy regime.

EFT can also be applied to the physics of weakly-decaying B mesons. At least —

restricting to the SM — three different energy scales are involved. The necessary flavour
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change b→ (d, s) takes place at the energy scale of the W-boson mass, MW ∼ 80 GeV,

whereas the energy of the decay in the rest-frame of the B meson is provided by mB ∼
5 GeV. The energy of binding quarks into mesons is given by the QCD cut-off scale

ΛQCD ∼ 0.2 GeV at which QCD becomes strongly coupled. This implies the following

hierarchy of scales

ΛQCD � mB �MW . (2.5)

Due to the separation between the electroweak scale and mB, large logarithms will

occur in calculations of QCD- and QED-radiative corrections, which spoil the conver-

gence of the perturbation series and reliability of predictions. Rephrasing the problem

through an EWH, a consistent resummation of large logarithms to all orders in per-

turbation theory can be achieved by means of renormalisation group equations (RGE).

This is discussed in Section 2.1. We use Section 2.2 to define the EWH, needed in the

present work, and to set up our notations. Chapter 3 is designated to the discussion of

hadronic matrix elements. Here we will make use of the QCD factorisation framework

(QCDF) [1, 28, 29], in which the hierarchy between mB and ΛQCD is utilised to show

that a systematic calculation of higher-order corrections can be made reliably in the case

of a 2-body B-meson decay into either two light or one light and one heavy meson.

A pedagogical introduction to EFT and their application in Particle Physics can

be found in [30, 31] and references therein. The EWH formalism for B-meson decays

are worked out in the publications of [32, 33] from which many aspects of the following

discussion are inspired.

2.1 Renormalisation Group improved perturbation theory

The weak decay of a B meson is triggered by a flavour-changing process, taking place

at the scale MW . Because the maximal energy release in the decay is provided by the

mass of the B meson, p ∼ mB, a low-energy effective theory of weak interactions seems

to be desirable. Due to mB/MW � 1, we can expand any amplitudes in the full theory

in powers of external momenta, p/MW , and safely drop terms beyond leading order.

Unfortunately, after taking QCD corrections into account, our calculation will contain

terms of the form αns (αs ln(MW /mb))
k. Though the strong coupling constant being

not too large for energies above the hadronic scale, the product αs ln(MW /mb) ∼ O(1)

spoils the convergence of our perturbation series.

In order to restore its validity, we will disentangle in a first step the two different

energy regimes with the help of an EWH. This is achieved by integrating out all degrees-

of-freedom with masses Mχ ≥ µ from the SM Hamiltonian and adding the arising local
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operators that respect the symmetry of the SM gauge group SU(3)C × SU(2)L ×U(1)Y

HSM(χ , φ) −→ HQCD×QED(φ) +
∑
i

Ci(µ)Oi(µ). (2.6)

The described procedure introduces the renormalisation scale µ, which can be in-

terpreted as the scale that separates short-distance from long-distance physics or as the

validity limit for our low-energy effective theory. The infinite sum of local operators

completely reproduces the features of the full Hamiltonian, but according to the above

mentioned expansion in momenta of external fields, it will be sufficient to order the

series by the dimension of the operators and keep up to dimension d = 6.

The Wilson Coefficients Ci are effective coupling constants and multiply the effec-

tive operators. They are obtained from a matching calculation at the separation scale

µ. Under the requirement that the amplitudes — in the sense of amputated Green

functions — in the full and effective theory are equal, the Wilson Coefficients can be

computed to the desired accuracy in the strong and electromagnetic coupling constant

and solely depend on the heavy degrees-of-freedom, parametrised through mixing angles

and masses.

The truncation of higher-dimensional operators leads to the observation that the ef-

fective theory does not correctly reproduce the UV behaviour of the full theory implying

additional divergence that need to be renormalised by an operator renormalisation

O(0)
i = ZijOj , (2.7)

where O(0)
i is the unrenormalised operator. As can be seen from Equation 2.7, the

operator renormalisation constant Zij is given as a matrix with in general non-vanishing

off-diagonal elements. As a consequence of renormalisation, the operators Oj mix into

each other. A set of operators, needed to render all amplitudes finite, is called closed

under renormalisation. It is worth to mention that the actual operator renormalisation

is not affected from the specific choice of the physics beyond the high-energy scale.

The additional operator renormalisation can also be reinterpreted as the usual

renormalisation of coupling constants as it is done for example in the renormalisation of

the αs in QCD. The according matrix-valued renormalisation constant for the Wilson

Coefficients is defined as follows

C
(0)
i = Zcij Cj . (2.8)
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Comparing the expressions for the effective amplitudes after renormalising either the

operators or the coefficients, we find the relation

Zcij = Z−1
ji . (2.9)

After the renormalisation of the full and effective amplitudes, we can determine the

Wilson Coefficients, which include all information of the physics above µ and contain

terms proportional to αs ln(MW /µ). The matching scale µ is typically chosen in the

vicinity of MW in order to guarantee that the Wilson Coefficients can be calculated in

perturbation theory. However, because matrix elements of the local operators should

be evaluated at µ ∼ mb, we require a tool to evolve the Wilson Coefficients from the

high-energy scale down to the low-energy scale. This can be achieved by means of RGE,

which describes the dependence of renormalised quantities on the renormalisation scale

µ and adds automatically large logarithms up to all orders in couplings. From the fact

that bare quantities do not depend on the renormalisation scale, we can derive from

Equation 2.8

d

d lnµ
Ci(µ) = γji(αs)Cj(µ), (2.10)

where the anomalous dimension matrix (ADM) γ is defined in terms of the renormali-

sation constant Z from Equation 2.7

γij ≡ Z−1
ij

d

d lnµ
Zij . (2.11)

The solution to Equation 2.10 automatically adds up the large logarithms in the Wilson

Coefficients and can be expressed in a simple form

Cj(µb) = Uij(µb, µW )Cj(µW ), (2.12)

where Uij is the Evolution Matrix describing the dependence of the Wilson Coefficients

between two different energy scales µW and µb.

At leading order the Evolution Matrix is given by

U (0)(µb, µW ) =

(
αs(µW )

αs(µb)

) γ0

2β0

, (2.13)

where β0 is the leading order coefficient of the QCD β-function and γ0 the leading order

ADM in the expansion γ = αs
4πγ

0 + O(α2
s) . The logarithm in αn=0

s (αs ln(MW /mb))
k

are implicitly summed up and the Wilson Coefficients are obtained to the leading log

approximation. A resumation of higher-order corrections, αn=j
s (αs ln(MW /mb))

k, can
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C1 C2 C3 C4 C5 C6

µ = MW 0.983 0.052 0.001 -0.002 0.001 -0.002

µ = mb 1.08 -0.188 0.013 -0.035 0.009 -0.041

C7/α C8/α C9/α C10/α C7γ C8g

µ = MW 0.112 0.002 -1.009 -0.020 -0.188 -0.095

µ = mb -0.016 0.057 -1.229 0.215 -0.304 -0.152

Table 2.1: Next-to-leading order 4-quark and dipole Wilson Coefficients given at the
matching scale µW = MW and the hadronic scale µb = mb for mt(mt) = 164 GeV,
αs(MW ) = 0.119, and 1/α(mb) = 132.

be obtained from the ADM γj ∼ (αs4π )j+1. A clear presentation of how the large loga-

rithms are resumed can be found in [34]. At last, performing the matching calculation

at the scale MW , we find the necessary initial conditions Cj(µW ) for the solution in

Equation 2.12.

2.2 Effective Weak Hamiltonian for B decays

In the following we will define the EWH for B mesons decaying into two hadrons, into

leptons/photons and at most one hadron, as well as the EWH for B0-B̄0 mixing. While

the focus of this work will reside on the phenomenology of hadronic decays, we want

to set the stage to discuss correlations of a wider class of flavour observables in models

beyond the SM. For the moment, our discussion is kept generic, concerning the two

possible flavour-changing processes b → d and b → s. Both transitions are investigated

for the SM hypothesis in Chapter 5. In the case of physics beyond the SM, discussed in

Chapter 6, we exclusively elaborate on b→ s transitions.

2.2.1 |∆B| = 1 hadronic B decays

Restricting to the SM, the EWH for hadronic B-meson decays can be written in terms

of twelve operators with non-vanishing Wilson Coefficients

Heff =
GF√

2

∑
p=u,c

λ(D)
p

(
Cp1O

p
1 + Cp2O

p
2 +

10∑
i=3

CiOi + C7γO7γ + C8gO8g

)
+ h.c., (2.14)

where D = (d, s) and λ
(D)
p is introduced as the short notation for the involved product

of CKM-matrix elements, λ
(D)
p ≡ VpbV

∗
pD. In principal, the CKM-matrix elements are

parts of the Wilson Coefficients, but in the SM it is common practice to factorise them.

In writing Equation 2.14, we explicitly used the unitarity of the CKM-matrix, −λt =
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λu + λc. The flavor-changing 4-quark and dipole operators are

Op1 = (p̄α bα)V−A(D̄β pβ)V−A, Op2 = (p̄β bα)V−A(D̄α pβ)V−A,

O3 = (D̄α bα)V−A
∑

q
(q̄β qβ)V−A, O4 = (D̄α bβ)V−A

∑
q
(q̄β qα)V−A,

O5 = (D̄α bα)V−A
∑

q
(q̄β qβ)V+A, O6 = (D̄α bβ)V−A

∑
q
(q̄β qα)V+A,

O7 = (D̄α bα)V−A
∑

q

3

2
eq(q̄β qβ)V+A, O8 = (D̄α bβ)V−A

∑
q

3

2
eq(q̄β qα)V+A,

O9 = (D̄α bα)V−A
∑

q

3

2
eq(q̄β qβ)V−A, O10 = (D̄α bβ)V−A

∑
q

3

2
eq(q̄β qα)V−A,

O7γ = −emb

8π2
D̄α σ

µν(1 + γ5)Fµν bα, O8g = −gsmb

8π2
D̄α σ

µν(1 + γ5)T aαβG
a
µν bβ,

(2.15)

where (q̄ q)V±A = q̄γµ(1 ± γ5)q, the sum is over active quarks q = (u, d, s, c, b), with eq

denoting their electric charge in units of |e|, and α, β denoting colour indices. Op1,2 are

known as current-current operators, O3−6 as QCD-penguin operators, O7−10 as QED-

penguin operators, and O7γ,8g as electro- and chromo-magnetic dipole operators.

The analytic formulas of the initial Wilson Coefficients as well as the ADMs for

the present choice of operator basis can be found in [32, 33]. The Wilson Coefficients

are calculated up to next-to-leading order in the strong and electromagnetic coupling

constants. The RGEs are solved within the next-to-leading log approximation. As

described in [29], we will use the modified counting scheme, in which the dominant

part of the QED-penguin Wilson Coefficients, scaling with either xt = m2
t /m

2
W , with

mt the mass of the top quark, or with inverse powers of the weak mixing angle 1/s2
W,

are treated as a leading-order effect. The numerical values for the next-to-leading-order

Wilson Coefficients are summarised in Table 2.1 at µ = MW and µ = mb.

In general, new-physics (NP) scenarios can give additional contributions to the

SM Wilson Coefficients or generate different additional operators as the ones given in

Equation 2.15. Because the SM operator basis is closed under QCD and QED renor-

malisation, only new operators can mix into the SM operators, but not vice versa. A

special class of operators are the χ-flipped operators. They are obtained by a global

interchange of the projectors 1
2(1− γ5)↔ 1

2 (1 + γ5). We will denote these operators

with a prime. Since the unbroken part of the SM symmetry, SU(3)C ×U(1)Q, does not

distinguish between the left- and right-handed components of the fermionic fields, the

solution to the RGE is equivalent. As we will see in Chapter 3, similar relations, up to

an overall sign, can be found for the matrix elements of these operators.

In later parts of this work we will introduce different operators at the electroweak

scale µ = MW in order to study the impact of NP on B-meson decays in a model-

independent way. As it is evident from the previous discussion, the Wilson Coefficients

at the hadronic scale are just a linear combination of the Wilson Coefficients at the
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electroweak scale. Therefore, it can be useful to quantify the impact of the high-scale

onto the low-scale Wilson Coefficients. We introduce the normalised Evolution Matrix
∼
U , defined as

∼
U ij(µb, µW ) = Uij(µb, µW )

Cj(µW )

Ci(µb)
, (2.16)

where no sum over the indices is understood.

As it is implicit from the definition,
∑

j

∼
U ij(µb, µW ) = 1. The entries of the normalised

Evolution Matrix describe the relative change of the low-scale Wilson Coefficient ac-

cording to a relative change of the high-scale Wilson Coefficient by 1.

Referring to the four different kind of operators in the Standard Model basis

mentioned above, we find the following sub-matrices
∼
U c.c. with (i, j) = (1, 2),

∼
Udip

with (i, j) = (7γ, 8g; 1, 2, 7γ, 8g; ),
∼
UQCD with (i, j) = (3 − 6; 1 − 6) and,

∼
UQED with

(i, j) = (7− 10; 1, 2, 7− 10), evaluated at the scales µW = MW and µb = mb

∼
U c.c. =

(
1.01 0

1.31 −0.31

)
,

∼
UQCD =


0.93 0 0.05 0 0 0

0.95 0 0 0.05 0 0

0.96 0 0 0 0.07 0

0.94 0 0 0 0. 0.08

 ,

∼
Udip =

(
0.56 0 0.41 0

0.52 0 0 0.44

)
,
∼
UQED =


6.20 1.42 −6.69 0 0 0

0.26 −0.09 0.71 0.06 0 0

0.07 0 0 0 0.91 0

−0.07 0 0 0 1.17 −0.10

 ,

(2.17)

where only those entries are non-vanishing for which |
∼
U ij | ≥ 0.05.

The following observation can be made from the normalised Evolution Matrix
∼
U :

• The mixing of Cp1 (MW ) into the other operator classes is a dominant effect. A

subtle difference arises for the two possible flavour transitions. In the case of

|∆S| = 1 decays, a large hierarchy between the CKM-matrix elements λ
(s)
u /λ

(s)
c ∼

0.02 is encountered. Only a modification of Cc1(MW ) implies large corrections to

other Wilson Coefficients at the scale µ = mb. For |∆D| = 1, the CKM-matrix

elements are of the same order λ
(d)
u ∼ λ

(d)
c , such that both Wilson Coefficients

Cp1 (MW ) can influence the low-scale Wilson Coefficients through mixing effects.

• The impact of the colour-suppressed coefficient Cp2 (MW ) on the other classes of

operators is small, except for C7(mb).

• The impact of the colour-allowed current-current coefficient Cp1 (MW ) on the dipole

operators is of the same order as their self-mixing.
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C9V /α C10A/α

µ = MW 0.156
-0.330

µ = mb 0.324

Table 2.2: Next-to-leading order semi-leptonic Wilson Coefficients given at the
matching scale µW = MW and the hadronic scale µb = mb for mt(mt) = 164 GeV,
αs(MW ) = 0.119, and 1/α(mb) = 132.

• The mixing of the colour-allowed current-current coefficient Cp1 (MW ) into the

QCD-penguin coefficients is the dominant effect. AnO(1) modification of C3(MW )−
C6(MW ) can almost be neglected.

• For the mixing into C7(mb), a cancellation occurs between the contributions from

Cp1 (MW ) and C7(MW ), explaining its small value, which then mainly originates

from the colour-suppressed current-current coefficient Cp2 (MW ). C9(mb) is domi-

nated by its self-mixing and the colour-suppressed QED-penguin coefficients C8,10(mb)

are dominated by their colour-allowed counter-parts C7,9(MW ).

2.2.2 |∆B| = 1 (semi-)leptonic B decays

Many extensions of the SM provide additional contributions to the physics of B-meson

decays. Within a concrete model, we can work out the Wilson Coefficients in terms of

the fundamental parameters of the model. Correlations among all kinds of observables

arise automatically. However, a model-independent analysis such as the modification of

Wilson Coefficients can also introduce correlations: First, both decays depend on a com-

mon subset of the SM Wilson Coefficients {C1(MW )−C6(MW ), C7γ(MW ), C8g(MW )}.
Second, additional operators can arise that influence the observables via mixing effects

and contribute to both decay classes. In order to account for such effects we need to

add to the EWH in Equation 2.14 the following terms

Hs.l.
eff = 4

GF√
2

∑
p=u,c

λ(D)
p (C9VO9V + C10AO10A) + h.c., (2.18)

with the flavour-changing semi-leptonic operators

O9V = (D̄γµPLb)(l̄γ
µl), O10A = (D̄γµPLb)(l̄γ

µγ5l), (2.19)

where we have used the abbreviation PL = 1
2(1− γ5).

The values of the Wilson Coefficients are given for the two renormalisation scales MW

and mb in Table 2.2. The µ-dependence for C10A is trivial because non of the operators

mix into O10A and as a conserved current under QCD there is even no self-mixing.
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As in the previous subsection, we give the non-vanishing entries for the normalised

Evolution Matrix
∼
U s.l.(µb, µW ) with (i, j) = (9V ; 1, 2, 9V ),

∼
U s.l. =

(
0.41 0.11 0.48

)
. (2.20)

The leading contributions to C9V (mb) are almost equally provided by C1(MW ) and

C9V (MW ). The mixing effect from C2(MW ) is rather small as in the case of the mixing

into the 4-quark QED-penguin operators.

2.2.3 |∆B| = 2 B0-B̄0 mixing

For completeness, we also specify the relevant EWH for B0-B̄0 mixing

H|∆B|=2
eff =

G2
F

4π2
M2
W

(
λ

(D)
t

)2∑
i

CiOi + h.c., (2.21)

with the operators [35]

OLLV = (D̄αγµPLbα)(D̄βγ
µPLbβ),

OLLS = (D̄αPLbα)(D̄βPLbβ), ÕLLS = (D̄αPLbβ)(D̄βPLbα),

OLRS = (D̄αPLbα)(D̄βPRbβ), ÕLRS = (D̄αPLbβ)(D̄βPRbα).

(2.22)

Along with the χ-flipped operators ORRV , ORRS , ÕRRS , a complete set of possible |∆B| = 2

operators is defined. Only the Wilson Coefficient CLLV receives contributions in the SM

from box diagrams. Since the total number of operators is manageable, we already

quoted operators that might arise only after the inclusion of physics beyond the SM,

contrary to the previous subsections.



Chapter 3

Hadronic Matrix Elements

In the previous section, we discussed the necessity to introduce the EWH formalism for

weakly-decaying B mesons. The Wilson Coefficients were calculated at the matching

scale µW ∼ MW and evolved down by means of RGEs to µb ∼ mb. In order to obtain

physical decay amplitudes, we still have to calculate the matrix elements of the operators

included in Heff of Equation 2.14

AB̄→M1M2
= 〈M1M2|Heff |B̄〉 =

GF√
2

∑
i,p

λpC
p
i (µb) 〈M1M2| Opi |B̄〉 (µb). (3.1)

The matrix elements describe how the quarks hadronise into the final-state mesons.

The bound-state dynamics typically takes place at an energy scale ΛQCD, at which the

strong interaction cannot be treated in perturbation theory, which makes the determi-

nation of hadronic matrix elements a formidable exercise. Fortunately, for the decay of

a B meson, we can utilise the hierarchy ΛQCD � mb. To lowest order in a expansion in

ΛQCD/mb, one can show that QCD contributions to the matrix elements, 〈M1M2|Qpi |B̄〉,
factorise into universal, simpler, non-perturbative objects, like form factors and decay

constants and non-factorisable corrections are dominated by the exchange of hard glu-

ons. The above statement is valid for a B meson decaying into either two light or one

light and one heavy meson, where the heavy meson has absorbed the spectator quark.

This formulation was systematically worked out in the framework of QCD factorisation

(QCDF) [1, 28, 29, 36]. Previously, the factorisation ansatz itself, which we will call

naive factorisation, was already discussed in the literature [37, 38], but it was far from

clear why radiative corrections below mb should be suppressed. QCDF provides a sys-

tematic way to calculate hadronic matrix elements to leading power in ΛQCD/mb and to

all orders in perturbation theory in αs. Naive factorisation is automatically recovered as

the matrix elements to leading order in αs and explains its phenomenological success in

the past. Hadronic matrix elements were also calculated by means of QCD-sum rules.

But to our knowledge, only the decays B → ππ has been investigated so far [39–41]. In

19
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some cases it is possible to use appropriate symmetries to circumvent the problem of cal-

culating hadronic matrix elements. The decay amplitudes are usually decomposed into

different topological contributions and related via for example isospin or flavour sym-

metries (SU(2)I, SU(3)F) to amplitudes of other decays, which then can be extracted

from experiment. Potential drawbacks are non-factorisable symmetry breaking effects,

which cannot be calculated from first principle and need to be modelled in some way. In

addition, the explicit dependence on the Wilson Coefficients, worked out in the EWH,

becomes lost and analyses that exclusively rely on symmetry arguments are usually un-

suitable for testing specific NP scenarios. Under the assumption of the validity of the

SM, such analysis usually allow to determine parameters like CKM-matrix elements or

to predict observables like branching ratios and CP asymmetries. If measurements for

these quantities exist, the SM hypothesis can be falsified. Though many studies can

be found in the literature, we want to mention just a few examples: An isospin anal-

ysis for B → Kπ was worked out in [42], the decay B̄s → K+K− has been related to

B̄ → π+π− in [43, 44] and the authors in [34, 45] combined flavour symmetry arguments

with QCDF.

In the first part of this chapter, we will introduce the main concepts of QCDF in

Subsection 3.1.1 and define all necessary quantities for our analysis in Subsection 3.1.2.

A parametrisation of the decay amplitudes in terms of form factors, decay constants

and amplitude coefficients is given in Subsection 3.1.3, encoding the underlying hard

QCD-dynamics. The main goal of the present thesis is a analysis of subleading power

corrections within the SM and beyond. We define a quantitative measure of neces-

sary power-suppressed corrections compared to the leading decay amplitude in Subsec-

tion 3.1.3, which can be compared between different models. Section 3.2 summarises

our numerical input.

3.1 QCD factorisation

3.1.1 Conceptual aspects

The calculation of hadronic matrix elements is due to their non-perturbative nature

rather challenging. With regard to a lacking systematic treatment, one might be forced

to rely on more heuristic arguments. In the case of a B-meson decaying into two mesons,

B →M1M2, it was assumed that the hadronisation process decouples into the transition

of the B meson into M1 and the ejection of M2 from the vacuum

〈M1M2|j1 × j2|B̄〉 −→ 〈M1|j1|B̄〉 〈M2|j2|0〉 ∼ FB→M1(q2) fM2 , (3.2)
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B

Fj

T I
ij

ΦM2

M1

M2

+ T II
i

ΦM1

ΦM2

ΦB

B

M1

M2

Figure 3.1: Graphical representation of the factorisation formula in QCDF. [Graphic
taken from [1]].

with the bilinear quark current ji = q̄′Γiq and Γi representing some Dirac structure. In

the following discussion, M1 will always refer to the meson that picks up the spectator

quark and M2 to the ejected meson.

The physical interpretation can be understood by recalling the specific kinematic

situation and Bjorken’s colour transparency argument [46, 47]: The b quark decays at

the weak vertex into three quarks. Because their masses are much lighter than the

mass of the b quark, they will leave the vertex with high momentum in the b-quark

rest frame. One of the light quarks picks up the spectator quark from the B meson

to hadronise into M1. In order to hadronise into M2, the residual two quarks are

necessarily produced in a highly collinear configuration with small transverse extension

of order ΛQCD, forming a compact object. Since the ejected meson is fast, its intrinsic

colour structure cannot be resolved by a soft gluon. These radiative corrections only

interact with the colour-dipole moment of the ejected meson, which is suppressed for a

compact object (colour-transparent).

The expectation that hadronic matrix elements naively factorise does not account

for a proper cancellation of the residual scale dependence of the Wilson Coefficients.

Hence the naive factorisation picture is incomplete. In further developments, it was

possible to show that the colour transparency argument and factorisation can be incor-

porated in a systematic way to hadronic B-meson decays by a consistent power expansion

in ΛQCD/mb, resulting in the framework of QCDF [1, 28, 29]. Even further, the authors

claimed that to leading power in ΛQCD/mb only the exchange of hard gluons dominates

the non-factorisable contributions to the decay amplitude, whereas soft contributions

are confined to either the (B →M1) or the ejected-meson system. This allows us to cal-

culate radiative corrections perturbatively to the naive factorisation ansatz and results
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Figure 3.2: Non-factorisable vertex corrections to the decay amplitudes ai,I

into the formula

〈M1M2|Oi|B̄〉 =
∑
j

FB→M1
j (m2

2)

∫ 1

0
duT I

ij(u) ΦM2(u) + (M1 ↔ M2)

+

∫ 1

0
dξdvduT II

i (ξ, v, u) ΦB(ξ) ΦM1(v) ΦM2(u) + O
(

ΛQCD

mb

)
,

(3.3)

where ΦMi(x) are light-cone distribution amplitudes (LCDA) of the mesons. They de-

scribe the probability that the constituent quarks of the meson carry the longitudinal

momentum fraction x, respectively x̄ = 1 − x and are defined later. T I,II are hard-

scattering kernels, which contain the radiative corrections to naive factorisation. Equa-

tion 3.3 is expected to hold to all orders in perturbation theory and was formally proven

to O(α2
s) in [1]. A graphical presentation of factorisation is shown in Figure 3.1.

The main task now is to identify the leading contributions to the hard-scattering

kernels. To lowest order, we will have to calculate the insertion of operators into diagrams

without radiative corrections. They will set the leading scaling property of our decay

amplitude. After the weak decay of the b quark, no momentum transfer takes place

between (B → M1) transition and the ejected meson and the hard-scattering kernel

obey a trivial dependence on the momentum fraction u

T I(u) = 1 +O(αs), T II = O(αs). (3.4)

The integral over ΦM2 results in the meson decay constant fM2 , as the proper normal-

isation of the LCDA, and naive factorisation in Equation 3.2 emerges as the leading

order contribution in ΛQCD/mb and αs in Equation 3.3. One should remark the follow-

ing difference between the case of the decay into either two light or one light and one

heavy meson: The momentum of the spectator quark is of the order ΛQCD. Hence M2 is

formed in the case of light-light final states in an asymmetric momentum configuration.

The hadronisation of a light meson with one quark carrying almost all of the longitudi-

nal momentum fraction, u ∼ 1, is suppressed by (ΛQCD/mb)
3/2 compared to the decay

into heavy-light final states, which will give rise to corrections to the former case, being

absent in the latter.

The first non-factorisable corrections arise from vertex and penguin correction,

shown in Figures 3.2 and 3.3 and contribute to the hard-scattering kernel T I(u). The
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Figure 3.3: Non-factorisable pen-
guin corrections to the decay ampli-
tudes ai,I

Figure 3.4: Non-factorisable hard-
spectator scattering corrections to
the decay amplitudes ai,II

success of QCDF was to show that these corrections are dominated by hard-gluon ex-

change and are therefore calculable in perturbation theory. Because momentum is trans-

ferred between the (B → M1)-system and M2, the hard-scattering kernel depends on

the longitudinal momentum fraction u and its convolution with the LCDA become mode

dependent. As we will see in Subsection 3.1.3, these corrections introduce strong inter-

action phases, which occur in QCDF first at order αs. CP asymmetries arise through the

interplay of weak phases, given through the CKM-matrix in the SM, and strong phases

of the decay amplitudes, making CP asymmetries especially sensitive to these radiative

corrections. To leading order in ΛQCD/mb, it is sufficient to work in the leading-twist

approximation for the LCDA, which is equivalent to omit contributions from non-leading

Fock states. However, higher twist contributions, though being formally subleading, can

become numerically important and will be considered in our analysis (see Chapter 3.1.2).

Fortunately, in the case of vertex and penguin corrections these contributions factorise.

The first corrections to the hard-scattering kernel T II(ξ, v, u), which is given by

the second line of Equation 3.3, arise from interactions between M2 and the spectator

quark, shown in Figure 3.4 and called hard-spectator scattering (HS). Whereas these

contributions are subleading in the case of heavy-light, they have to be considered for

light-light final states. Again, soft gluon contributions are suppressed by the colour

transparency argument, but the exchange of hard gluon scales like the leading amplitude

and has to be considered as a perturbative, radiative correction to the factorisation

formula. HS violates naive factorisation because it cannot be cast into a form factor and

decay constant. As in the case for the vertex and penguin corrections, chiral-enhanced

contributions also occur for the HS. These contributions cannot be calculated reliably due

to logarithmic divergences. These originate from soft-gluon exchange between the quarks

in M2 and the spectator quark and cannot be sufficiently suppressed by higher-twist

contributions in the LCDA. In nature, such effects will be smeared out by uncontrollable

QCD effects and need to be regularised by a soft cut-off scale to obtain an estimate for

the order of magnitude that can be expected from those contributions.

The last class of contributions arises through weak annihilation (WA), shown in

Figure 3.5. The spectator quark annihilates with the b quark and the residual two quarks

from the weak interaction vertex hadronise into the final state mesons together with a



Chapter 3. Hadronic Matrix Elements 24

Figure 3.5: Non-factorisable weak-annihilation corrections to the decay amplitudes
bi.

quark pair emitted from a gluon vertex. Although WA is power-suppressed relative to the

leading amplitude, it is chiral enhanced and might be numerically relevant for a sensible

phenomenological analysis. Unfortunately, WA cannot be consistently calculated in a

hard-scattering approach, which reflects the occurrence of logarithmic divergence already

at leading twist.

3.1.2 Non-perturbative quantities

In the following section, we define the relevant non-perturbative quantities needed for

hadronic B-meson decays, in particular, transition form factors and LCDAs for light and

heavy mesons.

We will use the definition for the form factors given in [48]. The transition of a B

meson into a pseudoscalar meson P can be described by the two form factors F+, F0

〈P (p′)|q̄γµb|B̄(p)〉 = F+(q2)

[
pµ + p′µ − M2

B −m2
P

q2
qµ
]

+ F0(q2)
M2
B −m2

P

q2
qµ, (3.5)

where q = p− p′ and mP denotes the mass of the meson P . At large recoil (q2 → 0) the

two form factors coincide in the heavy quark limit [49]

F0(q2 = 0) = F+(q2 = 0) +O(ΛQCD/mb), (3.6)

and in the case of B → PP, PV decays, it suffices to only consider F0. The relevant

form factors for the transition into a vector meson are parametrised by V,A0, A1, A2
1

〈V (p′, ε∗)|q̄γµb|B̄(p)〉 = V (q2)
2i

MB +mV
εµνρσε∗νp

′
ρpσ,

〈V (p′, ε∗)|q̄γµγ5b|B̄(p)〉 = 2mVA0(q2)
ε∗ · q
q2

qµ + (MB +mV )A1(q2)

[
ε∗µ − ε∗ · q

q2
qµ
]

−A2(q2)
ε∗ · q

MB +mV

[
pµ + p′µ − M2

B −m2
V

q2
qµ
]
, (3.7)

where ε∗ is the polarisation vector and mV the mass of the vector meson. The convention

ε0123 = −1 has been used.

The form factor A0 occurs in B → V P and B → V 0V 0 decays, where V 0 is

the longitudinal polarisation mode of the vector meson. The decay amplitude into the

1In principle also tensor form factors exists for B → P, V , but those are irrelevant for our analysis.



Chapter 3. Hadronic Matrix Elements 25

positive/negative helicity states B → V ±V ± depends on a linear combination of A1 and

V

F±(q2) =

(
1 +

mV

mB

)
A1(q2)∓

(
1− mV

mB

)
V (q2). (3.8)

The special kinematic of a two-body decay can again be utilised to also employ form-

factor relations for B → V decays in the heavy-quark limit [49]

V (q2 = 0) = A1(q2 = 0) +O(ΛQCD/mb), (3.9)

and together with Equation 3.8 the form factors obey the following scaling properties

F−
A0
∼ 1,

F+

A0
∼ O(ΛQCD/mb). (3.10)

LCDAs of light mesons are formally needed in QCDF at leading-twist order. Higher

twist-3 contributions are suppressed relative to the leading twist, but can be proportional

to the chiral quark condensate and therefore numerically enhanced. Nevertheless, it

is sufficient to consider only two-particle distribution amplitudes, although 3-particle

quark-antiquark-gluon distribution amplitudes contribute also to the twist-3 corrections,

but are not enhanced and can therefore be neglected. The defining equations for the

relevant twist-2, φP , and twist-3, φp, LCDAs for a light pseudoscalar meson are [48, 50]

〈P (p′)|q̄(y)γµγ5[y, x]q(x)|0〉 = −ifP p′µ
∫ 1

0
du ei(u p

′·y+ū p′·x)φP (u, µ),

〈P (p′)|q̄(y)iγ5[y, x]q(x)|0〉 = fPµP

∫ 1

0
du ei(u p

′·y+ū p′·x)φp(u, µ),

(3.11)

with fP the decay constant of the light meson P and the chiral enhanced factor µP =

m2
P /(mq1 + mq2). The longitudinal momentum of the constituent valence quarks is

parametrised by the fraction u, ū = 1− u of the momentum of the pseudoscalar meson,

p′, and µ is the renormalisation scale of the light-cone operators. (x − y)2 = 0 obey a

light-like separation and the expression [y, x] indicates that the quark fields between x

and y are connected via a path-ordered exponential of gluon fields in order to guarantee

an gauge-invariant definition of the distribution amplitudes. The twist-3 projection

occurs in corrections from, for instance, scalar penguins, hard-spectator scattering, and

weak annihilation interactions, for which a common chiral-enhanced factor emerge

rPχ (µ) =
2m2

P

mb(µ)(mq1(µ) +mq2(µ))
, (3.12)

and though formally power-suppressed, numerically of order 1. All distribution ampli-

tudes are normalised to
∫ 1

0 duφ(u, µ) = 1, as can be seen from taking x → y. In the
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limit, where the renormalisation scale is sent to infinity, the distribution amplitudes

obey the asymptotic form

φP (u, µ→∞) = 6uū, φp(u, µ→∞) = 1. (3.13)

In practical calculations, it is convenient to express the LCDA in a Gegenbauer expansion

φP (u, µ) = 6uū

(
1 +

∞∑
n=1

αPn (µ)C(3/2)
n (2u− 1)

)
, (3.14)

which is usually truncated after n = 2 and the Gegenbauer polynomials are given by

C
(3/2)
1 (u) = 3u and C

(3/2)
1 (u) = 3

2(5u2 − 1).

Similar relations are obtained for light vector mesons. The relevant twist-2 and

twist-3 LCDAs are defined through [48, 51]

〈V (p′, ε∗‖)|q̄(y)γµ[y, x]q(x)|0〉 = −ifV p′µ
∫ 1

0
du ei(u p

′·y+ū p′·x)φV (u, µ),

〈V (p′, ε∗‖)|q̄(y)σµν [y, x]q(x)|0〉 = −if⊥V (µ)mV

∫ 1

0
du ei(u p

′·y+ū p′·x)
p′µzν − p′νzµ

p′ · z φv(u, µ),

(3.15)

where Wandzura-Wilczek relations [51] can be utilised to express all twist-3 amplitudes

into the single function φv(u, µ). The chiral-enhanced factor for vector mesons is defined

through

rVχ (µ) =
2mV

mb(µ)

f⊥V (µ)

fV
, (3.16)

and the Gegenbauer expansion for φV (u, µ) is analogue to Equation 3.14 with the sub-

stitution αPn (µ) → αVn (µ). The twist-3 amplitudes φv(u, µ), however, are parametrised

by an expansion in Legendre polynomials

φv(u, , µ) = 3

(
1 +

∞∑
n=1

αVn,⊥(u, µ)Pn+1(2u− 1)

)
, (3.17)

which is again truncated after n = 2. The normalisation of the twist-3 distribution

amplitudes is
∫ 1

0 duφv(u, µ) = 0, contrary to the normalisation of φp(u, µ).

The LCDA of the B meson occurs in the second part of the factorisation formula

in Equation 3.3. The exchange of a hard gluon between the emitted meson M2 and the

spectator quarks qs (HS interaction) can resolve the inner momentum structure of the B

meson. In contrast to the LCDA of light mesons, the momentum is mostly carried by the

momentum of the heavy b quark, pb ∼ p, and the momentum of the light spectator quark,

l, is of the order O(ΛQCD). Since the spectator quark is neither heavy nor energetic, no
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further restrictions can be made on the momentum components of l. Nevertheless, it

turns out that the HS amplitude at leading order in αs only depends on the light-cone

component l+ = ξp+, where we have introduced the longitudinal momentum fraction ξ.

The integration over l⊥ and l− can be preformed over the B-meson wave function and

introduces the necessity of the B-meson LCDA in hadronic decays with light-light final

states. To leading order in ΛQCD/mb, the LCDA can be decomposed into two scalar

wave functions ΦB1, B2 [52]

〈0|q̄(z)[z, 0]b(0)|B̄(p)〉 = − ifB
4

[(/p+mb)γ5]

∫ 1

0
dξe−iξ+z− [ΦB1(ξ) + /n−ΦB2(ξ)], (3.18)

where we chose the light-like vector n− = (1, 0, 0,−1). The normalisation conditions are

given by ∫ 1

0
dξΦB1(ξ) = 1,

∫ 1

0
dξΦB2(ξ) = 0. (3.19)

Actually, only the first inverse moment of the B meson LCDA ΦB1 occurs in QCDF

calculations ∫ 1

0

dξ

ξ
ΦB(ξ) ≡ mB

λB
. (3.20)

The quantity λB is theoretically purely known. It can be either obtained from QCD-

sum rule calculations or extracted from experimental measurements of, for instance the

decay B → γ`ν, which will be discussed later on in Subsection 3.2.1.

3.1.3 Parameterisation of the decay amplitudes

The following section shall be used to present the parametrisation of the hadronic B-

meson decay amplitudes, which have been calculated first in [29, 36, 53]. As was argued

in the previous subsections, the matrix elements in the decay amplitudes in Equation 3.1

factorises in a naive way via Equation 3.2 and, radiative corrections are perturbatively

calculable to leading order in ΛQCD/mb. These corrections are parametrised by effective

coefficients ai(M1M2)

AB̄→M1M2
=
GF√

2

10∑
i=1

∑
p=u,c

λp
(
api (M1M2) 〈M1|j1,i|B̄〉 〈M2|j2,i|0〉+

api (M2M1) 〈M2|j1,i|B̄〉 〈M1|j2,i|0〉
)
,

(3.21)

where we absorbed the explicit dependence on Wilson Coefficients into ai(M1M2) and

j1,i, j2,i correspond to the bilinear quark current of the operators defined in Equa-

tion 2.14, where the odd-numbered operators have to be fierzed into a colour-singlet
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structure. Note that the sum over i extends to 10 because the dipole operators only

contribute via penguin contributions to the decay amplitudes.

The effective coefficients ai(M1M2) depend on the Wilson Coefficients and on the

convolution of the hard-scattering kernel with the mode dependent LCDAs, which in-

troduces strong rescattering phases [36]

api (M1M2) = api,I(M1M2) + ai,II(M1M2),

api,I(M1M2) =

(
Ci +

Ci±1

Nc

)
Ni(M2) +

Ci±1

Nc

CFαs
4π

Vi(M2) + P pi (M2),

ai,II(M1M2) =
Ci±1

N2
c

CFαsπHi(M1M2),

(3.22)

where the upper (lower) sign in the Wilson Coefficients apply for i odd (even). Nc is

the number of colours and the colour factor CF = 4/3 for Nc = 3. Analytically formu-

las for the vertex corrections, V (M2) (Figure 3.2), the penguin contractions, P p(M2)

(Figure 3.3), and for HS interactions, H(M1,M2) (Figure 3.4), can be found in [36, 53].

In accordance to the ai(M1M2), additional coefficients bi(M1M2) can be defined

to account for WA contributions. Before introducing them, we would like to mention

some aspects on end-point singularities: As it was already discussed in the previous

Subsection 3.1.1, contributions from HS and WA topologies elude from a systematic

treatment in QCDF. However, such subleading corrections can be chiral enhanced and

yield sizeable contributions in predictions. Due to the ignorance of the respective QCD

mechanisms, additional phenomenological parameters with the according power counting

arguments are introduced

XA,H = (1 + ρA,H) ln
mb

ΛQCD
, ρA,H ≡ |ρA,H |eiφA,H (3.23)

with the complex parameters ρA,H .

In HS, they originate from terms involving twist-3 LCDAs, Φm1(y) 6= 0 for y → 1,

in convolutions ∫ 1

0

dy

1− yΦm1(y) ≡ Φm1(1)XH +

∫ 1

0

dy

[1− y]+
Φm1(y) (3.24)

that are regulated by the introduction of the phenomenological parameter XH
2, which

represents a soft-gluon interaction with the spectator quark. As indicated above, it is

expected that XH ∼ ln(mb/ΛQCD) because it arises in a perturbative calculation of these

soft interactions that are regulated in principle latest by a physical scale of order ΛQCD.

2 In principle one might introduce a separate XH for each meson M1 and M2 as well as for each
operator insertion. Because most decay amplitudes are numerically dominated by one XH , we will treat
them as universal at least for decays that are related via (u ↔ d) quark exchange. Similar arguments
will be adopted to the discussion of WA contributions.
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Neither the adequate degrees-of-freedom nor their interactions that should be used in

an effective theory below this scale are known. It is also conceivable that factorisation

might be achieved at some intermediate scale between mb and ΛQCD. The factor (1+ρH)

summarises the remainder of an unknown matrix element, including the possibility of a

strong phase that affects especially the predictions of CP asymmetries. The numerical

size of the complex parameter ρH is unknown, however too large values will give rise

to numerically enhanced subleading ΛQCD/mb contributions compared to the formally

leading terms putting to question the validity of the ΛQCD/mb expansion of QCDF.

WA is entirely subleading in ΛQCD/mb and consists in principle of six different

building blocks Ai,fk (k = 1, 2, 3), which are characterised by gluon emission from the

initial (i) and final (f) states (Figure 3.5) and the three possible Dirac structures that

are involved: k = 1 for (V − A)⊗ (V − A), k = 2 for (V − A)⊗ (V + A) and k = 3 for

(−2)(S − P ) ⊗ (S + P ). They contribute to non-singlet annihilation amplitudes with

specific combinations of Wilson Coefficients of the 4-quark operators [29, 36, 54]

b1 =
CF
N2
c

C1A
i
1 , b2 =

CF
N2
c

C2A
i
1 ,

bp3 =
CF
N2
c

[
C3A

i
1 + C5(Ai3 +Af3) +NcC6A

f
3

]
, bp4 =

CF
N2
c

[
C4A

i
1 + C6A

i
2

]
,

bp3,EW =
CF
N2
c

[
C9A

i
1 + C7(Ai3 +Af3) +NcC8A

f
3

]
, bp4,EW =

CF
N2
c

[
C10A

i
1 + C8A

i
2

]
,

(3.25)

and depend on the argument M1 and M2. In particular, they correspond to the ampli-

tudes due to current-current (b1, b2), QCD-penguin (bp3, b
p
4) and QED-penguin (bp3EW, b

p
4EW)

annihilation. When ignoring end-point singularities, results for WA contributions can be

derived in terms of convolutions of hard-scattering kernels with LCDAs of twist-2 and

chiral-enhanced twist-3. In analogy to HS, the end-point singularities are then regulated

in a model-dependent fashion∫ 1

0

dy

y
→ XA ,

∫ 1

0
dy

ln y

y
→ −1

2
(XA)2, (3.26)

introducing phenomenological parameters XA that depend in principle on the meson

and are different for each building block Ai,fk . Explicit expressions for Ai,fk in terms of

XA are given for M1M2 = PP, PV, V P, V V in the literature [36, 54], but independently

one has Af1,2 = 0. As a further simplification, it is assumed in the literature that there is

only one phenomenological parameter, independent of meson type and Dirac structure,

such that Ai,fk (XA) are functions of the same parameter. It should be noted that the WA

amplitudes Equation 3.25 in the light-cone sum rule (LCSR) approach exhibit the same

dependence on the products of Wilson Coefficients and building blocks [41], however in

this approach the calculation of Ai,fk does not suffer from end-point singularities due

to different assumptions and approximations. With the latter in mind, a more general
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approach would be to interpret the building blocks themselves as phenomenological

parameters, or equivalently introduce one XA for each of them. When investigating NP

effects in a concrete extension of the SM or model-independently in the framework of the

effective theory, it is desirable to keep the explicit dependence on the Wilson Coefficients

in Equation 3.25 because they depend on non-standard parameters, including new weak

phases. In the case of non-negligible WA contributions, the CP asymmetries and, to less

extend branching ratios, will be sensitive to the interference of NP and strong phases

due to XA.

It is common practice to combine effective decay coefficients into flavour amplitudes

if their quark flavour in the factorised matrix elements (Equation 3.2) coincide. Though

both decay coefficients contribute to the same decay amplitudes, their linear combination

depend on the spin of the final state meson

αp3,EW(M1M2) =

a
p
9(M1M2) − ap7(M1M2) M1M2 = PP , V P,

ap9(M1M2) + ap7(M1M2) M1M2 = PV , V V,
(3.27)

αp4,EW(M1M2) =

a
p
10(M1M2)− rM2

χ ap8(M1M2) M1M2 = V P, V V,

ap10(M1M2) + rM2
χ ap8(M1M2) M1M2 = PP, PV.

(3.28)

The current-current coefficients are simply obtained through the replacement a1,2 →
α1,2. The relations for the QCD-penguin coefficients can be obtained from Equation 3.27

by appropriate replacements for the ai’s. The flavour amplitude for the WA coefficients

are obtained by the normalisation

βi(M1M2) =


1

mM2

fBfM1

mBF
B→M1

bi(M1M2) M1M2 = V ±V ±,

1
mB

fBfM1

mBF
B→M1

bi(M1M2) others
(3.29)

The corresponding matrix elements for the χ-flipped operators, which will be used

in the phenomenological section of this work, can be obtained from the decay amplitudes

ai(M1M2), exploiting parity transformations [55]

〈M1M2|O′i|B̄〉 = −ηM1M2 〈M1M2|Oi|B̄〉 , a′i(M1M2)
Ci→C′i= ai(M1M2), (3.30)

with the parity of the final state ηM1M2 = 1 for PP, V V and ηM1M2 = −1 for PV, V P .

Analogue relations can be derived for the WA coefficients bi(M1M2). In the case of

positive/negative polarised final states, form factors and decay amplitudes have to be

replaced in Equation 3.30 by their helicity counterpart: F± ↔ F∓ and a±(M1M2) ↔
a∓(M1M2).
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Now we defined all necessary quantities to write the decay amplitude of a B meson

into two mesons in the compact form

AB̄→M1M2
=
∑
p=u,c

λp

[
AM1M2

(∑
i

αi(M1M2) +
∑
j

βj(M1M2)
)

+

AM2M1

(∑
i

αi(M2M1) +
∑
j

βj(M2M1)
)]
,

(3.31)

where the sums over the index i, j include only those coefficients for which the quark

flavour of the operators in Equation 3.21 matches those of the initial and final state

mesons. The corresponding operators for βj can be found in [36]. The naive factorisation

amplitude is given by

AM1M2 = i
GF√

2
m2
B



fP2F
B→P1
0 forM1M2 = PP,

−fV2FB→P1
0 forM1M2 = PV,

−fP2A
B→V1
0 forM1M2 = V P,

fV2A
B→V1
0 forM1M2 = V 0V 0,

mM2
mB

fV2F
B→V1
+ forM1M2 = V +V +,

mM2
mB

fV2F
B→V1
− forM1M2 = V −V −.

(3.32)

The positive/negative decay amplitudes are suppressed by mM2/mB compared to the

longitudinal polarised decay amplitude. Together with the scaling properties of the form

factors in Equation 3.10, the following hierarchy is on hand

A0
B̄ : A−

B̄
: A+

B̄
, 1 :

(
ΛQCD

mb

)
:

(
ΛQCD

mb

)2

. (3.33)

This is a consequence of the left-handedness of the SM. Taking χ-flipped operators into

account, the hierarchy between A− and A+ gets inverted,

A′0B̄ : A′+
B̄

: A′−
B̄
, 1 :

(
ΛQCD

mb

)
:

(
ΛQCD

mb

)2

, (3.34)

which qualitatively allows to study potential effects of right-handed currents in the

transverse helicity basis

A⊥ =
1√
2

(A+ +A−), A‖ =
1√
2

(A+ −A−). (3.35)

3.1.4 Power-suppressed corrections

As already indicated, the phenomenological parameters XA,H are unknown and the size

of |ρA,H | is typically adjusted to reproduce data of branching fractions assuming the

SM. The phase φA,H is kept arbitrary and by varying it freely an uncertainty estimate
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within “conventional QCDF” due to WA (HS) is obtained for the theoretical prediction

of observables under consideration. This procedure shows that WA is important and

constitutes a major source of theoretical uncertainty in predictions. In this thesis, we

instead determine the phenomenological parameter ρA,H — and for B → Kπ also ρH —

from the data in the framework of the SM and scenarios beyond, simultaneously with

additional NP parameters. In the latter case, the determination of the NP parameters

will take into account the uncertainty of WA (HS) when marginalising over ρA,H . As a

consequence, no predictions will be possible for those observables that are used in the

fit to determine ρA,H .

This procedure is different to conventional QCDF in as much as it assumes one

universal parameter ρA for all observables in one specific decay mode. Indeed, in con-

ventional QCDF the independent variation of ρA,H for each observable in a specific

decay assumes in principle also different WA (and HS) contributions for each observ-

able. However, since the parameters ρA,H are introduced in QCDF at the level of decay

amplitudes one would expect that they are the same for all observables of a specific de-

cay mode. Consequently, conventional QCDF allows for situations where experimental

measurements and theory predictions for two observables are in agreement, although

for the first observable the agreement is reached for values of φA,H that might be much

different from those where the agreement is reached for the second observable.

In the lack of precise data for most of the decays, we make the further assumption of

a WA parameter that is even universal for decay modes that are related by the exchange

of (u↔ d) quarks. As an example, this allows to combine observables of the four decay

channels B̄0 → K̄0π0, K−π+ and B− → K−π0, K̄0π−, to which we refer as “decay

system” B → Kπ. All considered decay systems and the according measured observables

are listed in Subsection 4.1.1. This assumption is motivated by the circumstance that

the dominant contributions to the amplitude in all considered decays come actually

from the linear combination α̂c4(M1M2) = αc4(M1M2) + βc3(M1M2), which is due to

isospin-conserving QCD-penguin operators O3,...,6. Furthermore, since βc3(M1M2) is due

to the large Wilson Coefficient C6 and an additional colour enhancement numerically

dominated by only one topology Af3 , which parametrised WA with a gluon exchange at

the final-state quark current, the introduction of only one WA parameter is reasonable.

As the credibility of QCDF crucially rely on a meaningful expansion in ΛQCD/mb,

we quantify the amount of power corrections needed to explain the measurements of

branching ratios and CP asymmetries by

ξHi (ρH) =

∣∣∣∣∣ αtw.3
i,II (ρH)

αi,I + αtw.2
i,II

∣∣∣∣∣ , ξAi (ρA) =

∣∣∣∣ βi(ρA)

αi+δi3,I

∣∣∣∣ . (3.36)

In the case of two vector mesons in the final state, ξA,H is defined by the mean value
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of the corresponding ratios for longitudinal and negative polarised amplitudes ξA,Hi,V V =
1
2(ξ

0,(A,H)
i +ξ

−,(A,H)
i )3. In the SM, the power-suppressed ratios exclusively depend on the

parameter ρA,H and contour lines can easily be obtained for our fits. However, for fits

which take effects from physics beyond the SM into account, the ratios ξA,Hi additionally

depend on the NP parameters — directly through the explicit dependence on the Wilson

Coefficients and indirectly from data via the Likelihood — and should be evaluated for

each value ρA at the best-fit point of the residual fit parameters. The exact statistical

treatment will be discussed in Chapter A.5. The most important contribution from

power-suppressed corrections are clearly obtained from HS in α2, which is enhanced by

the large Wilson Coefficient C1 and from the WA correction β3 in QCD-penguin domi-

nated decays. Therefore ξH2 and ξA3 will play an important role in the phenomenological

part of this work.

3.2 Input

After we discussed the main conceptual issues regarding hadronic B-meson decays, we

complete the chapter with the definition of the numerical input, which will be used in

the phenomenological part of this thesis, and briefly comment on the parameter λB.

3.2.1 Moments of the B-meson LCDA from B → γ`ν

The inverse moment of the LCDA of the B meson, λB, as defined in Equation 3.20, is of

crucial importance for decays. It enters the decay amplitudes as an overall factor in HS

Hi(M1M2) ∼ 1

λB
, (3.37)

and therefore, especially important for observables that depend on the colour-suppressed

tree contribution αu2(M1M2). Unfortunately, it is non-trivial to obtain reliable theoret-

ical predictions for λB. The authors in [56], using means of QCD-sum rules, quoted

λB = 460± 110 MeV (QCD-sum rules). (3.38)

This calculation seems to be in contradiction to the analysis in [2], in which the impact

of λB on the branching ratios of the tree-level-dominated decays B → ππ (ρπ, ρLρL)

have been investigated. The analysis was performed within the framework of QCDF

and at NNLO precision for the tree-level decay amplitudes α1,2(M1M2). The theory

3Due to their scaling property, the positive helicity amplitudes are calculated in naive factorisation
and do not contribute to the ξA,Hi,V V
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Figure 3.6: Theoretical prediction for Rππ00 at LO (dotted), NLO (dashed) and NNLO
(solid) vs. λB . The theoretical error band, according to the error estimate in [2], is
shown in blue. The red solid line shows the central value of the measurement within
the 1σ confidence level in yellow. [Plot taken from [2]].

prediction for the ratio

Rππ00 ≡ 2
Γ(B̄0 → π0π0)

Γ(B̄0 → π+π−)
(3.39)

is shown in Figure 3.6 for λB ∈ [0.1 GeV; 0.6 GeV]. The ratio has been employed in order

to reduce uncertainties from form factors, but the misalignment between experiment and

theory is mainly caused by the branching ratio B(B̄0 → π0π0), dominated by αu2(ππ).

Even for a low value of λB = 200 MeV, theory and experiment only overlaps within

their uncertainties. Larger values, as suggested from QCD-sum rules, cannot explain

the observed branching ratios in tree-level-dominated B-meson decays, which lead to

the hypothesis

λB = 200+250
−0 MeV (QCDF). (3.40)

As discussed in the previous section, the calculation of hadronic matrix elements involves

incalculable power corrections, which have been estimated in this analysis through power

counting arguments and finally incorporated into the total error budget. Therefore,

the extraction of the inverse moment of the B-meson LCDA might be corrupted by

underestimated soft QCD effects.

The decay B → γ`ν seems to be a more robust candidate to extract λB from

experiment. The differential decay rate with respect to the energy of the lepton pair,Eγ ,

factorises into a vector and a axial-vector form factor ([57], and references therein)

dΓ

dEγ
=
G2
Fα

48π2
|Vub|2m4

B(1− xγ)x3
γ (FA + FV ) (3.41)
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where xγ =
Eγ

2mB
. To leading order in heavy quark expansion and for energetic photons

Eγ ∼ O(mB/2), the two form factors coincide and are given by

FA = FV =
QumBfB

2Eγ

1

λB
, (3.42)

which can be used to extract λB from branching ratio measurements. The authors

in [57] also calculated radiative and power corrections to the form-factor relation in

Equation 3.42 and concluded a significant decrease for the branching ratio with respect

to these corrections.

So far, only upper limits from CLEO [58] and BaBar [59, 60] exist on the branching

ratio of B → γ`ν and the current situation is still inconclusive, resulting only in a lower

bound on

λB ≥ 150 MeV (B → γ`ν). (3.43)

A decreasing upper limit on the branching-ratio measurement, which might be improved

by the experiments Belle and Belle II, implies an increasing lower bound on λB.

3.2.2 Numerical input

Here we collect the numerical input, used in our analysis, in Table 3.1. Additional in-

put, which will be used for (semi-)leptonic decays and B0-B̄0 mixing, are postponed

to Subsection 4.2.1. For the purpose of comparability, we also quote, in addition to

our observable predictions, the results from a conventional error estimation in the phe-

nomenological part. In that sense, the following input for ρM1M2
A is used

|ρM1M2
A | =


1.9 ± 0.1 for M1M2 = PP,

1.7 ± 0.3 for M1M2 = PV,

1.6 ± 0.3 for M1M2 = V V,

(3.44)

and φM1M2
A = 0 to obtain central values of predictions. The error from WA contributions

are then obtained from freely varying φM1M2
A ∈ [0; 2π] and |ρM1M2

A | within its above

defined error interval. In the case of HS corrections, |ρM1M2
H | = 0± 1 for all final states

and φM1M2
H = 0 with the same error treatment as for WA. Inspired from our findings in

Chapter 5, the input is chosen, such that most observables do not contradict existing

measurements within the SM.

As shown in Equation 3.33, the positive helicity amplitudes, being power-suppressed

compared to the longitudinal and negative polarised amplitudes, cannot be calculated in

QCDF and will be set in our analysis to zero through FB→V+ = 0 according to the treat-

ment in [61]. In order to obtain an estimate of potential corrections to this simplification,
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we will employ naive factorisation and vary the form factors within FB→V+ = ±0.06.

Since the experimental information on B(B → γ`ν) is still inconclusive, we will use the

suggested input from tree-level-dominated B-meson decays, λB = 0.200+0.250
−0 GeV [2].

Further, the input for the CKM-matrix elements are taken from the UTfit collab-

oration [62]. For the SM part, Chapter 5, we employ the results of the CKM “Standard

Model fit”, whereas in Chapter 6 we allow for additional contributions beyond the SM

and results from the CKM “New Physics fit” are employed. Compared to the former,

the latter fit allows for an additional generic correction to the B− B̄ mixing amplitude,

which is especially important for the analysis of CP asymmetries.
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Electroweak input

GF [10−5 GeV−2] Λ
(5)

MS
[ GeV] MZ [ GeV] α

(5)
s (MZ) α

(5)
e (mb)

1.16638 0.213 91.1876 0.1184 1/132 [63, 64]

quark masses

mpole
t mb(mb) mc(mb) ms mq/ms

(173.2± 0.9) 4.2 (1.3± 0.2) (0.095± 0.005) 0.0370 [36, 63, 65]

CKM-matrix elements

λ |Vcb| ρ̄ η̄

SM 0.22535± 0.00065 0.04172± 0.00056 0.127± 0.023 0.353± 0.014
[62]

NP 0.22530± 0.00060 0.04061± 0.00097 0.147± 0.045 0.368± 0.048

B meson input

Bu Bd Bs

fB[ MeV] 190.5± 4.2 227.7± 4.5

λB[ MeV] 200+250
−0 200+250

−0 200+250
−0 [66]

τB[ps−1] 1.641 1.519 1.516
[63]

MB[ MeV] 5279.25 5279.58 5366.77

Hadronic input — pseudoscalar mesons

K π η η′

fP [ MeV] 160 131 (1.07± 0.02)fπ (1.34± 0.06)fπ [36, 67]

FB→P0 0.33± 0.04† 0.26± 0.02 0.23± 0.05 0.19± 0.12 [4, 67, 68]

FBs→P 0.30+0.04
−0.03 – – – [69]

α1(P ) 0.05± 0.02 0.00 0.00 0.00
[67, 70]

α2(P ) 0.17± 0.10 0.17± 0.10 0.00± 0.3 0.00± 0.3

Hadronic input — vector mesons

K∗ ρ φ ω

fV [ MeV] 218± 4 209± 1 221± 3 187± 3 [36]

f⊥V [ MeV] 175± 10 156± 9 175± 9 142± 9 [71]

AB→V0 0.34± 0.03 0.30± 0.03 – 0.28± 0.03
[61]

FB→V− 0.62± 0.05 0.58± 0.04 – 0.55± 0.04

FB→V+ 0.00± 0.06 0.00± 0.06 – 0.00± 0.06 [53]

ABs→V0 0.39± 0.03 – 0.47± 0.04 –
[61]

FBs→V− 0.59± 0.04 – 0.72± 0.04 –

FBs→V+ 0.00± 0.06 – 0.00± 0.06 – [53]

α1(V ) 0.02± 0.02 0.00 0.00 0.00

[72]
α⊥1 (V ) 0.03± 0.03 0.00 0.00 0.00

α2(V ) 0.08± 0.06 0.10± 0.05 0.13± 0.06 0.10± 0.05

α⊥2 (V ) 0.08± 0.06 0.11± 0.05 0.11± 0.05 0.11± 0.05

Table 3.1: Numerical input used in our analysis. Form factors are given at q2 = 0.
Other scale-dependent quantities are quoted at the scale µ = 2 GeV. †For the B → K
form factor we used αK4 (2.2 GeV) = −0.0089 [4] as additional input.





Chapter 4

Observables

This chapter defines all relevant observables that enter our analysis. We concentrate

in the first part on hadronic decays as the main subject of interest in this work and

begin with the definition of branching ratios and CP asymmetries in Subsection 4.1.1,

from which certain isospin-sensitive observables are constructed. These combined ob-

servables are discussed in more detail in Subsection 4.1.2 for the decay system B → Kπ.

The non-negligible decay-rate difference of the heavy and light mass eigenstates of the

Bs meson lead to some subtlety in the calculation of observables for Bs compared to

Bd decays, considered in Subsection 4.1.3. The last part is dedicated to observables

that might be correlated in certain NP models to those from hadronic decays, in par-

ticular, to (semi-)leptonic decays in Subsection 4.2.1 and neutral B-meson mixing in

Subsection 4.2.3. Since the phenomenology of hadronic decays within the SM is exhaus-

tively discussed in Chapter 5, we at least briefly discuss certain tensions in the data of

(semi-)leptonic decays in Chapter 4.2.2.

4.1 Observables from hadronic 2-body decays

4.1.1 Definition of observables and observable sets

The 2-body decays of a B meson into final states f = PP, PV, VhVh with light charmless

pseudo-scalar and/or vector mesons, given for a polarisation mode, h = L,⊥, ‖, provide

various observables. There are the CP-averaged branching fractions and direct rate CP

asymmetries

B̄(B̄ → f̄) =
τB
2

(
Γ(B̄ → f̄) + Γ(B → f)

)
= τB Γ̄(B̄ → f̄), (4.1)

ACP(B̄ → f̄) =
Γ(B̄ → f̄)− Γ(B → f)

2Γ̄(B̄ → f̄)
, (4.2)

with τB the lifetime of the B meson and Γ the decay rates. Besides these, frequently

combinations involving different combinations of charged and neutral B, M1 and, M2,

39
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are used in the literature that are either ratios of branching fractions or differences of

direct CP asymmetries. The complete set of ratios [73, 74] is

RBc ≡ 2
B̄(B− →M−1 M

0
2 )

B̄(B− →M0
1M

−
2 )
, RBn ≡

1

2

B̄(B̄0 →M−1 M
+
2 )

B̄(B̄0 →M0
1M

0
2 )
,

RM1
c ≡ 2

B̄(B− →M−1 M
0
2 )

B̄(B̄0 →M−1 M
+
2 )
, RM1

n ≡ 1

2

B̄(B− →M0
1M

−
2 )

B̄(B̄0 →M0
1M

0
2 )
,

RM2
c ≡ B̄(B− →M0

1M
−
2 )

B̄(B̄0 →M−1 M
+
2 )
, RM2

n ≡ B̄(B− →M−1 M
0
2 )

B̄(B̄0 →M0
1M

0
2 )
,

(4.3)

where factors of the life-time ratio τB0/τB− in RB,M1,M2
c,n [74] have not been included

in the definition, anticipating that these ratios are extracted directly in experiment

allowing for the cancellation of experimental systematic errors. Further, the following

two differences of direct CP asymmetries are frequently considered

∆ACP ≡ ACP(B̄0 →M−1 M
+
2 )−ACP(B− →M−1 M

0
2 ),

∆ACP
0 ≡ ACP(B̄0 →M0

1M
0
2 )−ACP(B− →M0

1M
−
2 ).

(4.4)

In addition, two further CP asymmetries Sf and Hf arise for neutral B̄0 meson

decays into a CP eigenstate f that can be extracted in time-dependent analysis

ACP(B̄0 → f̄)(t) =
Sf sin(∆mB t)− Cf cos(∆mB t)

cosh
(

∆ΓB
2 t
)
−Hf sinh

(
∆ΓB

2 t
) , (B̄0 = B̄d, B̄s), (4.5)

where the mass and width differences of the heavy and light mass eigenstates are de-

noted as ∆mB = mB,H −mB,L > 0 and ∆ΓB = ΓB,H − ΓB,L, respectively. A measure-

ment of the asymmetry Hf in the Bd system is unlikely in the foreseeable future since

∆ΓBd/ΓBd � 1. All the CP asymmetries

Sf =
2 Im(λf )

1 + |λf |2
, Hf =

2 Re(λf )

1 + |λf |2
, Cf = −ACP =

1− |λf |2

1 + |λf |2
, (4.6)

can be expressed in terms of a single complex quantity [75]

λf ≡
q

p

Af
Af

, (4.7)

where q, p are the strong interaction eigenstate components of the mass eigenstates BL,H

and the decay amplitudes Af ≡ A(B̄ → f̄) as well as Af ≡ A(B → f).

In the case of 2 vector mesons in the final state, an angular analysis can moreover

determine further quantities such as the strong phase differences between the individual
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polarisation amplitudes

ϕ⊥,‖ = arg
Af⊥,‖
AfL

, ϕ̄⊥,‖ = arg
Af⊥,‖
AfL

, (4.8)

from which again two CP-averaged and two CP-violating observables can be constructed

[53]

φ⊥,‖(B → V V ) =
1

2

(
ϕ̄⊥,‖ + ϕ⊥,‖

)
− π sign

(
ϕ̄⊥,‖ + ϕ⊥,‖

)
θ
(
ϕ̄⊥,‖ − ϕ⊥,‖ − π

)
,

∆φ⊥,‖(B → V V ) =
1

2

(
ϕ̄⊥,‖ − ϕ⊥,‖

)
+ π θ

(
ϕ̄⊥,‖ + ϕ⊥,‖

)
.

(4.9)

The branching ratios of the single polarisation amplitudes are typically normalised to

the total branching ratio B(B → V V ) =
∑

h B(B → VhVh) and parametrised by the

so-called polarisation fraction, defined as

fh(B → V V ) =
B̄(B → VhVh)

B̄(B → V V )
. (4.10)

A complete set of independent observables in B → V V decays consists out of ten ob-

servables. We include in our fits, according to the usually quoted experimental results,

the total branching ratio B and CP asymmetry C together with two out of the three

polarisation fractions fh and polarisation specific CP asymmetries Ch and the four rel-

ative strong phases φ⊥,‖ and ∆φ⊥,‖ from Equation 4.9. So far, B → K∗φ is the only

hadronic decay mode for which a complete angular analysis could be performed.

We investigate mainly B → M1M2 decays mediated by b → s transitions, in par-

ticular for the NP analysis, where we can exploit the phenomenological richness of sev-

eral well-measured decay systems, but b → d examples will be also considered in the

analysis of the SM. The final state M1M2 consists either out of two pseudo-scalars

(M1M2 = PP ) or one pseudo-scalar and one vector (M1M2 = PV ) meson or two vector

mesons (M1M2 = V V ), which are listed in Table 4.1, Table 4.2 and Table 4.3, respec-

tively, together with the observables that have been measured. We use the most recent

values from the HFAG 2012 compilation and updates from 2014 on the website [3].

Those observables that were updated meanwhile from the individual experiments, but

not yet included from the HFAG collaboration, enter the likelihood function in Equa-

tion A.2 as single measurement and are explicitly mentioned in the tables (marked by an

dagger). For each decay group, composed of u→ quark-exchange related decay modes,

we assume one universal WA parameter ρM1M2
A .

In addition, we investigate the complementarity of composed observables, the ratios

of branching fractions RB,M1,M2
c,n from Equation 4.3 and differences of CP asymmetries

∆ACP in Equation 4.4. It is desirable to have direct experimental determinations of the

uncertainties for these “composed” observables that already account for the cancellation
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b→ s

B → Kπ B → Kη B → Kη′ Bs → KK [76] Bs → ππ

K̄0π0 : B, C, S K̄0η : B K̄0η′ : B, C, S K+K− : B, C, S π+π− : B
K−π+ : B, C K−η : B, C K−η′ : B, C
K−π0 : B, C
K̄0π− : B, C

b→ d

B → KK Bs → Kπ

K̄0K0 : B K+π− : B, C
K+K− : B
K−K0 : B, C

Table 4.1: Observables of B → PP decays mediated by b → (d, s) transitions that
are used in the fit.

b→ s

B → K∗π B → Kρ B → K∗η B → K∗η′ B → Kφ [77–80]

K̄∗0π0 : B, C K̄0ρ0 : B, C, S K̄∗0η : B, C K̄∗0η′ : B, C K̄0φ : B, C†, S
K∗−π+ : B, C K−ρ+ : B, C K∗−η : B, C K∗−η′ : B, C K−φ : B, C
K∗−π0 : B, C K−ρ0 : B, C
K̄∗0π− : B, C K̄0ρ− : B, C

B → Kω [81, 82]

K̄0ω : B, C, S
K̄−ω : B, C

Table 4.2: Observables of B → PV decays mediated by b → s transitions that are
used in the fit.

of systematic uncertainties, which are only accessible to the experimental collaborations

themselves. This is important because usually outsiders are not in the position to

account retroactively for cancellations of systematic errors and are restricted to the

application of rules of error propagation to the uncertainties of the measurements of the

involved components, which then might result in too conservative estimates. Of course

such a procedure on the experimental side requires that the according decay modes

with charged and neutral final states can be analysed simultaneously, which is the case

for BaBar, Belle, and also Belle II collaborations. In this context, it should be noted

that ratios of Gaussian distributed quantities are not Gaussian distributed, although the

differences are small as long as the tail regions of the distribution do not contribute. We

account for this subtlety through adapting the correct distribution function for ratios of

branching ratios as described in Appendix A.1.

The possibility of constructing composed observables are mostly effective for the
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b→ s

B → K∗ρ B → K∗φ [83, 84] B → K∗ω

K̄∗0ρ0 : B, C, fL K̄∗0φ† : B, fL,⊥, C, CL,⊥, φ⊥,‖, ∆φ⊥,‖ K̄∗0ω : B, C, fL
K∗−ρ+ : B, C, fL K∗−φ : B, fL,⊥, C, CL,⊥, φ⊥,‖, ∆φ⊥,‖ K∗−ω : B, C, fL
K∗−ρ0 : B, C, fL
K̄∗0ρ− : B, C, fL

Bs → φφ Bs → K∗K∗[85]

φφ : B, fL K̄∗0K∗0 : B, fL,⊥

b→ d

Bs → K∗φ B → K∗K∗

K̄∗0K∗0 : B, fL
K∗0φ : B, fL K∗−K∗0 : B, fL

Table 4.3: Observables of B → V V decays mediated by b → (d, s) transitions that
are used in the fit.

decay system B → Kπ, Kρ, K∗π, K∗ρ due to four individual decay modes. These will

play the crucial role in constraining the NP parameter space in Chapter 6. For this

purpose, we construct a full independent set of observables by three CP asymmetries,

the difference in CP asymmetry ∆ACP, one branching ratio and three specific chosen

ratios of branching ratios (Set II). The fit results in the SM section will be compared

with the observable set of four branching ratios and four CP asymmetries (Set I). In

summary

Set I : (4× B) + (4× C)

Set II : (1× B) + (3× C) +

(3×Rn,c)+ ∆ACP .

(4.11)

Experimental data on the mixing-induced CP asymmetries Sf also exist for most

decay systems, but are lacking of precision at the moment and will become very well

measured by the Belle II collaboration in the near future [86, 87]. Our strategy will

be to constrain the WA parameter ρM1M2
A for each decay system together with the NP

parameter space, from which we then predict Sf . In order to avoid including NP effects

from B0-B̄0 mixing in Sf that can typically not reliably be accounted for in a model-

independent analysis, we instead predict the observable [88, 89]

∆Sf ≡ S(B̄d → f̄)− ηfS(B̄d → J/ψ K̄S),

∆Sf ≡ S(B̄s → f̄)− ηfS(B̄s → J/ψ φ),
(4.12)

with ηf = ±1 the CP eigenvalue of the final state f . The decay B̄d → J/ψ K̄S and
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B̄s → J/ψ φ are dominated by contributions from charm tree-level operators and CP

violation in the decay is both parametrically (CKM) and topologically (loop) suppressed.

We expect that the CP-violating phase in B0-B̄0 mixing, φBd and φBs , can clearly be

extract, even in the presence of most NP scenarios [75]

λJ/ψ K̄S ' e
−φBd , S(B̄d → J/ψ K̄S) ' sin 2β,

λJ/ψ φ ' e−φBs , S(B̄s → J/ψ φ) ' sin 2βs,
(4.13)

in which the angles of the CKM unitarity triangle are defined as β = arg
(
λdc/λ

d
t

)
and

βs = arg (λst/λ
s
c). This source of CP violation enters all mixing-induced CP asymmetries

in the same way and can be eliminated by the construction of ∆Sf , which therefore

exclusively measures the interference of CP violation in the decay and in mixing.

Further interesting candidates to predict are the direct and mixing-induced CP

asymmetries in B̄s → φφ and B̄s → K̄∗0K∗0. On the one hand, the SM predictions

for CP violation are to a very good approximation zero (see Appendix B) and we do

not have to struggle with SM background. On the other hand, no measurements, apart

from branching ratios and polarisation fractions, exist at the moment, but could become

available in the near future [90]. The latter aspect implies that the WA parameters, ρφφA

and ρK
∗K∗

A , cannot be well constrained at the moment and, in combination with CP-

violating contributions beyond the SM, could lead to visible effects in these observables.

4.1.2 Anatomy of B → Kπ

Various B meson decays are studied in the phenomenological part of this work. However,

the observables for B → Kπ are particular interesting because they are experimentally

quite well measured. We therefore clarify how the single observables depend on the

flavour amplitudes to obtain a qualitative handle for the outcome of our fits in Chapters 5

and 6. All four decays of a B meson into a pion and kaon are dominated by the QCD-

penguin flavour amplitude α̂c4(πK), which can be used as an expansion parameter for

the decay amplitudes. Thereby, the definition of the following ratios, which had been

mentioned first in [74], proof useful:

rT ≡ −
∣∣∣∣λsuλsc

∣∣∣∣ α1(πK)

α̂c4(πK)
, rTC ≡ −

∣∣∣∣λsuλsc
∣∣∣∣ AKπAπK

α2(Kπ)

α̂c4(πK)
,

rEW ≡
3

2

AKπ
AπK

αc3,EW(Kπ)

α̂c4(πK)
, rEWC ≡ 3

2

αc4,EW(πK)

α̂c4(πK)
, rEWA ≡ 3

2

βc3,EW(πK)

α̂c4(πK)
.

(4.14)

The absolute value of the QCD-penguin amplitude |α̂c4(πK)| is well known from

branching ratio measurements, but its strong phase, φ̂c4(πK), is rather undetermined.

Since the calculable part of φ̂c4(πK) is small, receiving contributions first at O(αs), the
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incalculable part can become compatible in size, but need to be extracted by the fits.

It is therefore advisable, when trying to understand our fit results, to reparametrise the

ratios in the following way

ri ≡
(
rR
i + i rI

i

)
e−iφ̂

c
4(πK), (i = T,EW), (4.15)

with analogue expressions for the colour-suppressed and WA topologies. Similar expan-

sion parameters can be constructed for the other decay chains B → PV, V P, V V . Since

their QCD-penguin amplitude is predicted to be smaller in QCDF, expanding observ-

ables in terms of the ratios suffer from less well convergence. The dependence on the real

and imaginary parts are kept explicitly because they contribute to different observables.

For example, the real parts enter in the expansions of the ratios of branching ratios,

which are given in the SM

RBn (Kπ) ' 1 + 2 Re (rEW + rEWC)− 2 Re (rT + rTC) cos γ,

RBc (Kπ) ' 1 + 2 Re (rEW + rEWC)− 2 Re (rT + rTC) cos γ,

τB0

τB−
RKn (Kπ) ' 1 + 2 Re (rEW)− 2 Re (rTC) cos γ,

τB0

τB−
RKc (Kπ) ' 1 + 2 Re (rEW)− 2 Re (rTC) cos γ,

τB0

τB−
Rπn(Kπ) ' 1 + 2 Re (2 rEW + rEWC)− 2 Re (rT + 2 rTC) cos γ,

τB0

τB−
Rπc (Kπ) ' 1− 2 Re (rEWC) + 2 Re (rT) cos γ,

(4.16)

with the weak phase γ = arg
(
λdu/λ

d
c

)
. We can now make use of the parametrisation in

Equation 4.15, to rewrite the real parts of the ratios through

Re (ri) = rR
i cos φ̂c4(πK) + rI

i sin φ̂c4(πK). (4.17)

We know from the arguments above that the imaginary parts of the flavour amplitudes

are suppressed by either αs or ΛQCD/mb, which implies rI
i � rR

r . If φ̂c4(πK) is not in the

vicinity of π/2 or 3/2π,1 the second term in Equation 4.17 can be neglected for these

observables and ratios of branching ratios mainly depend on RB,K,πc,n ∼ cos φ̂c4(πK).

However, the CP asymmetries are dominated by the imaginary part of the ratios

C(B̄0 → K−π+) ' 2 Im (rT) sin γ, C(B̄0 → K̄0π0) ' −2 Im (rTC) sin γ,

C(B− → K−π0) ' 2 Im (rT + rTC) sin γ, C(B− → K̄0π−) ' 0,

(4.18)

1 This would imply that the QCD-penguin amplitude become purely imaginary, which in principle
is not excluded if we allow the WA parameter ρM1M2

A to vary within large values. However, it turns out
that such a scenario seems to be not preferred from the data — neither in the SM nor beyond.
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which expansion can be, similar as above, written in

Im (ri) = −rR
i sin φ̂c4(πK) + rI

i cos φ̂c4(πK), (4.19)

but no further simplifications can be made in general and statements depend on the

model under consideration and the outcome of the fits. The expansion will be very useful

in the forthcoming sections to qualitative discus the features of our results. Although

the mixing-induced CP asymmetry, ∆SKπ, is not going to be included into the set of

observables, it can in complete analogue be expanded in terms of the ratios

∆SKπ ' 2Re (rTC) cos 2β sin γ. (4.20)

As in the case for the ratios of branching ratios, the mixing-induced CP asymmetry is

dominated by ∆SKπ ∼ cos φ̂c4.

4.1.3 Implications of non-negligible ∆Γs on observables from Bs decays

A further subtlety arises for the decay of a Bs meson, which is going to be discussed

here and was first noted in [91]. The lifetime differences between the light and heavy

mass eigenstates of the Bs meson is, in contrast to the Bd meson, sizeable and leads

to a relevant distinction between the usual theoretical and experimental definition of

branching ratios and direct CP asymmetries. To understand this difference, we should

be more careful in defining the branching ratio in Equation 4.1, which obeys a time

dependence, similar as for the CP rate asymmetry in Equation 4.5,

1

2
Γ̄(B̄0 → f̄)(t) = RfHe

−ΓHt +RfLe
−ΓLt,

B̄(B̄0 → f̄)(t) =
τB
2

(
RfH +RfL

)
e−t/τB

[
cosh

(
∆ΓB

2
t

)
+Hf sinh

(
∆ΓB

2
t

)]
,

(4.21)

where Γ̄ is expressed by the decay rates of the mass eigenstates, RfH,Le
−ΓH,Lt. Whereas

the experimental branching ratio is given by the total event yield, which does not contain

any information on the decay time, the theoretical branching ratio is defined in terms

of the flavour eigenstates, given at t = 0

B̄(B̄0 → f̄)exp. ≡
∫ ∞

0
Γ̄(B̄0 → f̄) dt =

τB
2

(
RfH +RfL

)[1 +Hf y

1− y2

]
,

B̄(B̄0 → f̄)the. ≡ B̄(B̄0 → f̄)
∣∣
t=0

=
τB
2

(
RfH +RfL

)
,

(4.22)

where y ≡ ∆Γ
2Γ . These equations connect the measured branching ratio with its theoret-

ical prediction

B̄(B̄0 → f̄)exp. = B̄(B̄0 → f̄)the.

[
1 +Hf y

1− y2

]
. (4.23)
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In the case of the Bd meson, we already mentioned above that yd � 1 and both

branching-ratio definition approximately coincide. The decay width difference for the

Bs meson is sizeable, ys = 0.058± 0.10 [3], and the correction factor on the right-hand

side cannot be neglected. If the final states are non-CP-eigenstates, Hf = 0 and the

enhancement, (1− y2
s)
−1, is below 1%. However, the correction in the case of CP eigen-

states can become significant and were estimated for some cases to be of O(10%) [92].

The asymmetry Hf can in principle be measured and the rescaling could be preformed

at the experimental side. This approach is desirable if the estimate of hadronic matrix

elements relies on symmetry arguments and does not allow for an extraction of Hf . A

systematic approach as QCDF does not suffer from this problem and the correction can

be calculated, which is incorporated in our numerical analysis. To complete the actual

discussion, we only need to generalise the presented formalism also to B → V V modes.

The branching and polarisation fractions need to be corrected through

B̄(B̄0 → V V )exp. =
∑

h=L,⊥‖

B̄(B̄0 → VhVh)the.

[
1 +HVhVh ys

1− y2
s

]
, (4.24)

fh(B̄0 → V V )exp. =
B̄(B̄0 → VhVh)the.

B̄(B̄0 → V V )the.

[
1 +HVhVh ys

1− y2
s

]
. (4.25)

The corresponding formula for the direct CP asymmetries then follows from the defini-

tion in Equation 4.2.

4.2 Observables from (semi-)leptonic decays and B0-B̄0 mix-

ing

4.2.1 Observables from B → K∗γ, B → (K, K∗) `+`−, and Bs → µ+µ−

Besides B →M1M2 decay channels, we in addition use complementary constraints from

(semi-)leptonic FCNC decays, mediated by b→ s(γ)`+`− to constrain the parameters of

scenarios beyond the SM. The present subsection describes the details of experimental

input and the evaluation of theory predictions of the relevant observables of the four

exclusive decays B → K∗γ, B → (K, K∗) `+`−, and Bs → µ+µ−, which are listed in

Table 4.4.

The definitions of these observables can be found in [105] and theory predictions

follow the procedure outlined in [106] for B → K∗`+`−, [107] for B → K `+`−, and

[105] for B → K∗γ and Bs → µ+µ−. As in the case of B → M1M2 decays, the various

nuisance parameters are varied one at the time, keeping all others at their central value,

and the according uncertainties are added in quadrature to yield a total theoretical

uncertainty that is included into the likelihood function, following Chapter A.1. The

list of relevant nuisance parameters can be found in [105].
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Observable q2-Binning (if applicable) Ref.

B → K∗γ

B, S, C [3]

Bs → µ+µ−

B [93, 94]

B → K`+`−

B q2 = [1, 6], [14.18, 16], [> 16] GeV2 [95–97]
q2 = [1, 6], [14.18, 16], [16, 18], [18, 22] GeV2 [98]

ACP − q − [99]

B → K∗`+`−

B q2 = [1, 6], [14.18, 16], [> 16] GeV2 [95–97, 100, 101]
AFB, FL − q − [95–97, 100–102]

A
(2)
T , A

(re)
T − q − [100]

ACP − q − [103]
P ′4,5,6,8 − q − [104]

Table 4.4: Observables of B → K∗γ, Bs → µ+µ−, and B → (K, K∗) `+`− that are

used as constraints. To avoid double counting of data, either AFB or A
(re)
T should be

used in fits.

Concerning B → K∗ form factors, we use the light-cone sum rule (LCSR) results

from [61], including their extrapolation to large dilepton invariant masses, q2. We do

not make use of recent lattice results at high q2 [108], which tend to predict to large

branching ratios in this q2 region compared to the measurements [109, 110].

The measurement of LHCb for B(B− → K−µ+µ−) at low q2 is lower than the

theoretical predictions using LCSR form factors [111], as was recently also found in

[112], yet after the inclusion of effects from qq̄-resonances in this kinematic region. We

remark that this persists even with the latest updates [113], based on a larger data

set, but have not been used in this work. The values of B(B− → K−µ+µ−) in the bin

q2 = [1, 6] GeV2, as used in this analysis, are tabulated in Table 4.5 for theory predictions

based on different B → K form factors and compared to the LHCb measurement. In this

work, we also account for lacking subleading corrections in QCDF [114, 115], following

the procedure described in [105, 107], which yields larger uncertainties compared to [112]

— the omission of these sources of uncertainty would yield the values given in brackets

in Table 4.5, in good agreement with [112]. It can be seen that the use of form factors

[4] at low q2 can resolve this discrepancy in principle. Because both LCSR calculations

[4, 112] are based on the same sum rule setup, we average both to determine a prior

value of the form factor f+(q2 = 0) as given in Table 3.1.

At high q2, we use the first lattice results of B → K form factors [116], which

have uncertainties below 10% in this q2 region. The according SM predictions of

B(B− → K−`+`−) at high q2 are in agreement with current measurements [117]. The
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107 · B(B− → K−µ+µ−)[1,6] pull value form factors

1.82+0.62
−0.24 3.4σ [111] [112]

1.79+0.71
−0.40 (+0.59

−0.24) 1.6σ (3.1σ) [111] this work

1.65+0.57
−0.49 (+0.42

−0.38) 0.0σ (0.5σ) [4] this work

1.67+0.60
−0.50 (+0.46

−0.40) 0.0σ (0.6σ) [4, 111]† this work

1.21± 0.11 – – LHCb [98]

Table 4.5: The theory predictions of B(B− → K−µ+µ−) in the bin q2 = [1, 6] GeV2

based on different form factors from LCSR compared to the measurement of LHCb in
the last row. †Average of both — see text for details.

extrapolation of the lattice form factors from high to low q2 gives the similar high central

values of B(B− → K−`+`−) as the LCSR form factors [111] with large extrapolation

errors.

As in the case of the hadronic decay into two vector meson, we can further construct

additional observables due to the helicity structure in B → K∗(→ Kπ)`+`−. We find

for the differential decay rate of the decay mode B̄ → K̄∗`+`−

8π

3

d4Γ

dq2 d cos θl d cos θK dφ
=

(J1s + J2s cos 2θl + J6s cos θl) sin2 θK + (J1c + J2c cos 2θl + J6c cos θl) cos2 θK+

(J3 cos 2φ+ J9 sin 2φ) sin2 θK sin2 θl + (J4 cosφ+ J8 sinφ) sin 2θK sin 2θl+

(J5 cosφ+ J7 sinφ) sin 2θK sin θl,

(4.26)

where θl,K are defined as the angles between the B̄ meson and the negative charged lep-

ton, `−, respectively the kaon within the centre-of-mass system of (`+`−), respectively

(Kπ). φ is the angle between the decay planes of (`+`−) and (Kπ), respectively spanned

by their 3-momenta vectors, following the definition from [118]. 12 independent angu-

lar observables Ji are implicitly defined through Equation 4.26, from which, together

with their CP counterparts J̄i, defined through the differential decay rate dΓ̄ of the

CP-conjugated decay mode, the individual observables in Table 4.4 are constructed. As

described in [119], including solely the SM operators, defined in Equation 2.19, together

with their χ-flipped counterparts and assuming massless leptons, the number of inde-

pendent angular observables Ji reduces to eight, leaving a total of 16 observables. The

measurements entering the fit are, apart from ACP and Aim(= A9) [97], all CP averaged

and expected to be insensitive to CP-violating contributions beyond the SM. Other CP-

violating observables could not be measured so far, which will be predicted for those

NP scenarios that are related to semi-leptonic decays. Most attractive are observables

that are constructed from the angular observables J7,8,9. Their asymmetries are odd
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under the transformation φ → −φ (T-odd) and therefore depend on cos δθ, in contrast

to T-even CP asymmetries, depending on sin δθ [120]. Because the relative strong phase

δθ between the helicity amplitudes is, as for the hadronic decays, expected to be small,

CP violation can still become large in the presence of contributions beyond the SM for

the former and naturally smaller for the latter. Furthermore, J8,9 being CP odd, their

asymmetries can be obtained in the experiment from an untagged data sample. This

advantage can be utilised for modes which K∗ subsequently decays into the neutral final

states K0π0 and, in principle, for the decay Bs → φ `+`−. Some effort has been made

into the redefinition of these observables, such that the largest source of uncertainty

from form factors drops out. We present predictions for observables, optimised for low

q2-bins [121]

〈PCP
3 〉 = −1

4

J9 − J̄9

J2s − J̄2s
, 〈P ′CP

6,8 〉 = −1

2

J7,8 − J̄7,8√
−(J2s + J̄2s) (J2c + J̄2c)

, (4.27)

and for high q2-bins [118]

H4
T =

2(J8 − J̄8)√
−2J2c (2J2s + J3)

, H5
T =

−(J9 − J̄9)√
2J2

2s − J2
3

. (4.28)

The corresponding observable from the angular components J7, J̄7 at high q2 vanishes.

In our approximation of massless leptons and only SM-like operators, H4
T = H5

T . We

complete the list of predicted observables by

Aim =
J9 − J̄9

Γ + Γ
, (4.29)

which in fact was measured from the CDF collaboration, but still suffers from huge

uncertainties, such that it is more reasonable to predict Aim rather than considering it

as a constraint in the fit.

4.2.2 Recent tension in P ′5 (B → K∗(→ Kπ) `+`−) at low-q2

This work focus on B → M1M2 decays, but it will be particular interesting for cer-

tain NP scenarios (see Chapters 6.2 and 6.3), where a combined analysis of hadronic

and (semi-)leptonic observables is possible, to investigate, whether the data in both

sectors can be explained simultaneously. Tensions in observables of the former decays

will be extensively discussed in Chapter 5, whereas this subsection gives attention to

the data of the latter decays. In contrast to hadronic observables, the experimental

landscape is not summarised by the HFAG collaboration and the measurements of the

single experiments enter our likelihood function in Equation A.2 individually. This

implies that inconsistent measurements among each experiment automatically lead to

large pull values, which however cannot be explained by theory, as it is the case for
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B → K∗`+`− SM C9,V C′9,V C9,V – C′9,V C10,A C′10,A C10,A – C′10,A

ACP [14, 16] −1.9σ (X) (X) (X) – – –

〈P ′4〉[14, 16] −2.3σ – (X) (X) – – (X)

〈P ′5〉[1, 6] 2.2σ X – X – (X) (X)

Table 4.6: Compilation of SM pull values for all “true” tensions in the data of semi-
leptonic decays. The table illustrates the capability of solving these discrepancies within
a model-independent fit of the vectorial and axial-vectorial Wilson Coefficients (see text
for further explanation).

〈AFB〉[>16]B → K∗`+`− and 〈FL〉[14, 16]B → K∗`+`− from the Belle collaboration [95]

compared to other experiments [96, 97, 100–102]. One of our methods to discuss the

qualitative results of our NP fits are quoting significantly large pull values that exceed

1.6 standard deviations. Those observables, suffering from inconsistent individual mea-

surements, are not accumulated. Additional inconsistent measurements also appear in

the polarisation fraction FL [1, 6]B → K∗`+`−. The disagreement between the BaBar

[96], ATLAS [102], and other experiments [95–97, 100, 101] are indeed truly suspicious

because the single results do not match at more than 4σ. Furthermore, the analysis from

the ATLAS experiment only appeared as unpublished conference note, which convinced

us, in order to be conservative, not to include these results in our fit.

Apart from these inconsistent measurements, there are also “true” tensions in the

data. The SM predictions for the observables 〈ACP〉[14, 16], 〈P ′4〉[14, 16], and 〈P ′5〉[1, 6] of

the decay B → K∗`+`− reveal discrepancies compared to the LHCb measurements

[103, 104], as listed in Table 4.6. As we will discuss in detail later on, all NP scenarios,

considered in this work, are restricted to the modification of either C(′)
9,V or C(′)

10,A. In order

to analyse whether it is in principle possible to resolve the tensions, ignoring constraints

from hadronic decays at the moment, we preformed model-independent fits of all relevant

semi-leptonic Wilson Coefficients, allowing for generic imaginary contributions. We used

for these fits either the whole data set, as listed in Table 4.4, or exclusively one of

the problematic observables, but for all q2-bins. Scenarios that could not decrease the

tension (|δ| ≥ 1.6σ) are marked with a dash in Table 4.6. Those scenarios that could in

principle explain the discrepancy, (|δ| < 1.6σ for the reduced data set), but would spoil

the residual observables (|δ| ≥ 1.6σ for at least one observables in whole data set) are

marked with (X). At last, those scenarios that explain the tensions for both sets are

indicated by X.

Inspecting Table 4.6, we can see that NP contributions to C(′)
10,A do not help to relax

any of the tensions. Furthermore, even for NP in C(′)
9,V , 〈ACP〉[14, 16] and 〈P ′4〉[14, 16] cannot

be explained, too. These effects have to be traced back to statistical fluctuations in the
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measurements. The only exception, which seems to be interesting from a phenomeno-

logical point of view, is 〈P ′5〉[1, 6]. Simultaneous contributions to C9,V and C′9,V (p = 1.3σ)

can account for the observed discrepancy without violating the restrict constraints from

other observables, whereas the following pattern can be observed

C9,V ' −C′9,V . (4.30)

This effect is enhanced and decreases the pull values even further (δ = 1.0σ) if we also

include the doubtful longitudinal polarisation-fraction measurements from the ATLAS

and BaBar collaborations as constrained into the fit. These observations are in agree-

ment with the findings from the analysis in [122].

4.2.3 Model-independent parametrisation of M s
12

In the case of a model-independent analysis, it is possible that also contributions to

B0-B̄0 mixing can occur. However, whereas the phenomenological impact of particular

models to ∆F = 1 observables can be correctly described by the effective enhancement

of certain operators, this does not need not to be true for ∆F = 2 observables, for

which theses contributions are often just subleading. It is reasonable to not include

constraints from meson mixing into the determination of the NP parameter space, but

rather to check whether the additional contributions, demanded from (semi-)leptonic

and hadronic decays, are still allowed. Our analysis exclusively concerns NP in b → s

transitions, which only affects the mixing of the Bs meson. Due to that the following

discussion is kept specific to this case.

The off-diagonal element of the Bs-B̄s mass matrix is given by

M s
12 =

1

2mBs

〈Bs|H|∆B|=2
eff |B̄s〉 , (4.31)

where the EWH, H|∆B|=2
eff , was already defined in Equation 2.21. The matrix elements

of ∆B = 2 operators in Equation 2.22 are typically parametrised through

〈Bs|OLLV |B̄s〉 =
32

3
m2
Bsf

2
BsBLLs,V (µB), 〈Bs|ÕLRS |B̄s〉 =

8

3
m2
Bsf

2
BsB̃LRs,S (µB), (4.32)

where fBs is the decay constant of the Bs meson, quoted in Table 3.1, and the bag

factors BLL,sV (4.6 GeV) = 0.87+0.05
−0.04 and B̃LR,sS (4.6 GeV) = 1.75+0.21

−0.07 are obtained from

lattice calculation in [35]. We only quoted those bag factors that are needed in this

work.

As described in [62], although NP models can lead to different contributions to the

operators in Equation 2.22, the new correction to the observable M s
12 can be specified
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by only one complex quantity

M s
12 = M s,SM

12 CBse
2iφBs , CBse

2iφBs =
〈Bs|H|∆B|=2

eff,full |B̄s〉
〈Bs|H|∆B|=2

eff,SM |B̄s〉
, (4.33)

where in the case of the SM, CBs = 1 and φBs = 0 by construction. This parameter

was measured in a model-independent fit and found to be well consistent with the SM

expectation, CBs = 1.066 ± 0.083 and φBs = 0.6◦ ± 2.0◦ [62]. Taking the latest SM

prediction for M s
12 from [123], CBs and φBs can then be expressed in terms of the NP

parameters and will be fitted to this measurement.
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Chapter 5

Testing QCD factorisation within

the Standard Model

In the present section, we discuss our results for QCD-penguin- and WA-dominated

hadronic B-meson decays in the SM. The underlying soft QCD interaction, which ap-

pears in the framework of QCDF at order ΛQCD/mb and constitutes the main source

of uncertainty, is extracted from a fit to the experimental data of branching ratios, CP

asymmetries, polarisation fractions, and strong phase differences. The power-suppressed

corrections from WA play a central role in the following analysis. The relative amount of

subleading corrections, needed to explain the data, is quantified by the ratio ξA3 (M1M2).

In Subsections 5.1.1 and 5.1.2, we summarise our findings under the assumption

of universality among decay systems that are related via (u ↔ d) quark exchange,

which seems to be compatible with data. We mainly discuss the decay systems B →
Kπ, Kρ, K∗π, K∗ρ, but relevant results for other QCD-penguin-dominated decays are

also mentioned. In addition to the ∆AKπCP problem, which has already been discussed

extensively in the literature [42, 74, 124–127], we also obtain a significant tension for the

ratio of branching ratios RBn (Kπ). We then further relax our approach of universality

in Subsection 5.1.3, in which a common WA parameter for certain decay modes into the

same final states is assumed. This can be already tested in, for instance, Bs → Kπ and

Bd → Kπ, for which data exist. Although universality might be justified under certain

conditions, it will be clear from Subsection 5.2.1, where pure WA decays are concerned

that this assumption does not hold in general. Similar fits for certain decay amplitudes

have already been described in [128]. Contrary to our approach, the authors postulated

one common WA parameter ρM1M2
A for Bs → PP (V V ) and for B → PP (V V ).

In Subsection 5.1.4, we present a possible solution to the ∆AKπCP problem relying on

large power corrections from HS interactions. If such corrections are indeed responsible

for the observed differences in CP asymmetries, they should cause visible effects in other

observables.

57
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5.1 QCD-penguin-dominated decays

5.1.1 Fit results for B → Kπ

The most precise measurements in hadronic B-meson decays are available for B →
Kπ, from which we expect stringent bounds on the model parameter ρKπA . The results

of our analysis are condensed in Table 5.1, which lists p and pull values. Figure 5.1

shows the fit results in the ρKπA plane for the two different observable sets SI and SII,

as defined in Subsection 4.1.1. Contours are plotted for the 68% (bright) and 95%

(dark) credibility regions (CRs), taking into account data from branching ratio and CP

asymmetry measurements separately and in combination.

The general shape of the branching-ratio contour can be understood in the following

way: The leading contribution to the decay amplitude α̂c4(πK) ≡ αc4(πK) + βc3(πK),

composed of a perturbatively-calculable QCD-penguin amplitude and an unknown WA

contribution, is restricted to a circle in the complex plane

Γ(B̄ → Kπ) ' VcbV
∗
cs F

B→π
0 (0) fK |α̂c4(πK)| (1 +O (ri)) , (5.1)

where the ri are defined in Equation 4.14. Depending on the phase, βc3 ≡ βc3(ρ2
A, ρA)

can interfere either constructively or destructively with the QCD-penguin amplitude

αc4(πK), implying a strong correlation between phase and absolute value.

For φKπA approximately 0 or π, the additional contribution from WA is mainly real

and interferes constructively with the QCD-penguin amplitude. However, the contribu-

tions from the linear and quadratic WA terms in βc3(πK) can interfere either construc-

tively (φKπA ∼ 0) or destructively (φKπA ∼ π) with each other, leading to small |ρKπA |∼ 2.0,

respectively slightly larger |ρKπA |∼ 3.4. This confirms the naive expectation from QCDF1

that power-suppressed corrections should scale like ln(mb/ΛQCD) times some unknown

parameter of O(1). Large absolute values for WA contributions, |ρKπA | ∼ 6, are needed

for φKπA approximately π
2 or 3π2 . In this case, the linear terms become mainly imagi-

nary, whereas the quadratic terms are still real but now interfere destructively with the

contributions from the QCD-penguin amplitude.

The left panel of Figure 5.1 shows that constraints from branching ratio measure-

ments (blue) alone can already be satisfied by a small contribution from power correc-

tions of ξA3 (Kπ) . 0.25. Nevertheless,
∣∣ρKπA ∣∣ (. 6) is only weakly bounded and the

fit does not reject solutions that raise the size of WA comparable to the leading order

contribution in the decay amplitude. Such a large weak-annihilation scenario flips the

1As was mentioned in Chapter 3, we depart from the usual treatment of evaluating the Wilson
Coefficients at the semi-hard scale µb = µh. Instead, we used µb = mb, which implies that the Wilson
Coefficients in our analysis are smaller by a factor of roughly 1.5. With respect to this, we agree with
the results in [74], where a parameter scan for the power-suppressed corrections was used and ρPP

A = 1.5
was fixed.
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Figure 5.1: 68% and 95% CRs for the complex parameter ρKπA obtained from a fit with
the observable set SI (left panel) and SII (right panel) for the decay system B → Kπ
assuming the SM. Allowed regions are separately shown for branching ratios (blue),
CP asymmetries (green), and the combination (red). The dashed lines correspond to
ξA3 (Kπ) = 0.25 (0.5, 1.0).

sign of Re α̂4
c(πK), which perturbative part is in fact predicted in QCDF to be positive,

but in principle not forbidden by branching-ratio measurements to become negative.

Additional information from ratios of branching ratios, shown on the right panel, are

due to their sensitivity to cos φ̂c4(Kπ) (see Equation 4.16)

RB,K,πn,c ' 1 +

(∑
i

ci r
R
i

)
cos φ̂c4(πK), (5.2)

suitable to reject these points in parameter space. Since we abandon the idea of biased

small WA with our large flat prior for ρM1M2
A , it is a nontrivial result that the data prefer

regions in parameter space that are favoured from a theoretical point of view (small

corrections to the leading amplitude). Our fits support the assumptions of QCDF and

power-suppressed corrections are confined to less than approximately 50%.

In addition to branching-ratio measurements, we also include information from

direct CP asymmetries in B → Kπ. The contours are shown in the plots by the green

region. To observe CP violation, the decay amplitude must have non-vanishing weak

and strong phases. The weak phase is parametrised in the SM by the CKM-matrix

elements, and the strong phase arises in QCDF at O (αs), respectively at O (ΛQCD/mb),

which implies that CP asymmetries are formally known only to leading order. Since

strong phases can either originate from radiative or power corrections, we expect a high

sensitivity to our fit parameter in these observables. Whereas CP asymmetries with a

neutral kaon in the final state are measured to be small with large uncertainties, the CP

asymmetries with a charged kaon are observed to be large and with a relative opposite
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sign. The leading contributions to the latter decay modes can be written in terms of the

colour-allowed, rT(πK), and the colour-suppressed, rTC(πK), penguin-to-tree ratios:

C(B− → K−π0) ' 2 Im (rT(πK) + rTC(πK)) sin γ = (−4.0± 2.1) % (HFAG),

C(B̄0 → K−π+) ' 2 Im (rT(πK)) sin γ = (+8.2± 0.6) % (HFAG),
(5.3)

from which the approximation for

∆AKπCP ' 2 Im (rTC(πK)) sin γ = (−12.2± 2.2) % (HFAG). (5.4)

follows. The imaginary parts of the ratios can be expressed in terms of a single phase

Im (rT(πK)) ∝ − rR
T(πK)︸ ︷︷ ︸
−17.4+1.0

−0.9

sin φ̂c4(πK) + rI
T(πK)︸ ︷︷ ︸
−0.4+0.6

−0.5

cos φ̂c4(πK), (5.5)

Im (rTC(πK)) ∝ − rR
TC(πK)︸ ︷︷ ︸

−5.8+1.1
−3.4−2.1+0.3

−1.2 Re ρH

sin φ̂c4(πK) + rI
TC(πK)︸ ︷︷ ︸

1.5+0.3
−0.5−2.1+0.3

−1.2 Im ρH

cos φ̂c4(πK), (5.6)

which need to be determined by the fits. The numerical results for the individual ampli-

tude coefficients are quoted in % and calculated for ρKπA at the best-fit point of set SII,

listed in Table 5.1. We explicitly kept the dependence of rTC(πK) on HS, parametrised

through ρH , whereas it is numerical irrelevant for rT(πK) and kept implicit. The par-

ticular choice of ρKπA was only needed for the determination of |αc4(πK)|. Any other

parameter point along the branching-ratio contour would have led to numerical equiva-

lent results and likewise suited.

Because the measurement of C(B̄0 → K−π+) exhibit the smallest uncertainty, it

will dominate the fits. The amount of CP violation originating from the second part in

Equation 5.5 is insufficient to account for the data and can numerically be neglected, thus

the first term determines sin φ̂c4(Kπ). With the sign of sin φ̂c4(Kπ) fixed, the direction of

the CP violation from the first term of the colour-suppressed ratio in Equation 5.6 is also

determined and disagrees with the measurements. The second term can compensate this

effect for an appropriate choice of cos φ̂c4(Kπ), but in view of the numerical values, is

unable to explain the large amount of CP violation in ∆AKπCP . The current situation can

be summarised as follows: The absolute value of the leading decay amplitude in B → Kπ

is well determined from branching ratio measurements. One of the two CP asymmetries

can always be explained, if the strong phase is not restricted from theoretical prejudice,

but a tension arises, when one tries to explained both simultaneously. This is known in

the literature as the ∆AKπCP puzzle, which is shown in our plots by disjoint contours from

branching-ratio and CP-asymmetry measurements at 95% probability. Possible large

NNLO corrections to the colour-suppressed tree amplitude αu2(Kπ) might relax the

tension in case of destructive interference to the real part and constructive interference
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M1M2 Kπ K∗π Kρ K∗ρ

set SI SII SI SII SI SII SI SII

p-value 0.44 0.04 0.95 0.90 1 1 1 0.97

|ρA|, φA 3.39; 2.73 3.34; 2.71 1.79; 5.85 1.61; 5.84 2.57; 2.79 2.69; 2.68 2.31; 2.74 1.56; 5.66

B(B̄0 →M1M2) +0.3σ – −0.3σ – 0.0σ – 0.0σ –

B(B̄0 →M+
1 M

−
2 ) 0.0σ – 0.0σ – 0.0σ – +0.3σ +0.1σ

B(B− →M−1 M2) 0.0σ – +0.6σ – 0.0σ – 0.0σ –

B(B− →M1M
−
2 ) 0.0σ +0.2σ 0.0σ +0.1σ 0.0σ +0.1σ 0.0σ –

RBc (M1M2) – – – – – – – −0.5σ

RBn (M1M2) – −1.9σ – +0.6σ – 0.0σ – +0.6σ

RM1
c (M1M2) – 0.0σ – +0.8σ – +0.7σ – −0.8σ

RM2
c (M1M2) – +0.9σ – 0.0σ – −0.2σ – –

C(B̄0 →M1M2) 0.0σ 0.0σ +0.5σ +0.4σ 0.0σ 0.0σ 0.0σ 0.0σ

C(B̄0 →M+
1 M

−
2 ) +0.7σ +0.1σ +0.1σ +0.1σ 0.0σ +0.1σ +0.5σ +0.6σ

C(B− →M−1 M2) −2.1σ – 0.0σ – 0.0σ – +0.3σ –

C(B− →M1M
−
2 ) +1.0σ +1.0σ +0.9σ +1.0σ +0.7σ +0.7σ +0.1σ 0.0σ

∆ACP(M1M2) – −2.8σ – −0.1σ – 0.0σ – 0.0σ

fL(B̄0 →M1M2) – – – – – – 0.0σ 0.0σ

fL(B̄0 →M+
1 M

−
2 ) – – – – – – −0.6σ −0.5σ

fL(B− →M−1 M2) – – – – – – +0.7σ +0.9σ

fL(B− →M1M
−
2 ) – – – – – – 0.0σ 0.0σ

Table 5.1: Compilation of p values and pulls of the SM fit evaluated at the best-fit
point of ρM1M2

A for the two different observable sets SI and SII of the decay systems
B → Kπ, Kρ, K∗π, K∗ρ.

to the imaginary part. Unfortunately, in view of current data, the authors in [2] have

shown that the NNLO vertex corrections are cancelled by the NLO spectator scattering

corrections in the case of α2(ππ). Because higher-order radiative corrections seem to

be unsuitable to relax the observed tension, one might ask the question whether power-

suppressed corrections from HS interactions can account for the above-described pattern

of corrections to αu2(Kπ) and, if so, how large they need be. We addresses this question

to Subsection 5.1.4.

Neglecting constraints from branching-ratio measurements, a best-fit point at ρKπA =

4.1 e1.8i (see Figure 5.1) is found, satisfying all constraints from direct CP asymmetries.

This point in parameter space predict an accidental cancellation of the QCD-penguin

amplitude αc4(πK) and βc3(πK), and statistical confidence can only be achieved due to

large theoretical uncertainties. Though branching-ratio measurements only become in-

compatible at more than 30σ, emerging numerical importance of unknown NNLO and

subleading corrections cast doubt on predictions of CP asymmetries in that regime of

parameter space.

The contour of the combined fit is displayed in the plots in red. Independent of

the set of observables, two branching-ratio-compatible solutions remain with a relative

power correction of roughly ξA3 (πK) = 0.39 to the QCD-penguin amplitude. Due to

the quadratic dependence of βc3(πK) on the fit parameter, an ambiguity arises that
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is only slightly broken by other WA contributions, such that both solutions are al-

most degenerated. At the best-fit point of Set II, α̂c4(πK) ≡ αc4(πK) + βc3(πK) =

(−0.101+0.006
−0.005 − 0.015+0.006

−0.007i) + (−0.016+0.002
−0.001 + 0.037+0.003

−0.004i). Our parametrisation of

subleading corrections also accounts for higher-order αs corrections to α̂c4(πK). The

calculation of NNLO QCD-penguin corrections become available in the foreseeable fu-

ture [129] and could decrease ξA3 (πK) in case of constructive interference to the real

part and destructive interference to the imaginary part of αc4(πK). If, for instance,

Imαc,NNLO
4 (πK) ' −Imαc,NLO

4 (πK), ξA3 (πK) would decrease to 0.27.

The goodness of the fit at the best-fit point is measured by the p value, which is

of the order of reliable values for set SI (p = 0.44). Apart from a small discrepancy

in B(B̄0 → K̄0π0) of +0.3σ, all pull values for branching ratios vanish, whereas, as

explained above, direct CP asymmetries elude a suitable prescription. The pull values

for C(B̄0 → K−π+) and C(B− → K−π0) are +0.7σ, respectively −2.1σ and reflect the

∆AKπCP puzzle, which is shifted into a pull for ∆AKπCP of −2.8σ for the observable set SII.

Both fits obtain a small deviation of +1.0σ for the CP asymmetry C(B− → K̄0π−),

which vanishes in the SM and is quite stable against power corrections.

Although the analysis of CP-violating observables for both sets do not differ signif-

icantly from each other, in the combination with ratios of branching ratios (SII), the fit

cannot explain the measured value for RBn (Kπ). A pull of −1.9σ in RBn (Kπ) leads to a

problematic p value of 0.04 for the SM. This additional discrepancy is already obtained

in a fit without CP-violating observables: δ(RBn (Kπ)) = −1.2σ, δ(RKc (Kπ)) = 0.4σ and,

δ(Rπc (Kπ)) = 0.6σ. After contributions from WA are fitted and do not contribute to the

error budget anymore, the largest uncertainty for branching-ratio predictions originates

from form factors. This parametric dependence mostly cancels in ratios of branching

ratios, which therefore become more suitable in testing the SM.

It is worthwhile to note the difference between the conventional treatment and our

treatment of WA corrections. The disadvantage of fitting ρM1M2
A is that we cannot pre-

dict those observables that are used in the fit. In the conventional QCDF, a central value

for ρM1M2
A is chosen, and typically, φM1M2

A is varied within a certain range to predict all

observables. However, the choice of a central value for ρM1M2
A is arbitrary, and the cen-

tral values and uncertainties for the observables strongly depend on this selection, which

might dispute the robustness of the predictions. That φM1M2
A is freely varied for each

decay chain and each observable implies that WA contributions are taken uncorrelated

into account, increasing uncertainties unreasonably large. Our approach correctly allows

for these correlations and quantifies the assumption of universality among final state sys-

tems that are related via (u↔ d) quark exchange by the goodness of the fit. Under the

potential drawback of less constrained contours, we can also remove certain observables

from the fit, allowing us to predict them with a statistically weighted uncertainty from

reasonable regions of WA automatically incorporated (see Appendix A.4).
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PP

B → Kπ B → Kη B → Kη′ B → KK Bs → KK Bs → ππ Bs → Kπ

|ρPPA |
lower bound > 1.8 > 0 > 0.9 > 0 (0.9) > 0 > 3.4 > 2.3

upper bound < 3.9 – < 7.7 < 6.1 (8.6) < 5.5 < 10.9 < 4.8

ξA3

best-fit point 0.39 0.08 1.83 0.58 1.83 – 0.96

68% CR [0.37; 0.54] [0.00; −] [0.18; 3.25] [0.00; 2.07] [0.02; 2.09] – [0.56; 1.54]

95% CR [0.34; 0.69] [0.00; −] [0.16; 3.34] [0.00; 2.10] [0.00; 2.13] – [0.44; 1.83]

PV

B → K∗π B → Kρ B → K∗η B → K∗η′ B → Kφ B → Kω

|ρPVA |
lower bound > 1.4 > 0.8 > 1.1 > 0 > 0.8 > 1.4

upper bound < 3.4 < 3.4 < 4.4 < 6.1 < 3.6 < 4.5

ξA3

best-fit point 0.89 0.78 2.74 0.48 0.50 2.7

68% CR [0.75; 1.40] [0.39; 1.55] [0.71; 3.77] [0.02; 7.84] [0.40; 2.41] [0.70; 3.08]

95% CR [0.69; 1.56] [0.16; 2.18] [0.64; 5.06] [0.02; 8.41] [0.32; 2.54] [0.57; 3.15]

VV

B → K∗ρ B → K∗φ Bs → K∗φ B → K∗K∗ Bs → K∗K∗ Bs → φφ B → K∗ω

|ρV VA |
lower bound > 1.0 > 0.7 > 0.3 > 1.2 > 1.6 > 0.7 > 0.3

upper bound < 2.9 < 1.9 < 3.2 < 3.0 < 3.6 < 2.3 < 2.4

ξA3

best-fit point 1.33 0.51 1.53 1.84 3.01 0.50 0.91

68% CR [0.84; 1.94] [0.41; 0.59] [0.30; 2.05] [0.85; 2.68] [1.94; 3.79] [0.49; 1.11] [0.20; 1.39]

95% CR [0.56; 2.33] [0.34; 0.63] [0.10; 2.15] [0.09; 2.90] [0.96; 4.17] [0.41; 1.38] [0.09; 1.46]

Table 5.2: Compilation of lower (upper) bounds at the 68% CR on the fit parameter
|ρM1M2

A | and of ξA3 (M1M2) at the best-fit point, the 68% and, 95% CR, for observables
set SII of the decay systems B → Kπ, Kρ, K∗π, K∗ρ. The pure weak-annihilation
decay B̄0 → K+K− is not included in the decay system B → KK and its bounds are
given separately in parenthesis.

5.1.2 Fit results for B → K∗π, Kρ, K∗ρ

We now analyse decay systems that are obtained from replacing a pseudoscalar in B →
Kπ by its vector meson equivalent: ρ for π and K∗ for K. Depending on the spin of

the final states, QCDF implies qualitative differences between the decay modes, which

will be discussed later on, but because the parametrisation of the decay amplitude in

all four decay systems is identical, we expect observable effects, which are present in

B → Kπ, also in B → K∗π (PV), B → Kρ (VP)2 and B → K∗ρ (VV). Unfortunately,

experimental information for these decay systems are not as precise as for Kπ final

state. No striking tensions are expected, but restricted contour regions on the QCD

model parameter ρM1M2
A can be obtained.

Our fit results are shown in the plots of Figure 5.2 and pull and p values are collected

in Table 5.1. There are no large deviations between experiment, and almost all pulls are

below one standard deviation, leading to p ∼ 1 for all three decay systems. We highlight

the +1.0σ tension for C(B− → K̄∗0π−) and +0.7σ tension for the same asymmetry

with Kρ in the final state. As just as for C(B− → K̄0π−), this CP asymmetry almost

vanishes in the SM and it is difficult to increase this observable to become larger than

2 The classification of B → K∗π as (M1M2 = PV ) and B → Kρ as (M1M2 = V P ) decay refers
to the flavour amplitude α4(M1M2), which indeed exclusively occurs in that combination for all decay
amplitudes for a given decay system. Nevertheless, some decay amplitudes also contain contributions in
which the role of the pseudoscalar and vector meson is interchanged.
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Figure 5.2: 68% and 95% CRs for the complex parameters ρKρA , ρK
∗π

A , ρK
∗ρ

A obtained
from a fit with the observable set SI (left panel) and SII (right panel) for the decay
systems B → Kρ, K∗π, K∗ρ assuming the SM. Allowed regions are separately shown
for branching ratios (blue), CP asymmetries (green), polarisation fractions (cyan), and
the combination (red). The dashed lines correspond to ξA3 (M1M2) = 0.25 (0.5, 1.0).
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1%, even in the presence of large power corrections. Therefore, this CP asymmetry is

suitable to test the SM without relying too much on soft QCD interactions.

The qualitative features of the contour plots are similar to those in the previous

section. For all three decay systems, independent of the observable set, we obtain two

solutions when the restrictions from branching ratios and CP asymmetries are combined.

One solution prefers small |ρM1M2
A | ∈ [1; 2] at φM1M2

A just below 2π; the other prefers

larger values for |ρM1M2
A | ∈ [2; 3] at φM1M2

A just below π. Due to the quadratic depen-

dence of the WA amplitude on ρM1M2
A , the two solutions are almost degenerate and only

distinguishable through other, numerically subleading, WA topologies. As we detail in

Section 5.2, assuming universality along all WA corrections might not be justified, and

it is arguable if the ambiguity can be resolved by improved measurements.

Nevertheless, the contour regions for all three decay systems overlap within a prob-

ability of 68% for the small-|ρM1M2
A | solution and at least for a probability of 95% for the

large-|ρM1M2
A | solution. Considering also the combined contour from B → Kπ, a com-

mon contour region at the probability of at least 95% can be found for small |ρM1M2
A |.

In the case of VV final states, we can exploit the three helicity amplitudes to construct

further observables such as polarisation fractions to obtain additional constraints for

our fit, which are shown in the lower panels in Figure 5.2 by the cyan contour. As can

be seen from the plots, information from polarisation-fraction measurements are — at

least in the case of B → K∗ρ — more restrictive than CP asymmetries and lead to

orthogonal constraints compared to the contours from branching ratios. Although the

contour regions for the decay modes B → Kπ (Kρ, K∗π) are obtained from branching

fractions and CP asymmetries, whereas for B → K∗ρ from branching and polarisation

fractions, the final contours are still rather similar.

Although no further tensions were obtained in our fits, we saw in the previous

subsection that composed observables, like ratios of branching ratios, are more suitable

to test the SM due to cancellation of uncertainties. Looking forward to more precise

measurements from Belle II, we show the results for all six possible ratios of branching

ratios at the according best-fit point for observable set SII in Figure 5.3. These should

not be considered as predictions, but rather as indications whether our analysis will

resist more accurate data.

The relative amount of power corrections compared to the leading contributions

for PV , V P and V V final states are listed in Table 5.2. Although the lower bounds

on |ρM1M2
A | are weaker for decays with at least one vector meson in the final state, the

power-suppressed ratio ξA3 (M1M2) is typically larger by a factor of 2–3 compared to

B → Kπ, which is a qualitative feature of QCDF. As can be seen from Equation 3.27,

the QCD-penguin flavour amplitude α4(M1M2) is a linear combination of the vector and
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Figure 5.3: Experimental and theoretical results for all six possible combinations of
ratios of branching ratios for the decays B → Kπ, Kρ, K∗π, K∗ρ. The measurements
(red) are taken from [3] with uncertainties added up quadratically (see Chapter A.1).
Predictions are obtained either for ρM1M2

A at the best-fit point of set SII (green) or for

conventional error estimation with ρM1M2

A as defined in Chapter 3.2.2 (black)
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this work BaBar Belle HFAG

B̄0 → K̄0ω C −0.08± 0.08
−0.52+0.22

−0.20 ± 0.03 (2009) [130] 0.09± 0.29± 0.06 (2007) [131] −0.32± 0.17† (2012) [3]

0.36± 0.19± 0.05 (2013) [81]

B− → K∗−φ
φ⊥ (rad.) 2.07+0.27

−0.25 2.69± 0.20± 0.03
(2007) [132]

2.31± 0.30± 0.07
(2005) [133]

2.58± 0.17†
(2012) [3]

φ‖ (rad.) 2.07+0.27
−0.25 2.47± 0.20± 0.07 2.10± 0.28± 0.04 2.34± 0.17†

B̄0 → K̄∗0φ
φ⊥ (rad.) 2.07+0.27

−0.25 2.35± 0.13± 0.09†
(2008) [83]

2.37± 0.10± 0.04†
(2013) [84]

φ‖ (rad.) 2.07+0.27
−0.25 2.40± 0.13± 0.08† 2.23± 0.10± 0.02†

Table 5.3: Collection of theoretical and experimental results for the CP asymmetry in
B̄0 → K̄0ω and the relative amplitude phases φ⊥,‖ for B0(−) → K∗0(−)φ. Because the
Belle collaboration recently published an update for the decay B̄0 → K̄∗0φ, we used
the individual results from BaBar and Belle in our fits, whereas for B− → K∗−φ the
results from HFAG have been used. Values that are used in the fits are indicated with
a †.

the chiral-enhanced scalar QCD-penguin amplitudes

α4(M1M2) = a4(M1M2)± rM2
χ a6(M1M2). (5.7)

In the case of M1M2 = V P , the two contributions interfere destructively, whereas for

M2 = V , the tree-level contribution to a6(M1M2) vanishes, leading to naturally smaller

QCD-penguin amplitudes than for M1M2 = PP and implicitly larger power-suppressed

ratios ξA3 (M1M2).

The contour plots for all other decay modes listed in Table 5.2 are either placed for

completeness into Appendix B or are discussed in Subsection 5.1.3. In the following, we

comment on the two decay systems:

B → Kω

The fit for the decay system B → Kω, shown on the left panel of Figure 5.4, produces

a small tension for C(B̄0 → K̄0ω) of about −1.0σ. We list the theoretical and experi-

mental results in Table 5.3. Compared to the theory prediction at the best-fit point, the

combined experimental result from HFAG can indeed not be explained within our fits;

this tension arises from the large value from the BaBar collaboration. This decay system

is interesting for two reasons: First, the fit prefers the large WA scenario, which have not

been observed for the decays discussed above. The best-fit point has ρKωA = 4.1 e4.6i, and

power-suppressed corrections become suspiciously large ξA3 (Kω) = 2.7. If we restrict the

fit to |ρKωA | < 2, the pull increases to 1.6σ. Second, the CP asymmetry is sensitive to

the colour-suppressed tree amplitude αu2(Kω). As we will see in Subsection 5.1.4, an en-

hanced colour-suppressed tree amplitude might provide a solution to the ∆AKπCP problem

and can be realised by larger HS interactions. If these power-suppressed corrections are

enhanced in general, this effect would be clearly visible in this CP asymmetry, but the

current experimental situation is inconclusive. The Belle collaboration recently updated

its analysis [81], presented in the second column of Table 5.3, and unfortunately, the
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Figure 5.4: 68% and 95% CRs for the complex parameters ρKωA (left) and ρK
∗φ

A

(right) for the decay systems B → Kω, K∗φ assuming the SM. Allowed regions are
separately shown for branching ratios (blue), CP asymmetries (green), polarisation
fractions (cyan), relative amplitude phases (purple), and the combination (red). The
dashed lines correspond to ξA3 (M1M2) = 0.25 (0.5, 1.0).

new measurement is highly incompatible with that of the BaBar collaboration.

B → K∗φ

The combined contour for the decay system B → K∗φ, shown on the right panel of

Figure 5.4, is restricted to a rather small region in parameter space and does not over-

lap with either the branching-ratio nor the amplitude-phase (purple) contour at the

probability of 68%. The visible tension in the plot transfers to non-vanishing pulls for

B(B̄0 → K̄∗0φ) of 1.7σ and φ⊥(B− → K∗−φ) of 1.4σ. Since the decay amplitudes for

the neutral and the charged decays do not differ significantly from each other, we ex-

pect that observables, Ô, for both decay channels should be almost equal, even in the

presence of NP contributions

Ô(B− → K∗−φ) ∼ Ô(B̄0 → K̄∗0φ). (5.8)

Due to the hierarchy among the different helicity amplitudes (see Equation 3.33) the

following relation should also hold

φ⊥ = φ‖. (5.9)

The experimental situation, as it is presented in Table 5.3, turns out to be inconsistent

with the above findings. The amplitude phase φ⊥ from each decay is larger than φ‖
3,

which explains the discrepancy mentioned above. The pattern in Equation 5.9, in con-

trast to Equation 5.8, is a particular outcome of the SM and can be broken through

3Except for the BaBar measurement in B̄0 → K̄∗0φ, for which φ⊥ ∼ φ‖
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right-handed currents in flavour-violating b → s transitions. χ-flipped operators could

potentially relax the tension.

5.1.3 Universal weak annihilation for same final states

So far, we have assumed that QCD-penguin-dominated decay amplitudes can be para-

metrised by one WA contribution XA(M1M2) for those decay modes that are related

via (u ↔ d) quark exchange. In the following, we relax this assumption and also in-

clude those decay modes into a common decay system with different initial (Bs vs. Bd),

but same final states, which implies relations between |∆S| = 1 and |∆D| = 1 decay

modes. The assumption might be justified by the following reasoning: We have already

argued that WA contributions in QCD-penguin-dominated decay amplitudes are numer-

ically dictated by the topology in which the gluon is emitted from the quark current

that hadronises into the final states (last 2 diagrams in Figure 3.5). This implies that

momentum transfer from the initial B meson is only present at the weak interaction

vertex and the uncontrollable soft QCD-interaction is triggered by the final-state quark

currents that are, due to our assumption, equivalent. Furthermore, the emergent di-

vergences in these topologies are expected to be regularised by some non-perturbative

objects that are yet unknown but should replace the LCDA of the light mesons at the

endpoints [134] and be equivalent for same final states. Therefore, one can expect that

the hadronisation process of the final states might be universal and almost independent

from the initial B meson and the difference between WA amplitudes in Bd →M1M2 and

Bs → M1M2 should be of the order of the difference between the heavy meson masses

(mBs −mBd)/mBs . Similar arguments have been presented for the decays B̄d → K−π+

and B̄s → K+π− in [135]. At the moment, experimental information for Bs decays is

limited to at large six hadronic decay systems

B → ππ ⇐⇒ Bs → ππ,

B → KK ⇐⇒ Bs → KK, B → K∗K∗ ⇐⇒ Bs → K∗K∗,

B → Kπ ⇐⇒ Bs → Kπ, B → K∗φ ⇐⇒ Bs → K∗φ,

(5.10)

whereas the corresponding measurements of the decay Bs → φφ in the Bd system is

lacking at the moment.

A relation between WA corrections in decay amplitudes with 2 pions in the final

state might be not justified due to the fact that the Bd decay is driven by tree-level

and the Bs decay by pure WA contributions. The latter will be further studied in

Section 5.2. In the case of two kaons in the final state, one should be also cautious.

Although the decay modes of both the B as well as the Bs meson are dominated by the

QCD-penguin amplitude, the specific decay B− → K(∗)−K(∗)0 also receive corrections
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Figure 5.5: 68% and 95% CRs for the complex parameters ρKKA (upper) and ρK
∗K∗

A

(lower) for the decay systems B → K(∗)K(∗) (left) and Bs → K(∗)K(∗) (right) assuming
the SM. Allowed regions are separately shown for branching ratios (blue), CP asym-
metries (green), polarisation fractions (cyan), and the combination (red). The dashed
lines correspond to ξA3 (M1M2) = 0.25 (0.5, 1.0).

from tree-level WA. These contributions are parametrically suppressed by the CKM-

elements λ
(s,d)
u , which is, however, less effective for b → d than b → s transitions and

cannot be completely neglected for these modes. The contour plots for both PP and

VV final states are presented in Figure 5.5. Whereas the contours for B(s) → KK

are still large and nicely overlap, they overlap for B(s) → K∗K∗ only marginally at a

probability of 68%. It appears that those regions in parameter space that are favoured

by the B decay are excluded for Bs, which mostly originate from polarisation-fraction

measurements. If we omit observables from B− → K∗−K∗0 from the fit, the combined

contour slightly increases and a coinciding region for both contours at φK
∗K∗

A ∼ 5.6 can

be found. Although the common area of both fits is considerably small compared to the

residual allowed regions, it is not unlikely that at this phase, which was also favoured
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Figure 5.6: 68% and 95% CRs for the complex parameter ρKπA obtained from a fit
with the reduced observable set for B− → K−π0 (brown) and B̄0 → K−π+ (purple)
assuming the SM. The dashed lines correspond to ξA3 (Kπ) = 0.25 (0.5, 1.0). The right
panel shows the corresponding predictions for the CP asymmetry C(B̄s → K+π−).
Experimental results are drawn at the 1σ level and a prediction from QCDF within
conventional error estimation is indicated by the label “conv. QCDF” .

from other decay systems, the data of both is correctly described. Further experimental

improvements will clarify if different corrections from WA are needed.

The only remaining relations from Equation 5.10 to study are for the final states

Kπ and K∗φ, whereas for the latter, experimental data for the Bs decay is not yet

conclusive enough to judge on our assumptions. So our analysis will be restricted to Kπ

final states and we would like to test whether the CP asymmetry C(B̄s → K+π−), which

was recently measured by the CDF [136] and LHCb [137] collaboration, can be predicted

correctly, restricting WA contributions from a corresponding fit in the Bd system. Since

the fit of B → Kπ data does not allow for a simultaneously explanation of the two CP

asymmetries with a charged kaon in the final state, it might be reasonable to investigate

them separately. Figure 5.6 shows the contours from branching-ratio and CP-asymmetry

measurements of the two contradicting decay modes B̄0 → K−π+ (purple) and B− →
K−π0 (brown). In addition, we used RKc (Kπ) to suppress solutions from the large weak-

annihilation scenario. Due to the higher statistical weight of C(B̄0 → K−π+), the purple

contour coincide nicely with the red contour in Figure 5.1 for which all constraints were

taken into account. At this point, one should noticed that |ρKπA | > 1 does not originate

from the ∆AKπCP problem, but rather from the precise measurement of the CP asymmetry

C(B̄0 → K−π+). The resulting posterior probability was then used to predict the CP

asymmetry C(B̄s → K+π−), as described in Appendix A.4, and is shown on the right

panel in Figure 5.6. The measurement nicely agrees with the prediction from the K+π−-

fit, whereas it fails at more than 4σ for the K+π0-fit. These results support, on the one

hand, that |ρKπA | > 1 is justified and, on the other hand, that universal WA among same
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final states might be a reasonable approximation and should be further tested against

improved measurements.

5.1.4 Possible solution to the ∆AKπCP puzzle

We have seen that our theoretical prediction for ∆AKπCP does not coincide with the

corresponding measurements by about 2.8 standard deviations. The dominant source of

CP violation in the SM originate from the weak phase of the CKM-matrix element Vub

in combination with the colour-suppressed and colour-allowed tree amplitudes, whereas

the latter contribution cancels in the difference (see Equation 5.4). The residual CP-

violating term in ∆AKπCP is, at least in the SM, only proportional to αu2(Kπ). The

colour-suppressed tree amplitude is sensitive to power corrections from HS interactions

due to its dependence on the large Wilson Coefficient C1 (see Equation 3.22). The

following subsection shall clarify how far we have to abandon from the conventional

error estimation in order to solve the ∆AKπCP puzzle and what kind of implications we

can expect for other observables. The fact that power corrections from HS interactions

in colour-suppressed tree amplitudes might have been underestimated was also observed

in the tree-level-dominated decay B̄0 → π0π0 [2, 138], with the parametrisation of the

decay amplitude

AB̄→π0π0 = Aππ
∑
p

λ(d)
p (δpu(−α2 + β1) + α̂p4 − 2βp4) . (5.11)

The measurement of the corresponding branching ratio is larger compared to the pre-

diction form QCDF, indicating |ρππH | > 1 also for tree-level decays, which are assumed

to be free of physics beyond the SM. The misalignment of the branching-ratio predic-

tion was originally interpreted in [2, 138] as a hint towards a smaller value for λB as

expected from QCD-sum rules (see Subsection 3.2.1). Once this parameter is precisely

extracted from B(B → γ`ν), the justification of large power corrections from HS might

be confirmed also in tree-level decays.

The upper panels of Figure 5.7 show contour regions for the parameters ρKπH (left)

and ρKπA (right) from a simultaneous fit of HS and WA corrections. We used observable

set SII to obtain the purple-coloured region, whereas the direct CP asymmetry C(B̄0 →
K̄0π0) and the ratio of branching ratios RBn (Kπ) have been removed. Though the CP

asymmetry strongly depends on power corrections from HS, it does not further constrain

the fit due to lacking precision in the measurement, making it a suitable candidate to

be predicted. In contrast, RBn (Kπ) is indeed quite well measured and a tension of

−1.9σ was already encountered for this observable in the previous fits, but because it is

not sensitive to the HS corrections, it would spoil the fit to very large values for ρKπH ,

which might be not necessary to explain ∆AKπCP . The brown contour is taken from the
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Figure 5.7: 68% and 95% CRs for the complex parameters ρKπH (upper left panel)
and ρKπA (upper right panel) obtained from a fit with the observable set SII for the
decay system B → Kπ assuming the SM and treating ρKπH as either fit parameter
(purple) or nuisance parameter (brown). The dashed lines correspond to contour lines
for ξH2 (Kπ) = 0.25 (0.5, 0.75, 1), respectively ξA3 (Kπ) = 0.25 (0.5, 1.0). The lower
panels show the corresponding predictions for the CP asymmetries C(B̄ → K̄0π0)
(left) and C(B̄s → K0π0) (right). Experimental results, if available, are drawn at the
1σ level and a prediction from QCDF within conventional error estimation is indicated
by the label “conv. QCDF”.

findings in Figure 5.1, with all observable in set SII used as constraint and shall serve

as comparison. In addition, contour lines for ξH2 (Kπ) and ξA3 (πK) are shown. The

following results can be obtained from the plots.

• The prediction of ∆AKπCP at the best-fit point for ρKπH = 3.3 e3.7i coincides with the

measurement.

• The fit prefers φH ∼ 3
2π, which implies that HS corrections to αu2(Kπ) should

be mainly imaginary and interfere constructively with the imaginary part of the

vertex corrections, following the desired pattern described in Chapter 5.1.1.



Chapter 5. Testing QCD factorisation within the SM 74

• In order to relax the tension in ∆AKπCP , |ρKπH | should be, at least, larger than

1.8 (→ |δ(∆AKπCP )| ≤ 1.6σ). Inspecting ξH2 (Kπ), the relative amount of power

corrections compared to the leading contribution at for instance ρKπH = 1.8 e4.5i is

not larger than for parameter points that are usually included into the error budget

(ρKπH = 1.0). This is a remnant artefact of the parametrisation XH ∼ (1 + ρKπH ).

• The fit for the WA corrections is shifted in favour to smaller |ρKπA |, which implies

smaller values for ξA3 (πK).4

If in fact large HS corrections are responsible for the observed discrepancy in ∆AKπCP ,

similar effects should be observable for other decay modes. For example, the CP asym-

metries in B̄0 → K̄0π0 and also B̄s → K0π0 should receive visible corrections, whereas in

the latter case the effect would be enhanced compared to the former due to the different

hierarchy of CKM-matrix elements∣∣∣λ(d)
u /λ(d)

c

∣∣∣� ∣∣∣λ(s)
u /λ(s)

c

∣∣∣ . (5.12)

The predictions for these observables are shown in the lower panels of Figure 5.7, whereas

the colour code is in accordance with the upper panels. Once measured, respectively

measured with higher precision, both observables will allow to test the assumption of

large hard-spectator scattering interactions for B → Kπ

C(B̄0 → K̄0π0)fitXH = 0.14+0.06
−0.05, C(B̄0 → K̄0π0)scanXH = [−0.04, 0.04],

C(B̄s → K0π0)fitXH = −0.70+0.20
−0.19, C(B̄s → K0π0)scanXH = [−0.17, 0.48].

(5.13)

From the previous discussion, we should keep in mind that even if additional NP

contributions do not entirely account for solving the ∆AKπCP problem, it might be reason-

able that both soft QCD effects through HS and NP effects are needed to be taken into

account. Therefore, observables like ratios of branching ratios seem to be an appropriate

additional information to judge on the reliability of a NP model.

A similar analysis, concerning enhanced contributions from HS interactions, has

been carried out in [139]. The authors found a best-fit point for ρKπH = 4.9 e4.9i. With

respect to deviating input values such as λB = 0.35 GeV and to the evaluation of HS at

different renormalisation scales, their result lies in the ballpark of our 68% CR.
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Figure 5.8: 68% and 95% CRs for the complex parameter ρπ
+π−

A and ρK
+K−

A obtained
from a branching-ratio fit assuming the SM.

5.2 Weak-annihilation dominated decays

5.2.1 B̄s → π+π− vs. B̄d → K+K−

So far, we exclusively discussed decay amplitudes that are dominated by QCD-penguin

topologies. These types of decays share the feature that the leading WA correction in

βc3(M1M2) is dominated by the building block Af3 , originating from a gluon exchange

between the final state quark currents. Further, we grouped those final state systems

together that are related via the (u ↔ d) quark exchange and assumed universality for

their WA corrections. We extended our assumption to decay amplitudes with same final

states, which was motivated and tested in Subsection 5.1.3. In view of our fit results,

it is rather doubtful that universality holds in general along all decay amplitudes. It

is even unclear if universality holds among PP, PV, V P or V V final states, although,

being not completely forbidden from our fits.

Now we are interested in decay modes that solely receive contributions from WA

topologies. The only so far measured systems are B̄s → π+π− and B̄d → K+K−. Their

amplitudes are parametrised by

AB̄s→π+π− = i
GF√

2
fBsf

2
π

∑
p

λ(s)
p

(
δpub1 + 2bp4 +

1

2
bp4,EW

)
,

AB̄d→K+K− = i
GF√

2
fBdf

2
K

∑
p

λ(d)
p

(
δpub1 + 2bp4 +

1

2
bp4,EW

)
,

(5.14)

4We proved that the resulting relaxation in the WA fit is indeed a consequence of the additional
degrees-of-freedom and was not caused by the fact that the observable RBn (Kπ) was removed from the
fit.
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and are, apart from power corrections, not disturbed by parameters that usually cause

large uncertainties like for example form factors or the inverse moment of the B-meson

LCDA and ρM1M2
A can be safely extracted. The involved coefficients bi(M1M2) exclu-

sively depend on the building block Ai1,2 (see Equation 3.25), where the gluon is emitted

from the initial quark current (first two diagrams in Figure 3.5). The fit results for

ρπ
+π−
A (left) and ρK

+K−
A (right) are shown in Figure 5.8.

Their contours do not overlap within a probability of 95%, and at φA = 0, the

absolute value can be restricted to |ρπ+π−
A | ∈ [3.4; 4.1] and |ρK+K−

A | ∈ [0.9; 1.9] at a

probability of 68%. It is not surprising that the WA corrections for decays of different

initial and final states differ from each other and confirms that universality is not valid in

general. However, what might be remarkable is that |ρπ+π−
A | is much larger compared to

all other fit results, whereas the contour from K+K− seem to be consistent, in particular,

consistent with the contour of the QCD-penguin-dominated decays with also two kaons

in the final state (upper panels in Figure 5.5). The power-suppressed ratio ξA3 (M1M2)

cannot be quoted, because the decay amplitudes do not depend on αc4(M1M2). Similar

fits have been obtained in [140], whose results we confirm.

Apart from the misalignment of WA corrections in decays with different initial

and final states, there might be another interesting aspect, which can be studied along

pure WA decays. In the framework of QCDF, both decay amplitudes in Equation 5.14

solely depend on the building block Ai1, which is the only source of strong phases. In

order to observe CP violation, a relative strong phase between the CP-conserving and

CP-violating part of the decay amplitude is needed, but since all coefficients bi(M1M2)

obtain a common strong phase, no CP violation for these decay modes is predicted at all.

This is a feature of the low-energy theory and also holds for NP contributions in general,

which leads to the following implications: First, it is impossible within QCDF to extract

information on neither φK
+K−

A nor φπ
+π−
A . Secondly, an observation of CP violation

would cast doubt on the reliability of the right parametrisation of higher-order power

corrections. This makes pure WA decays suitable to test the assumptions in QCDF.

These effects might be also studied in the future through the corresponding neutral and

for other spin (PV, VP, VV) final states.
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Exploring the structure of physics

beyond the Standard Model

A large number of operators is involved in the phenomenology of hadronic B-meson

decays. We already have to deal with 10 4-quark and two dipole operators in the SM

and even many more can be considered beyond. We discussed in Chapter 5 that some

isospin-sensitive observables like ∆AKπCP and RBn (Kπ) seem to elude from a consistent

description in the SM, which, in particular for the former, attracted the attention of

many works. The forthcoming sections shall be used to perform a model-independent

analysis, in which we allow certain Wilson Coefficients, respectively SM couplings, to

be enhanced. We would thereby like to understand, which class of operators is suitable

to relax the aforementioned tensions and how well they can already be constrained by

current data. The advantages of a model-independent analysis are manifold: Whereas a

concrete model can in detail become rather complicated such as the Minimal Supersym-

metric Standard Model (MSSM) with more than 100 free parameters, confining oneself

to a finite subset of operators can account for several different models simultaneously

and allow for a tremendous simplification of the analysis. Correlations between different

kind of observables, as from direct vs. indirect searches, which automatically emerge in

specific models, do not need to be considered, enabling oneself to focus the analysis on

solving a particular problem. If it becomes clear what kind of operators are suitable for

our purpose, one can extrapolate to the model in favour and see whether such effects are

still allowed with respect to other constraints. Since no overwhelming hints from direct

searches so far have appeared, a model-independent data-driven analysis seems to be a

reasonable approach to search for physics beyond the SM.

We will investigate three effective realisations of potential NP scenarios. The first

two analysis confine to the SM operator basis. In Section 6.1, we allow for non-standard

Wilson Coefficients of the QED-penguin operators — a solution to the ∆AKπCP -puzzle that

has already been suggested in the literature — and allow in Section 6.2 for arbitrary

77
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contributions to the more fundamental, (at the Lagrangian level) flavour-violating SM

coupling of the Z-boson. The latter also contributes to observables of the (semi-)leptonic

decays b → s`+`− through dominant contributions to C10,A. The last analysis in Sec-

tion 6.3 is dedicated to an extended operator basis. The operators with the flavour

structure Ob = (s̄b) (b̄b) are discussed, with respect to an arbitrary Dirac and colour

structure, in complete generality. They influence both hadronic and (semi-)leptonic

observables through mixing effects; this time contributing to the vectorial QCD- and

QED-penguin operators.

Each of the three above-mentioned scenarios are discussed along the same struc-

ture. First of all, we will set up our model and elaborate the most important features

of the individual scenarios. The second part includes the actual analyse. We are mainly

interested in contour regions and bounds on the individual effective couplings. They

are obtained from a simultaneously fit of both NP and WA parameters, for which one

ρM1M2
A is assumed for each final state system. This ansatz is crucial for the fit and, to

our knowledge, has not been applied so far in the literature. Compared to conventional

QCDF, it leads to qualitative different results, as we will exemplary discuss later on.

As a measure of the necessary amount of power corrections, we quote for each scenario

and decay system the power-suppressed ratio ξA3 (M1M2) at a probability of 68%, as

described in Appendix A.5. In order to limit the amount of free parameters, we have to

confine the fit to at most four to five hadronic decay systems, for which those with most

experimental information available are chosen, in particular B → Kπ, Kρ, K∗π, K∗ρ

and B → K∗φ. We only discuss b→ s triggered decays because only insufficient experi-

mental information from decay systems of b→ d transition exist at the moment, which

do not allow for an efficient simultaneous extraction of soft QCD and NP parameters.

Since our main motivation to study contributions beyond the SM was to explain the

discrepancy in B → Kπ, we quantify the goodness of our fit through quoting significant

pull values and comparing the χ2 for the SM vs. NP-fit in ∆χ2(SM). The last part

discusses how additional contributions to the individual operators could be detected in

future experiments as, for instance, at LHCb or Belle II. We predict, adapted to the

respective scenarios, certain selected observables together with the mixing-induced CP

asymmetries ∆S(M1M2). The latter are in principal part of the observable sets in those

decay systems that also enter the fit, but are typically imprecisely measured and do not

deliver further constraints. Those scenarios that also affect (semi-)leptonic decays can

further be tested through the prediction of the CP-violating observables, described in

Chapter 4.2.1.
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6.1 Model-independent fits of the QED-penguin Coeffi-

cients C(′)
7 , C

(′)
9

The QED-penguin operators of the SM and their χ-flipped counterparts are isospin-

violating and, if enhanced, suitable to affect the observables that have been constructed

in Section 4.1. We expect that the encountered tensions in the SM, in particular, ∆AKπCP

and RBn (Kπ), can be relaxed through additional contributions to the Wilson Coefficients

of these operators. It is interesting to study if such corrections are still allowed when

taking observables of other decay systems into account. The observation that ∆AKπCP

can be resolved through a modification of the QED-penguin Wilson Coefficients has

already been made in [42] and motivated further studies [74, 141]. Many particular

models exists that in fact imply corrections to these operators like, for instance, theories

with an additional U(1) gauge group [142–145]. It is therefore well motivated to study

the impact of an enhanced electroweak penguin sector on hadronic B-meson decays in a

systematic, model-independent way.

In contrast to the hadronic decays in this work, which are mainly QCD-penguin-

dominated, similar QED-penguin operators also occur in the EWH of (semi-)leptonic

decays (see Equation 2.19), which constitute the leading contribution to the decay ampli-

tude. If a particular model is constructed, in which either the flavour-violating couplings

of the SM are enhanced or the new fields generate themselves flavour-violating transi-

tions and do not couple hierarchical differently to quarks and leptons, it is very likely

that effects in the observables of hadronic and (semi-)leptonic decays are correlated. A

model-independent fit, as we are going to present it in the following subsection for the

Wilson Coefficients of the 4-quark QED-penguin operators, was also performed for the

corresponding semi-leptonic operators in [109, 110, 146, 147]. The qualitative results

can be compared to our findings. In the following two NP scenarios, presented in Sec-

tions 6.2 and 6.3, we connect these systems practically through the enhancement of the

SM coupling of the Z-boson to the b → s transition as well as an extended operator

basis and, study their correlations in a combined fit.

6.1.1 Theory

The operator basis for hadronic B-meson decays consists among others out of four QED-

penguin operators with non-vanishing Wilson Coefficients C7−10 (see Equation 2.14).

They originate from box-, as well as photon-, and Z-penguin diagrams. The symmetry of

the SM generates exclusively left-handed flavour-violating b→ s transitions. The second

quark-current transition in the QED-penguin operators receive different vectorial and

axial-vectorial contributions, which is typically parametrised through purely left-handed

(C9,10) and purely right-handed (C7,8) currents. Because the dominant contributions
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for the vectorial and axial-vectorial part only differ by an overall sign, C7,8 becomes

accidentally small and C9,10 enhanced. The even-numbered operators are defined in a

colour-octet configuration and their Wilson Coefficients are suppressed by αs compared

to the Wilson Coefficients of the colour-singlet operators C7,9. We therefore focus on

the modification of the Wilson Coefficients C7,9 and also include the possibility of right-

handed flavour-violating currents through non-zero Wilson Coefficients of the χ-flipped

operators: C ′7,9. Consequently, there are altogether maximally four complex parameters,

modifying the physics at µ ∼ MW , which we will concern in our fits. Since the Wilson

Coefficients are proportional to the electromagnetic coupling constant α, it is useful to

normalise the additional contributions to their SM counterparts. The primed Wilson

Coefficients vanish in the SM and, as already mentioned, the parametrisation of the

operator O7 leads to an accidentally small C7, which suggests to use the absolute value

of C9 as the natural normalisation scale for all new contributions

Ci(MW ) = CSM
i (MW ) + |CSM

9 (MW )| Ci, C ′i(MW ) = |CSM
9 (MW )| C′i, (6.1)

where C(′)
i are the parameters of interest and the numerical value for CSM

9 (MW ) is given

in Table 2.1. The new contributions are introduced at the scale MW , for which we adopt

the RGE scheme from Section 2.1.

Although we will perform a simultaneous fit to all four complex Wilson Coefficients,

it is sensible to study some limiting cases. First of all, the QED-penguin operators in

the semi-leptonic sector can be related to those in the hadronic sector through a linear

combination of the 4-quark operators after replacing the lepton current by according

sum over quark currents

O9V ∼ O7 +O9, O10A ∼ O7 −O9,

O′9V ∼ O′7 +O′9, O′10A ∼ O′9 −O′7.
(6.2)

The qualitative results that have been found for the fit of the semi-leptonic Wilson

Coefficients in Subsection 4.2.2 and in the studies of for example [109, 110, 146, 147] can

be compared to the results of our analysis and a common pattern might be observable.

Secondly, we have discussed in Subsection 3.1.3 that parity symmetry arguments are

useful to relate hadronic matrix elements of operators with their χ-flipped counterparts

and shown in Equation 3.30 that they differ at most by an overall minus sign. This

suggests to study the possibility of a parity-symmetric scenario, with C̄i ≡ Ci +C′i, and a

parity-anti-symmetric scenario, ∆Ci ≡ Ci −C′i. Depending on the spin of the final state,
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the following generic pattern

C̄i = Ci + C′i

PP, VV blind

PV, VP enhanced
∆Ci = Ci − C′i

PP, VV enhanced

PV, VP blind
(6.3)

can be observed. For the decays into two vector mesons, with either positive or negative

polarisation, this relation is broken and can be tested in observables that depend on

the helicity of the final state. As it is evident from Equation 6.3, one can expect that

the decay systems with one pseudo-scalar and one vector meson will give orthogonal

constraints to the decay systems with either two pseudo-scalar or two vector mesons.

Before going into the details of our results, we like to qualitatively argue on how

isospin-violating observables are affected by the modification of the electroweak Wilson

Coefficients, confining the discussion to the decay system B → Kπ. Moreover, since

similar fits with the conventional treatment of WA contributions have been performed

in [74], we will emphasise the differences between both approaches. The QED-penguin

operators mix neither into QCD-penguin1 nor into tree-level operators and solely modify

those hadronic matrix elements which contribute to the flavour amplitudes αp3 EW(Kπ),

αp4 EW(πK). and βp3,4 EW(πK). If the additional contributions do not generate corrections

to the decay amplitude that are compatible in size to the leading order QCD-penguin

amplitude α̂c4, the effects can be, as in the SM, parametrised through a modification of

the three electroweak flavour-amplitude ratios, defined in Equation 4.15

ri = rSM
i + r̃i(|Ci|) eiδi , (6.4)

where the dependence on the potential weak phase δi in the Wilson Coefficients Ci =

|Ci|eiδi are kept explicit and the flavour-amplitude ratios depend on the absolute value of

the modified Wilson Coefficients. It is then straight forward to expand Equations 4.18

and 4.16 in terms of the new flavour amplitudes r̃i. We concentrate on the CP asym-

metries of those decays that enter the definition of ∆AKπCP . In addition, since the CP

asymmetry for B− → K̄0π− is fairly well measured and predicted to be close to zero

in the SM, its dependence on the modification of the electroweak Wilson Coefficients is

1Actually, the QED- mix also into the QCD-penguin operators, but the effect is of higher order than
considered here and numerically small.
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also relevant for our analysis

C(B− → K−π0) ' 2 Im (rT + rTC) sin γ − 2
∑
i=7,9

Im
(

r̃EW,i +
2

3
r̃EWC,i +

2

3
r̃EWA,i

)
sin δi,

C(B̄0 → K−π+) ' 2 Im (rT) sin γ − 2
∑
i=7,9

Im
( 2

3
r̃EWC,i −

1

3
r̃EWA,i

)
sin δi,

C(B− → K̄0π−) ' − 2
∑
i=7,9

Im
(

− 1

3
r̃EWC,i +

2

3
r̃EWA,i

)
sin δi,

(6.5)

whereas the imaginary parts are given by the interference between the strong phase in

α̂c4(πK) and the ratios in Equation 6.4:

Im(ri) = −rRi sin φ̂c4(πK) + rIi cos φ̂c4(πK). (6.6)

The numerical values for the ratios rR,Ii can be derived in terms of the enhanced Wilson

Coefficients C(′)
7,9. Starting with the calculable QED-penguin amplitudes, we find

∑
i=7,9

r̃REWe
iδi = −9.6+1.5

−1.4 ∆C7 + 9.8+1.4
−1.5 ∆C9,

∑
i=7,9

r̃REWCe
iδi = 9.3+0.4

−0.3 ∆C7 + 2.6+2.1
−1.3 ∆C9,∑

i=7,9

r̃IEWe
iδi = −0.2+0.4

−0.4 ∆C7 + 0.2+0.3
−0.3 ∆C9,

∑
i=7,9

r̃IEWCe
iδi = − 0.8+1.1

−1.1 ∆C9,

(6.7)

with the numerical values quoted in %. The following observation can be made from

the previous discussion:

• If ∆C7,9 ∼ O(1), it appears from Equation 6.6 that the total amount of CP violation

from these corrections cannot exceed the numerical values in front of the new

Wilson Coefficients in Equation 6.7. This implies that the CP violation from the

terms r̃IEW are negligible and r̃I
EWC can become at most 1% for ∆C9 6= 0.

• The typical order of magnitude in the SM for sin φ̂4(πK) ∼ 0.2. This implies that

for a moderate enhancement of the new Wilson Coefficients and a maximally CP-

violating weak phase δi, the typical size of the additional CP violation achieves in

r̃REW and r̃C,REW about 2%.

• The individual contribution to r̃REW cancel each other, if ∆C7 ∼ ∆C9.

• No CP violation can be expected from the contribution of ∆C7 to the combination

r̃REW + r̃R
EWC .

As it was pointed in [74], also the WA contribution from QED-penguin operators,

βc3,EW, can contribute to the CP asymmetries. Their interplay is more involved because

the flavour amplitude strongly depends on the WA parameter ρKπA . Let us focus on

two possible scenarios. First, we could set φKπA = 0, as it is done in the conventional
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Figure 6.1: 68% and 95% CRs for a model-independent fit of an enhanced Wilson
Coefficient C7. The contour regions are obtained from branching ratios and CP asym-
metries of the decay system B → Kπ, for which WA contributions have been either
scanned (red) or fitted (cyan).

treatment of WA contributions, and no strong phase occurs in these flavour amplitudes.

Second, ρKπA can be fixed to the solution of the SM fit, which implies large strong phases

to βc3,EW∑
i=7,9

r̃REWAe
iδi = 7.6+0.5

−12.4 ∆C7 + 0.9+0.1
−1.1 ∆C9,

∑
i=7,9

r̃IEWAe
iδi = 0.0+5.4

−5.8∆C7, (scan ρKπ
A )

∑
i=7,9

r̃REWAe
iδi = 3.1+0.2

−0.3 ∆C7 − 0.4+0.0
−0.0 ∆C9,

∑
i=7,9

r̃IEWAe
iδi = −7.2+0.6

−0.5 ∆C7. (fit ρKπ
A )

(6.8)

The amount of CP violation from ∆C9 can be neglected in both cases, whereas the

contributions from ∆C7 can become large. The effect in r̃R
EWA is compatible in size to

the corrections in r̃REW and r̃R
EWC . However, the corrections from r̃I

EWA depend on the

considered scenario. In the first case, with vanishing strong phases, no CP violation

can be observed at all. In the second case, the additional contribution is enhanced. A

moderate modification of the Wilson Coefficient ∆C7 would already imply a new source

of CP violation of approximately 5% and can easily account for the tension in ∆AKπCP .

But since the same flavour-amplitude ratio r̃AEW also occurs in B− → K̄0π−, large

CP-violating contributions would automatically be introduced to this decay, too. The

measurement of its CP asymmetry is rather accurate, consistent with the SM prediction

and therefore, actually forbids too large CP-violating corrections from ∆C7.

In order to further analyse the difference between both approaches, we forestall

the fit result of an enhanced Wilson Coefficient C7 in Figure 6.1. The red contour is

obtained from scanning and the cyan contour from fitting WA contributions together

with C7. The latter displays the exclusion of weak CP-violating phases in C7 and the
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contour is restricted to an almost pure real solution, which approves our qualitative

discussion above. The fit with scanned ρKπA allows for large complex corrections. Even

the sign of the imaginary part of C7 is not dictated by the data (δ7 ↔ −δ7). This

can be understood by the fact that the potential large CP-violating contribution in

Equation 6.8 is included in the total error budget of the CP asymmetries through the

variation of φKπA . Because the uncertainties enter the result uncorrelated, it is no problem

in this approach to simultaneously explain large CP violation in ∆AKπCP , but no CP

violation in C(B− → K̄0π−) from the same source. Such a scenario might be indeed

realised in nature, but would require to explain, why the strong phase in B̄0 → K−π+

and B− → K−π0 are equal, but different to the one in B− → K̄0π−. Although any

weak phase is excluded in the fit, resulting in the cyan contour, we still find a region

in parameter space that can explain the observed CP-violating pattern. This effect

originates from an enhancement of isospin-breaking, CP-violating terms in the SM. We

have seen in Equation 6.8 that βc3,EW(πK) can become sizeable compared to the leading

decay amplitude α̂c4(πK). If the fit of ρKπA prefers regions in parameter space that results

in a purely imaginary decay amplitude βc3,EW(πK), we obtain a decay-specific correction

to φ̂c4(πK), which cannot be neglected anymore

φ̂c4(MaMb) =

arg
(
α̂c4(πK)− 1

2β
c
3,EW(πK)

)
for B̄0 → K−π+,

arg
(
α̂c4(πK) + βc3,EW(πK)

)
for B− → K−π0,

(6.9)

and the approximation in Equation 6.6 must be modified through

Im(ri) = −rRi sin φ̂c4(MaMb) + rIi cos φ̂c4(MaMb). (6.10)

It turns out in the fit that the phases φ̂c4(MaMb) are typically small and the rela-

tive change of cos φ̂c4(MaMb) will be moderate, but enhanced for terms proportional

to sin φ̂c4(MaMb). The difference in sin φ̂(K−π0) and sin φ̂c(K+π−), which enters the

determination of ∆AKπCP , is of the order of 7%, when limiting WA contributions to the

SM fit, and the CP-violating terms from the large colour-allowed tree-level flavour am-

plitude do not cancel any longer

∆AKπCP ' ∆AKπCP (SM)− 2rR
T

[
sin φ̂c4(K−π0)− sin φ̂c4(K−π+)

]
sin γ. (6.11)

At the same time, C(B− → K̄0π−) is not affected from NP in C7, because it receives

no CP-violating contributions in the SM that could be enhanced by the above-described

mechanism.
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6.1.2 Fit results

We study the scenario of a modified electroweak sector by a model-independent fit of

the enhanced Wilson Coefficients C(′)
7,9. The present section will be used to summarise

the final results of our analysis by contour plots of the fit parameters, collections of sig-

nificant pull values and the modification of the power-suppressed ratios ξA3 (M1M2). The

definitions and statistical treatment of these quantities can be found in Appendix A. The

Wilson Coefficients are simultaneously fitted with one WA parameter ρM1M2
A for each

decay system, as tabulated in Chapter 4.1.1. In order to obtain reliable constraints on

C(′)
7,9, only those decay systems are suitable for which sufficient experimental information

are available. In that sense, we will use observables from B → (Kπ, Kρ, K∗π, K∗ρ) in

our fits, for which four branching ratio and four direct CP asymmetry measurements

exist. As described in Chapter 4.1, ratios of branching ratios and CP asymmetry dif-

ferences, which are sensitive to isospin-breaking corrections, can be constructed and are

included in the observable set SII, which will be used. Moreover, the decay system

B → K∗φ, though only two decay modes exist, is also considered because two branching

ratios, six direct CP asymmetries, four polarisation fractions, and four strong amplitude

phases can be utilised. At the moment, it is the only hadronic decay system for which

a full angular analysis could be performed by experimenters. In order to study indi-

vidual constraints, the 68% CR is presented for each decay system separately and their

combination at 68% and 95% probability. Measurements on some mixing-induced CP

asymmetries ∆S(M1M2) exist, but they are removed from the fit and will be instead

predicted in the forthcoming subsection.

We divide the analyses into the following sub-scenarios:

• single dominant operator scenario

Ci : Ci ∈ C, Cj 6=i = 0.

• parity-(anti-)symmetric scenario

C77′ : C7, C′7 ∈ C, C9 = C′9 = 0,

C99′ : C9, C′9 ∈ C, C7 = C′7 = 0.

• (axial-)vector coupling scenario

C79 : C7, C9 ∈ C, C′7 = C′9 = 0,

C7′9′ : C′7, C′9 ∈ C, C7 = C9 = 0.

• generic modification scenario

C77′99′ : Ci ∈ C.

The single dominant operator scenario allows only one Wilson Coefficient to be varied

simultaneously within a certain range. It will be clearly useful to qualitative discuss

which region of parameter space is preferred by the individual Wilson Coefficients and
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how well each additional degree-of-freedom can contribute to resolve the tensions in the

data. The next two scenarios enhance the number of parameters by two. They probe

certain combinations of QED-penguin operators. The (axial-)vector coupling scenario

is sensitive to the spin structure of the q̄ → q transition and can be related to the semi-

leptonic operators. The parity-(anti-)symmetric scenario probes the spin structure of

the flavour-violating b→ s transition. As mentioned in Equation 6.3, depending on the

resulting correlation among the Wilson Coefficients in the fits, certain decay systems

might be unaffected and constraints from their observables can be easily circumvented.

At last, all Wilson Coefficients are kept free and modified simultaneously in the generic

modification scenario.

1. Single dominant operator scenario

Significant pull values, which have been encountered in the analysis, are collected in

Table 6.1. Figure 6.2 shows the individual 68% CRs for the real and imaginary part of

C(′)
7 in the upper and C(′)

9 in the lower panel from the decay systems B → Kπ (cyan),

B → Kρ (blue), B → K∗π (green), B → K∗ρ (purple), and B → K∗φ (brown). All

observables have then been used to perform a combined fit with 2+10 real degrees-of-

freedom, accounting for NP in C(′)
i , respectively for WA for the individual decay systems,

from which the red contour follows after marginalising over all ρM1M2
A . The plots show

the 68% and 95% CRs. The correlation between a single Wilson Coefficient and its

χ-flipped counterpart can be studied by inspecting the panels from left to right. It

can be seen that the contours from B → Kρ and B → K∗π are unchanged under the

transformation Ci ↔ C′i, whereas those from B → Kπ, B → K∗ρ, and B → K∗φ are

mirrored. This observation is slightly broken for decays with two vector modes in the

final state. The contour regions of C(′)
7 from B → Kπ, which give the tightest constraint,

is restricted to the real axis of the complex plane. This observation was qualitatively

discussed in the previous section. Nevertheless, the contour from B → Kπ only does

not confine the Wilson Coefficient to small, SM-like values and still allows |C(′)
7 | > 5.

The observation that a single decay system cannot refuse solutions of the fit that implies

large corrections to the SM is present in almost all scenarios. Once, taking data from

all decay systems into account, these solutions become unlikely and the fit contracts to

a region near the SM. The pull values at the best-fit point of the C7, respectively C7′

scenario are for δ(RBn (Kπ)) = −0.9σ (−0.9σ) and for δ(∆AKπCP ) = −1.0σ (−0.9σ). They

can indeed significantly be improved by the fit, which implies that the mechanism of

decay-specific enhancement of SM CP violation sufficiently explains the ∆AKπCP puzzle.

This is achieved without any additional source of CP violation and implies that decay

modes with vanishing CP asymmetries in the SM are not affected by this scenario. We

will come back to this point in the following subsection. The constraints from B → Kρ,

B → K∗π and B → K∗ρ are, as expected, compatible with the SM and restrict |C(′)
7 | . 1.
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Figure 6.2: 68% CR for the complex Wilson Coefficients C(′)7,9 in the single dominant
operator scenario. Constraints are obtained from the decay systems B → Kπ (cyan),
B → Kρ (blue), B → K∗π (green), B → K∗ρ (purple), and B → K∗φ (brown). The
combined contour (red) is shown for a probability of 68% and 95%. The � corresponds
to the best-fit point of the combined fit.

The data for B → K∗φ favours, in agreement with B → Kπ, also large, real contribu-

tions to C(′)
7 and shifts the brown contour away from zero, which increases B(B̄ → K̄∗0φ)

and φ⊥(B− → K∗−φ). We discussed in Subsection 3.1.3 that additional contributions

to χ-flipped operators enhances the positive polarised decay amplitude. This implies

that observables which depend on the helicity of the final states are affected differently.

Unfortunately, in the case of C7′ , we observe that the corrections to the strong amplitude

phases tend to decrease φ⊥(B− → K∗−φ) and increase φ‖(B
− → K∗−φ), contrary to the

measurements, resulting in a weak preference for the scenario C7 (∆χ2(SM) = 15 (13)).

The situation for the fit of C(′)
9 is very different. The contour obtained from B → Kπ

exclusively prefers large imaginary contributions, inevitably implying additional contri-

butions to the CP asymmetries of the other decay systems. In particular, constraints
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from B → K∗φ and B → K∗ρ are in conflict with such large contributions, which ex-

plains why the pull in ∆AKπCP can be decreased to = −1.8σ (−1.9σ), but not completely

resolved. The contour of the combined fit still preferentially lies at the imaginary axis

in the complex plane, but shrinks to |C(′)
9 | ∼ 1. Nevertheless, such moderate corrections

in C(′)
9 are sufficient to significantly improve on δ(RBn (Kπ)) = −0.3σ (−0.1σ). Since the

data in B → K∗φ also prefers, as in the fit of C(′)
7 , large real contributions to C(′)

9 , the

combined fit cannot improve the tensions in B(B̄0 → K∗0φ) and B− → φ⊥(K∗−φ).

Compared to the modification of C(′)
7 , these scenarios are less well suited to improve on

the tensions, resulting only into a ∆χ2(SM) = 7 (9).

The influence of the fit on the power-suppressed corrections is presented by the

power-suppressed ratio ξA3 (M1M2), which we accumulate for the decay systems B →
Kπ, Kρ, K∗π, K∗ρ at the probability of 68% in Table 6.2. The best-fit points for

ρA(M1M2) are also shown. Within all four scenarios, they are compatible with one of the

two solutions from the SM fit. The values for the power-suppressed ratio, however, can

still differ from the SM value. The ratio for B → Kπ and B → K∗π can only be slightly

decreased, and a minimal amount of ξA3 (Kπ) ∼ 0.35, respectively ξA3 (K∗π) ∼ 0.74 is still

required to explain the data. Nevertheless, the large WA scenario is still excluded. This

is not true for the decays B → Kρ and B → K∗ρ, in which power-suppressed correction

can become even larger as the leading amplitude, but also, compared to the SM value,

much smaller, ξA3 (Kρ) ∼ 0.27, respectively ξA3 (K∗ρ) ∼ 0.55.

The results of the single dominant operator scenario can be summarised by the

following two statements:

• The modification of the Wilson Coefficients C(′)
7 and C(′)

9 can significantly improve

on the observed tension in the SM, whereas the scenarios C7(′) are preferred. At the

moment, the data does neither prefer the modification of C7,9 nor of their χ-flipped

counterparts, C′7,9. Both fits yield similar results with a parity-anti-symmetric

configuration, caused by the dominance of the precise data in B → Kπ. In order

to break this symmetry, more accurate measurements on decay systems with one

pseudo-scalar and one vector meson in the final state are needed.

• The additional corrections to the Wilson Coefficients are already confined to the

size of the SM contribution |Ci| ∼ 1. C(′)
9 is found to be almost imaginary and C(′)

7

real.

One of the main motivation for introducing additional contributions to the QED-

penguin operators was to explain the long-standing discrepancy of ∆AKπCP . We have

shown that, in fact, all Wilson Coefficients can be sufficiently enlarged to decrease the

tension without spoiling data from other decay systems. However, we also proposed a

solution of the tension within the SM, assigned to an enhanced power correction of the

HS contribution in Chapter 5.1.4. An unavoidable consequence of this scenario was an
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Figure 6.3: 68% CR for the complex Wilson Coefficients C(′)7,9 in the scenarios C77′
(upper) and C99′ (lower). Constraints are obtained from the decay systems B → Kπ
(cyan), B → Kρ (blue), B → K∗π (green), B → K∗ρ (purple), and B → K∗φ (brown).
The combined contour (red) is shown for 68% and 95% CRs. The � corresponds to the
best-fit point of the combined fit.

enhanced CP asymmetry in C(B̄0 → K̄0π0) = 0.14+0.06
−0.05. Fortunately, an enhancement

of Re C(′)
7 does not change its SM prediction and both scenarios can be clearly distin-

guished. This CP asymmetry, however, receives contributions from the C9(′) scenarios

and is given at the best-fit points to be C(B̄0 → K̄0π0) = 0.03+0.04
−0.04. The prediction only

overlaps with the one from the enhanced HS scenario within a probability of 95% and

the additional information from B̄s → K0π0 might be needed to distinguish between

the two possibilities if we neglect NP in b → d transitions, or at least assume different

contribution than for b→ s.

2. Parity-(anti-)symmetric scenario

Figure 6.3 shows the contour regions for the two scenarios C77′ (upper panel) and C99′
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(lower panel), whereas we confine to show the correlations among the real (left) and imag-

inary (right) parts of the fitted Wilson Coefficients. The colour coding is the same as for

the previous scenarios above and significant pull values are again collected in Table 6.1.

All plots nicely reveal the orthogonality between constraints from B → Kρ (K∗π) and

B → Kπ (K∗ρ, K∗φ). Even the breaking of parity symmetry, C̄i = const., in V V final

state systems can be observed in the plots. The parity symmetry implies that all observ-

ables for PV and V P modes are equal at all parameter points along the line ∆C = const.

(line with gradient 1) and for PP and V V modes at parameter points along the line

C̄ = const. (line with gradient −1).

The contour regions from B → K∗π is in the scenario C77′ tightly restricted to a line

crossing the SM point in both the real as well as in the imaginary plane. The same is true

for B → Kπ in the imaginary plane and the combined fit results into a SM-like solution.

Also the contour from B → K∗φ already delivers almost equally well constraints on

Im C7 − Im C′7 as B → Kπ, consistent with vanishing weak phases. However, an offset

from zero in the real plane, as we already encountered in the C7 and C7′ scenarios, is

also present here and because ∆C = 0 does not affect observables of B → K∗π, (Kρ),

the fit allows for rather large contributions of |Re C7(′)| ∼ 2. All tensions, apart from

an arising discrepancy in RBn (K∗ρ) of 1.6σ, can be resolved and compared to all other

scenarios with the same amount of degrees-of-freedom, C77′ is the most-likely and bares

the largest ∆χ2(SM) of 20.

The fit for C99′ shows a similar dilemma as observed in the single dominant operator

analysis. The contour of B → Kπ strictly lies on a SM compatible line and does not

allow for large contributions to the real part of ∆C9, but the data of B → K∗φ prefers

an offset of at least Re ∆C9 ∼ 1. However, the combined plot is dictated by B → Kπ

and results into a region near the SM point. The situation for the imaginary plane is

turned upside down. Data from B → K∗φ and B → K∗ρ lies on a SM compatible line,

whereas B → Kπ needs an offset from SM of at least Im ∆C9 ∼ 3. The constraints

from CP asymmetries of the former decays dictate the combined plot and ∆AKπCP can

only be relaxed to a pull value of −1.2σ. The orthogonal contour from B → K∗π,

as already found in the single dominant operator scenarios, also prefers an offset for

the imaginary part of C̄9, such that the SM is excluded from the 68% CR. Though,

a solution to the ∆AKπCP puzzle is already quite limited, the tension for the ratio of

branching ratios RBn (Kπ) can be resolved and the fit can be improved compared to the

SM by ∆χ2(SM) = 12.

Both scenarios allow for large contributions to the modification of the Wilson Co-

efficients, which implies visible effects for the power-suppressed ratio ξA3 , listed in Ta-

ble 6.2. The ratio for B → Kπ and B → K∗π can be decreased by a factor of 2–3

compared to the SM value, such that for example a relative amount of power correc-

tions ξA3 (Kπ) = 0.13 for the scenario C77′ can already be sufficient to explain the data
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Figure 6.4: 68% CR for the complex Wilson Coefficients C(′)7,9 in the scenarios C79
(upper) and C7′9′ (lower). Constraints are obtained from the decay systems B → Kπ
(cyan), B → Kρ (blue), B → K∗π (green), B → K∗ρ (purple), and B → K∗φ
(brown). The combined contour (red) is shown for a probability of 68% and 95%. The
� corresponds to the best-fit point of the combined fit.

in B → Kπ. For B → Kρ and B → K∗ρ there might be even no contribution from

power correction needed at all, but, the additional freedom also allows for the large WA

scenario in each decay system.

3. The (axial-)vector coupling scenario

The results of the fit for the (axial-)vector coupling scenario are displayed in Figure 6.4

and significant pull values are again collected in Table 6.1. The combined contour regions

for C79 (upper panels) are almost mirrored at the SM axis for the χ-flipped C7′9′ scenario

(lower panels), which demonstrates the statistical dominance of the data in B → Kπ.

We find for the real part of the Wilson Coefficients |Re C(′)
7 | ∼ 1, whereas |Re C(′)

9 | ∼ 0,

and vice versa for the imaginary contribution, |Im C(′)
7 | ∼ 0, whereas |Im C(′)

9 | ∼ 1. Al-

though the number of fitted Wilson Coefficients increased by one, the solutions of the
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B →M1M2 [84] [84]

Re C(′)
i , Im C(′)

i ∆AKπCP RBn (Kπ) CL(K∗−φ) C(K̄∗0φ) B(K̄∗0φ) φ⊥(K∗−φ) RBn (K∗π) RBn (K∗ρ) ∆χ2(SM)

SM −2.8σ −1.9σ −1.5σ 0.3σ 1.7σ 1.4σ 0.6σ 0.6σ

C7 0.88, −0.02 −0.9σ −0.9σ −1.6σ 0.2σ 0.8σ 0.3σ 0.0σ 1.0σ 15

C′7 −0.90, 0.03 −1.0σ −0.9σ −1.5σ 0.2σ 1.2σ 1.2σ 0.1σ 0.8σ 13

C9 0.20, 0.61 −1.8σ −0.3σ −0.7σ 1.4σ 1.8σ 1.4σ 1.0σ 0.7σ 7

C′9 −0.24, −0.67 −1.7σ −0.1σ −0.7σ 1.6σ 1.8σ 1.4σ 0.3σ 0.6σ 9

C77′
2.06, 0.20

0.0σ 0.0σ −1.3σ 0.4σ 0.0σ 0.0σ 0.2σ 1.6σ 20−1.77, −0.05

C99′
−0.12, 2.22 −1.2σ −0.1σ −0.3σ 0.9σ 1.8σ 1.4σ 1.6σ 0.7σ 12−0.35, 1.53

C79
0.78, −0.04 −0.5σ −0.4σ −1.0σ 1.1σ 0.9σ 0.7σ 0.3σ 0.9σ 17
0.07, 0.44

C7′9′
−0.51, 0.08 −0.4σ 0.0σ −1.0σ 1.2σ 1.3σ 1.1σ 0.8σ 0.8σ 15−0.28, −0.53

C77′99′

1.70, 0.25

−0.1σ 0.0σ −1.1σ 0.0σ 0.0σ 0.0σ 0.7σ 1.6σ 25
−0.97, 0.09

0.33, 1.66

−0.62, 1.61

Table 6.1: Compilation of best-fit points and pull values with |δ| ≥ 1.6 and for
φ⊥(K∗+φ) for the model-independent fits of QED-penguin operators.

combined plots can be restricted to likewise small corrections as in the single dominant

operator analysis. This can be understood since the additional degrees-of-freedom can-

not be utilised to avoid constraints of a certain group of decay systems as it was the

case in the parity-(anti-)symmetric scenario. The individual benefits of the C7(′) and

C9(′) scenarios then combines into a significant improvement of the tensions. The pull

values for ∆AKπCP decreases to −0.5σ (−0.4σ) and for RBn (Kπ) to −0.1σ (−0.4σ). The

tensions in B(B̄0 → K∗0φ) can be relaxed to 0.9σ (1.3σ) and for φ⊥(B− → K∗−φ) to

0.7σ (1.1σ), resulting altogether into ∆χ2(SM) = 17 (15).

The observed pattern of purely real C(′)
7 and purely imaginary C(′)

9 does not favour a

specific linear combination which could be related to the semi-leptonic operators. These

would imply contour regions near a line in the real and imaginary plane with gradient

1, respectively −1, which are not the favoured regions in the plots.

The necessary amount of power corrections can be decreased in both scenarios.

In particular, ξA3 (Kπ) = 0.22 for C79 and ξA3 (Kπ) = 0.29 for C7′9′ and the large WA

scenario is unlikely, which is not true for the residual decay systems. The largest impact

on ξA3 (M1M2) can be observed in the decay B → Kρ for the scenario C79, for which

maybe no contributions from WA are needed at all.

4. Generic modification scenario

In the last scenario, we allow all four Wilson Coefficients to be modified simultaneously.

The pull values and the best-fit point are listed in Table 6.1. It turns out that this

scenario shares the feature of a combination of the two C77′ and C99′ scenarios. The
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Kπ K∗π Kρ K∗ρ

|ρA|, φA ξA3 |ρA|, φA ξA3 |ρA|, φA ξA3 |ρA|, φA ξA3

SM 3.34, 2.71 0.39 1.61, 5.84 0.89 2.69, 2.68 0.78 1.56, 5.66 1.33

C7 3.61, 2.68 [0.34, 0.62] 1.79, 5.89 [0.89, 1.47] 1.79, 5.55 [0.39, 1.76] 2.23, 2.77 [0.68, 1.75]

C7′ 3.62, 2.67 [0.35, 0.66] 3.77, 1.84 [0.74, 2.78] 3.11, 2.63 [0.73, 1.47] 2.15, 2.76 [0.55, 1.63]

C9 2.42, 5.39 [0.35, 0.73] 1.66, 5.85 [0.82, 1.53] 1.70, 5.38 [0.27, 1.63] 1.54, 5.63 [0.55, 2.08]

C9′ 2.43, 5.39 [0.36, 0.71] 1.63, 5.88 [0.76, 1.40] 1.23, 5.59 [0.33, 1.53] 1.55, 5.63 [0.56, 1.92]

C77′ 2.03, 5.72 [0.13, 2.24] 1.70, 5.87 [0.38, 2.93] 1.51, 5.44 [0.00, 3.23] 1.75, 6.00 [0.10, 2.50]

C99′ 3.77, 2.63 [0.19, 0.80] 3.34, 2.99 [0.52, 3.33] 1.44, 0.03 [0.02, 3.09] 1.52, 5.63 [0.02, 3.93]

C79 2.25, 5.43 [0.22, 0.75] 3.07, 2.92 [0.84, 1.76] 2.41, 2.89 [0.06, 2.61] 1.51, 5.64 [0.46, 2.11]

C7′9′ 2.23, 5.43 [0.29, 0.69] 1.55, 5.87 [0.64, 2.93] 1.92, 5.52 [0.24, 1.67] 2.29, 2.73 [0.34, 2.30]

C77′99′ 2.26, 5.57 [0.06, 1.31] 1.65, 6.07 [0.06, 4.21] 1.45, 0.02 [0.00, 4.73] 1.81, 5.90 [0.01, 2.86]

Table 6.2: Compilation of best-fit points for ρM1M2

A and ξA3 at the probability of
68%. The various results are given for B → Kπ, Kρ, K∗π, K∗ρ and specified for the
modified QED-penguin operator scenarios. As explained in Appendix A.5, the interval
of ξA3 (NP) should be compared to ξA3 (SM) at the best-fit point of ρM1M2

A , listed in the
first row.

best-fit point of the parameters Re C7 − Re C′7 prefer a parity-anti-symmetric solution

with rather large contributions of |Re C(′)
7 | ∼ 1 − −1.7, whereas the imaginary parts

of Im C9 − Im C′9 favours a parity-symmetric solution with similar large contributions to

|Im C(′)
9 | ∼ 1.6. The latter implies Im ∆C9 ∼ 0 and Im C̄9 ∼ 3.2, leaving the observ-

ables in B → Kπ (K∗ρ, K∗φ) almost unaffected and satisfying the required offset from

B → K∗π data, which we have seen in the lower right panel of Figure 6.3.

Inspecting the pull values in Table 6.1, it is evident that if we allow for arbitrary

additional contributions to all colour-singlet QED-penguin operators, the fit supports a

complete solution of all encountered tensions in the SM. However, because these contri-

butions can become very large, some predictions that were consistent with the measure-

ment in the SM, become problematic in the fit. As for the C77′ scenario, the pull value

of, e.g, RBn (K∗ρ), increases to 1.6σ. It is not surprising that the additional freedom in

the fit manifests in a huge range for the power-suppressed ratio ξA3 (see Table 6.2). All

data for each decay systems can be explained both with and without large contribu-

tions from WA. However, the best-fit points for ρM1M2
A are still in agreement with one

of the two regions that have been found in the SM fit, except for the decay B → Kρ.

The absolute value decreases to |ρKρA | = 1.45 and the strong phases vanishes, φKρA = 0.02.

After the discussion of the individual scenarios, let us summaries the main results of

our analysis, which have been obtained so far:

• All introduced scenarios can explain the tensions in ∆AKπCP and RBn (Kπ), whereat

contributions beyond the SM to C(′)
7 are, in view of current data, more likely as

to C(′)
9 . We find that C(′)

7 has to be almost purely real and C(′)
9 imaginary. A very
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interesting observation is that ∆AKπCP can be explained without any new source

of CP violation in C(′)
7 . Such contributions will be challenging to detect in future

measurements, leaving many promising CP asymmetries to find NP unaffected.

• The statistical dominance of data from B → Kπ forces those scenarios in which

both primed and unprimed Wilson Coefficients are fitted into a parity-anti-symmetric

configuration. This qualitative results have also been found for model-independent

fits of (semi-)leptonic data (see discussion in Chapter 4.2.2). Unfortunately, such

a pattern is not observed for the specific linear combination of hadronic operators

that relates to the semi-leptonic operators. Since this combination has explicitly

been kept free in the scenarios C79 and C7′9′ , it would be interesting to impose it

through a different choice of the operator basis(
(s̄ b)V±A(q̄ q)V+A, (s̄ b)V±A(q̄ q)V−A

)
→
(
(s̄ b)V±A(q̄ q)V , (s̄ b)V±A(q̄ q)A

)
in a subsequent study.

• In order to reject or to find further evidence for the parity-anti-symmetric pat-

tern, improved measurements on decay modes with VV final states are needed.

Concerning the single dominant operator scenarios, no preference can be assigned

to either the left-handed or right-handed operators. This could be tested through

improved measurements of B → PV (V P ) decay modes.

• Our approach of fitting WA simultaneously with NP contributions lead to quali-

tative different results as for conventional QCDF.

At last, we like to quote the allowed ranges of the NP fit parameters. Since the

actual bounds on the individual Wilson Coefficients indeed vary within certain scenar-

ios, we quote the results of both the single dominant operator scenarios and of the

parity-(anti-)symmetric scenarios (curly brackets). The former already leads to rather

restricted constraints, whereas the additional degrees-of-freedom in the latter can be

utilised to allow for significantly larger corrections. The bounds are obtained from the

respective 1-dimensional posterior probability

Re C7 ∈ [ 0.40; 1.50] ,
{

[−1.45; 2.70]
}
, Im C7 ∈ [−0.35; 0.20] ,

{
[−0.85; 0.65]

}
,

Re C′7 ∈ [−1.40; −0.25] ,
{

[−2.45; −0.20]
}
, Im C′7 ∈ [−0.15; 0.35] ,

{
[−0.95; 0.65]

}
,

Re C9 ∈ [−0.05; 0.35] ,
{

[−0.40; 0.55]
}
, Im C9 ∈ [ 0.10; 1.10] ,

{
[−0.95; 2.65]

}
,

Re C′9 ∈ [−0.65; 0.05] ,
{

[−0.75; 0.20]
}
, Im C′9 ∈ [−1.05; −0.10] ,

{
[−1.05; 1.95]

}
.

6.1.3 Observable predictions

We will use the last section to work out measurable consequences of a modified elec-

troweak sector. We confine to the single dominant operator scenarios in order to study
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Figure 6.5: Correlations among the predictions for CL vs. C⊥ (left) and ∆SL vs.
∆S⊥ (middle) in B̄s → φφ for the scenario C9. The right panel shows the predictions
for RBsKK for the scenarios C7 (brown) and C9 (red), and the prediction from a SM fit
is indicated by the green line at a probability of 68%. All residual predictions are given
at a probability of 68% and 95%.

the sensitivity of particular observables to each Wilson Coefficients separately. The main

task will be to find observables, respectively pattern of observables, that could help us

to distinguish the individual scenarios.

The scenarios C7(′) and C9(′) are easily disentangled from each other. C7(′) is re-

stricted to be real and does not introduce any new CP-violating phase. This implies

that all vanishing CP asymmetries in the SM are not modified, contrary to the C9(′)

scenarios. These considerations imply that C7(′) scenarios cannot be verified through

these kind of CP asymmetries, but at least be refute if a non-vanishing CP asymmetry

is measured. Suitable candidates are the direct and mixing-induced CP asymmetries

in for instance B̄s → φL(⊥) φL(⊥), which will be probed by the LHCb experiment (see

[90]). Their correlations for the C9 scenario are shown on the left and middle panel of

Figure 6.5. The plots show that, although, C9 has been tightly constrained, it is in fact

still possible to observe large effects in those observables. The corresponding predic-

tions in the SM and for the C7(′) scenarios are approximately 0 and explicitly given in

Appendix B.

More sensitive to the effects of an enhanced C(′)
7 are ratios of branching ratios, which

have been used in the fit for the decay systems B → Kπ, Kρ, K∗π, K∗ρ. However, we

can also construct a corresponding ratio from the neutral and charged mode in Bs → KK

RBsKK ≡ B(B̄s → K+K−)

B(B̄s → K̄0K0)
' 1− 2Re rT cos γ + 2Re rEWC , (6.12)

with similar isospin-breaking corrections ri as for the decay system B → Kπ2. The

branching ratio of B̄s → K+K− has already been measured quite accurately by the

LHCb and CDF collaboration [148, 149] with a relative uncertainty of 7%. It was used

2The definitions for the flavour amplitude ratios are equivalent to those in Equation 4.14 with the
replacements (AπK , AKπ)→ AKK and (α((Kπ)), β(Kπ))→ (α((KK)), β(KK))
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B →M1M2

∆S(Kπ) ∆S(Kρ) ∆S(K∗π) ∆SL(K∗ρ) ∆S(Kη′) ∆S(Kω) ∆S(Kφ) ∆SL(K∗φ) B(φπ) B(φρ)

SM [0.05, 0.13] [−0.19, −0.04] [0.06, 0.17] [−0.15, 0.09] [−0.01, 0.04] [0.09, 0.17] [0.01, 0.05] [0.01, 0.04] 0.24+0.07
−0.04 0.68+0.19

−0.10

C7 0.13+0.02
−0.12 −0.16+0.10

−0.09 0.09+0.09
−0.09 0.08+0.06

−0.13 0.05+0.03
−0.10 0.15+0.04

−0.10 0.05+0.04
−0.08 0.04+0.05

−0.08 0.78+0.26
−0.20 0.33+0.11

−0.11

C′7 0.12+0.02
−0.12 −0.10+0.09

−0.10 0.15+0.04
−0.12 0.08+0.10

−0.15 0.05+0.03
−0.11 0.10+0.08

−0.09 −0.02+0.09
−0.05 0.04+0.06

−0.07 0.06+0.04
−0.04 0.26+0.09

−0.08

C9 0.01+0.06
−0.08 0.06+0.07

−0.09 −0.04+0.08
−0.09 −0.14+0.16

−0.16 0.00+0.05
−0.05 0.06+0.11

−0.08 −0.06+0.10
−0.12 −0.11+0.09

−0.12 0.13+0.10
−0.05 0.46+0.20

−0.13

C′9 0.01+0.06
−0.08 −0.31+0.09

−0.13 0.21+0.04
−0.05 −0.15+0.17

−0.17 −0.01+0.06
−0.06 0.18+0.03

−0.08 0.06+0.08
−0.07 −0.10+0.13

−0.12 0.50+0.12
−0.05 0.40+0.23

−0.12

Table 6.3: Predictions for the mixing-induced CP asymmetry of diverse Bd decays
and for the purely isospin-breaking branching ratios B(B̄s → φπ, φρ) within the single
dominant operator scenarios and the SM.

in the fit to constrain ρKKA , from which the prediction of RBsKK was obtained, shown

on the right panel of Figure 6.5. Both C9(′) and C7(′) predict a suppression of the ratio

compared to the SM, whereas the effect is more significant for the latter.

Furthermore, we would also like to disentangle between contributions to C7,9 and to

C′7,9. The fits are dominated by parity-anti-symmetric solutions. Hence, the observables

Ô for PV and V P final states are remarkably helpful and will follow the general pattern

δÔ(Ci) ' −δÔ(C′i) for V P, PV,

δÔ(Ci) ' δÔ(C′i) for PP, V V,
(6.13)

with δÔ(Ci) ≡ Ô(SM) − Ô(Ci).
We listed the predictions for certain mixing-induced CP asymmetries, ∆Sf and the

branching ratios of the two purely isospin-violating decays Bs → φπ, φρ in Table 6.3.

The fact that these branching ratios are sensitive to the modification of QED-penguin

operators were already worked out in [74], in which QCDF with conventional treatment

of WA contributions was used. However, as discussed in the introductory part of this

section, this approach does not favour any particular region in the parameter space of

the modified Wilson Coefficients, and only a relative enhancement/suppression can be

observed. If our approach is reasonable, we can identify a particular pattern for the

branching ratios among the corresponding scenarios and quote concrete predictions. We

can summarise the main findings by the following statements:

• The impact from the scenarios C7(′) on the mixing-induced CP asymmetries ∆Sf

are unfortunately inconclusive. The additional contributions could potentially be-

come distinguishable from the SM background, but depend strongly on the under-

lying ρM1M2
A fit and are, within uncertainties, compatible with the SM predictions.

• The most significant effect on the mixing-induced CP asymmetries for the scenarios

C9(′) is found for ∆S(B → Kρ). In view of current data, ∆S(Kρ) = −0.15+0.18
−0.21

(HFAG) slightly prefers the primed scenario.
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• The purely isospin-violating branching ratios obey significant contributions from

all scenarios. The modification of C7(′) leads to a suppression for B(Bs → φρ) by a

factor of two, and B(Bs → φπ) is suppressed for the primed and enhanced for the

unprimed scenario by a factor of 3–4. C9(′) also predicts a suppression, albeit less

significant, for B(B̄s → φρ) and the pattern for B(B̄s → φπ) is reversed compared

to C7(′) . Unfortunately, since most scenarios reveal a suppression of the branching

ratios, it will be even more challenging to observe these very rare decays.
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6.2 Enhanced Standard Model Z-penguin coupling Zsb

We devoted the first analysis of potential contributions from physics beyond the SM

to a generic, model-independent fit of the Wilson Coefficients in the electroweak sec-

tor. These effective couplings exclusively describe the physics of hadronic decays and

no further relations among observables of, for instance (semi-)leptonic decays, must be

considered. However, it is likely that a particular NP model relates these two systems,

being triggered by the same flavour-violating quark transition b→ s. Such correlations

are already present in the SM because leptons and quarks are given in the same rep-

resentation of the SM gauge group SU(2)I ×U(1)Y and hadronic and (semi-)leptonic

decays receive a common contribution from for example Z-penguin diagrams. Instead of

fitting the individual Wilson Coefficients in each system, we will now probe a potential

enhancement of the Z-boson coupling, Zsb, to the flavour-violating quark transition. This

coupling is suppressed in the SM by both loop as well as the small coupling constant

of the SU(2)I gauge group and can be substantially modified through NP contributions.

Several analysis, regarding an enhancement of the SM Z-penguin, were carried out with

the phenomenological focus on either hadronic [74, 89, 150, 151] or (semi-)leptonic de-

cays [146, 152]. As was pointed out in [152], such a NP scenario is particular interesting

because the corresponding operator of the effective Zsb coupling has mass dimension 4

and does not need not to decouple in the limit ΛNP → ∞ from dimensional arguments

alone, contrary to the Wilson Coefficients of the dimension 6 4-quark operators in the

EWH. Typical examples are models with an extended fermionic spectrum by a fourth

generation of sequential quarks3.

Although we are not considering any specific model in this work, our scenario is

nevertheless well motivated as a limiting case of several NP approaches. Supersymmetric

models [154] with a dominant contribution from chargino-up-squarks penguin diagrams

as well as composite Higgs, respectively Randall-Sundrum models [155, 156], in which

flavour-violation can occur in the spectrum of the composite sector on their part mixing

into the SM fields can effectively imitate the enhancement of the SM Z-penguin. Further

examples are models with tree-level FCNCs, mediated through either the extension of

the SM spectrum by additional non-sequential quarks [157] or an additional U(1) gauge

symmetry [142], in which the new gauge boson, Z ′, with potential flavour-violating

couplings, mix into the SM Z-boson.

3The extension of the SM by only a 4th. generation of sequential quarks cannot accommodate the
signal strength in h→ γγ and to less extend of h→ b̄b and h→ ττ , measured at the LHC and Tevatron,
and is excluded by more than 5 standard deviations [153]. Such a scenario could only be realised in
nature accompanied by further assumptions.
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6.2.1 Theory

Adopting the notations from [146] the part of the effective Lagrangian that describes the

Z-boson coupling to the bottom and strange quarks can be parametrised in the following

way

Leff = LSM
eff −

GF√
2

e

π2
M2
Zcwswλ

(s)
t

[
sγµ

(
PLZ

sb
L + PRZ

sb
R

)
b
]
Zµ + h.c., (6.14)

with λ
(s)
t = VtbV

∗
ts and sw, cw the sine and cosine of the weak mixing angle θw. The

Z-penguin contribution in the SM is implicitly included in LSM
eff and can be parametrised

analogue to the additional term on the right-hand side. The right-handed coupling

Zsb,SM
R vanishes and, for mt = 173.2 GeV, we find

Zsb,SM
L (MW ) = −C0(xt)/s

2
w = −3.7, Zsb,SM

R (MW ) = 0, (6.15)

with the Inami-Lim function C0(xt) [158]. As mentioned in [152], the Z-penguin ampli-

tude in the SM itself is in general not gauge invariant, but the leading contribution in the

limit xt → ∞. The modification of the effective SM Lagrangian will induce additional

contributions to the ∆S = 1 decay amplitudes of the B meson and, in particular, to the

Wilson Coefficients of the 4-quark operators in Equation 2.15

C3(MW ) = − α

6π
ZsbL , C′5(MW ) = − α

6π
ZsbR ,

C7(MW ) = −2α

3π
s2

wZ
sb
L , C′7(MW ) =

2α

3π
(1− s2

w)ZsbR ,

C9(MW ) =
2α

3π
(1− s2

w)ZsbL , C′9(MW ) = −2α

3π
s2

wZ
sb
R .

(6.16)

The modification of the QCD-penguin Wilson Coefficients C3 and C′5 is a small correc-

tion compared to their SM contributions. In addition, the new Wilson Coefficients are

introduced at the scale of the W-boson mass and, as shown in Equation 2.17, the rel-

ative effect of the high-scale on the on the low-scale QCD-penguin Wilson Coefficients

through RG effects is marginal. Thus, an enhanced Z-penguin scenario can effectively

be described by a modification of the electroweak penguin operators only. Furthermore,

since s2
w � 1, an enhanced left-handed Z-penguin coupling mainly modifies C9 and an

enhanced right-handed coupling C′7. Both scenarios share the features of the correspond-

ing single dominant operator scenario. Because their explicit combination have not been

tested so far and, in addition, no correlations to (semi-)leptonic observables had to be

taken into account in the previous analysis, it is still interesting to study these scenarios

in detail.
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As mentioned, also the the Wilson Coefficients of the semi-leptonic operators in

Equation 2.19 receive contributions

C9,V (MW ) = −ZsbL (1− 4s2
w), C′9,V (MW ) = −ZsbR (1− 4s2

w),

C10,A(MW ) = ZsbL , C′10,A(MW ) = ZsbR .
(6.17)

We discussed in Chapter 4.2.2 that the observed discrepancies in the semi-leptonic sector

can actually be resolved through additional contributions to C(′)
9,V . Since the Z-penguin

amplitude obeys an accidental cancellation for the vectorial Wilson Coefficients through

(1 − 4s2
w) ' 0.08, an enhanced Z-penguin scenario predominantly modifies the C(′)

10,A.

Although we can not expect to significantly relax the tension for these observables, they

are still suitable to set further limits on the parameters ZsbL,R in our fits.

The enhanced Z-penguin scenarios also contribute to the Wilson Coefficients of the

operators in Equation 2.22, describing B0-B̄0 mixing through a double insertion of the

effective s̄bZ vertex

CLLV (MW ) =
4√

2GF

(
α

MW

)2 (
ZsbL

)2
, CRRV (MW ) =

4√
2GF

(
α

MW

)2 (
ZsbR

)2
,

C̃LRS (MW ) = −4
4√

2GF

(
α

MW

)2

ZsbL Z
sb
R .

(6.18)

In the SM, the contribution to M s
12 is dominated by box diagrams with virtual top

quarks. However, a correction to CLLV as above is also present from the SM Z-penguin,

but can typically be completely neglected. If the new couplings ZsbL and ZsbR can be

restricted to SM-like values, |ZsbL,R| ∼ Z
sb,SM
L , their corrections are negligible, too.

The actual analysis of an enhanced Z-penguin scenario will be performed in the

forthcoming section, in which we will focus on the following assumptions

• Enhanced left-handed Z-penguin ZsbL ∈ C, ZsbR = 0.

• Enhanced right-handed Z-penguin ZsbL = 0, ZsbR ∈ C.

• Enhanced generic Z-penguin ZsbL , Z
sb
R ∈ C.

6.2.2 Fit results

The fitting procedure for the enhanced Z-penguin scenarios is equivalent to the one in the

previous section and as described in Appendix A. The plots in Figure 6.6 and Figure 6.7

show the 68% and 95% CRs for the complex parameters ZsbL and ZsbR in the case of

the enhanced left-handed (left panel), respectively right-handed (right panel) Z-penguin

scenario for the former and the generic enhanced Z-penguin for the latter. The blue

contour regions are obtained from only observables in the (semi-)leptonic sector, listed in

Table 4.4, whereas the red region is the combination of constraints from (semi-)leptonic
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Figure 6.6: 68% and 95% CRs for the complex couplings ZsbL (left) and ZsbR (right) in
the scenario with only one coupling being modified. Constraints are obtained from ob-
servables of (semi-)leptonic only (blue) and from the combination of (semi-)leptonic and
hadronic B-meson decays (red), whereas the decay systems B → Kπ, Kρ, K∗π, K∗ρ
are used. The � corresponds to the best-fit point of the combined fit.

and hadronic decays. As we will discus below and can be seen from the plots, observables

of the decays B → K(∗)`+`− are already rather restrictive, such that the additional

contributions to the Wilson Coefficients of the 4-quark QED-penguin operators cannot

exceed the contours that have been found in the model-independent analysis. Therefore,

we excluded observables of the decay system B → K∗φ from the fit, which mainly forbid

too large contributions to the imaginary part of C(′)
9 . This task will now be handled by

the constraints from (semi-)leptonic decays and, the CP asymmetries in B → K∗φ can

be instead predicted. Apart from the discussed exception, the residual hadronic decay

systems from the previous section B → Kπ, Kρ, K∗π, K∗ρ are used in the fit.

One of the main results of our analyse is to find limits on the enhanced Z-penguin

couplings. Inspecting the diverse contour regions, a qualitative difference between the

single (in Figure 6.6) and generic (upper panels in Figure 6.7) enhanced Z-penguin

scenarios cannot be observed. Due to the additional degrees-of-freedom in the latter, its

contour regions slightly smear out. Being conservative, we assume the generic enhanced

Z-penguin scenario to find the following bounds on the effective couplings ZsbL,R at 95%

probability

ReZsbL ∈ [ 0.0; 1.2] , ReZsbR ∈ [−0.5; 0.6] ,

ImZsbL ∈ [−0.4; 2.7] , ImZsbR ∈ [−0.2; 1.9] .

The allowed ranges for the real parts of the Z-penguin coupling are roughly 2–3 times

smaller than for the imaginary part. This is mainly caused by constraints from semi-

leptonic decays. The branching ratios of B → K∗`+`− and B → K`+`− as well as

the forward-backward asymmetry, AFB(B → K∗`+`−), are most restricting. In the
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Figure 6.7: 68% and 95% CRs for the complex couplings ZsbL (left) and ZsbR (right)
in the scenario with both couplings being simultaneously modified. Constraints are
obtained from observables of (semi-)leptonic only (blue) and from the combination of
(semi-)leptonic and hadronic B-meson decays (red), whereas the decay systems B →
Kπ, Kρ, K∗π, K∗ρ are used. The � corresponds to the best-fit point of the combined
fit.
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case in which ZsbL is enhanced, contour regions from the individual branching ratios are

given as a rather small expanded ring with centre (at the real axis) and radius of about

4. However, the contour from the forward-backward asymmetry give a circle that is

centred at the SM and does not allow for larger values than
∣∣ZsbL ∣∣ ∼ 2 and the ring

contour from the branching ratios is cut, leaving the observed bean-like blue region. For

an enhancement of ZsbR , we obtain a similar contour from B(B → K`+`−) as before, but

the ring from B(B → K∗`+`−) is now mirrored at the imaginary axis (centre at -4), such

that the combination of both contours does not obey a curved form as for ZsbL , but is

roughly symmetric about both axis. Because the information from the branching ratios

are orthogonal now, it is not surprising that ImZsbR is better constrained as ImZsbL .

The dominance of the (semi-)leptonic observables in constraining the real parts of

ZsbL,R can be seen in the lower left panel in Figure 6.7. The additional information from

hadronic decays influence the confidence level region of ReZsbL − ReZsbR only marginal.

Nevertheless, all (semi-)leptonic observables which enter our fit are insensitive to the

imaginary part of the enhanced Z-penguin. Hence, the resulting blue contours are all

symmetric about the real axis and information from hadronic decays are still suitable

to further restrict the parameter space. If constraints from hadronic decays are taken

into account, we can exclude ImZsbL,R ≤ 0 and with it the SM at more than 68% prob-

ability. This will be important for those observables that are predicted in the following

subsection, being sensitive to the sign of the imaginary part of ZsbL,R.

A third class of constraints can be obtained from Bs–B̄s mixing, respectively the

off-diagonally mass matrix element, M s
12. Coinciding with our naive expectation that

contributions from an enhanced Z-penguin to neutral meson mixing can be neglected as

long as ZsbL,R ∼ Z
sb,SM
L , we found the following bounds:

|ReZL,R| ∼ |ImZL,R| ≤ 6 (22) at 68 (95)% probability. (6.19)

With regard to the gained contours from (semi-)leptonic and hadronic decays, M s
12

cannot further constrain the parameter space, for which reason we refrain from showing

its contour regions in the plots. If deviations from the SM prediction will appear in

future measurements, any concrete model will need an additional source of triggering

Bs − B̄s mixing apart from the effect of an enhanced Z-penguin.

We already mentioned that the individual scenarios can effectively be described

by a modification of a single electroweak Wilson Coefficient, as it was analysed in the

previous section. In order to relate the results of both analysis to each other, we have to

take care of the different normalisation factors that enter the modification of the Wilson

Coefficients

∣∣CSM
9 (MW )

∣∣ :
2α

3π
(1− s2

w) 6 : 1, (6.20)
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B →M1M2 & B → K∗`+`− [104]

ReZsbA, ImZsbA ∆AKπCP RBn (Kπ) C(K̄0π−) 〈P ′5〉[1, 6] ∆χ2(SM)

SM −2.8σ −1.9σ 1.0σ 2.2σ

ZL 0.55, 1.90 −1.6σ −0.8σ 1.2σ 2.1σ (2.1σ) 9

ZR −0.12, 0.92 −1.5σ −1.2σ 1.5σ 2.3σ (2.3σ) 8

ZL – ZR
0.50, 1.70 −0.7σ −0.8σ 1.7σ 2.0σ (2.0σ) 12
0.11, 0.67

Table 6.4: Compilation of best-fit points and pull values with |δ| ≥ 1.6 for the en-
hanced left-handed, right-handed, and generic Z-coupling scenarios. Pull values for a
fit with (semi-)leptonic data only are shown in parentheses.

and bounds and contour regions for the Wilson Coefficients C(′)
7 and C(′)

9 , obtained in the

model-independent fit, can be compared to the bounds and contour regions from the

enhanced Z-penguin scenarios, when rescaled by a factor of 6.

The enhanced right-handed Z-penguin scenario, respectively the effective coupling

ZsbR , is correlated to C′7, which contour region was found to be purely real in the previous

subsection. The constraints on ReZsbR from observables of (semi-)leptonic decays are

already tightly restricting and do not allow for the proposed real solution, such that

ZsbR receive instead almost imaginary contributions. In fact, the pull value for ∆AKπCP

decreases to −1.5σ, listed in Table 6.4, but this solution induces also CP-violating con-

tributions to other decay modes, raising a tension in C(B− → K̄0π−) of 1.5σ. A solution

to the discrepancy in RBn (Kπ) is also less effective than for the C′7 scenario and leaves a

pull of −1.2σ. An enhanced left-handed Z-penguin can effectively be described through

the C9 scenario, for which purely imaginary contributions were preferred. Because ImZsbL

is less restricted, the contour for ZsbL can still become half as large as for C9 and shares,

apart from a slight inclination due to the bean-like contour from (semi-)leptonic decays,

similar features. The pull values are comparable to the ZsbR scenario, and both models,

ZsbL as well as ZsbR , are similar suited to resolve the tensions, resulting into ∆χ2(SM) = 9,

respectively ∆χ2(SM) = 8. We also studied the generic enhanced Z-penguin scenario,

in which the left- and right-handed coupling were fitted simultaneously. The results can

be considered as the combination of the individual scenarios discussed above. Although

ZsbL as well as ZsbR individually relax the tensions in ∆AKπCP to −0.7σ and in RBn (Kπ)

to −0.8σ and the quality of the fit increases to ∆χ2(SM) = 12, an increasing tension

for the CP asymmetry C(B− → K̄0π−) of −1.7σ restrict the possibility of a complete

resolution.

So far, we did not discus the encountered discrepancy for observables in B →
K∗`+`−. As mentioned in Chapter 4.2.2, the tensions in 〈AFB〉[>16] and 〈FL〉[14, 16] are

caused by inconsistent, individual measurements, whereas 〈ACP〉[14, 16] and 〈P ′4〉[14, 16]
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Kπ K∗π Kρ K∗ρ

|ρA|, φA ξA3 |ρA|, φA ξA3 |ρA|, φA ξA3 |ρA|, φA ξA3

SM 3.34, 2.71 0.39 1.61, 5.84 0.89 2.69, 2.68 0.78 1.56, 5.66 1.33

ZsbL 2.29, 5.41 [0.37, 0.62] 1.63, 5.87 [0.82, 1.41] 2.79, 2.67 [0.44, 1.52] 1.57, 5.63 [0.88, 1.90]

ZsbR 2.17, 5.43 [0.34, 0.62] 1.64, 5.87 [0.82, 1.34] 2.75, 2.69 [0.50, 1.42] 2.39, 2.73 [1.03, 1.97]

ZsbL , Z
sb
R 2.17, 5.43 [0.30, 0.67] 1.64, 5.87 [0.63, 1.81] 2.78, 2.68 [0.12, 2.85] 2.38, 2.73 [0.48, 2.50]

Table 6.5: Compilation of the best-fit points for ρM1M2

A and ξA3 at the probability
of 68%. The results are given for B → Kπ, Kρ, K∗π, K∗ρ and specified for the
enhanced left-handed, right-handed, and generic Z-coupling scenarios. As explained
in Appendix A.5, the interval of ξA3 (NP) should be compared to ξA3 (SM) at the best-fit
point of ρM1M2

A , listed in the first row.

could be explained through very large corrections to the semi-leptonic Wilson Coeffi-

cients, which are, however, forbidden from constraints of other observables. For that

reason, we pass on showing their pull values in Table 6.4. It was also discussed that

〈P ′5〉[1, 6] cannot be explained within a modification of C(′)
10,A only, (see [122]), which we

can confirm through almost stagnating pull values for any of the three Z-penguin scenar-

ios. To summarise, although now further improvements on tensions in (semi-)leptonic

decays can be expected from an enhanced Z-penguin scenario, the parameter space can

indeed be tightly restricted.

As for the model-independent analysis in the previous section, we again quantify

the necessarily amount of power corrections for each decay system and scenario through

the power-suppressed ratio ξA3 (M1M2), collected together with the best-fit points for

the WA parameter ρM1M2
A in Table 6.5. We can see that the largest decrease of the

power-suppressed ratio is encountered for the generic enhanced Z-penguin scenario. For

instance, the power corrections in B → Kρ might be almost negligible, ξA3 (Kρ) = 0.12,

compared to its SM value, and even the data for B → Kπ might be explained with a

correction of only ξA3 (Kπ) = 0.30. In addition, the large weak-annihilation scenario is

still excluded for B → Kπ. Similar to the results of the model-independent analysis, all

best-fit points for ρM1M2
A lie within the 68% CR of the SM fit. This emphasis that the

unknown soft QCD interaction still behaves as in the SM, in spite of the modification

of QED-penguin Wilson Coefficients.

Let us summarise the results that have been obtained from the discussion so far:

• Whereas the tensions in observables of (semi-)leptonic decays cannot be explained

in any of the analysed scenarios, the discrepancy in ∆AKπCP and RBn (Kπ) can sig-

nificantly be relaxed, favouring the generic enhanced Z-penguin scenario.

• ReZsbL,R are tightly restricted from constraints of (semi-)leptonic decays, whereas

the bounds for ImZsbL,R are weaker. In addition, the contours are symmetric about
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the real axis, such that the sign of ImZsbL,R, which is important for CP-violating

observables, cannot be determined from (semi-)leptonic observables only. Further

information from hadronic decays are suitable to break this symmetry implying

substantially consequences for the predictions of observables.

• Taking all constraints into account, the effective couplings ZsbL and ZsbR can still

receive a relative correction of 80%, respectively 51%, compared to Zsb,SM
L at the

probability of 95%.

6.2.3 Observable predictions

We will now work out how a Z-penguin scenario could be detected in various observ-

ables and whether it is possible to distinguish the individual scenarios from each other.

As for the model-independent analysis, we again quote the predictions for the purely

isospin-violating branching ratios of B̄s → φπ, φρ and for mixing-induced CP asymme-

tries of various Bd decays, ∆S(M1M2), in the upper part of Table 6.6. Because the

effective Z-penguin couplings are already tightly constrained from (semi-)leptonic de-

cays, large contributions to the branching ratios cannot be expect. The impact from ZsbR

is completely negligible, but at least, an enhanced left-handed Z-penguin could decrease

the branching ratios about 10 − 20%. Regarding the uncertainties, it might be rather

tough to achieve the necessarily experimental precision in the near future that would

be required to resolve a contribution from ZsbL from the SM background in these ob-

servables. Though the effective couplings are quite well restricted, the fits prefer almost

pure imaginary contributions, which will especially influence CP asymmetries. All pre-

dictions for ∆S(M1M2) coincide within their errors with the SM, but the uncertainties,

which also include a weighted contribution from the NP and WA parameter space (see

Appendix A.4), are large, such that deviations form SM predictions are not unlikely

and detectable. Nevertheless, based on the current status on the limits for ZsbL,R, an

experimental precision of at least a few percent will be needed for the mixing-induced

CP asymmetries in Bd decays.

More suitable to find NP that enhances the SM Z-penguin might be the CP asym-

metries in B → K∗LφL and B̄s → φLφL. We plotted the correlated predictions for the

direct and mixing-induced CP asymmetry in the upper panels for the former and the

direct CP asymmetry for the neutral and charged mode of the latter decay in the middle

panels of Figure 6.8. The plots are obtained from left to right for the left-, right-handed,

and the generic enhanced Z-penguin scenario. The SM predicts vanishing CP violation

in these decays, but significant deviations from zero can still occur, especially for new

contributions to ZsbL . Additionally, the impact on the observables from ZsbL and ZsbR are

anti-correlated, such that it is possible to distinguish the individual contributions from

each other.
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B →M1M2

∆S(Kπ) ∆S(Kρ) ∆S(K∗π) ∆SL(K∗ρ) ∆S(Kη′) ∆S(Kω) ∆S(Kφ) ∆SL(K∗φ) B(φπ) B(φρ)

SM [0.05, 0.13] [−0.19, −0.04] [0.06, 0.17] [−0.15, 0.09] [−0.01, 0.04] [0.09, 0.17] [0.01, 0.05] [0.01, 0.04] 0.24+0.07
−0.04 0.68+0.19

−0.10

ZsbL 0.08+0.03
−0.11 −0.07+0.10

−0.06 0.06+0.05
−0.12 0.04+0.06

−0.19 0.04+0.02
−0.08 0.13+0.09

−0.06 −0.01+0.05
−0.07 −0.03+0.05

−0.07 0.19+0.04
−0.07 0.60+0.13

−0.15

ZsbR 0.14+0.00
−0.14 −0.06+0.04

−0.16 0.12+0.07
−0.07 0.00+0.08

−0.17 0.06+0.01
−0.11 0.15+0.02

−0.11 0.03+0.03
−0.08 0.04+0.04

−0.06 SM SM

ZsbL , Z
sb
R 0.07+0.04

−0.10 −0.08+0.10
−0.07 0.09+0.05

−0.09 0.06+0.05
−0.19 0.04+0.02

−0.10 0.13+0.07
−0.09 −0.02+0.05

−0.07 0.03+0.03
−0.09 0.20+0.05

−0.05 0.60+0.14
−0.10

B → K∗`+`−

〈Aim〉[1, 6] 〈Aim〉[14, 16] 〈Aim〉[>16] 〈H4,5
T 〉[14, 16] 〈H4,5

T 〉[>16] 〈PCP
3 〉[1, 6] 〈P ′CP

6 〉[1, 6] 〈P ′CP
8 〉[1, 6]

SM O(10−4) O(10−3) O(10−3) O(10−5) O(10−5) O(10−4) O(10−3) 0.01+0.00
−0.01

ZsbL SM SM SM SM SM SM −0.37−0.08
+0.06 0.01+0.04

−0.00

ZsbR 0.03+0.01
−0.01 0.07+0.02

−0.02 0.05+0.02
−0.02 −0.31+0.09

−0.07 −0.29+0.08
−0.08 −0.16+0.05

−0.04 0.17+0.05
−0.05 0.30+0.07

−0.09

ZsbL , Z
sb
R 0.03+0.01

−0.01 0.08+0.03
−0.03 0.06+0.02

−0.02 −0.35+0.13
−0.11 −0.33+0.11

−0.11 −0.15+0.03
−0.04 −0.15+0.10

−0.13 0.28+0.10
−0.04

Table 6.6: Compilation of predictions for the enhanced left-handed, right-handed,
and generic Z-coupling scenarios.

In contrast to the model-independent analysis in the previous section, we can now

make use of the correlations to (semi-)leptonic decays and also predict for example

observables for B → K∗`+`−. Large corrections are present for the modification of the

right-handed coupling for the CP asymmetries H4,5
T at mid and high q2 and for the

CP asymmetries P
′CP
6,8 and PCP

3 at low q2, listed in the lower part of Table 6.6. Apart

from 〈P ′CP
6 〉[1,6], these observables behave SM-like for a modification of the left-handed

coupling. Therefore, 〈P ′CP
6 〉[1,6] is the most important observable to distinguish ZsbL

from ZsbR because both scenarios cause large corrections with respectively opposite sign.

Once 〈P ′CP
6 〉[1,6] is measured, one of the two scenarios in which only one coupling is

predominantly enhanced can be ruled out, but a simultaneously enhancement of both

couplings could still explain the data, too. In order to distinguish these two options, the

contrary information from for instance 〈P ′CP
8 〉[1,6] is needed. The correlation of the two

observables is presented in the lower panels of Figure 6.8, where we plotted 〈P ′CP
6 〉[1,6]

vs. 〈P ′CP
8 〉[1,6] from left to right for left-, right-handed, and the generic enhanced Z-

penguin scenario. Corresponding to the colour coding of the contour plots, the blue

predictions are obtained from a fit of only (semi-)leptonic observables and the red from

the combined fit. It can be seen that the additional information from hadronic decays

are indeed beneficial to shrink the prediction range considerably.
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Figure 6.8: Correlations among the predictions for CL vs. SL in B̄s → φφ (upper
panels), CL in B̄0 → K̄∗0φ vs. B− → K∗−φ (middle panels), and 〈P ′6〉[1,6] vs. 〈P ′8〉[1,6]
(lower panels) at the probability of 68% and 95%. The results are obtained from left to
right for modifications of the left-handed, the right-handed, and for both Z-coupling(s).
Experimental central values and 1σ uncertainty interval from HFAG are shown for those
observables that have already been measured — represented by black lines.
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6.3 Extended operator basis through Ob = (s̄b) (b̄b)

The last NP analysis is dedicated to the phenomenological consequences of an extended

operator basis in which we allow for model-independent additional contributions to 4-

quark operators with the general flavour structure Ob = (s̄b) (b̄b). Such operators can

occur in models with an extended Higgs sector as, for example, the two-Higgs Doublet

Models (2HDM) or the Minimal Supersymmetric Standard Model (MSSM) [159, 160].

In general, a flavour-changing neutral Higgs-exchange generates scalar-penguin opera-

tors of the form OqS = (s̄b)S±P (q̄q)S±P , which might be enhanced by the ratio of the

two vacuum expectation values of the scalar fields, parametrised through tanβ. Many

analysis were performed regarding contributions to the lighter down-type quarks q = d, s

in the penguin operator [161–167]. These operators already contribute at leading or-

der to certain decay classes such as q = d in B → K(∗)(π, ρ, ω) and for q = s in

B → K(∗)(η(′), φ). Since the b quark sticks out through its large Yukawa coupling, re-

spectively mass, in the down quark sector, mb � ms � md, it might be reasonable that

the leading contributions should be assigned to the penguin operators with q = b. These

operators do not generate a leading order correction to any hadronic matrix element,

but contribute through mixing effects to the SM Wilson Coefficients, and therefore, in

principle to all decays which are triggered by the same b → s transition. By this rea-

son, we can again, as for the enhanced Z-penguin scenarios, study correlation between

(semi-)leptonic and hadronic decays, whereas this time, only C(′)
9,V are modified, offer-

ing a solution to the tension in 〈P ′5〉[1, 6]. The specific flavour structure in Ob can be

utilised to reduce the number of independent operators out of all potential operators

with generic Dirac and colour structure to 5+5′ (χ-flipped), making an analysis in com-

plete generality rather compact. Model-independent analysis of these class of operators

with focus on (semi-)leptonic observables have been performed in [168, 169] and includ-

ing hadronic decays within the context of the MSSM in [170]. The authors in [171] tried

to explain some discrepancy in the absorptive part of the off-diagonal Bs–B̄s matrix

element, Γs12, accompanied with constraints from (semi-)leptonic observables, through

analogue operators, with the b quarks exchanged through the heaviest leptons in the

SM, Oτ = (s̄b) (τ̄ τ).

Another interesting aspect is that, contrary to the previous NP analysis, both

QED- and QCD-penguin Wilson Coefficients can receive contributions. This leads to

appreciable correlations between the new Wilson Coefficients and the WA parameters

ρM1M2
A and implies ξA3 (M1M2), which have been introduced as a credibility-measure of

the mb/ΛQCD expansion in QCDF, to be strongly affected.
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6.3.1 Theory

The phenomenological impact of all 4-quark operators with the flavour structure Ob =

(s̄b) (b̄b) will be discussed in the following. With respect to a general Dirac as well as

colour structure, we can think of 14 possible operators

ObS = (s̄αPAbβ)(b̄γPBbδ), ObV = (s̄αγµPAbβ)(b̄γγ
µPBbδ),

ObT = (s̄ασµνPAbβ)(b̄γσ
µνPBbδ),

(6.21)

where σµν = 1
2 [γµ, γν ], PA,B ∈ PL, PR the chiral projectors of the quark fields and

(α, β, γ, δ) are colour indices, which can occur in an either colour-singlet δαβδγδ or colour-

octet δαδδγβ configuration. Because the tensor operators with mixed chirallity vanish in

D = 4 dimensions, they do not need to be considered. In addition, we can make use of

the Fierz identities

(f̄ασµνPL(R)fβ)(f̄γσ
µνPL(R)fδ) = 4 (f̄αPL(R)fβ)(f̄γPL(R)fδ) + 8 (f̄αPL(R)fδ)(f̄γPL(R)fβ),

(f̄αγµPL(R)fβ)(f̄γγ
µPL(R)fδ) = (f̄αγµPL(R)fδ)(f̄γγ

µPL(R)fβ),

2 (f̄αPL(R)fβ)(f̄γPR(L)fδ) = −(f̄αγµPR(L)fδ)(f̄γγ
µPL(R)fβ),

(6.22)

to further reduce the total number of independent operators to five: The residual ten-

sor operators can be replaced through a linear combination of both purely left-handed

scalar operators, whereas the scalar operators with mixed chirallity are related to the

corresponding vector operators. At last, all purely left-handed vector operators in a

colour-octet configuration can be replaced by their colour-singlet counterparts. Apart

from the tensor operators, each operator in Equation 6.21 can be mapped to only one

other single operator, such that the results of our analysis, are, with respect to some

overall factor from Fierz transformations, applicable. It is therefore sufficient to confine

our analysis to the operators

Ob11 = (s̄α bα)V−A(b̄β bβ)V−A,

Ob12 = (s̄α bβ)V−A(b̄β bα)V+A, Ob13 = (s̄α bα)V−A(b̄β bβ)V+A,

Ob14 = (s̄α bβ)S+P (b̄β bα)S+P , Ob15 = (s̄α bα)S+P (b̄β bβ)S+P ,

(6.23)

and their χ-flipped counterparts. Analogue considerations also apply for operators with

the flavour structure Os = (s̄b) (s̄s). For the residual discussion, we will focus on NP in

Ob and, if we do not explicitly comment on Os, omit the superscript from both operators

and Wilson Coefficients.
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In order to take new contributions from these operators into account, the EWH in

Equations 2.14 and 2.18 has to be extended

Heff = HSM
eff +

GF√
2

∑
p=u,c

λsp

(
15∑
i=11

CiOi + C′iO′i

)
+ h.c. . (6.24)

Although all terms are included in our numerical analysis, the contributions proportional

to the suppressed CKM-matrix elements in λu, which includes the CP-violating phase

γ of the SM, can be neglected. Due to their flavour structure, the new operators do

not contribute at leading order to neither hadronic nor (semi-)leptonic decays, but mix

into the SM operators via the one-loop diagrams, shown in Figure 6.9. After solving the

RGE, the SM Wilson Coefficients at the scale mb are modified

C
(′)
i (mb) = |CSM

j (mb)|
(

1 + κi(C(′)
11 , . . . , C

(′)
15 )
)j = i+ 2 for i = 7, 8,

j = i for others.
(6.25)

The large Wilson Coefficient, |CSM
9,10|, were used as normalisation constant for κ7,9, ana-

logue to the model-independent analysis of QED-penguin operators.

The mixing effects can be classified in the following way: The scalar operatorsO14,15

exclusively mix into the dipole operators O7γ,8g, such that their impact is confined to a

modification of

κ7γ = 0.08 C14 + 0.03 C15, κ8g = −0.25 C15, (6.26)

The matrix elements of the dipole operators occur in QCDF first at NLO, such that

it is sufficient to calculate their ADM at LO. As recently studied model-independently

in [172], the Wilson Coefficient of the electromagnetic dipole operator, C7γ , is best

constrained by observables from b → s(γ)`+`− decays, and we won’t further discus

contributions from C(′)
14 . The Wilson Coefficient of the chromo-magnetic dipole operator,

C8g, solely contributes to the QCD-penguin amplitude α̂4 and, as we will see, has similar

phenomenological consequences as a modification of the Wilson Coefficient C(′)
12 , such

that it is also unnecessary to discuss a modification of C(′)
14 explicitly. Therefore, our

analysis will be confined to a modification of C(′)
11−13. In contrast to the scalar operators,

the vector operators O(′)
11−13 do not mix into the dipole, but into the QCD- and QED-

penguin operators. Their ADM have been calculated at NLO accuracy in αs to reduce

the uncertainty from scale variation, which could spoil our fits. To be consistent, we

also have to incorporate the NLO corrections of these operators to the hadronic matrix

elements in QCDF, which, together with the ADM, are presented in Appendix C.

Due to the Dirac, respectively colour structure of the operators O(′)
13 , their contri-

bution to the left, respectively right diagram in Figure 6.9, with the exchange of a gluon,



Chapter 6. Exploring the structure of physics beyond the SM 112

γ, g

q, ℓ−

q̄, ℓ+

bb̄

s̄b b

q, ℓ−

q̄, ℓ+
γ, g

bb̄

s̄

Figure 6.9: Open and closed QCD- (gluon exchange) and QED-penguin (photon
exchange) diagrams with (s̄b) (b̄b) operator insertions, where the lower fermion current
can be either quarks or leptons. The diagram with an off-shell gluon, respectively
photon, contributes to the dipole operators.

vanishes and modifies the SM QCD-penguin Wilson Coefficients only at NLO. However

O(′)
11,12 already contribute at LO, explaining the hierarchy κi(C(′)

11 ) ∼ κi(C(′)
12 )� κi(C(′)

13 )

κ3 = 0.49 C11 + 1.20 C12 + 0.37 C13, κ4 = −0.83 C11 − 0.95 C12 − 0.06 C13,

κ5 = 1.32 C11 + 0.75 C12 − 0.43 C13, κ6 = −0.82 C11 − 1.21 C12 − 0.08 C13.
(6.27)

The QED-penguin Wilson Coefficients receive corrections from all three operators al-

ready at LO and now the hierarchy changes, κi(C(′)
11 ) ∼ κi(C(′)

13 )� κi(C(′)
12 )

κ7 = 0.20 C11 + 0.07 C12 + 0.17 C13, κ8 = 0.28 C11 + 0.14 C12 + 0.18 C13,

κ9 = 0.22 C11 + 0.08 C12 + 0.18 C13, κ10 = −0.21 C11 − 0.09 C12 − 0.13 C13.
(6.28)

Since the diagrams that are responsible for the mixing into the semi-leptonic opera-

tors O9,V are obtained by replacing the quarks through leptons in the lower current of

Figure 6.9, we sustain the same hierarchy and even the same proportions among the

individual contributions as for the QED-penguin operators in κ9,V

κ9,V = −1.21 C11 − 0.43 C12 − 0.98 C13. (6.29)

This implies that the relative effects between the QED-penguin and semi-leptonic Wilson

Coefficients are equal for each scenario and the phenomenological difference manifests

exclusively in the relative effects between QCD- and QED-penguin Wilson Coefficients.

We therefore listed in Table 6.7 the corrections to the QCD- and QED-penguin ampli-

tudes normalised to the corresponding SM amplitude for all four hadronic decay systems.

In order to identify the leading correction, we also quote the relative weight between

QCD and QED-penguin amplitudes for the SM by the ratio |αSM
4 |/|αSM

i |. We can see
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B → Kπ B → Kρ B → K∗π B → K∗LρL

c4 cEW
3 cEW

4 c4 cEW
3 cEW

4 c4 cEW
3 cEW

4 c4 cEW
3 cEW

4

C11 0.53 0.00 1.12 0.44 0.47 0.33 0.56 0.00 0.29 0.56 0.47 0.26

C12 0.89 0.00 0.43 1.17 0.16 0.16 0.67 0.00 0.09 0.71 0.16 0.08

C13 0.06 0.00 0.89 0.16 0.39 0.22 0.01 0.00 0.26 0.01 0.39 0.24

|αSM
4 |/|αSM

i | 1 12 52 1 3 14 1 5 13 1 4 17

Table 6.7: We list the relative change ci = |αi(Cj)|/|αSM
i | of the decay amplitudes

α4, α
EW
3 ,and αEW

4 for decay systems B → Kπ, Kρ, K∗π, K∗ρ depending on the mod-
ification of the Wilson Coefficients C11−13. In order to figure out the main contribution
to the decay amplitudes, we compare in the last row the electroweak with the QCD-
penguin amplitudes for the SM.

that a modification of both Wilson Coefficients C(′)
11 and C(′)

12 leads to a dominating con-

tribution to the QCD-penguin amplitude α4. Whereas corrections to the electroweak

amplitude are completely negligible for the latter, they can still become relevant for the

former. It is worth to mention, that from Equation 6.29 we can expect the most strin-

gent bounds from (semi-)leptonic observables for C(′)
11 and loosest for C(′)

12 . The situation

for an enhanced C(′)
13 is different. The QCD-penguin amplitude only receive corrections

at NLO, but due to its relative weight compared to the QED-penguin amplitudes, it

can still become the leading correction. In addition, the individual decay amplitudes for

B → PP, (PV, V P, V V ) depend on a different linear combination of Wilson Coefficient,

such that those decay amplitudes that receive the leading correction varies for each decay

system. Inspecting the last two rows of Table 6.7, the new contribution dominates in α4

for B → Kπ, B → Kρ receive leading corrections to α4 and αEW
3 , and the corrections

in B → K∗π and B → K∗LρL predominantly contribute to αEW
4 , respectively αEW

3 .

These considerations motivates to study the phenomenological consequences for

each Wilson Coefficient separately. We introduce the following scenarios, which will be

analysed in the following section

• Scenario I: QCD- with pollution from QED-penguin C11, C′11 ∈ C.

• Scenario II: QCD-penguin C12, C′12 ∈ C.

• Scenario III: QCD- and QED-penguin C13, C′13 ∈ C.

Our main motivation for introducing contributions beyond the SM was to explain

the observed discrepancy in ∆AKπCP and RBn (Kπ). These observables are sensitive to

isospin-violating corrections, but B → Kπ is dominated for each scenario by corrections

to αc4(Kπ)

α̂c4(πK) = α̂c,SM
4 (πK)

(
1 + r̃QCD (|Ci|) eiδi

)
, r̃QCD ≡

α̂c4(πK)(|Ci|)
α̂c,SM

4 (πK)
, (6.30)
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which are isospin-conserving. However, these observables can still be modified and,

before going into the details of our analysis, preceding analytically considerations are

assistant to better understand our fit results. The additional Wilson Coefficients are

complex and can obtain a CP-violating phase, given by δi in Equation 6.30. Because

Re Ci basically yield an additional CP-conserving contribution to the leading decay am-

plitude, which is also the main task of the WA parameter, Re Ci and ρM1M2
A can always

be compensated by each other. This implies that we can expect significant differences for

the WA fit, but no substantially constraints to the real part of the Wilson Coefficients.

Here we have to rely on data from (semi-)leptonic decays. From a phenomenological

point of view, the CP-violating part Im Ci are more interesting for hadronic decays.

Since r̃QCD occurs in each decay mode, all four CP asymmetries obtain a universal shift

of

δC(B → Kπ) ' −2 Im r̃QCD sin(δi), (6.31)

which cancels when taking the difference of two CP asymmetries. However, because

the new contribution can reduce the necessarily amount of CP violation from the SM

tree-level amplitudes in for example C(B̄0 → K−π+), the WA fit and, in particular, the

determination of α̂c4(Kπ), can be relaxed in favour of ∆AKπCP (see Equation 5.3). Such a

solution is limited by the experimentally allowed CP asymmetry in B− → K̄0π−, which

vanishes in the SM. This implies that an accurate measurement of this CP asymmetry,

consistent with zero, would forbid a solution to the ∆AKπCP puzzle for scenarios that pre-

dominantly enhance the QCD-penguin amplitude, or reworded: The scenarios C11(′)−13(′)

with a non-vanishing weak phase imply a clean signature of C(B− → K̄0π−) 6= 0. These

effects can only be observed if ρKπA is simultaneously fitted with the NP contributions.

A conventional treatment of power-suppressed corrections would, on the one hand, not

change the prediction for ∆AKπCP and, on the other hand, lead to overestimated con-

straints for Re Ci. This confirms the usefulness of our approach.

The ratio of branching ratios, RBn (Kπ), is affected by several aspects: The corre-

lation between Re Ci and ρKπA changes the strong phase in α̂c4(Kπ) and, implicitly the

SM contribution to this observable (see Equation 4.16). Further, a modification of the

electroweak decay amplitude, even though suppressed, also contributes and solely de-

pends on Im Ci. The most important correction originates from the interference of the

SM tree-level with the new contribution to the QCD-penguin amplitude

δRBn (Kπ) ' −2 Re r̃QCD Re rT cos (γ + δi) . (6.32)

Such corrections do not occur in the expansion in Equation 4.16. Quadratic terms of

the amplitude ratios ri are small in the SM due to a suppression by either cos γ or the
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colour-suppressed tree ratio rTC , but the interference with the new corrections can be

enhanced if δi is adjusted.

Before going into the details of our analysis, we like to comment on the similarity

between operators with the flavour structure Ob = (s̄b) (b̄b) and Os = (s̄b) (s̄s). Their

analytic solutions to the RGE are equivalent and both operator classes lead to the same

phenomenological observations. The only exception are decays that contain at least one

φ or η(′) meson in the final state with either a K(∗) for Bd or yet another φ or η(′) for Bs

decays. These modes already receive leading order corrections to their hadronic matrix

elements from the operators Os. Since we do not use data from these decays, the results

of our analysis are applicable to the Wilson Coefficients of the operator Os, too.4

6.3.2 Fit results

We are now presenting the outcome of our model-independent fits, regarding an potential

enhancement of the operators Ob = (s̄b) (b̄b). We focus on O11−13 and their χ-flipped

counter parts, but all results can be applied, with respect to the Fierz transformations

to all operators in Equation 6.21. Even an analysis with the operators Os would lead

to equivalent results. As in the case for the Z-penguin scenarios, we can make use of

information from both (semi-)leptonic and hadronic decays. The results are presented by

contour plots, in which we compare constraints from (semi-)leptonic observables (blue)

with constraints from the combination of (semi-)leptonic and hadronic observables (red)

at 68% and 95% probability. Due to the different dependence of the four potential

spin configurations in the final state (B → PP, PV, V P, V V ), we use the hadronic

decay system B → Kπ, Kρ, K∗π, K∗ρ in our fits. Significant pull values, (|δ| ≥ 1.6)

and ∆χ2(SM) are collected in Table 6.8 and the key parameter ξA3 (M1M2) to judge

on the validity of the ΛQCD/mb expansion is listed for each scenario and decay system

individually in Table 6.9.

The contour plots in which only one additional Wilson Coefficient was modified are

shown in Figure 6.10 for the scenarios C11, C12, and C13 from top to down and for Ci
vs. C′i from left to right. The hierarchical impact of the individual Wilson Coefficients

to the (semi-)leptonic decays, as was found in Equation 6.29, can be inferred from the

blue contours. Compared to the red contours, it is evident that the real part of Ci is

best constrained from (semi-)leptonic observables. Even for the C12 scenario, in which

the contributions to α4(M1M2) are largest and bounds from b→ s(γ)`+`− are weakest,

Re C12 cannot be sufficiently restricted from hadronic decays alone. This confirms that

Re Ci can always be compensated through the additional degrees-of-freedom in the fit

4 Due to ms 6= mb, the operators Os and Ob also generate different contributions to all hadronic
matrix elements at NLO. However, the higher-order corrections have mainly been introduced to reduce
uncertainties from scale variation, which are equivalent for both operator insertions and their difference
at NLO is phenomenological irrelevant. However, if one is interested in a sustainable analysis of these
operators, constraints from the other decay modes should be included.
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Figure 6.10: 68% and 95% CRs for the complex Wilson Coefficients C(′)11 , C
(′)
12 ,

and C(′)13 in the scenarios with only one coefficient being modified. Constraints are
obtained from observables of (semi-)leptonic only (blue) and from the combination
of (semi-)leptonic and hadronic B-meson decays (red), whereas the decay systems
B → Kπ, Kρ, K∗π, K∗ρ have been used. The � corresponds to the best-fit point
of the combined fit.
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— the WA parameter ρM1M2
A . The imaginary part of Ci, however, is CP-violating and

cannot be compensated by power-suppressed corrections. In particular, it is found that,

at the probability of 68%, Im Ci < 0 and Im C′i > 0, whereas for C11 and C13 the residual

allowed region in the upper, respectively lower half of the imaginary plane coincide with

the contour from b→ s(γ)`+`−. C12 is more restricting, as suggested by the hierarchy in

Equation 6.27, and hadronic decays allow to further cut significantly on the parameter

space. In addition, it seems to be that the χ-flipped Wilson Coefficients are stronger

bounded. This pattern can be explained through the statistical dominance of the data

in B → Kπ, preferring a parity-anti-symmetric solution ∆Ci = const., as described in

Chapter 6.1.1. Constraints from B → K∗π and B → Kρ are contrary and prefer parity-

symmetric configuration C̄i = const.. Since the data for these decay systems favour

Im Ci < 0, they are in conflict with Im C′i > 0.

The contour plots in which both Ci and C′i have been fitted together are displayed

in Figure 6.11 for the scenario C11−11′ , in Figure 6.12 for C12−12′ , and in Figure 6.13

for C13−13′ . The statistical importance of the (semi-)leptonic observables for Re C(′)
i is

evident from the Re Ci − Re C′i correlation plot in the respective lower left panels. The

suggested solution to solve the tension in 〈P ′5〉[1, 6], Re C̄i = 0, presented by a line through

zero with gradient −1, is apparent. The parity-anti-symmetric solution for Im C̄i is also

presented by a line with gradient -1, but for the correlation plot Im Ci−Im C′i in the lower

right panel. Contrary to the single dominant operator scenarios, rather crossing the SM

point, Im C̄i = 0, the data prefer some offset δ, which implies that the sign of Im C′i is not

fixed any longer. This can be explained by the fact that the additional degree-of-freedom

is used to explain the data in B → Kπ with large effects in Ci and a compensating effect

in C′i, to avoid tensions in the decay systems B → Kρ and B → K∗π. These two

observations explains why Re Ci− Im Ci plots (upper left panels) are qualitative similar,

but the Re C′i − Im C′i plots tilted, compared to contour regions in the single dominant

operator analysis.

We give bounds on the individual Wilson Coefficients, which have been obtained

from the 1-dimensional posterior probability at the probability of 95%. To be conserva-

tive, we used the combined operator scenarios, which, in general, lead to larger allowed

parameter regions than the single dominant operator scenarios, to find the following

bounds

Re C11 ∈ [ 0.01; 0.23] , Re C12 ∈ [ 0.02; 0.56] , Re C13 ∈ [ 0.00; 0.22] ,

Im C11 ∈ [−0.41; −0.01] , Im C12 ∈ [−0.46; 0.00] , Im C13 ∈ [−0.59; 0.05] ,

Re C′11 ∈ [−0.25; 0.04] , Re C′12 ∈ [−0.52; 0.14] , Re C′13 ∈ [−0.29; 0.12] ,

Im C′11 ∈ [−0.16; 0.24] , Im C′12 ∈ [−0.20; 0.34] , Im C′13 ∈ [−0.21; 0.38] .

The qualitative features, which have been discussed above, can be confirmed. The
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allowed interval in Equation 6.33 approve in particular that Im C′i is stronger constrained

than Im Ci and Re C(′)
i is stronger constrained as Im C(′)

i , whereas Re C(′)
i follows the

pattern, dictated by observables from (semi-)leptonic decays and Im Ci ≤ 0 is almost

fulfilled for all three Wilson Coefficients and at the probability of 95%.

The χ-flipped scenarios C′i are less well suited to accommodate the data. That

is reflected in the individual ∆χ2(SM), listed in Table 6.8. Although no large pull

values in neither B → Kρ nor B → K∗π occur, the allowed parameter range is tightly

restricted, such that other tensions cannot be resolved, leading to substantially smaller

improvement compared to ∆χ2(SM) for the Ci scenarios.

In detail, the most serious tension for the (semi-)leptonic decay system occurs for

the observable 〈P ′5〉[1, 6], which indeed can be relaxed within the Ci and Ci−C′i scenarios,

though for the price of an increasing discrepancy in B(B → K∗`+`−). If in addition

the polarisation fraction measurements from the BaBar and Atlas collaboration, which

in order to be conservative were removed as constraints (see Chapter 4.2.1), are taken

into account, the parity-anti-symmetric solution would be pushed to larger values and

the pull value of 〈P ′5〉[1, 6] would decrease to roughly 1.0σ, but for the branching ratio of

B → K∗`+`− further increase to worrying 2.0σ.

The hadronic decay systems, in particular B → Kπ, suffers from the tension in

∆AKπCP . The solution suggested in the theory section (see Equation 6.31) is limited

due to an universal shift in all CP asymmetries and especially for the asymmetry in

B− → K̄0π−, which is rather well measured and compatible with zero. In order to

display the limitation of explaining ∆AKπCP , we quote C(B− → K̄0π−) at the best-

fit point for the C12 and C′12 scenarios, together with the corresponding asymmetry in

B → K∗π

C(B− → K̄0π−) = 1.5+1.9
−1.9 %, C(B− → K̄∗0π−) = 3.8+4.2

−4.2 %, HFAG,

C(B− → K̄0π−) = −0.7+0.2
−0.2 %, C(B− → K̄∗0π−) = −0.6+0.3

−0.3 %, SM,

C(B− → K̄0π−) = 4.1+1.5
−1.4 %, C(B− → K̄∗0π−) = 2.8+2.1

−1.5 %, C12,

C(B− → K̄0π−) = 0.8+0.5
−0.5 %, C(B− → K̄∗0π−) = −2.0+0.4

−0.7 %, C′12,

(6.33)

On the one hand, it can be seen that the anti-correlation due to χ-flipped operators

among B → PP and B → PV modes is responsible for the unprimed scenarios being

favoured compared to the primed scenarios. On the other hand, the allowed amount of

CP violation in the QCD-penguin amplitude is limited through the precise measurement

of C(B− → K̄0π−), such that the ∆AKπCP puzzle cannot be fully resolved. However, it

is still not unlikely that a combination of an enhanced power-suppressed correction in

HS amplitudes together with NP contributions is at work. The tension for the ratio of
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Figure 6.11: 68% and 95% CRs for the complex Wilson Coefficients C(′)11 in the scenar-
ios with both coefficients being simultaneously fitted. Constraints are obtained from ob-
servables of (semi-)leptonic only (blue) and from the combination of (semi-)leptonic and
hadronic B-meson decays (red), whereas the decay systems B → Kπ, Kρ, K∗π, K∗ρ
are used. The � corresponds to the best-fit point of the combined fit.
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Figure 6.12: 68% and 95% CRs for the complex Wilson Coefficients C(′)12 in the scenar-
ios with both coefficients being simultaneously fitted. Constraints are obtained from ob-
servables of (semi-)leptonic only (blue) and from the combination of (semi-)leptonic and
hadronic B-meson decays (red), whereas the decay systems B → Kπ, Kρ, K∗π, K∗ρ
are used. The � corresponds to the best-fit point of the combined fit.
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Figure 6.13: 68% and 95% CRs for the complex Wilson Coefficients C(′)13 in the scenar-
ios with both coefficients being simultaneously fitted. Constraints are obtained from ob-
servables of (semi-)leptonic only (blue) and from the combination of (semi-)leptonic and
hadronic B-meson decays (red), whereas the decay systems B → Kπ, Kρ, K∗π, K∗ρ
are used. The � corresponds to the best-fit point of the combined fit.
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B →M1M2 & B → K∗`+`−

Re C(′)
i , Im C(′)

i ∆AKπCP RBn (Kπ) 〈AFB〉[1,6] [97] 〈P ′5〉[1, 6] [104] B(K∗ll)[>16] [95] ∆χ2(SM)

SM −2.8σ −1.9σ −1.4σ 2.2σ 0.5σ

C11 0.07, −0.16 −2.2σ −0.3σ −1.5σ (−1.5σ) 1.8σ (1.7σ) 0.8σ (0.7σ) 11

C11′ −0.04, 0.09 −2.4σ −0.6σ −1.4σ (−1.4σ) 2.2σ (2.2σ) 0.7σ (0.6σ) 7

C11−11′
0.09, −0.18 −2.2σ −0.2σ −1.6σ (−1.5σ) 1.6σ (1.5σ) 1.4σ (1.2σ) 13−0.08, −0.02

C12 0.18, −0.12 −2.2σ −0.2σ −1.5σ (−1.5σ) 1.8σ (1.7σ) 1.0σ (0.7σ) 11

C12′ −0.10, 0.03 −2.5σ −0.8σ −1.4σ (−1.4σ) 2.2σ (2.2σ) 0.7σ (0.6σ) 5

C12−12′
0.29, −0.14 −1.8σ 0.1σ −1.6σ (−1.5σ) 1.5σ (1.5σ) 1.8σ (1.2σ) 14−0.30, 0.05

C13 0.10, −0.34 −2.2σ −0.8σ −1.5σ (−1.5σ) 1.6σ (1.7σ) 0.7σ (0.7σ) 11

C13′ −0.05, 0.21 −2.4σ −0.9σ −1.4σ (−1.4σ) 2.2σ (2.2σ) 0.5σ (0.6σ) 7

C13−13′
0.14, −0.38 −2.2σ −0.7σ −1.6σ (−1.5σ) 1.4σ (1.5σ) 1.2σ (1.2σ) 13−0.09, −0.04

Table 6.8: Compilation of best-fit points and pull values with |δ| ≥ 1.6 for the model-
independent fits of the new operators Ob. Pull values for fits with (semi-)leptonic data
only are shown in parentheses.

branching fractions, RBn (Kπ), cannot be accommodated through any enhanced power-

corrections and, need to be explained through physics beyond the SM. This is indeed

possible for scenarios with predominant contribution to the QCD-penguin amplitude.

Both C11 and C12 scenarios are in spite of further constraints from b→ s(γ)`+`−, suitable

to explain the discrepancy. Even the C13 scenarios can decrease the pull value below one

standard deviations.

The difference between the C11(′) , C12(′) , and the C13(′) scenarios is also notably

visible through the allowed ranges of the power-suppressed ratio ξA3 (M1M2), listed in

Table 6.9. Whereas it is possible that contributions from WA in, for instance B → Kπ,

become negligible for the former, they still need to be of the order ξA3 (Kπ) ∼ 0.30 for the

latter scenarios, which is comparable with the results of the model-independent and the

enhanced Z-penguin analysis. The most significant effects are encountered for C12−12′ in

which ξA3 (K∗π) = 0.41 could be reduced by a factor of 2, ξA3 (Kρ) = 0.12 by a factor of 7,

and ξA3 (K∗ρ) = 0.44 by a factor of 3 compared to their SM values. As noted before, the

lower limit for ξA3 (Kπ) = 0. Though α̂c4(M1M2) is significantly modified, the large WA

scenario in B → Kπ is still disfavoured. We have seen that the single dominant operator

fits of the unprimed Wilson Coefficients are more suitable to explain the data than of the

primed Wilson Coefficients. This preference is additionally supported from a stronger

suppression of the power-suppressed ratios for the former scenarios. The best-fit points

for the WA parameter obey for all decay systems and each scenario similar features as

in SM. The phase is found to coincide with one of the two solutions, suggested by the

SM fit and only the absolute value seems to vary, notably for B → Kπ and B → Kρ.

The only exception is ρKπA in C12−12′ . Due to the large contributions from Re ∆C12 ∼ 0.6
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Kπ K∗π Kρ K∗ρ

|ρA|, φA ξA3 |ρA|, φA ξA3 |ρA|, φA ξA3 |ρA|, φA ξA3

SM 3.34, 2.71 0.39 1.61, 5.84 0.89 2.69, 2.68 0.78 1.56, 5.66 1.33

C11 2.79, 2.85 [0.14, 0.42] 1.48, 5.89 [0.71, 1.28] 1.30, 5.45 [0.42, 1.35] 2.32, 2.73 [0.98, 1.82]

C11′ 3.04, 2.80 [0.22, 0.48] 1.72, 5.86 [0.86, 1.49] 2.70, 2.74 [0.46, 1.32] 1.56, 5.64 [0.97, 1.92]

C11−11′ 2.53, 2.78 [0.00, 0.43] 1.54, 5.92 [0.65, 1.47] 2.59, 2.75 [0.30, 1.69] 2.28, 2.76 [0.75, 2.03]

C12 2.19, 2.71 [0.00, 0.27] 1.25, 5.85 [0.47, 0.91] 2.19, 2.68 [0.21, 0.90] 1.32, 5.66 [0.86, 1.74]

C12′ 2.89, 2.70 [0.14, 0.57] 1.87, 5.90 [0.72, 1.61] 2.10, 5.57 [0.41, 1.63] 1.53, 5.67 [0.75, 2.25]

C12−12′ 2.15, 2.07 [0.00, 0.44] 1.61, 5.92 [0.41, 1.69] 2.64, 2.75 [0.12, 1.96] 2.00, 2.86 [0.44, 1.91]

C13 3.15, 2.79 [0.29, 0.48] 1.64, 5.87 [0.41, 1.42] 2.58, 2.76 [0.84, 1.36] 1.55, 5.63 [0.99, 2.03]

C13′ 3.24, 2.77 [0.32, 0.52] 1.65, 5.86 [0.45, 1.44] 2.76, 2.69 [0.79, 1.37] 1.57, 5.63 [0.94, 1.94]

C13−13′ 3.10, 2.79 [0.26, 0.52] 1.62, 5.89 [0.77, 1.48] 1.50, 5.44 [0.34, 1.52] 1.53, 5.63 [0.78, 2.11]

Table 6.9: Compilation of the best-fit points for ρM1M2

A and ξA3 at the probability of
68%. The results are given for B → Kπ, Kρ, K∗π, K∗ρ and specified for the scenarios
with additional operators, Ob. As explained in Appendix A.5, the interval of ξA3 (NP)
should be compared to ξA3 (SM) at the best-fit point of ρM1M2

A , listed in the first row.

to the QCD-penguin amplitude, φKπA = 2.15 leads to destructive interference between

Reαc4(Kπ) and Reβc3(Kπ), contrary to all other scenarios.

A further particularity for these models arises because of the strong interference be-

tween the power-suppressed corrections and NP contributions. We mentioned in Chap-

ter 5.2.1 that the SM fit of the two pure WA-dominated decays B̄d → K+K− and

B̄s → π+π− reveals completely different solutions. Although we do not doubt that WA

effects could be different for these decays, it is interesting to study how the fit would

change if the QCD-penguin Wilson Coefficients are modified. We therefore fitted ρππA

for B̄s → π+π− (b→ s transition) again, whereas the Wilson Coefficients C(′)
11 −C

(′)
13 were

fixed at their best-fit point of the combined scenarios. Since the strong phase cannot

be extracted within QCDF for these modes, neither in SM nor in any NP models, we

confine ourselves to quote the resulting 95% CR of |ρππA | at φππA = 0, compared to the

result of the SM fit of |ρKKA | at φKKA = 0 (b→ d transition)

B̄d → K+K− B̄s → π+π−

SM SM C11−11′ C12−12′ C13−13′

[0.0; 2.20] [2.95; 4.45] [2.55; 4.15] [1.70; 2.80] [2.90; 4.50]

The solution for the C13−13′ scenario does not change the fit significantly. The interval

in C11−11′ and C12−12′ indeed strongly decreases and the latter actually overlaps with the

SM interval of B̄d → K+K−.

Before going into the details of phenomenological consequences of the above-discussed

scenarios, we like to summarise our main results:



Chapter 6. Exploring the structure of physics beyond the SM 124

• The ∆AKπCP puzzle cannot satisfactorily be explained in any of the scenarios. Fur-

ther assumptions on power-corrections in HS amplitudes are needed. The tensions

in 〈P ′5〉[1, 6] and RBn (Kπ) are, in particular for the unprimed and combined scenar-

ios, well described, implying a strong preference for Ci compared to C′i.

• The largest contributions to hadronic decays can be expected from C(′)
11 , C(′)

12 and to

(semi-)leptonic decays from C(′)
11 , C(′)

13 . Although the effects from the latter Wilson

Coefficients to for instance B → Kπ are small, information from hadronic decays

are still suitable to constrain the imaginary part of the complex parameter space.

• The modification of C(′)
11 and C(′)

12 implies corrections to the QCD-penguin ampli-

tude αc4(M1M2) and thereby a strong correlation between βc3(M1M2) and the new

Wilson Coefficients. These scenarios enforce a simultaneously fit of NP and WA

parameters, supporting our approach.

6.3.3 Observable predictions

We are making predictions for several different kind of observables, which will help us

to distinguish the individual scenarios through future measurements. We listed some

CP asymmetries for B → K∗`+`− in the lower part of Table 6.10. It can be seen that

all observables, except for 〈P ′CP
8 〉[1, 6], behave SM-like for contributions to the unprimed

Wilson Coefficients. Contributions to the primed Wilson Coefficients can lead to sig-

nificant deviations, especially for 〈H4,5
T 〉. The respective extent of the effects to the

individual observables, Ô, mainly follows the pattern

Ô(C(′)
13 ) > Ô(C(′)

11 ) > Ô(C(′)
12 ), (6.34)

as anticipated in the theory section (see Equation 6.27 and Equation 6.29 ) and confirmed

by our fits. The pattern for hadronic observables is different. We listed in the upper

part of Table 6.10 the mixing-induced CP asymmetries ∆S(M1M2) for several Bd decays.

The effects from C(′)
13 are small. Indeed, the predictions can exceed within uncertainties

the interval of the SM prediction, but their central values are indistinguishable from the

SM background. However, the effects from C(′)
11 and C(′)

12 can become significant and we

find

∆S(C(′)
11 ) ∼ ∆S(C(′)

12 )� ∆S(C(′)
13 ). (6.35)

This means that scenarios with a modification of either C(′)
11 or C(′)

12 will be hard to

distinguish from each other when studying hadronic observables and we have to rely on

data from (semi-)leptonic decays. Fortunately, the mentioned anti-correlation between

different spin configurations in the final state can be utilised to at least distinguish sce-

narios with right-handed from left-handed flavour violation. According to the dominance



Chapter 6. Exploring the structure of physics beyond the SM 125

B →M1M2

∆S(Kπ) ∆S(Kρ) ∆S(K∗π) ∆SL(K∗ρ) ∆S(Kη′) ∆S(Kω) ∆S(Kφ) ∆SL(K∗φ)

SM [0.05, 0.13] [−0.19, −0.04] [0.06, 0.17] [−0.15, 0.09] [−0.01, 0.04] [0.09, 0.17] [0.01, 0.05] [0.01, 0.04]

C11 0.19+0.03
−0.05 −0.02+0.06

−0.09 0.23+0.03
−0.05 0.06+0.19

−0.13 0.07+0.08
−0.07 0.19+0.07

−0.07 0.10+0.07
−0.07 0.08+0.08

−0.07

C11′ 0.15+0.05
−0.05 −0.19+0.09

−0.10 0.00+0.09
−0.11 0.04+0.08

−0.17 0.15+0.07
−0.09 −0.05+0.17

−0.15 −0.28+0.12
−0.12 0.10+0.09

−0.04

C12 0.23+0.03
−0.04 0.09+0.08

−0.08 0.26+0.02
−0.03 0.14+0.06

−0.11 0.10+0.16
−0.10 0.21+0.03

−0.11 0.24+0.01
−0.22 0.08+0.09

−0.05

C12′ 0.15+0.05
−0.06 −0.23+0.10

−0.11 0.01+0.10
−0.11 0.04+0.08

−0.17 0.21+0.04
−0.18 0.11+0.08

−0.08 −0.90+0.88
−0.20 0.16+0.06

−0.12

C13 0.08+0.10
−0.03 −0.07+0.06

−0.12 0.08+0.12
−0.02 0.00+0.10

−0.15 0.05+0.03
−0.11 0.14+0.06

−0.06 0.03+0.06
−0.05 −0.02+0.10

−0.02

C13′ 0.07+0.09
−0.03 −0.09+0.04

−0.15 0.06+0.10
−0.05 0.02+0.06

−0.19 0.05+0.02
−0.12 0.13+0.04

−0.10 0.00+0.07
−0.04 −0.03+0.10

−0.02

B → K∗`+`−

〈Aim〉[1, 6] 〈Aim〉[14, 16] 〈Aim〉[>16] 〈H4,5
T 〉[14, 16] 〈H4,5

T 〉[>16] 〈PCP
3 〉[1, 6] 〈P ′CP

6 〉[1, 6] 〈P ′CP
8 〉[1, 6]

SM O(10−4) O(10−3) O(10−3) O(10−5) O(10−5) O(10−4) O(10−3) 0.01+0.00
−0.01

C11 SM SM SM SM SM SM SM −0.16+0.05
−0.06

C11′ −0.01+0.01
−0.00 0.03+0.02

−0.01 0.03+0.01
−0.01 −0.16+0.06

−0.06 −0.15+0.06
−0.06 0.01+0.01

−0.00 0.00+0.00
−0.01 0.05+0.02

−0.02

C12 SM SM SM SM SM SM SM −0.08+0.02
−0.02

C12′ 0.00+0.00
−0.00 0.01+0.00

−0.00 0.01+0.00
−0.00 −0.04+0.02

−0.02 −0.04+0.02
−0.02 0.00+0.00

−0.00 −0.01+0.01
−0.01 0.02+0.01

−0.01

C13 SM SM SM SM SM SM SM −0.24+0.06
−0.05

C13′ −0.01+0.00
−0.00 0.05+0.02

−0.02 0.05+0.02
−0.02 −0.25+0.10

−0.08 −0.25+0.09
−0.08 0.01+0.02

−0.00 −0.01+0.01
−0.01 0.08+0.03

−0.03

Table 6.10: Compilation of predictions for the C(′)11 , C(′)12 , and C(′)13 scenarios

of the data in B → Kπ in the fit, we find the following pattern

δ(∆S(Ci)) ∼ δ(∆S(C′i)) for PP, VV,

δ(∆S(Ci)) ∼ −δ(∆S(C′i)) for PV, VP,
(6.36)

in which δ represents the difference between the SM and NP predictions. In some

cases the predictions for ∆S(M1M2), as it is the case for ∆S(Kφ) or ∆S(Kη′) within

the C′12 scenario, allow for huge ranges. However, ρM1M2
A is loosely constrained in these

decay modes, as one can see from the SM fits in Appendix B. If these observables are

instead used as constraint in the fit, they would not lead to further restrictions of the

NP parameter space, but rather for ρM1M2
A , as we have tested. More suitable are decay

systems in which the power-suppressed corrections can be robustly extracted. With

respect to this, ∆S(Kπ) and ∆S(Kρ) are promising candidates to identify NP con-

tributions to the QCD-penguin decay amplitude. Their correlation is presented in the

histograms, shown in the upper panel of Figure 6.14, where we plotted from left to right

the predictions from the C11(′) , C12(′) and, C13(′) scenarios, comparing contributions from

left-handed (red) against right-handed (blue) flavour violation. The lower two panels

show the prediction of the so far unmeasured direct and mixing-induced CP asymmetries

in B̄s → φLφL and B̄s → K̄∗0L K
∗0
L . Since decays into purely longitudinal-polarised vector

modes do not distinguish between left- and right-handed flavour violation, we confine

to the former scenarios as had been favoured by the data. Furthermore, we decided to

predict observables from longitudinal-polarised modes because of their scaling property,

implying less sensitivity to power corrections. We can see that the predictions, at least

from the C11(′) and C12(′) scenarios, can significantly vary from their SM value because
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WA is only inferred from branching-ratio and polarisation-fraction measurements and

not well constrained for these decay modes. Power corrections for, e.g., B̄s → K̄∗0K∗0,

as quantified for the SM in Table 5.2, can become larger as the QCD-penguin ampli-

tude, which complicates a accurate determination of the strong phase in α̂4(K∗K∗) and

causes two solutions to the direct CP asymmetry, though the fit reveals a defined weak

phase. Such a phenomena does not occur for the decay B̄s → φLφL, for which WA con-

tributions are less important. Although the impact on those observables are large, the

scenarios C11 and C12 could be clearly verified, but not falsified. The predictions from all

three scenarios also allow for the possibility of no CP violation, which, if experimentally

established, would rather constrain WA than NP.
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Figure 6.14: Correlations among the predictions for ∆S in B̄0 → K̄0π0 vs. B̄0 →
K̄0ρ0 (upper panels), ∆SL vs. CL in both B̄s → φφ (middle panels) as well as in
B̄s → K̄∗0K∗0 (lower panels) at the probability of 68% and 95%. The results are
obtained from left to right for modifications of C11, C12, and C13 (red) and for their
χ-flipped counterparts (blue). Experimental central values and 1σ uncertainty interval
from HFAG are shown for those observables that have already been measured — repre-
sented by solid black lines. The dotted black lines show the prediction interval at 68%
probability obtained from a SM fit.
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Chapter 7

Outlook & Conclusions

Calculating the matrix elements of the decay of a B meson into two light hadronic final

states is a rather complicated problem due to the current incalculability of the QCD

interaction at low-energy scales. The development of QCD factorisation by Beneke,

Buchalla, Neubert, and Sachrajda, as a systematic approach to calculate these from

first principles to arbitrary order in the strong gauge coupling αs and to leading order

in the expansion of the b-quark mass, was a substantial progress and led to for example

many phenomenological studies ([28] more than 1000 citations). Predictions for hadronic

observables are thereby mainly limited through power corrections, which naively scale

like ΛQCD/mb ∼ 10−20 %. The largest contributions originate from hard-spectator scat-

tering and weak annihilation. Their consideration became indeed indispensable for a

sensible description of the data. About 15 years after the development of QCD factori-

sation, further effort were put into the calculation of higher-order radiative corrections

to the tree-level and QCD-penguin matrix elements, whereas the latter is still work in

progress. However, a reliable approach to consistently incorporate power corrections is

still lacking. The impact of these corrections on the individual observables are typi-

cally uncorrelated included in the total error budget, even for those that stem from the

same decay mode, and might be estimated too large. So far, the abundance of hadronic

observables has mostly been measured during the last decade by the BaBar and Belle

collaborations and, since a few years and for certain decay modes, also from the LHCb

experiment at the LHC. Forthcoming experiments, as Belle II, and the upgrades of the

LHCb detector will allow to push these measurements to a rather high precision. To

gain further benefits from hadronic observables, a more suitable way to approximate

these power corrections is mandatory.

We suggested in this work to extract weak annihilation contribution from experi-

mental data, whereas one universal weak annihilation parameter was assumed for those

QCD-penguin-dominated decay amplitudes whose initial and final states are related via

(u ↔ d) quark exchange. The tremendous reduction of uncertainty thereby allows us,

131
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on the one hand, to test QCD factorisation within the Standard Model and our as-

sumption about universality and, on the other hand, to effectively search for indirect

hints of physics beyond the Standard Model. The former aspect was studied in the first

part of the phenomenological section of this thesis. Although, extracting weak annihila-

tion from data have already been studied in the literature for certain decay modes and

observables, a detailed analysis of all measured QCD-penguin-dominated decay modes,

systematically classified among final state systems, have not been performed so far.

Their weak annihilation contributions are numerically dominated by the same topology

due to the hierarchy of Wilson Coefficients in βc3(M1M2) and one might expect similar

results of the individual fits. This could indeed be confirmed. Especially, the results for

the decay modes B → Kπ, Kρ, K∗π, K∗ρ reveal two solutions with almost equal phases

and similar absolute values for ρM1M2
A . Their contour regions overlap at the probability

of 68% — even for B → K∗ρ, for which, contrary to the others, the combination of

branching and polarisation fractions, instead of branching fractions and CP asymme-

tries, dominate the combined fit. Furthermore, the upper range for the prior probability

of |ρM1M2
A | was only limited to be smaller than 8 and in principle allowed for huge cor-

rections to the decay amplitude (more than twice as large as the leading QCD-penguin

decay amplitude). It is all the more notable that the fits preferred solutions in which the

decay amplitudes from weak annihilation are still reasonable small. This is a non-trivial

outcome of our fits. We quantified the relative amount of power corrections, needed

to explain the data, by the ratio ξA3 (M1M2). Since αc4(M1M2) with at least one vector

meson in the final state is accidentally smaller, the best-measured B → PP decay mode,

B → Kπ, seems to be most suitable to define a benchmark whether the expansion in

ΛQCD/mb is reliable. We found ξA3 (Kπ) ∈ [0.37; 0.54] at the probability of68%, which

can yet significantly decrease by the upcoming NNLO calculations of the QCD-penguin

amplitude.

Our assumption that final state systems that are related via (u↔ d) quark exchange

obey similar hadronisation dynamics was then further tested. If the approach of universal

weak annihilation contribution to these decay groups would not have been justified, we

should have seen discrepancy in the data. However, the only system, in which we have

found tensions, was B → Kπ, reproducing the well-known ∆AKπCP puzzle. This problem

also occurs in QCD factorisation with conventional error estimation or within other

approaches, which avail itself of symmetry arguments, and is unlikely to be caused by

wrongly interpreted weak annihilation contributions. We showed a further alternative

to solve this tension in the Standard Model through enhanced hard-spectator scattering

interactions. This possibility could be approved in the future through large effects for

the CP asymmetries C(B̄0 → K̄0π0) and C(B̄s → K0π0). The ratio of branching ratio

RBn (Kπ) is less sensitive to other sources of power corrections and also obeys a small

discrepancy, which was not discussed in the literature, so far. This observable will be
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a suitable candidate to search for new-physics contributions as soon as the discrepancy

will be confirmed by more data.

Although, universality might be valid under the above-described conditions or can

even be expanded to the case of same final state decays, connecting certain Bs with

Bd modes, universality is not expected in general. One example are the pure weak

annihilation decays B̄s → π+π− and B̄d → K+K−. Contrary to |ρKKA | ≤ 2.20, we

have seen that |ρππA | ≥ 2.95, need to be rather large and typically proposed values of

|ρM1M2
A | ∼ 1.5 − 2.0 cannot accommodate the data. This confirms our approach of

fitting ρM1M2
A rather than remaining to a fixed value and including power corrections as

a potentially overestimated error.

The second part of this thesis considered the possibility of solving the previous

detected tensions through additional contributions beyond the Standard Model. We did

not study any particular model, but rather tried to find the structure of new-physics

through model-independent fits, thereby, allowing certain effective couplings like Wilson

Coefficients of the effective weak Hamiltonian or more fundamental Standard Model

couplings to be enhanced. Such a procedure has the advantage that the effects of several

concrete models can consequently be described simultaneously and bounds on effective

couplings are easily projected onto any favoured model. At the same time, we do not

have to bother about other constraints, which automatically arise in any particular

model, and focus on a specific problem.

Since an adequate number of b → d triggered decay modes that would allow to

extract the new-physics and weak annihilation parameter together, does not exist, we

exclusively probed the possibility of additional contributions in b → s transition. Con-

trary to the Standard Model, we permit both left- and right-handed flavour violation.

At the moment, the most accurate data is available for B → Kπ and due to the observed

discrepancy, all considered scenarios were dominated by this decay system. The relation

between, for instance, enhanced Wilson Coefficients therefore follows the pattern

Ci ' −C′i.

In order to either approve or refute this hypothesis, more precise measurements are

needed from other decay modes, especially from the B → V V modes like, B → K∗φ

and B → K∗ρ. Whereas models with either preferred left- or right-handed flavour

violation should effect all hadronic observables, the parity-anti-symmetric pattern with

left- and right-handed flavour violation does not influence B → V P and B → PV decay

modes, as B → Kρ and B → K∗π, explaining the importance of decays with two vector

mesons in the final state.

Our first analysis was dedicated to an enhancement of the QED-penguin Wilson

Coefficients. At the beginning, we showed that our approach indeed imply qualitative
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different results compared to conventional QCD factorisation. The latter approach yield

a contour region for a C7 fit that allowed for two different CP-violating phases. This

seems to be suspicious, considering that we tried to solve a discrepancy in only one CP

asymmetry. Indeed, taking power corrections uncorrelated into account covers the effects

from physics beyond the Standard Model and their contributions can only be sharply

extracted in a combined fit, supporting our ansatz. We further fitted systematically new-

physics corrections to C7, C9 and their counterparts C′7, C′9. We found that new-physics

in these Wilson Coefficients could still be as large as the Standard Model contribution to

C9. Most scenarios could properly account for the two discrepancies, whereas the data

prefers models with new-physics in C7 and C′7. Surprisingly, these Wilson Coefficients

were found to be almost purely real, which will be hard to approve by other, especially

CP-violating, observables. At last, the amount of power corrections for the C77′ scenario

could remarkably decrease to ξA3 (Kπ) = 0.13.

We further studied two new-physics scenarios that also affect decay modes triggered

by b → s(γ)`+`−. On the one hand, we allowed for contributions to the Standard

Model Z-coupling to the b → s quark transition and, on the other hand, introduced

new operators, Ob = (s̄b) (b̄b), contributing via mixing effects. Because (semi-)leptonic

observables are dominated by QED-penguin operators, their observables reveal stronger

constraints, but at the moment, most measured observables are insensitive to a CP-

violating phase making hadronic constraints complementary. In detail, there is tension

between semi-leptonic data and the SM prediction for 〈P ′5〉 (B → K∗`+`−) in the bin

q2 = [1, 6] GeV2, which could be resolved by additional contributions to the vectorial

Wilson Coefficients. This discrepancy can be addressed within the extended operator

basis scenarios, exclusively contributing to C9,V , but not for the enhanced Z-penguin

model, contributing mainly to C10,A. The situation for ∆AKπCP is unfortunately turned

around. The new operators Ob mainly influence the QCD-penguin operators and are

not well suited to solve this tensions, which is not the case for the Z-penguin scenario,

modifying the QED-penguin Wilson Coefficients. Since RBn (Kπ) can be resolved in both

scenarios, ∆AKπCP might also originate from enhanced power corrections in hard-spectator

scattering interactions – even in the presence of certain new-physics scenarios.

The data prefers, on the one hand, a combination of left- and right-handed flavour-

violating Z-couplings, for which the power correction ratio could decrease to ξA3 (Kπ) =

0.30 and, on the other hand, within the extended operator basis, a combined correction

to C12 and C′12. The latter class of models dominantly change the QCD-penguin ampli-

tude. Hence, tight correlations between new-physics and weak annihilation parameter

are implied and actually even ξA3 (Kπ) = 0 is possible in this case.

For each of the three discussed classes of new-physics models, we exhaustively dis-

cussed at the end of each analysis, phenomenological implications of the sub-scenarios
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under consideration and how they can be detected in prospective newly measured ob-

servables at the LHCb and Belle II. A data driven analysis, like the present one, need to

be further tested in the future and assumptions might need to be adapted. Nevertheless,

as long as it is not clear, how to incorporate power corrections from first principles, our

approach, with eventually certain extended assumptions, is a suitable way to search for

physics beyond the Standard Model in hadronic B-meson decays.





Appendix A

Statistical procedure

This appendix summarises the statistical methods that are used in order to obtain

credibility regions for the parameters of interest, pull values of theory predictions and

corresponding measurements of observables, and p-values as a measure of the goodness

of fit. Further, we describe the determination of probability distributions of predictions

for observables that were not included in the fit.

A.1 Credibility regions

For the purpose of parameter inference we use Bayes theorem to determine the posterior

probability distribution, P (θ|M,D), of the parameters of interest, θ = (θ1, θ2, . . .), given

a model M and data D. Parameters of interest in our analysis are i) the phenomeno-

logical parameters of weak annihilation and hard spectator scattering ρM1M2
A,H and ii)

parameters of new physics scenarios. Bayes theorem relates the posterior probability

to the likelihood L(θ) = P (D|M,θ), which is the probability of the data given the

model M with parameter values θ and the prior distributions, P (M,θ), which are the

probability of model M with parameter values θ

P (θ|M,D) =
P (D|M,θ)P (M,θ)

Z
and Z ≡

∫
P (D|M,θ)P (M,θ) dθ . (A.1)

Here, the model-dependent normalisation factor Z is known as “evidence” or “marginal

likelihood” that plays an important role in model comparison within the Bayesian ap-

proach. Throughout, the priors of the θ are chosen as uniform within a certain interval.

It is common to introduce the likelihood function L(θ) as the product of the prob-

abilities p(Oi = Oi,th(θ)) that each observable Oi in the data set takes the particular

value Oi,th(θ) predicted at the value of θ

L(θ) =
∏

i∈ data

p
(
Oi = Oi,th(θ)

)
∼ exp

[
−1

2

∑
i∈ data

(
χi(θ)

)2
]
. (A.2)
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The probabilities p are given by the measured probability density functions pdf[Oi] of

each observable Oi and the second part of Equation A.2 indicates the special case of

Gaussian distributed pdf’s permitting to define a χi(θ).

The expression of L(θ) does not yet include the uncertainties due to nuisance

parameters, ν = (ν1, ν2, . . .), which enter theoretical predictions of B → M1M2 decays

as well as complementary constraints due to b → s(γ)`+`− decays. In this case, the

nuisance parameters give rise to an interval for the theory prediction [Oi,th−∆−i,th, Oi,th+

∆+
i,th] with possibly asymmetric uncertainties ∆±i,th around the central value Oi,th that

is obtained for central values of all nuisance parameters. Usually, there is no unique or

even no statistical interpretation of this interval. Here, the theoretical uncertainty ∆±i,th

is determined by adding in quadrature the uncertainties due to each nuisance parameter

νa

∆±i,th =

√∑
a

(
∆±i,a,th

)2
, (A.3)

which arises from the minimal, central and maximal values νa,min, νa,cen and νa,max,

respectively,

∆
+(−)
i,a,th =

∣∣Oi,th(νa,max(min))−Oi,th(νa,cen)
∣∣ , (A.4)

while keeping all others at their central values. Clearly, this is an approximation that

neglects more complicated interdependence of observables on several parameters and also

possible correlations among different nuisance parameters. The nuisance parameters are

listed in Table 3.1 for B → M1M2 decays and further details concerning b → s(γ)`+`−

are given in Chapter 4.2.1.

In the presence of nuisance parameters, we will adopt the simple procedure to use

the maximal value of the pdf inside the interval of the theory prediction, hence replacing

in Equation A.2

p
(
Oi = Oi,th(θ)

)
→ max

[
p
(
Oi ∈ [Oi,th −∆−i,th, Oi,th + ∆+

i,th]
)]

, (A.5)

where the dependence of Oi,th and ∆±i,th on θ and ν is not explicitly shown. This

procedure is implemented easily for Gaussian distributed pdf’s by the modification of
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the definition of

χi(θ,ν) =



∣∣Oi,th(θ,ν)−Oi,exp

∣∣−∆+
i,th(θ,ν)

σ−i,exp

if Oi,exp ≥ Oi,th + ∆+
i,th,∣∣Oi,th(θ,ν)−Oi,exp

∣∣−∆−i,th(θ,ν)

σ+
i,exp

if Oi,exp ≤ Oi,th −∆−i,th,

0 else.

(A.6)

where Oi,exp and σ±i,exp denote the central value and the left and right standard deviation

of the pdf[Oi], respectively. The central value of the theoretical prediction Oi,th is

obtained at the particular value of the parameters of interest θ and the ν are set to

their central values.

Obviously, the modification of Equation A.6 is tailored to Gaussian pdf’s, which

is our interpretation of experimental world averages given by the Particle Data Group

(PDG) [63] or Heavy Flavour Averaging Group (HFAG) [3]. However, the ratios of

Gaussian distributed observables — like the ones defined in Equation 4.3: R = B1/B2

— follow a Gaussian ratio distribution. In the absence of experimental results of these

ratios, one has to resort to the combination of the two Gaussian distributions of nu-

merator and denominator. In all relevant cases, the Bi are Gaussian distributed with

symmetric errors (from HFAG) and assuming that their errors are uncorrelated, the an-

alytic expression of p(R) is known [173]. Because it is monotonic rising till its maximum

at Rmax = B1/B2 and then monotonic falling, the maximal value of the probability in

the theory interval can be easily found by evaluating p(R) at

R =



Ri,th + ∆+
i,th if

B1,exp

B2,exp
≥ Ri,th + ∆+

i,th,

Ri,th −∆−i,th if
B1,exp

B2,exp
≤ Ri,th −∆−i,th,

B1,exp

B2,exp
else.

(A.7)

The probability value is converted to χ = −2 log p(R). Let us finally note that the differ-

ence between the Gaussian ratio distribution and a Gaussian distribution with central

value R and σ(R) determined from simple uncertainty propagation calculus, is numeri-

cally negligible unless large deviations of experimental and theoretical values probe the

tails of the distributions, which are “heavier” for the Gaussian ratio distribution.

Concerning the evaluation of the posterior probability, it is determined numeri-

cally with the help of the Markov Chain Monte Carlo (MCMC) implementation of the

Bayesian Analysis Tool (BAT) [174]. One and two-dimensional posterior distributions
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are obtained in turn by marginalisation over the remaining parameters of interest. The

best-fit points are identified with the help of Minuit that is initialised with the point of

the highest posterior found during the MCMC run.

A.2 Pull value

The deviation of a single measurement of an observable Oi from its prediction Oi,th±∆±i,th

for a particular value of the parameters of interest θ∗ will be given in terms of the

pull value, taking into account the theoretical uncertainty. Here, we define the pull

value as the integral over those regions of the pdf[Oi], which have higher probability as

the maximal probability value pmax(Oi,th(θ∗)) appearing in the interval spanned by the

theory prediction [Oi,th−∆−i,th, Oi,th +∆+
i,th] due to variation of the nuisance parameters

δ =

∫ +∞

−∞
dOi p(Oi) θ[p(Oi)− pmax] (A.8)

where θ(x) denotes the step function. Consequently, the pull value is zero if the maxi-

mum of the pdf is inside this theory interval. In the case of a normally distributed pdf

(with σ+
i,exp = σ−i,exp), a non-zero pull implies a symmetric integration interval around

the central value Oi,exp of the distribution and the integrated fraction of probability can

be converted into the distance between the lower or upper boundary of the theory uncer-

tainty interval to Oi,exp in terms of its standard deviation σi,exp depending on whether

the theory prediction is above or below Oi,exp. In the case of non-Gaussian pdf’s, the

pull value gives a measure of the probability fraction that corresponds to those values

of Oi that have higher experimental probability than the ones contained in the interval

of the theory prediction1. The pull value is simply calculated by drawing values for Oi

that are distributed according to the pdf[Oi] and taking the ratio of the cases in which

p(Oi) > pmax(Oi,th(θ∗)) and the total number of draws.

A.3 p Value

As a measure of the goodness of fit, we will use p values in order to compare within the

same theoretical model at some point θ∗ — usually the best-fit point(s) — the quality

of the fit for different sets of data. For this purpose we will assume the model with the

specific choice θ∗, allowing us to produce frequencies of possible outcomes within the

model. We will use two ways to calculate p values.

1For very non-Gaussian pdf’s with several disconnected regions of probability, the pull value might
give rise to misleading interpretations, however, all measurements at hand are Gaussian or Gaussian
ratio distributed.
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The common definition is used as a first possibility, assuming the validity of normal

and all independent pdf’s. It consists in the evaluation of the cumulative of the χ2-

distribution — the latter denoted by f(x,Ndof), with Ndof number of degrees-of-freedom

— starting from the value χ2
∗ = −2 logL(θ∗)

p =

∫ ∞
χ2
∗

dx f(x,Ndof) , (A.9)

and corresponds to the probability of observing a test statistic at least as extreme in a

χ2 distribution with Ndof . Values of p < 5% are usually referred to as “statistical signif-

icant” deviation from the null hypothesis, i.e., the validity of the model with parameters

θ∗. As usual, the number of degrees-of-freedom is given as Ndof = (Nmeas − dim(θ)),

with Nmeas denoting the number of measurements.

As a second possibility we calculate the p value defining a test statistics based

on the likelihood [105]. The according frequency distribution is determined from 106

pseudo experiments in the lack of raw data and experimental efficiency corrections that

require dedicated detector simulations. For this purpose, the pdf of each observable

Oi is shifted such that the position of it’s maximum at Oi = Oi,exp coincides with the

prediction Oi,th(θ∗) at the point θ∗ of interest. In this way, the uncertainties of the mea-

surement with central value Oi,exp are adopted for Oi,th(θ∗), neglecting possibly different

experimental efficiency corrections. In each pseudo experiment, possible experimental

outcomes are drawn for all measurements in the data set from the shifted pdf’s and the

likelihood value is compared to that of the observed data set, determining this way the

fraction of pseudo experiments with smaller likelihood values. The p value is identified

with this fraction, however for the number of degrees-of-freedom that corresponds to the

number of measurements Nmeas in the data set. Subsequently, we correct the p value

by converting it to a χ2 value with the help of the inverse cumulative distribution with

Nmeas degrees-of-freedom and recalculate it for the actual Ndof [175] using Equation A.9.

A.4 Probability distributions of observables

If certain observables are not yet measured or despite an existing measurement are not

included in the data set D of the fit, one might obtain a prediction of its probability

distribution given the data D and model M [105]. In the case of MCMC, we calculate

the considered observables at each point of the Markov Chain for the current value

of θ and determine the interval of the theory uncertainty [Oi,th − ∆−i,th, Oi,th + ∆+
i,th]

due to nuisance parameters as described in Chapter A.1. The obtained intervals are

subsequently normalised to their width |∆+
i,th + ∆−i,th| and used to fill a histogram that

is normalised eventually to obtain a probability distribution.
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A.5 Size of power-suppressed corrections in new-physics

models

The amount of power corrections in hadronic B-meson decays can be calculated in the

Standard Model at each parameter point in the ρA,H plane. Fitting these corrections

to the data, we obtain a best-fit point θ∗ and the most likely value for the ratios

ξA,H(θ∗, ν = νcen)2 in Equation 3.36. Even contour lines can easily be drawn into

the 2 dimensional parameter plane |ρA,H | − φA,H . Once, additional degrees-of-freedom

are taken into account, the exercise to find the most likely values for these ratios to a

given credibility region of the new parameters becomes more involved. The parameter

space can be split into

θ = θ1 ⊗ θ2 = {ρA, ρH} ⊗ {χfund.}, (A.10)

where χfund. contains n parameters, necessary to characterise some non-standard effects.

The power correction ratios are defined in terms of the fit parameters ξ = ξ(θ1,θ2). We

then introduce the reduced power correction ratio ξij to obtain a measure for the relative

amount of power corrections at each point of a certain combination of two new-physics

parameters θ2,i, θ2,j

ξij(a, b) = ξ(θ1∗,θ
red.
2∗ ,θ2i = a,θ2j = b), i, j ≤ n, (A.11)

where θ1∗ and θred.
2∗ ∈ {χfund.}\{θ2i,θ2j} are defined by the best-fit point of the reduced

Likelihood

Lred.(θ1,θ
red.
2 ) ≡ L(θ1,θ

red.
2 ,θ2i = a,θ2j = b). (A.12)

In order to study how the power-suppressed ratio changes within a certain new-physics

model, we quote in the phenomenological part of this work (see Chapter 6) the min-

imal/maximal value for the reduced power-suppressed ratios min
i,j

ξij(a, b), for which

a, b ∈ 68% CR of the marginalised 2D histograms. These values should be than com-

pared to ξA3 at the best-fit point from the SM fit.

2For the sake of clearness, we omit the superscript A,H and the argument ν from ξ for the following
discussion. The nuisance parameter ν are understood to be evaluated at their central value.
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Standard Model fits

B.1 Fit results for other B → PP, PV, V V

We collect here the SM fits of the residual QCD-penguin-dominated decay modes that

were not shown in Chapter 5. Several plots reveal that certain observables are unsuitable

to constrain the parameters of WA, which is caused by insufficient sensitivity to ρM1M2
A .

For instance, the direct CP asymmetry of B → Kφ is, because of absent tree-level decay

amplitudes, predicted to vanish in the SM and cannot be enhanced — even in presents of

large power corrections, due to which we observe the less well-defined green contour. In

case of the four decay systems B → K(∗)η(′) the reason for the inability of constraining

WA mainly originate from lacking experimental precision and large theoretical uncer-

tainties. The only exception is B → K∗η′, for which still five disjoint CRs can be found

to explain the data. Contrary to these decay modes, Bs → Kπ allows for an precise ex-

traction of ρKπA . We already tested in Subsection 5.1.3 that the direct CP asymmetry of

B̄s → K+π− can be correctly predicted from a fit of the corresponding decay of the Bd

meson and the comparison of their combined contours in Figures B.1 and 5.1 bare sim-

ilar areas in parameter space. The contours from B → K∗ω, Bs → K∗φ, and Bs → φφ

reveal the typical features of two vector mesons in the final state, for which only data of

branching and polarisation fractions are available: Two solution with comparably small

|ρA| at φA = 0± δ and φA ' π ± δ, with some small correction δ.

B.2 Predictions of CP violation in B → K∗φ, B̄s → φφ, and

B̄s → K̄∗0K∗0

We have shown that CP violation in various decay modes can receive significant contri-

butions from the NP scenarios considered in our analysis. Their SM predictions have

been obtained from a fit of ρM1M2
A . Apart from the direct and mixing-induced CP asym-

metries, we included all available data of each system and summarised the results in

143
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Figure B.1: 68% and 95% CRs for the complex parameters ρM1M2

A for QCD-penguin-
dominated B-meson decays B → K(∗)η(′), Bs → Kπ, B → Kφ, B → K∗ω, Bs → K∗φ,
and Bs → φφ in the SM. Allowed regions are separately shown for branching ra-
tios (blue), CP asymmetries (green), polarisation fraction (cyan), and the combination
(red). The dashed lines correspond to ξA3 (M1M2) = 0.25 (0.5, 1.0).

Table B.1. It turns out that the amount of CP violation in these decays that can be

accommodated in the SM is small, due to which we did not indicate their values in our

plots.

∆SL ∆S⊥ CL C⊥

B̄s → φφ −0.03+0.00
−0.00 +0.04+0.00

−0.00 10−3 10−3

B̄s → K̄∗0K∗0 −0.03+0.00
−0.02 +0.04+0.00

−0.00 0.00+0.01
−0.00 10−3

B̄0 → K̄∗0φ [0.01, 0.04] [−0.04,−0.01] 10−3 10−3

B− → K∗−φ – – 0.00+0.00
−0.01 −0.01+0.01

−0.00

Table B.1: Predictions for the direct and mixing-induced CP asymmetries in B →
K∗φ, B̄s → φφ, and B̄s → K̄∗0K∗0 from a SM fit.



Appendix C

NLO calculations for the new

operators Ob = (s̄b) (b̄b)

This Appendix collects all relevant ADMs and higher-order QCDF corrections, which

have been used for the NP scenarios in Chapter 6.3. The SM operator basis is defined

in Equation 2.15 for the 4-quark and in Equation 2.19 for the semi-leptonic operators

and extended by the (s̄b) (b̄b) operators in Equation 6.23. The full EWH is given as a

sum of the individual contributions in Equation 2.14, Equation 2.18 and Equation 6.24

Heff =
GF√

2

∑
p=u,c

λsp

(
10∑
i=1

CiO
(p)
i + C7γO7γ + C8gO8g +

15∑
i=11

C(′)
i O

(′)
i + 4C9VO9V

)
+ h.c.,

(C.1)

C.1 Anomalous dimension matrix

To lowest order in O(αs) we obtain the self-mixing of the operators Q11 −Q15 [176]

[
γ(0)
s,cc

]
11−15

=
αs
4π



6− 6
N 0 0 0 0

0 −12CF 0 0 0

0 −6 6
N 0 0

0 0 0 8CF 4CF

0 0 0 CF −7CF


(C.2)

as well as the self-mixing to the order O(αe)

[
γ(0)
e,cc

]
11−15

=
α

4π



4
3 0 0 0 0

0 −4
3 0 0 0

0 0 −4
3 0 0

0 0 0 −4
9

16
9

0 0 0 16
9

−4
9


(C.3)
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The ADM, which is responsible for the mixing into the QCD-penguin Q3 −Q6 and the

chromo-magnetic operators are given at lowest order in αs [168, 176]

[
γ(0)
s,p

]
3−6,11−13

=
αs
4π

2

3


− 1
N 1 − 1

N 1

− 1
N 1 − 1

N 1

0 0 0 0

 ,
[
γ(0)
s,p

]
8g,15

=
αs
4π

(1) (C.4)

and at NLO, we only include the mixing of Q11 − Q13 into the Standard Model QCD-

penguin operators Q3 −Q6 [176][
γ(1)
s,p

]
3−6,11−13

=
1

2

(αs
4π

)2


6Nc − 64

27 − 16
3Nc

+ 172
27N2

c

352
27 Nc − 2

3 − 460
27Nc

−6Nc − 244
27 + 20

3Nc
− 188

27N2
c

172
27 Nc − 2

3 + 260
27Nc

−112
27 − 356

27N2
c

−32
27Nc + 500

27Nc
140
27 + 148

27N2
c

220
27 Nc − 508

27Nc

−6Nc + 40
3Nc

−22
3 6Nc + 4

3Nc
−22

3


(C.5)

At last, we need the mixing ofQ11−Q13 into the Standard Model QED-penguin operators

Q7 −Q10 and of Q14, Q15 into the electro-magnetic dipole operator [168]

[
γ(0)
e,p

]
7−10,11−13

= − 8

27

α

4π


1 +Nc 0 1 +Nc 0

1 0 1 0

Nc 0 Nc 0

 ,
[
γ(0)
e,p

]
7γ,14−15

=
α

4π

(
−1

3Nc

−1
3

)
,

[
γ(0)
e,p

]
9V,11−13

=
4

9

α

4π


1 +Nc

1

Nc

 . (C.6)

C.2 Hadronic matrix elements

Because we incorporated the RGE for the mixing of the operators O11−13 into the QCD-

penguin operators of the SM at next-to leading order precision, we need to take care of

next-to leading order corrections to hadronic matrix elements for a proper cancellation

of the scale dependence. The decay amplitude a4,6(M1M2) receive contributions from

penguin topologies parametrised through P4,6(M2) in Equation 3.22, which get modified

by contributions from C11,12

δP p4 (M2) =
CFαs
4πNc

([
4

3
ln
mb

µ
+

2

3
−GM2(1)

]
C11 +

[
4

3
ln
mb

µ
−GM2(1)

]
C12

)
,

δP p6 (M2) =
CFαs
4πNc

([
4

3
ln
mb

µ
+

2

3
− ĜM2(1)

]
C11 +

[
4

3
ln
mb

µ
− ĜM2(1)

]
C12

)
.

(C.7)

The definition of the penguin functions G(s) and Ĝ(s) can be found in [36, 53].
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