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Steffen Limmer∗, Sławomir Stańczak∗†, Mario Goldenbaum†, Renato L. G. Cavalcante ∗

∗ Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany,
† Fachgebiet Informationstheorie und theoretische Informationstechnik,

Technische Universität Berlin, Einsteinufer 25, 10587 Berlin, Germany

Email: {steffen.limmer, slawomir.stanczak, renato.cavalcante}@hhi.fraunhofer.de; mario.goldenbaum@tu-berlin.de

Abstract—This invited paper presents some novel ideas on
how to enhance the performance of consensus algorithms in
distributed wireless sensor networks, when communication costs
are considered. Of particular interest are consensus algorithms
that exploit the broadcast property of the wireless channel to
boost the performance in terms of convergence speeds. To this
end, we propose a novel clustering based consensus algorithm
that exploits interference for computation, while reducing the
energy consumption in the network. The resulting optimization
problem is a semidefinite program, which can be solved offline
prior to system startup.

I. INTRODUCTION

In many wireless (sensor) applications, nodes cooperate for

some common goal. One example is the localization of an

acoustic source using a number of geographically distributed

microphones that are equipped with wireless communication

capabilities. In fire alarm networks, for instance, a number

of wireless sensor nodes may be used to monitor maximum

and average temperature values. In such applications, the goal

is therefore not to share local measurements among network

nodes but rather to compute one or multiple functions of

these measurements (e.g., the maximum function or a weighted

sum). The functions to be computed depend on the targeted

application.

A key observation is that it is in general not necessary

to exchange raw sensor measurements in order to compute a

function thereof. It is further known that the broadcast property

of the wireless channel can be beneficially exploited when the

task is to compute or estimate function values at sensor nodes.

In particular, the information-theoretic analysis in [1] shows

how to encode messages for linear multiple-access channels

to enhance the rate at which linear functions can be reliably

computed at the receiver.

A different approach can be found in [2] where an ana-

log computation scheme is proposed which 1) is able to

efficiently compute non-linear functions over many multiple-

access fading channels and 2) is robust against the lack

of synchronization between different signals.1 The idea was

used in [3] as a building block of a cluster-based average

1Only a coarse frame synchronization is needed.

algorithm to improve the convergence speed of gossip-based

algorithms for average consensus [4]. Reference [5] extended

the approach of [3] to incorporate non-linear functions (f -

consensus algorithms).

In this paper, we consider the approach of [3] but take

into account different energy costs imposed on sensor nodes

by different distant-dependent path losses. We neglect the

energy consumption for feedback and channel estimation,

which however is relatively low under certain conditions [6].

Given the setup, the objective is to cluster sensor nodes and

then activate the clusters in such a way as to minimize the

overall energy consumption for transmission. In each cluster,

we neglect the impact of noise and assume that the average of

sensor measurements within the cluster is computed using the

CoMAC (Computation over Multiple-Access Channel) scheme

of [2] (see also Figure 1). A consequence of this is that the en-

ergy consumption can be reduced by decreasing the size of the

clusters; since this deteriorates the convergence speed and rate,

there is an inherent trade-off between the energy consumption

and the convergence behavior. This paper studies this trade-

off by numerically solving a suitably formulated clustering

and activation optimization problem. Different points on the

trade-off curve are achieved by choosing different weights

for a regularization term that takes into account the energy

costs. The paper is organized as follows: We first introduce

the system model and the cost model. This is followed by

the problem statement. In Section IV, we reformulate the

original problem of maximizing the convergence rate to take

into account the energy consumption for transmission. This

problem is solved using some standard optimization tools.

Section VI presents some simulations, while the paper is

completed by some conclusions and open problems.

II. SYSTEM MODEL

A. Network Model

We consider a clustered wireless sensor network consisting

of N ∈ N (sensor) nodes that are grouped in C clusters. Let

N = {1, . . . , N} and let Ci ⊆ N be the index set of nodes

belonging to cluster i ∈ C := {1, . . . , C}. Throughout the

paper, we use CHi ∈ Ci to refer to the cluster head of the ith
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(b) Step 2: Broadcast result.

Fig. 1. Two-step approach to average consensus

cluster. Note that in general, Ci ∩ Cj 6= ∅ for any i, j ∈ C and

∪C
i=1Ci = N .

Remark 1. Note that C denotes the number of possible

clusters that are used in our optimization. C may be very

large and, in extreme case, is equal to 2N − 1, the cardinality

of the power set of N excluding the empty set. However, while

operating, the network may activate only a subset of this set

as a result of the optimization process.

The sensor nodes are distributed over some geographical

area and we use X = [x1, . . . ,xN ] ∈ R
2×N to denote the

position matrix. Accordingly, xn ∈ R
2 contains the coordinate

of sensor node n with respect to some reference point. The

vector of squared distances from node i to all nodes is di =
{‖xi−xj‖2}j=1,...,N and we group these vectors in a matrix

D = [d1, . . . ,dN ].

B. Time Model

To model the temporal behavior of cluster activation, the

asynchronous time model in [4] is adopted. Furthermore we

assume that the cluster heads wake up according to a rate

µi ∈ R+ Poisson process, where µi is chosen such that only a

single cluster head is activated within a certain time window

(with high probability).

C. Communication Model

Denote the reading of the kth sensor at time t ∈ Z+ by

yk(t) ∈ Y ⊂ R, k ∈ 1, . . . , N , and the initial network state by

y(0) ∈ YN . If cluster Ci is active at time t ∈ Z+, the received

signal rCHi
at time t by cluster head i (node 1 in Fig. 1), is

given by

rCHi
(t) =

∑

k∈Ci\CHi

hik(t)sk(yk(t)) + ni(t), (1)

where hik(t), ni(t) and sk(·) denote the corresponding chan-

nel coefficient from node k to cluster head, receiver-side noise

and transmit signal of node k, respectively. This setting will

be referred to as noisy MAC. Assume, nodes can estimate the

channel to the cluster head by some wake up pilot symbols.

Then, to compute the average within cluster Ci, every node

needs to invert it’s own channel, which yields transmit signals

of the form

sk(yk(t)) =
1

hik(t)
yk(t) (2)

and simplifies the received signal to

rCHi
(t) =

∑

k∈Ci\CHi

yk(t) + ni(t). (3)

Hence, the channel inversion removes the impact of the

channel. In what follows, we assume an idealized noiseless

setting; the noisy case remains an open problem for potential

future research.

Considering (3) and neglecting the noise term, we can write

the time evolution of the state vector in a compact form. To

this end, let y(t) = [y1(t), . . . , yN (t)] be the state vector at

time t ∈ Z+ and let pi ∈ [0, 1], i ∈ C, be the probability with

which cluster i is activated. Then, y(t) evolves over time as

y(t+ 1) = W (t)y(t), t ∈ Z+, (4)

where for every t ∈ Z+, matrix W (t) := [w1, . . . ,wN ] ∈
R

N×N is independently and randomly chosen according to

the probability mass function/vector

p = [p1, . . . , pC ] ∈ [0, 1]C (5)

from the set {W (i)}Ci=1 of weight matrices defined by [3]

W
(i)
j,k :=











1, if j /∈ Ci, k = j
1
Ni

, if j, k ∈ Ci

0, else.

(6)

Remark 2. To compute functions different from arithmetic

or weighted mean, the consensus step can be adapted from

weight matrices W (i) to functionals f : YN 7→ R. It has been

shown in [7] that the resulting function space computable with

the proposed scheme is essentially the space of nomographic

functions, which contains also functions such as geometric

mean as a special case.

Remark 3. For an analysis of the noisy setting, we refer the

interested reader to [8].

III. COST MODEL

We employ the energy cost model of [9], which, for a

transmission of a k-bit message over a distance di,j from node

i to node j, is given by

Etot = Etx + Erx = kEelec + ǫampkd
2
i,j + kEelec. (7)

Notice that the circuitry for tx and rx is assumed to be

identical for all nodes. In what follows, we neglect the steady

energy consumption (Eelec) and consider only dynamic energy

consumption caused by amplifiers in the tx circuitry averaged

over some time period. We however point out that the results of

this paper can be easily extended to capture the steady energy

consumption, which may strongly influence the optimization

results if the sensor nodes can be switched off after computing

a function value. In such cases, it may be beneficial to prefer

larger clusters when the steady energy consumption increases.
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Moreover, for brevity, we neglect the receiver-side energy

consumption for reception, which could be easily incorporated

as well.

For an activated cluster Ci with respective weight matrix

W (i) and corresponding cluster head CHi ∈ Ci, we have to

differentiate between the energy cost associated with Step 1

c
(i)
fc and the energy cost imposed by Step 2 c

(i)
bc (see Figure 1).

In the first case, the energy cost results from the transmission

of sensor nodes to the ith cluster head and is therefore given

by

c
(i)
fc = dCHi

⊙ 1Ci
(8)

where 1Ci
is the vector-valued indicator function of the set Ci

defined as follows: if i ∈ Ci, then the ith element of 1Ci
is 1;

otherwise it is zero. Accordingly, the energy cost associated

with Step 2 is determined by the maximum distance between

the cluster head and cluster nodes, i.e. we have

c
(i)
bc = ‖dCHi

⊙ 1Ci
‖∞ · eCHi

(9)

where eCHi
∈ R

N is a unit vector with a 1 at the CHith

position and zeros otherwise.

Remark 4. Choosing an outer node as cluster head results

in higher communication costs (as distances and therefore

costs will be larger) even if the respective weight matrices

are identical.

IV. PROBLEM STATEMENT

Following the derivation in [3], [4], improving the con-

vergence rate for a predefined clustered WSN can be

achieved by optimizing the cluster activation probabilities

p = [p1, . . . , pC ], corresponding to weight matrices W (i), i =
1 · · ·C. The problem of optimizing the convergence rate can

therefore be formulated as the problem of minimizing the

second largest eigenvalue

[0, 1]C 7→ [0, 1] : ξ(p) := λ2(W (p)) (10)

of the stochastic weight matrix W := W (p) =
∑

i piW
(i)

(see [3], [4]). Taking into account the constraints, we arrive at

the following optimization problem:

min
p∈[0;1]C

ξ(p) (11)

s.t. W − J � ξ(p)IN

W =
C
∑

i=1

piW
(i)

C
∑

i=1

pi = 1

where NJ = 11
T ∈ R

N×N is the all-one matrix. Note that

the first constraint ensures that the second eigenvalue is smaller

than or equal to the largest eigenvalue of W , which is 1. An

upper bound for the resulting mean squared error can be given

with ε(t) := y(t)− y(0) by [3], [4]

E
{

ε(t)T ε(t)
}

≤ ξ(p)ε(t− 1)Tε(t− 1) ≤ ξ(p)tε(0)Tε(0)

V. JOINT ENERGY/CONVERGENCE OPTIMIZATION

Now we are in a position to extend the optimization problem

in (11) to incorporate the additional energy cost. The problem

of interest - called the joint convergence/expected lifetime

optimization problem - takes the form

min
p∈[0;1]C

ξ(p) + α‖c(p)‖1 (12)

s.t. W − J � ξ(p)IN

W =

M
∑

i=1

piW
(i)

C
∑

i=1

pi = 1

c(p) =

C
∑

i=1

pi(c
(i)
fc + c

(i)
bc ).

In addition, we assume that ξ(p) ≤ 1− ǫ for some sufficiently

small ǫ > 0. This ensures that the resulting clusters are

connected and therefore the algorithm converges. Furthermore,

we point out that the associated constraint set {p ∈ [0, 1]C :
ξ(p) ≤ 1−ǫ} is convex for any choice of ǫ. This is because the

largest eigenvalue of positive semidefinite symmetric matrices

is a convex function of the matrix entries which depend

linearly on p. A practical problem is the choice of ǫ which

cannot be too large since otherwise the problem is infeasible.

We emphasize that the set of all possible weight matrices

(i.e. clusterings) {W (i)}i=1,...,C comprises C = (N − 1)N
elements (each node can be cluster head of a cluster consisting

of {2, . . . , N} nodes), which might result in optimization

problems that are very expensive from a computational per-

spective. However, the set of weight matrices can be reduced

if we restrict the number of nodes per cluster. In addition,

we can exclude candidate clusters with an outer node as

cluster head because these choices correspond to identical

consensus steps only at a higher cost, i.e W (i) = W (j), with

‖c(i)‖1 ≥ ‖c(j)‖1 for some Ci = Cj , CHi 6= CHj .

VI. SIMULATION RESULTS

In this Section we present simulation results for the pro-

posed algorithm (12) using different predefined cluster sizes

|Ci| ⊆ {2, . . . , 30}. The simulated WSN consists of N = 30
nodes that are placed uniformly at random in a 50×50 square

and to solve the optimiziation problem (12) we use CVX [10].

To ensure convergence of the resulting consensus scheme,

the optimization variable ξ(p) is bounded by ξ(p) ≤ 1 − ǫ.
However, this bound must not be set too small, otherwise the

optimization problem will not be feasible. We found ǫ = 10−2

to yield good results.

To evaluate the resulting consensus scheme consisting of

weight matrices W (i), respective costs c(i) and activation

probabilities p, we simulate a physical application, where the

nodes are deployed to monitor temperature values. The initial

network state y(0) is drawn uniformly from [0 ◦C, 30 ◦C]N .

We monitor the error defined by
‖ε(t)‖2

2

‖y(0)‖2

2

and the consumed
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energy for a certain realization of the sequence of activated

clusters. The results are averaged over 103 runs. For the simu-

lations, we also assume that the nodes have expert knowledge

of the current estimation error to terminate communication,

and therefore also dynamic energy consumption, once the error

falls below a threshold of 10−1.
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Fig. 2. Proposed consensus algorithm for a WSN with N = 30 nodes and
small clusters |Ci| ⊆ {2, . . . , 10}.

 

 

M
ea

n
E

st
im

at
io

n
E

rr
o
r

M
ea

n
C

o
n
su

m
ed

E
n
er

g
y

Number t of Iterations

α = 0

α = 8.8 · 10
−5

α = 1.6 · 10
−4

0
0
0
0

0.1

0.2

0.3

0.4

55 15151010

0.5

1

1.5

2
×10

4

Fig. 3. Proposed consensus algorithm for a WSN with N = 30 nodes and
large clusters |Ci| ⊆ {20, . . . , 30}.

As can be seen from Fig. 2 and 3, the obtained simulation

results confirm the intended behaviour. In fact, if the regular-

ization parameter is chosen to be α = 0, the resulting con-

sensus scheme is only tailored towards fast convergence as in

(11), neglecting however the energy consumption. Conversely,

moving along the path of regularization parameter results in a

lower energy consumption at the cost of a slower convergence

rate. As an example, the results for a choice α ∈ {4; 8} ·10−5

in the small cluster setting and α ∈ {8.8; 16}·10−5 in the large

cluster setting are also depicted in Fig. 2 and 3, respectively.

VII. CONCLUSION

In this paper, we presented a novel algorithm for the

joint optimization of convergence and energy consumption

for consensus algorithms in wireless sensor networks. The

proposed algorithm takes into account distance dependent

transmit energies and clusters the network nodes according to

user-defined cluster sizes that may depend on application and

site specific characteristics. By incorporating a regularization

term, we investigated the trade-off between convergence speed

and energy consumption. This is achieved by a series of

numerical simulations of a temperature monitoring application

under the assumption of noiseless communication links. The

examples show that the naive choice of a single cluster

containing all nodes can be outperformed in terms of network

energy consumption if a certain excess error can be tolerated.

Of particular interest for our subsequent work will be

scenarios involving noisy communications links and time-

varying measurement objectives. This can be achieved by

using adaptive subgradient methods that harness interference

for computation [8]. Also, by using more knowledge about

the target application and leveraging ideas from compressed

sensing, the number of required measurements in the network

can be reduced. In turn, this will result in additional savings

in energy consumption and introduce new degrees of freedom

to the tradeoff between convergence speed and estimation

accuracy on one hand, and energy consumption and network

robustness on the other hand.
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