Versatile Modular Electronics for Rapid Design and Development of
Humanoid Robotic Subsystems

Brennand Pierce and Gordon Cheng
Institute for Cognitive Systems,
Technische Universitidt Miinchen,
Karlstrasse 45/11, 80333 Munich, Germany

Abstract— The development of humanoid robots is a highly
complex process. Consisting of numerous subsystems which
need to be combined for actuation such as electric motors or
hydraulic valves, as well as sophisticated sensors and sensing
units like skin. In this paper, we introduce our strategy to
simplify the development of these complex electrical systems by
using modular components. We took a generalised approach in
the realisation of our design. By utilising a standard module
based around a Field Programmable Gate Array (FPGA)
it will be shown that our design is effective in terms of
flexibility as well as scalability while at the same time ensuring
compatibility over multiple generations and types of humanoid
robotic systems. In this paper, we will present a few examples
of humanoid sub-systems showing the benefits of this approach.

I. INTRODUCTION

In comparison to other robots, the development of hu-
manoid robotic systems creates unique electrical challenges.
First of all, the weight and limited space for the electronics
need to be considered. Secondly, the large variety of sensors
which need to be interfaced have to be taken into account.
Lastly, and more importantly, the demand for hard real time,
high frequency control loops for the predictable control of
this complex system has to be met. Over the past decades,
extensive humanoid systems have been built [1], [2], [3],
[4], [5]- Most of the designers for these humanoids have
had a large tendency to re-implement their electrical systems
in order to keep up with technological advancements and
to interface with any new sensors and actuators. This is
due to a lack of commercially available systems that fit
with the evolution of the development cycle of humanoid
robots. Thus, a path that can keep up with the advancing
technologies is surely needed.

A. Motivations

Unlike other well-developed robotic systems, like wheeled
robots where the controllers and sensors can easily be taken
off-the-shelf and then integrated, developers of humanoid
systems place a higher priority on compactness. This reduces
the overall system’s size and weight as much as possible.
To reduce the amount of electrical cables running from the
actuators and sensors to a centralised controller, developers
have taken a distributed approach [2], [6], [5], where the low
level controllers are distributed around the humanoid. This
leads to the benefit of reduced cables as well as compactness.
However, it does pose its own problem: How to handle with

j2f

FPGA board V2 4

Fig. 1. Version 2.0 of the FPGA Module.

minimal latency the vast quantity of information that needs
to be communicated to the central processing unit, while also
ensuring a fully operational system at the same time?

As these distributed controllers can be placed in close
proximity to the sensors and actuators they control, they have
the advantage of minimal latency between them and the low
level control loop implemented on the controller. This leads
us to a list of requirements for a compact humanoid electrical
system:

« Distributed controllers capable of interfacing with all

sensors and actuators on a single limb;

e Compact electrical design for minimising size and

weight;

o Capabilility of high frequency, hard real time control

loops;

o High speed, low latency intercommunication between

limbs;

o Clear development path.

B. Development path — accounting for the future

This leads to the selection of the embedded processor and
its complimentary specialist components, while also taking
future developments into account. On the one hand, we need
to choose an architecture that can essentially allow us to
“plan ahead” for future changes in the humanoid hardware.

On the other hand, we also need to accommodate the increas-
ing processing load of humanoids. In considering pros and
cons of different DSP, FPGA, PIC and ARM processors in
various combinations, we have chosen a stand alone FPGA.
Unlike other systems that use an FPGA in conjunction with a
DSP [4], we make use of SoftCores, a MIPS CPU instantiated
on the FPGA’s fabric for the high-speed closed loop control.
At the moment, we have a single 80Mhz SoftCore, but we
have the option to instantiate multiple SoftCores on a single
FPGA if required.

The main advantage of using an FPGA is its parallel
nature, which has demonstrated that complex algorithms
can be optimized to outperform their DSP competitors [7].
Developers can also add new sensors, actuators and equations
to the controller without interfering with the realtime nature
of the already working system with each new element having
their own independent loop frequency. The FPGA can be
reconfigured with new features and I/O standards without
redesigning it. For example unlike DSPs, the number of
PWM, I2C or RS232 ports can be changed without having
to redesign the circuit. The fact that I/O pins can be easily
reconfigured to interface with any digital signal from the
sensors without additional hardware has been seen as a
further benefit. Although the utilisation of FPGAs are not
new to humanoids [2], [4], [8], the technology has matured
to a point where they now have greater advantages over older
systems and DSPs. The only disadvantage is the knowledge
required to implement algorithms on FPGAs. But with the
increasing FPGA programming community directly imple-
menting algorithms onto the device, tools simplifying this
threshold are becoming available. For example, Handel-C
allows developers to write parallel code in C, then translates
the code directly to VHDL. The complexity of using FPGAs
for algorithms will decrease in future as more feature rich
tools are released. Thus, we will be able to increase the
complexity of algorithms implemented without the need for
SoftCores. It has been shown that a modular FPGA approach
can reduce the development time and make the overall
development easier [9], [10].

II. SYSTEM OVERVIEW

At the heart of our system is a distributed network of
FPGA modulars. In our design, every limb on the humanoid
robot has a single FPGA module and these modules are
networked together in a star formation. This module is then
integrated into a custom carrier board that is tailored for
each limb which all have their own sensors and actuation
requirements. This star network has a “Central Controller”
in the centre, which is a combination of FPGA and duo
core ARM processors. These ARM processors are running
FreeRTOS which is a realtime OS on one core, that takes
care of the low level control and Ubuntu on the second core.
There is an ethernet connection from the central controller
to the High-Level PCs where all the cognitive processing is
computed. In Fig. 2, an overview of this system is presented.

The advantages of having an FPGA module over integrat-
ing the FPGA straight onto the carrier board:

FPGA

&

FPGA FPGA

!
!

Fig. 2. Overall system design. The green FPGA squares are the modules.
The red lines are bi-directional communication channels. The yellow hub
is the central controller.

o The debugging of the electronics needs only be done
once for a single FPGA module;

o The modular design also benefits from lower manufac-
turing costs as a single modular design can be ordered in
large quantity, whereas carrier boards tend to be lower
in volume;

o We can easily incorporate electronic components into
each module that each limb will need, for example
ADCs, gyroscopes or accelerometers directly soldered
onto the module;

o It reduces development time;

o Simple daughter boards can be made to test new com-
ponents or motor drivers without having the complexity
of redeveloping the FPGA circuity;

o The modularising of the FPGA allows us to upgrade
the complete system when a new FPGA comes to the
market without having to redesign all the carrier boards
again;

« Stacking the module makes it higher and but also means
it has a smaller footprint;

A. FPGA Module

Fig. 1 shows the current version of the FPGA module
which is based around an Xilinx Sparten 6 FPGA. It also
has integrated onto the module common components that
are desired on each limb, for example ADC and IMU. It
currently consists of:

o Xilinx Spartan-6 LX45 FPGA.

o 6 axis IMU, MPU-6050.

¢ 8 Channel ADC, ADS8332.

o 2 x Full-duplex 200 Mb/s interconnection.
o 128Mb SPI Flash.

¢ 70 I/O, User configurable.

e 17 programable LEDs

e Size: 35mm x 35mm.

Fig. 3. Example of are Control boards. 1) low amp BLDC motor controller.
2) Brushed motor controller. 3) high amp BLDC motor controller.

o Weight: 8g.

In order to develop our FPGA module, we simulated
the power requirement and the optimal placement of the
de-coupling capacitor network and the rating of the power
regulating circuit for a fully configured FPGA. This shows
the benefit of modularity, as we only had to simulate and
design the circuit once. Due to the nature of the FPGA
package (FGG 484) we had to use a six layered PCB board
with 0.lmm wires to route the FPGA. These requirements
make the PCB board expensive to manufacture. Where as
from our experience designing carrier boards, those high
specifications are not required and thus making the PCB
boards for the carrier much cheaper. This is a big benefit
as these simpler carrier boards tend to be a lot bigger
then the FPGA board, thus saving on the overall system
manufacturing costs. When the module is fully configured
it only draws 40mA.

B. Control Boards

As it is foreseeable for any humanoid robot, each limb has
its own electrical requirements due to different actuators and
sensors. Thus each limb has a custom control board, exam-
ples of these can be seen in Fig. 3, and their specifications
can be found in table I. These are the three example boards
in more detail:

1) Low Amp BLDC controller: This board can be seen in
Fig. 3.1 and was designed for "Mask-Bot 2i” [11], a robotic
head. This board was designed to control a 3 DoF neck,
which had a brushless motor which communicated via hall
effect sensors and a digital encoder in each joint.

2) Brushed Motor Driver: This board can be seen in Fig.
3.2 This was developed for controlling a pair of eyes with

| Watchdogs | a0
Global Timers oG [IRAWX
T — oto
[Softcore | Lx
e LEDs
Motor Encoder Vel I
| i
Absolute Encoder i fﬁ
) | ” [Codex]«+MAC |-+ [PHY} Ethernet
Joint Torque | ”
Motor Current ADC Filter Custom [SerDes \I LVDS
Sensors x2 Controller|«~(SerDes | LVDS
Temperatures c ication Block
MPU-6050 ommunication Bloc

Fig. 4. Overview of the FPGA code structure for the "High Current BLDC
Controller”.

TABLE I
EXAMPLE OF DIFFERENT CARRIER BOARDS.

[Carrier board [High Amp [Low Amp [Brushed |
Brushless Motor 2x 20A/48V | 3x 5A/36V | 0O
Brushed Motor 0 0 4x 5A/28V
16bit encoder 2 3 4
Ethernet base 10T 1 1 1
Fast Interconnectors | 2 2 2
Torque sensor 2 0 0
Quadrature encoder 2 0 0
Size (mm) 68 x 60 56 x 48 60 x 42
Weight (g) 60 26 20

2 DoF each. The design is centred around 4 brushed motor
controllers and the encoders. This is an example of a very
simple 2 layer board.

3) High Current BLDC Controller: This board can be
seen in Fig. 3.3 This board was developed for the thigh,
which has high power requirements. It also had to interface
with the frameless motors that have their own magnetic
encoders. They also needed to interface with the foil strange
gauges used to measure the torque at the joint. In Fig. 4 you
can see an overview of the FPGA code structure. As you can
see there are 4 main elements. The communication, sensor
interface, BLDC motor controller and the SoftCore for the
controller. All of these code blocks are joined together with
shared memory and run in parallel.

The sensor section of this block diagram shows the advan-
tage of the parallel approach, as each sensor can be sampled
at its optimal frequency. For example the temperature sensor
can only be sampled at 50hz whereas the ADC is sampled
at 320khz. What this means is that we can over sample the
ADC and pass it through a butterworth filter. Once all the
sensors are processed we place them in the shared memory
so the communication block and the SoftCore can access the
data. From our experience with DSPs it is very hard to have
this setup without a complex interrupt implementation.

C. Central Controller

At the centre of the system is the central hard realtime
controller based on a Xilinx Zynq-XC7Z020, which is an
FPGA and dual core ARM “A9 MPCore” processor running
at 667MHz on a single chip. This controller has 512MB of
DDR3 RAM, Gigabit ethernet, USB and an SD card reader.
The FPGA fabric is used primarily for the communication to

Custom FreeRTOS
Controller + Communication | o yART
« Walking
LvDS © SerDes * Balancing
‘ Comm x5

LEDs Ubuntu
Sensorsg | | . ROS O Ethernet

Int Timers * HRI ouss

FPGA + Debugging O SD Card

Fig. 5. Overview of the hardware structure of the central hub. This is

based on an Xilinx Zynq-XC7Z020 with two ARM process.

R ENEN 0-255
Start ID Type Data

[t 1T a1~
Flags CRC End Start

(1]
End

Fig. 6. The data structure of the High Speed Communication frame.
Each sub-frame is separated with a start and stop unique word using 8/10b
encoding.

the other FPGA modules, e.g acting like an intelligent hub.
The central controller has 6 high speed communication ports
as well as interfaces for a range of sensors.

The ARM processors is configured in an asymmetric
multi-processing (AMP) configuration, with two separate OS
running on each core. The first core is used for the hard
realtime control loop. This loop is used for scheduling the
network communication as well as the low level control
that requires a fast update rate and also hard real time, for
example the walking and balancing controller. This core runs
RealRTOS, an open source real time operating system. The
second core runs UBUNTU and Robot Operating System
(ROS), which are used for the soft real time code, for
example the path planning or human robot interaction. It also
has a Gigabit ethernet connector to communicate to the High-
Level PCs. The two cores and the FPGA fabric communicate
via shared memory.

D. Communication

Communication is one of the main requirements for
the electronics and is used to get data to and from the
FPGA modules. Each module has two ways to commu-
nicate. The first is a simple ethernet controller based on
10Mb/s 10BASE-T communication and UDP packets, which
is primarily used for debugging and to use the boards
in a stand alone situation. The second is a high speed
intercommunication used to daisy chain the boards together
and to connect them to the central controller. The advantage
of using an FPGA and 10BASE-T ethernet is that there is no
need for any Physical Hardware Layer (PHY). As the FPGA
is connected directly to the ethernet cable using 3.3V low
voltage differential signal (LVDS), it saves costs and board
space. The ethernet controller is implemented on the FPGA
that handles the ARP requests and also IP and MAC address
information.

1) High speed communication: For high speed intercom-
munication among FPGA modules, different standards were

examined, including EtherCAT and Powerlink. Both are real-
time protocols based on the Ethernet standard. [12] provide
a good comparison of these two. They concluded that Ether-
CAT is a better standard for robotic systems. However, our
evaluation shows that EtherCAT has some limitation for our
requirements. The first is the speed; at the moment EtherCAT
is only rated at 100Mb/s. The second is the physical elec-
tronic complexity. EtherCAT’s protocol is based on sending
Ethernet telegrams, this means the modules would require 2
x PHY Ethernet chips for simultaneous up and down stream
traffics. Therefore, we investigated the possibility of using an
FPGA on its own for the intercommunication. This produced
a simple solution of direct pin to pin connection using a
LVDS and 8/10b encoding, which has a maximum data rate
of 1.05Gb/s. Modern FPGAs also have dedicated integrated
multi Gb/s transceivers, with the current top of the range
FPGA being capable of 28.05Gb/s, which shows there is
an obvious design path for future communication bandwidth
increase.

The communication network uses the FPGA fabric of the
central controller as the master and all the FPGA modules
are the slaves. Each module has 2 Rx and Tx interfaces,
via these data are transferred bi-directional in full duplex
configuration. The key to our protocol is that each module
starts to forward the packet and appends packets on-the-fly.
What this means is after the packet is received it is put into
a FIFO and buffered for 4 bytes, then it is transmitted onto
the next module in the network. The complete data structure
we call a frame and consists of multiply sub-frames. All
the sub-frames are transmitted one after the other and are
separated by the reserved words start and end of sub-frame.
Each sub-frame is targeted at a single module and consists
of a unique ID for each module. When the module finds a
sub-frame with its ID, it will read the data into RAM and at
the same time will start to place its corresponding data onto
the sub-frame. In this way each module on the network only
adds a 4 byte delay to the overall latency for the complete
network. The frame protocol is shown in Fig. 6. The data
type tells the FPGA what the data structure is and the correct
data length corresponding to this data type. The flag is used
to tell the controller if the sub-frame was processed as well
as giving error messages. The sub-frames are only processed
on the downstream. The network will forward all upstream
subframes without any buffering, thus the network can be
configured with only a single cable running down each limb
without the need for a return cable.

III. DISCUSSIONS AND EXPERIMENTAL RESULTS

In this section 3 test setups are presented that highlight
the key components of a humanoid robot system. 1) First
is the humanoid test platform which is used to verify the
High Current BLDC Controller electronics, which shows the
FPGA can be used effectively for high frequency control
of multiply high powered joints; 2) The second is a stereo
vision system, where the FPGA controls 6 piezo motors
simultaneously; 3) The last setup is for the development and
verification of the high speed communication network.

Fig. 7. The humanoid test platform. With 6 High Current BLDC Controllers
in the main body and a single Low Amp BLDC controller for the head.

In developing this system we went through a number
of electronic development cycles. This showed to us the
advantage of separating the FPGA and the control boards.
For example, when we updated the FPGA from a Spartan 3
to a Spartan 6, we only had to redesign the FPGA modular
board once and then roll it out over the complete system.

A. High Performance motor control

As discuss earlier, it is critical to achieve high frequency
control for humanoid robots, especially in this case of high
performance controllers for permanent magnet synchronous
motors (PMSM). Fig. 7 shows a torque controlled humanoid
robot test platform. This was used to verify the performance
of the High Current BLDC Controller from section II-B.3
which controls two high power PMSM motors from Robo-
Drive [13] which are rated at 580 Watts each. For this robot
we designed a complex feedback controller. The main control
loop runs at Skhz while at the same time communicating
with the central controller at 1khz. To implement the control
algorithm we instantiated a SoftCore running at 5Khz. This
gave the advantage to researchers that did not know hardware
description language (HDL) but could still experiment with
different controllers written in C. Once the controller has
computed the desired current, the low level motor controller

Fig. 8. Screen shot of SVPWM result taken with an oscilloscope. The
yellow line is the current. Green, purple and blue are the voltage on each
motor coil.

Fig. 9. High speed vision tracking system. This setup is used to demonstrate
the FPGA can control 6 piezo motor in parallel. On the left is the electronics,
where the FPGA is interfaced to 6 OEM piezo motor control boards and
interfacing of 6 incremental encoders.

needs to produce the correct waveform for the 6 mosfets.
This is achieved by using space vector modulation (SVM)
running at 20 Khz and a magnetic encoder attached to the
motor shaft as position feedback. The resulting voltage and
current captured by an oscilloscope can be seen in Fig. 8
where the yellow plot is the current of a single coil and the
green, purple and blue are the voltage on each motor coil. It
can be seen that the current is a smooth sinusoidal waveform.

B. Six DOFs Stereo Vision System

Fig. 9 shows a high speed stereo vision system with 6
degrees of freedom (DoF): 2 x pan; 2 X tilt; 2 X torsion.
The full mechanical structures and design of these eyes are
presented in [14]. Each eye is controlled by 3 piezo motors
which are used to control their position and velocity. These
eyes show the benefit of a standard FPGA module, as it can
be used to integrate commercial electronics into the system
easily without having to change the communication structure
or design of new electronics to integrate them into a master
controller. In this system we used 6 “Fast, Compact OEM
Ultrasonic Linear Motor” by Physik Instrumente (PI) GmbH
& Co. KG [15] to drive the piezo motors and incremental
encoders for position and velocity feedback.

This FPGA module receives desired angles alpha; beta and

Left Eye

Motor 1 Actual
Motor 1 Desired
Motor 2 Actual
Motor 2 Desired
Motor 3 Actual
Motor 3 Desired

Position (mm)
°

1 1 1 1 1 1 1 1 1]
40 4 42 43 a4 45 46 47 48 49 50
Time (s)

Right Eye

Motor 1 Actual
Motor 1 Desired
Motor 2 Actual
Motor 2 Desired
Motor 3 Actual
Motor 3 Desired

Position (mm)

) 41 42 43 44 45 46 47 48 49 50
Time (5)

Fig. 10. Plot of 6 motors being controlled by one FPGA.

Fig. 11. This setup is for testing the network protocol and latency of the
system with 3 modules and the central controller.

gamma for each eye at 1khz from the central controller. The
angles are then converted into desired motor positions and
velocity using a SoftCore at 1khz. The desired position and
velocity are then sent to 6 PID controllers which are running
in parallel to generate the PWM signal for the motor drivers.
This PID loop is running at 24.4khz. Fig. 10 shows the result
of the eyes tracking desired position. This demonstrates that
simultaneous high speed control of multiple DOFs is possible
with our FPGA modules.

C. Network

Fig. 11 shows a setup for testing and debugging the High
speed communication from section II-D.1. In this experiment,
we send frames from the central controller to FPGA modules.
The frame travels around the network until it is returned to
the central controller. The central controller then checks the
data processed and that it does not have any errors, as well
as validates the returned data. This tests the integrity of the
network. Using this setup we can also test the latency of
the complete system using a logic analyzer and some of the
FPGA’s spare IO pins. On the central controller we set a
debug pin high when the software sends a send command and
pulls it low when the interconnect has received the complete
frame on the RX line. This is used to measure the complete
time a frame takes from the moment the software decides
to send a frame until it is back and ready to be processed

Fig. 12. This is a screenshot from the logic analyzer of the complete
frame passing through the system. The top plot is the hub, set high when
it receives a send signal and pulled low when the frame has been received
and processed. The complete time for 3 modules each receiving 150 bytes
of data takes 24.3us.

Fig. 13.
high when the FPGA received a start of frame and captured using an logic
analyzer. The latency between a module is 0.186us.

This is the latency between FPGA modules. We set an IO pin

by the software. On the modules, we set a debug pin high
when we receive a start of frame and low when we get an
end of frame. This is shown in Fig.12. This shows the time
it takes to send a frame from the central controller around
the 3 modules with 150 bytes to each module and back.
You can clearly see from this figure the 3 subframes and
the very small latency between the modules. We repeated
this experiment for different sized payloads and number of
modules with the results displayed in Table II, where each
module has two columns for measured and computed time
for a complete frame.

To get a clearer idea of the latency between modules we
can take a closer look at the beginning of the transmission
which can be seen in Fig. 13. It shows a very predictable
delay of 0.186us between each module ¢s. You can also
see that the time from the send signal to the first module
receiving a frame ¢, is 0.27us This was also constant between
all the experiments. The last measurement we took was the
time between the last module in the network until the central
controller had received and processed the signal ¢,., this was
0.21ps and meant that the software could process the return
frame. As the network is running at 200Mb/s and we are
8b/10b encoding the transmission we can also work out
the time it takes to transmit the signal ¢, which is 0.05us.
From all this we can come up with an equation that models
this system to make predictions about the complete time for

TABLE I
MEASURED VS COMPUTED FRAME TIME IN usS.

Number of modules
1 2 3
Payload Mea. | Comp. | Mea. | Comp. | Mea. | Comp.
50 bytes 3.18 3.42 6.24 6.35 9.32 9.28
150 bytes 8.20 8.42 | 16.24 16.35 | 24.30 24.28
250 bytes 13.24 13.41 | 26.30 26.35 | 39.30 39.28
TABLE III

THE TIME IN 1S FOR A SINGLE TELEGRAM TO TRAVEL AROUND THE
NETWORK AND RETURN TO THE CENTRAL CONTROLLER.

Number of modules
Payload 1 10 25 50
0 bytes 0.96 5.32 12.58 24.68
16 bytes 1.76 13.32 32.58 64.68
64 bytes 4.16 36.84 92.58 | 184.68
128 bytes 7.36 69.32 | 172.58 | 344.68
256 bytes 13.76 | 133.32 | 332.58 | 644.68

the system with different numbers of modules and payload
lengths, this can be seen in equation 1.

n
b=ttt + Y (Mi+6)ty+15 (1)
2

where, t is the total time, ts represents the send time,
t, is the receive time. M; is the module payload for each
i = 1,2,...,n module, ¢, is the time to transmit 1byte,
8b/10b encoded and finally, ¢5 is the module latency which
is constant.

To verify this equation we took a number of time measure-
ments with the test setup with varying number of modules
and payloads. These results can be seen in Table II and you
can see that the measured results prove that our equation is
correct. So we can make some real world prediction about the
timing of the complete system. Table III provides a tabular
of these timing results. We can also work out the latency for
the complete humanoid with 13 modules each with a payload
of 150 Bytes, this would be 104.27us. This means we could
communicate with the modules at 5Khz and still have time
for the low level controller on the centre controller.

IV. CONCLUSION

Our FPGA module has been shown to fulfil the require-
ments to support the construction of humanoid robots. In
this paper we showed that: 1) high demanding control can be
accomplished for the main humanoid limbs; 2) multiple DoF
can be controlled in parallel with a single FPGA module; 3)
we can achieve high speed, low latency intercommunications
for a network of modules.

We have also shown the advantage of a modular system
by only having to design the FPGA once and then using it
on different boards. This was highlighted when we upgraded
from Spartan 3 to Spartan 6 where we only had to redesign
the FPGA module once, then roll it out over our complete
system so each limb could take advantage of the new feature,
like added gate count.

As an example of the development path we are looking
into upgrading the FPGA to Xilinx’s new Artix 7. It has 30
percent lower power, 50 higher gate counts and is cheaper.
It also has integrated ADC converters, thus decreasing the
overall module price and complexity.

Over the years, through the development of the humanoid
test platform, the advantage of the flexibility of the FPGA is
highlighted. As it was easy to swap electronic components
and we only had to reconfigure the FPGA to communicate
with the new device. For instance, with the old FPGA, a
Spartan 3an, we were only able to have a single joint working
due to the limited resources. Upon upgrading to a Spartan 6,
we now can have 2 complex joints operating and additional
processing for other tasks.

ACKNOWLEDGMENT

This work was supported by the DFG cluster of excellence
’Cognition for Technical systems — CoTeSys’ of Germany.

REFERENCES

[1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development
of Honda Humanoid Robot,” in Proceedings of the 1998 IEEE Inter-
national Conference on Robotics and Automation, Leuven, Belgium,
May 1998, pp. 1321-1326.

[2] A. Nagakubo, Y. Kuniyoshi, and G. Cheng, “Development of a High-
Performance Upper-Body Humanoid System,” Advanced Robotics,
vol. 17, no. 2, pp. 149-164, 2003.

[3] N. Kanehira, T. Kawasaki, S. Ohta, T. Isozumi, T. Kawada, F. Kane-
hiro, S. Kajita, and K. Kaneko, “Design and Experiments of Advanced
Leg Module (HRP-2L) for Humanoid Robot (HRP-2) Develop-
ment,” Magnesium, vol. 2, no. October, pp. 2455-2460, 2002.

[4] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, ARMAR-III: An Integrated Hu-
manoid Platform for Sensory-Motor Control. 1EEE, Dec. 2006.

[5]1 G. Cheng, S. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin,
W. Scroggin, and S. C. Jacobsen, “CB: A Humanoid Research
Platform for Exploring NeuroScience,” Advanced Robotics, vol. 21,
no. 10, pp. 1097-1114, 2007.

[6] F. Kanehiro, Y. Ishiwata, H. Saito, K. Akachi, G. Miyamori,
T. Isozumi, K. Kaneko, and H. Hirukawa, Distributed Control System
of Humanoid Robots based on Real-time Ethernet. 1EEE, Oct. 2006.

[71 Z. Wen-Hong, “FPGA-based adaptive friction compensation for pre-
cision control of harmonic drivers,” Robotics and Automation (ICRA),
2010 IEEE International Conference on, pp. 4657-4662, 2010.

[8] N. Ito, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, Development
of very small high output motor driver for realizing forceful muscu-
loskeletal humanoids. 1EEE, Dec. 2010.

[9] R. Hartenstein, M. Servit, A. Dollas, B. Ward, and J. Babcock, “FPGA
based low cost Generic Reusable Module for the rapid prototyping of
subsystems - Field-Programmable Logic Architectures, Synthesis and
Applications - Lecture Notes in Computer Science,” pp. 259-270-270,
1994.

[10] S. Falsig and A. Soerensen, “An fpga based approach to increased
flexibility, modularity and integration of low level control in robotics
research,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, oct. 2010, pp. 6119 —6124.

[11] P. Brennand, K. Takaaki, V. Christian, and C. Gordon, ‘“Mask-Bot
2i: An active customisable Robotic Head with Interchangeable Face,”
in Proceedings of IEEE-RAS International Conference on Humanoid
Robots (Humanoids2012), 2012, pp. 520-525.

[12] E. Baglini, G. Cannata, and F. Mastrogiovanni, Design of an embedded
networking infrastructure for whole-body tactile sensing in humanoid
robots. 1EEE, Dec. 2010.

[13] RoboDrive GmbH. [Online]. Available: http://www.robodrive.de/

[14] T. Villgrattner and H. Ulbrich, Optimization and dynamic simulation of
a parallel three degree-of-freedom camera orientation system. IEEE,
Oct. 2010.

[15] Physik Instrumente (PI) GmbH & Co. KG. [Online]. Available:
http://www.physikinstrumente.com/

