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Abstract—Humans exhibit exceptional skills in using tools
and manipulating objects of their environment by skillfully
controlling exerted force and arm impedance. One of the basic
components of this mechanism is the generation of internal
models which associate kinematic variables with applied force.
On the other hand, making robots capable of skillfully using
tools and adapting their motor behavior to new environmental
conditions is rather complex. In the present paper, we inves-
tigate learning of force control policies for robotic sculpting
given multiple task demonstrations. These policies express the
relationship between constrained motions and exerted force and
are learned in Cartesian space where the coupling of dynamics
between different directions of motion is also taken into
account. In addition, a novel algorithm is proposed to generalize
these policies to new motion tasks, executed in a sufficiently
homogeneous environment, same with that in demonstrations,
but in presence of new motion-dependent external forces. To this
aim, a differential calculus approach is proposed where not only
the mapping from motion to force but also from difference in
motion to difference in force is learned to generalize the policies
to new contexts. This is achieved by learning apart from a
set of policy parameters, some newly introduced quantities, so
called weight differentials, which express the rate of change of
the policy parameters. The proposed approach is validated in
simple real-world sculpting experiments by using a two degrees-
of-freedom haptic device.

I. INTRODUCTION

Most manipulatory tasks which involve tool use, such as

screwing or sculpting, can cause instability and make the

tool move unpredictably in presence of disturbances. Humans

exhibit exceptional skills in using tools and manipulating

objects of the environment by regulating the force and

impedance of their arm [1]–[3]. Since humans show adroit

adaptation to new force fields, we believe that learning from

humans is a promising route to endowing robots with special

force control skills in a safe manner.

In this paper, we treat the intriguing problem of learning

force control policies for robotic sculpting from multiple

demonstrations and generalizing these policies to new tasks.

The new tasks consist of manipulating the same environment

with that in demonstrations but following different motion

paths which impose new disturbances on the end-effector. In

our scenario, the environment consists of a deformable and

sufficiently homogeneous material. Sculpting tasks induce

development of varying motion-dependent external force

fields whose components in different directions of motion

are interconnected and this constrains tool motion. Moreover,

the coupling strength is different depending on the system

position and velocity states making the overall coupled
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dynamics inherently hard to model explicitly. For example,

sculpting a pattern in short depth from the object’s surface is

a quite different task than sculpting the same pattern deeper

inside the object where the manipulating mass increases

significantly and imposes different constraints on motion.

Learning control policies has been a popular topic of

robotic research during last decades. A review on this

topic is presented in [5] while learning of force control

policies has been presented in previous works [6]–[8]. In [6],

force patterns are learned in the form of interaction control

policies from single task demonstrations. In [7], positional

and force skills are separately demonstrated and learned in

the form of mixtures of dynamical systems from multiple

demonstrations. However, in dynamic interaction tasks, such

as sculpting, position and force should not be viewed in-

dependently. In [8], force control policies are learned by

reinforcement learning following a kinesthetic task demon-

stration. Reinforcement learning, however, requires multiple

trials and is not recommended in sculpting where successful

task generalization in a single trial is desired.

Existing regression methods such as Linear Regres-

sion (LR) [10], Locally Weighted Regression (LWR) [9]

and probabilistic modeling [11] allow for learning a set

of parameters from demonstrated data and use this set to

predict the ouput of the system at new inputs. More advanced

regression techniques such as Receptive Field Weighted

Regression (RFWR) [9] and Locally Weighted Projection Re-

gression (LWPR) [12] are proposed for incremental learning

in low and high-dimensional spaces respectively. RFWR and

LWPR perform receptive field-based incremental learning

and allow for generalization of a learning model to new un-

seeen inputs. During generalization, the learning structure is

modified to incorporate new information. These incremental

learning techniques, however, are prone to spatially localized

negative interference [9]. In the present work, instead, the

aim is not to incorporate all incoming knowledge into

the learning model but develop a generalization-dedicated

method able to predict a policy at new inputs.

In the present work, we focus on learning generalization

of force control policies from multiple demonstrations to

manipulate deformable environments which are sufficiently

homogeneous. A directional coupling in dynamics is intro-

duced according to which the force policy in one direction

of motion depends on the motion states of other directions

apart from that direction itself. More specifically, we propose

a novel algorithm to generalize a force policy to new trajecto-

ries, which are realized in the same environment, but induce

different motion-varying disturbance. The new trajectories

may vary in depth from the object’s surface or length in
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the direction parallel to the surface. New motions inside a

material induce different disturbance since the manipulating

mass and contact area of the tool with the environment

change according to the tool position, see Fig. 1. We should

remark that, in our setting, generalization performance is

investigated in terms of position generalization accuracy

without considering performance metrics which vary with

the properties of the environment. Using position control

in our scenario, however, is rather inappropriate since a

kinematic plan incompatible with the environment or end-

effector’s mechanical resistance would result in high impact

forces or even task failure. Instead, a compliant control policy

is of interest to be learned which regulates interaction [4].

The proposed generalization algorithm is significantly less

complex than computationally expensive incremental learn-

ing techniques [12] since it only allows for policy prediction

given new inputs without integrating new information into

the learning structure.

The current paper is structured as follows. In Section II,

we define the problem and, in Section III, we present a new

policy generalization algorithm. In Section IV, we demon-

strate our experimental setup and compare the performance

of the proposed approach with existing regression techniques

while in Section V we discuss the results.

II. PROBLEM DEFINITION

In this work, we treat the problem of generalizing force

control policies for motion path following inside a de-

formable object. The goal is to learn a force policy given

multiple demonstrations of a task and generalize this policy

to new motion paths, executed in the same and sufficiently

homogeneous environment, but in presence of different dis-

turbances induced by the different kinematic plan.

During motion inside a deformable material, dynamics are

directionally coupled. Let us consider a sculpting task where

a tool has to move inside a material such as plasticine. The

tool is first moving in the direction normal to the object’s

surface, and then, it follows a path in the direction parallel

to the surface to engrave the material, see Fig. 1. While

executing this task, we observe that tool’s parallel motion

is easier and faster in lower than in higher depth inside the

object. This is because as depth increases, the manipulating

mass and, thus, parallel external force increases. Thus, par-

allel force is coupled to normal motion. In the present work,

fff (y)fff (y)

f(x)
f(x)

(a) (b)

Fig. 1. Illustrating an engraving task at different depths inside a plasticine
object. Different environmental disturbance { f(x), f(y)} is experienced in
each case due to changing manipulating mass. Engraving in a (a) low depth,
(b) high depth.

we consider learning of force control policies in Cartesian

space described by

fff = π(S) (1)

where fff ∈ RM×1 is applied force at the end-effector and

S ∈RM×D is an input matrix whereM denotes the number of

motion directions and D the number of motion variables per

direction. The motion variables consist of position, velocity

and acceleration data. The goal is to learn the policy π given

pairs of demonstrated motion and force data {S, fff } of a task

and generalize this policy to different motions S′* S. In other

words, we desire to solve a generalization problem which

consists of estimating the control policy fff ′ = π ′(S′) which

is required to realize a different kinematic plan S′. Visiting

new paths in homogeneous environments induces different

environmental force because the manipulating mass changes

and this requires proper adaptation of exerted force.

III. LEARNING AND GENERALIZING CONTROL POLICIES

In this Section, we describe how to learn force control

policies given multiple demonstrations of force and motion

data of a manipulation task and propose a method to gen-

eralize these policies to new motions subjected to motion-

varying disturbance. First, we analyze Linear Regression,

and then, we propose a new approach which employs Linear

Regression to learn a set of parameters for the generalization

policy.

Notation: In the remainder of the paper, we denote time

index by lower case letters (·)i, index of motion direction by

lower case letters inside parentheses (·)(i) and demonstration

index by upper case letters inside parentheses (·)(i).

A. Learning force control policies from multiple demonstra-

tions

We consider a force control policy in Cartesian space

fff = π(sss(1), ... ,sss(M)) (2)

where fff = [ f(1) ... f(M)]
T is a vector of force profiles f(m)

and sss(m) = {sss(m),i, i= 1, ...,N}, m= 1, ...,M is a motion plan

at the m− th direction of motion where N is the number of

timepoints of the plan. The force control policy is defined

by

π = [π(1)(sss(1)) ... π(M)(sss(M))]
T (3)

where the motion plans consist of motion vectors

sss(m),i = [x(m),i ẋ(m),i ẍ(m),i ccc(m),i], i= 1, ...,N. The x(m),i,

ẋ(m),i, ẍ(m),i represent the position, velocity and acceleration

respectively in the m-th direction and ccc(m),i is a vector-

valued function which represents the coupling between

the m-th and the other directions j 6= m. The coupling

function is ccc(m) = ccc(m)(x( j), ẋ( j)), ∀ j 6= m and establishes a

dependence of the force f(m) on the position and velocity

states of the remaining directions j 6=m.

Let us consider K demonstrations of a task with N

datapoints per demonstration. For reasons of simplicity,

we omit the directional index m in the remainder of the

Section. To learn the force control policy in either direc-

tion, data pairs from all demonstrations are concatenated

as ({sss1, f1}, ...,{sssK×N , fK×N}). At this point, we present
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learning by LR which is also employed by the proposed

generalization method. In LR, a control policy π is learned

by minimizing the cost function

R=
K×N

∑
i=1

‖ fi−π(sssi)‖
2. (4)

The policy is represented by π = wwwTφ(sss) where www ∈ RD+1

is a parameter vector and φ(sss) = [sss 1]T is a basis function

model where sss= {sssi, i= 1, ...,N} and sssi ∈ R1×D. Based on

this policy representation, the cost criterion (4) becomes

R=
K×N

∑
i=1

( fi−wwwTφ(sssi))
2
. (5)

By minimizing (5) with respect to www, we receive

K×N

∑
i=1

fiφ
T (sssi) = wwwT

K×N

∑
i=1

φ(sssi)φ
T (sssi) (6)

and, thus, the estimated parameter vector ŵww is

ŵww= wwwT
1H

−1 (7)

where www1 = ∑K×N
i=1 fiφ(sssi) and H = ∑K×N

i=1 φ(sssi)φ
T (sssi).

B. Generalization by Weight Differential Learning (GWDL)

We propose a new algorithm to generalize force policies to

new inputs based on the principle of knowledge exploitation.

According to this, given some demonstrated data, we learn,

not only a set of parameters which show the mapping from

the input to output data but also the differentials of these

parameters which represent the mapping from a difference in

the input to a difference in the output value. The differentials

of the parameters express the higher-order rates of change

of the mapping policy.

Our generalization problem consists of estimating the

force which needs to be exerted by the end-effector so that

we allow for a desired kinematic plan sss′ to be executed in

some motion direction. This is, in fact, a problem of approx-

imating the true value of a function which maps a desired

motion onto a required force. To solve this, we introduce

an algorithm inspired by differential calculus according to

which a function at a new point is approximated by an ex-

pansion consisting of a finite number of components. These

components are represented by the higher-order differences

between the new and a known input point and are modulated

by some weighting coefficients. We introduce the r-th order

differentials of a weighting vector www and we symbolize

them by ∆wwwr. These weight differentials express the mapping

from a difference in the input to a difference in the output

value and play the role of the weighting coefficients in the

expansion.

To learn the ∆wwwr, we first generate new observation

datasets Dr from demonstrated data by computing the r-th

order differences between datapoints of every two demon-

strations. This is realized as follows. Given the set of data-

points from all demonstrations ({sss1, f1}, ...,{sssN×K , fN×K}),
we define the motion vector of demonstration k at time i

as sss
(k)
i = sssi+N(k−1) and the corresponding force element as

f
(k)
i = fi+N(k−1). We additionaly define the datasets

Dk1,k2
r = { (sss

(k1)
i −sss

(k2)
i )r, ( f

(k1)
i − f

(k2)
i )r , i= 1, ...,N}, (8)

which consist of the differences of datapoints between two

different demonstrations k1 and k2 where k1,k2 = 1, ...K.
Finally, we concatenate all datasets D

k1,k2
r into a single

dataset Dr as

Dr = {Dk1,k2
r , k1, k2 = 1, ...,K, k1 6= k2}. (9)

By applying Linear Regression on the dataset Dr, we learn

some new parameter vectors that we call weight differentials

of r-th order; ∆wwwr. To generalize the force control policy, we

apply the following steps:

(i) We concatenate observed motion vectors from all

demonstrations as ({sss
(1)
1 , ...,sss

(k)
i , ...,sss

(K)
N }) and we com-

pute the average over demonstrations motion trajectory

sssav = {sssavi , i= 1, ...,N} where

sssavi =
K

∑
k=1

sss
(k)
i /K. (10)

(ii) We estimate the points of the average motion sequence

sssav that are closest to the desired query motion plan sss′

as:

sss(min) = {sss
(min)
j , j = 1, ...,N}, (11)

sss
(min)
j = argmin

sssavi

‖sss′j− sssavi ‖, i= 1, ...,N (12)

where ‖·‖ denotes the Euclidean distance. We compare

each new motion vector sss′j with the average motion

plan sssav so that we extinguish the need for memorizing

demonstrated data and reduce the search space.

(iii) Let us define the function h:

hr : RD+1 →RD+1 where (hr(vvv))i = (vi)
r (13)

where r ∈ R and i = 1, ...,D+ 1. We generalize the

policy using the expansion

f ′j = π ′(sss′j) = wTs̃ss
(min)
j +∆wT

1 (s̃ss
′
j− s̃ss

(min)
j )+ ...+

∆wwwT
R hR(s̃ss

′
j− s̃ss

(min)
j ), j = 1, ...,N (14)

where s̃ss
(min)
j = [sss

(min)
j 1]T, s̃ss′′′j = [sss′j 1]

T and R represents

the highest order of the expansion and is a predefined

number.

The proposed algorithm has a strong intuitive meaning which

is that, to predict future actions, we need to know the

difference of the new task goal from previous goals and how

this difference is mapped onto the action space.
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IV. EXPERIMENTAL RESULTS

We test the performance of our proposed method in simple

real-world sculpting experiments where the environment

consists of a plasticine object which is considered sufficiently

homogeneous. To ensure the object’s homogeneity, we per-

form many executions per task where the position variance

across executions is shown to be of the order of 10−6mm2. In

our scenario, we are interested in task generalization in terms

of position accuracy without considering other performance

metrics which take into account variations in the properties

of the environment.

The experiments are performed using a 2 DOF linear-

actuated haptic device (ThrustTube), see Fig. 2 (a) where

a plastic sculpting tool is attached on the end-effector of

the device. The end-effector can move in two directions, one

normal and one parallel to the object’s surface. In every trial,

the material’s surface is initially made planar and the tool is

placed such that it just touches the surface.

A. Data acquisition from humans

During demonstration and execution phase, the haptic

device is controlled by admittance control with parameters;

stiffness 10N/m , damping 30Ns/m and mass 40Kg while

the sampling rate is 1KHz.

A sculpting task is demonstrated 3 times as follows:

i) first, the user grasps the perpendicular cylindric part of

the sculpting tool and inserts the tool tip into the object

in the normal direction, and once the desired depth has

been achieved, ii) the user moves the tool in the parallel

direction, up to some length, in order to engrave a pattern,

see Fig. 2 (b). The route that the tool follows in the parallel

direction has always the same length across demonstrations

and what varies is the normal motion; how deep and at

which velocity the tool is inserted into the object. When

parallel motion takes place, normal velocity is close to

zero. By this task, we aim at teaching the robot the force

policy to execute movements, in the same environment, but

in presence of varying motion-dependent disturbance. User

force is measured by a force sensor attached at the end-

effector of the haptic device while position and velocity data

are recorded by the device’s encoders.

End-effector

2-DoF
haptic device

Environment

Sculpting tool

(a)

Demo3 Demo2 Demo1

(b)

Fig. 2. (a) Experimental setup, (b) Three demonstrations of a sculpting
task on a plasticine material.

B. Force control policies

Based on the above task description, the following

laws hold according to the analysis in Section III-A:

the force policy is defined by π = [π(n)(sss(n)) π(p)(sss(p))]
T

where the indices n and p denote the normal and par-

allel direction of motion respectively. The motion vec-

tors in the two directions are sss(n),i = [x(n),i ẋ(n),i ẍ(n),i] and
sss(p),i = [x(p),i ẋ(p),i ẍ(p),i x(n),i ẋ(n),i] where i is the time in-

dex. In this way, a coupling of the parallel force to the normal

position and velocity states is established which is equal

to ccc(p) = [x(n) ẋ(n)] while the coupling of normal force to

parallel states is ccc(n) = 000. This means that the normal motion

is independent of the parallel direction and we push as much

deep as we desire. Parallel force, however, is responsible for

extracting the mass from the material and this accumulated

mass is always dependent on how deep the tool is inserted,

and thus, dependent on normal motion.

C. Learning force control policies

In this part, we demonstrate policy learning by LR which

is later employed in our proposed generalization approach.

During demonstrations, human user’s speed varies with depth

in both directions of motion; demonstrations require longer

time when we push harder into the object and shorter time

when we push less. Multidimensional Dynamic Time Warp-

ing [13] is applied to align the force and motion data from

different demonstrations before learning. The two policies

π(n) and π(p) are learned by LR and force estimation over

same training data is shown in Fig. 3. The corresponding

mean square force estimation error is shown in Table I.
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Fig. 3. Force estimation by LR given training data. Blue dashed:
demonstrated force, red solid: estimated force.

TABLE I

MEAN SQUARE FORCE ESTIMATION ERROR IN [N2]

Direction Demo1 Demo2 Demo3

Normal 0.0131 0.0151 0.0252

Parallel 0.666 10−3 0.0554 10−3 0.9041 10−3

D. Generalization to new motion paths

In this set of experiments, we aim at testing policy

generalization to new tasks by GWDL and compare it with

generalization by existing regression techniques LR, LWR

and LWPR. The comparison criterion consists of the tracking

error between realized and desired position trajectory in the

two directions of motion. We distinguish two main cases

of generalization where: i) the new motions lie inside the
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range of the experienced motions and we call it policy

interpolation and ii) the new motions lie outside the range of

the experienced motions and we call it policy extrapolation.

We test generalization in two different scenarios. In the

first scenario, the generalization tasks consist of engraving

patterns of same parallel length as in demonstrations but at

different depths inside the material. In the second scenario,

generalization is tested in motions which vary in both normal

depth and parallel length compared to demonstrated motions.

Discrimination between these two different scenarios is sig-

nificant in order to demonstrate how the coupling between

the two directions affects the parallel force generalization

policy.
1) Policy generalization in normal direction: First, we

test generalization in case of interpolation where the new

normal position trajectory lies inside the range of the

demonstrated ones. To this aim, we generate a new kine-

matic plan {sss′(n), sss
′
(p)} where sss′(n) = [x′(n) ẋ

′
(n) ẍ

′
(n)] and

sss′(p) = [x
(3)
(p)

ẋ
(3)
(p)

ẍ
(3)
(p)

x′(n) ẋ
′
(n)] where {x

(3)
(p)

ẋ
(3)
(p)

ẍ
(3)
(p)

} is the

parallel motion plan of demonstration 3, see Fig. 4. The

x′(n) = {x′(n),i = 0.8 x
(3)
(n),i, i= 1, ...,N} where x

(3)
(n) is the nor-

mal positional profile of Demo 3 while ẋ′(n) and ẍ′(n) are

computed from x′(n). The only new motion variables in the

parallel direction are the normal states. Generalization is

realized by LR, LWR, LWPR and GWDL (3 approximation

terms in (14)) and the results are shown in Fig. 4. Some force

profiles may not be visible in the figure because of their small

difference with the other force signals. The figure depicts

demonstrated and generalized forces by all 4 methods as well

as measured position in each case. By comparing the position

signals, we observe that the generalization performance of

LR and LWR is similar and neither of them achieves efficient

approximation of x′(n). On the contrary, LWPR and GWDL

which also exhibit similar performance, achieve accurate

approximation of the new desired normal trajectory x′(n). The

tracking error in the parallel motion is lowest in case of

GWDL while LWPR exhibits similar parallel tracking error

with that of LWR. Table II shows the total square tracking

error between desired and generalized positional profiles

E(n) = ∑N
i=1(x

′
(n),i− x̂(n),i)

2 and E(p) = ∑N
i=1(x

(3)
(p),i

− x̂(p),i)
2

for all methods. The x̂ represents, in general, the generalized

position.

TABLE II

GENERALIZATION TO NEW NORMAL KINEMATIC PLAN-INTERPOLATION

Error LR LWR LWPR GWDL (3 terms)

E(n) 0.0020 0.0029 0.00055 0.00058

E(p) 0.0564 0.1294 0.1385 0.0343

To test extrapolation to new normal paths outside the

experienced position range, a new normal positional profile

x′(n) = {x′(n),i = 1.2 x
(3)
(n),i

, i= 1, ...,N} is generated and the

new plan is {sss′(n), sss
′
(p)} where sss′(n) = [x′(n) ẋ

′
(n) ẍ

′
(n)] and

sss′(p) = [x
(3)
(p)

ẋ
(3)
(p)

ẍ
(3)
(p)

x′(n) ẋ
′
(n)], see Fig. 5. The figure visu-

alizes demonstrated and generalized force by LR, LWR,

LWPR and GWDL (2 approximation terms in (14)) as well

0 2 4 6

−1.5

−1

−0.5

0

0.5

1

1.5

0 2 4 6

−1.5

−1

−0.5

0

0.5

0 2 4 6
0

2

4

6

8

x 10
−3

0 2 4 6
−0.04

−0.03

−0.02

−0.01

0

P
a

ra
lle

l
fo

rc
e

[N
]

N
o

rm
a

l
fo

rc
e

[N
]

Time [s]Time [s]

N
o

rm
a

l
p

o
s
it
io

n
[m

]

P
a

ra
lle

l
p

o
s
it
io

n
[m

]

x
(3)
(n) x

(3)
(p)

LR
LR

LWR

LWPR

LWR, LWPR

GWDL

GWDL

Fig. 4. Policy interpolation to new normal motion. Upper row: exerted
force, lower row: measured position. Blue dashed: demonstrated signals,
green: generalization by LR, turquoise: generalization by LWR, red: general-
ization by LWPR, magenta: generalization by GWDL-3 terms. New desired
normal position x′(n) is shown by black color.

as corresponding measured position in each case. Some

force profiles seem rather overlapped by other force profiles

because of their small value difference. We observe that

GWDL outperforms LWPR and LWR while LWPR seems to

approximate x
(3)
(n)

after some time of movement. We also note

that performance of GWDL and LWR improves with move-

ment time. In the parallel direction, highest performance is

exhibited by GWDL and LR which have similar performance

while LWPR and LWR exhibit larger error. We should note

that, when 3 approximation terms are employed in (14)

for extrapolation, generalization by GWDL is unsuccessful

and the task cannot be achieved. Table III shows the total

square position tracking error E(n) = ∑N
i=1(x

′
(n),i− x̂(n),i)

2 and

E(p) = ∑N
i=1(x

(3)
(p),i

− x̂(p),i)
2 in all generalization cases.

TABLE III

GENERALIZATION TO NEW NORMAL KINEMATIC PLAN-EXTRAPOLATION

Error LR LWR LWPR GWDL (2 terms)

E(n) 0.0393 0.0062 0.0059 0.0042

E(p) 0.0501 0.1114 0.1286 0.0488

2) Policy generalization in normal and parallel direc-

tion: In this scenario, we demonstrate generalization to

new normal and parallel motions compared to the demon-

strated ones. The new kinematic plan is {sss′(n), sss
′
(p)}

where {x′(n) = 0.8 x
(3)
(n)
} and { x′(p) = 1.1 x

(3)
(p)

} where

sss′(n) = [x′(n) ẋ
′
(n) ẍ

′
(n)] and sss′(p) = [x′(p) ẋ

′
(p) ẍ

′
(p) x

′
(n) ẋ

′
(n)].

New velocity and acceleration signals are computed from

corresponding position signals. Fig. 6 shows generalized

force by LR, LWR, LWPR and GWDL (3 terms) as well

as corresponding measured position in each case. The new

task in the normal direction is the same with that of case

1)− interpolation. In the parallel direction, the task changes

to a longer and faster motion. In this direction, LWR and
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normal position x′(n) is shown by black color.

LWPR most successfully approximate x′(p) with GWDL

exhibiting larger tracking error.
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black color.

V. DISCUSSION

In this paper, we present a new approach to generalize

force control policies to new motions, executed in the same

environment with that in demonstrations, but subjected to

different motion-dependent disturbances. The proposed algo-

rithm is intuitive and simple and is based on concepts from

differential calculus theory.

The test cases presented here show that proposed GWDL

algorithm is advantageous over non-incremental learning

techniques by exhibiting, in overall, better performance.

Compared to LWPR, GWDL could outperform in specific

cases such as in extrapolating to new normal motions. How-

ever, apart from their generalization performance, presented

techniques also involve significant differences in computa-

tional efficiency. At this point, we briefly discuss on the

newly introduced GWDL and LWPR which is the most

advanced incremental learning technique to solve generaliza-

tion in high-dimensional spaces. As explained earlier, LWPR

is based on incremental update of a learning structure to

incorporate new knowledge into a system while it also deals

with the problem of irrelevant input data. On the contrary,

GWDL learns initially a set of parameters and uses these pa-

rameters to generalize to unseen inputs without updating the

learning model which makes it significantly less expensive

than LWPR. Then, to generalize by GWDL, demonstrations

are exploited and all extracted knowledge (parameters and

their differentials) is incorporated into a structure consisting

of a finite number of weighted higher-order differences

between a new and a known input point. It is important to

note that, so far, it is not possible to automatically define the

optimal number of approximation terms for generalization

by GWDL and we select it a priori.
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