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Abstract— This paper introduces a novel dynamic event-
based scheduling mechanism for networked control systems
(NCSs) composed of multiple linear heterogeneous stochastic
plants whose feedback loops are closed over a shared con-
strained communication channel. Each subsystem competes for
the channel access in order to update its own controller with
true local state values. Employing an emulation-based control
policy, a probabilistic scheduler allocates the communication
resource according to a prioritized error-based (PEB) measure.
Based on this policy, a higher chance of transmission is assigned
to the subsystems with higher errors, while the other requests
are blocked when the channel capacity is reached. Under some
mild assumptions, the probabilistic nature of PEB scheduling
scheme facilitates an approximative decentralized implementa-
tion. We evaluate the stochastic stability of the overall NCS
scheduled by PEB policy in terms of networked-induced error
ergodicity, by applying the drift criterion over a multi time-step
horizon. Moreover, we derive uniform performance bounds for
the networked-induced error variance, which demonstrates a
significant reduction in comparison with static and random
access scheduling schemes such as TDMA and CSMA.

I. INTRODUCTION

The design of event-based policies to efficiently utilize the

available resources such as communication and energy, is a

momentous and still widely open theme in the context of

networked control systems (NCSs). The scheduling policies

decide how to allocate the resource in efficient fashion, but

also guarantee stability and preserve control performance in

networked control systems. The design of scheduling policies

has seen several paradigm shifts to meet the real-time con-

trol objectives, see e.g. [1]–[12]. Event-triggered scheduling

schemes are shown to outperform the time-triggered ones

within the prioritizing protocols in terms of the overall per-

formance improvement, especially when large-scale systems

are of interest [7]–[12]. Try-Once-Discard (TOD), introduced

in [1], is one of the basic event-based protocols which

uses the current measurement with the largest discrepancy

between its true and estimated values for transmission and

discards the blocked data. The Maximal Allowable Transfer

Interval (MATI) considers the stability of NCS with a de-

terministic scheduling scheme by deriving an upper bound

for the time between two successive transmissions [1]–[3].

While deterministic architectures are often criticized for lack
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of flexibility and scalability, stochastic scheduling policies

offer a more flexible and easily implementable options in

particular for large-scale systems. However, MATI in its

original formulation is not suited to show the stability of

NCSs with stochastic scheduling schemes in general state

spaces, as the intervals between transmissions are not uni-

formly bounded with probability one. The stability of such

systems is considered in [4]–[7]. While stability of single-

loop NCSs is addressed in [4], [5], stability of event-based

multi-loop NCSs is yet to be comprehensively discussed.

In this paper we investigate a state-dependent probabilistic

scheduling protocol for NCSs comprised of multiple hetero-

geneous control loops communicating over a shared channel.

In our proposed architecture, the medium access is granted

to the transmission requests by assigning a probability of

utilizing the resource to each subsystem according to an

error-dependent priority measure. As the errors are driven

by the Gaussian noise process, transmissions occur randomly

in event-based fashion. Unlike purely deterministic policies

which require centralized knowledge about all entities, the

probabilistic nature of our scheduler facilitates an approxima-

tive decentralized implementation under some mild assump-

tions. Each control loop is modeled as a linear time-invariant

discrete-time system with the control law designed by an

emulation-based approach, i.e. the controller is stabilizing in

the absence of the communication network. Exploiting a drift

criterion over a multi time-step interval, we show that the

proposed scheduler yields stochastic stability of multi-loop

NCSs in terms of Markov chain ergodicity. To investigate

the performance efficiency of our approach and compare

it with time-triggered and non-state-dependent randomized

policies, a quadratic cost function is introduced. Subse-

quently, analytic upper-bounds, independent of initial values,

are computed for an average cost function. Simulations show

an increased performance in the mean squared networked-

induced estimation error.

The remainder of the paper is organized as follows: The

problem statement is described in Section II and is followed

by preliminaries of stochastic stability. Section III proceeds

with the stability analysis. Performance bounds are discussed

in section IV, and follows by numerical results in Section V.

Notation. Euclidean norm, and conditional expectation are

denoted by ‖ ·‖2, and E[·|·], respectively. N (µ,X) denotes a

Gaussian distribution with mean µ and covariance matrix X .

If not otherwise stated, a state variable with superscript i

indicates that it belongs to subsystem i. For matrices though,

subscript i indicates the belonging subsystem and superscript

n denotes the matrix power.
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II. PROBLEM STATEMENT AND PRELIMINARIES

We consider an NCS composed of N heterogeneous

linear control loops which are coupled through a shared

communication network, as schematically depicted in Fig.

1. Each individual loop consists of a linear stochastic plant

Pi, an emulation-based controller Ci, and a sensor Si. An

event-based scheduler decides when a state vector xik ∈ R
ni

is an event to be scheduled for channel utilization. The plant

Pi is modeled by the following stochastic difference equation

xik+1 = Aix
i
k +Biu

i
k + wi

k, (1)

where wi
k ∈ R

ni is i.i.d. with wi
k ∼ N (0,Wi) at each

time-step k, andAi ∈ R
ni×ni , Bi ∈ R

ni×mi describe system

and input matrices, respectively. Moreover, uik ∈ R
mi is the

local control input. The initial states xi0 are allowed to have

an arbitrary distribution with bounded moments. At each

time-step, the scheduler decision is presented by the binary

variable δik ∈ {0, 1} for every subsystem as

δik =

{

1 transmission request accepted

0 transmission request dismissed

This implies the received signal zk at the controller by

zik =

{

xik δik = 1

∅ δik = 0
.

Each local system is controlled by a state feedback controller

which is updated at every time step k either by the true state

values xik (in case δik = 1) or by the estimated states x̂ik
(in case δik = 0). The control law γi is described by causal

mappings of the past observations for each time step k, i.e.

uik = γik(Z
i
k) = −Li E

[

xik|Z
i
k

]

(2)

where Zi
k = {zi0, . . . , z

i
k} is the observation history, and Li

is the feedback gain which is assumed to be stabilizing for

the ideal case when no communication channel is present.

In case a transmission request is blocked the controllers are

updated by the least-square estimate of the states, i.e.

E
[

xik|Z
i
k

]

= (Ai −BiLi)E
[

xik−1|Z
i
k−1

]

, (3)

with the initial distribution satisfying E
[

xi0|Z
i
0

]

= 0. The

estimate in (3) is well-behaved since a stabilizing Li ensures

that the closed-loop matrix (Ai −BiLi) is Hurwitz. The

network-induced error state eik ∈ R
ni is defined as the

estimation error eik = xik − E
[

xik|Z
i
k−1

]

and evolves as

eik+1 =
(

1− δik
)

Aie
i
k + wi

k. (4)

The stability of ek implies the overall system’s stability,

since the augmented state
[

xik, e
i
k

]

has a triangular dynamics,

according to (1)-(4), implying the evolution of error state eik
is independent of the system state xik.

The prioritized error-based scheduling policy proposed in

this paper defines the probability of channel access for each

subsystem at each time-step k according to the following

error-dependent probabilistic measure:

P

[

δik = 1
∣

∣e
j
k, j ∈ {1, . . . , N}

]

=
‖eik‖

p
2

∑N

j=1
‖ejk‖

p
2

(5)

where, p ≥ 2 is an integer, and the probability distribution

has semi-infinite support [0,∞). According to (5), the sub-

systems with higher error have higher access probabilities.

The channel capacity constraint however, implies that only a

fraction of subsystems can transmit. Therefore, the channel

will be allocated probabilistically by a biased random process

until the capacity of the channel is reached. Consequently,

the remaining transmission requests which have not granted

the channel access are blocked. It is worth noting that the

random process is biased according to the assigned error-

dependent probabilities. Without loss of generality and for

the sake of simplicity, we consider the following constraint

with probability 1 for every k ≥ 0

N
∑

i=1

δik = 1. (6)

The capacity constraint can be easily generalized such that
∑N

i=1
δik = c < N , where c > 1.

In order to measure the performance of our proposed

scheduler, we define a quadratic cost function at each time

step k for all the subsystems j ∈ {1, . . . , N} as

Jek =

N
∑

j=1

‖ejk‖
2
2. (7)

The PEB policy can be approximately implemented in

decentralized fashion within the framework of the idealized

CSMA protocol [17], under some mild assumptions. It is

envisioned that the carriers are sensed instantaneously, and

there are no hidden nodes. These two imply that no collision

occurs. Moreover, every subsystem randomly determines its

priority according to a probability distribution depending on

its own error. Assuming that the backoff time is negligible

with respect to the sampling interval and additionally data

packets are discarded after one re-transmission trial, at the

beginning of every sampling instance, each subsystem that

requests for a channel access waits according to its chosen

backoff interval. The duration is chosen randomly accord-

ing to a distribution related to the current error norm of

the individual subsystem. The subsystem with the smallest

interval is awarded the channel access, while all the other

subsystems are blocked. Furthermore, the mean backoff in-

terval decreases accordingly with increasing error norm. This

yields to prioritization of the control loops, as subsystems

with larger error norms are more likely to transmit.

The aggregate error state ek ∈ R
n which is defined by

augmenting the individual state vectors

ek = [e1T
k , . . . , e

NT
k ]T, (8)

is a homogeneous Markov chain, since the scheduling policy

(5) is a randomized Markov policy depending on the most

recent values of ek. Moreover, we assume Gaussian additive

noise wi
k with Wi > 0, which implies that the transition

kernel P (e, ·) at any state e of the Markov chain ek has a

positive density function. Then, the error Markov chain (8)

is ψ-irreducible and aperiodic.
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Fig. 1. An NCS with a shared communication channel.

A. Preliminaries

The stability concept used in this paper is given by

f -ergodicity which is comprehensively discussed in [18],

Chapter 14. We need to show that the Markov chain defined

in (8) is f -ergodic rather than ergodic, since it evolves in an

uncountable state space R
n, with arbitrary initial condition.

Therefore, the existence of the total variation norm cannot

be ensured for infinite transition steps, e.g. in case of having

coercive chains. However, by showing a Markov chain is

f -ergodic, we can show the limk→∞ ‖P k(e0, ·) − π‖f is

independent of initial condition, where π is an invariant

probability measure, f ≥ 1, and the f -norm is defined as

‖ν‖f = sup|g|≤f |ν(g)|. There exist several equivalent ways

of showing f -ergodicity; we employ the following:

Definition 1: Let f ≥ 1 be a real-valued function in R
n.

A Markov chain ek is said to be f -ergodic, if E [π(f)] is

finite, where π(f) =
∫

f(e)π(de).

The next definition provides a notion for the Markov chain

gradient with respect to a real-valued function of states.

Definition 2 (Drift for Markov chains): Let V be a real-

valued function in R
n. The drift operator ∆ is defined for

any non-negative measurable function V as

∆V (ek) = E
[

V (ek+1)
∣

∣ek
]

− V (ek), ek ∈ R
n. (9)

The f -Norm Ergodic Theorem summarizes the f -ergodicity

of Markov chains in general state spaces.

Theorem 1 ( [18], Ch. 14): Suppose that the Markov

chain ek is ψ-irreducible and aperiodic and let f (e) ≥ 1
be a real-valued function in R

n. If a small set D and a non-

negative real-valued function V exist such that ∆V (e) ≤
−f(e) for all e ∈ R

n\D and ∆V < ∞ for all e ∈ D, then

the Markov chain ek is f -ergodic.

Remark 1: The f -norm ergodic theorem considers the

ergodicity of Markov chains by exploiting drift criteria over

one time-step. However, for complex practical scenarios in

general state spaces it is often difficult to find the appropriate

Lyapunov function to show that the one-step drift tends

towards a small set, see e.g. [19]. As ergodicity is an

asymptotic property of Markov chains, we instead employ

a N -step drift criteria to show the ergodicity of the Markov

chain over an interval with length N , [20]. The N -step drift

is defined as

∆NV (ek) = E
[

V (ek+N )
∣

∣ek
]

− V (ek) . (10)

III. STABILITY ANALYSIS

In this section we show the stochastic stability of NCSs

with the PEB scheduling protocol in terms of f -ergodicity

of the networked-induced error over an N -step interval.

To employ the drift criterion, we introduce the Lyapunov

candidate

V (ek) =
N
∑

i=1

‖eik‖
p
2
.

The N th-order drift operator introduced in (10), requires the

calculation of the error expectation in the last time-step k+
N . To take into account the prior transmissions of a system,

eik+N is expressed as function of a former error value at

a certain time-step k + r′, and the scheduling variables, as

follows

eik+N =
N−1
∏

j=r′

(

1− δik+j

)

AN−r′

i eik+r′

+

N−1
∑

r=r′





N−1
∏

j=r+1

(

1− δik+j

)

AN−r−1

i wi
k+r



 (11)

where, r′ ∈ [0, N − 1], and we define
∏N−1

N (1− δik+j) = 1
for r′ = N − 1. Exploiting the Multinomial Theorem for

a subsystem i which has never transmitted within the past

N − 1 time-steps, we have

E
[

V
(

eik+N

) ∣

∣ek
]

= E
[

‖eik+N‖p2
∣

∣ek
]

≤ E

[

‖AN−r′

i eik+r′ +

N−1
∑

r=r′

AN−r−1

i wi
k+r‖

p
2

]

≤ E

[

‖AN−r′

i eik+r′‖
p
2

]

+E

[

‖
N−1
∑

r=r′

AN−r−1

i wi
k+r‖

p
2

]

(12)

+

k1+k2=p
∑

k1,k2<p

p!

k1!k2!
E

[

‖AN−r′

i eik+r′‖
k1

2 ‖
N−1
∑

r=r′

AN−r−1

i wi
k+r‖

k2

2

]

.

Statistical independence of eik+r′ and wi
k+r for r ∈ [r′, N−1

yields

E

[

‖AN−r′

i eik+r′‖
k1

2 ‖
N−1
∑

r=r′

AN−r−1

i wi
k+r‖

k2

2

∣

∣

∣
ek

]

≤

‖AN−r′

i ‖k1

2
E

[

‖eik+r′‖
k1

2

∣

∣ek

]

E

[

‖
N−1
∑

r=r′

AN−r−1

i wi
k+r‖

k2

2

]

where, all terms in right side of the inequality are bounded

except E
[

‖eik+r′‖
k1

2

∣

∣ek

]

. However, this term will remain au-

tomatically bounded, as far as E

[

‖AN−r′

i eik+r′‖
p
2

]

remains

bounded, since k1 < p. Hence, we can rewrite (12) as

E

[

V (ek+N )
∣

∣

∣
ek

]

(13)

≤
N
∑

i=1

E



‖
N−1
∏

j=r′

(

1− δik+j

)

AN−r′

i eik+r′‖
p
2

∣

∣

∣
ek



+ c+i
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where, c+i stands for the last two bounded terms in (12).

For further derivations, we classify the subsystems into two

complementary sets: S1 contains m̄ subsystems which have

transmitted at least once in the N − 1 time-step window,

i.e. δi∈S1

k+j =1 at least for one j ∈ {0, 1, . . . , N−1}, and S2

contains m=N−m̄ subsystems which have not transmitted at

all, i.e. δi∈S2

k+j =0 for all j∈{0, 1, . . . , N−1}. Having these

preliminaries, we state the stochastic stability of a multi-

loop NCS triggered by the PEB scheduling policy through

the following theorem.

Theorem 2: Let a multi-loop NCS consists of N hetero-

geneous stochastic control loops, with the stochastic plants

modeled as (1), sharing a transmission channel subject to

the constraint in (6), with the stabilizing control γi given

as (2), and the channel access being scheduled by the PEB

policy (5). Then, the Markov chain (8) is f -ergodic.

Proof: We investigate the drift term within three

complementary and mutually exclusive cases to cover all the

possible allocations of the shared communication channel,

according to the PEB scheduling policy. We introduce the

local parameters Mi > 0 as the error thresholds for each

subsystem i ∈ {1, . . . , N}. It is worth noting that the choice

of Mi’s does not influence the scheduling process. As we will

discuss later in section IV, they maintain a trade-off between

conservativeness of the performance bounds for different

cases. For now we consider the Mi’s being chosen arbitrary.

The cases are defined as

l1 Subsystem i has transmitted at least once during the

most recent N − 1 steps, i.e. i ∈ S1.

l2 Subsystem i has never transmitted during the most

recent N − 1 steps, i.e. i ∈ S2, and satisfies

‖eik+N−1
‖p
2
≤Mi.

l3 Subsystem i has never transmitted during the most

recent N − 1 steps, i.e. i ∈ S2, and satisfies

‖eik+N−1
‖p2 > Mi.

Each of the aforementioned cases occurs with a probability

Plc ∈ [0, 1], and
∑3

c=1
Plc = 1. To satisfy (10), the following

inequality must hold

3
∑

c=1

Plc E
[

V (ek+N )
∣

∣ek, lc
]

− V (ek) ≤ −f(e). (14)

From now on, we conveniently use scripts i and j for the

subsystems in S1 and S2, respectively. For the first case, it is

straightforward to show that V (ek+N ) is bounded if i ∈ S1,

according to (13). Assuming that δik+r′ = 1 is the latest

transmission at time k+r′ ≤ k+N−1, we have from (13)

E
[

V (ek+N )
∣

∣ek, l1
]

≤
∑

i∈S1

c+i , (15)

which is dependent on only the noise values.

As for the second case l2, we rewrite the drift in (13) by

setting r′ = N − 1 as

E
[

V (ek+N )
∣

∣ek, l2
]

(16)

= E

[

V (ek+N )
∣

∣‖ejk+N−1
‖p2 ≤Mj, j ∈ S2

]

≤
∑

j∈S2

[

E ‖
[

1− δ
j
k+N−1

]

Aje
j
k+N−1

‖p2
∣

∣ek

]

+ c+j .

To avoid the probability in (5) being undefined due to

simultaneous zero error values, we introduce the following

cases:

dj =

{

1 ‖ejk+N−1
‖p2 ≤ εj < Mj

2 ‖ejk+N−1
‖p2 > εj

, (17)

with the probability of occurrence P (d1) = αj and P (d2) =
1− αj . The law of iterated expectation incurs

E

[

‖
[

1− δ
j
k+N−1

]

Aje
j
k+N−1

‖p2
∣

∣ek

]

= E

[

E

[

‖
[

1− δ
j
k+N−1

]

Aje
j
k+N−1

‖p2

∣

∣

∣
ek, d

]

∣

∣ek

]

= P (d1) .E
[

‖
[

1− δ
j
k+N−1

]

Aje
j
k+N−1

‖p2
∣

∣ek, d1

]

+ P (d2) .E
[

‖
[

1− δ
j
k+N−1

]

Aje
j
k+N−1

‖p2
∣

∣ek, d2

]

≤ εjαj‖Aj‖
p
2 + (1− αj) ‖Aj‖

p
2 E

[

‖ejk+N−1
‖p2
∣

∣ek

]

≤ εjαj‖Aj‖
p
2 + (1− αj) ‖Aj‖

p
2Mj

Since Mj’s are finite, we have the initial-value-independent

upper bound for the drift in (16) as

E
[

V (ek+N )
∣

∣ek, l2
]

≤
∑

j∈S2

‖Aj‖
p
2 [εjαj + (1− αj)Mj ]+c

+

j

≤
∑

j∈S2

‖Aj‖
p
2Mj + c+j . (18)

The third case considers subsystems in the set S2 with

potentially unbounded errors at the time-step k + N − 1.

Knowing δ
j
k′ = 0 for all k′ ∈ [k, . . . , k + N − 1], the drift

in (13) can be rewritten setting r′ = 0 as

E
[

V (ek+N )
∣

∣ek, l3
]

≤
∑

j∈S2

E

[[

1− δ
j
k+N−1

]

‖AN
j e

j
k‖

p
2

∣

∣

∣
ek

]

+
∑

j∈S2

E

[

[

1− δ
j
k+N−1

]

‖
N−1
∑

h=0

AN−h−1

j w
j
k+h‖

p
2

∣

∣

∣
ek

]

+ c+j

≤
∑

j∈S2

‖AN
j e

j
k‖

p
2 +

∑

j∈S2

E

[

‖
N−1
∑

h=0

AN−h−1

j w
j
k+h‖

p
2

]

+c+j

≤
∑

j∈S2

‖AN
j ‖p2‖e

j
k‖

p
2 +

∑

j∈S2

E

[

‖
N−1
∑

h=0

AN−h−1

j w
j
k+h‖

p
2

]

+c+j

≤
∑

j∈S2

‖AN
j ‖p2V (ek) +

∑

j∈S2

E

[

‖
N−1
∑

h=0

AN−h−1

j w
j
k+h‖

p
2

]

+c+j

where, the last two terms of the latter inequality are positive

and bounded for finite N . The last inequality however in-

cludes the potentially unbounded term V (ek), which would

violate the f -ergodicity conditions of Theorem 1. To avoid
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this, the probability of the third case happening can be

made arbitrarily close to zero by choosing appropriate error

thresholds Mj , as follows If one system, say j, does not

transmit during the entire interval, then there exists another

subsystem, say i, which transmits more than once. Let k+ r̄
denote the most recent step in which system i transmitted.

Now, the probability that system i transmits at the last step

of the interval, i.e., δik+N = 1, is computed according to

P

[

δik+N = 1
∣

∣δik+r̄ = 1, ‖ej∈l3
k̄

‖p2 > Mj

]

= E

[

P

[

δik+N = 1
∣

∣e
j
k

]

∣

∣δik+r̄ = 1, ‖ej∈l3
k̄

‖p2 >Mj

]

≤ E

[

‖eik+N−1
‖p
2

∑

j∈S2
‖ejk+N−1

‖p
2

∣

∣δik+r̄= 1, ‖ej∈l3
k̄

‖p2>Mj

]

≤ E

[

‖
∑N−2

r=r̄ AN−r−1

i wi
k+r‖

p
2

∑

j∈l2
‖ejk+N−1

‖p2 +
∑

j∈l3
‖ejk+N−1

‖p2

∣

∣zi,j

]

≤ E

[

‖
∑N−2

r=r̄ AN−r−1

i wi
k+r‖

p
2

∑

j∈l3
‖ejk+N−1

‖p2

∣

∣zi,j

]

≤

∑N−2

r=r̄ E
[

‖AN−r−1

i wi
k+r‖

p
2

]

∑

j∈l3
Mj

= Pl3 , (19)

where zi,j abbreviates the conditions of the expectation.

From (19) one infers that the probability of a subsequent

transmission for a certain subsystem, in the presence of large

errors in subsystems and without prior transmissions, can be

arbitrarily close to zero by selecting the appropriate Mj’s.

The N th order drift operator from (14) is then reduced to

∆NV (ek) =

3
∑

c=1

Plc E
[

V (ek+N )
∣

∣ek, lc
]

− V (ek)

≤
∑

i∈S1

c+i +
∑

j∈S2

‖Aj‖
p
2 [εjαj + (1− αj)Mj ] + c+j

+ Pl3





∑

j∈S2

E

[

‖
N−1
∑

h=0

AN−h−1

j w
j
k+h‖

p
2

∣

∣

∣
ek

]

+ c+j





+



Pl3

∑

j∈S2

‖AN
j ‖p2 − 1



V (ek) . (20)

As it can be seen, all the terms in right hand side of the

inequality (20) are bounded except the last one, which is

error dependent. Therefore, the first two bounded positive

terms do not endanger the drift to be negative. For the last

term though, we substitute Pl3 according to (19) to the above

inequality which yields

∆NV (ek) ≤ c+lc+




∑N−2

r=r̄ ‖AN−r−1

i ‖p2 E
[

‖wi
k+r‖

p
2

]

∑

j∈S2
Mj

∑

j∈S2

‖AN
j ‖p2 − 1



V (ek)

where, c+lc represents the bounded terms in (20). Define

f(e) = ε̄fV (ek) − c+lc , ε̄f > 0. Then, choosing Mj

and ε̄f such that
[

Pl3

∑

j∈S2
‖AN

j ‖p2 − 1
]

≤ −ε̄f implies

∆NV (ek) ≤ −f(e). We can find an appropriate ε̄f and

a compact set D such that f ≥ 1, and f -ergodicity of

ek is then followed according to Theorem 1. p moment

boundedness of the Markov chain ek follows from the finite

stationary distribution π (f), see Def. 1. Clearly, if e ∈ D,

then ∆NV (ek) <∞, since c+lc and N are finite. Thus, (14)

is fulfilled, and the proof is then complete according to the

f -Norm Ergodic Theorem.

Remark 2: The probability of happening the first and

second cases can also be computed considering the PEB

scheduling policy (5). However, as the derived upper bounds

(15) and (18) are independent of initial values, we dropped

the derivations of Pl1 and Pl2 and instead considered them

as unity. This just leads to more conservative upper-bounds.

IV. PERFORMANCE BOUNDS

For different network scheduling schemes, the perfor-

mance efficiency is analyzed often in terms of minimizing

some desired cost functions. The notion of periodic event-

triggered control (PETC) is employed in [13] to obtain

suboptimal bounds on a quadratic cost function, within a

controller-scheduler co-design structure. In [14], [15], the

performance bound is obtained for linear stochastic systems

with quadratic value functions. Geometric bounds are derived

for the stochastic infinite but countable Markov chains in

[16]. This section presents performance bounds on the aver-

age cost, under an emulation-based control policy. Employ-

ing the quadratic cost function (7), we find uniform upper

bound for the associated average cost function, assuming that

the scheduler operates according to the PEB policy (5), and

the stabilizing controllers are given as (2). First we state the

following lemma as the main tool to obtain the upper bound.

Lemma 1 ( [21]): Suppose that ek represents a Markov

chain with general state space E . Introduce Jek : E → R,

and h : E → R. Define the average per-period cost as

Jave = lim
t→∞

sup
1

t

t−1
∑

k=0

E [Jek ]

If h (ek) ≥ 0 for all ek ∈ E , then

Jave ≤ sup
ek∈E

{

Jek + E
[

h (ek+1)
∣

∣ek
]

− h (ek)
}

.

Remark 3: Lemma 1, provides the performance bound in

one step transition of the Markov chain, while we evalu-

ate the error variance over the N -step transitive interval.

However, one can still use of the aforementioned lemma,

if the Markov chain is ψ-irreducible and evolves in an

uncountable state space. Then, we can construct a new

Markov chain which contains the states of the original chain

at {0, N, 2N, ...} time-steps. Therefore, ψ-irreducibility and

uncountability of the Markov chain is preserved for finite N .

Discussions in Remark 3 leads us to re-express the upper

bound in Lemma 1 as follows

JPEB
ave ≤ sup

ek∈E

{

Jek + E
[

h (ek+N )
∣

∣ek
]

− h (ek)
}

. (21)
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We introduce the quadratic function h (ek) =
∑N

j=1
e
jT

k e
j
k =

∑N

j=1
‖ejk‖

2
2. Therefore, the bound in (21) is reduced to

JPEB
ave ≤ sup

ek∈E
E
[

h (ek+N )
∣

∣ek
]

. (22)

We evaluate E
[

h (ek+N )
∣

∣ek
]

by dividing the operational

space of scheduler’s policy into three cases, as already

categorized in the proof of Theorem 2. As we will see in

the following, it is straightforward to compute the uniform

bounds for the first two cases. For the third case though,

at which the errors are unbounded, the closed-form bounds

are difficult to obtain. We will further obtain the uniform

bound for the worst case possible of error variance. As the

worst case situation, we consider the error to be increasing

from one step to the next, i.e. ‖ejk′+1
‖22 ≥ ‖ejk′‖22 for

k′ ∈ [k, . . . , k +N − 1].
For the first case, at which the subsystems are contained

in the set S1, transmission will occur at least once with

probability one. Adjust r′ = 0 in (11), and knowing that

δik+r′ = 1 we have

E
[

h (ek+N )
∣

∣ek, i ∈ S1

]

≤
∑

i∈S1

N−1
∑

r=0

E
[

‖AN−r−1

i wi
k+r‖

2
2

]

≤
∑

i∈S1

tr (Ci)

N−1
∑

r=0

‖AN−r−1

i ‖22 (23)

where, Ci is the covariance matrix of the noise signal wi.

For the case l2 at which the subsystems are in S2, we use

the upper bound obtained from the stability analysis as

JPEB
ave ≤

∑

j∈S2

‖Aj‖
2
2Mj +

∑

j∈S2

tr (Cj) . (24)

We propose the performance bound for the third case l3
within the following theorem, for the worst case possible

scenario of the error variance:

Theorem 3: Let a multi-loop NCS consists of N heteroge-

neous stochastic control loops sharing a transmission channel

subject to the constraint (6), with the stabilizing control γi

given as (2), and the channel access being scheduled by the

PEB policy (5). Suppose that the total imposed cost per time-

step is defined by (7). Assuming the third case, there exists

some subsystems with no transmission over [k, k + N − 1]
steps, satisfying ‖ejk+N−1

‖22 > Mj . Then the average cost

function (22) is uniformly upper bounded.

Proof: See Appendix.

Remark 4: It can be seen that the introduced error thresh-

olds Mi’s maintain a trade-off between the conservativeness

of the performance bounds (24) and (25). It is concluded that

increasing the error thresholds leads to more conservative

upper bound for the case l2 while it has a reverse effect on

the performance bound for the third case l3. On the other

hand, decreasing Mi’s leads to a less conservative bound for

case l2, while increases the conservativeness of the upper

bound in (25). The least conservative performance bounds

for the average error variance will be obtained by choosing

appropriate thresholds such that a trade-off is maintained

between the upper bounds.

V. NUMERICAL RESULTS

We derive the upper bounds for the error variance in a

networked system comprised of two classes of subsystems -

a stable class and an unstable class of process - with system

parameters A1 = 1.25, B1 = 1 and A2 = 0.75, B2 = 1,

respectively. The either heterogeneous classes includes finite

number of homogeneous subsystems. In both classes, the

state initiates with x10 = x20 = 0 and the noise is modeled

by wi
k ∼ N (0, 1). We assume a stabilizing deadbeat control

law with Li = Ai for i ∈ {1, 2} and a model-based observer

in case of no data transmission.
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Fig. 2. Mean steady-state variance of ei
k

- Comparison for various schemes
and different number of subsystems.

Fig. 2 compares the performance of the proposed PEB

protocol for different p powers with other scheduling pro-

tocols for N ∈ {2, 4, 6, 8, 10} in terms of the estimation

error eik induced by the network. The means are calculated

by their empirical means through Monte Carlo simulations

over a horizon of 100 000 samples. The lower bound is de-

termined by relaxing the initial problem to have no resource

constraint. The round robin protocol is a periodic access

scheme with a sampling period of N . The CSMA protocol

operates in the same fashion as the PEB protocol without

prioritizing subsystems, i.e. the probability of updating the

controller is 1

N
for each subsystem at each time. With an

increasing number of subsystems sharing the resource, the

performance gap between the PEB scheduler and the other

protocols becomes more evident. At the same time, the PEB

scheduler deviates moderately from the lower bound, which

grows slowly with increasing N . This suggests that the PEB

protocol is more profitable than the round robin protocol

when the resource is scarce. Moreover, by increasing the

power of p, the performance of the scheduler improves, as

the subsystems with higher errors get more chance to utilize

the channel. In case p→ ∞, the scheduler behaves as the

deterministic scheduler. As the simulations show, the PEB
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scheduler is scalable with respect to the increasing number

of subsystems, compared to the other policies.

The uniform bounds (24)-(25) of the section IV are

calculated for the similar networked system as one the Monte

Carlo simulations are derived for, and the results are shown

in the Fig. 3. It can be seen that Mj affects the performance

bounds (24) and (25) in opposite direction, such that bigger

Mj’s result in more conservative upper bound for (24)

and less conservative for (25). Thus, the error thresholds

are chosen in a way to maintain a trade-off between the

cases. As it can be seen in the Fig. 3, the error thresholds

are chosen where the error bounds for the cases l1 + l2
and l3 coincides. It is clear that for bigger Mj’s the error

variance increases due to the increase in the upper bound

(24), while choosing smaller thresholds leads to increase the

error variance because the upper bound (25) increases. The

subplot in the down right of the Fig. 3 shows the bounds

for a networked system composed of 2,4, and 6 subsystems

with 1,2, and 3 unstable subsystems, respectively. Comparing

with the results extracted from the Monte Carlo simulation in

Fig. 2, the uniform bound seems to be conservative for higher

number of subsystems. However, this result is expected, be-

cause the performance bounds in Fig. 2, which are obtained

by the Monte Carlo simulations, are not necessarily obtained

for the worst case possible situation, and therefore illustrate

better performance. Fig. 3 also shows that the described

networked control system in this paper remains bounded

when it is scheduled by the PEB policy (5), since the worst

case possible is bounded independent of the initial values.
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Fig. 3. Choosing threshold M for the cases l1 + l2- l3, and the
corresponding upper bounds for the mean error variance.

VI. CONCLUSION

This paper investigates the stability and performance of

resource-constrained networked control systems by introduc-

ing Prioritized Error-Based (PEB) scheduling scheme. This

policy assigns priorities dynamically for NCS which contain

a finite number of stochastic linear subsystems coupled

through a shared communication resource. Provided with

stabilizing feedback controllers, we show the stability of the

overall networked system under the employment of the PEB

policy using the drift criteria for general power of 2-norm

functions. Stochastic stability is shown in terms of Markov

chain ergodicity and p-moment boundedness for p-power f -

ergodic functions. A comprehensive performance analysis is

done to find the upper bounds on the variance of the error,

under employment of PEB resource allocation strategy. We

derive the performance bound for the worst case possible

error variance and show its boundedness employing PEB

scheduling policy. Numerical simulations show the stability

alongside a major performance improvement in comparison

with the other protocols, e.g. Round Robin, and CSMA,

especially when the number of subsystems increases.

VII. APPENDIX

Proof: [Theorem 3]: We find the upper bound for the

error variance in N time-step ahead, for the worst case

possible, when the third case (l3) happens. We have δ
j
k′ = 0

for all j∈S2 and for all time-steps [k, . . . , k+N−1], then

E
[

h (ek+N )
∣

∣ek, l3
]

=E





∑

j∈l3

‖ejk+N‖22

∣

∣

∣
ek





≤
∑

j∈S2

E

[

‖AN
j e

j
k +AN−1

j w
j
k + . . .+ w

j
k+N−1

‖22
∣

∣ek

]

≤
∑

j∈S2

‖AN
j ‖22‖e

j
k‖

2
2 + E

[

‖wj
k+N−1

‖22

]

+
∑

j∈S2

E

[

‖AN−1

j w
j
k + . . .+Ajw

j
k+N−2

‖22

]

≤
∑

j∈S2

‖AN
j ‖22

∑

j∈S2

‖ejk‖
2
2 + E

[

‖wj
k+N−1

‖22

]

+
∑

j∈S2

‖Aj‖
2
2 E

[

‖AN−2

j w
j
k + . . .+ w

j
k+N−2

‖22

]

The worst case possible for the subsystems j ∈ S2 happens

when the subsystems are unstable, i.e. the system matrix

A has at least one eigenvalue outside the unit circle, and

‖ejk′+1
‖22 ≥ ‖ejk′‖22 for k′ ∈ [k, . . . , k +N − 2]. Therefore,

we consider from now on that all the unstable subsystems

belong to set S2. Now we calculate the probability of

happening the third case in the worst case situation. We

modify the upper bound as

P

[

δik+N−1 = 1
∣

∣‖ejk+N−1
‖22 > ‖ejk‖

2
2, i ∈ S1

]

= E

[

‖eik+N−1
‖22

∑N
j=1

‖ejk+N−1
‖22

∣

∣‖ejk+N−1
‖22 > ‖ejk‖

2
2, i ∈ S1

]

≤ E

[

‖eik+N−1
‖22

∑

j∈S2
‖ejk‖

2
2

∣

∣ek, i ∈ S1

]

≤

∑N−2

r=0
‖AN−r−2

i ‖22 E
[

‖wi
k+r‖

2
2

]

∑

j∈S2
‖ejk‖

2
2

where, the first inequality is ensured considering that

‖ejk+N−1
‖22 ≥ ‖ejk‖

2
2. Applying the latter upper bound on
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E
[

h (ek+N )
∣

∣ek, l3
]

yields

Pcl3
E
[

h (ek+N )
∣

∣ek, l3
]

≤

∑N−2

r=0
‖AN−r−2

i ‖22 E
[

‖wi
k+r‖

2
2

]

∑

j∈S2
‖ejk‖

2
2

∑

j∈S2

‖AN
j ‖22

∑

j∈S2

‖ejk‖
2
2

+

∑N−2

r=0
‖AN−r−2

i ‖22 E
[

‖wi
k+r‖

2
2

]

∑

j∈S2
Mj

ξ+j∈S2

=

N−2
∑

r=0

‖AN−r−2

i ‖22 E
[

‖wi
k+r‖

2
2

]

∑

j∈S2

‖AN
j ‖22 (25)

+

∑N−2

r=0
‖AN−r−2

i ‖22 E
[

‖wi
k+r‖

2
2

]

∑

j∈S2
Mj

ξ+j∈S2

where the term ξ+j∈S2
stands for

∑

j∈S2
E

[

‖wj
k+N−1

‖22

]

+
∑

j∈S2
E

[

‖AN−1

j w
j
k + . . .+Ajw

j
k+N−2

‖22

]

. The bound is

then independent of e
j
k and therefore the worst case error

variance of the third case, is uniformly upper bounded. The

last step is to calculate the noise-dependent term ξ+j∈S2
.

It should be noted that unlike the other noise-dependent

distributions, the distribution of the vector W
(

Aj , w
j
)

=

AN−1

j w
j
k + . . . + w

j
k+N−1

is conditioned on the segment

of the distribution which enlarges the noise-dependent term

AN−1

j e
j
k, either in positive or negative directions, to satisfy

‖ejk′+1
‖22 ≥ ‖ejk′‖22. In other words, depending on the sign

of the elements of the vector-valued term AN−1

j e
j
k, either

positive or negative parts of the distribution W
(

Aj , w
j
)

should be considered. Since the norm of the error will

be measured as the average cost, the worst case would

occur if the noise-dependent and error-dependent terms have

similar signs, element wise, either positive or negative.

Due to the symmetry of the noise-dependent distribution

W
(

Aj , w
j
)

, both positive and negative parts of the dis-

tribution turn out to have similar values. Assume that they

are positive, then we need to calculate the positive part of

the distribution of W
(

Aj , w
j
)

. Since, the noise variables

are independent, then W
(

Aj , w
j
)

has a zero-mean multi-

dimensional Gaussian distribution with covariance matrix

Σ =
(

AN−2

j + . . .+Aj + I
)

Cj . The corresponding proba-

bility density function (pdf) is defined as

f (w) =
1

√

(2π)nj |Σ|
exp

(

−wTΣ−1w

2

)

(26)

where w is the nj-dimensional noise-dependent random

vector, and |Σ| is the determinant of the covariance ma-

trix. To calculate ξ+j∈s2
, we essentially need to calculate

E

[

‖w
(

Aj , w
j
)

‖22

∣

∣

∣
W ≥ 0

]

. According to the law of uncon-

scious statistician

E

[

‖W
(

Aj , w
j
)

‖22

∣

∣

∣
W ≥ 0

]

=
1

√

(2π)nj |Σ|

∫ ∞

0

. . .

∫ ∞

0

‖w‖22exp

(

−wTΣ−1w

2

)

dw

which the integral can be effectively calculated. It

worth to mention that the other noise-dependent term

∑

j∈S2
E

[

‖wj
k+N−1

‖22

]

is not conditionally distributed, so

it can be trivially calculated.
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