
 
Max-Planck-Institute of Psychiatry 

Statistical Genetics 
 
 
 
 

Identification of genetic variants involved in dyslexia 
pathogenesis by joint analysis of QTLs and epistasis 

 
 
 

 
 

Nazanin Karbalai Mirza Agha 
 
 

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen 
Universität München zur Erlangung des akademischen Grades ��� eines  

Doktors der Naturwissenschaften (Dr. rer. nat)  

genehmigten Dissertation. 

 

 

Vorsitzender:        Univ.-Prof. Dr. Markus Ploner 

Prüfer der Dissertation: 1. apl. Prof. Dr. Bertram Müller-Myhsok 

 2. Univ.-Prof. Dr. Hans-Werner Mewes  

 
 

Die Dissertation wurde am 12.08.2014 bei der Technischen Universität München eingereicht und 
durch die Fakultät für Medizin am 17.12.2014 angenommen.  





Identification of genetic variants
involved in dyslexia pathogenesis by
joint analysis of QTLs and epistasis

Nazanin Karbalai Mirza Agha





For my parents





Contents

Acronyms 5

Abstract 13

1 Introduction 15
1.1 Research question and motivation . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 17
2.1 Genetic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Genetic factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1.1 Single Nucleotide Polymorphism . . . . . . . . . . . . . 17
2.1.1.2 Genotype and allele frequencies . . . . . . . . . . . . . . 18
2.1.1.3 Hardy-Weinberg equilibrium . . . . . . . . . . . . . . . 18
2.1.1.4 Linkage disequilibrium . . . . . . . . . . . . . . . . . . . 19
2.1.1.5 Population stratification . . . . . . . . . . . . . . . . . . 21

2.1.2 Genetic variation and complex traits . . . . . . . . . . . . . . . . . 21
2.1.3 Diversity of the epistasis term . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 From GWA to GWIA . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.5 Dyslexia, a common complex disorder . . . . . . . . . . . . . . . . 26

2.1.5.1 Genetics of dyslexia (Genetic epidemiology) . . . . . . . 28
2.2 Statistical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Basics of the epistasis model . . . . . . . . . . . . . . . . . . . . . 33
2.2.1.1 Multiplicative interaction - a deviation from the additive

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Problem of multiple testing . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Technical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 QUANTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Principles of Graphics Processing Unit computing . . . . . . . . . 37

2.3.3.1 Graphics Processing Units . . . . . . . . . . . . . . . . . 38
2.3.3.2 Compute Unified Device Architecture . . . . . . . . . . 39

2.3.4 Statistical Epistasis Tools . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4.1 EPIBLASTER – A correlation-based interaction method

for binary phenotypes . . . . . . . . . . . . . . . . . . . . 41

5



6 Contents

2.3.4.2 Algorithm and Implementation of EPIBLASTER . . . . 41
2.3.4.3 EPIGPUHSIC - Correlation based interaction method

for quantitative phenotypes . . . . . . . . . . . . . . . . 42
2.3.4.4 Algorithm and Implementation of EPIGPUHSIC . . . . 43
2.3.4.5 GLIDE - Linear regression based method for epistasis

detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.4.6 Algorithm and Implementation of GLIDE . . . . . . . . 45

2.3.5 MAGENTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.6 Ariadne Pathway Studio . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.7 ENCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Materials and Methods 49
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Proband ascertainment . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Endophenotype ascertainment . . . . . . . . . . . . . . . . . . . . 51

3.1.2.1 Single-word reading . . . . . . . . . . . . . . . . . . . . . 51
3.1.2.2 Spelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2.3 Phonological awareness . . . . . . . . . . . . . . . . . . . 52
3.1.2.4 Non-word reading . . . . . . . . . . . . . . . . . . . . . . 52

3.1.3 Epilepsia sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1.1 Dyslexia sample . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1.2 Epilepsia sample . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2.1 Association of univariate genetic variants in dyslexia . . 54
3.2.2.2 Association of bivariate genetic variants in dyslexia . . 55
3.2.2.3 Regional based interaction in hippocampal expression . 56
3.2.2.4 Pathway analyses . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2.5 Functional sequence mapping . . . . . . . . . . . . . . . 57

4 Results 59
4.1 Association of univariate genetic variants in dyslexia . . . . . . . . . . . 59
4.2 Association of bivariate genetic variants in dyslexia . . . . . . . . . . . . 59

4.2.1 Single-word reading . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Phonological awareness . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Non-word reading . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 Spelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.5 Validation of p-value distribution . . . . . . . . . . . . . . . . . . 81
4.2.6 Endophenotype correlation . . . . . . . . . . . . . . . . . . . . . . 81
4.2.7 Functional analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.8 Hippocampus candidate gene analyses . . . . . . . . . . . . . . . 86



Contents 7

4.2.9 Endophenotype specific pathway analysis . . . . . . . . . . . . . 88
4.2.10 Pathway analysis in dyslexia . . . . . . . . . . . . . . . . . . . . . 91

5 Discussion 93
5.1 Epistasis and genome-wide interaction analyses . . . . . . . . . . . . . . 93

5.1.1 Interaction analyses are required for understanding complex dis-
eases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Statistical power in interaction analyses . . . . . . . . . . . . . . . 94
5.1.3 Marginal effects of interaction partners . . . . . . . . . . . . . . . 95

5.2 Statistical epistasis in dyslexia pathogenesis . . . . . . . . . . . . . . . . . 97
5.2.1 Interactions involving the gene FOXP2 . . . . . . . . . . . . . . . 98
5.2.2 Interactions involving NCAM1 . . . . . . . . . . . . . . . . . . . . 99
5.2.3 Interactions involving TMEFF2 . . . . . . . . . . . . . . . . . . . . 100
5.2.4 Interaction involving two intergenic loci . . . . . . . . . . . . . . 100
5.2.5 Expression levels of the identified genes . . . . . . . . . . . . . . . 101
5.2.6 Pathway analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Zusammenfassung 107

Bibliography 109

Appendix 129

Acknowledgment 157

Dedication 159





Acronyms

A Adenine. 23

ADHD attention deficit hyperactivity disorder. 33, 36, 104

ALSPAC Avon Longitudinal Study of Parents and Children. 36

ALU Arithmetic Logic Unit. 43

API application programming interface. 43

ASD autism spectrum disorder. 104, 107

BP biological process. 94, 96

bp base-pair. 62, 68, 78, 88

BWA Burrows-Wheeler Alignment. 60

C Cytosine. 23, 24

ChIP chromatin immunoprecipitation. 52, 53, 63, 87–89, 106

CI confidence interval. 69

CNS central nervous system. 108, 109

CNV copy number variation. 107

CPU central processing unit. 42, 43

CUDA Compute Unified Device Architecture. 20, 43

d.f. degree of freedom. 65

DNA deoxyribonucleic acid. 23, 27, 52, 63, 105

DZ dizygotic. 34

ENCODE Encyclopedia of DNA Elements. 52, 62, 63, 66, 87–89, 105–107

eQTL expression quantitative trait locus. 20, 107

9



10 Acronyms

eSNP expression single nucleotide polymorphism. 23

FAIRE Formaldehyde Assisted Isolation of Regulatory Elements. 52

FDR false discovery rate. 40, 41, 51, 60, 63

fMRI functional magnetic resonance imaging. 38

FWER familywise error rate. 40, 41

G Guanine. 23

GO gene ontology. 51, 95

GPU graphics processing unit. 20, 42–47, 49–51

GSEA gene set enrichment analysis. 51, 63, 93, 95, 96, 109, 110

GWA genome-wide association. 28, 40

GWAS genome-wide association study. 21, 28, 30, 31, 51, 65, 69, 102, 112

GWIA genome-wide interaction analysis. 30, 31, 40, 61, 65, 67, 104, 112

GWIS genome-wide interaction study. 65

HGP Human Genome Project. 27

HS hypersensitive site. 52, 63, 87, 105–107

HSIC Hilbert-Schmidt Independence Criterion. 47–49

HWE Hardy-Weinberg equilibrium. 24, 25, 59, 60

IBD identity-by-distance. 59

IBS identity-by-state. 26, 59

IC inbreeding coefficient. 59

Kb kilo base pairs. 88, 92, 108

LD linkage disequilibrium. 25, 26, 38, 40, 59, 67, 68, 73, 82, 89, 92, 105, 107

LINE long interspersed nuclear element. 67, 105

LTR long terminal repeat. 77, 106

MAF minor allele frequency. 24, 59, 60, 78, 101



Acronyms 11

Mb mega base pairs. 62, 91, 92

MDR multifactor dimension reduction. 111

MDS multidimensional scaling. 26, 56, 59

MMN mismatch negativity. 38

MRI Magnetic Resonance Imaging. 33

mRNA messenger ribonucleic acid. 38

mSNP methylation single nucleotide polymorphism. 23

MZ monozygotic. 34

NMJ neuromuscular junction. 109

NRSF neuron-restrictive silencer factor. 63, 87

NS nervous system. 96, 107

NWR non-word reading. 60, 61, 65, 77, 78, 86, 87, 92, 93, 101, 108

PA phonological-awareness. 58–61, 65, 73, 74, 87, 92, 93, 106, 109

PCA Principal Component Analysis. 26

PCER per-comparison error rate. 41

Q-Q Quantile-Quantile. 62, 86

QC quality control. 23–25, 55, 57, 59–62, 88, 91

QTL quantitative trait locus. 17, 24, 37, 47, 73, 106

RD reading disability. 19, 55, 57, 61, 107

RNA ribonucleic acid. 27, 52, 63, 87–89, 106

SD standard deviation. 55–57

SE standard error. 61

SIMD Single Instruction Multiple Data. 42

SLD speech and language disorder. 104, 105

SLI specific language impairment. 36–38, 104



12 Acronyms

SNP single nucleotide polymorphism. 20, 23–26, 28, 31, 32, 38–40, 42, 43, 45–52, 55–57,
59–63, 65–68, 73, 77, 78, 86–89, 91–93, 99–102, 104–108

SP spelling. 55, 58, 60, 61, 65, 82, 87, 89, 95, 107, 110

SSD speech sound disorder. 33, 36

SVM support vector machine. 111

SWR single-word reading. 37, 56–58, 60, 61, 65, 67, 69, 70, 78, 86–88, 91–93, 100, 104–106,
109

T Thymine. 23, 24

TF transcription factor. 53, 63, 87–89, 105–107

UCSC University of California, Santa Cruz. 52, 53, 60, 62, 63, 78, 88

UK United Kingdom. 36, 37

US United States. 36, 37



List of Figures

2.1 Haplotype blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Dyslexia susceptibility loci . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 GPU threads cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 ENCODE schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Population structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Circos diagram of interacting genetic variants . . . . . . . . . . . . . . . . 60
4.2 Schematic illustration of single-word reading associated SNP-pairs within

the LD-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 3D plot of the 2-way associations to single-word reading . . . . . . . . . 63
4.4 Boxplot and contingency table of the single-word reading top hit . . . . 65
4.5 Forest plot of the single-word reading top hit . . . . . . . . . . . . . . . . 65
4.6 Schematic illustration of phonological awareness associated SNP-pairs

within the LD-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 3D plot of the 2-way associations to phonological awareness . . . . . . . 68
4.8 Forest plot of the phonological awareness top hit . . . . . . . . . . . . . . 69
4.9 Boxplot and contingency table of the phonological awareness top hit . . 70
4.10 Schematic illustration of non-word reading associated SNP-pairs within

the LD-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.11 Forest plot of the non-word reading top hit . . . . . . . . . . . . . . . . . 74
4.12 Boxplot and contingency table of the non-word reading top hit . . . . . . 74
4.13 Schematic illustration of spelling associated SNP-pairs within the LD-

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.14 3D plot of the 2-way associations to spelling . . . . . . . . . . . . . . . . 77
4.15 Boxplot and contingency table of the spelling top hit . . . . . . . . . . . . 78
4.16 Forest plot of the spelling top hit . . . . . . . . . . . . . . . . . . . . . . . 79
4.17 Q-Q plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.18 ENCODE, non-word reading top hits . . . . . . . . . . . . . . . . . . . . 83
4.19 ENCODE, single-word reading top hits . . . . . . . . . . . . . . . . . . . 84
4.20 ENCODE, non-word reading top hits . . . . . . . . . . . . . . . . . . . . 85
4.21 ENCODE, spelling top hits . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Detection power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Two-locus epistasis models . . . . . . . . . . . . . . . . . . . . . . . . . . 96

13





List of Tables

2.1 FWER Hypotheses definition . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Univariate SNP associations to single-word reading . . . . . . . . . . . . 63
4.2 Cohort specific interaction of the single-word reading top hit . . . . . . . 64
4.3 Statistical epistasis top hits of the single-word reading study . . . . . . . 66
4.4 Univariate SNP associations to phonological awareness . . . . . . . . . . 69
4.5 Cohort specific interaction of the phonological awareness top hit . . . . 70
4.6 Statistical epistasis top hits of the phonological awareness study . . . . . 71
4.7 Univariate SNP associations to non-word reading . . . . . . . . . . . . . 73
4.8 Statistical epistasis top hits of the non-word reading study . . . . . . . . 75
4.9 Cohort specific interaction of the non-word reading top hit . . . . . . . . 75
4.10 Univariate SNP associations to spelling . . . . . . . . . . . . . . . . . . . 78
4.11 Cohort specific interaction of the spelling top hit . . . . . . . . . . . . . . 79
4.12 Statistical epistasis top hits of the spelling study . . . . . . . . . . . . . . 80
4.13 Pearson’s correlation between measured endophenotypes . . . . . . . . 82
4.14 Expression analysis, FOXP2 . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.15 Expression analysis, NCAM1 . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.16 Expression analysis, TMEFF2 . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.17 Gene-set enrichment analysis, non-word reading . . . . . . . . . . . . . . 89
4.18 Gene-set enrichment analysis, phonological awareness . . . . . . . . . . 89
4.19 Gene-set enrichment analysis, single-word reading . . . . . . . . . . . . . 90
4.20 Gene-set enrichment analysis, spelling . . . . . . . . . . . . . . . . . . . . 91
4.21 Gene-set enrichment analysis over all studies . . . . . . . . . . . . . . . . 92

15





Abstract

The aim of this thesis was the identification of genetic susceptibility factors contributing
to developmental dyslexia. Dyslexia is a highly prevalent disorder in children, char-
acterized by deficits in reading and spelling [Schulte-Körne et al., 2001].The clinical
picture of dyslexia can be categorized into various endophenotypes, describing different
cognitive abilities. The underlying hierarchical processes of these cognitive competences
suggest a highly heterogeneous genetic architecture composing the disorder, which
obstructs single locus scans [Carrion-Castillo et al., 2013]. From this perspective, the
question arose whether disturbances of cognitive processes in dyslectics could be a
result of genetic interactions. Here, we therefore went beyond established single-locus
association methods in order to analyze higher order genetic interactions.
So far, genetic studies of dyslexia and other complex traits have focused on single-locus
effects, utilizing the present gold standard of genome-wide scans. Like all approaches,
also this method has its limitations, such as the inability to capture higher order connec-
tions. However, single-locus effects explain just a low proportion of heritability. In fact,
the interplay of individual factors is an essential component of the underlying genetical
processes. Due to computational challenges, this central aspect was nevertheless often
neglected.
By exploiting the technical and methodological progress, we were able to utilize a
genome-wide two-locus interaction scan using the tool GLIDE [Kam-Thong et al., 2012].
We identified genetic interactions affecting susceptibility for altered cognitive skills in
dyslexic individuals. Indeed, dyslexia proved to be an ideal phenotype for the genome-
wide search of epistatic effects.
The genotype profiles of 862 dyslexic children from different ethnic origins (Germany,
USA, Great Britain, and France) were determined. Measurements for the quantitative
dyslexia endophenotypes single-word reading, phonological awareness, non-word
reading, and spelling were conducted for each individual in a battery of psychometric
tests. Within these samples, we performed exhaustive two-locus interaction searches
for epistatic effects.
We were able to detect strong evidence for genetic interactions affecting various dyslexia
endophenotypes, such as single-word reading and phonological awareness. The results
included highly relevant genomic loci, comprising both novel and previously known
dyslexia-sensitive loci. An example is the interaction between 18q11.2, a genomic region
linked to various quantitative trait loci (QTLs) with intronic variants of NCAM1, a gene
involved in the development of the nervous system. These interactions were found for

17



18 Abstract

the dyslexia endophenotypes phonological awareness and single-word reading. An
additional interesting interaction that was detected took place between intergenic vari-
ants on chromosome 9 and intronic variants of FOXP2, a gene associated with linguistic
deficits. FOXP2 was recently shown to play a role in the etiology of developmental
dyslexia [Wilcke et al., 2011].
Our findings suggest that the multifacetedness and the etiology of dyslexia is likely
to be explained by multi-genetic mechanisms like allelic interactions, with both single
dependent and independent factors contributing to the disorder.
Taking into account the complexity of genetics and quantitative traits, the ubiquity of
epistasis, and the success of our study, we suggests that epistasis should be shifted
further into the focus of investigations. This would likely lead to a better understanding
of complex traits and genetic heredity.



1 Introduction

1.1 Research question and motivation

Dyslexia is one of the most common neurodevelopmental disorders, with a prevalence
of approximately 5–12% in school-aged children [Ludwig et al., 2008]. Affected children
show pronounced difficulties in learning to read and spell, with a possible social impact
on the child reaching until adulthood, and affecting their career prospects [Shaywitz
et al., 1990].
Several genetic factors for dyslexia have been identified. Among those are genes in-
volved in memory-related aspects of the brain [Ludwig et al., 2010], neuronal migration
[Ludwig et al., 2008], as well as a major neuronal glucose transporter [Roeske et al.,
2011]. Some of these genes are known to be strongly expressed and regulated in the
cortex, hypothalamus, amygdala, and hippocampus [Meng et al., 2005].
The disorder comprises a variety of different endophenotypes. Affected children can
exhibit difficulties in reading, spelling, phonological abilities or even show various
disabilities simultaneously. Several endophenotypes have been shown to be associated
with certain genomic regions (e.g. 6p22) or genes (DCDC2, KIAA0319, GRIN2B, SLC2A3)
[Carrion-Castillo et al., 2013, Grigorenko, 2001]. Both the cluster of different symptoms
and the involvement of various genetic factors indicate that the predisposition for
dyslexia is likely to be explained by complex coherences and networks, conclusively
the interaction of genetic factors. The research group of Statistical Genetics at the Max-
Planck-Institute of Psychiatry [Czamara et al., 2013, Ludwig et al., 2008, Roeske et al.,
2011] and other research groups has already conducted several studies in the field of
dyslexia. The extensive findings regarding the pathogenesis of dyslexia pointed to
the assumption that a highly heterogeneous pattern underlying the disorder [Carrion-
Castillo et al., 2013].
Given the complexity of the phenotype, the knowledge about the pathogenesis of
dyslexia, and the availability of eligible datasets as well as a tool for rapid detection of
interactions between two genetic loci, we formed the hypothesis that a genome-wide
analysis beyond single-locus effects may help to unveil unknown genetic contributions
to the development of reading disability (RD) among individuals. The assumption that
interaction effects are strong on the level of genetic markers seems reasonable, since
such effects are consequences of evolution. Epistatic effects are more likely to withstand
purifying selection, as they are protected by epistatic shielding [Moore and Williams,
2009].

19



20 1. INTRODUCTION

The strategy of this thesis comprise of two major sections: a genome-wide single nu-
cleotide polymorphism (SNP) interaction search and a subsequent candidate-gene
analysis. The term epistasis may have different meanings: on one hand for a biologist it
might be an aspect of biological mechanisms, on the other hand for a statistician the
interaction between two factors represents deviation from a mathematical model for
joint effects of several factors [Clayton, 2009]. The challenge is to satisfy the demands of
both disciplines. The statistical evidence has to support the biological understanding.
Keeping this idea in mind, the first stage of the thesis was a hypothesis-free approach,
in which a genome-wide two-locus scan was employed to unmask possible marker
interactions within genotypic information of dyslexic subjects. The second stage was
conceived as the validation phase, in which genes detected to be significantly associated
to the phenotypic pattern in the initial stage, was used as candidates for an expression
quantitative trait locus (eQTL) analysis in hippocampal expression profiles.
The hippocampus plays an important role in associative behaviors, not only in the trans-
duction of information from short to long-term memory, but also in spatial memory
and attention functions that likely participate in the development of dyslexia [Carrion-
Castillo et al., 2013, Ludwig et al., 2008, Moser and Moser, 1998, Smith, 2007].
The aim of this thesis was to identify novel genetic factors involved in dyslexia patho-
genesis through a joint analysis of epistasis and eQTLs. The analyses comprised novel
combinations of stablished bioinformatic and statistical methods and biological com-
prehension. In order to provide a more in-depth understanding of complex traits and
predispositions the focus was set on methods beyond single SNP associations.
Whole-genome exhaustive epistasis search was enabled via GLIDE [Kam-Thong et al.,
2012], a tool for calculation of SNP-SNP interactions, implemented in Compute Unified
Device Architecture (CUDA) for fast computation on graphics processing units (GPUs)
of graphics cards. Utilizing GPUs for parallel computation reduced calculation time by
a factor of 100 compared to conventional methods, which opens a wide dimension for
novel analyses.
Provided datasets for the project included: (1) four dyslexia case samples comprising
200 German, 92 French, 377 British, and 194 American dyslexic individuals. For a
wide spectrum of dyslexia related phenotypes, such as single-word reading, spelling,
non-word reading and phonological-awareness measurements were recorded. (2) For
candidate gene analyses, hippocampal gene expression data, as well as genotypic data
of 138 epilepsy-patients were available. In this dataset, we already identified 360 cis-
and 75 trans-acting eQTL associations on a Bonferroni-corrected genome-wide signifi-
cance level (publication in preparation).
The most straightforward approach for an analysis was to examine whether detected
dyslexia-associated interaction marker pairs represent hippocampal eQTLs. Gene ex-
pression data constitutes an excellent biological phenotype for the identification of
regulatory genomic regions of candidate genes. The motivation here was to evaluate
statistical epistasis findings with biologically appropriate expression profiling data with
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respect to their potential as novel markers that could help to infer new hypotheses for
dyslexia pathogenesis.
Epistasis analysis may help to improve and extend classical genome-wide associa-
tion studies (GWASs) effectively, opening a new area of investigations, and moreover,
enlighten genetic causes of dyslexia.





2 Background

2.1 Genetic background

2.1.1 Genetic factors

This section addresses basic genetic factors that are crucial for effect analysis in genome
association mapping. Each subsection will cover the biological basics and address the
quality control (QC) steps to avoid confounding impacts on the statistical analysis.

2.1.1.1 Single Nucleotide Polymorphism

A single nucleotide polymorphism (SNP) describes genetic variations involving only a
single nucleotide (Adenine (A), Cytosine (C), Guanine (G) or Thymine (T)) exchange
on a certain genomic position on the deoxyribonucleic acid (DNA) that is observed
between individuals in a population. It is assumed that there are up to 30 million
variations covering the DNA, where each variant is located at a specific site (locus) and
occurs with a particular frequency within populations [Kwok, 2003].
These polymorphisms are point mutations that withstood natural selection and are
manifested in the genome. SNPs are genetic determinants of the individual development
and measurable phenotypes, such as complex diseases and disorders, which make them
biological markers of interest. With the progress of modern technologies, especially the
development of microarray platforms and sequencing strategies, the whole genome
of hundreds of individuals can be scanned and single variations can be subjected to
surveys. On the basis of these variations genomic studies are conducted, where the
correlation of an explicit locus to a trait of interest is ascertained in a cohort.
SNPs are unequally distributed over the whole genome, they are more frequent in non-
coding regions than in more conserved coding-regions of the genome. Occurrences of
SNPs in coding regions of genes can be classified in synonymous and non-synonymous
mutations, where the latter lead to a change in the amino-acid sequence of the encoded
protein while the former does not [Kwok, 2003].
Biologically functional SNPs are further categorized depending on the traits they are
affecting. A SNP regulating respectively affecting the expression of a certain transcript
is annotated as expression single nucleotide polymorphism (eSNP). If any impact on
methylation processes can be estimated it is referred to methylation single nucleotide
polymorphism (mSNP). In genetic mapping studies of continuous traits, a specific locus
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that is detected to significantly affect the trait outcome it is annotated/declared as a
QTL.
In the genotyping process, the pair of alleles on the homologous chromosome (diploid
cells consist of pairs of chromosomes, where one chromosome is transmitted maternally
and one paternally) are taken into account. An individuals genotype can be homozygous
by harboring two copies of the same allele (e. g., TT or CC), or heterozygous with one of
each alleles (TC). An allele is either less (minor allele) or more frequent (major allele) in
various populations and can differ between those. The linkage/connection between the
prevalence of a risk-allele and the affected disease are often controversy discussed, and
will be briefly subjected in the following subsection 2.1.1.2.

2.1.1.2 Genotype and allele frequencies

Genotype frequency describes the prevalence of a given SNP genotype in a population
by the simple expression # individual genotypes

total # of individuals . Allele frequency in turn defines the rate
of each single allele in the population by # of each allele

2 x # of individuals [Kam-Thong, 2012]. It is
established that a minor allele frequency (MAF) less than 1%-5% in a given population
is considered as a rare allele, and alleles with a frequency above that threshold are
common alleles.
It is highly discussed whether causative mutations for complex traits are more likely
to be common or rare [Salyakina, 2007, Manolio et al., 2009]. One standpoint is that
common variants, which occur often in a population are less likely to be malicious as
the statistically associated disease would be highly prevalent in the population. On the
other hand, if genetic variants account only for 10-15% of a trait [Manolio et al., 2009]
and environmental factors have an important role in complex traits, then it is possible
that the interplay of both factors causes the phenotype. Therefore common complex
diseases may be caused by common variants.
A notable example is a study published by Thorleifsson et al., where 25% of the general
population are homozygous for the highest-risk haplotype associated with exfoliation
glaucoma [Thorleifsson et al., 2007].
In order to avoid misclassification, bias, high false positive or negative rates a QC
criterion is the exclusion of SNPs with a MAF < 5%. The intention is that biomarkers
with a MAF less than 0.05 do not show much variation across the population and
detection of effects becomes unlikely unless the effect sizes are very large, such as in
monogenic conditions [Manolio et al., 2009]. Facing the complexity of genetics, both
mentioned mechanisms may exist in various combinations [Salyakina, 2007].

2.1.1.3 Hardy-Weinberg equilibrium

The principle of the Hardy-Weinberg equilibrium (HWE) is an ideal scenario where
the allele frequency in a population remains constant (Eq. 2.1 on the facing page)
over generations, without being influenced by mutation, selection, genetic drift, or
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non-random mating.

P(A)2 + 2× P(A)P(B) + P(B)2 =1

P(A): allele frequency of allele A

P(B): allele frequency of allele B

(2.1)

Deviation from HWE within genotyped SNPs can indicate inbreeding, population
stratification, genotyping errors [Wigginton et al., 2005] or imputation inconsistencies.
In genetic studies deviation from HWE can provide wrong evidence for association
due to incorrect genotyping. The usual QC actions include a HWE test to remove
biomarkers violating the expectation of HWE. HWE tests are commonly performed
using a simple χ2 goodness-of-fit test [Wigginton et al., 2005]. A commonly defined
QC threshold for a genome-wide genotype chip (550K) is p ≤ 5× 10−5, meaning that
each SNP violating the HWE assumption with a significance level less then the defined
p-value will be excluded from further analysis. On the other hand there is the QC
dilemma that susceptibility variants often violate HWE expectation and are excluded
via HWE testing.

2.1.1.4 Linkage disequilibrium

Linkage disequilibrium (LD) is the genetic phenomenon of non-random allelic relations
at different loci usually on one chromosome, whereby the physical distance does not
always explain the level of linkage and can differ from case to case. The association of
two or multiple markers are influenced by recombination and is more or less frequent
than expected from haplotypes. A haplotype can be one locus or a set of loci on one
chromosome inherited together [Li et al., 2003]. The degree (D) of LD between loci can
be measured and is expressed as the deviation of the observed frequency f (AiBi) of a
haplotype from that expected for independent alleles f (Ai)× f (Bi), via D′ (Eq. 2.2) or
the correlation coefficient r2 (Eq. 2.4 on the following page).

D′ =
D

Dmax

=
f (AiBi)− f (Ai) f (Bi)

Dmax

(2.2)

Dmin/max =

{
max(− f (Ai) f (Bi),− f (Aj) f (Bj)), D < 0

min( f (Ai) f (Bj), f (Aj) f (Bi)), D > 0
(2.3)
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Dmax is the maximum disequilibrium at an allelic frequency of 0.5.

r2 =
D2

f (Ai) f (Bi) f (Aj) f (Bj)
(2.4)

The values of D′ and r2 of two markers can range between 0 and 1, where 0 implies a
total independence and 1 a complete LD for D’ and a perfect LD for r2.Ther2 is usually
the measure of choice in population genetics, as a value of 1 between two loci can just
be reached when identical allele frequencies are given and the occurrence of an allele at
a locus perfectly predicts the allele at the other locus [Salyakina, 2007].
A genomic region on a chromosome with high LD, or conserved LD, which is structured
into a small number of haplotypes is referred to as an LD-block [Li et al., 2003] (figure
2.1). In genetic studies it is expected that variants of an LD-block have demonstrate to a
certain extent, and in dependence to the r2 value associations to the same phenotypic
trait. In other words, if a tag SNP is associated to a phenotypic trait, then marker in
high LD (r2 ≤ 0.7) should likewise exhibit the effect. A tag SNP is a representative
variant of a LD-block. Well chosen tag SNPs can provide enough information to predict
information about other variants in the corresponding LD-block. The extent of LD
structures, haplotypes and the prevalence are population specific [Amaral et al., 2008].

2.1.1.5 Population stratification

A confounding factor in genetic studies may be population stratification, specially
in studies with a huge sample size and more over in those with admixture cohorts.
Population stratification describes ancestral differences, resulting in variation of marker
allele frequencies among subpopulations. Samples comprising multiple populations
can corrupt LD structures and lead to incorrect and false positive associations driven
for instance by unexpected relatedness of individuals.
To intercept inaccuracy and avoid nonexistent associations, machine learning algo-
rithms can be applied to account for population stratification. A conceivable ap-
proach, besides the general Principal Component Analysis (PCA) approach, is the
complete linkage agglomerative clustering provided by the open-source tool PLINK
v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) [Purcell et al., 2007]. Using
PLINK a multidimensional scaling (MDS) analysis on the pairwise identity-by-state
(IBS) distance matrix of each individual, measured by the respective whole genome SNP
data, can be performed. Coexisting subpopulations, the relatedness degree between
individuals and single outliers can be detected and either excluded or corrected for, by
utilizing the MDS-components as covariates in statistical analyses. Applying genomic
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Figure 2.1: An Haploview example of a haplotype structure on chromosome 19. The figure
depicts a chromosomal region with sparse LD-structure. Values in the squares
annotate the r2 of the SNP to its neighboring SNPs, supported by the color gradient.
Increasing r2 is indicated by a darker color, while white implies no or very little LD,
red would mark higher correlation between the SNPs. In black framed triangles
indicate LD-blocks at the sequence position.

scans heritability estimates can be generated free of potential confounding, due to
unmeasured environment factors [Manolio et al., 2009].

A confounding factor describes a known or hidden factor disturbing the association
between two other variables of consideration, due to relationship with both of them,
the dependent and independent variables [Mosby, Inc, 2009]. In statistical genetics
analyses confounding factors can originate from diverse sources. As mentioned above,
confounders can arise by mingled populations or cohorts being genotyped in diverse
laboratories. Especially in microarray (e. g., expression or methylation) analyses re-
searchers are faced with confounders, like processing batch or measured ribonucleic
acid (RNA) quality, unknown or specific environmental factors, medication and other
contamination factors. Such factors can reduce the power of association detection and
even facilitate false-positive associations [Stegle et al., 2012].

2.1.2 Genetic variation and complex traits

Since the establishment of genetic science by Gregor Mendel (19th century), the dis-
covery of the molecular DNA structure by James D. Watson and Francis Crick up to
the sequencing of the human genome in 2001 – 2003 by Craig Venter and the Human
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Genome Project (HGP), researchers are on the hunt for genetic factors affecting pheno-
typic outcomes, with the aim to reveal disease susceptibilities and understanding basic
genetic concepts for a better diagnosis, treatment, and prevention.
Apart from monogenic diseases, common human diseases and heritable traits are sug-
gested to be shaped by several genetic and environmental factors following complex
inheritance patterns. Individuals within the same species show heritable attributes for
many traits of biological and medical interest, but until recently the identification of
genetic factors contributing to these complex traits has been slow and arduous [Manolio
et al., 2009, Bloom et al., 2013].

A complex trait is a phenotype that is determined by multiple factors, either genetic,
or environmental. Generally, several genetic factors contribute to the development of a
continuous outcome, or increase susceptibility for a disease. Susceptibility factors, or
more specific in genetics a susceptibility allele describes a risk allele that is associated
to a specific disease and increases the probability of the carrier developing the delete-
rious phenotype. Investigation of such complex traits are often complicated, as each
contributing factor has usually a small effect.

GWASs have been a landmark in the investigation of genetic susceptibility factors in
complex traits. With the advancement of high throughput genotyping technologies, up
to one million common SNPs can be assayed in thousands of individuals, representing
a powerful opportunity for investigating the genetic architecture of complex species.
Compared to whole-genome sequencing, genotyping is much more time- and cost-
efficient. Consequently a lot more individuals can be scanned for specific genetic
variants of interest.
Large sample sizes are beneficial to gain statistical power for the detection of genetic
effects and increase reliability of the results. In the past years these studies have
identified more than a thousand loci harboring genetic variants affecting over 165
common human diseases and phenotypes [Zuk et al., 2012], providing precious insights
into the complexities of human genetics.
The genome-wide association (GWA) method represents a hypothesis-free approach
and is an important advance beyond candidate gene studies and family-based linkage
studies that are both limited in their sample sizes and the assayed variants. Despite
many convincing successes in monogenic Mendelian traits the moderate success of
linkage studies has been attributed to their low power and resolution for variants of low
effect. However even markers identified by genome-wide mapping meant to account
for only 5–15% of the given phenotypic variance in human beings. A famous example
is human height with an estimated heritability of about 80%. Meanwhile 40 loci have
been identified to be associated to height, nevertheless they explain only about 5% of
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the trait variance despite studies with reasonable sample size [Manolio et al., 2009]. If
15% of heritability is explained by common genetic variants and another proportion by
environmental conditions or rare and structural variants, what explains the remaining
proportion? This leads to the question what explains missing heritability in genetic
epidemiology. Heritability of continuous traits, formally defined as the „proportion
of phenotypic variance in a population attributable to additive genetic factors (narrow-sense
heritability), which can be inflated by non-additive genetic effects“ (dominance and epistasis,
or gene-gene interaction) [Manolio et al., 2009], which are captured under the term
broad-sense heritability. The next section 2.1.3 will cover different aspects of epistasis and
its role in nowadays mapping studies.

2.1.3 Diversity of the epistasis term

As discussed in the previous section the identification of single genetic marker mapping
to an attribute does not fully explain underlying variance. A possible explanation
apart from environmental or undiscovered factors, rare and structural variants, or other
heritable epigenetic factors and unforeseen sources could be the interplay between
unlinked loci [Bloom et al., 2013], the so-called epistasis.
Epistasis nomenclature has a variety of different notations and meanings. Starting from
the very beginning, the first definition of epistasis was given by Bateson and Punnett
[Bateson, 1909] to define the masking action of one gene by another. They observed in
a chicken and a follow-up pea flower experiment that alleles at one locus could mask
the effects of the alleles at another locus forcing a totally new phenotypic outcome
[Miko, 2008]. Another famous example of epistasis is the mouse coat color, where the
homozygotes of the recessive alleles (e. g., aa) at one locus (A) alter the phenotypic effect
of alleles at the other locus (B) regardless of the alleles B being recessive or dominant
[Miko, 2008]. In this sense the term of epistasis would be limited to a kind of inhibiting
or interfering effect, nevertheless, meanwhile the broad sense of epistasis covers a
variety of interactions between genes.
The first specification of this kind of interplay beyond masking effects was made by
Fisher, by defining the term of epistacy to describe deviation from the addition of su-
perimposed effects between Mendelian factors [Fisher, 1918], in other words, epistacy
is the deviation from additive linear effects of two loci on the phenotype. Under this
definition interaction can be modeled mathematically (statistical epistasis), it is said to
explain the combined effect of multiple genes on an outcome, which cannot be predicted
by the sum of their separate effects [Frankel and Schork, 1996].
In the past years, the term epistasis was adopted by Fisher’s more general definition
of genetical interactions [Phillips, 2008]. One has to be aware about the biological
interpretation of statistical interaction as a statistically detected significant interaction
does not necessarily mean an interaction in biological senses and vice versa, biologically
discovered epistasis does not have to be detectable statistically, for example due to
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non-linear interaction patterns, making the whole survey in this field even more com-
plicated. In the statistical sense, interaction is just the non-additive effect of multiple
factors on an independent variable.
Very little is known about the role of epistasis in human biology, as initially the focus
was placed on single locus effects and investigations on the interaction level were ne-
glected. Phillips [Phillips, 2008] defined three major categories of epistasis: functional
epistasis, compositional epistasis and statistical epistasis.
Functional epistasis describes any kind of molecular interactions of genetic elements,
such as proteins that operate within the same pathway or directly build complexes with
one another.
Compositional epistasis addresses the traditional usage of epistasis denoted by Bate-
son as the blocking effect of one allele by another allele at a different locus.
Finally, and most important for our demands, is the statistical epistasis, in which the
deviation of allele combinations is estimated over all other genotypes present within a
population [Phillips, 2008].
Considering the complexity of genetics and the ubiquity of epistasis it is natural that
accounting for interactive effects is one step towards unveiling missing heritability, at
least partially.
Examples of phenotypes for which synergistic effects, this is the variation addressed
by the interaction of multiple factor that is greater as the sum of their single effects,
between loci have indeed demonstrated to be reliable predictor variables of the phe-
notypic variance include diseases such as type 1 and type 2 diabetes, hypertension
[Kam-Thong et al., 2012] and increased risk for schizophrenia [Nicodemus et al., 2010b].
Ashworth et al. observed interactions in the context of cancer cell proliferation and listed
examples detailing the different nature of genetic interactions enhancing or suppressing
cancer mutations with new therapeutic treatments proposed to target these interactions
[Ashworth et al., 2011, Kam-Thong et al., 2012].
Rohlfs et al. noticed unusual allelic association, not attributable to population struc-
ture, between the coevolving interacting genes ZP3 and ZP3R. Coevolving interacting
genes undergo complementary mutations to maintain their interaction. Alleles of such
coevolving genes interact differently and can create several varying degrees of fitness.
They mentioned that if the created fitness differential is adequately large the resulting
selection for allele matching could maintain allelic association, even between physically
distant loci [Rohlfs et al., 2010].
Statistical modeling of interactions may be helpful in identifying genes influencing
disease susceptibility that otherwise would remain unidentified. It is important to
note that the presence of statistical epistasis can help generate new hypotheses, but
requires an in-depth investigation of the elementary molecular mechanisms involved to
substantiate the findings.
Keeping all that in mind and with the aim to understand functional and pathophysiolog-
ical properties of epistasis we tried to take a step beyond GWASs towards genome-wide
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interaction analyses (GWIAs) (section 2.1.4).

2.1.4 From GWA to GWIA

GWASs are the gold-standard in single-locus analysis strategies, wherewith genotyped
variants are assessed individually for association with a specific phenotype. GWASs
harbor the lack of discounting the existence of interactions either environmental or
genetical. The complex relationship between genotype and phenotype, thus, may be
inadequately described by simply summing the modest effects from several contributing
loci. Instead, the relationship may depend in a fundamental way on epistasis between
multiple loci and/or genotype and environment [Culverhouse et al., 2002].
It is not deniable that the hypothesis-free approach of single-locus mapping, besides
linkage studies and targeted candidate gene studies, has been incredibly successful in
the last decade and has offered a great insight in the genetical complexity of disease
susceptibility, but each technique has, beyond its benefits, also its individual drawbacks
and limitations. Naturally, genetic factors work through nested mechanisms that involve
multiple genes and environmental factors. The detection of such convoluted effects
would be totally missed if the gene is examined in isolation without allowing for its
potential intrinsic interactions with other unknown genetical factors [Cordell, 2009].
Targeting this deficiency of GWASs and utilizing the recent progress in adequate hard-
and software new methods (examples are addressed in chapter 2.3) were developed
addressing potential multiple loci interactions by scanning the effectiveness of two or
more loci on a specific phenotype. Schematically GWIA does not differ substantially
from GWASs. In either method the association relies on a linear (in dichotomous traits:
logistic) link between a given genotype and phenotype. In GWIA this link involves
multiple, respectively two loci. In fact the simplest and most direct way is the exhaustive
search between all loci. In a two-locus interaction search all possible SNP-pairs are
considered for their effects while allowing for interactions, meaning that the single
effect of a locus will be a component of all tests that involve that locus [Cordell, 2009].
Such an exhaustive search, that can comprise up to 1014 tests in the two-dimensional
space, is incredibly time consuming and computationally intense but feasible with new
technologies (see section 2.3.3). Meanwhile a variety of tools have been developed to
compute interactions; and controversial debates about the reasonability and adequately
of approaches have been argued and examined. Discussions about the validity of the
results split the opinions of researchers. A very common theory expects a marginal
penetrance model, in which marginal single locus effects of both markers have to be
present to explain the validity of the association and biological interpretation. This
approach is often taken into consideration, apart from the assumption of biological
causality, to shrink data dimensionality and thus the search space concerning time and
computation feasibility.
However, the so-called purely epistatic model does not expect additive or dominance
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variation at any of the susceptibility or involved loci. The idea is that the effect on
a phenotype is only perceivable through the interaction. Studies proposed complex
theoretical penetrance models by accounting for multiple loci interactions without
displaying any main effects. Culverhouse et al. [Culverhouse et al., 2002] illustrated
that two-locus models can exist without marginal effect at either locus involved, which
nonetheless accounts for a large portion of the population variance. He summarized
that a purely epistatic model includes both incomplete penetrance and phenocopies and
that by now it is very ambitious to judge the extent to which purely epistatic interactions
are manifested in human disease. He also mentioned that in situations in which single
locus analyses do not account for the predicted genetic variance it is worth to comprise
interaction effects.
Since 2002, few publications were able to validate statistical epistasis with biological
functionality e. g., Nicodemus et al. [Nicodemus et al., 2007, Nicodemus et al., 2010a]
which is abstracted in the discussions (section 5). Still we are far to tell what is literally
right or wrong, but it is reasonable to assume that scenarios displaying small marginal
effects can account for more variation and seems more natural [Culverhouse et al., 2002].
Nevertheless, considering only SNP-sets on the basis of marginal effects would lead
to a loss of information as effects between non-significantly associated variants, which
could well be a part of complex genetics, would be completely uncovered.

2.1.5 Dyslexia, a common complex disorder

Dyslexia (specific reading disability) is a common neurodevelopmental disorder mainly
characterized by difficulties in reading and spelling in children. Developmental dyslexia
was first verified in English-speaking populations; a language where the relation be-
tween graphemes and phonemes is inconsistent [Grigorenko, 2001]. As meanwhile
known dyslexia occurs in all languages with a prevalence of approximately 5–12% in
children all over the world [Carrion-Castillo et al., 2013, Schulte-Körne et al., 2007].
Thus, cross-linguistic approaches, as in the case of this thesis, would be more promising
to uncover more universal aspects of the disorder development. Longitudinal studies
have proven that the disorder involves an extremely stable developmental disturbance,
where some individuals are able to compensate their learning deficits with adolescence
while others remain functionally reading-impaired their whole life [Pammer, 2014].
According to the International Classification of Diseases 10th Revision (ICD-10 Ver-
sion:2010, http://apps.who.int/classifications/icd10/browse/2010/en) the patho-
genesis is characterized by „pronounced difficulty in learning to read and spell despite
conventional instruction, adequate intelligence and sociocultural opportunity“. It can have
substantial impact on affected individuals and may impair their whole conduct of life.
Documentations indicate an elevated appearance of depression [Maag and Behrens,
1989] and anxiety disorders [Smith, 1991] among dyslexic individuals, due to difficulties
at school and work.

http://apps.who.int/classifications/icd10/browse/2010/en
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The first detectable symptoms are deficits in word reading and spelling, but several
other cognitive components impact the core phenotype [Galaburda, 1999]. Studies
implicate phonological deficits as central to dyslexia, which is not deceptive at all
considering the complex hierarchical process of reading embracing cognitive systems
being mutually in an influential relationship like visual recognition, symbol mapping,
phonological, semantic, and syntactic processing and memory [Grigorenko, 2001].
Hence facing all these factors a limitation to a categorical definition (affected vs. not
affected) may be too simple. Over the past years it has been established to work directly
with psychometric measures for assessing relationships between molecular elements
and the disorder. For such estimations a battery of cognitive tests (details of assessment
can be found in section 3.1) are assessed for the study subjects, where the individual’s
performance on single word reading, spelling, orthographic processing, phonological-
awareness, non-word reading, rapid automatized naming and phonological short-term
memory are measured [Carrion-Castillo et al., 2013]. These so called endophenotypes are
defined as quantitative indices close to the underlying biological phenomena and that
are conceivably easier to link with the genetic factors [Gottesman and Gould, 2003].
The etiology of reading is not fully described not even in its non-disturbed normal pro-
cesses. A handicap of cognitive and especially dyslexia research is that many findings
have been poorly replicated, suggesting that dyslexia may have several manifestations
at different stages of development and that cognitive systems are highly exposed to
environmental systems affecting measurable outcomes [Grigorenko, 2001]. Nonetheless,
it is plausible and known that learning deficits underly biological dysfunctions. Studies
characterized cognitive deficits attributable to neurological abnormalities, which may
affect other disorders as well. Comorbidity studies of dyslexia, attention deficit hyper-
activity disorder (ADHD) and speech sound disorder (SSD) demonstrate genetical and
cognitive commonalities between these conditions [Czamara et al., 2013, Smith, 2007].
Regarding the variety of the underlying systems such disorders should be consid-
ered in an interdisciplinary manner. Beginning by studying the brain structure many
different observations via autopsy or structural Magnetic Resonance Imaging (MRI)
techniques were published identifying varying sizes or unusual symmetry in different
brain areas between dyslexic and non-dyslexic individuals. Furthermore the thalamus,
insula, hippocampus, and other regions were mapped to the dyslexic brain [Grigorenko,
2001]. An important component is the neurophysiology of dyslexia. Humphreys et
al. [Humphreys et al., 1990] described unusually organized nerve cells and suggested
fetal developmental disturbances hindering neuronal migration. Meanwhile, the role of
cell migration and axon guidance during the development of the nervous system and
disturbances inducing dyslexic endophenotypes are well studied and widely accepted
[Carrion-Castillo et al., 2013, Smith, 2007, Grigorenko, 2001]. Wood et al. [Wood et al.,
1991] observed irregulary distributed metabolic activities through the brain in dyslexic
persons compared to more equally distribution in unaffected persons. The observation
of differentially regulated metabolites in cases and controls was also recognized in a
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study by Garret et al. [Garret et al., 1997].
Overall the basal patterns of dyslexia are neither simple nor straightforward and it
seems that no single mechanism or region can be allocated to the various disabilities of
the phenomenon of dyslexia. The suggestion that the disorder reflects selective distur-
bances of a cognitive system seems more reasonable [Grigorenko, 2001]. Going deeper
in the pathogenesis, the elementary question revolves around the genetic fundamentals
and the heredity of the phenotype.

2.1.5.1 Genetics of dyslexia (Genetic epidemiology)

Family and twin studies provide evidence that developmental dyslexia is highly hered-
itary with an estimated proportion of variance that is explained by genetic factors
ranging from 0.4 to 0.8 [Schumacher et al., 2007, Carrion-Castillo et al., 2013]. Wolff et al.
detected higher risk for sibs showing dyslexic endophenotypes with both parents being
affected, than those with one affected parent, indicating patterns of additive effects
[Wolff and Melngailis, 1994]. Twin studies estimated concordance rates of 20% to 55%
for dizygotic (DZ) twins and 68% up to 100% for monozygotic (MZ) twins [Hermann,
1959, Zerbin-Rüdin, 1967, Bakwin, 2008].
Since heritability studies provide strong evidence for solid genetic impact on the pheno-
type many surveys searching for genetic background and abnormalities were conducted.
Considering the mentioned nebulous and multifaceted biological processes involved
in the mastering of reading or spelling it stands to reason that the genetic architecture
is not less complex or multifactorial. For example Olson et al. [Olson et al., 1999]
demonstrated that genetic effects on phonological decoding and orthographic coding
are due to shared and independent components. Moreover, it is important to keep
in mind that in reading and spelling involved processes underly huge environmen-
tal influences, but nevertheless there is a high broad-sense heritability suggesting the
contribution of genetic factors [Grigorenko, 2001]. More and more genetic risk factors
are identified causing susceptibility to single endophenotypes of the disorder. In this
section an overview of detected loci and genes being published in the field of dyslexia
will be provided.
Despite the fact that currently the genetic architecture of dyslexia appears very compli-
cated, there are some genes identified to be involved in the pathogenesis, however not
in a Mendelian way. The trait pattern rather indicates to be a result of the interplay of
genetic factors involving combinations of polygenicity, heterogeneity [Carrion-Castillo
et al., 2013] and pleitropic genes [Grigorenko, 2001] with small effects manifesting the
clinical picture [Paracchini, 2011].
The introduction of reported susceptibility regions should be initiated with the nine
most popular candidates that indeed own their nomenclature from the disorder, namely
DYX1 (Dyslexia susceptibility 1) to DYX9 [Schumacher et al., 2007] (figure 2.2), enumer-
ated by the order of their detection (Nomenclature is assigned by the HUGO Gene
Nomenclature Committee (http://www.gene.ucl.ac.uk/nomenclature/).

http://www.gene. ucl.ac.uk/nomenclature/
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DYX1 on 15q21 was one of the first detected and replicated regions for reading and
spelling disability [Smith et al., 1983, Bates et al., 2007]. Nopola-Hemmi et al. [Nopola-
Hemmi et al., 2000] discovered DYX1C1 as a candidate gene in a Finnish family study
in which balanced translocations involve the region 15q and different chromosome
arms of chromosome 2, co-segregating with reading and writing difficulties. Markers in
DYX1C1 have been reported to be associated with developmental dyslexia and with
short-term memory performance in affected females [Dahdouh et al., 2009]. Furthermore
Tammimies et al. [Tammimies et al., 2013] detected interactions between DYX1C1,
DCDC2 and LIS1 (a protein implicated in lissencephaly, a rare brain disorder caused by
severely disrupted neuronal migration) [Schumacher et al., 2007].

Figure 2.2: Ideogram of published dyslexia susceptibility loci. Chromosomes (1, 2, 3, 4, 6,
7, 11,12, 15, 18, X) of interest are shown with the cytogenetic bands. Red bars or
boxes respectively indicate approximate cited susceptibility regions for dyslexia, with
the corresponding locus or gene names. Reference: UCSCs Genome Browser (hg19)

DYX2 DCDC2 (6p22.2) a gene that clusters among others (VMP, KIAA0319, RREAP,
THEM2) in the DYX2 locus, one of the most consistent findings in dyslexia genetics
[Smith, 2007], was reported originally by Cordon et al. [Cordell, 2009]. DYX2 is one of
the most replicated DYX loci [Gibson and Gruen, 2008], especially the intra-cluster genes
DCDC2 and KIA00319 [Harold et al., 2006, König et al., 2011, Ludwig et al., 2008, Pinel
et al., 2012]. Variants in DCDC2 are described for association to reading by Meng et al.
[Meng et al., 2005]), as well as to the quantitative phenotype spelling by Schumacher et
al. [Schumacher et al., 2005] and recently an allele has been identified by Marino et al.
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being associated to memory [Marino et al., 2012]. Precise function of DCDC2 is not fully
enlightened, but it is suggested to be involved in cell and neuronal migration [Smith,
2007]. Beside all findings there were also documented surveys that could not replicate
any associations of this gene with dyslexia [Schumacher et al., 2007].
KIAA0319 seems to be more robust in replication studies than DCDC2, it is found to
be significantly associated with risk to dyslexia by Francks et al. [Francks et al., 2004]
in populations from the United Kingdom (UK) and the United States (US), thus was
later confirmed by Paracchini et al. with further involvement of the gene in neuronal
migration [Paracchini et al., 2006] and associations to reading skills in the general pop-
ulation [Paracchini et al., 2008, Paracchini, 2011]. Studies have also investigated the
question whether KIAA0319 variants might have impact across different neurodevel-
opmental disorders. Scerri et al. mentioned the association of KIAA0319 with reading
and spelling scores and relations to comorbid disorders such as ADHD and specific
language impairment (SLI) [Scerri et al., 2011]. Subsequently in 2012 Scerri et al. found
along with markers in KIAA0319 also variants in the MRPL19/C2ORF3 gene on the
DYX3 locus (2p12–2p16) to be significantly associated with verbal and performance IQ
in an investigation in the Avon Longitudinal Study of Parents and Children (ALSPAC)
cohort of 5, 000 individuals [Scerri et al., 2012].

DYX3 locus (2p12–2p16) was identified by Fagerheim et al. [Fagerheim et al., 1999] for
linkage to dyslexia in a multigenerational Norwegian family where dyslexia is inherited
as an autosomal dominant trait. Kamine et al. [Kaminen et al., 2003] confirmed linkage
to DYX3 in a sample ascertained from Finland. Another study realized by Anthoni et al.
supported DYX3 as susceptibility locus, by encountering risk haplotypes located in an
intergenic region between FLJ13391 and MRPL19/C2ORF3 [Anthoni et al., 2007].

DYX4 In comparison to the previously mentioned loci DYX4 is poorly reported.
Petryshen et al. [Petryshen et al., 2001] suggested linkage of the qualitative phenotype
phonological coding and the continuos phenotypes: phonemic awareness, phonological
decoding, rapid naming, and spelling to the region 6q11.2–q12 and designated this locus
as DYX4 [Carrion-Castillo et al., 2013, Grigorenko, 2005].

DYX5 The location 3p12–q13 referred to as DYX5 is replicated more often. Initially
Nopola-Hemmi et al. [Nopola-Hemmi et al., 2001] described in an analysis of dyslexic
subjects a shared identical copy of a haplotype on chromosome 3, later this region led
to the identification of the ROBO1 gene with alleles associated to dyslexia showing
an altered (attenuated) expression level [Smith, 2007]. Stein et al. [Stein et al., 2004]
detected also linkage of the locus to SSD. Bates et al. [Bates et al., 2007] replicated
this region in a genome-wide linkage analysis for reading and spelling. Homologous
genes of ROBO1 in mouse and Drosophila melanogaster seems to be involved in axon
guidance cross the brain. Hannula-Jouppi et al. [Hannula-Jouppi et al., 2005] suggested
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that a slight disturbance in neuronal axon navigation, dendrite guidance, or another
function of ROBO1 may manifest as a specific reading disability in humans.

DYX6 In a QTL based genome-wide scanning in UK and US samples [Fisher et al.,
2002] DYX6 (18p11–q12) showed increased evidence for linkage to single-word read-
ing (SWR) and measures related to phonological and orthographic processing. In a
subsequent replication with a second UK sample they could detect strongest evidence
from phoneme awareness measures to that loci. With a combined analysis of both UK
families Fisher et al. substantially validated that the 18p QTL is probably a general risk
factor for dyslexia, influencing several reading-connected mechanisms. Furthermore
Bates et al. [Bates et al., 2007] could detect linkage of DYX6 to phonological decoding
and awareness as well as SWR and orthographic awareness.

DYX7 Apart from those finding Fisher et al. investigated the region 11p15 being
linked to phonological-awareness in their UK sample. Results of a study of Hsiung et
al.[Hsiung et al., 2004] have provided significant evidence for linkage of dyslexia to
11p15.5 which is assigned to DYX7.

DYX8 (1p34-p36) could repeatedly be mapped to qualitative and quantitative dyslexia
phenotypes [Tzenova et al., 2004]. Grigorenko et al reported not only chromosome 1
being associated to dyslexia they also assumed interaction between a 1p36 locus and
a 6p22.2 locus (DYX2) [Grigorenko, 2001, Grigorenko et al., 2001]. Again Bates et al.
[Bates et al., 2007] were able to replicate this region in their replication study of reported
linkages for dyslexia and spelling.

DYX9 Last but not least DYX9 which is assigned to the X chromosome (Xq27.3), was
identified by de Kovel et al. as a genome-wide significant peak of linkage in a Dutch
family. Their observations led to the assumption that the supposed risk allele has to be
dominant with reduced penetrance and more variable effects in females [de Kovel et al.,
2004, Carrion-Castillo et al., 2013].

Apart from the DYX regions there are few other genes and loci that are not con-
sidered as dyslexia candidate loci, as solid evidence for linkage or association is still
not proven, they are rather correlated to other neurological abnormalities or disorders
demonstrating comorbidity with dyslexia.
One of the most popular genes in neurodevelopmental speech and language distur-
bances is FOXP2. FOXP2 (7q31) was the first candidate gene studied in SLI, a point
mutation in exon 14 of the gene was found to be involved in the developmental process
of speech and language [Lai et al., 2001]. Later MacDermot et al. [MacDermot et al.,
2005] investigated the entire coding region of FOXP2 in subjects affected with verbal
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dyspraxia and detected protein sequence altering variants in 3 of 49 probands cosegre-
gating with speech and language difficulties. Vernes et al. [Vernes et al., 2008] reported
down-regulating actions of FOXP2 on CNTNAP2, a gene expressed in the developing
human cortex where polymorphisms in that gene are detected for association to SLI.
A second paper of Vernes et al. [Vernes et al., 2011] indicated that FOXP2 modulates
neuronal network formation by directly and indirectly regulating messenger ribonucleic
acids (mRNAs) involved in the development and plasticity of neuronal connections.
Besides the monogenic syndrome of FOXP2, causing impaired speech development and
linguistic deficits, reduced dosage of the gene result in abnormal synaptic plasticity and
impaired motor-skill learning in mice, and disrupts vocal learning in songbirds [Fisher
and Scharff, 2009, Kurt et al., 2012]. Effects of FOXP2 were often investigated in the field
of dyslexia with moderate success. Recently Wilcke et al. were able to find a variant of
the gene significantly associated with dyslexia in a case-control and functional magnetic
resonance imaging (fMRI) study [Wilcke et al., 2011]. A fMRI survey of Pine et al. could
detect three intronic SNPs of FOXP2 significantly associated with reading activation
in two brain regions (frontal regions of the left hemisphere: the inferior frontal gyrus
and the dorsal part of the precentral gyrus), and intriguingly they also observed a SNP
within the KIAA0319/TTRAP/THEM2 locus (DYX2) associated with temporal functional
asymmetry [Pinel et al., 2012].
Further discoveries in the field of genetic dyslexia were done by Roeske et al. [Roeske
et al., 2011] and Ludwig et al. [Ludwig et al., 2010], where two genes on chromosome
12 were detected for association to neurophysiological endophenotypes of dyslexia.
Roeske et al. identified a marker (4q32.1) to be correlated with late mismatch negativity
(MMN) component, which reflects automatic speech deviance processing that is altered
in dyslectics; and a second SNP in LD, both in turn being significantly association with
expression levels of SLC2A3 (12p13.31), suggesting trans-regulation of the gene that
is involved in glucose transport in neurons, which might lead to glucose deficits in
dyslexic children and could explain their attenuated MMN in passive listening tasks
[Roeske et al., 2011].
The next gene on chromosome 12 supposed to be related to dyslexia is GRIN2B, Ludwig
et al. describe three intronic SNPs of the gene associated with short-term memory in
dyslexia. They observed even stronger effects when only maternal transmission were
considered [Ludwig et al., 2010].
Even though all the promising findings in the complex and multifaceted nature of
dyslexia it appear complicated to discover highly effective genetic factors, probably due
to genetic heterogeneity and relatively small single-locus effect sizes. It is conceivable
that the syndrome is rather explainable by considering the interplay of genetic factors
on the different neurophysiologic endophenotypes of dyslexia. From this perspective it
seems reasonable to take an epistatic look on the genetics of dyslexia.
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2.2 Statistical background

2.2.1 Basics of the epistasis model

Statistical interaction can be well described in relation to a regression model that depicts
the relationship between an outcome variable and predictor variables [Cordell, 2009].
Depending on the outcome variable i.e., qualitative or quantitative, one needs to dis-
tinguished between the logistic- or linear regression model. Assuming a dichotomous
trait e. g., the disease affectedness of the observation sample, the logistic approach is the
method to choose (subsection 2.3.4.1) and the log-odds ratio between the binary values
is mapped as the outcome variable. The genetic effect on quantitative traits, obviously
not classifiable in to two distinct groups, is estimated by applying the linear model
(subsection 2.2.1.1).

2.2.1.1 Multiplicative interaction - a deviation from the additive model

By definition, epistasis is the statistical deviation from additive linear effects of two
involved loci on the phenotype [Fisher, 1918]. The basic mathematical approach to
model statistical epistasis of two independent loci and their impact on a quantitative
phenotype is the linear regression model, in simplified terms posed by Eq. 2.5:

Phenotype = Intercept + αSNPA + βSNPB + γSNPASNPB (2.5)

αSNPA and βSNPB present the main effects of each of the two SNPs (SNPA and SNPB),
and γSNPASNPB the interactive effect of both SNPs on the Phenotype. Genetic variants
are represented by numerically coded alleles (detailed explanation available under
section 2.3.4). The term Intercept absorbs any bias that is not accounted for by the given
terms, in genetic models it could be variations arising from the environmental or other
confounding factors. In the case of the additive model [Wade et al., 2001] the interaction
coefficient γSNPASNPB is equal to zero, as no multiplicative effect is present, meaning
that the single SNPs affect the relation to the trait independently only in an additive
way; in other words, there is no interaction present. The realization of the linear model
in statistical epistasis tools is provided in section 2.3.4.

2.2.2 Problem of multiple testing

In genetic association testing, where simultaneously hundreds of thousands SNPs are
tested for their effect on a specific outcome the risk of discovering false positive effects,
in other words incorrectly rejecting the null hypothesis, is very high.
The null hypothesis is rejected if a rare event is detected, but the larger the number of
tests, the easier it is to find such events and therefore the easier to interpret an effect as
rare when there is none [Abdi, 2006].



40 2. BACKGROUND

To prevent wrong interpretations based on multiple testing many statistical methods
were developed by which the number of independently performed tests are taken into
account for correction of the multiple testing hypothesis. The usual 5% level, meaning
that there is a 5% chance that a result is incorrectly true, has to be corrected for the
number of tests for the determination of the significance level. In a GWA analysis that
would be the number of the considered SNPs.
One of the most commonly applied methods to control familywise error rate (FWER)
(the probability of one or more false positive discoveries (type I errors) among multiple
tests) is the Bonferroni-correction, which is also the most conservative technique with a
very stringent threshold. The Bonferroni-correction is the simple approximation method
of the Sidàk equation in which a test reaches significance with a smaller probability as
0.05

#tests [Abdi, 2006].
To ensure that significance is not due to randomness and within the expectation of
independence this method is surely the appropriate choice, on the other hand taking
all SNPs (which indeed are not all independent due to LD structures) into account the
significance level will converge to highly small probabilities and would possibly lead to
false negative results. Hence two approaches are often applied, first selecting a limited
number of LD-pruned loci for consideration, which shrinks the search space and, thus,
the significance level correction, or the adoption of a permutation based method, which
might be computationally infeasible [Cordell, 2009, Culverhouse et al., 2002].
Facing interaction analyses one can imagine that the problem of multiple testing gets
even more server and stringent considering the number of tests, n2. Tim Becker et al.
[Becker et al., 2010] published a promising modification approach of the Bonferroni-
correction for GWIA, which is also applied in this thesis. The Bonferroni-Becker ap-
proach implies that a correction with roughly 0.44×m (m being the number of tests,
i. e., the number of SNP-pairs: m = n(n−1)

2 and 0.44 the correction factor) is appropriate
for GWIA. The correction factor can be calculated for each dataset individually, the
methodology relies on the combination of permutation and Sidàk strategy, which given
computational constraints is not always feasible.
Basically, the permutation procedure is repeated x times for a given dataset, the ob-
tained minimum p-value of each run is kept, from which the specific correction factor
for GWIA is inferred via the reverse Sidàk equation (in R the function ks.test).Despite
its benefit for accuracy this is a highly time consuming and computational expensive
approach that is not realizable in every case; Becker et al. demonstrated that the correc-
tion factor of 0.44 is appropriate for GWIAs with the Illumina R© 550 HumanHap chip,
or either any genotyping data with up to 500, 000 SNPs.
Another less stringent method is the false discovery rate (FDR) approach. FDR was
developed by Benjamini and Hochberg [Benjamini and Hochberg, 1995] to control error
in the multiple-testing situation. It is used to estimate false positive results. The formula
is based on the FWER with the traditional situations described in table 2.1.
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True H0 True H1 Total
Declared significant V S R
Declared non-significant U T m - R
Total m0 m - m0 m

Table 2.1: Hypotheses definition for familywise error rate testing m null hypotheses

m is the number of (null) hypotheses H0 to be tested, of which m0 are the true null
hypotheses. R is the number of rejected hypotheses (non-null hypotheses (H1)). R is
an observable random variable; U, V, C and T are unobservable random variables. If
each individual null hypothesis is tested separately at level α (usually 0.05 or 0.1), then
R = R(α) is increasing in α. In terms of these random variables, the per-comparison
error rate (PCER) (the probability of a result in the absence of any formal multiple
hypothesis testing correction) is E(V/m) and the FWER is the probability P(V ≥ 1).
In association studies the FDR is more commonly applied. It is defined by the random
unobserved variable Q = V/(V + S) the proportion of rejected null hypotheses which
are rejected erroneously. Obviously, the unobserved random variable Q would be
null if the number of false positives (V) and true positives (S) is zero. Therefore the
FDR expectation corresponds to Q (Eq. 2.6). If all null hypotheses are true, the FDR is
equivalent to FWER, otherwise FDR is smaller than or equal to the FWER.

FDR = E(Q) = E
{

V
(V + S)

}
= E

(
V
R

)
(2.6)

2.3 Technical background

2.3.1 R

R (http://www.r-project.org) is an open source software environment for statistical
computing and graphics. It runs on a wide variety of operating systems. It is a GNU
project based on the S language and environment that was developed at Bell Laborato-
ries (formerly ATT, now Lucent Technologies) by John Chambers and his colleagues. R
provides a huge variety of statistical (linear and nonlinear modeling, classical statistical
tests, time-series analysis, classification, clustering, etc.) and graphic techniques and
is readily extensible [Core, 2008]. It offers a huge range of packages especially for
biological questions, for example the packages from Bioconductor [Gentleman et al.,
2004]. All statistical analyses for this thesis that were not performed with specific tools
were realized utilizing R.

http://www.r-project.org
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2.3.2 QUANTO

The software QUANTO (http://biostats.usc.edu/Quanto.html) [Gauderman, 2002]
is a 32-bit Windows application for the computation of detection power for various as-
sociation study models like single-locus, gene-environment-, or gene-gene interactions.
It includes different study designs (for example, case-control or case-only) and can be
used over a graphical user interface [Gauderman, 2002]. Study power for statistical
interaction analyses can be estimated using the allele frequencies, population size, single
SNP effect size, interaction effect size, and genome-wide significance level (in our case:
p = 1.61× 10−12).

2.3.3 Principles of Graphics Processing Unit computing

The massive data production, due to the impressively fast progress in biotechnology
confronts computer experts with the challenges of data handling, memory usage, and
computational power. While single locus association studies have become manageable
with standard computer resources, such as high-performing single desktops, multi-core
processor servers or cloud-computing, higher order (interaction) calculations remain
a huge performance problem; another issue is the outsourcing of clinical data, due to
security standards the use of cloud computing is often prohibited.
In quest of new strategies addressing these limitations the idea arose to leverage the
power of the multiple cores available on GPUs on graphics cards to enhance compu-
tation speed arose. The high-performance ability of graphic cards are established in
game consoles, but were barely taken into account as computing processors as a result
of insufficient implementation abilities and expertise of GPUs as arithmetic units
Nowadays high performance computing solutions are ubiquitous. A new approach
is heading towards heterogeneous systems where the central processing unit (CPU)
of the system handles the serial part of a task and helps to coordinate the parallel
environment on GPU for massive parallel computation. In this model CPU and GPU
work in a heterogeneous co-processing computing model, where the CPU carry over the
sequential part of the task and the GPU the computationally intensive part in a Single
Instruction Multiple Data (SIMD) manner [Kam-Thong et al., 2012].
In the field of bioinformatics and biostatistics the demand for higher performance
solutions increases, amongst others when it comes to high dimensional data analysis,
such as the systematically brute force search for epistatic interactions between genetic
variants. Meanwhile GPU programming is constantly growing in biosciences and sev-
eral open-source software tools are designed to perform epistasis searches on GPUs
, such as SHEsisEpi [Hu et al., 2010], GBOOST [Yung et al., 2011], EpiGPU [Hemani
et al., 2011], and those developed in our group EPIBLASTER [Kam-Thong et al., 2010],
EPIGPUHSIC [Kam-Thong et al., 2011] and GLIDE [Kam-Thong et al., 2012].
To enable GPUs as processors there is the need of special interfaces, like NVIDIAs Com-
pute Unified Device Architecture (CUDA) (see subsection 2.3.3.2) which is a parallel

http://biostats.usc.edu/Quanto.html
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computing architecture application facilitating GPUs to operate as co-processors within
a host computer. Each GPU has its own memory and processing elements that are
separate from the host computer. The following subsections ( 2.3.3.1, 2.3.3.2) will give
an overview of the implemented soft- and hardware of the epistasis tools developed in
the research group Statistical Genetics at the Max-Planck-Institute of Psychiatry.

2.3.3.1 Graphics Processing Units

GPUs on graphics cards are composed of several hundred Arithmetic Logic Units
(ALUs) providing the massive parallel environment in which an exhaustive search can
be computed extremely time-efficient. Apart from the advantages concerning computa-
tional time, the economical aspects, as the lower price, lower power consumption and
at least the less rack space requirement as for multi-core CPU machines, made GPU
programming more popular and operative.
For our research question, we chose NVIDIAs CUDA computation architecture, avail-
able for application development with the graphics cards series GeForce, ION Quadro
and Tesla. The consumer level GeForce GTX series fulfilled all our needs and allowed
us to build a queue system. We opted for custom-built compute nodes based on a
high-performance PC that accepts three GTX graphics cards (GTX580, offering 512 GPU
cores) for GPU computations [Pütz et al., 2013]. Overall we could built a GPU-cluster
by assembling four high-performance PCs with three graphics cards each.
The working mechanism of GPUs can be visualized well by figure 2.3, in general process-
ing elements in GPUs are called threads that are grouped into blocks. Threads within
the same block share a small amount of memory that can be used to share intermediate
results among the threads. Hence a thread can be seen as one computation task for its
own; for example in our instance one SNP-pair interaction calculation is assigned to
one thread. As GPUs have their own memory, the CPU just need to calls GPU cores and
immediately release control so the GPU works on its own. This allows for computations
on the CPU and GPU to take place separately. As mentioned above GPU device has
to be enabled for programing through an application programming interface (API).
The most direct access to hardware utilization is offered by modules or libraries as
the R package gputools [Buckner et al., 2010], which were deployed for EPIBLASTER
and EPIGPUHSIC. In contrast, GLIDE the method applied in this thesis, is based on C
programming language, explicitly CUDA the an extension to C (see 2.3.3.2).

2.3.3.2 Compute Unified Device Architecture

NVIDIAs CUDA C programming language is an extension to the C language specifically
designed to facilitate not only CPU but also GPU computing. It can be seen as a C
dialect with extensions for GPU organization and data exchange between host computer
and integrated GPU. Code targeted for the GPU is developed in so-called kernels to
perform the computations. In summary the duty of CUDA is the distribution of data
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Figure 2.3: GPU threads cooperation. The epistatic interaction matrix of size n× n is divided
into chunks; due to matrix symmetry only the greyed triangle needs to be computed.
Chunks are divided into blocks of size BS × BS. Each of those is computed in
parallel by BS× BS threads [Kam-Thong et al., 2012].

from global (host memory) to shared memory on GPU, to allocate a task into sub-tasks,
to process computations on multiple threads in parallel and to transfer results back to
host memory [Kam-Thong et al., 2012].

2.3.4 Statistical Epistasis Tools

To overcome the computationally infeasible exhaustive search for the statistical effect
of loci pairs on a phenotype we took benefit of the parallelizability of GPUs . By
utilizing the computational power of GPUs, the detection of genetical interactions
via regression models on a single desktop machine is enabled. Using the gain of
efficiency our group has successfully developed three tools EPIBLASTER ( 2.3.4.1),
EPIGPUHSIC ( 2.3.4.3) and GLIDE ( 2.3.4.5) to solve the computational demands for
statistical epistasis detection.
As described in the previous section 2.3.3 the essential operating codes helps to unlock
the parallel computational power of the GPU and process the statistical association
of all possible bivariate interactions [Kam-Thong et al., 2012]. All three applications
complete a hypothesis-free whole-genome brute force exhaustive search in less then a
day on a single GPU, without imposing significant marginal effects of the single loci
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involved.
In genome-wide studies the number of genetic variants can be in the order of millions,
resulting in 1012 − 1014 possible SNP-pair combinations, which is the major cause why
most epistasis tools are limited to a selection of single effect loci or loci being validated
through experimental knowledge or biological pathways [Cordell, 2009].
The schematic for data preprocessing, organization and management behind all three
applications are identical.

The preprocessing phase includes the appropriate genotypic representation as a
numerical value ranging from 0 to 2 based on the count of reference allele of the selected
SNP for an allele dosage model. In the context of a diallelic locus in diploid cells only
three genotypes can be present AA, Aa or aa, with a being the minor, or rather the
reference allele. In that circumstance the categorial values 0 would be assigned to the
homozygous variant with the two major alleles AA, 1 to the heterozygous variant Aa
and the carrier of the homozygous variant with two risk alleles would have the value 2.
This assumes that the reference allele affects the phenotype in an overall linearly in-
creasing or decreasing manner, where the parameter will simply take on a negative
value to express a negative linear correlation [Kam-Thong et al., 2012]. Furthermore
recessive, dominant and heterozygous encodings can be applied with the assumption
that the genotype effect is attributed to this conditions. Alternatively the genotype can
yield any continuous numerical value of these estimated probabilities generated by an
imputation algorithm.

Organization and management is the first instance of the main applications. This
stage comprises the generation of a matrix to store the information of all n SNPs
as column vectors and the measured quantitative values (phenotype), respectively
collected disease status of the subjects along the rows. The dataset with n SNPs is then
partitioned into chunks of SNPs, from where each of the chunks can be distributed
across all GPU threads to be processed in parallel in an auto- and cross-correlation
manner. Auto-correlation describes the analysis of a partition with itself, and cross-
correlation the correlation analysis between two distinct SNP-sets. Departing from
this point the subsequent mapping computation differ in their theoretical and practical
implementation.

2.3.4.1 EPIBLASTER – A correlation-based interaction method for binary
phenotypes

EPIBLASTER [Kam-Thong et al., 2010] was the first of three open-source multidimen-
sional interaction tools developed on GPUs for binary phenotypes, like the case-control
status of a cohort. The development strategy was to approximate the logistic regression
model by applying Pearson’s correlation in R (http://www.R-project.org).
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More precisely, the tool relies on a two-stage approach whereby the first stage is the
filtering phase calculating the difference of Pearson’s correlation coefficients by per-
forming an exhaustive two-locus interaction multiplicative search [Marchini et al., 2005]
across all possible pairwise SNP combinations. The second stage performs a likelihood
ratio test to compute the p-values on the estimated interaction coefficients of a subset
of pairs indicating significance in the previous stage [Kam-Thong et al., 2010]. The rea-
soning for that methodology is that SNP pairs with the largest difference in correlation
between affected and unaffected probands are most likely to show epistatic interaction,
which is appealing from a biological standpoint; it ties up the concepts of epistasis with
the evolutionary concept of co-selection of unlinked loci [Kam-Thong et al., 2010].

2.3.4.2 Algorithm and Implementation of EPIBLASTER

The algorithm computes the genotype vectors in pairs and the correlation coefficients
are calculated for affected and unaffected subjects separately. The points of the bivariate
model for diallelic loci lie on a 3× 3 genotype matrix where the correlation coefficient is
recorded. The difference between the correlation coefficient (∆p) in cases and controls is
then used as an indication of the SNP pair contributing to the variation between affected
and unaffected Eq. 2.7.

∆p = ∑
i∈cases

(SNPAi − ¯SNPAcases)(SNPBi − ¯SNPBcases)

(n1 − 1)σSNP Acases σSNPBcases

− ∑
j∈controls

(SNPAj − ¯SNPAcontrols)(SNPBj − ¯SNPBcontrols)

(n0 − 1)σSNP Acontrols σSNPBcontrols

=
1

n1 − 1 ∑
i∈cases

˜SNPAi
˜SNPBi −

1
n0 − 1 ∑

j∈controls

˜SNPAj
˜SNPBj

(2.7)

¯SNPAcases,controls and ¯SNPBcases,controls are the means of SNPA and SNPB at each loci
for affected and unaffected, respectively; ˜SNPA and ˜SNPB represent the centered and
scaled SNPs A and B for each subject group; and σ denotes the variance with n being
the respective count of cases (n1) and controls (n0).
To utilize the full power of GPU resources a task requires to be partitioned into many
smaller tasks that can be distributed in parallel. With our conditions and with respect
to current GPU memory disposability, SNP-sets have to be partitioned into blocks
containing 1000 or 2000 SNPs each. A two-level nested loop process runs, for cases and
controls separately, through the entire data set and calculates the correlation coefficients
in blocks of 2000 SNPs in an auto- and cross-correlation manner. Subsequently the
difference of correlation coefficients between cases and controls and the p-values of each
SNP-pair given that the distribution of the differences follows a normal distribution



2.3. Technical background 47

[Gretton et al., 2007] are calculated. Result files store all SNP-pairs below the determined
p-value threshold. The procedure is repeated across all partitions until all SNP-pairs
are computed. As a function of the predetermined significance level, results of the first
algorithm phase indicate consisting significant correlations for interaction terms. The
second and final stage computes for those resulting SNP-pairs the fit using a full rank
logistic model (Eq. 2.8).

Phenotype = µi + αxAi + βxBi + γxAi xBi (2.8)

The equation includes the intercept µi, the additive marginal effects of locus A (αxAi)
and locus B (βxBi) and the interaction term of AB (γxAi xBi).
Implementation of the algorithm on GPUs were realized via the R package gputools
[Buckner et al., 2010] providing drop-in replacements for standard functions that make
use of available GPU resource. The function ’gpuCor’ allows the calculation of corre-
lation coefficients for all possible pairwise interactions with dichotomous phenotype
across vectors using the CUDA-enabled NVIDIA graphic cards [Kam-Thong et al.,
2010].

2.3.4.3 EPIGPUHSIC - Correlation based interaction method for quantitative
phenotypes

Nature has a disposition to continuos and complex traits, such as the popular example of
human height. Genetic predispositions are results of combinations of genetic variation
with small effects, the effect of a loci on a quantitative trait a so called QTL is currently the
main subject of genetic research. To be able to capture the phenomena of loci interactions
with the epistasis approach we had to overcome the limitation of EPIBLASTER on
qualitative phenotypes.
The previous method, where association relied on the difference between the classes
of subjects, is not applicable to continuos phenotypes. A time-efficient alternative
approach to be applied in R on GPUs was the method developed by Gretton et al.
[Gretton et al., 2005] derived from the Hilbert-Schmidt Independence Criterion (HSIC).
The HSIC is a kernel-based method and an approximation to the linear regression
model. The advantages of the HSIC approach, aside from the time-efficiency, is the
applicability for binary and quantitative phenotypes in one tool. Subsection 2.3.4.4 will
provide a broad outline of the complex statistics of the HSIC implementation, detailed
mathematics of the model can be obtained from Gretton et al. [Gretton et al., 2005].

2.3.4.4 Algorithm and Implementation of EPIGPUHSIC

The development of EPIGPUHSIC [Kam-Thong et al., 2011] is highly related to EPI-
BLASTER. The implementation is likewise realized in R with the gputools package
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[Buckner et al., 2010]. A variation is the compression of the genotyping data, which
requires the popular R package, GenABEL (http://cran.r-project.org/web/packa
ges/GenABEL/) [Aulchenko et al., 2007]. Each element is represented by the dosage
model encoding (0, 1, 2). When elements are recorded in floating-point numbers as in
the case genotypic probabilities, for example imputed SNPs), this step is bypassed by
partitioning data into smaller size files where the local memory limitation would not be
of a constraint.
The principle of the HSIC is the measurement of independence of two random variables,
where the squared correlation coefficient between two variables x and and y from the
domains X and Y is computed in feature spaces F and G [Gretton et al., 2005].
In case of qualitative phenotypes the approach relies again on differences of correlation
coefficients between two classes as an instance of HSIC (Eq. 2.9).

HSICempirical((X, Y),F ,G) ∝ ∑
i,j

k(xi, xj)l(yi, yj)

= ∑
i,j

x̃Ai x̃Bi x̃Aj x̃Bjψ(yi)ψ(yj)

=

(
∑

i
x̃Ai x̃Biψ(yi)

)2

=

(
1
n1

∑
i:yi=1

x̃Ai x̃Bi −
1
n0

∑
i:yi=0

x̃Ai x̃Bi

)2

= ∆ρ
(

X(A,B), Y
)

(2.9)

Kernel k of space F and kernel l of space G are defined as:

k(xi, xj) = φ(xi)φ(xj) = x̃Ai x̃Bi x̃Aj x̃Bj

and

l(yi, yj) = ψ(yi)ψ(yj)

(2.10)

ψ(yi) describes the state of the phenotype:

ψ(yi) =

{
1/n1, if yi = 1

−1/n0, if yi = 0
(2.11)

In the event of quantitative phenotypes, where a phenotype is an element of the real
numbers yi ∈ R the centered linear kernel ψ(yi):=ỹi is chosen as kernel on the centered
phenotype ỹi. l is defined as kernel on continuos phenotypes with l(yi, yj)=ỹiỹj and k
as a kernel on SNP pairs (A,B):

http://cran.r- project.org/web/packages/GenABEL/
http://cran.r- project.org/web/packages/GenABEL/
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HSICempirical((X, Y),F ,G) ∝ ∑
i,j

x̃Ai x̃Bi x̃Aj x̃Bjψ(yi)ψ(yj) (2.12)

For the implementation and a runtime of O(m2n), with n being the number of subjects
and m the number of SNPs, the equation is rewritten as:

HSICempirical((X, Y),F ,G) ∝

(
∑

i
x̃Ai x̃Biψ(yi)

)2

=

(
∑

i
x̃Ai x̃Biỹi)

)2 (2.13)

The HSIC algorithm is an approximation to the linear regression coefficients that are
often used in statistical genetics to quantify the impact of variables on the phenotype
[Kam-Thong et al., 2011]. Detailed information of the algorithm and the relationship
between HSIC and linear regression is described in Kam-Thong et al. [Kam-Thong et al.,
2011].

2.3.4.5 GLIDE - Linear regression based method for epistasis detection

GLIDE (GPU-based Linear regression for Detection of Epistasis) [Kam-Thong et al.,
2012] is our most straightforward GPU -based implementation for interaction anal-
ysis. Interaction coefficients are systematically computed via linear regression in an
exhaustive genome-wide brute force search in hundreds to thousands times faster than
state-of-the-art implementations on CPUs.
Addressing all the limitations of previous GPU-based methods with the expectation to
reveal part of the famous missing heritability, GLIDE is developed to perform genome-
wide linear regression analysis without the need of data-pruning, or any limitations to
discrete pheno- or genotypes. Hemani et al. [Hemani et al., 2011] released a GPU-based
exhaustive search method applicable to continuos measures by calculating a F-test for
the pairwise combinations. Despite its speed performance, the application is limited
to SNP-pair combinations with a 3× 3 contingency table of possible genotype combi-
nations. In this context information of the SNP-pair combination can only fall into 9
possible classes and is not applicable to real-number input values, such as imputed
genotype probabilities.
Therefore, our method aims to be general enough to be applicable to pairwise epistasis
studies of various real or continuous predictor inputs (genetic and environmental fac-
tors) related to the phenotypic output [Kam-Thong et al., 2012]. This extension offers a
huge spectrum of new opportunities and facilitates room for new innovative approaches
in the field of biosciences. A very noteworthy example, due to the progress in the field
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of methylation chip arrays, is the interaction detection between genetic marker and the
methylation degree on the individual expression intensity as the phenotypic outcome.
As generally known phenotypic variation is not purely driven by the individual genetic
disposition. Environmental factors and biological processes are significantly involved
in the measurable phenotypic variation. With tools like GLIDE any kind of biologically
relevant data can be considered for possible interactions.

2.3.4.6 Algorithm and Implementation of GLIDE

GLIDE follows the same input and output criterion as the previously described epistasis
tools, regarding SNP partition, GPU task distribution events and the assembly into
result files. The implementation is the first linear regression method ported on the
GPU to perform statistical measures on the bias (a bias term is required to remove any
constant offset of the quantitative measure that does not embed any information which
can be modeled by the independent/genetic variable(s)), univariate and interaction
parameters of the basic epistasis model. The program allows for data in the continuous
space for both, the phenotype (quantitative traits) and genotype (imputed SNPs) [Kam-
Thong et al., 2012].
GLIDE is encoded in the C programming language using NVIDIA’s CUDA extension.
The epistasis computation relies on the standard linear regression model

αij = (XijTXij)−1XijTy

where for each SNP pair a length-four coefficient vector αij (in total SNP(SNP−1)
2 ) such

that:

Xijαij ≈ y

has to be estimated. X is a m× n matrix, with m being the number of subjects and
n the number of SNPs; let y be the m× 1 phenotype vector. Given all this we want to
discover the correlations between SNP pairs and the phenotype.
For each SNP pair (i, j) ∈ {1, ...n} define the m× 4 matrix:

Xij =

 | | | |
1 xi xj xi ◦ xj
| | | |

 (2.14)

where xi is the i-th column of X (i. e., the i-th SNP over all subjects) and xi ◦ xj is the
element-wise product of the i-th and j-th SNP columns (SNPA and SNPB).
The estimated output phenotype vector based on αij is:

ŷij = Xijαij



2.3. Technical background 51

with a residual sum of square error (Eq. 2.15).

Residualij
SSE =

m

∑
k=1

(
yk − ŷij

k

)2
(2.15)

A subsequent t-test (Eq. 2.16) with m− 4 degrees of freedom should determine whether
the estimated interaction term is significantly different from zero.

α
ij
4√

ResidualijSSE
m−4 ×

[
(XijTXij)−1

]
4,4

(2.16)

Retained SNP-pair p-values below the predefined threshold are append to a result-file.
Compared to other tools, as for example the PLINK v1.07 epistasis function FastEpistasis,
iterating with GLIDE over all genome-wide SNP-pairs recorded a speed-up factor of
approximately 250. One would need to use a cluster of 250 CPUs to compute genetic
interactions with FastEpistasis in the same amount of time as required by GLIDE on a
single desktop GPU [Kam-Thong et al., 2012].
All epistasis interaction analyses and outcomes of this thesis are computed with GLIDE.

2.3.5 MAGENTA

MAGENTA is a pathway tool for enrichment analysis of genetic associations in pre-
defined biological processes or sets of functionally related genes, using genome-wide
genetic data as input. It provides pathways from several public databases as like PAN-
THER, Gene ontology (GO), KEGG or REACTOME and can be used to perform gene
set enrichment analysis (GSEA). A table with variants associated p-values and their
chromosome positions is required as input taken from a GWAS. Main result output is a
nominal GSEA p-value and a FDR for each tested gene-set.SNPs not located directly
in gene sequences are assigned to the closest gene estimated by a specific algorithm
validating the assignment, details can be obtained in Segre et al. [Segrè et al., 2010].

2.3.6 Ariadne Pathway Studio

Pathway Studio R© v9 is another pathway and ontology mapping software application
developed for analysis of biological pathways, gene regulation networks and protein
interaction. The included database of molecular networks is automatically assembled
from scientific abstracts. It contains more than a million entries for regulation, inter-
action and modification between proteins, cell processes and small molecules. The
database has been compiled by the application of the text-mining tool MedScan to the
whole PubMed [Nikitin et al., 2003].
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2.3.7 ENCODE

The Encyclopedia of DNA Elements (ENCODE) consortium is an international collab-
oration of research groups with the effort to build a comprehensive list of functional
elements in the human genome, including elements at the protein and RNA levels,
and regulatory elements that control cells and circumstances in which a gene is active
[Birney et al., 2007].
ENCODE data are available for the entire human and mouse genome on the University
of California, Santa Cruz (UCSC) platform for download, search and visualization by
specific tracks (https://genome.ucsc.edu/ENCODE/).
Assays and methods to identify functional elements were accomplished by sequencing
RNA from a diverse range of sources, comparative genomics and integrative bioinfor-
matic methods. Regulatory elements in various cell types were investigated through
DNAse hypersensitive site (HS), DNA methylation and chromatin immunoprecipitation
(ChIP) followed by high-throughput sequencing (ChIP-seq) (figure 2.4) [Rosenbloom
et al., 2013, Birney et al., 2007]. Of interest for our SNP lookup were the tracks displaying

Figure 2.4: Functional elements identified by ENCODE Project Consortium
with appropriate methods annotated in the grey rectangles. credits:
http://genome.ucsc.edu/ENCODE/aboutScaleup.html

evidence of open chromatin segments, which are a sequences of accessible DNA to
active regulatory elements like enzymes and molecules. This segments were identified
using different techniques, such as DNaseI HS, Formaldehyde Assisted Isolation of
Regulatory Elements (FAIRE ), and ChIP for select regulatory factors. DNaseI HS and
FAIRE provide assay cross-validation with commonly identified regions delineating the
highest confidence areas of open chromatin. ChIP assays provide functional validation
and preliminary annotation of a subset of open chromatin sites in different cell types

https://genome.ucsc.edu/ENCODE/
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[Ho and Crabtree, 2010, Rosenbloom et al., 2013]. Further transcription factor (TF)
binding tracks display specific TF binding sites identified by by ChIP-seq in chosen
cells. Open chromatin locations and TF binding sites are indicated on the UCSC genome
browser by either signals or peaks.
Raw Signals are a continuous signals that indicate density of aligned reads. The se-
quence reads were extended to the size-selected length (225 bp), and the read density
computed as reads per million [Rosenbloom et al., 2013].
Peaks are sites with the greatest evidence of transcription factor binding, calculated
using the MACS peak caller [Zhang et al., 2008], as enriched regions of high read density
in the ChIP experiment relative to total input chromatin control reads.





3 Materials and Methods

3.1 Materials

3.1.1 Proband ascertainment

Four independent case-collections comprising individuals of German, British, French
and American descent built the admixture sample for the study of genetic interactions.
All participating individuals, school aged children with potential difficulties in reading
or writing and who had been diagnosed with dyslexia, were referred to the investigators
by parents, teachers, special educators or practitioners. Ethical approval was obtained
from each Ethics Committees in the participating countries [Fisher et al., 2002, Francks
et al., 2004, Ludwig et al., 2010, Schulte-Körne et al., 2007, Schumacher et al., 2005].
Collectively 862 (566 males, 296 females) probands passed all appropriate QCs and the
subsequent genomic scan (figure 3.1). The sample composition can be broken down
into the following cohorts:

Ascertainment of German sample German families with at least one affected child
with RD were recruited at the Departments of Child and Adolescent Psychiatry and
Psychotherapy at the Philipps University in Marburg and at the Julius-Maximilian
University in Würzburg. To avoid any bias or misclassification subjects indicating
any symptoms of ADHD, inattention and hyperactivity, bilingual education, IQ < 85,
an uncorrected disorder of peripheral hearing or vision, a psychiatric or neurological
disorder were excluded [Schulte-Körne et al., 2007]. For the diagnosis of dyslexia and
as inclusion criterion a grade appropriate spelling (SP) test was conducted, resulting
in a score using the T distribution of the general population. It is assumed that there
is a correlation between IQ and SP of 0.4 [Schulte-Körne et al., 2001], based on this
assumption an expected SP score can be calculated for each proband. A child was
classified as affected, if the score showed at least a discrepancy of one standard deviation
(SD) (≥ 1 SD) between expected and observed score. Those who were classified as
affected underwent a battery of psychometric tests [Schulte-Körne et al., 2007] (details
in section 3.1.2). Overall 200 classified cases with a SD ≥ 1.25 were subjected to our
study. Whole-genome SNP genotyping was performed at the LifeBrain Centre in
Bonn (Germany) using the Illumina HumanHap 300K BeadChip (Illumina, Inc., San
Diego, CA, USA) according to the manufacturer’s standard protocols. After exclusion
of probands violating the standard criteria for genomic analyses 199 (149 males, 50
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Figure 3.1: First ten computed MDS components of the combined sample. German individ-
uals are indicated in red, British in blue and cyan, French in green and American
samples are illustrated in magenta. No distinct clusters were detectable.

females) subjects of German origin with an age ranging between 8 to 19 (mean ≈ 12.5)
were factored into the study collection.

Ascertainment of the French sample French samples were ascertained at the Labo-
ratoire de Science Cognitives et Psycholinguistique in Paris, France. French probands
underwent an age-appropriate reading test and were included as cases if their reading
score were more than 1.25SDs below grade level on a standardized test of SWR, and
if none of the exclusion criterions mentioned above (German sample) were applicable.
Selected cases underwent then further psychometric tests.
Overall 92 (64 males, 28 females) participants classified as affected were assigned in
our study. Children’s age ranged at time of assessment between 8 and 12 (mean 10).
All 92 withstood further filtering procedures regarding population stratification, in-
dividual call rate, a minimum IQ of 85.Whole-genome SNP genotyping was likewise
conducted at the LifeBrain Centre in Bonn (Germany) using the Illumina HumanHap
660K BeadChip.

Ascertainment of UK sample The individuals of British origin were collected at the
Royal Berkshire Hospital in Reading, UK, from unrelated nuclear families. Over 90% of
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the original subjects were recruited on the basis of having SWR deficiency more than
2SD below that predicted by tests of verbal or non-verbal reasoning and evidence of
RD in one or more siblings with dyslexia. Another part were required to have SWR
ability with ≥ 1 SD below that predicted for their age and IQ ≥ 90. Psychometric
tests were administered to all UK probands and siblings, regardless of recruitment
[Francks et al., 2004]. With regard to the criteria of ≥ 1.25 SD below that predicted for
individual age and a IQ ≥ 85, and all appropriate QCs we included overall 377 (266
male, 111 female) children with UK origin in our analyses. Sample age were at the
time of assembly between 8 and 13 (mean 11). Whole-genome SNP genotyping was
performed at the Wellcome Trust Centre for Human Genetics in Oxford (UK) using the
Illumina HumanHap 550K BeadChip.

Ascertainment of US sample We comprised 194 (87 males, 107 females) unrelated
probands from the twin study of RD from the Colorado Learning Disabilities Research
Center (CLDRC) in Boulder, US [Compton et al., 2001, Francks et al., 2004]. Probands
age at assembly ranged between 8 and 18 with a mean of 11.3. Classification of the
participants were done by measuring word recognition performance on the Peabody
Individual Achievement Test and a time-limited (two seconds) word recognition test
designed by Olson et al. [Olson et al., 1999]. Additional sampling criteria took place
similar to the remaining cohorts, like an IQ ≥ 85 and the exclusion of individuals with
any neurological- or sensory-deficits.

3.1.2 Endophenotype ascertainment

All probands underwent a battery of age appropriate psychometric tests with con-
tinuous outcomes. The t- or z-scores were age-adjusted and standardized against a
normative control data set. Related tasks were conducted to measure cognitive abilities
that have been found to be correlated with the core symptoms of dyslexia and to be com-
ponents of the reading process [Compton et al., 2001, Fisher and DeFries, 2002, Francks
et al., 2004, Schulte-Körne et al., 2007]. None of the tests were administered to parents
or teachers. Next subsections give a brief overview of the assorted endophenotypes
that were available through all samples.

3.1.2.1 Single-word reading

The single-word reading test is a straightforward test with slight country based differ-
ences. Experiment participants have to read a list of language- and age-appropriate real
words aloud as accurately and quickly as possible in a given time-limit. Performance
is measured age adjusted and standardized against a given control group. Detailed
population based task procedures can be gathered in the corresponding publications
[Compton et al., 2001, Fisher et al., 2002, Francks et al., 2004, Olson et al., 1999, Schulte-
Körne et al., 2007].
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3.1.2.2 Spelling

Spelling is measured using an age-appropriate writing to dictation test, items were
presented orally and had to be written down correctly. As mentioned above the SP
score is calculated on the basis of the correlation between individual IQ and expected
SP skills [Compton et al., 2001, Francks et al., 2004, Schulte-Körne et al., 2007].

3.1.2.3 Phonological awareness

Phonological-awareness (PA) or Phoneme awareness is a specific cognitive competence
that is defined as the capacity to reflect explicitly on the individual speech sounds that make
up a phoneme [Gayán and Olson, 2003]. It requires the ability to extract and manipulate
the single words of full sentences. Different examples of word manipulation tasks can
be conducted during a test, for example: probands have to add a sound to a given
word, or they have to repeat a given word as a non-word by deleting a given character
(phoneme deletion). Another task is the phoneme segmentation where a pseudo-word
is partitioned into its phonemes. The last exercise is the phoneme reversal test in which
children have to switch phonemes of a word [Compton et al., 2001, Gayán and Olson,
2003, Olson et al., 1999, Schulte-Körne et al., 2007]. Regularly all executed tasks are
age specific averaged to obtain one measure for PA. It is assumed that PA is correlated
with SWR skills, difficulties are recognized usually just in dyslexic children [Rack et al.,
1992].

3.1.2.4 Non-word reading

Non-words are non-existing words without any meaning but can be pronounced by
rules for mapping letters to speech sounds. Two different tasks can be administered
to the participants: an oral or silent test, where in the oral test subjects have to read a
non-word aloud and in the silent test they have to choose a word out of few that would
sound like a real word if read aloud [Compton et al., 2001]. Affected individuals show
problems in reading non-words compared to not reading disabled individuals, which
is clearly shown in the speed of reading such non-words [Wimmer, 1996]. Either one
test or both tests can be administered to the probands, whereby in the second case a
composite score has to be calculated. The discrepancy between affected and not affected
individuals indicate a correlation of the task to dyslexia.

3.1.3 Epilepsia sample

Biopsy samples of 148 patients with chronic pharmacoresistant temporal lobe epilepsy
were collected in the Epilepsy Surgery Program at Bonn University. Epilepsy-surgery
was conducted to achieve seizure control in all patient, whereby premortal human
hippocampal segments were abstracted. Informed and written consent was obtained
from all patients for additional studies. Procedures were carried out in accordance with
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the Declaration of Helsinki and were approved by the local ethics committee.
Genotyping and profiling of hippocampal gene expression were processed on Illumina’s
Human660W-Quad and HumanHT-12v3, respectively.

3.2 Methods

Application of all described statistics (2.2) and tools (2.3) on the given study samples
(3.1) were realized as following.

3.2.1 Data preprocessing

3.2.1.1 Dyslexia sample

Autosomal genotype data have been subjected to different QC procedures utilizing
PLINK v1.07. SNPs with a MAF < 5%, a deviation from HWE of p <= 10−5 in the exact
test and a SNP call rate < 95% were removed. Further an individual call rate likewise
of < 95% excluded those probands whom genotyping rate violated the threshold.
Missing genotype data for German, apart of the UK and French samples were imputed
via IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) [Howie
et al., 2009] based on the reference sample 1000 Genomes Project (NCBI build 37 (hg19)).
The remaining part of the UK samples and all US samples were imputed with Mini-
Mach [Howie et al., 2012] likewise based on the 1000 Genomes reference sample (in
Max-Planck-Institute for Psycholinguistics in Nijmegen, Netherlands). Accuracy thresh-
old for the genotype prediction were set to ≥ 80% for IMPUTE2 corresponding to a
R2 >= 0.3 for the MiniMac predictios.
Again the above described QC conditions (MAF, HWE, SNP and individual call rate)
were applied to the imputed data. 3.520.975 variants withstood all QCs. To reduce time
and memory costs LD-pruning with a r2 > 0.7 took place. The threshold of r2 > 0.7
was chosen on the expectation that SNPs with an LD greater or equal 0.7 should exhibit
similar effects or a trend to an effect on the phenotype. Overall 393.802 genetic marker
entered further statistical analyses. To account for population stratification, a com-
plete linkage clustering of individuals (867) on the consistent set of 131.389 genotyped
markers was performed. Outliers based on the MDS analysis on the IBS matrix and
homogeneous samples with a PI_HAT (proportion identity-by-distance (IBD)) ≥ 0.0625
(corresponding to the inbreeding coefficient (IC)) were excluded. Five probands exceed-
ing the IC were rejected and the remaining 862 subjects were referred to further statistics.
For the endophenotype PA just a subset of 645 probands (414 males, 231 females) were
included due to missing phenotype. The first ten MDS components served as correction
factors in a regression analysis on the quantitative phenotypes. Obtained residuals
conducted as phenotype equivalents for the analyses.

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
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3.2.1.2 Epilepsia sample

Genotype QC were applied with the following parameters: a maximum deviation
from HWE of p = 10−5, a MAF of 5%, a SNP call rate ≥ 98%, a per sample call rate
≥ 98% and a FDR ≥ 1% for autosomal heterozygosity. Heterozygous mtDNA-linked,
female Y-linked as well as male heterozygous X- and Y-linked genotypes were excluded
from the analyses. In total 530.794 genetic variants and 138 individuals passed all QC
criterias.
The expression probe sequences were realigned to the UCSC [Kent et al., 2002] version
18 of the human genome (hg18). Realignment of the Illumina probe sequences were
conducted using Burrows-Wheeler Alignment (BWA) [Li and Durbin, 2009] allowing
only perfect matches. Probes that could not be aligned or probes containing either
intrinsic polymorphisms as listed in HapMap-CEU or matched to multiple positions in
the human genome were excluded from the downstream analysis.
The remaining probes were pre-analyzed using the GenomeStudio v2010.1 gene expres-
sion module software (http://www.illumina.com/informatics/sequencing-microa
rray-data-analysis/genomestudio.ilmn) from Illumina to merge data of replicated
samples of the same individuals as well as to identify probes with a detection p-value
< 0.01 in at least 5% of all samples. Data not matching these criteria were considered as
non-expressed transcripts and dropped from further analysis. The remaining 15.426
probes (accounting for 13.842 distinct transcripts) were then transformed and normal-
ized to consider background noise using vsn2 implemented in the R Bioconductor
(http://www.bioconductor.org [Gentleman et al., 2004]) package vsn [Huber et al.,
2002].
Furthermore a hidden confounder analysis were applied to correct for expression hetero-
geneity. Unknown confounding influences, such as samples history or subtle technical
variation, commonly lead to expression heterogeneity, a pronounced correlation pattern
within the expression profiles. A Bayesian factor analysis were used to infer the hidden
determinants of this confounding expression variability with the software tool PEER
(https://github.com/PMBio/peer/wiki) [Stegle et al., 2012]. We set the maximum
number of factors to 30 and used the Gamma prior settings pa = 1× 10−2, pb = 1× 10−2

to regularize the effective number of factors used. After convergence 15 factors remained
active. As proposed in Stegle et al., we calculated expression residuals, subtracting the
effect of the confounding factors. The residual expression dataset was then used for all
downstream analysis.

3.2.2 Study design

3.2.2.1 Association of univariate genetic variants in dyslexia

Genome-wide single locus effects were computed for each endophenotype (SWR, non-
word reading (NWR), SP, PA) in the merged sample of German, French, British and

http://www.illumina.com/informatics/sequencing-microarray-data-analysis/genomestudio.ilmn
http://www.illumina.com/informatics/sequencing-microarray-data-analysis/genomestudio.ilmn
http://www.bioconductor.org
https://github.com/PMBio/peer/wiki
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American descendants. Primarily the existence of significant univariate effects in this
special cohort admixture should be explored, but particularly we were interested if any
marginal effects are present in the resulting interaction SNP-pairs.
All markers were tested for univariate association to each corrected measured cognitive
score in a linear regression model via PLINK v1.07. The p-value significance level after
Bonferroni for multiple testing was determined to be ≤ 1.27× 10−7.

3.2.2.2 Association of bivariate genetic variants in dyslexia

The multi-language caucasian sample composed of German, French, British and Amer-
ican individuals were subjected to a two-dimensional statistical interaction analysis
with the aim to reveal epistatic associations explaining possible predisposition for RD
beyond single-loci effects.
Although several dyslexia susceptible loci were detected in the past, it has been shown
to be very difficult to detect single genome-wide significant correlations explaining heri-
tability of this disorder. From this perspective we anticipated to uncover a potentially
more complex underlying nature of the disorder symptoms.
The procedure for bivariate analyses were applied on the imputed and QCed sam-
ples described above. The different imputed cohorts were merged using GTOOL
(http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html). The R package
DatABEL provides the function impute2mach which enable the conversion of the geno-
type probabilities into a single dosage value. Genotype dosage value can be any
continuous decimal, ranging from 0 to 2. Homozygosity of major allele is indicated by
values ∼ 0, heterozygosity by values ∼ 1 and finally homozygous state of minor allele
with values ∼ 2.
The customized data-set according to the required input standards for GLIDE [Kam-
Thong et al., 2012] were referred to a systematically exhaustive search for epistatic inter-
actions by mapping each endophenotype to all possible pairs of genetic loci. Overall
393.802 SNPs were analyzed for interaction effects independently on the endopheno-
types SWR, NWR, PA and SP with f rac393.802× 393.8012 tests each.
To avoid any influences on the statistical scores, due to four different populations and
to capture possible heterogeneity, meta-analyses via the R package rmeta were subse-
quently applied to all interactions with p < 1× 10−8, resulting in a subset of 3.274 SNP
combinations over all endophenotypes.
Meta-analyses were performed with the function meta.summaries that computes a
summary estimate from a collection of effect estimates (beta, β) and standard errors
(SEs) [Lumley, 2013]. The essential values were obtained from the individual cohort-
specific linear regression analyses for bivariate interactions, likewise realized in R.
meta.summaries further allows to account for random effects, capturing heterogeneity
in admixture samples.
Significance were determined with respect to the Bonferroni method with the modifica-
tion for GWIAs according to Becker et al. [Becker et al., 2010] resulting in a genome-wide

http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
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significance level of p = 1.61× 10−12.
To eliminate conjectures regarding genotyping or imputation inaccuracies and for vali-
dation of the interactions we repeated the whole procedure for each significant SNP-pair
with all ahead excluded proxy-SNPs with a r2 ≥ 0.7.
Resulting candidate SNPs were subjected to a variety of functional analyses to define
their biological relevance, precisely:

1. a regional based expression analysis (3.2.2.3)

2. sequence mapping on functional/regulatory ENCODE annotations (3.2.2.5)

3. and pathway analyses (3.2.2.4)

Further SNPs located in a repetitive region were tested for correct assignment on the
genome via the fast online alignment tool BLAT (http://genome.ucsc.edu/cgi-bin/
hgBlat?command=start) provided by UCSC. Affected marker plus 25 base-pair (bp)
down- (3′) and upstream (5′) were mapped utilizing the tool to the human genome
(hg19).
Finally to validate the methodological approach of interaction computation a Quantile-
Quantile (Q-Q)-plot (figure 4.17) across 100.000 randomly sampled interactions against
a standard normal distribution was constructed in R with the function qqnorm.

3.2.2.3 Regional based interaction in hippocampal expression

Regional based defines the restriction of genomic regions of interest, explicitly the
restriction to a sequence length of 2mega base pairs (Mb) up- and downstream of each
SNP retrieved as candidate locus from the perviously conducted dyslexia epistasis
study.
To guarantee an equivalent SNP set and quality of the hippocampal data, SNP co-
ordinates were initially updated using LiftOver (http://genome.ucsc.edu/cgi-bin/
hgLiftOver?hgsid=369473265_Fb9WaNxa4A5uRbG5nHTTMuIAh0Rb) provided by UCSC,
which converts genome coordinates and genome annotation files between assemblies,
in our case from hg18 to hg19. Genotypes were then imputed using IMPUTE2 with
identical QC conditions, regarding imputation accuracy and genomic quality, as applied
to the dyslexia data (3.2.1.1).
The appropriate final dataset underwent statistical epistasis calculation with GLIDE.
Four independent candidate analyses were performed by running each SNP set just
against the defined interaction partner. Particularly SNPs on chromosome 9 were
just tested against SNPs on chromosome 7 if there were an interaction detected in the
dyslexia sample and so forth.
Bonferroni-Becker significance thresholds were estimated for each run separately due
to varying SNP amount and are provided individually in the according result sections.

http://genome.ucsc.edu/cgi-bin/hgBlat?command=start
http://genome.ucsc.edu/cgi-bin/hgBlat?command=start
http://genome.ucsc.edu/cgi-bin/hgLiftOver?hgsid=369473265_Fb9WaNxa4A5uRbG5nHTTMuIAh0Rb
http://genome.ucsc.edu/cgi-bin/hgLiftOver?hgsid=369473265_Fb9WaNxa4A5uRbG5nHTTMuIAh0Rb
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3.2.2.4 Pathway analyses

Pathway analyses were realized in two steps. The first step was the analysis performed
via the software MAGENTA, to assign intergenic SNPs to a proper gene by the software
algorithm. We took all marker that were involved in an interaction with p ≤ 1× 10−10

and performed an endophenotype specific GSEA. Correction for multiple testing were
realized automatically by the software with FDR of 5%. Pathways or groups were
declared as significant if they withstood FDR correction.
The second step was the overall pathway analysis by Pathway Studio R© v9. In this
stage all by MAGENTA retrieved genes were pooled together for a pathway/group
enrichment analyses. Overall 16548 Pathways and groups are annotated in Pathway
Studio R© v9 and were tested for enrichment with the MAGENTA estimated gene-set.
Significance level were determined after Bonferroni for multiple testing with p ≤
3.1× 10−6.

3.2.2.5 Functional sequence mapping

An approach to validate the biological relevance of the findings was to map candi-
date SNPs on the annotated functional DNaseI HS and ChIP-seq estimated regulatory
binding sites. For signal visualization on the UCSC Genome Browser we selected the
regulation tracks for ENCODE open chromatin by DNaseI HS and FAIRE from the Duke
group for the lymphoblastoid cell line (GM12878) produced from the blood of female
donor with northern and western European ancestry, and male H1 human embryonic
stem cells (H1-hESC 1). Further we enabled the ChIP-seq estimated binding sites for TF.
Peaks for 161 transcription factors in 91 cell types are combined here into clusters to
produce a summary display showing occupancy regions for each factor and motif sites
within the regions when identified [Gerstein et al., 2012, Wang et al., 2012a, Wang et al.,
2013]. Additionally tracks displaying binding sites for neuron-restrictive silencer factor
(NRSF) and RNA Polymerase II POL2-4H8 were enabled [Fields, 2007, Rosenbloom
et al., 2013]. The NRSF protein is a transcriptional repressor for neuronal genes in non-
neuronal tissues and is suggested to function as a negative regulator of neurogenesis
[Schoenherr and Anderson, 1995]. RNA Polymerase II estimated from neuronal cell
lines derived from H1 embryonic stem cells (H1-neurons). RNA Polymerase II is an
enzyme that catalyses the transcription of DNA, by binding to the promoter of a gene
for initiation [Fields, 2007, Johnson et al., 2007].
All top hit SNPs that resulted as significant or with a strong trend towards significance
in the epistasis studies were considered in UCSC Genome Browser (hg19/GRCh37).





4 Results

4.1 Association of univariate genetic variants in
dyslexia

GWASs were conducted via PLINK v1.7 for each of the endophenotypes SWR, NWR,
PA and SP with the combined sample of German, French, UK and US descendants.
With respect to the Bonferroni adjusted significance level p ≤ 1.27× 10−7 none of the
GWASs identified any significant associations. Testing each cohort individually likewise
revealed no genome-wide significant hits.

4.2 Association of bivariate genetic variants in
dyslexia

Four independent endophenotype (SWR, NWR, PA, SP) specific genome-wide interac-
tion studies (GWISs) were realized utilizing the tool GLIDE [Kam-Thong et al., 2012].
With the defined GLIDE output threshold of |t| > 5 corresponding to p ≤ 6.95× 10−7

for the SWR, NWR, SP studies, and p ≤ 7.41× 10−7 for the PA study, according to
one degree of freedom (d.f.) and sample size (862 and 645 (PA)) more than 2.36× 105

statistical interactions exceeding the respective thresholds were obtained. Observed
p-values ranged from the specified output threshold down to 6.45× 10−13.
To eradicate remaining uncertainties based on possible genomic heterogeneity, due to
an admixed sample, meta-analyses were conducted to all SNP-pairs with p < 1× 10−8.
Interactions that showed at least a trend towards genome-wide significance (Bonferroni-
Becker estimated significance level of p ≤ 1.61× 10−12) in the meta-analyses were
subjected to the next analysis procedure.
In this phase we reiterated all applied steps by concentrating on the chosen candidate
SNP-pairs including their previously excluded proxy SNPs with a r2 ≥ 0.7. This step
should ensure that discovered interactions were not based on genotyping or imputation
artifacts.
The GLIDE computations and the corresponding subsequent meta-analyses resulted in
strong evidence for SNP-SNP interactions in each single survey (Fig. 4.1). Three (SWR,
SP, PA) of the four analyses detected epistatic interactions achieving genome-wide
significance (p ≤ 1.61× 10−12). GWIA for NWR barely failed the significance level.

65
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Functional analyses with the aim to validate biological relevance of the statistical epista-
sis were realized via functional sequence mapping using ENCODE data (4.2.7), pathway
(4.2.10) and expression (4.2.8) analyses.
Details of the resulted epistatic interactions are described in the according subsections
for each of the associated endophenotype. Exposed p-values refer to the outcome of the
conducted meta-analyses.

Figure 4.1: Circos diagram showing inter-chromosomal interactions detected through the en-
dophenotype specific epistasis computations. Most significant interactions are
depicted by one representative pair in red showing the chromosomal position, the
corresponding SNP or gene name and the retrieved p-values. Further interactions
with p < 1× 10−10 are connected via black lines.
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4.2.1 Single-word reading

The GWIA of SWR, one of the strongest dyslexia phenotypes, achieved the most sig-
nificant result with p ≤ 8.5× 10−14 comprising the FOXP2 intronic variant rs56253958
(7q31.1) and rs1409679 (9q31.3), a variant in L1M1 a long interspersed nuclear element
(LINE) region. Significant interactions or at least interactions with a trend towards
significance (Fig. 4.3) were detectable over the adjacent LD-regions (r2 ≥ 0.7) of both
loci. The SNP rs1409679 displayed a sparse LD density with just two proxy SNPs at the
defined r2 level (Fig. 4.2), whereas the FOXP2 SNP is located in a greater LD region with
24 SNPs, demonstrating interactive effects with the 9q31.3 markers exhibiting p-values
≤ 1× 10−10.

Figure 4.2: Genomic positions involved in interactions associated to single-word reading
within the LD-structure of 7q31.1 and 9q31.3. Most significant interacting variants
are highlighted with rectangles. Chromosomal positions of the top hits are shown on
each ideogram and are connected in red. Color code indicate with red high LD and
with blue low LD. Reference: Haploview
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Effect detection and associations over the given LD-structures (Fig. 4.4) recorded
association findings not being confounded by genotyping or imputation inaccuracies.
Details of genome-wide significant results can be obtained in the according table 4.3.

Figure 4.3: 3D plot of the 2-way associations to single-word reading over the genomic SNP
regions. LD-region SNP1 and LD-region SNP2 depict the chromosomal positions
of rs56253958 (7q31.1) and the interacting SNP rs1409679 (9q31.3) with their
corresponding proxies SNP (r2 ≥ 0.7), respectively. The color legend indicates the
detected − log10(p)-values.

To ensure correct assessment of rs1409679 on the genome an alignment of the vari-
ant plus 25 bp up- and downstream was performed via BLAT. The sequence alignment
found 9q31.3 as only match with 100% identity over the whole 51 nucleotides. Further
full sequence uniqueness, and mappability on the reference genome (GRCh37/hg19)
was given.
The interaction effect of the top hit is visualized in the boxplot (Fig. 4.4), illustrating
the correlation of genotype combinations to reading scores. The correlation of refer-
ence/minor allele combination (rs56253958: C, rs1409679: T) to a decreasing reading
score, exhibiting lessened reading abilities, was observed. Minor allele homozygotes for
both markers displayed the weakest reading performance ("risk-alleles"). Correspond-
ing contingency table for the SNP-pair genotype constellation is shown in figure 4.4.
Single study effect size, a clear negative context of the effect direction (β) (Table 4.2), the
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Figure 4.4: (A) Boxplot of genotypic associations through all samples with single-word reading
score. Y-axis defines the range of the measured reading scores (−3/ + 3) normalized
with a mean of 0 and a variance of 1. A score of −3 indicated the weakest reading
performance. X-axis is the according genotypic combination of the SNPs rs56253958
(chromosome 7, minor allele C) and rs1409679 (chromosome 9, minor-allele T).
The boxes define the interquartile range, the thick line the median, and single
dots possible outliers. Box colors separate classes of genotype-combinations. (B):
Genotype-combination frequencies of the SNPs rs56253958 and rs1409679 in
the combined sample comprising all cohorts.

Figure 4.5: Meta-analysis of the SWR top hit. For each single cohort (German (GER),
French (FR), British (UK), American (US)) the square and horizontal line show
the estimated regression coefficient β and 95% confidence interval, representing
the effect of each copy of the reference-allele on reading performance. The size of
the square is inversely proportional to the SE of the estimated effect. Below the
individual cohorts a summary diamond shows the random-effects when analyzing all
four cohorts together as one single sample. Notably clear negative effect is present
in all single sub-samples and in the combined sample.

confidence interval (CI), and the non-significant heterogeneity p-value of 0.454 (Table
4.3) proved homogeneity between the individual cohorts (Fig. 4.5).
As mentioned in the GWAS section no single main effects were existent, nevertheless
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slightly marginal effect or rather a trend of the FOXP2 variants for nominal association
to SWR with p ≈ 1× 10−2 (4.1) could be observed.

SNP Position Allele MAF Pval Beta SE CI_Low / CI_UP

rs56253958 7:113883531 C 0.209 1.6×10−2 -0.143 0.059 -0.259 / -0.026

rs144261163 7:113893884 A 0.2115 3.1×10−2 -0.129 0.06 -0.247 / -0.012

rs1450833 7:113865735 C 0.2132 7.7×10−3 -0.156 0.058 -0.27 / -0.041

rs6961970 7:113901132 A 0.2139 0.107 -0.095 0.059 -0.209 / 0.02

rs73206277 7:113954180 G 0.2129 0.153 -0.084 0.058 -0.198 / 0.031

rs1409679 9:113586263 T 0.2665 0.664 -0.023 0.052 -0.125 / 0.079

rs2821137 9:113587820 A 0.2691 0.64 -0.025 0.052 -0.127 / 0.078

rs2846443 9:113589582 G 0.2661 0.798 -0.013 0.052 -0.115 / 0.089

Table 4.1: Univariate associations to single-word reading of interacting SNPs. Depicted
are all SNPs involved in significant statistical interaction, or with a trend to significance.
First column contain the individual "SNP" identifiers. Column "Effect allele" display
the respective minor allele, followed by the corresponding frequency "MAF" in
the sample, the calculated p-value "Pval" of the single association, the estimated
regression coefficient "Beta", the standard error "SE", and the lower "CI_Low"
and upper "CI_UP" bounds of a 95% confidence interval. All denoted SNPs on
chromosome 7 are intronic variants of FOXP2. Variants on chromosome 9 are
intergenic variants.

Cohort SNP1 SNP2 Beta SE Pval

GER rs56253958 rs1409679 -0.87 0.18 2.5×10−6

FR rs56253958 rs1409679 -0.56 0.59 9.5×10−2

UK rs56253958 rs1409679 -0.70 0.13 4.3×10−7

US rs56253958 rs1409679 -0.45 0.19 2.0×10−2

Table 4.2: Cohort specific interactions of the single-word reading top hit. First column
"Cohort" denote the corresponding cohort followed by the detected interacting
variants under "SNP1" and "SNP2". Next column "Beta" represent the regression
coefficient, followed by the standard error "SE" and the resulting p-value "Pval" for
the interacting SNP-pair in each individual cohort.
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SNP1 SNP2 Beta SE MPval CI_Low CI_UP Het GPval Chr:Pos1 Chr:Pos2

rs56253958 rs1409679 -0.679 0.091 8.49×10−14 -0.857 -0.5 0.454 7.9 ×10−13 7:113883531 9:113586263

rs144261163 rs1409679 -0.673 0.091 1.51×10−13 -0.852 -0.494 0.393 1.18×10−12 7:113893884 9:113586263

rs56253958 rs2821137 -0.672 0.091 1.92×10−13 -0.851 -0.493 0.396 2.36×10−12 7:113883531 9:113587820

rs1450833 rs1409679 -0.66 0.09 2.23×10−13 -0.836 -0.484 0.498 1.9 ×10−12 7:113865735 9:113586263

rs56253958 rs2846443 -0.667 0.092 3.59×10−13 -0.846 -0.487 0.388 3.50×10−12 7:113883531 9:113589582

rs1450833 rs2821137 -0.653 0.09 4.98×10−13 -0.83 -0.476 0.439 5.43×10−12 7:113865735 9:113587820

rs6961970 rs1409679 -0.637 0.088 5.94×10−13 -0.81 -0.463 0.68 6.73×10−12 7:113901132 9:113586263

rs1450833 rs2846443 -0.648 0.09 6.85×10−13 -0.825 -0.471 0.429 7.88×10−12 7:113865735 9:113589582

rs73206277 rs1409679 -0.634 0.089 7.95×10−13 -0.808 -0.461 0.562 9.14×10−12 7:113954180 9:113586263

rs6961970 rs2821137 -0.63 0.089 1.27×10−12 -0.804 -0.456 0.619 1.83×10−11 7:113901132 9:113587820

Table 4.3: Genome-wide significant SNP interactions associated to single-word reading. Columns "SNP1" and "SNP2" denote detected
interacting variants. Next column "Beta" represent the regression coefficient of the random effects meta-analyses, followed by the
standard error "SE", p-value "MPval", lower "CI_Low" and upper "CI_UP" bounds of a 95% confidence interval, and the calculated
heterogeneity p-value "Het" in-between the studies. Column "GPval" represent the computed p-values of GLIDE and final two columns
"Chr:Pos1" and "Chr:Pos2" the respective SNP chromosome and position on the genome. All listed variants under SNP1 are intron
variants of the gene FOXP2.
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4.2.2 Phonological awareness

This study comprised just a subset of the original sample, due to missing phenotypes.
In total 645 individuals were subjected to the analysis, despite the exclusion of 217
probands we were able to observe highly significant statistical epistasis. The lowest
p-value was retrieved with 8.05× 10−13 comprising the variants rs620291 (11q23.2) and
rs113400479 (18q11.2) (Table 4.6).

Figure 4.6: Genomic positions involved in interactions associated to phonological aware-
ness within the LD-structure of 11q23.2 and 18q11.2. Most significant interacting
variants are highlighted with rectangles. Chromosomal positions of the top hits are
shown on each ideogram and are connected in red. Color code indicate with red
high LD and with blue low LD.Reference: Haploview
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Interaction associations were detachable over the respective LD regions of both candi-
date loci (Fig. 4.7).

Figure 4.7: 3D plot of the 2-way associations to phonological awareness over the genomic
SNP regions. LD-region SNP1 and LD-region SNP2 depict the chromosomal
positions of rs620291 (11q23.2) and the interacting SNP rs113400479 (18q11.2)
with their corresponding proxies SNP (r2 ≥ 0.7), respectively. The color legend
indicates the detected − log10(p)-values.

The SNP rs620291 and its adjacent proxy SNPs are located in an intronic region of
NCAM1, a gene involved in cell-adhesion, cell-migration and further neuronal func-
tions [Deak et al., 2005]. The counterpart variants on 18q11.2 are located by the DYX6
region, a known PA loci (Fig. 4.6). Although DYX6 is a popular PA QTL we could
not detect any single main associations of the SNPs to the endophenotype. NCAM1
variants showed even the weakest univariate associations (Table 4.4) compared to all
other studies. Nevertheless the interactive correlation demonstrates (Fig. 4.9) a marginal
coherence of the rs113400479 reference allele C with decreasing PA scores, but which
seems to have an effect and be detectable only through the interaction with the NCAM1
variants (rs620291 with C as reference allele).
We could observe that the combination of homozygous minor alleles appears in a single
individual of the entire sample set, who also presented the weakest performance.
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SNP Position Allele MAF Pval Beta SE CI_Low / CI_UP

rs620291 11:113113858 C 0.1653 0.708 -0.032 0.086 -0.201 / 0.136

rs635596 11:113113515 G 0.1661 0.719 -0.031 0.086 -0.199 / 0.137

rs586903 11:113110946 C 0.1705 0.976 -0.003 0.086 -0.172 / 0.167

rs113400479 18:23026571 C 0.09206 0.451 -0.085 0.113 -0.306 / 0.136

Table 4.4: Univariate associations to phonological awareness of interacting SNPs. De-
picted are all SNPs involved in significant statistical interaction, or with a trend to
significance. First column contain the individual "SNP" identifiers. Column "Effect
allele" display the respective minor allele, followed by the corresponding frequency
"MAF" in the sample, the calculated p-value "Pval" of the single association, the
estimated regression coefficient "Beta", the standard error "SE", and the lower
"CI_Low" and upper "CI_UP" bounds of a 95% confidence interval. All denoted
SNPs on chromosome 11 are intronic variants of NCAM1. Rs113400479 is an
intergenic variant.

Excluding this individual tentatively from the sample and repeating the analysis the
effect remains relatively robust with p ≤ 2.7× 10−12 compared to the original p-value of
8.05× 10−13. The exclusion of the next individual with an unique genotype combination
for both markers had no effect on the p-value, explainable by a PA score close to zero
(Fig. 4.9).

Figure 4.8: Meta-analysis of the phonological awareness top hit For each single cohort
(German (GER), French (FR), British (UK), American (US)) the square and hori-
zontal line show the estimated regression coefficient β and 95% confidence interval,
representing the effect of each copy of the reference-allele on reading performance.
The size of the square is inversely proportional to the standard error of the estimated
effect. Below the individual cohorts a summary diamond shows the random-effects
when analyzing all four cohorts together as one single sample. Notably clear negative
effect is present in all single sub-samples and in the combined sample.
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No heterogeneity between the cohorts (p ≥ 0.8) was given (Fig. 4.8) and all cohorts
demonstrated negative effect directions (Table 4.5).

A B

Figure 4.9: (A) Boxplot of genotypic associations through all samples with single-word reading
score. Y-axis defines the range of the measured reading scores (−3/ + 3) normalized
with a mean of 0 and a variance of 1. A score of −3 indicated the weakest
phonological skills. X-axis is the according genotypic combination of the SNPs
rs113400479 (chromosome 18, minor allele C) and rs620291 (chromosome 11, minor-
allele C). The boxes define the interquartile range, the thick line the median, and
single dots possible outliers. Box colors separate classes of genotype-combinations.
(B): Genotype-combination frequencies of the SNPs rs113400479 and rs620291
in the combined sample comprising all cohorts.

Cohort SNP1 SNP2 Beta SE Pval

GER rs620291 rs113400479 -1.45 0.32 1.36×10−5

FR rs620291 rs113400479 -0.90 0.65 0.167

UK rs620291 rs113400479 -1.27 0.42 2.8×10−3

US rs620291 rs113400479 -1.11 0.24 7.9×10−6

Table 4.5: Cohort specific interactions of the phonological awareness top hit. First column
"Cohort" denote the corresponding cohort followed by the detected interacting
variants under "SNP1" and "SNP2". Next column "Beta" represent the regression
coefficient, followed by the standard error "SE" and the resulting p-value "Pval" for
the interacting SNP-pair in each individual cohort.
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SNP1 SNP2 Beta SE MPval CI_Low CI_UP Het GPval Chr:Pos1 Chr:Pos2

rs620291 rs113400479 -1.214 0.169 8.05×10−13 -1.546 -0.881 0.812 6.65×10−13 11:113113858 18:23026571

rs635596 rs113400479 -1.207 0.169 9.05×10−13 -1.538 -0.875 0.809 7×10−13 11:113113515 18:23026571

rs586903 rs113400479 -1.251 0.175 1.009×10−12 -1.595 -0.907 0.393 1.64×10−11 11:113110946 18:23026571

Table 4.6: Genome-wide significant SNP interactions associated to phonological awareness. Columns "SNP1" and "SNP2" denote detected
interacting variants. Next column "Beta" represent the regression coefficient of the random effects meta-analyses, followed by the
standard error "SE", p-value "MPval", lower "CI_Low" and upper "CI_UP" bounds of a 95% confidence interval, and the calculated
heterogeneity p-value "Het" in-between the studies. Column "GPval" represent the computed p-values of GLIDE and final two columns
"Chr:Pos1" and "Chr:Pos2" the respective SNP chromosome and position on the genome. All listed variants under SNP1 are intron
variants of the gene NCAM1.



4.2. Association of bivariate genetic variants in dyslexia 77

4.2.3 Non-word reading

Epistasis study of the NWR endophenotype was the only case where we could not
reach genome-wide significance, but a strong evidence for interaction with a p-value
p ≤ 1.64× 10−12, barely missing the significance level of p = 1.61× 10−12. The interac-
tion was observed between the intronic SNP rs34981217 (2q32.3) of the gene TMEFF2
and the singleton variant rs371164 (Fig. 4.10) located in a long terminal repeat (LTR)
region (LTR67B) on 19p13.3.

Figure 4.10: Genomic positions involved in interactions associated to non-word reading within the
LD-structure of 19p13.3 and 2q32.3. Most significant interacting variants are highlighted with
rectangles. Chromosomal positions of the top hits are shown on each ideogram and are connected
in red. Color code indicate with red high LD and with blue low LD. Reference: Haploview
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Likewise the case of the SWR study one of the interacting variants was located in a repet-
itive region, we executed a sequence alignment to ensure correct sequence mapping.
Alignment was conducted with the usual procedure via BLAT, with 19p13.3 as the only
match obtaining 100% identity over the entire 51bps. Moreover UCSC "Mappability"
score indicated sequence uniqueness throughout the reference genome (hg19/GRCh37)
on the region.
As rs371164 is a singleton, there were no interactions between further SNPs on 19p13.3,
nonetheless we could observe interactions between proxy markers on 2q32.3 with
rs371164 (see table 4.8).
Univariate association testing revealed again no marginal effects for any of the markers
with p-values of 0.43 (rs371164) and 0.68 (rs34981217) (Table 4.7).

SNP Position Allele MAF Pval Beta SE CI_Low / CI_UP

rs34981217 2:192989322 G 0.488 0.685 0.019 0.047 -0.073 / 0.112

rs17354327 2:192987014 T 0.49 0.636 0.022 0.047 -0.07 / 0.115

rs10164776 2:192986033 G 0.489 0.609 0.024 0.047 -0.069 / 0.117

rs17367154 2:192989322 T 0.484 0.682 0.019 0.047 -0.073 / 0.111

rs371164 19:6489814 G 0.19 0.433 -0.048 0.061 -0.168 / 0.072

Table 4.7: Univariate associations to non-word reading of interacting SNPs. Depicted are
all SNPs involved in significant statistical interaction, or with a trend to significance.
First column contain the individual "SNP" identifiers. Column "Effect allele" display
the respective minor allele, followed by the corresponding frequency "MAF" in
the sample, the calculated p-value "Pval" of the single association, the estimated
regression coefficient "Beta", the standard error "SE", and the lower "CI_Low"
and upper "CI_UP" bounds of a 95% confidence interval. All denoted SNPs on
chromosome 2 are intronic variants of TMEFF2. Rs371164 is an intergenic singleton.

Interestingly this combination was unique in exhibiting a relatively huge difference
between the MAFs of the interacting SNPs (Table 4.7). Verhoeven et al. mentioned in
a publication [Verhoeven et al., 2010] the importance of allele frequency in epistatic
models without marginal effects, which will be elucidated in the discussions (5).
The contingency table for the genotypes (Fig. 4.12) showed one of the most uniformly
distributed constellations of our candidate SNP-pairs.
Apart from the fact that we barely missed the significance level in this case, we were
able to observe a correlation of decreasing NWR scores, clearly under the mean, in
dependency to the homozygous state of minor alleles GG/GG (Fig. 4.12). Again the
negative interaction effect seemed homogenous through all participating cohorts (Fig.
4.11).
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Figure 4.11: Meta-analysis of the non-word reading top hit For each single cohort (German
(GER), French (FR), British (UK), American (US)) the square and horizontal
line show the estimated regression coefficient β and 95% confidence interval,
representing the effect of each copy of the reference-allele on reading performance.
The size of the square is inversely proportional to the SE of the estimated effect.
Below the individual cohorts a summary diamond shows the random-effects when
analyzing all four cohorts together as one single sample. Notably clear negative
effect is present in all single sub-samples and in the combined sample.

A B

Figure 4.12: (A) Boxplot of genotypic associations through all samples with single-word reading
score. Y-axis defines the range of the measured reading scores (−3/+ 3) normalized
with a mean of 0 and a variance of 1. A score of −3 indicated the weakest non-word
reading performance. X-axis is the according genotypic combination of the SNPs
rs34981217 (chromosome 2, minor allele G) and rs371164 (chromosome 19, minor-
allele G). The boxes define the interquartile range, the thick line the median, and
single dots possible outliers. Box colors separate classes of genotype-combinations.
(B): Genotype-combination frequencies of the SNPs rs34981217 and rs371164
in the combined sample comprising all cohorts.
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SNP1 SNP2 Beta SE MPval CI_Low CI_UP Het GPval Chr:Pos1 Chr:Pos2

rs34981217 rs371164 -0.571 0.08 1.63×10−12 -0.729 -0.412 0.818 9.26×10−13 2:192989322 19:6489814

rs17354327 rs371164 -0.572 0.081 1.67×10−12 -0.731 -0.4132 0.836 1.21×10−12 2:192987014 19:6489814

rs10164776 rs371164 -0.572 0.081 1.76×10−12 -0.731 -0.413 0.837 1.22×10−12 2:192986033 19:6489814

rs17367154 rs371164 -0.562 0.08 2.97×10−12 -0.719 -0.403 0.861 1.61×10−12 2:192989689 19:6489814

Table 4.8: SNP interactions with strong evidence for association to non-word reading. Columns "SNP1" and "SNP2" denote detected
interacting variants. Next column "Beta" represent the regression coefficient of the random effects meta-analyses, followed by the
standard error "SE", p-value "MPval", lower "CI_Low" and upper "CI_UP" bounds of a 95% confidence interval, and the calculated
heterogeneity p-value "Het" in-between the studies. Column "GPval" represent the computed p-values of GLIDE and final two columns
"Chr:Pos1" and "Chr:Pos2" the respective SNP chromosome and position on the genome. All listed variants under SNP1 are intron
variants of the gene TMEFF2.

Cohort SNP1 SNP2 Beta SE Pval

GER rs34981217 rs371164 -0.67 0.18 2.6×10−4

FR rs34981217 rs371164 -0.55 0.28 5.5×10−2

UK rs34981217 rs371164 -0.59 0.11 3.4×10−7

US rs34981217 rs371164 -0.44 0.17 1.4×10−2

Table 4.9: Cohort specific interactions of the non-word reading top hit. First column "Cohort" denote the corresponding cohort followed by
the detected interacting variants under "SNP1" and "SNP2". Next column "Beta" represent the regression coefficient, followed by the
standard error "SE" and the resulting p-value "Pval" for the interacting SNP-pair in each individual cohort.
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4.2.4 Spelling

Significant (p ≈ 1.5× 10−12) epistasis was detected with the combination of the rela-
tively infrequent alleles of rs59942153 (17p13.1) and rs7271609 (20q13.2) associated with
spelling abilities of the probands (Table 4.12).

Figure 4.13: Genomic positions involved in interactions associated to spelling within the
LD-structure of 17p13.1 and 20q13.2. Most significant interacting variants are
highlighted with rectangles. Chromosomal positions of the top hits are shown on
each ideogram and are connected in red. Color code indicate with red high LD and
with blue low LD. Reference: Haploview
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As visualized in the genotype contingency plot (Fig. 4.15) several genotype constella-
tions were completely absent in the sample set. Neither any homozygous individual
for both minor alleles CC/CC, nor any individual harboring a homozygous minor allele
genotype for one of the loci in combination with a heterozygous genotype for the coun-
terpart were available in our probands. Still associations to SP ability were detectable
along the LD-regions (Fig. 4.14).

Figure 4.14: 3D plot of the 2-way associations to spelling over the genomic SNP regions. LD-
region SNP1 and LD-region SNP2 depict the chromosomal positions of rs59942153
(17p13.1) and the interacting SNP rs7271609 (20q13.2) with their corresponding
proxies SNP (r2 ≥ 0.7), respectively. The color legend indicates the detected
− log10(p)-values.

Considering the boxplot (Fig. 4.15) we recognized an unusual pattern, in which the
correlation between minor alleles and SP-score did not seem obviously, rather the distri-
bution suggests just a context to weaker spelling ability, if minor alleles are present for
both genetic variants. Other allele combinations hint to be distributed over the SP-score
spectrum more uniformly with means around zero.
Regardless the missing genotype combinations the coefficient β ≈ −1.99 (Fig. 4.16) of
the meta-analysis indicates the clearest effect compared to the other studies and beyond
that the cohorts displayed the least heterogeneity for the genotype combination with
p ≈ 0.92 (Table 4.12).
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Figure 4.15: (A) Boxplot of genotypic associations through all samples with single-word reading
score. Y-axis defines the range of the measured reading scores (−3/+ 3) normalized
with a mean of 0 and a variance of 1. A score of −3 indicated the weakest spelling
performance. X-axis is the according genotypic combination of the SNPs rs59942153
(chromosome 17, minor allele C) and rs7271609 (chromosome 20, minor-allele
C). The boxes define the interquartile range, the thick line the median, and single
dots possible outliers. Box colors separate classes of genotype-combinations. (B):
Genotype-combination frequencies of the SNPs rs59942153 and rs7271609 in
the combined sample comprising all cohorts.

No significant single loci correlations could be detected for rs59942153 or rs7271609
respectively (Table 4.10).

SNP Position Allele MAF Pval Beta SE CI_Low / CI_UP

rs7271609 20:52137810 C 0.074 0.68 -0.037 0.091 -0.216 / 0.141

rs7271612 20:52137818 C 0.074 0.68 -0.037 0.091 -0.216 / 0.141

rs6022549 20:52138183 G 0.074 0.68 -0.037 0.091 -0.216 / 0.141

rs6512891 20:52138287 A 0.074 0.68 -0.037 0.091 -0.216 / 0.141

rs59942153 17:8207240 C 0.063 0.33 -0.098 0.1 -0.296 / 0.099

Table 4.10: Univariate associations to spelling of interacting SNPs. Depicted are all SNPs
involved in significant statistical interaction, or with a trend to significance. First
column contain the individual "SNP" identifiers. Column "Effect allele" display
the respective minor allele, followed by the corresponding frequency "MAF" in
the sample, the calculated p-value "Pval" of the single association, the estimated
regression coefficient "Beta", the standard error "SE", and the lower "CI_Low"
and upper "CI_UP" bounds of a 95% confidence interval.
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Figure 4.16: Meta-analysis of the spelling top hit For each single cohort (German (GER),
French (FR), British (UK), American (US)) the square and horizontal line show
the estimated regression coefficient β and 95% confidence interval, representing
the effect of each copy of the reference-allele on reading performance. The size of
the square is inversely proportional to the SE of the estimated effect. Below the
individual cohorts a summary diamond shows the random-effects when analyzing all
four cohorts together as one single sample. Notably clear negative effect is present
in all single sub-samples and in the combined sample.

Cohort SNP1 SNP2 Beta SE Pval

GER rs59942153 rs7271609 -1.76 0.64 6.8×10−3

FR rs59942153 rs7271609 -1.86 0.59 2.3×10−3

UK rs59942153 rs7271609 -1.99 0.44 9.4×10−6

US rs59942153 rs7271609 -2.34 0.65 4.0×10−4

Table 4.11: Cohort specific interactions of the spelling top hit. First column "Cohort"
denote the corresponding cohort followed by the detected interacting variants under
"SNP1" and "SNP2". Next column "Beta" represent the regression coefficient,
followed by the standard error "SE" and the resulting p-value "Pval" for the
interacting SNP-pair in each individual cohort.
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SNP1 SNP2 Beta SE MPval CI_Low CI_UP Het GPval Chr:Pos1 Chr:Pos2

rs59942153 rs7271609 -1.986 0.281 1.49×10−12 -2.536 -1.436 0.926 1.16×10−11 17:8207240 20:52137810

rs59942153 rs7271612 -1.986 0.281 1.5×10−12 -2.536 -1.436 0.926 1.16×10−11 17:8207240 20:52137818

rs59942153 rs6512891 -1.989 0.281 1.52×10−12 -2.541 -1.438 0.926 1.19×10−11 17:8207240 20:52138287

rs59942153 rs6022549 -1.989 0.281 1.52×10−12 -2.541 -1.438 0.926 1.19×10−11 17:8207240 20:52138183

Table 4.12: Genome-wide significant SNP interactions associated to spelling. Columns "SNP1" and "SNP2" denote detected interacting
variants. Next column "Beta" represent the regression coefficient of the random effects meta-analyses, followed by the standard error
"SE", p-value "MPval", lower "CI_Low" and upper "CI_UP" bounds of a 95% confidence interval, and the calculated heterogeneity
p-value "Het" in-between the studies. Column "GPval" represent the computed p-values of GLIDE and final two columns "Chr:Pos1"
and "Chr:Pos2" the respective SNP chromosome and position on the genome.



86 4. RESULTS

4.2.5 Validation of p-value distribution

To verify the distribution of our two-locus association test statistics obtained via GLIDE,
we compared 100.000 randomly sampled interactions out of 50.000∗(50.000−1)

2 two-locus
combinations (randomly sampled from whole-genome data and computed via GLIDE)
against a normal distribution using qqnorm in R. The shown Q-Q plot (Fig. 4.17) dis-
played essentially no deviation from the unit slope. The plot indicated that findings
were not due to any skewness of the distribution from normality and were distributed
as expected.

Figure 4.17: Q-Q plot of random sampling of the dyslexia study. Expected quantiles Theoretical
Quantiles were plotted against the true Sample Quantiles. Distribution of data
points (black) displayed no deviation from the unit slope (red).

4.2.6 Endophenotype correlation

Since one would expect similar cognitive requirements for our dyslexia endopheno-
types (e. g., SWR and NWR), we calculated Pearson’s product coefficients between the
different endophenotype measurements to examine the correlation across studies. Ad-
ditionally the association of each significant top SNP-pair, retrieved from the individual
studies, to the other remaining three endophenotypes (Table 4.13) were computed.

Single-word reading top SNP-pair
As expected we obtained for the SWR top SNP-pair rs1409679 and rs56253958 the most
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conclusive association to the measurements of NWR with a p-value of 8.46× 10−7.
The SNP combination received a p-value of 6.75× 10−5 in association to SP, and 0.01
for the PA measurements. The association of the SNP-pair to each phenotype seemed to
be compliant with the correlations in-between the phenotypes.

SWR NWR SP PA
SWR 0.53 0.51 0.38
NWR 0.21 0.39
SP 0.3

Table 4.13: Pearson’s correlations between the endophenotypic measurements.

Phonological awareness top SNP-pair
The PA top hit rs620291 and rs113400479 displayed stronger association to SWR with
p ≤ 6× 10−3 and to NWR with p ≤ 6.5× 10−3, than to SP with a p-value of 1.2× 10−2,
which again corresponds to detected correlations between the endophenotypes.

Spelling top SNP-pair
The association of the SP hit rs59942153-rs7271609 to each endophenotype retrieved
p-values of 7.38× 10−4 for SWR, 0.02 for PA, and 0.57 for NWR.

Non-word reading top SNP-pair
The NWR top-pair rs34981217-rs371164 revealed the slightest associations to the other
endophenotypes with p-values of 0.059 for SWR, 0.07 for PA, and 0.64 for SP.

4.2.7 Functional analyses

Functional analyses were conducted via sequence mapping on the ENCODE functional
annotation data. We were interested if any of our top-SNPs were located in an annotated
chromosomal functional/regulatory site. All eight top-SNPs from the endophenotype
specific analyses were mapped to annotated DNaseI HSs evidence, estimated from
GM12878 blood cells and embryonic stem cells (H1-hESC). Furthermore we looked after
annotated ChIP-seq data of NRSF binding sites, a neuronal repressor that function as a
negative regulator of neurogenesis [Schoenherr and Anderson, 1995] in H1-neurons, TF
binding sites estimated from GM12878 blood cells, and RNA polymerase II Pol2-4H8
binding sites estimated from neuronal cell lines derived from H1 embryonic stem cells
[Birney et al., 2007].

Non-word reading – Functional sequence mapping
The singleton rs371164 is located in a region with evidence of chromatin accessibility
for regulatory factors, indicated by enriched signals and a clear peak for DNaseI HS.
Moreover we could observe an enrichment of binding sites for various TFs, identified by
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ChIP-seq. The counterpart variant rs34981217 (TMEFF2) is located in a binding site for
the TFs p300, a cellular transcriptional co-activator protein [Birney et al., 2007, Karolchik
et al., 2014]. As shown in figure 4.18 approximately 200bp downstream and less then
2kilo base pairs (Kb) upstream of rs34981217 evidence for TFs and RNA polymerase
II Pol2-4H8 binding sites are suggested by annotated ChIP-seq peaks. To retrieve a
more complete picture we tested if any in UCSC annotated (hg19, GRCh37) TMEFF2
variants with evidence for functionality were existent in our whole-genome data. We
found rs6434538 (r2 of 0.82 to rs34981217) mapping to a RNA polymerase II Pol2-4H8
binding site as only available SNP that withstood our applied whole-genome QC criteria
and entered the two-locus analysis. The interaction between rs6434538 and rs371164
retrieved a p-value of 6.3× 10−10 in the meta-analysis (see appendix).

Figure 4.18: Non-word reading top hit SNPs mapped to UCSC browser (hg19,GRCh37).
Mapped SNPs (upper panel: rs371164, lower panel: intronic SNPs
(rs34981217,rs6434538) of TMEFF2) are declared in red rectangles and a vertical
cyan line specify exact SNP position on the genome. DNaseI HS density signals of
blood cells (GM12878) are colored red and density signals retrieved from embryonic
stem cells (H1-hESC) in green. DNaseI HS peaks are either in black with a red
line (GM12878) or grey with a green line (H1-hESC). Peaks indicating transcrip-
tion factor binding sites and peaks for RNA polymerase II Pol2-4H8 binding sites
identified via ChIP-seq are illustrated with grey and black bars.

Single-word reading – Functional sequence mapping
We observed evidence of TF binding sites for the chromosomal region of the SWR top
hit SNP rs56253958 (FOXP2) (Fig. 4.19. Functional ENCODE annotation hinted to
binding sites on the gene sequence of FOXP2 for the TFs TCF7L2 and SMARCC1. None
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of our remaining interacting FOXP2 SNPs mapped to such regulatory sites, as the next
annotated TF binding sites on the gene sequence are approximately 20 distant down-
and upstream.

Figure 4.19: Single-word reading top hit SNPs mapped to UCSC browser
(hg19,GRCh37). Mapped intronic FOXP2 SNP (rs56253958) is declared in a red
rectangle and a vertical cyan line specify exact SNP position on the genome. Peaks
indicating transcription factor binding sites identified via ChIP-seq are illustrated
with grey and black bars.

Phonological awareness – Functional sequence mapping
Two of the four NCAM1 variants involved in significant interactions with variants on
chromosome 18 showed to be located in functionally active sites. The closely located
SNPs rs620291 and rs635596 mapped to denoted ChIP-seq peaks for various binding
sites. Rs620291 is located in binding sites of the TFs EZH2 and YY1, whereas rs635596
mapped to a binding site of the TF CTCF, and additionally an annotated binding site of
the RNA polymerase II Pol2-4H8 (Fig. 4.20).

Spelling - Functional sequence mapping
Even though the SP associated interacting variants were intergenic we could observe
ChIP-seq identified functional sites. The SNPs rs6512891 and rs6022549 on 20q13.2
are both located in different TF binding sites. Whereas for the interacting variant
rs59942153 no peaks were detectable. Nevertheless we observed an enrichment of
regulatory active sites in the surrounding region, so we extended the LD region of
the variants to a r2 ≥ 0.3, as rs59942153 exhibited a sparse LD-density. As illustrated
in figure 4.21 the variants rs9899432 (r2 = 0.412, no interaction exceed the GLIDE
t-value of 5) and rs4792734 (r2 = 0.675, non-significant interaction with 20q13.2 SNPs
p ≤ 3.4× 10−7) could be observed in regions of highly enriched ENCODE signals. Inter-
estingly rs4792734 maps among others to the same TF binding sites (USF2 and FOS) as
its interacting variants on 20q13.2. However since the interactions are not strong enough
we can not make any assumptions about possible functionality of the interacting region.
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Figure 4.20: Non-word reading top hit SNPs mapped to UCSC browser (hg19,GRCh37).
Mapped intronic NCAM1 SNPs (rs620291, rs635596) are declared in red rectangles
and a vertical cyan line specify exact SNP position on the genome. Peaks indicating
transcription factor binding sites and peaks for RNA polymerase II Pol2-4H8 binding
sites identified via ChIP-seq are illustrated with grey and black bars.

Figure 4.21: Spelling top hit SNPs mapped to UCSC browser (hg19,GRCh37). Mapped
SNPs (upper panel: rs7271609,rs651289, lower panel: rs59942153, rs4792734, and
rs9899432) are declared in red rectangles and a vertical cyan line specify exact
SNP position on the genome. DNaseI HS density signals of blood cells (GM12878)
are colored red, and density signals retrieved from embryonic stem cells (H1-hESC)
in green. DNaseI HS peaks are either in black with a red line (GM12878) or grey
with a green line (H1-hESC). Peaks indicating transcription factor binding sites
identified via ChIP-seq are illustrated with grey and black bars.
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4.2.8 Hippocampus candidate gene analyses

The concept of the hippocampus expression analyses in this thesis was to show a
functional context of the dyslexia findings in the human pre-mortal brain. We wanted to
elucidate whether a detected interaction causes a change in the expression level of the
involved gene that in turn is linked to cognitive skills in the dyslexia pathogeneses. The
ability to have insight into the expression behavior of an active human brain was almost
unique. Unfortunately, some of the candidate genes of interest for our study were just
poorly expressed in the sample of 138 epilepsy patients. None of the FOXP2 transcripts
withstood the expression QC criteria and just one transcript of NCAM1 (ILMN_1676289)
and TMEFF2 (ILMN_1730645) showed an appropriate expression level. Nevertheless,
we ran the regional based (± 2Mb of the candidate SNPs) interaction analyses for all
available candidate genes without any significant outcomes after correction for multiple
testing. Bonferroni-Becker significance correction levels were calculated for each study
individually in dependance of the SNPs number in the ± 2Mb regions.

SNP1 SNP2 p-value

rs12535428 rs1409679 1.6× 10−2

rs4117983 rs1409679 4.9× 10−2

rs2140615 rs1409679 4.9× 10−2

rs4730633 rs1409679 4.9× 10−2

rs12535428 rs2821137 1.6× 10−2

rs12535428 rs2846443 1.9× 10−2

rs4117983 rs2846443 4.8× 10−2

rs2140615 rs2846443 4.8× 10−2

rs4730633 rs2846443 4.8× 10−2

Table 4.14: SNP-pairs associated to the expression profile of the FOXP2 transcript
ILMN_1695355. Columns "SNP1" and "SNP2" denote detected interacting
variants and "Pval" the computed interaction p-value.

The interacting variants of SWR and consequently markers in a region of 2Mb up- and
downstream (±) of the original SNPs revealed interactions between markers of both
chromosomes with p ≈ 10−7. Considering specifically markers located in FOXP2 the
best finding (p = 2.3× 10−7) was the interaction between the FOXP2 intronic variant
rs1852471 and rs2762469 on chromosome 9 with a distance about 1.15Mb from the
SWR top-SNPs rs1409679, rs2821137 and rs2846443 (9q31.3) on the expression of the
FOXP2 transcript ILMN_1695355. Testing explicitly our 9q31.3 loci (without any further
proxy SNPs) with FOXP2 variants we detected interactions with four intronic markers
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exceeding the nominal significant threshold of 0.05. Regarding Bonferroni correction
level (p ≤ 3.8× 10−10) we could not find any significant interactions consolidating the
SWR results.
Interaction analysis between the± 2Mb region on 11q23.2 and 18q11.2 on the expression
of ILMN_1676289 (highest expressed NCAM1 probe) revealed no significant SNP com-
binations regarding the significance correction level of p ≤ 5.21× 10−9. Concentrating
explicitly on the PA top SNPs we could not observe any interactions on the expression
of ILMN_1676289.
Most availing results included the closely (≈ 2 Kb) to rs620291 located variant rs2303377
(r2 = 0.152) in interaction with our dyslexia candidate SNPs on 18q11.2 (Table 4.15) asso-
ciated to the poorly expressed NCAM1 transcript ILMN_2398184. Calculated p-values
ranged between 7× 10−3 and 3× 10−3.

SNP1 SNP2 p-value

rs2303377 rs79046421 3.6× 10−3

rs2303377 rs12458786 4.2× 10−3

rs2303377 rs76146087 5.4× 10−3

rs2303377 rs79295788 5.9× 10−3

rs2303377 rs9916920 6.5× 10−3

rs2303377 rs76340243 6.9× 10−3

rs2303377 rs113400479 7.2× 10−3

rs2303377 rs76799957 8.3× 10−3

Table 4.15: SNP-pairs associated to the expression profile of the NCAM1 transcript
ILMN_2398184. Columns "SNP1" and "SNP2" denote detected interacting
variants and "Pval" the computed interaction p-value.

A single Illumina probe was available for the TMEFF2 gene, which exhibited a well
expression profile in the human brain. Nonetheless, regarding the correction threshold
of p ≤ 3.6× 10−5 for multiple testing no significant results were detectable. As the
interacting dyslexia NWR pair involved the singleton SNP rs371164 on chromosome
19 the ability to search for interactions in the LD region of the variant was not given.
However best interactions that could be observed were between the singleton rs371164
and variants in the TMEFF2 sequence with p-values ≈ 3× 10−2.
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SNP1 SNP2 p-value

rs73984908 rs371164 3.1× 10−2

rs73984907 rs371164 3.1× 10−2

rs13432794 rs371164 3.6× 10−2

rs4474831 rs371164 3.6× 10−2

rs73984904 rs371164 5× 10−2

rs16834268 rs371164 5× 10−2

Table 4.16: SNP-pairs associated to the expression profile of the TMEFF2 transcript
ILMN_1730645. Columns "SNP1" and "SNP2" denote detected interacting
variants and "Pval" the computed interaction p-value.

4.2.9 Endophenotype specific pathway analysis

Additional surveys, to obtain a deeper insight in the biological relevance of our results,
were fulfilled with an endophenotype specific and an overall findings pathway analysis.
In the first instance we considered enriched pathways for every endophenotype specific
gene-set of the epistasis analyses separately, utilizing MAGENTA [Segrè et al., 2010].
Gene-sets were determined by MAGENTA for every SNP of an interacting SNP-pair
with a p-value < 1× 10−10, which resulted in 716 genes in total. Pathways or groups
with a GSEA p-value less then the nominal significance cutoff of ≤ 0.05 are depicted in
the corresponding tables.
Pathway/groups occurring more than once in the results, due to the usage of mul-
tiple databases in MAGENTA, were listed in the corresponding tables by just one
representative.

The GSEA of the NWR genes resulted in just three significant pathways as shown
in table 4.17.

The GSEA of the PA genes disclosed an enrichment in neuronal activities as the most
significant outcome with a p-value of 0.012 (Table 4.18). Further enriched pathways
or groups respectively were NCAM1 interactions, kinase activities, and pathways
corresponding to the complement system that is involved in the immune system.

The GSEA of SWR genes revealed highly reasonable enrichments among others
in the acetylcholin pathway (p = 0.0436), neuromuscular junction development (p =

0.047) and cerebral cortex development (p = 0.0466). Further significantly enriched
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DB Pathway/Group p-value

Panther molecular function Membrane-bound signaling molecule 0.0134

Gene Ontology Nucleoplasm 0.0155

Reactome Cell cycle Mitotic 0.0243

Table 4.17: Enriched pathways of the non-word reading gene-set analysis. The first column
"DB" denotes the database in which the associated function "Pathway/Group",
shown in the second column, was annotated. The third column denotes the
corresponding enrichment "p-value".

DB Pathway/Group p-value

Panther biological process Other neuronal activity 0.012

Reactome RHO GTPase cycle 0.021

Gene Ontology Protein serine/threonine kinase activity 0.041

Panther molecular function Non-receptor serine/threonine protein kinase 0.044

KEGG Complement and coagulation cascade 0.045

Gene Ontology Eukaryotic cell surface binding 0.046

Gene Ontology Response to oxidative stress 0.047

Gene Ontology Receptor signaling protein activity 0.048

Gene Ontology Acute-phase response 0.048

Reactome Initial trigging of complemet 0.049

Reactome NCAM1 interactions 0.049

Panther Endothelin signaling pathway 0.049

Gene Ontology Cellular process 0.049

Gene Ontology Complement activation, lectin pathway 0.05

Table 4.18: Enriched pathways of the phonological awareness gene-set analysis. The first
column "DB" denotes the database in which the associated function "Pathway/-
Group", shown in the second column, was annotated. The third column denotes
the corresponding enrichment "p-value".

pathways and groups are listed in the according table 4.19. Most significant result were
biological processes (BPs) involved in cell structure. Further we observed enrichments
in embryogenesis and neurogenesis that barely missed the p-value cutoff.
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DB Pathway/Group p-value

Panther biological process Cell structure 0.039

Gene Ontology Negative regulation of gene-specific transcription 0.041

Biocarta Acetylcholin pathway 0.044

Panther molecular function Tyrosine protein kinase receptor 0.044

Gene Ontology N-acetylglucosamine metabolic process 0.044

Panther biological process Receptor protein tyrosine kinase signaling path-
way

0.045

Panther molecular function Protein kinase 0.045

Gene Ontology Single fertilization 0.045

Gene Ontology Carbohydrate metabolic process 0.045

Gene Ontology Muscle organ development 0.045

Biocarta Argin Pathway 0.046

KEGG Amino and nucleotide sugar metabolism 0.046

Panther biological process Monosaccharide metabolism 0.046

Gene Ontology Cerebral cortex development 0.047

Gene Ontology Neuromuscular junction development 0.047

Gene Ontology Generation of precursor metabolites and energy 0.047

Gene Ontology Receptor activity 0.047

Panther molecular function Other isomerase 0.048

Gene Ontology Transmembrane receptor protein tyrosine kinase
activity

0.048

Table 4.19: Enriched pathways of the single-word reading gene-set analysis. The first
column "DB" denotes the database in which the associated function "Pathway/-
Group", shown in the second column, was annotated. The third column denotes
the corresponding enrichment "p-value".

The GSEA of the SP genes illustrated as most significant finding an enrichment of
genes involved in developmental processes. Further enriched were pathways involved
in axon guidance, known as an important disrupted mechanism of dyslexia pathogene-
ses (Table 4.20). Significantly enriched was further the GO term "microtubule-based
flagellum", describing genes with mechanisms in cell movement among others.
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DB Pathway/Group p-value

Gene Ontology Multicellular organismal development 0.026

Panther biological process Purine metabolism 0.047

Gene Ontology Single-stranded DNA binding 0.047

Gene Ontology Cell redox homeostasis 0.048

Ingenuity Axonal guidance signaling 0.048

Panther molecular function Synthase 0.048

Gene Ontology Cytokinesis 0.049

Gene Ontology Nuclear chromosome, telomeric region 0.049

Gene Ontology Oligosaccharyltransferase complex 0.049

Gene Ontology Dolichyl-diphosphooligosaccharide-protein gly-
cotransferase activity

0.049

Gene Ontology Microtubule-based flagellum 0.05

KEGG N-Glycan biosynthesis 0.05

Table 4.20: Enriched pathways of the spelling gene-set analysis. The first column "DB"
denotes the database in which the associated function "Pathway/Group", shown in
the second column, was annotated. The third column denotes the corresponding
enrichment "p-value".

4.2.10 Pathway analysis in dyslexia

The final GSEA was applied on the collective gene-set of all four endophenotype
studies. With respect to the Bonferroni correction level (3.1× 10−6) we acquired 20
significantly enriched pathways or groups respectively (Table 4.21). The findings of
the overall analysis were incredibly promising, as we could observe enrichments of
genes acting in neuronal cells, axons or at the membrane surface, for example for
signaling processes, transport activities, cell-cell signaling and adhesion. We observed
also dyslexia reasonable BPs involved in locomotion, nervous system (NS) development,
axon guidance and microtubule sliding.
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Ontology domain Pathway/Group p-value

Biological process Metabolic process 4.51×10−12

Molecular function Nucleotide binding 4.02×10−10

Biological process Transport 1.49×10−09

Biological process Locomotory behavior 3.35×10−9

Biological process Multicellular organismal development 5.09×10−9

Cellular component Membrane 1.45×10−8

Biological process Nervous system development 3.20×10−8

Biological process Transmembrane transport 4.11×10−8

Cellular component Plasma membrane 1.61×10−7

Biological process Axon guidance 2.16×10−7

Cellular component Cytoskeleton 2.20×10−7

Cellular component Neuronal cell body 2.24×10−7

Molecular function ATP binding 3.37×10−7

Cellular component Cytoplasm 3.5×10−7

Biological process Ion transport 5.73×10−7

Cellular component Cytosol 6×10−7

Biological process Signal transduction 7.43×10−7

Biological process Water transport 1.01×10−6

Biological process Ion transmembrane transport 1.61×10−6

Biological process Cerebral cortex development 3.10×10−6

Table 4.21: Enriched pathways in the joint gene-set of the individual interaction anal-
yses. First column Ontology domain addresses the domains of the annotated
enriched pathway of the second column Pathway/Group and the third column the
corresponding p-value.





5 Discussion

5.1 Epistasis and genome-wide interaction analyses

5.1.1 Interaction analyses are required for understanding complex
diseases

Most biological phenotypes, from hair color to diseases, cannot be fully explained by
single-locus genetic effects. However, the remaining variance can also not entirely be
attributed to environmental contributions. In fact, interactions between two or more
distinct genetic loci typically constitute a decisive factor in shaping the observed pheno-
typical variance. Such interplay between unlinked genetic loci is called epistasis [Bloom
et al., 2013].
Currently, little is known about the role of epistasis in human biology, as, until now,
the focus of research was mainly on single locus effects. Nevertheless, considering the
network of biological and functional processes, most genetic candidates for complex
traits are likely embedded within a broad network of interactions. When considering
either biochemical and metabolic systems or the complexity of networks that robustly
stabilize essential human systems, the ubiquity of epistasis in genetic systems becomes
obvious [Moore and Williams, 2009].
Therefore, statistical and biological epistasis should be considered as just as important
as the main, direct effects of candidate genes [Nicodemus et al., 2007]. Given the om-
nipresence of complexity in genetics, it has even been suggested to rephrase the current
standard hypothesis for genetical research: Instead of asking which SNP is associated with
disease, we should be asking which combination of SNPs is associated with disease? [Moore and
Williams, 2009]. It is therefore clearly necessary to improve our knowledge regarding
biological and statistical epistasis and its role in human health and disease. However,
the field of multivariate interaction analyses has only recently been established. The
acquisition of knowledge as well as the development of the necessary computational
conditions are thus still in an early stage.
It constitutes a dilemma for medical research that single loci account only for a small
fraction of common disease susceptibility. As a possible explanation for this lack of
identified genetic contributions, Moore and colleagues argue that malign phenotypes
could in fact be the result of multiple mutations in different parts of a network [Moore,
2003]. From this perspective, epistasis could even have a negative influence on human
health: while positive epistasis might lead to higher fitness than is attributable to single
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mutations, negative epistasis would, accordingly, incur lower fitness [Gros et al., 2009].
Such effects could be a consequence of evolutionary epistatic shielding,acting in either
direction [Verhoeven et al., 2010, Moore, 2003]. In the context of positive interactions,
epistatic shielding means that fitness is protected, whereas, in the case of detrimental
interactions, harmful interactions persist. A possible explanation for the existence of
epistatic shielding is that breaking a network of interaction partners is a far more com-
plicated event than eliminating a single deleterious mutant. This notion is supported by
the observation that the occurrence of double mutants is, in general, a rare event.
In addition, Moore et al. suggested genetic interactions to constitute a possible cause
for unsuccessful replications in independent samples. If this hypothesis was correct,
the consideration of combinatory allelic risks for human health could push the search
for the origin of the often discussed Missing heritability significantly forward. However,
while, from a theoretical point of view, the concept and relevance of epistasis detection
is well established, obscurities as well as the diversity of hypotheses overshadow its
realization in practice, as so often is the case in new fields in science.
Meanwhile, increasing amounts of studies concentrate on genetic interactions and
thereby reveal a role of epistasis in the genetic control of complex phenotypes. At
the beginning, most studies captured epistasis in Mendelian masking effects [Verho-
even et al., 2010], but currently, studies investigate interactions between polymor-
phisms that broadly contribute to multifactorial traits [Bloom et al., 2013, Marchini et al.,
2005, Nicodemus et al., 2010b, Shao et al., 2008]. It became clear that epistasis correlates
with genomic complexity: in the case of simpler mutational effects, epistasis rather
illustrates a masking effect, whereas in more complex systems, mutations appear to
aggravate each other, leading to synergetic effects [Van Steen, 2012].

5.1.2 Statistical power in interaction analyses

In quantitative traits, epistasis is considered as the deviation from additivity. Two
studies have demonstrated that, in the presence of epistasis, statistical detection power
can increase over the detection power for single-loci [Marchini et al., 2005, Verhoeven
et al., 2010]. Morever, Verhoeven and colleagues illustrated a higher detection power of
multiplicative interaction models, as compared to additive models. In the case of the
results presented here, we could observe statistically highly significant epistatic effects
with convincing detection power (Fig. 5.1) Detection power was computed using the
software QUANTO [Gauderman, 2002] for each top hit, and was compared to either
calculation power or detectable significant association effects of single SNPs (data not
shown). Estimated detection power ranged from 44.7% in case of the endophenotype
phonological awareness , to 62.8% for single-word reading SWR, using the respective
study sample sizes (645 and 862). Prognoses for increasing sample sizes up to 1300
subjects predicted a power boost to approximately 99%.
Verhoeven et al. showed that, along with sample size, also allele frequencies representa-
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Figure 5.1: Detection power of study top hits. The first panel demonstrates the trend of the
detection power (y-axis) starting at the given sample size (x-axis) of 862 individuals
for the endophenotype specific analyses of SWR (red dashed line with squares), SP
(green dotted line with circles), and NWR (blue solid line with squares). Computed
prognoses indicate full power by a sample sizes over 1300 subjects. Second panel
shows the calculation power for the PA top hit (black solid line with circles) starting
at 645 and a power of approximately 45%. Full power can be reached in this case
with a sample size over 1000 individuals.

tively influence power: the closer the MAFs of the involved SNPs are to each other, the
higher is the power of the analysis and the lower the false positive rate, given an appro-
priate sample size of ≥ 500. In fact, we faced the same phenomenon in our data: three
out of the four strong interactions that exceeded the significance level showed similar
allele frequencies of the respective interacting markers. The only expectation falling just
short of the significance threshold included two polymorphisms with unequal MAFs of
0.48 and 0.19 (SNPs associated to non-word reading NWR).
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5.1.3 Marginal effects of interaction partners

During the last years, a variety of approaches and tools has been developed to capture
SNP-SNP or gene-gene interactions [Culverhouse, 2012, Hemani et al., 2011, Hu et al.,
2010, Kotti et al., 2007, Yung et al., 2011, Zhao et al., 2006]. In this context, different
hypotheses have been established and tested. One of the most intensively discussed
hypotheses is concerned with the necessity of marginal effects in an epistatic system.
This motive implies that penetrance of the single polymorphisms is required in order
to allow for any biologically relevant effect of an interaction on a trait [Ritchie, 2010].
However, in our GWAS results, we observed no marginal effects or only a trend towards
them (p ≈ 10−2). In fact, several published studies proposed complex theoretical pene-
trance models that, as in our case, influence the trait only through the interaction of two
or more genetic variants [Culverhouse et al., 2002, Frankel and Schork, 1996, Kotti et al.,
2007, Musani et al., 2007]. These models are purely epistatic (Fig. 5.2). The prevalence of

Figure 5.2: Molecular epistasis: two-locus models of all four top hits illustrate purely epistatic
effects in the absence of main effects at either locus. The x-axis represent the three
genotypes at one locus (aa (homozygote of major allele), aA (heterozygote), AA
(homozygote of minor allele)) while the three lines indicate the different genotypes
at the other locus with a black solid line for homozygote of major allele (bb), a red
dashed line for heterozygote (bB), and a green dotted line for homozygote of minor
allele (BB). The y-axis displays the respective measured endophenotype scores.

such disordinal interactions (non-marginal effects) is still unknown and debated con-
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troversially. These interactions could either constitute rare events or be a consequence
of compensatory evolution. During compensatory evolution, deleterious single effects
are compensated by a second mutation of another allele, leading to double mutants.
However, the observation of disordinal interactions might also simply be caused by a
lack of detection ability [Hemani et al., 2014, Musani et al., 2007].
Interestingly, disordinal or pure epistasis has already been shown to affect diseases
such as schizophrenia [Qin et al., 2005, Becker et al., 2005], and Alzheimer’s [Martin
et al., 2006], as well as many other phenotypes [Musani et al., 2007]. It is difficult to
determine a specific, appropriate threshold for univariate associations in an epistasis
model. Moreover, the question arises whether significant interactions should be rejected
if no marginal effects are present. Since the computational abilities are given why not
consider the whole genome.
As mentioned studies have demonstrated different genetic interactions with varying
single-locus penetration models [Culverhouse et al., 2002, Musani et al., 2007]. They
concluded that disregard of non-marginal effects leads to a substantial loss of power
and information. Without non-marginal effects, small non-zero univariate trends af-
fecting epistasis would never be considered and would therefore remain hidden. As a
consequence, complex models, based on the interplay of genetic factors without any
observable single effects that increase the susceptibility to disease, would have never
been discovered, such as the aforementioned Alzheimer’s disease, schizophrenia, or
diabetes [Cox et al., 1999, Lee et al., 2004] and breast cancer [Abdi, 2006, Ritchie et al.,
2001].
Given the current computational abilities, the whole genome can be considered for
analysis. Recently, a hypothesis-free genome-wide interaction search on expression
profiles of 846 individuals was published by Hemani et al., including a successful,
subsequent replication in two additional sample sets. The authors detected significant
cis-cis, cis-trans and trans-trans interactions on individual expression levels, with and
without marginal effects of the involved loci. Compared to other quantitative traits,
expression profiles are good candidates for such analyses, as they are highly biologically
relevant, due to the massive effect size that explains large proportions of the genetic
variance [Hemani et al., 2014].
However, the complexity of nature could harbor infinite concealed and branched inter-
actions. Understanding the nature of genetic interactions and the possible effect of an
allele in presence of other alleles in quantitative traits, is essential to uncover a more
complete picture of the mechanisms of complex biological systems and their evolution.
In this work, a step towards unveiling the mystery of multifactorial heritability was
undertaken, focusing on the highly heterogeneous phenotype dyslexia, leading to
strikingly significant and promising results.
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5.2 Statistical epistasis in dyslexia pathogenesis

Within this work, we present the first GWIA on endophenotypes associated with
dyslexia. We performed four unbiased, hypothesis-free, and exhaustive epistasis scans.
We refrained from limiting the scans to preselected genetic variants, as such an approach
would strongly limit the possibilities for discovering completely new factors influencing
the examined phenotypes, and facilitating new insights in the broad-sense heritability.
In a previous epistasis study on dyslexia-associated parameters, and enhancement of
1p36 linkage was detected when linkage of 6p22.2 was taken into account in dyslexic
probands [Grigorenko et al., 2001]. These two regions constitute well-studied, dyslexia-
associated candidate loci, showing both single and interaction effects.
Our analyses exposed several inter-chromosomal negative interactions displaying pure
epistasis, which affected cognitive skills in dyslexic subjects. By contrast to the earlier
study, the majority of our findings involved novel loci. We could not detect any signif-
icantly associated single main effects of these loci, but could allocate them to known
susceptibility regions for either dyslexia or other comorbid disorders.
For example, variants on 18q11.2 could be assigned to an area containing putative
dyslexia-associated loci in the vicinity of DYX6. Interestingly, variants on 7p31 could
be allocated to the gene FOXP2, a factor that is well known in the field of psychiatric
disorders, as it is involved in speech and language disorder (SLD) [MacDermot et al.,
2005] and SLI [Smith, 2007]. Recent publications already indicated a role of FOXP2 in
dyslexia pathogenesis [Peter et al., 2010, Wilcke et al., 2011].
Developmental language and learning disorders, such as dyslexia, SLI, ADHD and
autism spectrum disorder (ASD) are suggested to share a degree of genetic etiology. This
is due to apprehended comorbidity, that influences the development of these pheno-
types [Czamara et al., 2013, Germanò et al., 2010, Newbury and Monaco, 2010, Newbury
et al., 2010, Reiersen and Todd, 2008, Smith, 2007]. Such cognitive disorders share a
common genetic background or are linked to the same genomic regions. An example for
such a shared aspect is the disturbance of neuronal migration [Smith, 2007]. In a study
on the etiology of schizophrenia, combined effects of SNPs within the genes GRIN1 and
GRIN2B were discovered [Qin et al., 2005]. Polymorphisms of GRIN2B are also discov-
ered to be associated with weak performance in vernal short-term memory in dyslexic
children (see backgrounds 2.1.5.1). A relevant example to visualize the connectivity, the
interplay and complexity of genetics as well as the possible comorbidity of psychiatric
disorders.

5.2.1 Interactions involving the gene FOXP2

We detected a very strong interaction as well as a slight marginal effect of FOXP2 vari-
ants on SWR. When taking a possible comorbidity of dyslexia with speech and language
disturbances into account [Smith, 2007], the notion that FOXP2 variants might influence
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the development of dyslexia appears reasonable. The gene is highly conserved and is
essential for the development of brain regions responsible for fine motor control [New-
bury and Monaco, 2010]. In fact, it has been suggested that FOXP2 -related disorders
involve core deficits in learning, planning, and executing rapid movement sequences.
FOXP2 is also involved in language and learning processes and has frequently been
studied in this context [Fisher and Scharff, 2009].
However, in the past it has proven difficult to discover associations of FOXP2 to dyslexia
by one-dimensional screening, which were significant on a genome-wide scale. Hence,
FOXP2 likely has no monogenic effect on dyslexia pathogenesis, as it is the case for SLD
[Fisher and Scharff, 2009]. Instead, it is conceivable that a possible effect of the gene
takes place through the interplay with other genetic factors or loci.
Our findings regarding statistical epistasis support the idea that FOXP2 influences
dyslexia via interactions with other loci. The results remained constant over the associ-
ated LD-sequence (r2 ≥ 0.7) on both chromosomes, indicating a robust outcome. Thus,
it is unlikely that the data was confounded by genotyping inaccuracies or imputation
artifacts.
To date, there are no studies describing the region on 9q31.3 that we found to interact
with FOXP2. Moreover, the top variant at this locus, rs1409679, is located in a LINE
region (L1), a stretch of repetitive DNA. While this SNP seems to be assigned at the
correct sequence position, a certain level of uncertainty always remains. The fraction of
the genome showing poor confidence regarding the accuracy of the identified variations
is called the ""dark matter of mappability" [Lee and Schatz, 2012]. Lee and Schatz reported
that the majority of variations examined in the 1000 genomes project are well mapped,
but that we have to keep in mind that approximately 50% of the human genome contain
repetitive elements [Babushok and Kazazian, 2007, Lee and Schatz, 2012] . Nevertheless,
in our case the detected loci appeared to be well mapped on the human genome.
Notably LINE1 elements are known to be the most active autonomous retrotransposons
in mammalian genomes and variety in the number and activity levels of LINE1 con-
tribute to variation in humans by affecting once the LINE1 mediated mutations, as well
as the individual gene expression level [Babushok and Kazazian, 2007].
Notably, LINE1 elements are the most active autonomous retrotransposons in mam-
malian genomes. The variety in numbers and activity levels of LINE1 elements con-
tribute to genetic variation in humans. They can mediate mutations and affect gene
expression levels [Babushok and Kazazian, 2007].
However mapping our SWR SNPs to the functional ENCODE annotations we observed
no DNaseI HS signals, but we could observe an enrichment of TF binding sites for
the top FOXP2 locus. This offers room for speculations regarding possible trans-cis
regulations of FOXP2. A conceivable scenario is that through the allelic interaction of
rs56253958 and rs1409679 transcriptional activities could be initiated or inhibited.
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5.2.2 Interactions involving NCAM1

Another candidate gene identified in our analyses was NCAM1, coding for a transmem-
brane glycoprotein expressed in neurons. NCAM1 regulates cell-cell adhesion, neurite
outgrowth, synaptic plasticity, and memory processes [Markram et al., 2007, Schmid
and Maness, 2008]. These processes play a crucial role in dyslexia [Dahdouh et al.,
2009, Ludwig et al., 2010]. The gene might also influence genetics and pathophysiology
of disorders like bipolarity and schizophrenia [Atz et al., 2007]. It has been suggested
that schizophrenia and dyslexia share a common genetic background, but till date
no association per se could be established. Studies have shown altered hemispheric
asymmetry in schizophrenia patients, as well as in individuals with dyslexia [Heim
et al., 2003]. In addition, GRINB2 affects both disorders, as mentioned before.
Interestingly the interaction we identified took place between NCAM1 variants and
polymorphisms at 18q11.2. The chromosomal region spanning the centromere from
18p11.2− 8q12.2 harbors putative QTLs for PA and SWR [Fisher et al., 2002, Scerri et al.,
2010], further supporting the validity of our finding.
When, mapping NCAM1 SNPs to the functional ENCODE annotations, we observed an
accumulation of the variants in presumed regulatory regions. The variants rs620291 and
rs635596 appeared to be located within TF binding sites. Moreover, rs635596 maps to a
ChIP-seq estimated binding site for RNA polymerase II Pol2-4H8. RNA polymerase II
binds to the promoter of a gene to initiate transcription. The fact that our interacting
variants are located within TF and polymerase binding sites supports the assumption
that these SNPs have a regulatory function regarding the transcription of NCAM1. They
might in turn be regulated by the interacting variants on 18q11.2.
Although we could not observe single associations (marginal effects) of these loci, our
epistasis results are very robust. Furthermore, regarding the previously known func-
tions or associations of each of the players, a relation between variants on 18q11.2 and
NCAM1, which affects phonological abilities in dyslexic individuals, is likely.

5.2.3 Interactions involving TMEFF2

A third gene to be discovered in an interaction was TMEFF2, which is widely expressed
throughout the brain. The protein promotes the survival of specific types of neurons,
e. g., hippocampal and mesencephalic neurons [Horie et al., 2000]. However no evidence
is yet present for a role of this gene in dyslexia. The interacting singleton SNP on 19p13.3
is located within a LTR element. It has been suggested that these elements have not been
active in human over time, explainable by the lack of polymorphisms at these regions
[Babushok and Kazazian, 2007]. Likewise, we could detect a lack of polymorphisms at
the given region. However, we also observed DNaseI HS peaks and an enrichment of
TF binding sites at the same locus, arguing in favor of a functional site.
Furthermore, the interacting intronic variant within the TMEFF2 sequence also maps to
a TF binding site. Of note, singleton SNPs are of a higher functional importance than
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intronic or intergenic markers. They are assumed to be enriched in regions of higher
functionality and recombination rate than non-singletons [Ke et al., 2008].
However, we examined the single locus association of rs371164 to expression of TMEFF2
in the hippocampus without a significant outcome. Intriguingly, both regions are located
either in-between or within loci that were suggested to be associated with autism [Smith,
2007]. As mentioned before, chromosome 2, besides chromosome 6, harbors the highes
number of annotated loci related to reading disability RD.

5.2.4 Interaction involving two intergenic loci

Another inter-chromosomal connection was detected between intergenic variants on
17p13.1 and 20q13.2 which affected SP ability. No clear evidence linking the locus
20q13.2 to dyslexia exists. However studies found deletions on 20q13.13− 20q13.33 to
be associated with intellectual disabilities, seizures, ASD and expressive speech in a
child with learning difficulties [Béna et al., 2007].
Two more studies detected effects of 17p13.1 in dyslexia. Bates et al. reported of the
region on fects irregular-word spelling [Bates et al., 2007]. A study found in a genome-
wide screen associations of copy number variations (CNVs) at the region in ten dyslexic
Indian families [Veerappa et al., 2013].
The variant rs59942153 is located in-between two DNaseI HS peaks, suggesting high
functionality at this locus. Unfortunately, the variant demonstrated an insufficient
LD-structure, so we were not able to test if any proxies with an adequate r2 are located
directly in a peak. The following SNP that could be mapped to annotated TF binding
sites exhibited a r2 of 0.67. The observation of the counterpart variants on 20q13.2 were
promising, they could be mapped to TF binding sites. An interpretation of the possible
interaction scenario is difficult, as both variants are intergenic.

5.2.5 Expression levels of the identified genes

It is very promising that we could observe strong interactions between loci that are either
connected to dyslexia, a comorbid disorder or to genes that are involved in functions of
the NS. Yet although our results are encouraging, they are so far only descriptive, as
the biological nature of the statistical interactions has to be validated. A first step in
this direction was the annotation mapping on functional ENCODE annotations. This
generally constitutes an option to examine whether loci of interest are located within
any regulatory or functionally active sequence segments. With this approach, we were
able to observe that six out of our eight candidate SNPs are located at TF binding sites
and one SNP in a DNaseI HS indicating regulatory active regions.
We also attempted to examine the biological relevance of our findings by analyzing
the association of the dyslexia candidate SNP-pairs to the gene expression within the
hippocampus. This eQTL approach unfortunately failed. The FOXP2 as well as three
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NCAM1 probes all showed expression levels that did not pass quality control. One
remaining NCAM1 probe was expressed well (Illumina ID ILMN_1676289), yet was
located more then 33 Kb away from the candidate SNPs. This could be an explanation
for the absence of a detectable association between probe and SNP genotypes. However,
we could detect a trend towards interaction between the genotypic marker rs2303377
and variants at the locus 18q11.2, which were associated with expression levels of the
probe ILMN_2398184. This result is highly interesting, as this probe detects an adjacent
transcript. In fact, this was the only probe showing at least a trend towards a connection
between expression and genotypic interactions.
Nevertheless, we have to face the fact that, in general the measured expression levels
and p-values were too weak to draw well-founded conclusions regarding possible
epistatic effects, neither for NCAM1 nor for FOXP2 analyses.
Albeit expression levels of the TMEFF2 transcript were sufficient, the candidate SNPs
for the phenotype NWR were still not significantly associated. This could again be
explained by the distance the loci and transcript (≥ 220 Kb).
Therefore, our attempts failed to verify the dyslexia candidate SNPs by examining gene
expression in the human hippocampus of patients receiving treatment against epilepsy.
However, it is possible that NCAM1 expression is down regulated in patients suffering
from epilepsy, for instance due to medication. In fact, a recent publication indicated
a role of NCAM1 in epilepsy [Wang et al., 2012b]. Another study directly measured
expression of the gene in the hippocampus of epileptic rats receiving medication, with
the observation that the medication induced downregulation of NCAM1, with an anti-
epileptic effect [Wang et al., 2010].
In the case of FOXP2, no sufficient expression profiles were detectable in the hippocam-
pal tissue. We thus wondered whether, in general, FOXP2 shows high expression levels
in the hippocampus. Several studies have addressed this question [Lai, 2003, Takahashi
et al., 2003], with the results that FOXP2 seems to show either no expression at all or
very low expression in the developing or mature hippocampus. Instead, expression
appears to take place predominately in areas that are involved in motor control, for
example in the thalamus or the cerebellum [Lai, 2003]. Lai et al. deduced that FOXP2
transcription appears to be highly regulated during development of the central nervous
system (CNS), both spatially and temporally.
We therefore conclude that, for our candidate genes, the hippocampal samples may not
have been representative. Furthermore, the expression patterns of the genes may have
been influenced by anti-epileptic medication.
A statistical explanation for not being able to identify associations in the expression
analysis was the limited sample size of 138 individuals. We therefore computed the
detection power for different sample sizes using [Gauderman, 2002]. As expected, our
data offered too low power for an appropriate statistical epistasis analysis. The actually
used sample size gave a power of 0.0006, power rose with sample size to up to 90% for
a 10 fold larger sample.
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5.2.6 Pathway analyses

The attempt to understand the elemental functional structure of our results using path-
way analyses was more successful. In fact, we observed very reasonable pathways
showing enrichment of our candidates (see results 4.2.10). For example, SWR-associated
genes were enriched in pathways important for cerebral cortex development, a brain
area showing FOXP2 expression [Takahashi et al., 2003] and involved in learning
processes. Furthermore, we observed an overrepresentation of genes involved in acetyl-
choline and argin pathways. Acetylcholine, a major excitatory neurotransmitter, plays
an important role during learning and memory processes [Hasselmo, 2006]. The trans-
mitter functions through the activation of mechanisms for persistent spiking of cortical
neurons, a vital process for the maintenance of novel information and its encoding into
long-term memory, as well as by stimulating synaptic plasticity. Moreover, components
of acetylcholine pathways are highly expressed in brain areas such as the cortex and
hippocampus, which are important for attention, learning, and memory [Hasselmo,
2006]. Argin, in turn, is a factor important for postsynaptic differentiation at neuromus-
cular junction (NMJ) and interacts with acetylcholine receptors [Bezakova and Ruegg,
2003].
We also observed an over-presentation of pathways connected to tyrosine kinase signal-
ing and corresponding receptors, which are called neurotrophins. These growth factors
are involved in the survival, development, and function of neurons among others in
the CNS [Reichardt, 2006] and are also attributed to have a function in learning and
memory [Yamada and Nabeshima, 2003].
Also a connection of our candidates to sugar metabolism was found, as we could observe
enrichments of mocosaccharide-, N-acetylglucosamine, and carbohydrate metabolic
processes. The latter is involved in energy metabolism during neuronal activation
[Richards et al., 1999]. Interestingly, previous publications already indicated a role of a
neuronal glucose transporter in dyslexia phenotypes [Roeske et al., 2011]. Furthermore,
Richards and colleagues measured differences in lactate concentration, important for
carbohydrate metabolism, between dyslexic cases and controls during a phonological
task.
In contrast to the enrichment of tyrosine kinase activities for the phenotype SWR, we
observed an over-representation of serine/threonine kinase activities for the analyses
of PA. Gene-set enrichment analyses (GSEA) indicated their functions to lie within
inflammation-related processes, e.g. the complement cascade, the lectin pathway, and
response reactions to acute-phase stress as well as to oxidative stress. Serine/threonine
protein kinases are found in high concentrations in neural tissues and are important
for signal transduction, neurotransmitter synthesis, ion channel properties, synaptic
plasticity, and ATP phosphorylation [Scott and Soderling, 1991]. It is, however, unclear
to which extent inflammation and serine/threonine protein kinase activities might
contribute to dyslexia. At the moment, we can merely speculate that unusual inflamma-
tions might exist in dyslexic brains, as is the case in autism, where local inflammation
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contributes to the pathogenesis [Manto and Jissendi, 2012]. In addition, a shift of ser-
ine/threonine protein kinase activities could have a possible impact on subjects by
modifying either ion channels or neurotransmitter synthesis, which, in turn, would
affect cognitive abilities.
GSEA of the phenotype SP revealed a significant enrichment of processes related to ax-
onal guidance signaling as well as of pathways within the microtubule-based flagellum,
a specialization important for cell migration. The latter process is disturbed in dyslexia
subjects [Smith, 2007].
When we finally considered all genes in a joint analysis, we obtained molecular func-
tions and biological processes highly relevant in the context of dyslexia. Examples are
genes involved in the development of the nervous system in general as well as of the
cerebral cortex in particular, and genes relevant for locomotor behavior and for axonal
guidance. In both the joint and the endophenotype-specific analyses, we observed a
frequent appearance of components involved in signaling or transport activities. It is
thus a possibility that transmembrane signaling plays a fundamental role in processes
implicated in development and maintenance of cognitive skills. In general, enrichment
analyses can help to illustrate whether certain candidate genes are enriched in pathways
relevant in the context of the examined phenotypes. Nevertheless, it remains difficult
to interpret the results of these analyses from a disease/disorder-focused perspective,
especially in the case of epistasis.
Clearly, epistasis does exist and, with the recent computational progress, genome-wide
search for interactions has become possible. However, it is still a huge challenge to
validate the biological context of identified statistical connections, especially if opportu-
nities for laboratory work are limited. We examined our statistically obtained gene-set
using several approaches, having mixed success. Although we obtained highly relevant
loci and pathways, it would require additional studies in order to be able to draw
more reliable conclusions. Albeit our results should be regarded as descriptive, we
nevertheless retrieved more significant and relevant hits for the pathogenesis of dyslexia
than previous single association studies.
With this work we attempted to increase the knowledge on multifactorial genetics of
dyslexia and its corresponding endophenotypes. We made striking and reasonable
findings, which motivates us to continue with multivariate analyses for other questions
in the wide field of complex traits.
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5.3 Conclusion and outlook

With this thesis, we aimed to extend our understanding of statistical epistasis and to
expose complex synergetic factors underlying susceptibility to developmental dyslexia.
We conducted genome-wide exhaustive searches in a combined sample of several
dyslexic cohorts using a hypothesis-free approach. From a statistical perspective on
epistasis, we successfully uncovered substantially relevant interactions throughout the
genome. However, from a biological perspective, we could not draw well-founded
conclusions yet, even though the identified interacting loci appear to have biologically
reasonable functions.
There is no doubt that epistasis plays an important role in nature. Yet although the
computational burden is now approachable either with multicore machines, the ad-
vancement of efficient mathematical methodologies, or, as in our case, by employing
parallelized graphics cards, the interpretation of the biological relevance of the thus
obtained results remains to be a challenge.
An important next step in the study of genetical interplay is finding appropriate so-
lutions for proving the relevant underlying biological epistasis. So far, few studies
were able to provide biological evidence for their statistical discoveries with functional
analyses [Gregersen et al., 2006, Nicodemus et al., 2010b, Van Steen, 2012].

Even though we were able to overcome several burdens from the computational side,
such as the time required for the calculations, epistasis still harbors a wide field of unan-
swered and non-considered questions. For example, genetic factors in nature might
not always interact in a linear manner and we might therefore not capture all possible
forms of epistasis with our linear-regression approach. This is the case although the
regression-based method is the most straightforward and natural approach available.
Enhancements towards unveiling other possible pattern of interactions would require
alternative approaches to capture nonlinearities, as for example support vector machine
(SVM), multifactor dimension reduction (MDR), or decision tress. Unfortunately, these
models are usually very time-consuming due to their computational intensity, or are
partially not applicable to quantitative phenotypes [Musani et al., 2007].
Next to the incapacity of regression models to capture nonlinearity, another flaw of the
approach could be the problem of overfitting, caused by incomplete data. To avoid such
effects, quality control steps were performed especially accurately.
The analysis of epistasis performed here only takes interactions between two loci into
account. Another extension of interaction models that is discussed and approached
frequently, is the effort to capture higher-order interactions of three or even four loci.
However, this would require for more sophisticated algorithms and hardware capabili-
ties in order to deal with the increased computational demands.
Apart from computational considerations, an additional weak point of our study re-
mains, as in most similar studies, the low sample size. This might constitute the reason
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why many relevant interactions did not exceed the threshold for significance when
correcting for multiple testing. As a solution for this issue, a replication study with a
greater sample-set could possibly identify a larger number of interactions significant on
a genome-wide scale and also confirm already identified loci. We see a high potential in
both our approach and the examined phenotype of dyslexia, due to its heterogeneity
and multifacetedness of cognitive manifestations. Therefore, we aim at the collection of
a greater, polylingual sample for such a replication study, composed of thousands of
cases.
In summary, our approach of exhaustive epistasis calculation is a promising route going
beyond single loci detection, especially in such multifactorial phenotypes as dyslexia.
The near future will offer state of the art capabilities in the wide area of interaction com-
putation for any kind of omics data, which could help to improve clinical, personalized
approaches. These could help to answer questions regarding functionality and shed
light upon the often discussed necessity of single-locus penetrance in an interacting
complex (marginal effects).
Summarized, the approach for exhaustive epistasis calculation, specially in such hetero-
geneous and multifactorial phenotypes such as dyslexia, is a promising way beyond
single loci detection. The near future will offer state of the art capabilities in the wide
area of interaction computation for any kind of omics data, which could help to improve
clinical personalized targeted approaches, to answer the questions around functionality,
and unveil the often discussed necessity of single-locus penetrance in an interacting
complex.
As was the case for GWASs, also GWIAs will require time to get established and refined
in its methodology as well as in its perception by scientists. We believe that, where the
time required for the analysis is not essential, it is well worth to take a hypothesis-free
look on the complex nature of genetics from an epistatic point of view. This might yield
more elaborate results on the so-far still often unknown connections between genetics
and human physiology.



Zusammenfassung

Ziel dieser Arbeit war die Identifizierung allelischer Interaktionen, die als genet-
ische Suszeptibilitätsfaktoren mit der Entwicklung der Lese- und Rechtschreibstörung
Dyslexie assoziiert sind. Dyslexie ist eine weitverbreitete Störung, die durch ein De-
fizit in Lese-und Rechtschreibfähigkeiten charakterisiert ist [Schulte-Körne et al., 2001].
Innerhalb des klinischen Bildes der Dyslexie können verschiedene Endophänotypen
subkategorisiert werden. Aufgrund der teilweise hierarchisch aufgebauten Struktur
dieser Endophenotypen [Carrion-Castillo et al., 2013] liegt die Vermutung nahe, dass
die zugrunde liegende genetische Architektur eine große Heterogenität aufweist. Da
bislang nur wenige genetische Suszeptibilitätsfaktoren identifiziert wurden, stellte sich
die Frage, ob in diese Prozesse genetische Interaktionen involviert sein könnten.
Bislang wurden genetische Interaktionen bei der Erforschung der Dyslexie, so wie kom-
plexer Erkrankungen im Allgemeinen, weitestgehend vernachlässigt. Frühere Studien
konzentrierten sich meist auf die Identifizierung einzelner krankheitsassoziierter Poly-
morphismen. Die Effekte dieser Einzelloci erklären jedoch meist nur einen geringen
Teil der Erblichkeit. Es wird daher vermutet, dass ein wesentlicher Bestandteil der
Heredität durch Interaktionen zwischen genetischen Varianten erklärt werden könnte.
Genetische Studien wurden in der Vergangenheit auf kandidatengenbasierte Ansätze
limitiert bedingt durch die hohe Rechenzeit und -kapazität die Interaktionsstudien
beanspruchen. Durch den Fortschritt in der Computertechnologie und die Entwicklung
neuer Algorithmen wurde uns hier erstmalig die Möglichkeit zur Realisation einer
genomweiten Interaktionsanalyse gegeben.
Die Dyslexie mit all ihren Endophänotypen erwies sich als sehr geeignet für die Suche
nach epistatischen Effekten auf genomweiter Ebene. Das Genom von 862 dyslexis-
chen Kindern unterschiedlicher ethnischer Zugehörigkeit (Deutschland, USA, Großbri-
tannien und Frankreich) und die in verschiedenen psychometrischen Tests erfassten
individuellen Endophänotypen Einzelwort-Lesen, Rechtschreibung, phonologische
Wahrnehmung und Nicht-Wort- Lesen bildeten die Datenbasis einer Zwei-Locus Inter-
aktionsanalyse mit der Software GLIDE [Kam-Thong et al., 2012].
Wir waren damit in der Lage, starke epistatische Effekte bei verschiedenen Endophäno-
typen der Dyslexie statistisch nachzuweisen. Die Ergebnisse enthielten höchst relevante
Loci innerhalb des Genoms, die neue und bereits bekannte Dyslexiekandidaten repräsen-
tieren. Ein Beispiel ist die Interaktion zwischen Varianten auf 18q11.2, einer Region der
mit phonologischer Wahrnehmungsstörung und Einzelwort-Lesen assoziiert ist, und
intronischen Varianten des NCAM1 Gens, das an der Entwicklung des Nervensystems
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beteiligt ist. Weitere statistisch signifikante Interaktionen, wurden zwischen intergenis-
chen allelischen Varianten auf Chromosom 9 und intronischen Polymorphismen von
FOXP2 gefunden, einem Gen, das mit Sprachstörungen assoziiert ist und dessen Rolle
in der Ätiologie von Dyslexie erst kürzlich beschrieben wurde [Wilcke et al., 2011].
In Anbetracht des komplexen Aufbaus von genetischen Prozessen und der Allgegen-
wärtigkeit von epistatischen Reaktionen sollten Multi-Locus-Effekte in der Zukunft
noch stärker in den Fokus der Wissenschaft rücken, für ein besseres Verständnis von
komplexen Phänotypen und genetischer Vererbung.



Bibliography

[Abdi, 2006] Abdi, H. The Bonferonni and Šidák Corrections for Multiple Comparisons.
In Salkind, N. J. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage.
(2006) 1–9.

[Amaral et al., 2008] Amaral, A. J., Megens, H. J., Crooijmans, R. P. M. A., Heuven, H.
C. M., and Groenen, M. A. M. Linkage Disequilibrium Decay and Haplotype Block
Structure in the Pig. Genetics, 179 (2008) 569–579.

[Anthoni et al., 2007] Anthoni, H., Zucchelli, M., Matsson, H., Müller-Myhsok, B.,
Fransson, I., Schumacher, J., Massinen, S., Onkamo, P., Warnke, A., Griesemann, H.,
Hoffmann, P., Nopola-Hemmi, J., Lyytinen, H., Schulte-Körne, G., Kere, J., Nöthen,
M. M., and Peyrard-Janvid, M. A locus on 2p12 containing the co-regulated MRPL19
and C2ORF3 genes is associated to dyslexia. Human Molecular Genetics, 16 (2007)
667–677.

[Ashworth et al., 2011] Ashworth, A., Lord, C. J., and Reis-Filho, J. S. Genetic Interac-
tions in Cancer Progression and Treatment. Cell, 145 (2011) 30–38.

[Atz et al., 2007] Atz, M. E., Rollins, B., and Vawter, M. P. NCAM1 association study
of bipolar disorder and schizophrenia: polymorphisms and alternatively spliced
isoforms lead to similarities and differences. Psychiatric genetics, 17 (2007) 55.

[Aulchenko et al., 2007] Aulchenko, Y. S., Ripke, S., Isaacs, A., and van Duijn, C. M.
GenABEL: an R library for genome-wide association analysis. Bioinformatics (Oxford,
England), 23 (2007) 1294–1296.

[Babushok and Kazazian, 2007] Babushok, D. V. and Kazazian, H. H. Progress in un-
derstanding the biology of the human mutagen LINE-1. Human Mutation, 28 (2007)
527–539.

[Bakwin, 2008] Bakwin, H. Reading Disability in Twins. Developmental Medicine & Child
Neurology, 15 (2008) 184–187.

[Bates et al., 2007] Bates, T. C., Luciano, M., Castles, A., Coltheart, M., Wright, M. J.,
and Martin, N. G. Replication of reported linkages for dyslexia and spelling and
suggestive evidence for novel regions on chromosomes 4 and 17. European Journal of
Human Genetics, 15 (2007) 194–203.

115



116 Bibliography

[Bateson, 1909] Bateson. Discussion on the Influence of Heredity on Disease, with
special Reference to Tuberculosis, Cancer, and Diseases of the Nervous System:
Introductory Address. Proceedings of the Royal Society of Medicine, 2 (1909) 22–30.

[Becker et al., 2010] Becker, T., Herold, C., Meesters, C., Mattheisen, M., and Baur, M. P.
Significance Levels in Genome-Wide Interaction Analysis (GWIA). Annals of Human
Genetics, 75 (2010) 29–35.

[Becker et al., 2005] Becker, T., Schumacher, J., Cichon, S., Baur, M. P., and Knapp, M.
Haplotype interaction analysis of unlinked regions. Genetic Epidemiology, 29 (2005)
313–322.

[Béna et al., 2007] Béna, F., Bottani, A., Marcelli, F., Sizonenko, L. D., Conrad, B., and
Dahoun, S. A de novo 1.1-1.6 Mb subtelomeric deletion of chromosome 20q13.33 in a
patient with learning difficulties but without obvious dysmorphic features. American
Journal of Medical Genetics Part A, 143A (2007) 1894–1899.

[Benjamini and Hochberg, 1995] Benjamini, Y. and Hochberg, Y. Controlling the false
discovery rate: a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society. Series B (Methodological) (1995) 289–300.

[Bezakova and Ruegg, 2003] Bezakova, G. and Ruegg, M. A. New insights into the
roles of agrin. Nature reviews. Molecular cell biology, 4 (2003) 295–308.

[Birney et al., 2007] Birney, E., Stamatoyannopoulos, J. A., Dutta, A., Guigó, R., Gin-
geras, T. R., Margulies, E. H., Weng, Z., Snyder, M., Dermitzakis, E. T., Stamatoy-
annopoulos, J. A., Thurman, R. E., Kuehn, M. S., Taylor, C. M., Neph, S., Koch, C. M.,
Asthana, S., Malhotra, A., Adzhubei, I., Greenbaum, J. A., Andrews, R. M., Flicek,
P., Boyle, P. J., Cao, H., Carter, N. P., Clelland, G. K., Davis, S., Day, N., Dhami, P.,
Dillon, S. C., Dorschner, M. O., Fiegler, H., Giresi, P. G., Goldy, J., Hawrylycz, M.,
Haydock, A., Humbert, R., James, K. D., Johnson, B. E., Johnson, E. M., Frum, T. T.,
Rosenzweig, E. R., Karnani, N., Lee, K., Lefebvre, G. C., Navas, P. A., Neri, F., Parker,
S. C. J., Sabo, P. J., Sandstrom, R., Shafer, A., Vetrie, D., Weaver, M., Wilcox, S., Yu1,
M., Collins, F. S., Dekker, J., Lieb, J. D., Tullius, T. D., Crawford, G. E., Sunyaev, S.,
Noble, W. S., Dunham, I., Dutta, A., Guigó, R., Denoeud, F., Reymond, A., Kapranov,
P., Rozowsky, J., Zheng, D., Castelo, R., Frankish, A., Harrow, J., Ghosh, S., Sandelin,
A., Hofacker, I. L., Baertsch, R., Keefe, D., Flicek, P., Dike, S., Cheng, J., Hirsch, H. A.,
Sekinger, E. A., Lagarde, J., Abril, J. F., Shahab, A., Flamm, C., Fried, C., Hacker-
müller, J., Hertel, J., Lindemeyer, M., Missal, K., Tanzer, A., Washietl, S., Korbel, J.,
Emanuelsson, O., Pedersen, J. S., Holroyd, N., Taylor, R., Swarbreck, D., Matthews,
N., Dickson, M. C., Thomas, D. J., Weirauch, M. T., Gilbert, J., Drenkow, J., Bell, I.,
Zhao, X., Srinivasan, K. G., Sung, W.-K., Ooi, H. S., Chiu, K. P., Foissac, S., Alioto,
T., Brent, M., Pachter, L., Tress, M. L., Valencia, A., Choo, S. W., Choo, C. Y., Ucla,
C., Manzano, C., Wyss, C., Cheung, E., Clark, T. G., Brown, J. B., Ganesh, M., Patel,



Bibliography 117

S., Tammana, H., Chrast, J., Henrichsen, C. N., Kai, C., Kawai, J., Nagalakshmi, U.,
Wu, J., Lian, Z., Lian, J., Newburger, P., Zhang, X., Bickel, P., Mattick, J. S., Carninci,
P., Hayashizaki, Y., Weissman, S., Dermitzakis, E. T., Margulies, E. H., Hubbard, T.,
Myers, R. M., Rogers, J., Stadler, P. F., Lowe, T. M., Wei, C.-L., Snyder, M., Snyder,
M., Birney, E., Struhl, K., Gerstein, M., Antonarakis, S. E., Gingeras, T. R., Brown,
J. B., Flicek, P., Fu, Y., Keefe, D., Birney, E., Denoeud, F., Gerstein, M., Green, E. D.,
Kapranov, P., Karaöz, U., Myers, R. M., Noble, W. S., Reymond, A., Rozowsky, J.,
Struhl, K., Siepel, A., Stamatoyannopoulos, J. A., Taylor, C. M., Taylor, J., Thurman,
R. E., Tullius, T. D., Washietl, S., Zheng, D., Liefer, L. A., Wetterstrand, K. A., Good,
P. J., Feingold, E. A., Guyer, M. S., Collins, F. S., Margulies, E. H., Cooper, G. M.,
Asimenos, G., Thomas, D. J., Dewey, C. N., Siepel, A., Birney, E., Keefe, D., Hou, M.,
Taylor, J., Nikolaev, S., Montoya-Burgos, J. I., Löytynoja, A., Whelan, S., Pardi, F.,
Massingham, T., Brown, J. B., Huang, H., Zhang, N. R., Bickel, P., Holmes, I., Mullikin,
J. C., Ureta-Vidal, A., Paten, B., Seringhaus, M., Church, D., Rosenbloom, K., Kent,
W. J., Stone, E. A., Sequencing Program, N. C., Human Genome Sequencing Center, B.
C. o. M., Genome Sequencing Center, W. U., Institute, B., Oakland Research Institute,
C. H., Gerstein, M., Antonarakis, S. E., Batzoglou, S., Goldman, N., Hardison, R. C.,
Haussler, D., Miller, W., Pachter, L., Green, E. D., Sidow, A., Weng, Z., Trinklein, N. D.,
Fu, Y., Zhang, Z. D., Karaöz, U., Barrera, L., Stuart, R., Zheng, D., Ghosh, S., Flicek,
P., King, D. C., Taylor, J., Ameur, A., Enroth, S., Bieda, M. C., Koch, C. M., Hirsch,
H. A., Wei, C.-L., Cheng, J., Kim, J., Bhinge, A. A., Giresi, P. G., Jiang, N., Liu, J., Yao,
F., Sung, W.-K., Chiu, K. P., Vega, V. B., Lee, C. W. H., Ng, P., Shahab, A., Sekinger,
E. A., Yang, A., Moqtaderi, Z., Zhu, Z., Xu, X., Squazzo, S., Oberley, M. J., Inman,
D., Singer, M. A., Richmond, T. A., Munn, K. J., Rada-Iglesias, A., Wallerman, O.,
Komorowski, J., Clelland, G. K., Wilcox, S., Dillon, S. C., Andrews, R. M., Fowler,
J. C., Couttet, P., James, K. D., Lefebvre, G. C., Bruce, A. W., Dovey, O. M., Ellis, P. D.,
Dhami, P., Langford, C. F., Carter, N. P., Vetrie, D., Kapranov, P., Nix, D. A., Bell, I.,
Patel, S., Rozowsky, J., Euskirchen, G., Hartman, S., Lian, J., Wu, J., Urban, A. E.,
Kraus, P., Van Calcar, S., Heintzman, N., Hoon Kim, T., Wang, K., Qu, C., Hon, G.,
Luna, R., Glass, C. K., Rosenfeld, M. G., Aldred, S. F., Cooper, S. J., Halees, A., Lin,
J. M., Shulha, H. P., Zhang, X., Xu, M., Haidar, J. N. S., Yu, Y., Birney, E., Weissman, S.,
Ruan, Y., Lieb, J. D., Iyer, V. R., Green, R. D., Gingeras, T. R., Wadelius, C., Dunham, I.,
Struhl, K., Hardison, R. C., Gerstein, M., Farnham, P. J., Myers, R. M., Ren, B., Snyder,
M., Thomas, D. J., Rosenbloom, K., Harte, R. A., Hinrichs, A. S., Trumbower, H.,
Clawson, H., Hillman-Jackson, J., Zweig, A. S., Smith, K., Thakkapallayil, A., Barber,
G., Kuhn, R. M., Karolchik, D., Haussler, D., Kent, W. J., Dermitzakis, E. T., Armengol,
L., Bird, C. P., Clark, T. G., Cooper, G. M., de Bakker, P. I. W., Kern, A. D., Lopez-Bigas,
N., Martin, J. D., Stranger, B. E., Thomas, D. J., Woodroffe, A., Batzoglou, S., Davydov,
E., Dimas, A., Eyras, E., Hallgrímsdóttir, I. B., Hardison, R. C., Huppert, J., Sidow,
A., Taylor, J., Trumbower, H., Zody, M. C., Guigó, R., Mullikin, J. C., Abecasis, G. R.,
Estivill, X., Birney, E., Bouffard, G. G., Guan, X., Hansen, N. F., Idol, J. R., Maduro, V.



118 Bibliography

V. B., Maskeri, B., McDowell, J. C., Park, M., Thomas, P. J., Young, A. C., Blakesley,
R. W., Muzny, D. M., Sodergren, E., Wheeler, D. A., Worley, K. C., Jiang, H., Weinstock,
G. M., Gibbs, R. A., Graves, T., Fulton, R., Mardis, E. R., Wilson, R. K., Clamp, M.,
Cuff, J., Gnerre, S., Jaffe, D. B., Chang, J. L., Lindblad-Toh, K., Lander, E. S., Koriabine,
M., Nefedov, M., Osoegawa, K., Yoshinaga, Y., Zhu, B., and de Jong, P. J. Identification
and analysis of functional elements in 1human genome by the ENCODE pilot project.
Nature, 447 (2007) 799–816.

[Bloom et al., 2013] Bloom, J. S., Ehrenreich, I. M., Loo, W. T., Lite, T.-L. V., and Kruglyak,
L. Finding the sources of missing heritability in a yeast cross. Nature, 494 (2013)
234–237.

[Buckner et al., 2010] Buckner, J., Wilson, J., Seligman, M., Athey, B., Watson, S., and
Meng, F. The gputools package enables GPU computing in R. Bioinformatics (Oxford,
England), 26 (2010) 134–135.

[Carrion-Castillo et al., 2013] Carrion-Castillo, A., Franke, B., and Fisher, S. E. Molecu-
lar genetics of dyslexia: an overview. Dyslexia (Chichester, England), 19 (2013) 214–240.

[Clayton, 2009] Clayton, D. G. Prediction and interaction in complex disease genetics:
experience in type 1 diabetes. PLoS genetics, 5 (2009) e1000540.

[Compton et al., 2001] Compton, D. L., DeFries, J. C., and Olson, R. K. Are RAN-
and phonological awareness-deficits additive in children with reading disabilities?
Dyslexia (Chichester, England), 7 (2001) 125–149.

[Cordell, 2009] Cordell, H. J. Detecting gene-gene interactions that underlie human
diseases. Nature Reviews Genetics, 10 (2009) 392–404.

[Core, 2008] Core, T. R. D. (2008). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing.

[Cox et al., 1999] Cox, N. J., Frigge, M., Nicolae, D. L., Concannon, P., Hanis, C. L., Bell,
G. I., and Kong, A. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase
susceptibility to diabetes in Mexican Americans. Nature genetics, 21 (1999) 213–215.

[Culverhouse et al., 2002] Culverhouse, R., Suarez, B. K., Lin, J., and Reich, T. A per-
spective on epistasis: limits of models displaying no main effect. American journal of
human genetics, 70 (2002) 461–471.

[Culverhouse, 2012] Culverhouse, R. C. A Comparison of Methods Sensitive to Interac-
tions With Small Main Effects. Genetic Epidemiology, 36 (2012) 303–311.

[Czamara et al., 2013] Czamara, D., Tiesler, C. M. T., Kohlböck, G., Berdel, D., Hoff-
mann, B., Bauer, C.-P., Koletzko, S., Schaaf, B., Lehmann, I., Herbarth, O., von Berg, A.,



Bibliography 119

Müller-Myhsok, B., Schulte-Körne, G., and Heinrich, J. Children with ADHD symp-
toms have a higher risk for reading, spelling and math difficulties in the GINIplus
and LISAplus cohort studies. PloS one, 8 (2013) e63859.

[Dahdouh et al., 2009] Dahdouh, F., Anthoni, H., Tapia-Páez, I., Peyrard-Janvid, M.,
Schulte-Körne, G., Warnke, A., Remschmidt, H., Ziegler, A., Kere, J., Müller-Myhsok,
B., Nöthen, M. M., Schumacher, J., and Zucchelli, M. Further evidence for DYX1C1
as a susceptibility factor for dyslexia. Psychiatric genetics, 19 (2009) 59–63.

[de Kovel et al., 2004] de Kovel, C. G. F., Hol, F. A., Heister, J. G. A. M., Willemen, J. J.
H. T., Sandkuijl, L. A., Franke, B., and Padberg, G. W. Genomewide scan identifies
susceptibility locus for dyslexia on Xq27 in an extended Dutch family. Journal of
Medical Genetics, 41 (2004) 652–657.

[Deak et al., 2005] Deak, K. L., Boyles, A. L., Etchevers, H. C., Melvin, E. C., Siegel,
D. G., Graham, F. L., Slifer, S. H., Enterline, D. S., George, T. M., Vekemans, M.,
McClay, D., Bassuk, A. G., Kessler, J. A., Linney, E., Gilbert, J. R., and Speer, M. C.
SNPs in the neural cell adhesion molecule 1 gene (NCAM1) may be associated with
human neural tube defects. Human genetics, 117 (2005) 133–142.

[Fagerheim et al., 1999] Fagerheim, T., Raeymaekers, P., Tønnessen, F. E., Pedersen,
M., Tranebjaerg, L., and Lubs, H. A. A new gene (DYX3) for dyslexia is located on
chromosome 2. Journal of Medical Genetics, 36 (1999) 664–669.

[Fields, 2007] Fields, S. Molecular biology. Site-seeing by sequencing. Science (New York,
N.Y.), 316 (2007) 1441–1442.

[Fisher and DeFries, 2002] Fisher, S. E. and DeFries, J. C. Developmental dyslexia:
genetic dissection of a complex cognitive trait. Nature reviews. Neuroscience, 3 (2002)
767–780.

[Fisher et al., 2002] Fisher, S. E., Francks, C., Marlow, A. J., MacPhie, I. L., Newbury,
D. F., Cardon, L. R., Ishikawa-Brush, Y., Richardson, A. J., Talcott, J. B., Gayán, J.,
Olson, R. K., Pennington, B. F., Smith, S. D., DeFries, J. C., Stein, J. F., and Monaco,
A. P. Independent genome-wide scans identify a chromosome 18 quantitative-trait
locus influencing dyslexia. Nature genetics, 30 (2002) 86–91.

[Fisher and Scharff, 2009] Fisher, S. E. and Scharff, C. FOXP2 as a molecular window
into speech and language. Trends in Genetics, 25 (2009) 166–177.

[Fisher, 1918] Fisher, S. R. A. (1918). The Correlation Between Relatives on the Supposi-
tion of Mendelian Inheritance. Royal Society of Edinb.

[Francks et al., 2004] Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri,
T. S., Cardon, L. R., Marlow, A. J., MacPhie, I. L., Walter, J., Pennington, B. F., Fisher,



120 Bibliography

S. E., Olson, R. K., DeFries, J. C., Stein, J. F., and Monaco, A. P. A 77-kilobase
region of chromosome 6p22.2 is associated with dyslexia in families from the United
Kingdom and from the United States. The American Journal of Human Genetics, 75
(2004) 1046–1058.

[Frankel and Schork, 1996] Frankel, W. N. and Schork, N. J. Who’s afraid of epistasis?
Nature genetics, 14 (1996) 371–373.

[Galaburda, 1999] Galaburda, A. M. Developmental dyslexia: A multilevel syndrome.
Dyslexia (Chichester, England), Dyslexia (Chichester, England) (1999).

[Garret et al., 1997] Garret, A. S., Wood, F. B., Flowers, D. L., and Absher, J. R. Glucose
metabolism in the inferior temporal cortex is related to accuracy of performance on a
letter recognition task. Unpublished manuscript (1997).

[Gauderman, 2002] Gauderman, W. J. Sample Size Requirements for Association Stud-
ies of Gene-Gene Interaction. American Journal of Epidemiology, 155 (2002) 478–484.

[Gayán and Olson, 2003] Gayán, J. and Olson, R. K. Genetic and environmental influ-
ences on individual differences in printed word recognition. Journal of Experimental
Child Psychology, 84 (2003) 97–123.

[Gentleman et al., 2004] Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling,
M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber,
W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G.,
Smith, C., Smyth, G., Tierney, L., Yang, J. Y., and Zhang, J. Genome Biology | Full
text | Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol, 5 (2004) R80.

[Germanò et al., 2010] Germanò, E., Gagliano, A., and Curatolo, P. Comorbidity of
ADHD and dyslexia. Developmental neuropsychology, 35 (2010) 475–493.

[Gerstein et al., 2012] Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan,
K.-K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., Min, R., Alves,
P., Abyzov, A., Addleman, N., Bhardwaj, N., Boyle, A. P., Cayting, P., Charos, A.,
Chen, D. Z., Cheng, Y., Clarke, D., Eastman, C., Euskirchen, G., Frietze, S., Fu, Y.,
Gertz, J., Grubert, F., Harmanci, A., Jain, P., Kasowski, M., Lacroute, P., Leng, J., Lian,
J., Monahan, H., O’Geen, H., Ouyang, Z., Partridge, E. C., Patacsil, D., Pauli, F., Raha,
D., Ramirez, L., Reddy, T. E., Reed, B., Shi, M., Slifer, T., Wang, J., Wu, L., Yang, X., Yip,
K. Y., Zilberman-Schapira, G., Batzoglou, S., Sidow, A., Farnham, P. J., Myers, R. M.,
Weissman, S. M., and Snyder, M. Architecture of the human regulatory network
derived from ENCODE data. Nature, 489 (2012) 91–100.

[Gibson and Gruen, 2008] Gibson, C. J. and Gruen, J. R. The human lexinome: Genes
of language and reading. Journal of Communication Disorders, 41 (2008) 409–420.



Bibliography 121

[Gottesman and Gould, 2003] Gottesman, I. I. and Gould, T. D. The endophenotype
concept in psychiatry: etymology and strategic intentions. American Journal of Psychi-
atry, 160 (2003) 636–645.

[Gregersen et al., 2006] Gregersen, J. W., Kranc, K. R., Ke, X., Svendsen, P., Madsen,
L. S., Thomsen, A. R., Cardon, L. R., Bell, J. I., and Fugger, L. Functional epistasis
on a common MHC haplotype associated with multiple sclerosis. Nature, 443 (2006)
574–577.

[Gretton et al., 2007] Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., and Smola,
A. J. A kernel method for the two-sample-problem. Journal of Machine Learning
Research 1, 19 (2007) 513.

[Gretton et al., 2005] Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005).
Measuring Statistical Dependence with Hilbert-Schmidt Norms. Springer Berlin
Heidelberg.

[Grigorenko, 2001] Grigorenko, E. L. Developmental dyslexia: an update on genes,
brains, and environments. Journal of child psychology and psychiatry, and allied disciplines,
42 (2001) 91–125.

[Grigorenko, 2005] Grigorenko, E. L. A Conservative Meta-Analysis of Linkage and
Linkage-Association Studies of Developmental Dyslexia. Scientific Studies of Reading,
9 (2005) 285–316.

[Grigorenko et al., 2001] Grigorenko, E. L., Wood, F. B., Meyer, M. S., Pauls, J. E., Hart,
L. A., and Pauls, D. L. Linkage studies suggest a possible locus for developmental
dyslexia on chromosome 1p. American journal of medical genetics, 105 (2001) 120–129.

[Gros et al., 2009] Gros, P.-A., Le Nagard, H., and Tenaillon, O. The evolution of epista-
sis and its links with genetic robustness, complexity and drift in a phenotypic model
of adaptation. Genetics, 182 (2009) 277–293.

[Hannula-Jouppi et al., 2005] Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., Ek-
lund, R., Nopola-Hemmi, J., Kääriäinen, H., and Kere, J. The axon guidance receptor
gene ROBO1 is a candidate gene for developmental dyslexia. PLoS genetics, 1 (2005)
e50–e50.

[Harold et al., 2006] Harold, D., Paracchini, S., Scerri, T., Dennis, M., Cope, N., Hill, G.,
Moskvina, V., Walter, J., Richardson, A. J., Owen, M. J., Stein, J. F., Green, E. D.,
O’Donovan, M. C., Williams, J., and Monaco, A. P. Further evidence that the
KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular psy-
chiatry, 11 (2006) 1085–1061.

[Hasselmo, 2006] Hasselmo, M. E. The role of acetylcholine in learning and memory.
Current Opinion in Neurobiology, 16 (2006) 710–715.



122 Bibliography

[Heim et al., 2003] Heim, S. S., Kissler, J. J., Elbert, T. T., and Rockstroh, B. B. Cerebral
lateralization in schizophrenia and dyslexia: neuromagnetic responses to auditory
stimuli. Neuropsychologia, 42 (2003) 6–6.

[Hemani et al., 2014] Hemani, G., Shakhbazov, K., Westra, H.-J., Esko, T., Henders,
A. K., McRae, A. F., Yang, J., Gibson, G., Martin, N. G., Metspalu, A., Franke, L.,
Montgomery, G. W., Visscher, P. M., and Powell, J. E. Detection and replication of
epistasis influencing transcription in humans. Nature, 508 (2014) 249–253.

[Hemani et al., 2011] Hemani, G., Theocharidis, A., Wei, W., and Haley, C. EpiGPU:
exhaustive pairwise epistasis scans parallelized on consumer level graphics cards.
Bioinformatics (Oxford, England), 27 (2011) 1462–1465.

[Hermann, 1959] Hermann, K. Reading disability: A medical study of word-blindness and
related handicaps. Munksgaard (1959).

[Ho and Crabtree, 2010] Ho, L. and Crabtree, G. R. Chromatin remodelling during
development. Nature, 463 (2010) 474–484.

[Horie et al., 2000] Horie, M., Mitsumoto, Y., Kyushiki, H., Kanemoto, N., Watanabe, A.,
Taniguchi, Y., Nishino, N., Okamoto, T., Kondo, M., Mori, T., Noguchi, K., Nakamura,
Y., Takahashi, E.-i., and Tanigami, A. Identification and Characterization of TMEFF2,
a Novel Survival Factor for Hippocampal and Mesencephalic Neurons. Genomics, 67
(2000) 146–152.

[Howie et al., 2012] Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., and Abecasis,
G. R. Fast and accurate genotype imputation in genome-wide association studies
through pre-phasing. Nature genetics, 44 (2012) 955–959.

[Howie et al., 2009] Howie, B. N., Donnelly, P., and Marchini, J. A flexible and accurate
genotype imputation method for the next generation of genome-wide association
studies. PLoS genetics, 5 (2009) e1000529.

[Hsiung et al., 2004] Hsiung, G.-Y. R., Kaplan, B. J., Petryshen, T. L., Lu, S., and Field,
L. L. A dyslexia susceptibility locus (DYX7) linked to dopamine D4 receptor (DRD4)
region on chromosome 11p15.5. American journal of medical genetics. Part B, Neuropsy-
chiatric genetics : the official publication of the International Society of Psychiatric Genetics,
125B (2004) 112–119.

[Hu et al., 2010] Hu, X., Liu, Q., Zhang, Z., Li, Z., Wang, S., He, L., and Shi, Y. SHEsisEpi,
a GPU-enhanced genome-wide SNP-SNP interaction scanning algorithm, efficiently
reveals the risk genetic epistasis in bipolar disorder. Cell research, 20 (2010) 854–857.

[Huber et al., 2002] Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and
Vingron, M. Variance stabilization applied to microarray data calibration and to the



Bibliography 123

quantification of differential expression. Bioinformatics (Oxford, England), 18 Suppl 1
(2002) S96–104.

[Humphreys et al., 1990] Humphreys, P., Kaufmann, W. E., and Galaburda, A. M. De-
velopmental dyslexia in women: neuropathological findings in three patients. Annals
of Neurology, 28 (1990) 727–738.

[Johnson et al., 2007] Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. Genome-
wide mapping of in vivo protein-DNA interactions. Science (New York, N.Y.), 316
(2007) 1497–1502.

[Kam-Thong, 2012] Kam-Thong, T. (2012). Massive Parallelisierung der kombinatorischen
statistischen Genetik-Analysen mit Methoden des maschinellen Lernens auf graphics process-
ing units (GPU). PhD thesis, Berlin.

[Kam-Thong et al., 2012] Kam-Thong, T., Azencott, C.-A., Cayton, L., Pütz, B., Altmann,
A., Karbalai, N., Sämann, P. G., Schölkopf, B., Müller-Myhsok, B., and Borgwardt,
K. M. GLIDE: GPU-based linear regression for detection of epistasis. Human heredity,
73 (2012) 220–236.

[Kam-Thong et al., 2010] Kam-Thong, T., Czamara, D., Tsuda, K., Borgwardt, K., Lewis,
C. M., Erhardt-Lehmann, A., Hemmer, B., Rieckmann, P., Daake, M., Weber, F., Wolf,
C., Ziegler, A., tz, B. P. u., Holsboer, F., lkopf, B. S. o., and ller Myhsok, B. M. u.
EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical
processing units. European Journal of Human Genetics, 19 (2010) 465–471.

[Kam-Thong et al., 2011] Kam-Thong, T., Pütz, B., Karbalai, N., Müller-Myhsok, B.,
and Borgwardt, K. Epistasis detection on quantitative phenotypes by exhaustive
enumeration using GPUs. Bioinformatics (Oxford, England), 27 (2011) i214–21.

[Kaminen et al., 2003] Kaminen, N., Hannula-Jouppi, K., Kestilä, M., Lahermo, P.,
Muller, K., Kaaranen, M., Myllyluoma, B., Voutilainen, A., Lyytinen, H., Nopola-
Hemmi, J., and Kere, J. A genome scan for developmental dyslexia confirms linkage
to chromosome 2p11 and suggests a new locus on 7q32. Journal of Medical Genetics, 40
(2003) 340–345.

[Karolchik et al., 2014] Karolchik, D., Barber, G. P., Casper, J., Clawson, H., Cline, M. S.,
Diekhans, M., Dreszer, T. R., Fujita, P. A., Guruvadoo, L., Haeussler, M., Harte, R. A.,
Heitner, S., Hinrichs, A. S., Learned, K., Lee, B. T., Li, C. H., Raney, B. J., Rhead, B.,
Rosenbloom, K. R., Sloan, C. A., Speir, M. L., Zweig, A. S., Haussler, D., Kuhn, R. M.,
and Kent, W. J. The UCSC Genome Browser database: 2014 update. Nucleic acids
research, 42 (2014) D764–70.

[Ke et al., 2008] Ke, X., Taylor, M. S., and Cardon, L. R. Singleton SNPs in the human
genome and implications for genome-wide association studies. European Journal of
Human Genetics, 16 (2008) 506–515.



124 Bibliography

[Kent et al., 2002] Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H.,
Zahler, A. M., and Haussler, D. The Human Genome Browser at UCSC. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor Laboratory Press (2002).

[König et al., 2011] König, I. R., Schumacher, J., Hoffmann, P., Kleensang, A., Ludwig,
K. U., Grimm, T., Neuhoff, N., Preis, M., Roeske, D., Warnke, A., Propping, P.,
Remschmidt, H., Nöthen, M. M., Ziegler, A., Müller-Myhsok, B., and Schulte-Körne,
G. Mapping for dyslexia and related cognitive trait loci provides strong evidence for
further risk genes on chromosome 6p21. American journal of medical genetics. Part B,
Neuropsychiatric genetics : the official publication of the International Society of Psychiatric
Genetics, 156B (2011) 36–43.

[Kotti et al., 2007] Kotti, S., Bickeb ouml ller, H., and Clerget-Darpoux, F. Strategy for
Detecting Susceptibility Genes with Weak or No Marginal Effect. Human heredity, 63
(2007) 85–92.

[Kurt et al., 2012] Kurt, S., Fisher, S. E., and Ehret, G. Foxp2 Mutations Impair Auditory-
Motor Association Learning. PloS one, 7 (2012) e33130.

[Kwok, 2003] Kwok, P.-Y. (2003). Single Nucleotide Polymorphisms. Methods and Proto-
cols. Springer.

[Lai et al., 2001] Lai, C. S. C., Fisher, S. E. S., Hurst, J. A. J., Vargha-Khadem, F. F., and
Monaco, A. P. A. A forkhead-domain gene is mutated in a severe speech and language
disorder. Nature, 413 (2001) 519–523.

[Lai, 2003] Lai, C. S. L. FOXP2 expression during brain development coincides with
adult sites of pathology in a severe speech and language disorder. Brain : a journal of
neurology, 126 (2003) 2455–2462.

[Lee and Schatz, 2012] Lee, H. and Schatz, M. C. Genomic dark matter: the reliability
of short read mapping illustrated by the genome mappability score. Bioinformatics
(Oxford, England), 28 (2012) 2097–2105.

[Lee et al., 2004] Lee, H. K., Park, K. S., Cho, Y. M., Ritchie, M. D., Moore, J. H., Park,
J. Y., Lee, K. U., and Shin, H. D. Multifactor-dimensionality reduction shows a two-
locus interaction associated with Type 2 diabetes mellitus. Diabetologia, 47 (2004)
549–554.

[Li and Durbin, 2009] Li, H. and Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics (Oxford, England), 25 (2009) 1754–1760.

[Li et al., 2003] Li, S. S., Khalid, N., Carlson, C., and Zhao, L. P. Estimating haplo-
type frequencies and standard errors for multiple single nucleotide polymorphisms.
Biostatistics (Oxford, England), 4 (2003) 513–522.



Bibliography 125

[Ludwig et al., 2010] Ludwig, K. U., Roeske, D., Herms, S., Schumacher, J., Warnke,
A., Plume, E., Neuhoff, N., Bruder, J., Remschmidt, H., Schulte-Körne, G., Müller-
Myhsok, B., Nöthen, M. M., and Hoffmann, P. Variation in GRIN2B contributes to
weak performance in verbal short-term memory in children with dyslexia. American
journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the
International Society of Psychiatric Genetics, 153B (2010) 503–511.

[Ludwig et al., 2008] Ludwig, K. U., Roeske, D., Schumacher, J., Schulte-Körne, G.,
König, I. R., Warnke, A., Plume, E., Ziegler, A., Remschmidt, H., Müller-Myhsok, B.,
Nöthen, M. M., and Hoffmann, P. Investigation of interaction between DCDC2 and
KIAA0319 in a large German dyslexia sample. Journal of neural transmission (Vienna,
Austria : 1996), 115 (2008) 1587–1589.

[Lumley, 2013] Lumley, T. (2013). Package ‘rmeta’. University of Washington.

[Maag and Behrens, 1989] Maag, J. W. and Behrens, J. T. Depression And Cognitive Self-
Statements Of Learning Disabled And Seriously Emotionally Disturbed Adolescents.
The Journal of Special Education, 23 (1989) 17–27.

[MacDermot et al., 2005] MacDermot, K. D., Bonora, E., Sykes, N., Coupe, A.-M., Lai, C.
S. L., Vernes, S. C., Vargha-Khadem, F., McKenzie, F., Smith, R. L., Monaco, A. P., and
Fisher, S. E. Identification of FOXP2 truncation as a novel cause of developmental
speech and language deficits. American journal of human genetics, 76 (2005) 1074–1080.

[Manolio et al., 2009] Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff,
L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho,
J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin,
M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson,
G., Haines, J. L., Mackay, T. F. C., McCarroll, S. A., and Visscher, P. M. Finding the
missing heritability of complex diseases. Nature, 461 (2009) 747–753.

[Manto and Jissendi, 2012] Manto, M. U. and Jissendi, P. Cerebellum: links between
development, developmental disorders and motor learning. Frontiers in neuroanatomy,
6 (2012) 1.

[Marchini et al., 2005] Marchini, J., Donnelly, P., and Cardon, L. R. Genome-wide
strategies for detecting multiple loci that influence complex diseases. Nature genetics,
37 (2005) 413–417.

[Marino et al., 2012] Marino, C., Meng, H., Mascheretti, S., Rusconi, M., Cope, N.,
Giorda, R., Molteni, M., and Gruen, J. R. DCDC2 genetic variants and susceptibility
to developmental dyslexia. Psychiatric genetics, 22 (2012) 25–30.

[Markram et al., 2007] Markram, K., Gerardy-Schahn, R., and Sandi, C. Selective learn-
ing and memory impairments in mice deficient for polysialylated NCAM in adult-
hood. Neuroscience, 144 (2007) 788–796.



126 Bibliography

[Martin et al., 2006] Martin, E. R., Ritchie, M. D., Hahn, L., Kang, S., and Moore, J. H.
A novel method to identify gene–gene effects in nuclear families: the MDR-PDT.
Genetic Epidemiology, 30 (2006) 111–123.

[Meng et al., 2005] Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K.,
Pennington, B. F., DeFries, J. C., Gelernter, J., O’Reilly-Pol, T., Somlo, S., Skudlarski, P.,
Shaywitz, S. E., Shaywitz, B. A., Marchione, K., Wang, Y., Paramasivam, M., LoTurco,
J. J., Page, G. P., and Gruen, J. R. DCDC2 is associated with reading disability and
modulates neuronal development in the brain. Proceedings of the National Academy of
Sciences of the United States of America, 102 (2005) 17053–17058.

[Miko, 2008] Miko, I. Epistasis: Gene interaction and phenotype effects. Nature Educa-
tion (2008).

[Moore, 2003] Moore, J. H. The Ubiquitous Nature of Epistasis in Determining Suscep-
tibility to Common Human Diseases. Human heredity, 56 (2003) 73–82.

[Moore and Williams, 2009] Moore, J. H. and Williams, S. M. Epistasis and its implica-
tions for personal genetics. American journal of human genetics, 85 (2009) 309–320.

[Mosby, Inc, 2009] Mosby, Inc (2009). Mosby’s Dictionary of Medicine, Nursing and Health
Professions. Mosby Incorporated.

[Moser and Moser, 1998] Moser, M. B. and Moser, E. I. Functional differentiation in the
hippocampus. Hippocampus, 8 (1998) 608–619.

[Musani et al., 2007] Musani, S. K., Shriner, D., Liu, N., Feng, R., Coffey, C. S., Yi, N.,
Tiwari, H. K., and Allison, D. B. Detection of Gene Gene Interactions in Genome-
Wide Association Studies of Human Population Data. Human heredity, 63 (2007)
67–84.

[Newbury and Monaco, 2010] Newbury, D. F. and Monaco, A. P. Genetic advances in
the study of speech and language disorders. Neuron, 68 (2010) 309–320.

[Newbury et al., 2010] Newbury, D. F., Paracchini, S., Scerri, T. S., Winchester, L., Addis,
L., Richardson, A. J., Walter, J., Stein, J. F., Talcott, J. B., and Monaco, A. P. Investigation
of Dyslexia and SLI Risk Variants in Reading- and Language-Impaired Subjects.
Behavior Genetics, 41 (2010) 90–104.

[Nicodemus et al., 2010a] Nicodemus, K. K., Callicott, J. H., Higier, R. G., Luna, A.,
Nixon, D. C., Lipska, B. K., Vakkalanka, R., Giegling, I., Rujescu, D., St Clair, D.,
Muglia, P., Shugart, Y. Y., and Weinberger, D. R. Evidence of statistical epistasis be-
tween DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation
with functional neuroimaging. Human genetics, 127 (2010a) 441–452.



Bibliography 127

[Nicodemus et al., 2007] Nicodemus, K. K., Kolachana, B. S., Vakkalanka, R., Straub,
R. E., Giegling, I., Egan, M. F., Rujescu, D., and Weinberger, D. R. Evidence for statis-
tical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in
RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Human
genetics, 120 (2007) 889–906.

[Nicodemus et al., 2010b] Nicodemus, K. K., Law, A. J., Radulescu, E., Luna, A., Ko-
lachana, B., Vakkalanka, R., Rujescu, D., Giegling, I., Straub, R. E., McGee, K., Gold,
B., Dean, M., Muglia, P., Callicott, J. H., Tan, H.-Y., and Weinberger, D. R. Biological
validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis
via functional neuroimaging in healthy controls. Archives of general psychiatry, 67
(2010b) 991–1001.

[Nikitin et al., 2003] Nikitin, A., Egorov, S., Daraselia, N., and Mazo, I. Pathway studio–
the analysis and navigation of molecular networks. Bioinformatics (Oxford, England),
19 (2003) 2155–2157.

[Nopola-Hemmi et al., 2001] Nopola-Hemmi, J., Myllyluoma, B., Haltia, T., Taipale, M.,
Ollikainen, V., Ahonen, T., Voutilainen, A., Kere, J., and Widén, E. A dominant gene
for developmental dyslexia on chromosome 3. Journal of Medical Genetics, 38 (2001)
658–664.

[Nopola-Hemmi et al., 2000] Nopola-Hemmi, J., Taipale, M., Haltia, T., Lehesjoki, A. E.,
Voutilainen, A., and Kere, J. Two translocations of chromosome 15q associated with
dyslexia. Journal of Medical Genetics, 37 (2000) 771–775.

[Olson et al., 1999] Olson, R. K., Datta, H., Gayán, J., and DeFries, J. C. A behavioral-
genetic analysis of reading disabilities and component processes. Converging methods
for understanding reading and dyslexia, Converging methods for understanding reading and
dyslexia (1999) 133–153.

[Pammer, 2014] Pammer, K. Review ArticleBrain Mechanisms and Reading Remedia-
tion: More Questions Than Answers. Scientifica, Scientifica (2014) 1–9.

[Paracchini et al., 2008] Paracchini, S., Steer, C. D., Buckingham, L.-L., Morris, A. P.,
Ring, S., Scerri, T., Stein, J., Pembrey, M. E., Ragoussis, J., Golding, J., and Monaco,
A. P. Association of the KIAA0319 dyslexia susceptibility gene with reading skills in
the general population. American Journal of Psychiatry, 165 (2008) 1576–1584.

[Paracchini et al., 2006] Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam,
M., Wang, Y., Keating, B. J., Taylor, J. M., Hacking, D. F., Scerri, T., Francks, C.,
Richardson, A. J., Wade-Martins, R., Stein, J. F., Knight, J. C., Copp, A. J., Loturco, J.,
and Monaco, A. P. The chromosome 6p22 haplotype associated with dyslexia reduces
the expression of KIAA0319, a novel gene involved in neuronal migration. Human
Molecular Genetics, 15 (2006) 1659–1666.



128 Bibliography

[Paracchini, 2011] Paracchini, S. S. Dissection of genetic associations with language-
related traits in population-based cohorts. Journal of Neurodevelopmental Disorders, 3
(2011) 365–373.

[Peter et al., 2010] Peter, B., Raskind, W. H., Matsushita, M., Lisowski, M., Vu, T.,
Berninger, V. W., Wijsman, E. M., and Brkanac, Z. Replication of CNTNAP2 as-
sociation with nonword repetition and support for FOXP2 association with timed
reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental
Disorders, 3 (2010) 39–49.

[Petryshen et al., 2001] Petryshen, T. L., Kaplan, B. J., Fu Liu, M., de French, N. S.,
Tobias, R., Hughes, M. L., and Field, L. L. Evidence for a susceptibility locus on
chromosome 6q influencing phonological coding dyslexia. American journal of medical
genetics, 105 (2001) 507–517.

[Phillips, 2008] Phillips, P. C. Epistasis — the essential role of gene interactions in the
structure and evolution of genetic systems. Nature Reviews Genetics, 9 (2008) 855–867.

[Pinel et al., 2012] Pinel, P., Fauchereau, F., Moreno, A., Barbot, A., Lathrop, M., Ze-
lenika, D., Le Bihan, D., Poline, J. B., Bourgeron, T., and Dehaene, S. Genetic Variants
of FOXP2 and KIAA0319/TTRAP/THEM2 Locus Are Associated with Altered Brain
Activation in Distinct Language-Related Regions. Journal of Neuroscience, 32 (2012)
817–825.

[Purcell et al., 2007] Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.
A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., and Sham, P. C.
PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage
Analyses. The American Journal of Human Genetics, 81 (2007) 559–575.

[Pütz et al., 2013] Pütz, B., Kam-Thong, T., Karbalai, N., Altmann, A., and Müller-
Myhsok, B. Cost-effective GPU-grid for genome-wide epistasis calculations. Methods
of information in medicine, 52 (2013) 91–95.

[Qin et al., 2005] Qin, S., Zhao, X., Pan, Y., Liu, J., Feng, G., Fu, J., Bao, J., Zhang, Z., and
He, L. An association study of the N-methyl-D-aspartate receptor NR1 subunit gene
(GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA
microarray. European Journal of Human Genetics, 13 (2005) 807–814.

[Rack et al., 1992] Rack, J. P., Snowling, M. J., and Olson, R. K. JSTOR: Reading Research
Quarterly, Vol. 27, No. 1 (Winter, 1992), pp. 28-53. Reading Research Quarterly (1992).

[Reichardt, 2006] Reichardt, L. F. Neurotrophin-regulated signalling pathways. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 361 (2006) 1545–1564.



Bibliography 129

[Reiersen and Todd, 2008] Reiersen, A. M. and Todd, R. D. Co-occurrence of ADHD
and autism spectrum disorders: phenomenology and treatment. Expert review of
neurotherapeutics, 8 (2008) 657–669.

[Richards et al., 1999] Richards, T. L., Dager, S. R., Corina, D., Serafini, S., Heide, A. C.,
Steury, K., Strauss, W., Hayes, C. E., Abbott, R. D., Craft, S., Shaw, D., Posse, S.,
and Berninger, V. W. Dyslexic children have abnormal brain lactate response to
reading-related language tasks. AJNR. American journal of neuroradiology, 20 (1999)
1393–1398.

[Ritchie et al., 2001] Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D.,
Parl, F. F., and Moore, J. H. Multifactor-Dimensionality Reduction Reveals High-
Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer.
The American Journal of Human Genetics, 69 (2001) 138–147.

[Ritchie, 2010] Ritchie, M. D. M. Using biological knowledge to uncover the mystery in
the search for epistasis in genome-wide association studies. Annals of Human Genetics,
75 (2010) 172–182.

[Roeske et al., 2011] Roeske, D., Ludwig, K. U., Neuhoff, N., Becker, J., Bartling, J.,
Bruder, J., Brockschmidt, F. F., Warnke, A., Remschmidt, H., Hoffmann, P., Müller-
Myhsok, B., Nöthen, M. M., and Schulte-Körne, G. First genome-wide association
scan on neurophysiological endophenotypes points to trans-regulation effects on
SLC2A3 in dyslexic children. Molecular psychiatry, 16 (2011) 97–107.

[Rohlfs et al., 2010] Rohlfs, R. V., Swanson, W. J., and Weir, B. S. AR TICLEDetecting
Coevolution through Allelic Association between Physically Unlinked Loci. The
American Journal of Human Genetics, 86 (2010) 674–685.

[Rosenbloom et al., 2013] Rosenbloom, K. R., Sloan, C. A., Malladi, V. S., Dreszer, T. R.,
Learned, K., Kirkup, V. M., Wong, M. C., Maddren, M., Fang, R., Heitner, S. G., Lee,
B. T., Barber, G. P., Harte, R. A., Diekhans, M., Long, J. C., Wilder, S. P., Zweig, A. S.,
Karolchik, D., Kuhn, R. M., Haussler, D., and Kent, W. J. ENCODE data in the UCSC
Genome Browser: year 5 update. Nucleic acids research, 41 (2013) D56–63.

[Salyakina, 2007] Salyakina, D. (2007). Candidate gene association testing in the dissection
of genetic causes for depressive disorders and the response to antidepressant treatment. PhD
thesis, Dissertation.

[Scerri et al., 2012] Scerri, T. S., Darki, F., Newbury, D. F., Whitehouse, A. J. O., Peyrard-
Janvid, M., Matsson, H., Ang, Q. W., Pennell, C. E., Ring, S., Stein, J., Morris, A. P.,
Monaco, A. P., Kere, J., Talcott, J. B., Klingberg, T., and Paracchini, S. The dyslexia
candidate locus on 2p12 is associated with general cognitive ability and white matter
structure. PloS one, 7 (2012) e50321–e50321.



130 Bibliography

[Scerri et al., 2011] Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller,
L. L., Monaco, A. P., Bishop, D. V. M., and Paracchini, S. DCDC2, KIAA0319 and
CMIP Are Associated with Reading-Related Traits. BPS, 70 (2011) 237–245.

[Scerri et al., 2010] Scerri, T. S., Paracchini, S., Morris, A., MacPhie, I. L., Talcott, J., Stein,
J., Smith, S. D., Pennington, B. F., Olson, R. K., DeFries, J. C., Monaco, A. P., and
Richardson, A. J. Identification of candidate genes for dyslexia susceptibility on
chromosome 18. PloS one, 5 (2010) e13712.

[Schmid and Maness, 2008] Schmid, R. S. and Maness, P. F. L1 and NCAM adhesion
molecules as signaling coreceptors in neuronal migration and process outgrowth.
Current Opinion in Neurobiology, 18 (2008) 245–250.

[Schoenherr and Anderson, 1995] Schoenherr, C. J. and Anderson, D. J. The neuron-
restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific
genes. Science (New York, N.Y.), 267 (1995) 1360–1363.

[Schulte-Körne et al., 2001] Schulte-Körne, G., Deimel, W., and Remschmidt, H. [Diag-
nosis of reading and spelling disorder]. Zeitschrift für Kinder- und Jugendpsychiatrie
und Psychotherapie, 29 (2001) 113–116.

[Schulte-Körne et al., 2007] Schulte-Körne, G., Ziegler, A., Deimel, W., Schumacher, J.,
Plume, E., Bachmann, C., Kleensang, A., Propping, P., Nöthen, M. M., Warnke, A.,
Remschmidt, H., and König, I. R. Interrelationship and familiality of dyslexia related
quantitative measures. Annals of Human Genetics, 71 (2007) 160–175.

[Schumacher et al., 2005] Schumacher, J., Anthoni, H., Dahdouh, F., König, I. R.,
Hillmer, A. M., Kluck, N., Manthey, M., Plume, E., Warnke, A., Remschmidt, H.,
Hülsmann, J., Cichon, S., Lindgren, C. M., Propping, P., Zucchelli, M., Ziegler, A.,
Peyrard-Janvid, M., Schulte-Körne, G., Nöthen, M. M., and Kere, J. Strong genetic
evidence of DCDC2 as a susceptibility gene for dyslexia. The American Journal of
Human Genetics, 78 (2005) 52–62.

[Schumacher et al., 2007] Schumacher, J., Hoffmann, P., Schmäl, C., Schulte-Körne, G.,
and Nöthen, M. M. Genetics of dyslexia: the evolving landscape. Journal of Medical
Genetics, 44 (2007) 289–297.

[Scott and Soderling, 1991] Scott, J. D. and Soderling, T. R. Serine/threonine protein
kinases. Current Opinion in Neurobiology, 2 (1991) 289–295.

[Segrè et al., 2010] Segrè, A. V., Groop, L., Mootha, V. K., Daly, M. J., and Altshuler,
D. PLOS Genetics: Common Inherited Variation in Mitochondrial Genes Is Not
Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits. PLoS
genetics (2010).



Bibliography 131

[Shao et al., 2008] Shao, H., Burrage, L. C., Sinasac, D. S., Hill, A. E., Ernest, S. R.,
O’Brien, W., Courtland, H.-W., Jepsen, K. J., Kirby, A., Kulbokas, E. J., Daly, M. J.,
Broman, K. W., Lander, E. S., and Nadeau, J. H. Genetic architecture of complex traits:
large phenotypic effects and pervasive epistasis. Proceedings of the National Academy
of Sciences of the United States of America, 105 (2008) 19910–19914.

[Shaywitz et al., 1990] Shaywitz, S. E., Shaywitz, B. A., Fletcher, J. M., and Escobar,
M. D. Prevalence of reading disability in boys and girls. Results of the Connecticut
Longitudinal Study. JAMA : the journal of the American Medical Association, 264 (1990)
998–1002.

[Smith, 2007] Smith, S. D. Genes, language development, and language disorders.
Mental Retardation and Developmental Disabilities Research Reviews, 13 (2007) 96–105.

[Smith et al., 1983] Smith, S. D., Kimberling, W. J., Pennington, B. F., and Lubs, H. A.
Specific reading disability: identification of an inherited form through linkage analy-
sis. Science (New York, N.Y.), 219 (1983) 1345–1347.

[Smith, 1991] Smith, S. L. Succeeding against the odds: How the learning-disabled can
realize their promise. New York : G.P Putnam’s Sons (1991).

[Stegle et al., 2012] Stegle, O., Parts, L., Piipari, M., Winn, J., and Durbin, R. Using
probabilistic estimation of expression residuals (PEER) to obtain increased power
and interpretability of gene expression analyses. Nature Protocols, 7 (2012) 500–507.

[Stein et al., 2004] Stein, C. M., Schick, J. H., Gerry Taylor, H., Shriberg, L. D., Millard,
C., Kundtz-Kluge, A., Russo, K., Minich, N., Hansen, A., Freebairn, L. A., Elston,
R. C., Lewis, B. A., and Iyengar, S. K. Pleiotropic effects of a chromosome 3 locus on
speech-sound disorder and reading. The American Journal of Human Genetics, 74 (2004)
283–297.

[Takahashi et al., 2003] Takahashi, K., Liu, F.-C., Hirokawa, K., and Takahashi, H. Ex-
pression of Foxp2, a gene involved in speech and language, in the developing and
adult striatum. Journal of neuroscience research, 73 (2003) 61–72.

[Tammimies et al., 2013] Tammimies, K., Vitezic, M., Matsson, H., Le Guyader, S., Bür-
glin, T. R., Öhman, T., Strömblad, S., Daub, C. O., Nyman, T. A., Kere, J., and
Tapia-Páez, I. Molecular Networks of DYX1C1 Gene Show Connection to Neuronal
Migration Genes and Cytoskeletal Proteins. Biological Psychiatry, 73 (2013) 583–590.

[Thorleifsson et al., 2007] Thorleifsson, G., Magnusson, K. P., Sulem, P., Walters, G. B.,
Gudbjartsson, D. F., Stefansson, H., Jonsson, T., Jonasdottir, A., Jonasdottir, A., Stefans-
dottir, G., Masson, G., Hardarson, G. A., Petursson, H., Arnarsson, A., Motallebipour,
M., Wallerman, O., Wadelius, C., Gulcher, J. R., Thorsteinsdottir, U., Kong, A., Jonas-
son, F., and Stefansson, K. Common sequence variants in the LOXL1 gene confer
susceptibility to exfoliation glaucoma. Science (New York, N.Y.), 317 (2007) 1397–1400.



132 Bibliography

[Tzenova et al., 2004] Tzenova, J., Kaplan, B. J., Petryshen, T. L., and Field, L. L. Con-
firmation of a dyslexia susceptibility locus on chromosome 1p34-p36 in a set of 100
Canadian families. American journal of medical genetics. Part B, Neuropsychiatric genetics
: the official publication of the International Society of Psychiatric Genetics, 127B (2004)
117–124.

[Van Steen, 2012] Van Steen, K. Travelling the world of gene-gene interactions. Briefings
in Bioinformatics, 13 (2012) 1–19.

[Veerappa et al., 2013] Veerappa, A. M., Saldanha, M., Padakannaya, P., and Ramachan-
dra, N. B. Family-based genome-wide copy number scan identifies five new genes of
dyslexia involved in dendritic spinal plasticity. Journal of Human Genetics, 58 (2013)
539–547.

[Verhoeven et al., 2010] Verhoeven, K., Casella, G., and McIntyre, L. M. Epistasis:
Obstacle or Advantage for Mapping Complex Traits? PloS one (2010).

[Vernes et al., 2008] Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L.,
Nicod, J., Groszer, M., Alarcón, M., Oliver, P. L., Davies, K. E., Geschwind, D. H.,
Monaco, A. P., and Fisher, S. E. A Functional Genetic Link between Distinct Develop-
mental Language Disorders. New England Journal of Medicine, 359 (2008) 2337–2345.

[Vernes et al., 2011] Vernes, S. C., Oliver, P. L., Spiteri, E., Lockstone, H. E., Puliyadi,
R., Taylor, J. M., Ho, J., Mombereau, C., Brewer, A., Lowy, E., Nicod, J., Groszer, M.,
Baban, D., Sahgal, N., Cazier, J.-B., Ragoussis, J., Davies, K. E., Geschwind, D. H., and
Fisher, S. E. Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in
the Developing Brain. PLoS genetics, 7 (2011) e1002145.

[Wade et al., 2001] Wade, M. J., Winther, R. G., Agrawal, A. F., and Goodnight, C. J.
Alternative definitions of epistasis: dependence and interaction. Trends in Ecology &
Evolution, 16 (2001) 498–504.

[Wang et al., 2012a] Wang, J., Zhuang, J., Iyer, S., Lin, X., Whitfield, T. W., Greven, M. C.,
Pierce, B. G., Dong, X., Kundaje, A., Cheng, Y., Rando, O. J., Birney, E., Myers, R. M.,
Noble, W. S., Snyder, M., and Weng, Z. Sequence features and chromatin structure
around the genomic regions bound by 119 human transcription factors. Genome
research, 22 (2012a) 1798–1812.

[Wang et al., 2013] Wang, J., Zhuang, J., Iyer, S., Lin, X.-Y., Greven, M. C., Kim, B.-
H., Moore, J., Pierce, B. G., Dong, X., Virgil, D., Birney, E., Hung, J.-H., and Weng,
Z. Factorbook.org: a Wiki-based database for transcription factor-binding data
generated by the ENCODE consortium. Nucleic acids research, 41 (2013) D171–6.

[Wang et al., 2010] Wang, S.-Q., Kang, Y.-M., Qi, Z.-C., Ma, X.-R., Liang, Y.-F., Li, D.-
G., and Zhang, B. Effects of ganoderma lucidum spores powder on expression of



Bibliography 133

NCAM-1 and NCAM-L1 in hippocampus of rats with epilepsy. The FASEB Journal
(2010).

[Wang et al., 2012b] Wang, W., Wang, L., Luo, J., Xi, Z., Wang, X., Chen, G., and Chu, L.
Role of a neural cell adhesion molecule found in cerebrospinal fluid as a potential
biomarker for epilepsy. Neurochemical Research, 37 (2012b) 819–825.

[Wigginton et al., 2005] Wigginton, J. E., Cutler, D. J., and Abecasis, G. R. A note on
exact tests of Hardy-Weinberg equilibrium. American journal of human genetics, 76
(2005) 887–893.

[Wilcke et al., 2011] Wilcke, A., Ligges, C., Burkhardt, J., Alexander, M., Wolf, C.,
Quente, E., Ahnert, P., Hoffmann, P., Becker, A., ller Myhsok, B. M. u., Cichon,
S., Boltze, J., and Kirsten, H. Imaging genetics of FOXP2 in dyslexia. European Journal
of Human Genetics, 20 (2011) 224–229.

[Wimmer, 1996] Wimmer, H. The Nonword Reading Deficit in Developmental Dyslexia:
Evidence from Children Learning to Read German. Journal of Experimental Child
Psychology, 61 (1996) 80–90.

[Wolff and Melngailis, 1994] Wolff, P. H. and Melngailis, I. Family patterns of devel-
opmental dyslexia: clinical findings. American journal of medical genetics, 54 (1994)
122–131.

[Wood et al., 1991] Wood, F., Flowers, L., Buchsbaum, M., and Tallal, P. Investigation
of abnormal left temporal functioning in dyslexia through rCBF, auditory evoked
potentials, and positron emisson tomography. Reading and Writing, 3 (1991) 379–393.

[Yamada and Nabeshima, 2003] Yamada, K. and Nabeshima, T. Brain-derived neu-
rotrophic factor/TrkB signaling in memory processes. Journal of pharmacological
sciences, 91 (2003) 267–270.

[Yung et al., 2011] Yung, L. S., Yang, C., Wan, X., and Yu, W. GBOOST: a GPU-based
tool for detecting gene-gene interactions in genome-wide case control studies. Bioin-
formatics (Oxford, England), 27 (2011) 1309–1310.

[Zerbin-Rüdin, 1967] Zerbin-Rüdin, E. Kongenitale wortblindheit oder spezifische
dyslexie (Congenital word-blindness). Annals of Dyslexia, 17 (1967) 47–54.

[Zhang et al., 2008] Zhang, Y., Liu, T., Meyer, C. A., and Eeckhoute, J. Model-based
analysis of ChIP-Seq (MACS). Genome . . . , Genome . . . (2008).

[Zhao et al., 2006] Zhao, J., Jin, L., and Xiong, M. Test for interaction between two
unlinked loci. American journal of human genetics, 79 (2006) 831–845.



134 Bibliography

[Zuk et al., 2012] Zuk, O. O., Hechter, E. E., Sunyaev, S. R. S., and Lander, E. S. E. The
mystery of missing heritability: Genetic interactions create phantom heritability.
Proceedings of the National Academy of Sciences of the United States of America, 109 (2012)
1193–1198.



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs56253958 7:113883531 FOXP2 rs1409679 9:113586263 Intergenic -0.679 0.091 8.49e-14 -0.857 -0.5 0.454 7.90e-13
rs144261163 7:113893884 FOXP2 rs1409679 9:113586263 Intergenic -0.673 0.091 1.51e-13 -0.852 -0.494 0.393 1.18e-12
rs56253958 7:113883531 FOXP2 rs2821137 9:113587820 Intergenic -0.672 0.091 1.92e-13 -0.851 -0.493 0.396 2.36e-12
rs1450833 7:113865735 FOXP2 rs1409679 9:113586263 Intergenic -0.66 0.09 2.23e-13 -0.836 -0.484 0.498 1.90e-12
rs56253958 7:113883531 FOXP2 rs2846443 9:113589582 Intergenic -0.667 0.092 3.59e-13 -0.846 -0.487 0.388 3.50e-12
rs1450833 7:113865735 FOXP2 rs2821137 9:113587820 Intergenic -0.653 0.09 4.98e-13 -0.83 -0.476 0.439 5.44e-12
rs6961970 7:113901132 FOXP2 rs1409679 9:113586263 Intergenic -0.637 0.088 5.94e-13 -0.81 -0.463 0.68 6.73e-12
rs1450833 7:113865735 FOXP2 rs2846443 9:113589582 Intergenic -0.648 0.09 6.86e-13 -0.825 -0.471 0.429 7.89e-12
rs73206277 7:113954180 FOXP2 rs1409679 9:113586263 Intergenic -0.634 0.089 7.95e-13 -0.808 -0.461 0.562 9.14e-12
rs6961970 7:113901132 FOXP2 rs2821137 9:113587820 Intergenic -0.63 0.089 1.27e-12 -0.804 -0.456 0.619 1.84e-11
rs73206277 7:113954180 FOXP2 rs2821137 9:113587820 Intergenic -0.628 0.089 1.68e-12 -0.802 -0.454 0.497 2.49e-11
rs6961970 7:113901132 FOXP2 rs2846443 9:113589582 Intergenic -0.625 0.089 1.77e-12 -0.799 -0.452 0.615 2.68e-11
rs63348361 7:113903189 FOXP2 rs1409679 9:113586263 Intergenic -0.577 0.082 1.98e-12 -0.737 -0.416 0.914 2.34e-11
rs12537074 7:113921127 FOXP2 rs1409679 9:113586263 Intergenic -0.575 0.082 1.98e-12 -0.736 -0.415 0.922 1.97e-11
rs549449 1:170610710 Intergenic rs6570245 6:138915745 Intergenic 0.572 0.081 2.03e-12 0.413 0.732 0.341 1.38e-11
rs1528093 7:113912913 FOXP2 rs1409679 9:113586263 Intergenic -0.576 0.082 2.06e-12 -0.736 -0.415 0.917 1.91e-11
rs73206277 7:113954180 FOXP2 rs2846443 9:113589582 Intergenic -0.623 0.089 2.34e-12 -0.797 -0.449 0.499 3.64e-11
rs1852471 7:113925317 FOXP2 rs1409679 9:113586263 Intergenic -0.566 0.081 2.96e-12 -0.725 -0.407 0.882 4.68e-11
rs1406087 7:113910505 FOXP2 rs1409679 9:113586263 Intergenic -0.57 0.082 3.05e-12 -0.731 -0.41 0.907 2.11e-11
rs1194327 7:113896089 FOXP2 rs1409679 9:113586263 Intergenic -0.582 0.083 3.07e-12 -0.745 -0.418 0.826 5.34e-11
rs12537074 7:113921127 FOXP2 rs2821137 9:113587820 Intergenic -0.571 0.082 3.44e-12 -0.731 -0.41 0.908 3.64e-11
rs63348361 7:113903189 FOXP2 rs2821137 9:113587820 Intergenic -0.572 0.082 3.44e-12 -0.733 -0.411 0.9 4.30e-11
rs1852472 7:113925350 FOXP2 rs1409679 9:113586263 Intergenic -0.57 0.082 3.53e-12 -0.731 -0.41 0.904 2.70e-11
rs79874450 6:2636108 Intergenic rs73024913 19:29778736 LOC284395 -1.388 0.2 3.53e-12 -1.779 -0.997 0.69 2.49e-12
rs1528093 7:113912913 FOXP2 rs2821137 9:113587820 Intergenic -0.571 0.082 3.58e-12 -0.732 -0.41 0.902 3.52e-11
rs2694946 7:113925004 FOXP2 rs1409679 9:113586263 Intergenic -0.568 0.082 3.80e-12 -0.729 -0.408 0.912 2.63e-11
rs63348361 7:113903189 FOXP2 rs2846443 9:113589582 Intergenic -0.569 0.082 3.97e-12 -0.73 -0.409 0.89 5.56e-11
rs12537074 7:113921127 FOXP2 rs2846443 9:113589582 Intergenic -0.568 0.082 3.98e-12 -0.728 -0.407 0.899 4.71e-11
rs2690839 7:113924502 FOXP2 rs1409679 9:113586263 Intergenic -0.567 0.082 4.06e-12 -0.728 -0.407 0.915 2.15e-11
rs1528093 7:113912913 FOXP2 rs2846443 9:113589582 Intergenic -0.568 0.082 4.14e-12 -0.729 -0.408 0.893 4.56e-11
rs1527154 7:113922817 FOXP2 rs1409679 9:113586263 Intergenic -0.567 0.082 4.15e-12 -0.727 -0.407 0.914 2.10e-11
rs1527159 7:113930918 FOXP2 rs1409679 9:113586263 Intergenic -0.564 0.082 4.35e-12 -0.724 -0.405 0.873 1.68e-11
rs1728436 7:113912412 FOXP2 rs1409679 9:113586263 Intergenic -0.567 0.082 4.45e-12 -0.727 -0.406 0.91 1.99e-11



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs2690842 7:113915642 FOXP2 rs1409679 9:113586263 Intergenic -0.566 0.082 4.57e-12 -0.726 -0.406 0.912 1.95e-11
rs1209254 7:113917539 FOXP2 rs1409679 9:113586263 Intergenic -0.566 0.082 4.62e-12 -0.726 -0.405 0.913 1.92e-11
rs549449 1:170610710 Intergenic rs6918682 6:138909231 Intergenic 0.563 0.081 4.81e-12 0.403 0.722 0.61 2.19e-11
rs75270819 5:141484933 Intergenic rs180655 10:117763073 Intergenic -1.01 0.146 4.83e-12 -1.297 -0.724 0.844 1.13e-11
rs1852471 7:113925317 FOXP2 rs2821137 9:113587820 Intergenic -0.562 0.081 4.90e-12 -0.721 -0.403 0.87 8.28e-11
rs77557441 6:2668406 MYLK4 rs73024913 19:29778736 LOC284395 -1.365 0.198 4.99e-12 -1.752 -0.977 0.773 3.59e-12
rs75270819 5:141484933 Intergenic rs180662 10:117758764 Intergenic -1.02 0.148 5.07e-12 -1.31 -0.731 0.519 1.21e-11
rs1406087 7:113910505 FOXP2 rs2821137 9:113587820 Intergenic -0.566 0.082 5.21e-12 -0.727 -0.405 0.89 3.84e-11
rs1194327 7:113896089 FOXP2 rs2821137 9:113587820 Intergenic -0.577 0.084 5.32e-12 -0.741 -0.413 0.784 9.69e-11
rs9392409 6:2637106 C6orf195 rs73024913 19:29778736 LOC284395 -1.375 0.199 5.35e-12 -1.765 -0.984 0.712 2.74e-12
rs1194330 7:113920688 FOXP2 rs1409679 9:113586263 Intergenic -0.568 0.082 5.41e-12 -0.729 -0.406 0.916 2.25e-11
rs549449 1:170610710 Intergenic rs3861392 6:138910102 Intergenic 0.562 0.082 5.49e-12 0.402 0.722 0.503 2.27e-11
rs74735747 6:2666614 MYLK4 rs73024913 19:29778736 LOC284395 -1.36 0.197 5.52e-12 -1.747 -0.973 0.789 4.24e-12
rs1527158 7:113926120 FOXP2 rs1409679 9:113586263 Intergenic -0.561 0.081 5.53e-12 -0.721 -0.402 0.856 9.39e-12
rs549449 1:170610710 Intergenic rs4521605 6:138908662 Intergenic 0.579 0.084 5.73e-12 0.414 0.744 0.534 5.61e-11
rs1406087 7:113910505 FOXP2 rs2846443 9:113589582 Intergenic -0.563 0.082 5.87e-12 -0.724 -0.403 0.882 4.94e-11
rs1852472 7:113925350 FOXP2 rs2821137 9:113587820 Intergenic -0.566 0.082 6.04e-12 -0.727 -0.404 0.889 4.92e-11
rs17135412 6:2666428 MYLK4 rs73024913 19:29778736 LOC284395 -1.358 0.197 6.09e-12 -1.745 -0.971 0.778 4.48e-12
rs2694946 7:113925004 FOXP2 rs2821137 9:113587820 Intergenic -0.564 0.082 6.51e-12 -0.724 -0.403 0.897 4.79e-11
rs1852472 7:113925350 FOXP2 rs2846443 9:113589582 Intergenic -0.563 0.082 6.87e-12 -0.724 -0.402 0.881 6.35e-11
rs2690839 7:113924502 FOXP2 rs2821137 9:113587820 Intergenic -0.563 0.082 6.95e-12 -0.723 -0.402 0.9 3.94e-11
rs6961519 7:113958453 FOXP2 rs1409679 9:113586263 Intergenic -0.607 0.089 6.96e-12 -0.781 -0.434 0.654 7.95e-11
rs1527154 7:113922817 FOXP2 rs2821137 9:113587820 Intergenic -0.562 0.082 7.09e-12 -0.723 -0.402 0.899 3.84e-11
rs549449 1:170610710 Intergenic rs6923972 6:138909661 Intergenic 0.559 0.081 7.23e-12 0.399 0.718 0.624 3.06e-11
rs2694946 7:113925004 FOXP2 rs2846443 9:113589582 Intergenic -0.561 0.082 7.39e-12 -0.721 -0.4 0.889 6.18e-11
rs549449 1:170610710 Intergenic rs7765298 6:138907520 Intergenic 0.561 0.082 7.41e-12 0.4 0.721 0.601 3.57e-11
rs1728436 7:113912412 FOXP2 rs2821137 9:113587820 Intergenic -0.562 0.082 7.60e-12 -0.723 -0.401 0.893 3.64e-11
rs1527159 7:113930918 FOXP2 rs2821137 9:113587820 Intergenic -0.559 0.082 7.66e-12 -0.72 -0.399 0.85 3.07e-11
rs11903584 2:75672583 Intergenic rs2619111 10:118966996 KCNK18 -0.954 0.139 7.70e-12 -1.228 -0.681 0.872 7.51e-11
rs2690842 7:113915642 FOXP2 rs2821137 9:113587820 Intergenic -0.561 0.082 7.79e-12 -0.722 -0.4 0.896 3.56e-11
rs2690839 7:113924502 FOXP2 rs2846443 9:113589582 Intergenic -0.56 0.082 7.87e-12 -0.72 -0.4 0.892 5.10e-11
rs1209254 7:113917539 FOXP2 rs2821137 9:113587820 Intergenic -0.561 0.082 7.90e-12 -0.722 -0.4 0.897 3.52e-11
rs12068805 1:170601313 Intergenic rs9385834 6:138908551 Intergenic 0.654 0.096 7.96e-12 0.467 0.842 0.484 2.08e-11



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs12566725 1:170601935 Intergenic rs9385834 6:138908551 Intergenic 0.653 0.096 7.98e-12 0.466 0.84 0.491 2.14e-11

rs1527154 7:113922817 FOXP2 rs2846443 9:113589582 Intergenic -0.56 0.082 8.04e-12 -0.72 -0.399 0.891 4.98e-11

rs12068805 1:170601313 Intergenic rs4629702 6:138909908 Intergenic 0.651 0.095 8.08e-12 0.464 0.838 0.459 1.68e-11

rs12566725 1:170601935 Intergenic rs4629702 6:138909908 Intergenic 0.65 0.095 8.10e-12 0.464 0.836 0.466 1.73e-11

rs12068805 1:170601313 Intergenic rs111809728 6:138908234 Intergenic 0.654 0.096 8.11e-12 0.467 0.842 0.484 2.13e-11

rs12566725 1:170601935 Intergenic rs111809728 6:138908234 Intergenic 0.653 0.096 8.13e-12 0.466 0.841 0.491 2.19e-11

rs12068805 1:170601313 Intergenic rs9389594 6:138907678 Intergenic 0.654 0.096 8.44e-12 0.467 0.842 0.485 2.21e-11

rs12566725 1:170601935 Intergenic rs9389594 6:138907678 Intergenic 0.653 0.096 8.46e-12 0.466 0.841 0.492 2.28e-11

rs1728436 7:113912412 FOXP2 rs2846443 9:113589582 Intergenic -0.559 0.082 8.62e-12 -0.72 -0.399 0.886 4.72e-11

rs1527159 7:113930918 FOXP2 rs2846443 9:113589582 Intergenic -0.557 0.082 8.69e-12 -0.717 -0.397 0.844 3.97e-11

rs1527153 7:113957092 FOXP2 rs1409679 9:113586263 Intergenic -0.558 0.082 8.70e-12 -0.718 -0.398 0.875 3.46e-11

rs2690842 7:113915642 FOXP2 rs2846443 9:113589582 Intergenic -0.559 0.082 8.84e-12 -0.719 -0.398 0.888 4.62e-11

rs1209254 7:113917539 FOXP2 rs2846443 9:113589582 Intergenic -0.558 0.082 8.94e-12 -0.719 -0.398 0.889 4.56e-11

rs1194330 7:113920688 FOXP2 rs2821137 9:113587820 Intergenic -0.563 0.083 9.10e-12 -0.725 -0.401 0.903 3.98e-11

rs12068805 1:170601313 Intergenic rs9389593 6:138907676 Intergenic 0.653 0.096 9.41e-12 0.465 0.841 0.47 2.22e-11

rs12566725 1:170601935 Intergenic rs9389593 6:138907676 Intergenic 0.652 0.096 9.43e-12 0.465 0.84 0.477 2.28e-11

rs12068805 1:170601313 Intergenic rs58003101 6:138906215 Intergenic 0.654 0.096 9.45e-12 0.466 0.842 0.486 2.48e-11

rs12566725 1:170601935 Intergenic rs58003101 6:138906215 Intergenic 0.653 0.096 9.47e-12 0.465 0.841 0.493 2.55e-11

rs691686 1:87264545 Intergenic rs10790477 11:98989176 CNTN5 -1.069 0.157 9.52e-12 -1.377 -0.762 0.51 4.02e-11

rs1527158 7:113926120 FOXP2 rs2821137 9:113587820 Intergenic -0.556 0.082 9.67e-12 -0.716 -0.396 0.829 1.73e-11

rs797978 1:87263948 Intergenic rs10790477 11:98989176 CNTN5 -1.069 0.157 9.73e-12 -1.377 -0.761 0.508 4.13e-11

rs12068805 1:170601313 Intergenic rs35802064 6:138905615 Intergenic 0.654 0.096 9.89e-12 0.466 0.843 0.485 2.61e-11

rs12566725 1:170601935 Intergenic rs35802064 6:138905615 Intergenic 0.653 0.096 9.91e-12 0.465 0.841 0.492 2.68e-11

rs12068805 1:170601313 Intergenic rs9389592 6:138906732 Intergenic 0.653 0.096 1.01e-11 0.465 0.841 0.47 2.39e-11

rs12566725 1:170601935 Intergenic rs9389592 6:138906732 Intergenic 0.652 0.096 1.01e-11 0.464 0.84 0.477 2.46e-11

rs533603 1:170608668 Intergenic rs6918682 6:138909231 Intergenic 0.555 0.082 1.03e-11 0.395 0.714 0.364 7.13e-11

rs1194330 7:113920688 FOXP2 rs2846443 9:113589582 Intergenic -0.56 0.082 1.10e-11 -0.722 -0.399 0.899 5.56e-11

rs1527158 7:113926120 FOXP2 rs2846443 9:113589582 Intergenic -0.554 0.082 1.10e-11 -0.713 -0.394 0.824 2.24e-11

rs578928 1:170609743 Intergenic rs6918682 6:138909231 Intergenic 0.554 0.082 1.13e-11 0.394 0.713 0.39 6.11e-11

rs1916978 7:113957196 FOXP2 rs1409679 9:113586263 Intergenic -0.571 0.084 1.21e-11 -0.736 -0.406 0.752 8.39e-11

rs144261163 7:113893884 FOXP2 rs2821137 9:113587820 Intergenic -0.662 0.098 1.28e-11 -0.854 -0.471 0.346 3.46e-12

rs1527153 7:113957092 FOXP2 rs2821137 9:113587820 Intergenic -0.554 0.082 1.30e-11 -0.715 -0.394 0.851 6.33e-11

rs644784 1:170606086 Intergenic rs9385834 6:138908551 Intergenic 0.646 0.096 1.31e-11 0.459 0.834 0.526 2.14e-11



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval Het Glide.Pval
rs656539 1:170606354 Intergenic rs9385834 6:138908551 Intergenic 0.646 0.096 1.32e-11 0.459 0.833 0.526 2.16e-11
rs644784 1:170606086 Intergenic rs4629702 6:138909908 Intergenic 0.643 0.095 1.33e-11 0.457 0.829 0.498 1.73e-11
rs644784 1:170606086 Intergenic rs111809728 6:138908234 Intergenic 0.647 0.096 1.33e-11 0.459 0.834 0.526 2.19e-11
rs656539 1:170606354 Intergenic rs4629702 6:138909908 Intergenic 0.643 0.095 1.34e-11 0.457 0.829 0.498 1.74e-11
rs12068805 1:170601313 Intergenic rs34202255 6:138907488 Intergenic 0.653 0.097 1.34e-11 0.464 0.842 0.486 3.08e-11
rs656539 1:170606354 Intergenic rs111809728 6:138908234 Intergenic 0.646 0.096 1.34e-11 0.459 0.834 0.526 2.20e-11
rs12566725 1:170601935 Intergenic rs34202255 6:138907488 Intergenic 0.652 0.096 1.34e-11 0.463 0.841 0.493 3.17e-11
rs1916977 7:113957306 FOXP2 rs1409679 9:113586263 Intergenic -0.569 0.084 1.35e-11 -0.735 -0.404 0.758 7.62e-11
rs644784 1:170606086 Intergenic rs9389594 6:138907678 Intergenic 0.647 0.096 1.39e-11 0.459 0.834 0.526 2.28e-11
rs656539 1:170606354 Intergenic rs9389594 6:138907678 Intergenic 0.646 0.096 1.40e-11 0.459 0.834 0.526 2.30e-11
rs12074059 1:170595118 Intergenic rs9385834 6:138908551 Intergenic 0.645 0.096 1.44e-11 0.458 0.832 0.57 2.13e-11
rs12074059 1:170595118 Intergenic rs4629702 6:138909908 Intergenic 0.642 0.095 1.45e-11 0.456 0.828 0.541 1.71e-11
rs12074059 1:170595118 Intergenic rs111809728 6:138908234 Intergenic 0.645 0.096 1.46e-11 0.458 0.833 0.57 2.17e-11
rs533603 1:170608668 Intergenic rs9385834 6:138908551 Intergenic 0.644 0.095 1.51e-11 0.457 0.831 0.525 2.49e-11
rs12074059 1:170595118 Intergenic rs9389594 6:138907678 Intergenic 0.645 0.096 1.52e-11 0.458 0.833 0.57 2.26e-11
rs533603 1:170608668 Intergenic rs4629702 6:138909908 Intergenic 0.641 0.095 1.53e-11 0.455 0.827 0.495 2.01e-11
rs533603 1:170608668 Intergenic rs6923972 6:138909661 Intergenic 0.55 0.082 1.54e-11 0.39 0.71 0.375 9.88e-11
rs533603 1:170608668 Intergenic rs111809728 6:138908234 Intergenic 0.644 0.096 1.54e-11 0.457 0.831 0.525 2.54e-11
rs644784 1:170606086 Intergenic rs9389593 6:138907676 Intergenic 0.645 0.096 1.54e-11 0.458 0.833 0.512 2.28e-11
rs644784 1:170606086 Intergenic rs58003101 6:138906215 Intergenic 0.646 0.096 1.55e-11 0.458 0.834 0.528 2.55e-11
rs656539 1:170606354 Intergenic rs9389593 6:138907676 Intergenic 0.645 0.096 1.56e-11 0.458 0.833 0.511 2.30e-11
rs656539 1:170606354 Intergenic rs58003101 6:138906215 Intergenic 0.646 0.096 1.56e-11 0.458 0.834 0.527 2.57e-11
rs533603 1:170608668 Intergenic rs9389594 6:138907678 Intergenic 0.644 0.096 1.60e-11 0.457 0.832 0.526 2.65e-11
rs644784 1:170606086 Intergenic rs35802064 6:138905615 Intergenic 0.646 0.096 1.62e-11 0.458 0.834 0.527 2.68e-11
rs656539 1:170606354 Intergenic rs35802064 6:138905615 Intergenic 0.646 0.096 1.63e-11 0.458 0.834 0.526 2.70e-11
rs644784 1:170606086 Intergenic rs9389592 6:138906732 Intergenic 0.645 0.096 1.66e-11 0.457 0.833 0.511 2.46e-11
rs656539 1:170606354 Intergenic rs9389592 6:138906732 Intergenic 0.645 0.096 1.67e-11 0.457 0.833 0.511 2.48e-11
rs549449 1:170610710 Intergenic rs4257875 6:138905710 Intergenic 0.556 0.083 1.68e-11 0.394 0.717 0.615 3.52e-11
rs578928 1:170609743 Intergenic rs6923972 6:138909661 Intergenic 0.549 0.082 1.69e-11 0.389 0.709 0.402 8.48e-11
rs12074059 1:170595118 Intergenic rs9389593 6:138907676 Intergenic 0.644 0.096 1.69e-11 0.457 0.832 0.555 2.26e-11
rs12074059 1:170595118 Intergenic rs58003101 6:138906215 Intergenic 0.645 0.096 1.70e-11 0.457 0.833 0.571 2.53e-11
rs1527153 7:113957092 FOXP2 rs2846443 9:113589582 Intergenic -0.55 0.082 1.71e-11 -0.711 -0.39 0.855 8.07e-11
rs578928 1:170609743 Intergenic rs7765298 6:138907520 Intergenic 0.551 0.082 1.74e-11 0.391 0.712 0.384 9.92e-11



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs79874450 6:2636108 Intergenic rs73022990 19:29748852 Intergenic -1.304 0.194 1.75e-11 -1.685 -0.924 0.775 1.52e-11
rs533603 1:170608668 Intergenic rs9389593 6:138907676 Intergenic 0.643 0.096 1.78e-11 0.456 0.831 0.511 2.65e-11
rs12074059 1:170595118 Intergenic rs35802064 6:138905615 Intergenic 0.645 0.096 1.78e-11 0.457 0.833 0.571 2.66e-11
rs533603 1:170608668 Intergenic rs58003101 6:138906215 Intergenic 0.644 0.096 1.78e-11 0.456 0.832 0.527 2.96e-11
rs578928 1:170609743 Intergenic rs9385834 6:138908551 Intergenic 0.642 0.095 1.79e-11 0.455 0.829 0.511 2.58e-11
rs79874450 6:2636108 Intergenic rs138099966 19:29760811 Intergenic -1.265 0.188 1.80e-11 -1.634 -0.896 0.741 1.18e-11
rs12074059 1:170595118 Intergenic rs9389592 6:138906732 Intergenic 0.644 0.096 1.82e-11 0.456 0.832 0.555 2.44e-11
rs578928 1:170609743 Intergenic rs111809728 6:138908234 Intergenic 0.642 0.096 1.83e-11 0.455 0.829 0.511 2.64e-11
rs578928 1:170609743 Intergenic rs4629702 6:138909908 Intergenic 0.638 0.095 1.83e-11 0.452 0.825 0.481 2.09e-11
rs77557441 6:2668406 MYLK4 rs138099966 19:29760811 Intergenic -1.253 0.186 1.83e-11 -1.618 -0.887 0.859 1.51e-11
rs533603 1:170608668 Intergenic rs35802064 6:138905615 Intergenic 0.644 0.096 1.86e-11 0.456 0.832 0.526 3.11e-11
rs578928 1:170609743 Intergenic rs9389594 6:138907678 Intergenic 0.642 0.096 1.90e-11 0.454 0.829 0.511 2.74e-11
rs533603 1:170608668 Intergenic rs9389592 6:138906732 Intergenic 0.643 0.096 1.91e-11 0.455 0.831 0.511 2.85e-11
rs79874450 6:2636108 Intergenic rs73022996 19:29755516 Intergenic -1.301 0.194 1.96e-11 -1.681 -0.921 0.775 1.69e-11
rs77557441 6:2668406 MYLK4 rs73022990 19:29748852 Intergenic -1.285 0.192 1.96e-11 -1.661 -0.91 0.885 1.70e-11
rs79874450 6:2636108 Intergenic rs73022999 19:29757113 Intergenic -1.305 0.195 2.00e-11 -1.687 -0.924 0.787 1.60e-11
rs79874450 6:2636108 Intergenic rs73023000 19:29757133 Intergenic -1.305 0.195 2.01e-11 -1.687 -0.924 0.787 1.60e-11
rs74735747 6:2666614 MYLK4 rs73022990 19:29748852 Intergenic -1.283 0.191 2.07e-11 -1.658 -0.907 0.898 1.98e-11
rs12518079 5:130539946 LYRM7 rs7168357 15:97018475 Intergenic 0.674 0.101 2.08e-11 0.477 0.871 0.891 1.58e-11
rs12518055 5:130539826 LYRM7 rs7168357 15:97018475 Intergenic 0.674 0.101 2.08e-11 0.477 0.871 0.891 1.58e-11
rs578928 1:170609743 Intergenic rs58003101 6:138906215 Intergenic 0.642 0.096 2.11e-11 0.454 0.829 0.513 3.07e-11
rs578928 1:170609743 Intergenic rs9389593 6:138907676 Intergenic 0.641 0.096 2.12e-11 0.453 0.828 0.496 2.75e-11
rs4706010 5:130546717 Intergenic rs7168357 15:97018475 Intergenic 0.677 0.101 2.12e-11 0.479 0.875 0.89 1.49e-11
rs74735747 6:2666614 MYLK4 rs138099966 19:29760811 Intergenic -1.247 0.186 2.13e-11 -1.611 -0.882 0.865 1.82e-11
rs79874450 6:2636108 Intergenic rs74983087 19:29761422 Intergenic -1.311 0.196 2.19e-11 -1.695 -0.927 0.811 1.48e-11
rs644784 1:170606086 Intergenic rs34202255 6:138907488 Intergenic 0.645 0.096 2.20e-11 0.456 0.834 0.528 3.17e-11
rs578928 1:170609743 Intergenic rs35802064 6:138905615 Intergenic 0.642 0.096 2.21e-11 0.454 0.83 0.512 3.23e-11
rs656539 1:170606354 Intergenic rs34202255 6:138907488 Intergenic 0.645 0.096 2.21e-11 0.456 0.834 0.528 3.19e-11
rs79874450 6:2636108 Intergenic rs73024908 19:29762766 Intergenic -1.312 0.196 2.22e-11 -1.696 -0.927 0.813 1.48e-11
rs2961694 5:141543351 Intergenic rs180662 10:117758764 Intergenic -0.995 0.149 2.25e-11 -1.286 -0.703 0.57 6.92e-11
rs17135412 6:2666428 MYLK4 rs73022990 19:29748852 Intergenic -1.28 0.191 2.25e-11 -1.656 -0.905 0.892 2.09e-11
rs578928 1:170609743 Intergenic rs9389592 6:138906732 Intergenic 0.641 0.096 2.27e-11 0.453 0.828 0.496 2.96e-11
rs17135412 6:2666428 MYLK4 rs138099966 19:29760811 Intergenic -1.244 0.186 2.34e-11 -1.609 -0.879 0.857 1.89e-11



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs12074059 1:170595118 Intergenic rs34202255 6:138907488 Intergenic 0.644 0.096 2.39e-11 0.455 0.833 0.572 3.14e-11

rs2961694 5:141543351 Intergenic rs180655 10:117763073 Intergenic -0.993 0.149 2.40e-11 -1.285 -0.702 0.772 6.40e-11

rs9392409 6:2637106 C6orf195 rs73022990 19:29748852 Intergenic -1.293 0.194 2.47e-11 -1.673 -0.913 0.801 1.65e-11

rs4770836 13:26037909 ATP8A2 rs12961650 18:27431670 Intergenic -0.5 0.075 2.48e-11 -0.646 -0.353 0.478 6.96e-11

rs77557441 6:2668406 MYLK4 rs73022996 19:29755516 Intergenic -1.278 0.192 2.50e-11 -1.654 -0.903 0.891 2.25e-11

rs533603 1:170608668 Intergenic rs34202255 6:138907488 Intergenic 0.643 0.096 2.53e-11 0.454 0.831 0.528 3.67e-11

rs9392409 6:2637106 C6orf195 rs138099966 19:29760811 Intergenic -1.255 0.188 2.54e-11 -1.623 -0.886 0.767 1.25e-11

rs4770837 13:26037960 ATP8A2 rs12961650 18:27431670 Intergenic -0.499 0.075 2.54e-11 -0.646 -0.353 0.479 6.91e-11

rs77557441 6:2668406 MYLK4 rs73022999 19:29757113 Intergenic -1.283 0.192 2.58e-11 -1.66 -0.906 0.897 2.17e-11

rs77557441 6:2668406 MYLK4 rs73023000 19:29757133 Intergenic -1.283 0.192 2.59e-11 -1.66 -0.906 0.897 2.17e-11

rs549449 1:170610710 Intergenic rs9385834 6:138908551 Intergenic 0.636 0.095 2.63e-11 0.449 0.824 0.471 3.73e-11

rs549449 1:170610710 Intergenic rs111809728 6:138908234 Intergenic 0.637 0.096 2.67e-11 0.449 0.824 0.472 3.80e-11

rs549449 1:170610710 Intergenic rs4629702 6:138909908 Intergenic 0.633 0.095 2.69e-11 0.447 0.819 0.431 3.03e-11

rs74735747 6:2666614 MYLK4 rs73022996 19:29755516 Intergenic -1.275 0.191 2.70e-11 -1.65 -0.9 0.902 2.63e-11

rs9392409 6:2637106 C6orf195 rs73022996 19:29755516 Intergenic -1.29 0.194 2.75e-11 -1.669 -0.91 0.8 1.83e-11

rs549449 1:170610710 Intergenic rs9389594 6:138907678 Intergenic 0.637 0.096 2.77e-11 0.449 0.824 0.472 3.96e-11

rs74735747 6:2666614 MYLK4 rs73022999 19:29757113 Intergenic -1.28 0.192 2.79e-11 -1.656 -0.903 0.907 2.54e-11

rs74735747 6:2666614 MYLK4 rs73023000 19:29757133 Intergenic -1.28 0.192 2.79e-11 -1.656 -0.903 0.908 2.54e-11

rs77557441 6:2668406 MYLK4 rs74983087 19:29761422 Intergenic -1.289 0.194 2.82e-11 -1.669 -0.91 0.907 2.04e-11

rs9392409 6:2637106 C6orf195 rs73022999 19:29757113 Intergenic -1.294 0.194 2.83e-11 -1.675 -0.913 0.81 1.73e-11

rs9392409 6:2637106 C6orf195 rs73023000 19:29757133 Intergenic -1.294 0.194 2.83e-11 -1.675 -0.913 0.811 1.73e-11

rs77557441 6:2668406 MYLK4 rs73024908 19:29762766 Intergenic -1.29 0.194 2.85e-11 -1.67 -0.91 0.907 2.03e-11

rs17135412 6:2666428 MYLK4 rs73022996 19:29755516 Intergenic -1.273 0.191 2.95e-11 -1.648 -0.898 0.896 2.77e-11

rs578928 1:170609743 Intergenic rs34202255 6:138907488 Intergenic 0.64 0.096 3.00e-11 0.451 0.829 0.514 3.81e-11

rs17135412 6:2666428 MYLK4 rs73022999 19:29757113 Intergenic -1.277 0.192 3.05e-11 -1.654 -0.9 0.901 2.67e-11

rs17135412 6:2666428 MYLK4 rs73023000 19:29757133 Intergenic -1.277 0.192 3.05e-11 -1.654 -0.9 0.901 2.67e-11

rs74735747 6:2666614 MYLK4 rs74983087 19:29761422 Intergenic -1.286 0.194 3.05e-11 -1.665 -0.906 0.916 2.37e-11

rs9392409 6:2637106 C6orf195 rs74983087 19:29761422 Intergenic -1.3 0.196 3.08e-11 -1.683 -0.916 0.832 1.58e-11

rs549449 1:170610710 Intergenic rs58003101 6:138906215 Intergenic 0.636 0.096 3.08e-11 0.449 0.824 0.474 4.41e-11

rs74735747 6:2666614 MYLK4 rs73024908 19:29762766 Intergenic -1.287 0.194 3.09e-11 -1.666 -0.907 0.916 2.36e-11

rs549449 1:170610710 Intergenic rs9389593 6:138907676 Intergenic 0.635 0.096 3.09e-11 0.448 0.823 0.458 3.96e-11

rs9392409 6:2637106 C6orf195 rs73024908 19:29762766 Intergenic -1.3 0.196 3.12e-11 -1.684 -0.917 0.834 1.58e-11

rs507012 13:26034360 ATP8A2 rs12961650 18:27431670 Intergenic -0.499 0.075 3.16e-11 -0.646 -0.351 0.468 9.33e-11



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs72787011 5:130538051 LYRM7 rs7168357 15:97018475 Intergenic 0.668 0.101 3.21e-11 0.471 0.865 0.876 2.00e-11

rs549449 1:170610710 Intergenic rs35802064 6:138905615 Intergenic 0.636 0.096 3.21e-11 0.448 0.824 0.473 4.64e-11

rs549449 1:170610710 Intergenic rs9389592 6:138906732 Intergenic 0.635 0.096 3.31e-11 0.448 0.823 0.458 4.26e-11

rs17135412 6:2666428 MYLK4 rs74983087 19:29761422 Intergenic -1.283 0.194 3.34e-11 -1.662 -0.904 0.91 2.50e-11

rs17135412 6:2666428 MYLK4 rs73024908 19:29762766 Intergenic -1.284 0.194 3.38e-11 -1.664 -0.905 0.91 2.49e-11

rs10113869 9:79600226 Intergenic rs9548110 13:38500040 Intergenic -0.61 0.092 3.53e-11 -0.79 -0.429 0.992 6.96e-11

rs10869859 9:79600922 Intergenic rs9548110 13:38500040 Intergenic -0.61 0.092 3.59e-11 -0.79 -0.429 0.992 7.09e-11

rs10869854 9:79599582 Intergenic rs9548110 13:38500040 Intergenic -0.61 0.092 3.62e-11 -0.791 -0.43 0.99 7.17e-11

rs10869855 9:79599614 Intergenic rs9548110 13:38500040 Intergenic -0.61 0.092 3.62e-11 -0.791 -0.43 0.991 7.17e-11

rs113372431 5:130537926 LYRM7 rs7168357 15:97018475 Intergenic 0.647 0.098 3.83e-11 0.455 0.839 0.734 3.85e-11

rs578928 1:170609743 Intergenic rs4257875 6:138905710 Intergenic 0.546 0.083 3.89e-11 0.384 0.708 0.397 9.68e-11

rs10488529 7:92653334 Intergenic rs2181324 10:98145284 TLL2 -1.039 0.157 4.00e-11 -1.348 -0.731 0.947 2.75e-11

rs7851647 9:79597761 Intergenic rs9548110 13:38500040 Intergenic -0.61 0.092 4.15e-11 -0.791 -0.429 0.986 8.30e-11

rs2377819 9:79597199 Intergenic rs9548110 13:38500040 Intergenic -0.61 0.092 4.19e-11 -0.792 -0.429 0.984 8.40e-11

rs10488529 7:92653334 Intergenic rs17111762 10:98141748 TLL2 -1.037 0.157 4.25e-11 -1.345 -0.729 0.948 2.72e-11

rs10488529 7:92653334 Intergenic rs56094817 10:98142008 TLL2 -1.037 0.157 4.25e-11 -1.345 -0.729 0.948 2.72e-11

rs977368 11:43210233 Intergenic rs608519 18:75368523 Intergenic -0.711 0.108 4.25e-11 -0.923 -0.5 0.953 3.21e-12

rs144261163 7:113893884 FOXP2 rs2846443 9:113589582 Intergenic -0.657 0.1 4.28e-11 -0.852 -0.462 0.333 5.16e-12

rs10869852 9:79596796 Intergenic rs9548110 13:38500040 Intergenic -0.61 0.093 4.38e-11 -0.791 -0.429 0.984 8.76e-11

rs549449 1:170610710 Intergenic rs34202255 6:138907488 Intergenic 0.635 0.096 4.38e-11 0.446 0.824 0.476 5.47e-11

rs7144982 14:103540728 Intergenic rs8045102 16:49958285 Intergenic 0.613 0.093 4.53e-11 0.431 0.796 0.515 5.57e-11

rs28479678 5:130533902 LYRM7 rs7168357 15:97018475 Intergenic 0.657 0.1 4.71e-11 0.461 0.853 0.91 1.75e-11

rs4854375 2:763618 Intergenic rs114158060 6:90261115 ANKRD6 -1.008 0.154 5.29e-11 -1.309 -0.707 0.528 8.48e-11

rs10056240 5:156972294 ADAM19 rs113043616 18:26967794 Intergenic -0.756 0.115 5.54e-11 -0.981 -0.53 0.749 9.93e-11

rs74751208 3:147377956 Intergenic rs9301999 13:95457166 Intergenic 0.962 0.147 5.96e-11 0.674 1.25 0.514 9.30e-11

rs2037054 12:101644517 Intergenic rs6029105 20:39041594 Intergenic -0.817 0.125 6.19e-11 -1.062 -0.572 0.473 8.68e-11

rs7719543 5:130534556 LYRM7 rs7168357 15:97018475 Intergenic 0.635 0.097 6.33e-11 0.445 0.826 0.78 3.38e-11

rs6879803 5:130534325 LYRM7 rs7168357 15:97018475 Intergenic 0.636 0.097 6.36e-11 0.445 0.827 0.775 3.29e-11

rs4706009 5:130536044 LYRM7 rs7168357 15:97018475 Intergenic 0.635 0.097 6.37e-11 0.444 0.825 0.779 3.37e-11

rs10488529 7:92653334 Intergenic rs2093557 10:98140110 TLL2 -1.029 0.158 6.96e-11 -1.338 -0.719 0.942 4.07e-11

rs79874450 6:2636108 Intergenic rs116561825 19:29740738 Intergenic -1.276 0.196 7.41e-11 -1.66 -0.892 0.823 7.01e-11

rs77557441 6:2668406 MYLK4 rs116561825 19:29740738 Intergenic -1.26 0.194 7.64e-11 -1.639 -0.88 0.925 7.24e-11

rs9930290 16:50370543 BRD7 rs6029105 20:39041594 Intergenic 1.068 0.164 7.65e-11 0.747 1.39 0.436 6.71e-11



Single-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs79874450 6:2636108 Intergenic rs112289248 19:29744225 Intergenic -1.274 0.196 7.71e-11 -1.658 -0.89 0.815 7.03e-11
rs74735747 6:2666614 MYLK4 rs116561825 19:29740738 Intergenic -1.257 0.193 7.99e-11 -1.636 -0.878 0.935 8.26e-11
rs8059133 16:50370703 BRD7 rs6029105 20:39041594 Intergenic 1.064 0.164 8.13e-11 0.743 1.385 0.455 7.08e-11
rs77557441 6:2668406 MYLK4 rs112289248 19:29744225 Intergenic -1.258 0.194 8.13e-11 -1.637 -0.878 0.921 7.49e-11
rs4595801 16:50369888 BRD7 rs6029105 20:39041594 Intergenic 1.063 0.164 8.42e-11 0.742 1.384 0.452 7.35e-11
rs74735747 6:2666614 MYLK4 rs112289248 19:29744225 Intergenic -1.255 0.193 8.54e-11 -1.634 -0.876 0.931 8.56e-11
rs17135412 6:2666428 MYLK4 rs116561825 19:29740738 Intergenic -1.255 0.193 8.66e-11 -1.634 -0.876 0.931 8.67e-11
rs79874450 6:2636108 Intergenic rs57732835 19:29737939 Intergenic -1.27 0.196 8.85e-11 -1.654 -0.886 0.815 8.22e-11
rs10491723 9:100927632 CORO2A rs7130200 11:111211691 Intergenic -0.461 0.071 8.88e-11 -0.6 -0.321 0.89 8.63e-11
rs77557441 6:2668406 MYLK4 rs57732835 19:29737939 Intergenic -1.255 0.194 8.97e-11 -1.634 -0.876 0.919 8.40e-11
rs17135412 6:2666428 MYLK4 rs112289248 19:29744225 Intergenic -1.253 0.193 9.27e-11 -1.632 -0.874 0.926 8.99e-11
rs74735747 6:2666614 MYLK4 rs57732835 19:29737939 Intergenic -1.252 0.193 9.38e-11 -1.631 -0.873 0.929 9.58e-11
rs2079511 5:130560128 Intergenic rs7168357 15:97018475 Intergenic 0.658 0.102 1.00e-10 0.459 0.858 0.922 2.90e-11



Phonological awareness

SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs620291 11:113113858 NCAM1 rs113400479 18:23026571 Intergenic -1.214 0.169 8.06e-13 -1.546 -0.881 0.812 6.65e-13

rs635596 11:113113515 NCAM1 rs113400479 18:23026571 Intergenic -1.207 0.169 9.05e-13 -1.538 -0.876 0.81 7.01e-13

rs586903 11:113110946 NCAM1 rs113400479 18:23026571 Intergenic -1.251 0.175 1.01e-12 -1.595 -0.907 0.393 1.64e-11

rs587761 11:113110780 NCAM1 rs78616234 18:23020632 Intergenic -1.229 0.174 1.85e-12 -1.571 -0.887 0.49 1.46e-11

rs586903 11:113110946 NCAM1 rs78616234 18:23020632 Intergenic -1.223 0.174 1.87e-12 -1.563 -0.883 0.538 1.53e-11

rs586903 11:113110946 NCAM1 rs76799957 18:23026460 Intergenic -1.219 0.173 1.89e-12 -1.559 -0.88 0.529 1.62e-11

rs587761 11:113110780 NCAM1 rs76799957 18:23026460 Intergenic -1.226 0.174 1.89e-12 -1.567 -0.884 0.482 1.55e-11

rs586903 11:113110946 NCAM1 rs79046421 18:23031099 Intergenic -1.211 0.173 2.22e-12 -1.549 -0.873 0.512 1.96e-11

rs587761 11:113110780 NCAM1 rs79046421 18:23031099 Intergenic -1.218 0.173 2.22e-12 -1.558 -0.878 0.463 1.86e-11

rs586903 11:113110946 NCAM1 rs75070995 18:23025063 Intergenic -1.212 0.173 2.39e-12 -1.55 -0.873 0.537 1.99e-11

rs587761 11:113110780 NCAM1 rs75070995 18:23025063 Intergenic -1.217 0.174 2.40e-12 -1.558 -0.877 0.491 1.89e-11

rs587761 11:113110780 NCAM1 rs113400479 18:23026571 Intergenic -1.257 0.179 2.41e-12 -1.608 -0.905 0.379 1.57e-11

rs620291 11:113113858 NCAM1 rs76799957 18:23026460 Intergenic -1.177 0.168 2.44e-12 -1.507 -0.848 0.864 6.59e-13

rs620291 11:113113858 NCAM1 rs78616234 18:23020632 Intergenic -1.177 0.168 2.55e-12 -1.506 -0.847 0.871 6.48e-13

rs635596 11:113113515 NCAM1 rs76799957 18:23026460 Intergenic -1.171 0.167 2.71e-12 -1.499 -0.843 0.872 6.94e-13

rs635596 11:113113515 NCAM1 rs78616234 18:23020632 Intergenic -1.173 0.168 2.73e-12 -1.502 -0.844 0.886 6.81e-13

rs620291 11:113113858 NCAM1 rs79046421 18:23031099 Intergenic -1.171 0.168 2.77e-12 -1.499 -0.843 0.844 7.84e-13

rs587761 11:113110780 NCAM1 rs76340243 18:23028090 Intergenic -1.219 0.175 3.03e-12 -1.562 -0.877 0.509 2.40e-11

rs620291 11:113113858 NCAM1 rs75070995 18:23025063 Intergenic -1.17 0.168 3.07e-12 -1.499 -0.841 0.869 8.30e-13

rs635596 11:113113515 NCAM1 rs79046421 18:23031099 Intergenic -1.164 0.167 3.13e-12 -1.491 -0.837 0.851 8.25e-13

rs587761 11:113110780 NCAM1 rs79295788 18:23028857 Intergenic -1.217 0.175 3.13e-12 -1.56 -0.875 0.506 2.48e-11

rs587761 11:113110780 NCAM1 rs9916920 18:23028354 Intergenic -1.218 0.175 3.14e-12 -1.56 -0.875 0.513 2.48e-11

rs586903 11:113110946 NCAM1 rs76340243 18:23028090 Intergenic -1.212 0.174 3.17e-12 -1.553 -0.871 0.563 2.53e-11

rs587761 11:113110780 NCAM1 rs76146087 18:23029422 Intergenic -1.217 0.175 3.19e-12 -1.559 -0.874 0.504 2.54e-11

rs586903 11:113110946 NCAM1 rs79295788 18:23028857 Intergenic -1.21 0.174 3.28e-12 -1.551 -0.87 0.559 2.62e-11



Phonological awareness

SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs586903 11:113110946 NCAM1 rs9916920 18:23028354 Intergenic -1.21 0.174 3.30e-12 -1.551 -0.87 0.567 2.61e-11

rs587761 11:113110780 NCAM1 rs12458786 18:23030650 Intergenic -1.215 0.174 3.33e-12 -1.557 -0.873 0.5 2.67e-11

rs586903 11:113110946 NCAM1 rs76146087 18:23029422 Intergenic -1.209 0.174 3.35e-12 -1.55 -0.869 0.558 2.68e-11

rs635596 11:113113515 NCAM1 rs75070995 18:23025063 Intergenic -1.163 0.167 3.40e-12 -1.491 -0.836 0.881 8.73e-13

rs587761 11:113110780 NCAM1 rs76878683 18:23023338 Intergenic -1.216 0.175 3.43e-12 -1.558 -0.873 0.531 2.71e-11

rs586903 11:113110946 NCAM1 rs12458786 18:23030650 Intergenic -1.207 0.174 3.49e-12 -1.547 -0.867 0.555 2.83e-11

rs586903 11:113110946 NCAM1 rs76878683 18:23023338 Intergenic -1.209 0.174 3.57e-12 -1.55 -0.868 0.583 2.87e-11

rs620291 11:113113858 NCAM1 rs76340243 18:23028090 Intergenic -1.173 0.169 3.74e-12 -1.504 -0.842 0.882 1.09e-12

rs620291 11:113113858 NCAM1 rs79295788 18:23028857 Intergenic -1.172 0.169 3.83e-12 -1.503 -0.841 0.879 1.12e-12

rs620291 11:113113858 NCAM1 rs9916920 18:23028354 Intergenic -1.172 0.169 3.86e-12 -1.503 -0.841 0.883 1.13e-12

rs620291 11:113113858 NCAM1 rs76146087 18:23029422 Intergenic -1.171 0.169 3.90e-12 -1.502 -0.84 0.877 1.15e-12

rs620291 11:113113858 NCAM1 rs12458786 18:23030650 Intergenic -1.17 0.169 4.03e-12 -1.5 -0.839 0.872 1.21e-12

rs635596 11:113113515 NCAM1 rs76340243 18:23028090 Intergenic -1.166 0.168 4.22e-12 -1.496 -0.836 0.89 1.14e-12

rs620291 11:113113858 NCAM1 rs76878683 18:23023338 Intergenic -1.169 0.169 4.30e-12 -1.5 -0.838 0.892 1.29e-12

rs635596 11:113113515 NCAM1 rs79295788 18:23028857 Intergenic -1.164 0.168 4.34e-12 -1.494 -0.835 0.887 1.17e-12

rs635596 11:113113515 NCAM1 rs9916920 18:23028354 Intergenic -1.165 0.168 4.36e-12 -1.494 -0.835 0.892 1.18e-12

rs635596 11:113113515 NCAM1 rs76146087 18:23029422 Intergenic -1.164 0.168 4.42e-12 -1.493 -0.834 0.885 1.20e-12

rs635596 11:113113515 NCAM1 rs12458786 18:23030650 Intergenic -1.162 0.168 4.59e-12 -1.491 -0.833 0.88 1.26e-12

rs635596 11:113113515 NCAM1 rs76878683 18:23023338 Intergenic -1.163 0.168 4.77e-12 -1.492 -0.833 0.906 1.34e-12

rs10038365 5:108602269 Intergenic rs10140868 14:62616479 Intergenic 0.582 0.084 5.42e-12 0.417 0.748 0.395 4.16e-10

rs58008430 5:108595048 Intergenic rs10140868 14:62616479 Intergenic 0.582 0.085 5.85e-12 0.416 0.747 0.39 4.42e-10

rs6885647 5:108593449 Intergenic rs10140868 14:62616479 Intergenic 0.582 0.085 5.90e-12 0.416 0.747 0.389 4.46e-10

rs12655632 5:108592797 Intergenic rs10140868 14:62616479 Intergenic 0.579 0.084 6.86e-12 0.413 0.744 0.399 6.85e-10

rs10039717 5:108577839 Intergenic rs9671388 14:62626952 Intergenic 0.62 0.091 1.01e-11 0.442 0.799 0.802 4.04e-10

rs10038277 5:108602064 Intergenic rs10140868 14:62616479 Intergenic 0.576 0.085 1.01e-11 0.41 0.742 0.412 7.36e-10



Phonological awareness

SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs12519126 5:108602037 Intergenic rs10140868 14:62616479 Intergenic 0.576 0.085 1.02e-11 0.41 0.742 0.413 7.41e-10

rs6866681 5:108593535 Intergenic rs10140868 14:62616479 Intergenic 0.576 0.085 1.08e-11 0.41 0.742 0.409 7.74e-10

rs620291 11:113113858 NCAM1 rs12458251 18:23022456 Intergenic 1.173 0.173 1.11e-11 0.835 1.512 0.762 7.75e-12

rs2600168 3:9376490 Intergenic rs206514 18:10411194 Intergenic -0.665 0.098 1.11e-11 -0.857 -0.473 0.595 2.03e-10

rs2600168 3:9376490 Intergenic rs206515 18:10411039 Intergenic -0.665 0.098 1.11e-11 -0.857 -0.473 0.594 2.03e-10

rs1833570 5:108601482 Intergenic rs10140868 14:62616479 Intergenic 0.577 0.085 1.12e-11 0.411 0.744 0.409 7.66e-10

rs6882785 5:108601897 Intergenic rs10140868 14:62616479 Intergenic 0.575 0.085 1.18e-11 0.409 0.741 0.398 1.25e-09

rs635596 11:113113515 NCAM1 rs12458251 18:23022456 Intergenic 1.17 0.173 1.19e-11 0.832 1.508 0.745 8.09e-12

rs2430802 8:22837121 Intergenic rs11014020 10:24598415 KIAA1217 -0.726 0.107 1.23e-11 -0.936 -0.516 0.601 1.23e-09

rs10038365 5:108602269 Intergenic rs9671388 14:62626952 Intergenic 0.582 0.086 1.24e-11 0.414 0.751 0.767 1.96e-10

rs58008430 5:108595048 Intergenic rs9671388 14:62626952 Intergenic 0.582 0.086 1.26e-11 0.414 0.751 0.765 2.01e-10

rs6885647 5:108593449 Intergenic rs9671388 14:62626952 Intergenic 0.582 0.086 1.33e-11 0.413 0.75 0.764 2.09e-10

rs11241001 5:108608418 Intergenic rs10140868 14:62616479 Intergenic 0.581 0.086 1.34e-11 0.412 0.749 0.4 2.87e-10

rs60191921 5:108606053 Intergenic rs10140868 14:62616479 Intergenic 0.573 0.085 1.45e-11 0.406 0.739 0.42 3.53e-10

rs12655632 5:108592797 Intergenic rs9671388 14:62626952 Intergenic 0.579 0.086 1.48e-11 0.411 0.748 0.78 3.45e-10

rs2016908 5:108575251 Intergenic rs9671388 14:62626952 Intergenic 0.614 0.091 1.65e-11 0.435 0.793 0.757 8.97e-10

rs587761 11:113110780 NCAM1 rs12458251 18:23022456 Intergenic -1.195 0.178 1.65e-11 -1.543 -0.847 0.403 1.62e-10

rs587761 11:113110780 NCAM1 rs12458251 18:23022456 Intergenic 1.195 0.177 1.67e-11 0.847 1.543 0.41 1.62e-10

rs586903 11:113110946 NCAM1 rs12458251 18:23022456 Intergenic 1.189 0.177 1.70e-11 0.843 1.535 0.449 1.69e-10

rs586903 11:113110946 NCAM1 rs12458251 18:23022456 Intergenic -1.189 0.177 1.71e-11 -1.535 -0.842 0.449 1.69e-10

rs2466236 8:22836788 Intergenic rs11014020 10:24598415 KIAA1217 -0.725 0.108 1.76e-11 -0.936 -0.513 0.602 1.62e-09

rs620291 11:113113858 NCAM1 rs12458251 18:23022456 Intergenic -1.147 0.171 2.00e-11 -1.482 -0.812 0.745 7.75e-12

rs635596 11:113113515 NCAM1 rs12458251 18:23022456 Intergenic -1.143 0.171 2.18e-11 -1.478 -0.808 0.757 8.09e-12

rs10038277 5:108602064 Intergenic rs9671388 14:62626952 Intergenic 0.576 0.086 2.22e-11 0.408 0.745 0.795 3.62e-10

rs2466237 8:22835860 Intergenic rs11014020 10:24598415 KIAA1217 -0.723 0.108 2.23e-11 -0.934 -0.511 0.608 2.06e-09



Phonological awareness

SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs6866681 5:108593535 Intergenic rs9671388 14:62626952 Intergenic 0.577 0.086 2.23e-11 0.408 0.746 0.792 3.60e-10

rs12519126 5:108602037 Intergenic rs9671388 14:62626952 Intergenic 0.576 0.086 2.33e-11 0.407 0.745 0.795 3.73e-10

rs1833570 5:108601482 Intergenic rs9671388 14:62626952 Intergenic 0.577 0.086 2.38e-11 0.408 0.747 0.791 3.50e-10

rs2600168 3:9376490 Intergenic rs404472 18:10412186 Intergenic -0.663 0.099 2.38e-11 -0.857 -0.468 0.709 2.90e-10

rs75588101 7:134710913 AGBL3 rs927829 10:53253804 PRKG1 -1.348 0.202 2.45e-11 -1.743 -0.952 0.442 6.71e-11

rs113450037 7:134716098 AGBL3 rs927829 10:53253804 PRKG1 -1.35 0.202 2.46e-11 -1.746 -0.954 0.436 6.50e-11

rs144367847 7:134753328 AGBL3 rs927829 10:53253804 PRKG1 -1.352 0.202 2.47e-11 -1.749 -0.955 0.431 6.57e-11

rs11978136 7:134776093 AGBL3 rs927829 10:53253804 PRKG1 -1.353 0.203 2.56e-11 -1.751 -0.956 0.438 6.43e-11

rs76261347 7:134762945 AGBL3 rs927829 10:53253804 PRKG1 -1.353 0.203 2.57e-11 -1.751 -0.956 0.437 6.46e-11

rs17231184 7:134785709 AGBL3 rs927829 10:53253804 PRKG1 -1.352 0.203 2.58e-11 -1.75 -0.955 0.438 6.44e-11

rs78006222 7:134783732 AGBL3 rs927829 10:53253804 PRKG1 -1.352 0.203 2.58e-11 -1.75 -0.955 0.438 6.44e-11

rs11970908 7:134787934 AGBL3 rs927829 10:53253804 PRKG1 -1.352 0.203 2.58e-11 -1.75 -0.955 0.438 6.45e-11

rs78463102 7:134788570 AGBL3 rs927829 10:53253804 PRKG1 -1.352 0.203 2.58e-11 -1.75 -0.955 0.438 6.45e-11

rs76864211 7:134803527 AGBL3 rs927829 10:53253804 PRKG1 -1.352 0.203 2.58e-11 -1.749 -0.954 0.437 6.44e-11

rs77913513 7:134795841 AGBL3 rs927829 10:53253804 PRKG1 -1.352 0.203 2.59e-11 -1.749 -0.955 0.437 6.46e-11

rs148321733 7:134810967 AGBL3 rs927829 10:53253804 PRKG1 -1.351 0.203 2.59e-11 -1.748 -0.954 0.438 6.45e-11

rs112521537 7:134804487 AGBL3 rs927829 10:53253804 PRKG1 -1.351 0.203 2.59e-11 -1.749 -0.954 0.437 6.47e-11

rs113954552 7:134808002 AGBL3 rs927829 10:53253804 PRKG1 -1.351 0.203 2.60e-11 -1.748 -0.954 0.437 6.48e-11

rs7732292 5:39641154 Intergenic rs4910588 11:3963675 STIM1 -0.717 0.108 2.66e-11 -0.928 -0.506 0.865 3.18e-09

rs6843046 4:124400993 Intergenic rs4480666 13:36713946 Intergenic -0.938 0.141 2.80e-11 -1.214 -0.662 0.508 4.84e-11

rs6843046 4:124400993 Intergenic rs9565875 13:36708040 Intergenic -0.937 0.141 2.83e-11 -1.213 -0.661 0.511 5.34e-11

rs6843046 4:124400993 Intergenic rs1328652 13:36709527 Intergenic -0.937 0.141 2.83e-11 -1.213 -0.661 0.511 5.34e-11

rs6843046 4:124400993 Intergenic rs9565874 13:36707981 Intergenic -0.937 0.141 2.83e-11 -1.213 -0.661 0.511 5.35e-11

rs6843046 4:124400993 Intergenic rs9575380 13:36708286 Intergenic -0.937 0.141 2.84e-11 -1.213 -0.661 0.511 5.35e-11

rs17321024 2:45525440 Intergenic rs10809384 9:11200242 Intergenic -1.397 0.21 2.86e-11 -1.808 -0.985 0.973 2.24e-10



Phonological awareness

SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs10039717 5:108577839 Intergenic rs10140868 14:62616479 Intergenic 0.589 0.089 2.87e-11 0.416 0.763 0.461 4.85e-09

rs6843046 4:124400993 Intergenic rs1928017 13:36726009 Intergenic -0.943 0.142 3.01e-11 -1.221 -0.665 0.415 4.92e-11

rs6882785 5:108601897 Intergenic rs9671388 14:62626952 Intergenic 0.573 0.086 3.17e-11 0.404 0.742 0.801 6.88e-10

rs6843046 4:124400993 Intergenic rs9575407 13:36716901 Intergenic -0.936 0.141 3.26e-11 -1.213 -0.66 0.483 5.26e-11

rs2600168 3:9376490 Intergenic rs12964263 18:10410256 Intergenic -0.653 0.098 3.27e-11 -0.846 -0.46 0.722 5.23e-10

rs60191921 5:108606053 Intergenic rs9671388 14:62626952 Intergenic 0.572 0.086 3.28e-11 0.403 0.742 0.813 1.93e-10

rs6843046 4:124400993 Intergenic rs2149422 13:36724392 Intergenic -0.937 0.141 3.34e-11 -1.214 -0.66 0.431 5.51e-11

rs2600168 3:9376490 Intergenic rs12963926 18:10410275 Intergenic -0.653 0.098 3.36e-11 -0.846 -0.46 0.712 4.44e-10

rs6843046 4:124400993 Intergenic rs55785621 13:36718445 Intergenic -0.935 0.141 3.44e-11 -1.212 -0.659 0.474 5.42e-11

rs6848895 4:158626629 Intergenic rs1390204 12:71587160 Intergenic 0.593 0.09 3.49e-11 0.418 0.769 0.793 3.06e-11

rs492943 10:111629030 XPNPEP1 rs10824779 10:54488855 Intergenic 0.604 0.091 3.68e-11 0.425 0.783 0.366 1.75e-11

rs492943 10:111629030 XPNPEP1 rs11003084 10:54488686 Intergenic 0.603 0.091 3.71e-11 0.425 0.782 0.364 2.00e-11

rs35502738 5:39629430 Intergenic rs4910588 11:3963675 STIM1 -0.744 0.113 3.71e-11 -0.965 -0.524 0.996 2.63e-09

rs1592805 5:108621580 Intergenic rs10140868 14:62616479 Intergenic 0.564 0.085 3.72e-11 0.397 0.732 0.387 6.19e-10

rs62338559 5:3322058 Intergenic rs3815802 16:58296545 CCDC113 -0.579 0.088 3.75e-11 -0.751 -0.408 0.99 4.81e-10

rs76579103 7:134745973 AGBL3 rs927829 10:53253804 PRKG1 -1.36 0.206 3.82e-11 -1.764 -0.957 0.479 1.39e-10

rs77845976 7:134814984 AGBL3 rs927829 10:53253804 PRKG1 -1.336 0.202 3.83e-11 -1.732 -0.94 0.401 8.74e-11

rs6843046 4:124400993 Intergenic rs11839407 13:36721457 Intergenic -0.934 0.141 3.84e-11 -1.211 -0.657 0.454 5.74e-11

rs1354128 5:39634963 Intergenic rs4910588 11:3963675 STIM1 -0.715 0.108 3.88e-11 -0.927 -0.503 0.878 2.54e-09

rs35695483 7:136817670 LOC349160 rs833828 12:49352257 ARF3 0.701 0.106 3.93e-11 0.493 0.908 0.542 2.36e-10

rs11982570 7:136817016 LOC349160 rs833828 12:49352257 ARF3 0.7 0.106 3.94e-11 0.493 0.908 0.543 2.36e-10

rs36110794 7:136835778 LOC349160 rs833828 12:49352257 ARF3 0.703 0.106 3.99e-11 0.494 0.911 0.53 3.33e-10

rs17168934 7:136808272 LOC349160 rs833828 12:49352257 ARF3 0.7 0.106 4.04e-11 0.492 0.908 0.545 2.36e-10

rs67751562 7:136833387 LOC349160 rs833828 12:49352257 ARF3 0.702 0.106 4.05e-11 0.494 0.911 0.528 3.37e-10

rs73450817 7:136810307 LOC349160 rs833828 12:49352257 ARF3 0.7 0.106 4.05e-11 0.492 0.908 0.545 2.37e-10



Phonological awareness

SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs73450814 7:136810300 LOC349160 rs833828 12:49352257 ARF3 0.7 0.106 4.05e-11 0.492 0.908 0.545 2.37e-10

rs713333 1:81725122 Intergenic rs7081305 10:28112405 ARMC4 -0.606 0.092 4.05e-11 -0.786 -0.426 0.672 1.26e-09

rs12707345 7:136831401 LOC349160 rs833828 12:49352257 ARF3 0.702 0.106 4.11e-11 0.494 0.911 0.527 3.42e-10

rs35119148 7:136829311 LOC349160 rs833828 12:49352257 ARF3 0.702 0.106 4.11e-11 0.494 0.911 0.527 3.42e-10

rs112227646 7:134823966 LOC653739 rs927829 10:53253804 PRKG1 -1.331 0.202 4.21e-11 -1.727 -0.936 0.392 9.33e-11

rs11977188 7:134825994 LOC653739 rs927829 10:53253804 PRKG1 -1.331 0.202 4.26e-11 -1.727 -0.935 0.392 9.39e-11

rs75952361 7:134831638 LOC653739 rs927829 10:53253804 PRKG1 -1.33 0.202 4.29e-11 -1.725 -0.935 0.39 9.46e-11

rs35655262 7:136826384 LOC349160 rs833828 12:49352257 ARF3 0.701 0.106 4.30e-11 0.493 0.91 0.529 3.45e-10

rs11971038 7:136842197 LOC349160 rs833828 12:49352257 ARF3 0.702 0.106 4.33e-11 0.493 0.911 0.544 3.46e-10

rs10488605 7:136839540 LOC349160 rs833828 12:49352257 ARF3 0.702 0.106 4.33e-11 0.493 0.911 0.544 3.47e-10

rs13226089 7:136843583 LOC349160 rs833828 12:49352257 ARF3 0.702 0.106 4.34e-11 0.493 0.911 0.544 3.47e-10

rs79098801 7:134837554 Intergenic rs927829 10:53253804 PRKG1 -1.329 0.202 4.36e-11 -1.724 -0.934 0.388 9.50e-11

rs1592804 5:108621680 Intergenic rs10140868 14:62616479 Intergenic 0.562 0.085 4.38e-11 0.395 0.729 0.394 7.03e-10

rs11973120 7:134837944 Intergenic rs927829 10:53253804 PRKG1 -1.328 0.202 4.40e-11 -1.723 -0.933 0.387 9.49e-11

rs11241001 5:108608418 Intergenic rs9671388 14:62626952 Intergenic 0.576 0.087 4.47e-11 0.405 0.747 0.783 1.95e-10

rs113174456 7:134838585 Intergenic rs927829 10:53253804 PRKG1 -1.326 0.201 4.49e-11 -1.721 -0.932 0.384 9.51e-11

rs9991802 4:158627103 Intergenic rs1390204 12:71587160 Intergenic 0.591 0.09 4.65e-11 0.415 0.767 0.793 6.24e-11

rs6893599 5:39654978 Intergenic rs11030584 11:4025021 STIM1 -0.692 0.105 4.79e-11 -0.898 -0.486 0.856 1.07e-09

rs6987672 8:58254694 Intergenic rs4886105 13:53587879 0.20955 -1.273 0.194 4.79e-11 -1.652 -0.894 0.559 6.49e-11

rs7379603 5:3320814 Intergenic rs3815802 16:58296545 CCDC113 -0.572 0.087 4.85e-11 -0.743 -0.402 0.995 4.65e-10

rs7445446 5:3320906 Intergenic rs3815802 16:58296545 CCDC113 -0.572 0.087 4.94e-11 -0.743 -0.401 0.995 4.74e-10

rs10824777 10:54487249 Intergenic rs492943 10:111629030 XPNPEP1 0.604 0.092 5.06e-11 0.424 0.785 0.354 3.25e-11

rs492943 10:111629030 XPNPEP1 rs10824777 10:54487249 Intergenic 0.604 0.092 5.06e-11 0.424 0.785 0.354 3.25e-11

rs17168947 7:136830478 LOC349160 rs833828 12:49352257 ARF3 0.698 0.106 5.16e-11 0.49 0.906 0.49 4.08e-10

rs11980336 7:136848097 LOC349160 rs833828 12:49352257 ARF3 0.7 0.107 5.26e-11 0.491 0.909 0.558 3.79e-10
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rs6893599 5:39654978 Intergenic rs2860454 11:3977591 STIM1 -0.689 0.105 5.27e-11 -0.895 -0.483 0.9 1.56e-09

rs2600168 3:9376490 Intergenic rs206517 18:10410087 Intergenic -0.647 0.099 5.31e-11 -0.84 -0.453 0.648 7.84e-10

rs2600168 3:9376490 Intergenic rs206521 18:10409505 Intergenic -0.647 0.099 5.32e-11 -0.84 -0.454 0.632 6.84e-10

rs1363215 5:108572971 Intergenic rs9671388 14:62626952 Intergenic 0.594 0.091 5.40e-11 0.417 0.772 0.713 2.39e-09

rs62338558 5:3321736 Intergenic rs3815802 16:58296545 CCDC113 -0.571 0.087 5.46e-11 -0.741 -0.4 0.995 5.18e-10

rs6987672 8:58254694 Intergenic rs7991400 13:53587569 Intergenic -1.27 0.194 5.48e-11 -1.649 -0.89 0.562 5.95e-11

rs12082409 1:51514557 Intergenic rs72782094 2:19664012 Intergenic 1.252 0.191 5.62e-11 0.877 1.626 0.452 2.15e-09

rs11978828 7:136811432 LOC349160 rs833828 12:49352257 ARF3 0.691 0.105 5.65e-11 0.484 0.898 0.544 2.79e-10

rs1364716 7:136804753 LOC349160 rs833828 12:49352257 ARF3 0.691 0.105 5.71e-11 0.484 0.898 0.545 2.78e-10

rs35695483 7:136817670 LOC349160 rs3825184 12:49298340 CCDC65 0.689 0.105 5.72e-11 0.483 0.896 0.496 1.75e-10

rs11982570 7:136817016 LOC349160 rs3825184 12:49298340 CCDC65 0.689 0.105 5.74e-11 0.483 0.896 0.496 1.75e-10

rs7732292 5:39641154 Intergenic rs10742194 11:3953708 STIM1 -0.707 0.108 5.77e-11 -0.918 -0.495 0.849 2.61e-09

rs73450859 7:136846425 LOC349160 rs833828 12:49352257 ARF3 0.697 0.106 5.77e-11 0.488 0.905 0.545 4.06e-10

rs2600168 3:9376490 Intergenic rs206518 18:10409931 Intergenic -0.645 0.099 5.79e-11 -0.838 -0.452 0.637 7.27e-10

rs7804134 7:136820679 LOC349160 rs833828 12:49352257 ARF3 0.699 0.107 5.81e-11 0.49 0.908 0.545 3.73e-10

rs33914231 7:136851039 LOC349160 rs833828 12:49352257 ARF3 0.701 0.107 5.84e-11 0.491 0.911 0.533 4.08e-10

rs17168934 7:136808272 LOC349160 rs3825184 12:49298340 CCDC65 0.689 0.105 5.87e-11 0.483 0.895 0.498 1.75e-10

rs36110794 7:136835778 LOC349160 rs3825184 12:49298340 CCDC65 0.691 0.106 5.88e-11 0.484 0.898 0.485 2.53e-10

rs73450817 7:136810307 LOC349160 rs3825184 12:49298340 CCDC65 0.689 0.105 5.88e-11 0.483 0.895 0.498 1.75e-10

rs73450814 7:136810300 LOC349160 rs3825184 12:49298340 CCDC65 0.689 0.105 5.88e-11 0.483 0.895 0.498 1.75e-10

rs10068611 5:39655406 Intergenic rs11030584 11:4025021 STIM1 -0.688 0.105 5.94e-11 -0.894 -0.482 0.851 1.09e-09

rs67751562 7:136833387 LOC349160 rs3825184 12:49298340 CCDC65 0.691 0.106 5.96e-11 0.484 0.898 0.484 2.56e-10

rs7732292 5:39641154 Intergenic rs2860454 11:3977591 STIM1 -0.702 0.107 6.00e-11 -0.913 -0.492 0.826 3.99e-09

rs12707345 7:136831401 LOC349160 rs3825184 12:49298340 CCDC65 0.691 0.106 6.04e-11 0.484 0.898 0.482 2.59e-10

rs35119148 7:136829311 LOC349160 rs3825184 12:49298340 CCDC65 0.691 0.106 6.05e-11 0.484 0.898 0.482 2.59e-10
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rs7732292 5:39641154 Intergenic rs11030584 11:4025021 STIM1 -0.703 0.107 6.11e-11 -0.914 -0.492 0.814 8.34e-10

rs12472602 2:45528055 Intergenic rs10809384 9:11200242 Intergenic -1.368 0.209 6.11e-11 -1.778 -0.958 0.925 5.46e-10

rs16926382 8:61597689 CHD7 rs7194067 16:87988440 BANP -1.26 0.193 6.14e-11 -1.638 -0.882 0.792 2.61e-10

rs10068611 5:39655406 Intergenic rs2860454 11:3977591 STIM1 -0.686 0.105 6.21e-11 -0.892 -0.48 0.887 1.56e-09

rs35655262 7:136826384 LOC349160 rs3825184 12:49298340 CCDC65 0.69 0.106 6.30e-11 0.483 0.897 0.484 2.63e-10

rs11971038 7:136842197 LOC349160 rs3825184 12:49298340 CCDC65 0.691 0.106 6.37e-11 0.484 0.898 0.499 2.62e-10

rs10488605 7:136839540 LOC349160 rs3825184 12:49298340 CCDC65 0.691 0.106 6.38e-11 0.484 0.898 0.499 2.63e-10

rs13226089 7:136843583 LOC349160 rs3825184 12:49298340 CCDC65 0.691 0.106 6.38e-11 0.484 0.898 0.499 2.63e-10

rs62338559 5:3322058 Intergenic rs10852563 16:58332076 Intergenic -0.565 0.086 6.42e-11 -0.735 -0.396 0.906 5.22e-10

rs6987672 8:58254694 Intergenic rs1891943 13:53587172 Intergenic -1.265 0.194 6.44e-11 -1.645 -0.886 0.567 5.47e-11

rs62338559 5:3322058 Intergenic rs4784030 16:58303599 CCDC113 -0.558 0.086 6.72e-11 -0.726 -0.391 0.937 5.21e-10

rs6893599 5:39654978 Intergenic rs4379839 11:4038256 STIM1 -0.685 0.105 6.75e-11 -0.89 -0.479 0.861 1.54e-09

rs6893599 5:39654978 Intergenic rs2959080 11:4028447 STIM1 -0.684 0.105 6.96e-11 -0.889 -0.478 0.851 1.24e-09

rs6987672 8:58254694 Intergenic rs1936387 13:53586746 Intergenic -1.262 0.194 7.16e-11 -1.641 -0.882 0.57 5.25e-11

rs73836233 4:92499795 CCSER1 rs9542856 13:72699635 Intergenic -0.901 0.138 7.17e-11 -1.172 -0.63 0.874 4.88e-11

rs6848895 4:158626629 Intergenic rs1705244 12:71589246 Intergenic 0.583 0.089 7.18e-11 0.407 0.758 0.835 3.66e-11

rs7732292 5:39641154 Intergenic rs4379839 11:4038256 STIM1 -0.698 0.107 7.28e-11 -0.908 -0.488 0.799 1.28e-09

rs35695483 7:136817670 LOC349160 rs7304942 12:49306149 CCDC65 0.686 0.105 7.29e-11 0.48 0.893 0.486 4.25e-10

rs11982570 7:136817016 LOC349160 rs7304942 12:49306149 CCDC65 0.686 0.105 7.31e-11 0.48 0.893 0.487 4.25e-10

rs35502738 5:39629430 Intergenic rs2860454 11:3977591 STIM1 -0.73 0.112 7.31e-11 -0.95 -0.511 0.998 3.12e-09

rs17168934 7:136808272 LOC349160 rs7304942 12:49306149 CCDC65 0.686 0.105 7.49e-11 0.479 0.892 0.488 4.25e-10

rs36110794 7:136835778 LOC349160 rs7304942 12:49306149 CCDC65 0.688 0.106 7.50e-11 0.481 0.895 0.476 6.02e-10

rs73450817 7:136810307 LOC349160 rs7304942 12:49306149 CCDC65 0.686 0.105 7.50e-11 0.479 0.892 0.488 4.27e-10

rs73450814 7:136810300 LOC349160 rs7304942 12:49306149 CCDC65 0.686 0.105 7.50e-11 0.479 0.892 0.488 4.27e-10

rs67751562 7:136833387 LOC349160 rs7304942 12:49306149 CCDC65 0.688 0.106 7.60e-11 0.481 0.895 0.474 6.10e-10
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rs6893599 5:39654978 Intergenic rs727152 11:4019765 STIM1 -0.682 0.105 7.68e-11 -0.887 -0.476 0.849 1.28e-09

rs6893599 5:39654978 Intergenic rs10835500 11:4039401 STIM1 -0.684 0.105 7.69e-11 -0.89 -0.478 0.826 1.90e-09

rs11980336 7:136848097 LOC349160 rs3825184 12:49298340 CCDC65 0.689 0.106 7.70e-11 0.481 0.897 0.514 2.87e-10

rs12707345 7:136831401 LOC349160 rs7304942 12:49306149 CCDC65 0.688 0.106 7.71e-11 0.481 0.895 0.473 6.18e-10

rs35119148 7:136829311 LOC349160 rs7304942 12:49306149 CCDC65 0.688 0.106 7.72e-11 0.481 0.895 0.473 6.18e-10

rs11978828 7:136811432 LOC349160 rs3825184 12:49298340 CCDC65 0.681 0.105 7.77e-11 0.476 0.886 0.494 2.06e-10

rs1364716 7:136804753 LOC349160 rs3825184 12:49298340 CCDC65 0.681 0.105 7.85e-11 0.475 0.886 0.495 2.06e-10

rs17168947 7:136830478 LOC349160 rs3825184 12:49298340 CCDC65 0.686 0.105 7.86e-11 0.479 0.893 0.442 3.21e-10

rs35502738 5:39629430 Intergenic rs10742194 11:3953708 STIM1 -0.733 0.113 7.88e-11 -0.954 -0.512 0.997 2.18e-09

rs35655262 7:136826384 LOC349160 rs7304942 12:49306149 CCDC65 0.687 0.106 8.04e-11 0.48 0.894 0.474 6.25e-10

rs73450859 7:136846425 LOC349160 rs3825184 12:49298340 CCDC65 0.686 0.106 8.07e-11 0.479 0.893 0.5 3.06e-10

rs1197282 3:133052473 TMEM108 rs4607084 3:41021872 Intergenic 0.855 0.132 8.09e-11 0.597 1.112 0.394 1.90e-09

rs4607084 3:41021872 Intergenic rs1197282 3:133052473 TMEM108 0.855 0.132 8.09e-11 0.597 1.112 0.394 1.90e-09

rs10068611 5:39655406 Intergenic rs4379839 11:4038256 STIM1 -0.681 0.105 8.23e-11 -0.887 -0.476 0.853 1.57e-09

rs7379603 5:3320814 Intergenic rs10852563 16:58332076 Intergenic -0.558 0.086 8.25e-11 -0.727 -0.39 0.933 4.97e-10

rs7732292 5:39641154 Intergenic rs2959080 11:4028447 STIM1 -0.696 0.107 8.25e-11 -0.905 -0.486 0.788 9.30e-10

rs34307840 2:49085269 Intergenic rs7960668 12:27000650 Intergenic -0.762 0.117 8.29e-11 -0.992 -0.532 0.53 1.64e-10

rs4257682 4:64885239 Intergenic rs11075392 16:18007223 Intergenic 0.619 0.095 8.31e-11 0.432 0.806 0.853 9.30e-10

rs1354128 5:39634963 Intergenic rs10742194 11:3953708 STIM1 -0.704 0.108 8.39e-11 -0.916 -0.492 0.862 2.08e-09

rs7445446 5:3320906 Intergenic rs10852563 16:58332076 Intergenic -0.558 0.086 8.42e-11 -0.726 -0.39 0.933 5.07e-10

rs16926382 8:61597689 CHD7 rs4843289 16:87999896 BANP -1.244 0.192 8.43e-11 -1.619 -0.868 0.771 3.96e-10

rs7804134 7:136820679 LOC349160 rs3825184 12:49298340 CCDC65 0.688 0.106 8.46e-11 0.48 0.895 0.5 2.83e-10

rs62338559 5:3322058 Intergenic rs2550344 16:58299711 CCDC113 -0.566 0.087 8.48e-11 -0.737 -0.395 0.978 4.75e-10

rs33914231 7:136851039 LOC349160 rs3825184 12:49298340 CCDC65 0.69 0.106 8.49e-11 0.482 0.899 0.489 3.05e-10

rs10068611 5:39655406 Intergenic rs2959080 11:4028447 STIM1 -0.68 0.105 8.55e-11 -0.885 -0.474 0.845 1.25e-09
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rs142447549 4:64816631 Intergenic rs11075392 16:18007223 Intergenic 0.618 0.095 8.56e-11 0.432 0.805 0.592 1.39e-10

rs7732292 5:39641154 Intergenic rs10835500 11:4039401 STIM1 -0.696 0.107 8.57e-11 -0.906 -0.486 0.74 1.57e-09

rs1354128 5:39634963 Intergenic rs11030584 11:4025021 STIM1 -0.701 0.108 8.70e-11 -0.912 -0.489 0.835 6.46e-10

rs16926382 8:61597689 CHD7 rs76736497 16:87998561 BANP -1.242 0.191 8.79e-11 -1.617 -0.867 0.771 3.88e-10

rs7732292 5:39641154 Intergenic rs727152 11:4019765 STIM1 -0.694 0.107 9.05e-11 -0.903 -0.484 0.783 9.53e-10

rs1197282 3:133052473 TMEM108 rs13064610 3:41021704 Intergenic 0.852 0.132 9.28e-11 0.594 1.11 0.39 2.08e-09

rs13064610 3:41021704 Intergenic rs1197282 3:133052473 TMEM108 0.852 0.132 9.28e-11 0.594 1.11 0.39 2.08e-09

rs10068611 5:39655406 Intergenic rs727152 11:4019765 STIM1 -0.678 0.105 9.38e-11 -0.883 -0.473 0.841 1.29e-09

rs12643891 4:64810034 Intergenic rs11075392 16:18007223 Intergenic 0.609 0.094 9.51e-11 0.425 0.793 0.591 1.77e-10

rs13115659 4:64810536 Intergenic rs11075392 16:18007223 Intergenic 0.609 0.094 9.52e-11 0.424 0.793 0.591 1.78e-10

rs12511573 4:64810380 Intergenic rs11075392 16:18007223 Intergenic 0.609 0.094 9.53e-11 0.424 0.793 0.591 1.78e-10

rs76914853 7:134818706 AGBL3 rs927829 10:53253804 PRKG1 -1.32 0.204 9.54e-11 -1.72 -0.921 0.428 3.02e-10

rs9991802 4:158627103 Intergenic rs1705244 12:71589246 Intergenic 0.58 0.09 9.58e-11 0.405 0.756 0.836 7.42e-11

rs10068611 5:39655406 Intergenic rs10835500 11:4039401 STIM1 -0.68 0.105 9.63e-11 -0.886 -0.474 0.814 1.94e-09

rs79112226 8:58254272 Intergenic rs1936387 13:53586746 Intergenic -1.262 0.195 9.71e-11 -1.644 -0.88 0.572 6.56e-11

rs6856100 4:64884721 Intergenic rs11075392 16:18007223 Intergenic 0.612 0.095 9.75e-11 0.427 0.798 0.66 5.54e-10



Spelling
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs59942153 17:8207240 Intergenic rs7271609 20:52137810 Intergenic -1.986 0.281 1.50e-12 -2.537 -1.436 0.926 1.16e-11

rs59942153 17:8207240 Intergenic rs7271612 20:52137818 Intergenic -1.986 0.281 1.50e-12 -2.537 -1.436 0.926 1.16e-11

rs59942153 17:8207240 Intergenic rs6512891 20:52138287 Intergenic -1.99 0.281 1.53e-12 -2.541 -1.438 0.927 1.19e-11

rs59942153 17:8207240 Intergenic rs6022549 20:52138183 Intergenic -1.99 0.281 1.53e-12 -2.541 -1.438 0.927 1.19e-11

rs59942153 17:8207240 Intergenic rs6512892 20:52138357 Intergenic -1.992 0.282 1.63e-12 -2.544 -1.439 0.922 1.24e-11

rs59942153 17:8207240 Intergenic rs6022550 20:52138379 Intergenic -1.991 0.282 1.63e-12 -2.544 -1.439 0.922 1.25e-11

rs59942153 17:8207240 Intergenic rs6022540 20:52134700 Intergenic -1.983 0.281 1.84e-12 -2.534 -1.431 0.93 1.42e-11

rs59942153 17:8207240 Intergenic rs6022539 20:52134609 Intergenic -1.983 0.281 1.85e-12 -2.534 -1.431 0.93 1.44e-11

rs59942153 17:8207240 Intergenic rs6022546 20:52135393 Intergenic -1.983 0.281 1.85e-12 -2.534 -1.431 0.93 1.45e-11

rs59942153 17:8207240 Intergenic rs56384924 20:52134563 Intergenic -1.983 0.281 1.86e-12 -2.534 -1.431 0.93 1.44e-11

rs59942153 17:8207240 Intergenic rs6022543 20:52134914 Intergenic -1.982 0.281 1.86e-12 -2.534 -1.431 0.93 1.44e-11

rs59942153 17:8207240 Intergenic rs113156479 20:52134996 Intergenic -1.982 0.281 1.86e-12 -2.534 -1.431 0.929 1.45e-11

rs59942153 17:8207240 Intergenic rs6022545 20:52135365 Intergenic -1.985 0.282 1.91e-12 -2.537 -1.432 0.931 1.09e-11

rs59942153 17:8207240 Intergenic rs8118807 20:52133473 Intergenic -1.985 0.282 2.08e-12 -2.538 -1.431 0.932 1.61e-11

rs59942153 17:8207240 Intergenic rs8118721 20:52133451 Intergenic -1.985 0.282 2.08e-12 -2.538 -1.431 0.932 1.61e-11

rs59942153 17:8207240 Intergenic rs56913504 20:52133353 Intergenic -1.977 0.283 2.59e-12 -2.531 -1.423 0.932 2.91e-11

rs59942153 17:8207240 Intergenic rs6022536 20:52131921 Intergenic -1.976 0.283 2.69e-12 -2.53 -1.422 0.931 2.99e-11

rs59942153 17:8207240 Intergenic rs7262056 20:52131227 Intergenic -1.977 0.283 2.71e-12 -2.531 -1.423 0.931 3.03e-11

rs9293566 5:90622516 Intergenic rs1987901 8:15322608 Intergenic 0.519 0.074 2.88e-12 0.373 0.664 0.756 2.13e-11

rs6878402 5:90631972 Intergenic rs1987901 8:15322608 Intergenic 0.518 0.074 3.17e-12 0.373 0.664 0.895 9.80e-12

rs62523288 8:103585618 Intergenic rs17114091 10:90666952 STAMBPL1 -0.796 0.115 3.77e-12 -1.02 -0.571 0.778 8.63e-11

rs10942630 5:90631384 Intergenic rs1987901 8:15322608 Intergenic 0.513 0.074 3.91e-12 0.368 0.658 0.872 1.58e-11

rs62373944 5:90632625 Intergenic rs1987901 8:15322608 Intergenic 0.512 0.074 4.89e-12 0.367 0.657 0.89 1.84e-11

rs62523288 8:103585618 Intergenic rs10509557 10:90663839 STAMBPL1 -0.805 0.117 5.13e-12 -1.033 -0.576 0.795 1.44e-10

rs10037293 5:90628300 Intergenic rs1987901 8:15322608 Intergenic 0.508 0.074 5.14e-12 0.364 0.652 0.792 5.06e-11

rs58734007 5:90633072 Intergenic rs1987901 8:15322608 Intergenic 0.511 0.074 5.30e-12 0.366 0.657 0.897 1.94e-11

rs10042981 5:90628789 Intergenic rs1987901 8:15322608 Intergenic 0.508 0.074 5.42e-12 0.363 0.652 0.801 5.45e-11

rs7702782 5:90638506 Intergenic rs1987901 8:15322608 Intergenic 0.513 0.075 8.15e-12 0.366 0.661 0.96 7.38e-11



Spelling
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs9293566 5:90622516 Intergenic rs1390051 8:15322770 Intergenic 0.505 0.074 8.85e-12 0.36 0.65 0.66 1.80e-11

rs6878402 5:90631972 Intergenic rs1390051 8:15322770 Intergenic 0.505 0.074 9.80e-12 0.36 0.65 0.874 7.97e-12

rs10942630 5:90631384 Intergenic rs1390051 8:15322770 Intergenic 0.5 0.074 1.21e-11 0.355 0.644 0.816 1.29e-11

rs6998091 8:103588880 Intergenic rs17114091 10:90666952 STAMBPL1 -0.775 0.114 1.23e-11 -0.999 -0.551 0.615 1.26e-10

rs62523288 8:103585618 Intergenic rs6586154 10:90661135 STAMBPL1 -0.791 0.117 1.30e-11 -1.02 -0.562 0.727 4.07e-10

rs62373944 5:90632625 Intergenic rs1390051 8:15322770 Intergenic 0.498 0.074 1.51e-11 0.354 0.643 0.837 1.50e-11

rs10037293 5:90628300 Intergenic rs1390051 8:15322770 Intergenic 0.494 0.073 1.55e-11 0.351 0.638 0.713 4.16e-11

rs62523288 8:103585618 Intergenic rs1998629 10:90664283 STAMBPL1 -0.785 0.117 1.59e-11 -1.014 -0.557 0.751 5.05e-10

rs62523288 8:103585618 Intergenic rs1968028 10:90662086 STAMBPL1 -0.788 0.117 1.62e-11 -1.017 -0.558 0.732 4.98e-10

rs58734007 5:90633072 Intergenic rs1390051 8:15322770 Intergenic 0.498 0.074 1.63e-11 0.353 0.643 0.845 1.58e-11

rs10042981 5:90628789 Intergenic rs1390051 8:15322770 Intergenic 0.494 0.073 1.63e-11 0.35 0.638 0.724 4.49e-11

rs6998091 8:103588880 Intergenic rs10509557 10:90663839 STAMBPL1 -0.782 0.116 1.80e-11 -1.01 -0.554 0.631 2.10e-10

rs7702782 5:90638506 Intergenic rs1390051 8:15322770 Intergenic 0.5 0.075 2.46e-11 0.353 0.646 0.921 5.97e-11

rs10516497 4:103942714 SLC9B1 rs3741869 12:31148187 TSPAN11 0.902 0.136 3.34e-11 0.635 1.168 0.99 6.06e-11

rs7829010 8:103589295 Intergenic rs17114091 10:90666952 STAMBPL1 -0.757 0.114 3.77e-11 -0.981 -0.533 0.553 3.58e-10

rs62523288 8:103585618 Intergenic rs10788618 10:90661893 STAMBPL1 -0.772 0.117 4.26e-11 -1.001 -0.542 0.72 1.19e-09

rs59942153 17:8207240 Intergenic rs143935436 20:52138657 Intergenic -1.928 0.293 5.02e-11 -2.503 -1.353 0.978 2.23e-10

rs59942153 17:8207240 Intergenic rs58552634 20:52139323 Intergenic -1.91 0.291 5.08e-11 -2.479 -1.34 0.979 2.62e-10

rs59942153 17:8207240 Intergenic rs7261040 20:52139673 Intergenic -1.911 0.291 5.17e-11 -2.482 -1.341 0.979 2.66e-10

rs59942153 17:8207240 Intergenic rs66530264 20:52138847 Intergenic -1.907 0.29 5.17e-11 -2.476 -1.338 0.979 2.68e-10

rs6998091 8:103588880 Intergenic rs1998629 10:90664283 STAMBPL1 -0.762 0.116 5.68e-11 -0.99 -0.534 0.593 7.60e-10

rs7829010 8:103589295 Intergenic rs10509557 10:90663839 STAMBPL1 -0.762 0.116 5.82e-11 -0.99 -0.534 0.565 6.11e-10

rs9817226 3:132885668 TMEM108 rs11055024 12:12858969 Intergenic -0.599 0.092 6.15e-11 -0.778 -0.419 0.426 1.18e-09

rs6998091 8:103588880 Intergenic rs6586154 10:90661135 STAMBPL1 -0.762 0.117 6.23e-11 -0.991 -0.534 0.537 8.57e-10

rs59942153 17:8207240 Intergenic rs149538794 20:52138649 Intergenic -1.906 0.292 6.86e-11 -2.478 -1.333 0.965 3.46e-10

rs11777481 8:67219528 Intergenic rs75226807 19:19026851 COPE 0.8 0.123 6.94e-11 0.56 1.04 0.818 1.74e-09

rs11987288 8:67218784 Intergenic rs75226807 19:19026851 COPE 0.8 0.123 6.94e-11 0.56 1.04 0.818 1.74e-09

rs4737782 8:67218257 Intergenic rs75226807 19:19026851 COPE 0.8 0.123 6.94e-11 0.56 1.04 0.818 1.74e-09



Spelling
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs2357826 8:67214877 Intergenic rs75226807 19:19026851 COPE 0.8 0.123 7.28e-11 0.559 1.04 0.819 1.84e-09

rs7827371 8:67213402 Intergenic rs75226807 19:19026851 COPE 0.8 0.123 7.29e-11 0.559 1.04 0.819 1.84e-09

rs7843247 8:67213340 Intergenic rs75226807 19:19026851 COPE 0.8 0.123 7.29e-11 0.559 1.04 0.819 1.84e-09

rs6998091 8:103588880 Intergenic rs1968028 10:90662086 STAMBPL1 -0.76 0.117 7.38e-11 -0.988 -0.531 0.557 9.90e-10

rs72672330 1:62101780 Intergenic rs1101362 6:72142135 Intergenic -0.738 0.113 7.43e-11 -0.96 -0.516 0.602 6.55e-10

rs13385547 2:99548333 KIAA1211L rs2669429 8:105463690 DPYS -0.564 0.087 7.58e-11 -0.734 -0.394 0.874 2.03e-10

rs12144911 1:176566124 PAPPA2 rs2585514 13:78699007 RNF219-AS1 0.637 0.098 7.59e-11 0.445 0.828 0.569 6.41e-11

rs1450055 3:132891280 TMEM108 rs11055024 12:12858969 Intergenic -0.591 0.091 7.62e-11 -0.769 -0.413 0.445 1.06e-09

rs2342702 2:45411188 UNQ6975 rs11560388 7:130026288 CPA1 0.671 0.103 7.71e-11 0.469 0.874 0.53 5.70e-10

rs72672322 1:62093026 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.81e-11 -0.963 -0.517 0.668 4.94e-10

rs72672320 1:62092944 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.83e-11 -0.963 -0.517 0.667 4.95e-10

rs72672318 1:62092821 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.86e-11 -0.963 -0.517 0.668 4.95e-10

rs111765756 1:62091597 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.86e-11 -0.963 -0.517 0.669 5.18e-10

rs78488132 1:62091529 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.86e-11 -0.963 -0.517 0.669 5.18e-10

rs112109175 1:62090170 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.92e-11 -0.963 -0.517 0.669 5.16e-10

rs4433428 1:62090912 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.92e-11 -0.963 -0.517 0.67 5.19e-10

rs1495951 1:62090587 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.95e-11 -0.963 -0.517 0.67 5.19e-10

rs1495950 1:62090706 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 7.96e-11 -0.963 -0.517 0.67 5.20e-10

rs2342702 2:45411188 UNQ6975 rs34339293 7:130017077 Intergenic 0.7 0.108 7.98e-11 0.489 0.911 0.439 5.07e-10

rs72672314 1:62090174 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 8.01e-11 -0.963 -0.517 0.67 5.22e-10

rs60883941 1:62092020 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 8.01e-11 -0.963 -0.517 0.668 5.02e-10

rs112477095 1:62091863 Intergenic rs1101362 6:72142135 Intergenic -0.74 0.114 8.02e-11 -0.963 -0.517 0.668 5.02e-10

rs2342702 2:45411188 UNQ6975 rs3823581 7:130017787 Intergenic 0.699 0.108 8.08e-11 0.488 0.909 0.446 5.06e-10

rs2342702 2:45411188 UNQ6975 rs10954269 7:130018863 CPA1 0.696 0.107 8.21e-11 0.486 0.906 0.449 5.02e-10

rs16878585 7:15722249 MEOX2 rs6967370 7:38600176 AMPH -1.327 0.204 8.27e-11 -1.728 -0.927 0.97 7.44e-10

rs6967370 7:38600176 AMPH rs16878585 7:15722249 MEOX2 -1.327 0.204 8.27e-11 -1.728 -0.927 0.97 7.44e-10

rs72672330 1:62101780 Intergenic rs852949 6:72140542 Intergenic -0.736 0.113 8.89e-11 -0.958 -0.513 0.588 8.94e-10

rs72672330 1:62101780 Intergenic rs852948 6:72140419 Intergenic -0.736 0.113 8.92e-11 -0.958 -0.513 0.588 8.97e-10



Spelling
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval
rs10798465 1:176596408 PAPPA2 rs2585514 13:78699007 RNF219-AS1 0.635 0.098 9.33e-11 0.443 0.827 0.567 9.96e-11
rs72672322 1:62093026 Intergenic rs852949 6:72140542 Intergenic -0.738 0.114 9.38e-11 -0.961 -0.515 0.659 6.72e-10
rs72672320 1:62092944 Intergenic rs852949 6:72140542 Intergenic -0.738 0.114 9.40e-11 -0.961 -0.515 0.659 6.73e-10
rs72672322 1:62093026 Intergenic rs852948 6:72140419 Intergenic -0.738 0.114 9.40e-11 -0.961 -0.515 0.659 6.73e-10
rs72672320 1:62092944 Intergenic rs852948 6:72140419 Intergenic -0.738 0.114 9.42e-11 -0.961 -0.515 0.659 6.75e-10
rs72672318 1:62092821 Intergenic rs852949 6:72140542 Intergenic -0.738 0.114 9.43e-11 -0.961 -0.515 0.659 6.73e-10
rs111765756 1:62091597 Intergenic rs852949 6:72140542 Intergenic -0.738 0.114 9.44e-11 -0.961 -0.514 0.661 7.04e-10
rs78488132 1:62091529 Intergenic rs852949 6:72140542 Intergenic -0.738 0.114 9.44e-11 -0.961 -0.514 0.661 7.04e-10
rs72672318 1:62092821 Intergenic rs852948 6:72140419 Intergenic -0.738 0.114 9.46e-11 -0.961 -0.514 0.659 6.75e-10
rs111765756 1:62091597 Intergenic rs852948 6:72140419 Intergenic -0.738 0.114 9.46e-11 -0.961 -0.514 0.661 7.06e-10
rs78488132 1:62091529 Intergenic rs852948 6:72140419 Intergenic -0.738 0.114 9.46e-11 -0.961 -0.514 0.661 7.06e-10
rs112109175 1:62090170 Intergenic rs852949 6:72140542 Intergenic -0.737 0.114 9.51e-11 -0.961 -0.514 0.661 7.01e-10
rs4433428 1:62090912 Intergenic rs852949 6:72140542 Intergenic -0.737 0.114 9.51e-11 -0.961 -0.514 0.662 7.06e-10
rs112109175 1:62090170 Intergenic rs852948 6:72140419 Intergenic -0.737 0.114 9.53e-11 -0.961 -0.514 0.661 7.03e-10
rs4433428 1:62090912 Intergenic rs852948 6:72140419 Intergenic -0.737 0.114 9.54e-11 -0.961 -0.514 0.662 7.08e-10
rs1495951 1:62090587 Intergenic rs852949 6:72140542 Intergenic -0.737 0.114 9.54e-11 -0.961 -0.514 0.662 7.06e-10
rs1495950 1:62090706 Intergenic rs852949 6:72140542 Intergenic -0.737 0.114 9.55e-11 -0.961 -0.514 0.662 7.07e-10
rs1495951 1:62090587 Intergenic rs852948 6:72140419 Intergenic -0.737 0.114 9.57e-11 -0.961 -0.514 0.662 7.08e-10
rs1495950 1:62090706 Intergenic rs852948 6:72140419 Intergenic -0.737 0.114 9.58e-11 -0.961 -0.514 0.662 7.09e-10
rs3795320 1:176591291 PAPPA2 rs2585514 13:78699007 RNF219-AS1 0.636 0.098 9.58e-11 0.443 0.828 0.572 1.20e-10
rs72672314 1:62090174 Intergenic rs852949 6:72140542 Intergenic -0.737 0.114 9.62e-11 -0.961 -0.514 0.662 7.09e-10
rs60883941 1:62092020 Intergenic rs852949 6:72140542 Intergenic -0.737 0.114 9.62e-11 -0.961 -0.514 0.659 6.82e-10
rs112477095 1:62091863 Intergenic rs852949 6:72140542 Intergenic -0.737 0.114 9.63e-11 -0.961 -0.514 0.66 6.82e-10
rs72672314 1:62090174 Intergenic rs852948 6:72140419 Intergenic -0.737 0.114 9.65e-11 -0.96 -0.514 0.662 7.11e-10
rs60883941 1:62092020 Intergenic rs852948 6:72140419 Intergenic -0.737 0.114 9.65e-11 -0.961 -0.514 0.659 6.84e-10
rs112477095 1:62091863 Intergenic rs852948 6:72140419 Intergenic -0.737 0.114 9.65e-11 -0.961 -0.514 0.659 6.84e-10



Non-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs34981217 2:192989322 TMEFF2 rs371164 19:6489814 Intergenic -0.571 0.081 1.64e-12 -0.729 -0.412 0.817 9.27e-13

rs17354327 2:192987014 TMEFF2 rs371164 19:6489814 Intergenic -0.572 0.081 1.67e-12 -0.731 -0.413 0.836 1.21e-12

rs10164776 2:192986033 TMEFF2 rs371164 19:6489814 Intergenic -0.572 0.081 1.76e-12 -0.731 -0.413 0.837 1.22e-12

rs17367154 2:192989689 TMEFF2 rs371164 19:6489814 Intergenic -0.562 0.08 2.97e-12 -0.719 -0.404 0.861 1.61e-12

rs1806647 2:192989191 TMEFF2 rs371164 19:6489814 Intergenic -0.564 0.082 5.32e-12 -0.724 -0.404 0.821 1.08e-11

rs17426817 3:111664064 PHLDB2 rs7674025 4:136013609 Intergenic 1.038 0.151 5.78e-12 0.743 1.335 0.691 1.17e-10

rs11714432 3:126929153 Intergenic rs13062221 3:89778009 Intergenic -0.63 0.092 5.98e-12 -0.809 -0.45 0.423 9.15e-09

rs13062221 3:89778009 Intergenic rs11714432 3:126929153 Intergenic -0.63 0.092 5.98e-12 -0.809 -0.45 0.423 9.15e-09

rs17426817 3:111664064 PHLDB2 rs7678960 4:136013912 Intergenic 1.039 0.151 6.30e-12 0.742 1.335 0.685 1.24e-10

rs582780 3:172121443 Intergenic rs4729987 7:103907516 Intergenic -0.486 0.071 9.86e-12 -0.626 -0.346 0.485 2.35e-10

rs13143126 4:120637804 Intergenic rs74879864 22:29705881 GAS2L1 -1.074 0.158 1.11e-11 -1.384 -0.764 0.55 5.13e-11

rs13143126 4:120637804 Intergenic rs56037813 22:29704662 GAS2L1 -1.074 0.158 1.11e-11 -1.384 -0.764 0.55 5.14e-11

rs13138402 4:120622789 Intergenic rs74879864 22:29705881 GAS2L1 -1.05 0.155 1.38e-11 -1.355 -0.746 0.468 4.15e-11

rs13138402 4:120622789 Intergenic rs56037813 22:29704662 GAS2L1 -1.05 0.155 1.39e-11 -1.355 -0.746 0.468 4.15e-11

rs13144584 4:120625313 Intergenic rs74879864 22:29705881 GAS2L1 -1.05 0.155 1.39e-11 -1.355 -0.746 0.467 4.17e-11

rs13144584 4:120625313 Intergenic rs56037813 22:29704662 GAS2L1 -1.05 0.155 1.40e-11 -1.355 -0.746 0.467 4.18e-11

rs2583610 4:120624185 Intergenic rs74879864 22:29705881 GAS2L1 -1.05 0.155 1.41e-11 -1.354 -0.745 0.464 6.18e-11

rs2583610 4:120624185 Intergenic rs56037813 22:29704662 GAS2L1 -1.05 0.155 1.41e-11 -1.354 -0.745 0.464 6.19e-11

rs2714959 4:120631509 Intergenic rs74879864 22:29705881 GAS2L1 -1.047 0.155 1.58e-11 -1.352 -0.743 0.454 4.93e-11

rs2714959 4:120631509 Intergenic rs56037813 22:29704662 GAS2L1 -1.047 0.155 1.59e-11 -1.351 -0.742 0.453 4.94e-11

rs1009077 4:120627421 Intergenic rs74879864 22:29705881 GAS2L1 -1.047 0.155 1.59e-11 -1.352 -0.743 0.453 5.06e-11

rs1009077 4:120627421 Intergenic rs56037813 22:29704662 GAS2L1 -1.047 0.155 1.59e-11 -1.352 -0.743 0.453 5.07e-11

rs582780 3:172121443 Intergenic rs7357226 7:103907234 Intergenic -0.476 0.071 1.88e-11 -0.615 -0.337 0.441 3.62e-10

rs2389901 4:120635908 Intergenic rs74879864 22:29705881 GAS2L1 -1.047 0.156 1.90e-11 -1.352 -0.741 0.471 4.54e-11

rs2389901 4:120635908 Intergenic rs56037813 22:29704662 GAS2L1 -1.046 0.156 1.91e-11 -1.352 -0.741 0.47 4.54e-11

rs13143126 4:120637804 Intergenic rs72547435 22:29683558 EWSR1 -1.08 0.161 1.94e-11 -1.396 -0.765 0.559 9.77e-11



Non-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs582780 3:172121443 Intergenic rs4729988 7:103908170 Intergenic -0.475 0.071 2.06e-11 -0.614 -0.336 0.448 3.86e-10

rs17426817 3:111664064 PHLDB2 rs6835201 4:135991382 Intergenic 1.01 0.151 2.10e-11 0.714 1.305 0.76 1.90e-10

rs582780 3:172121443 Intergenic rs10265838 7:103908726 Intergenic -0.475 0.071 2.14e-11 -0.614 -0.336 0.452 3.93e-10

rs2892875 4:120616193 Intergenic rs74879864 22:29705881 GAS2L1 -1.046 0.156 2.19e-11 -1.352 -0.74 0.522 5.21e-11

rs2892875 4:120616193 Intergenic rs56037813 22:29704662 GAS2L1 -1.046 0.156 2.19e-11 -1.352 -0.739 0.522 5.22e-11

rs13138402 4:120622789 Intergenic rs72547435 22:29683558 EWSR1 -1.055 0.158 2.51e-11 -1.364 -0.745 0.478 8.07e-11

rs13144584 4:120625313 Intergenic rs72547435 22:29683558 EWSR1 -1.054 0.158 2.52e-11 -1.364 -0.745 0.477 8.11e-11

rs2583610 4:120624185 Intergenic rs72547435 22:29683558 EWSR1 -1.054 0.158 2.55e-11 -1.364 -0.744 0.474 1.18e-10

rs2356772 2:192987584 TMEFF2 rs371164 19:6489814 Intergenic -0.543 0.082 2.71e-11 -0.703 -0.383 0.731 2.57e-11

rs2356772 2:192987584 TMEFF2 rs371164 19:6489814 Intergenic -0.543 0.082 2.71e-11 -0.703 -0.383 0.731 2.57e-11

rs2714959 4:120631509 Intergenic rs72547435 22:29683558 EWSR1 -1.051 0.158 2.85e-11 -1.361 -0.742 0.464 9.50e-11

rs1009077 4:120627421 Intergenic rs72547435 22:29683558 EWSR1 -1.051 0.158 2.88e-11 -1.361 -0.742 0.464 9.77e-11

rs2389901 4:120635908 Intergenic rs72547435 22:29683558 EWSR1 -1.051 0.159 3.39e-11 -1.362 -0.74 0.48 8.73e-11

rs855969 10:119437857 Intergenic rs6054462 20:6671666 Intergenic -0.57 0.086 3.54e-11 -0.739 -0.401 0.567 3.39e-10

rs855969 10:119437857 Intergenic rs6054463 20:6671823 Intergenic -0.57 0.086 3.54e-11 -0.738 -0.401 0.57 3.39e-10

rs855969 10:119437857 Intergenic rs6038585 20:6671980 Intergenic -0.569 0.086 3.67e-11 -0.737 -0.4 0.58 3.36e-10

rs10497724 2:192992434 TMEFF2 rs371164 19:6489814 Intergenic -0.553 0.084 3.70e-11 -0.717 -0.389 0.885 1.49e-11

rs10497724 2:192992434 TMEFF2 rs371164 19:6489814 Intergenic -0.553 0.084 3.70e-11 -0.717 -0.389 0.885 1.49e-11

rs60347052 2:20353631 Intergenic rs10906819 10:15109377 OLAH 1.248 0.189 3.83e-11 0.878 1.619 0.822 2.06e-10

rs1862182 5:95999526 CAST rs9988716 10:82715404 Intergenic 0.62 0.094 3.85e-11 0.436 0.804 0.949 5.49e-11

rs60347052 2:20353631 Intergenic rs11259456 10:15106649 OLAH 1.249 0.189 3.88e-11 0.878 1.619 0.824 2.00e-10

rs2892875 4:120616193 Intergenic rs72547435 22:29683558 EWSR1 -1.05 0.159 3.93e-11 -1.361 -0.738 0.531 1.02e-10

rs60347052 2:20353631 Intergenic rs10796255 10:15106379 OLAH 1.249 0.189 3.95e-11 0.878 1.619 0.825 2.01e-10

rs60347052 2:20353631 Intergenic rs7075914 10:15106281 OLAH 1.249 0.189 3.97e-11 0.878 1.619 0.826 2.01e-10

rs855969 10:119437857 Intergenic rs6038583 20:6670473 Intergenic -0.565 0.086 4.05e-11 -0.733 -0.397 0.621 3.85e-10

rs61933476 12:115385249 Intergenic rs11665940 19:19830928 ZNF14 -0.877 0.133 4.85e-11 -1.138 -0.615 0.571 1.14e-10



Non-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs60347052 2:20353631 Intergenic rs11259459 10:15116780 Intergenic 1.243 0.189 4.88e-11 0.873 1.614 0.814 2.68e-10

rs61933476 12:115385249 Intergenic rs73006763 19:19827948 ZNF14 -0.875 0.133 5.02e-11 -1.137 -0.614 0.572 1.24e-10

rs61933476 12:115385249 Intergenic rs73006760 19:19827898 ZNF14 -0.875 0.133 5.03e-11 -1.137 -0.614 0.572 1.25e-10

rs61933476 12:115385249 Intergenic rs56167115 19:19827724 ZNF14 -0.875 0.133 5.06e-11 -1.136 -0.614 0.572 1.27e-10

rs60347052 2:20353631 Intergenic rs113240764 10:15112925 OLAH 1.24 0.189 5.46e-11 0.869 1.61 0.818 3.18e-10

rs855969 10:119437857 Intergenic rs6038586 20:6673320 Intergenic -0.569 0.087 5.60e-11 -0.739 -0.399 0.581 5.50e-10

rs60347052 2:20353631 Intergenic rs11259474 10:15129402 ACBD7 1.285 0.196 5.63e-11 0.901 1.67 0.896 1.76e-09

rs855969 10:119437857 Intergenic rs6117384 20:6673542 Intergenic -0.569 0.087 5.65e-11 -0.739 -0.399 0.579 5.40e-10

rs60347052 2:20353631 Intergenic rs6602808 10:15129880 ACBD7 1.285 0.196 5.73e-11 0.901 1.67 0.896 1.80e-09

rs1552572 1:79335977 Intergenic rs4406444 8:72636606 Intergenic -0.909 0.139 5.73e-11 -1.181 -0.637 0.578 1.38e-10

rs62357516 5:35333842 Intergenic rs11022262 11:12260355 Intergenic -0.61 0.093 5.94e-11 -0.793 -0.427 0.78 1.87e-10

rs1552572 1:79335977 Intergenic rs113927247 8:72641419 Intergenic -0.913 0.139 5.99e-11 -1.186 -0.639 0.591 1.26e-10

rs13382464 2:223412143 SGPP2 rs16969089 19:28425579 Intergenic -0.616 0.094 6.38e-11 -0.8 -0.431 0.748 1.22e-10

rs60347052 2:20353631 Intergenic rs11259470 10:15126900 ACBD7 1.274 0.195 6.71e-11 0.891 1.657 0.922 2.41e-09

rs717246 1:79329349 Intergenic rs4406444 8:72636606 Intergenic -0.907 0.139 6.76e-11 -1.179 -0.635 0.57 1.79e-10

rs60347052 2:20353631 Intergenic rs7911265 10:15127063 ACBD7 1.274 0.195 6.80e-11 0.891 1.657 0.921 2.42e-09

rs17426817 3:111664064 PHLDB2 rs7664664 4:135989375 Intergenic 0.975 0.149 6.83e-11 0.682 1.268 0.679 3.32e-10

rs60347052 2:20353631 Intergenic rs58877824 10:15129337 ACBD7 1.276 0.196 6.90e-11 0.892 1.659 0.929 2.94e-09

rs1178829 12:119928497 CCDC60 rs4646579 15:58329528 ALDH1A2 -0.42 0.064 6.92e-11 -0.547 -0.294 0.394 1.63e-11

rs12336386 9:118124074 DEC1 rs497234 11:100817012 ARHGAP42 0.841 0.129 6.99e-11 0.588 1.094 0.924 2.61e-12

rs10817758 9:118143933 DEC1 rs497234 11:100817012 ARHGAP42 0.849 0.13 7.00e-11 0.594 1.104 0.829 4.69e-12

rs855967 10:119437923 Intergenic rs6054462 20:6671666 Intergenic -0.567 0.087 7.04e-11 -0.737 -0.397 0.671 2.88e-10

rs717246 1:79329349 Intergenic rs113927247 8:72641419 Intergenic -0.911 0.14 7.05e-11 -1.184 -0.637 0.583 1.63e-10

rs113706158 1:79340958 Intergenic rs4406444 8:72636606 Intergenic -0.906 0.139 7.06e-11 -1.179 -0.634 0.577 1.76e-10

rs1552572 1:79335977 Intergenic rs113584153 8:72639552 Intergenic -0.905 0.139 7.10e-11 -1.177 -0.633 0.571 1.96e-10

rs855967 10:119437923 Intergenic rs6054463 20:6671823 Intergenic -0.567 0.087 7.11e-11 -0.737 -0.396 0.675 2.88e-10



Non-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs72480678 1:79339882 Intergenic rs4406444 8:72636606 Intergenic -0.906 0.139 7.34e-11 -1.178 -0.633 0.59 1.67e-10

rs113706158 1:79340958 Intergenic rs113927247 8:72641419 Intergenic -0.91 0.14 7.36e-11 -1.184 -0.636 0.59 1.60e-10

rs855967 10:119437923 Intergenic rs6038585 20:6671980 Intergenic -0.566 0.087 7.43e-11 -0.736 -0.395 0.684 2.83e-10

rs28816175 1:79340628 Intergenic rs4406444 8:72636606 Intergenic -0.905 0.139 7.63e-11 -1.178 -0.633 0.587 1.73e-10

rs72480678 1:79339882 Intergenic rs113927247 8:72641419 Intergenic -0.909 0.14 7.66e-11 -1.183 -0.635 0.603 1.52e-10

rs28846376 1:79340794 Intergenic rs4406444 8:72636606 Intergenic -0.905 0.139 7.69e-11 -1.177 -0.632 0.588 1.74e-10

rs28816175 1:79340628 Intergenic rs113927247 8:72641419 Intergenic -0.909 0.14 7.95e-11 -1.183 -0.635 0.6 1.57e-10

rs11587713 1:79341461 Intergenic rs4406444 8:72636606 Intergenic -0.904 0.139 7.96e-11 -1.177 -0.632 0.586 1.79e-10

rs28846376 1:79340794 Intergenic rs113927247 8:72641419 Intergenic -0.909 0.14 8.01e-11 -1.182 -0.635 0.601 1.58e-10

rs1862182 5:95999526 CAST rs11187785 10:82710004 Intergenic 0.611 0.094 8.07e-11 0.427 0.795 0.98 1.38e-10

rs11587713 1:79341461 Intergenic rs113927247 8:72641419 Intergenic -0.908 0.14 8.30e-11 -1.182 -0.634 0.599 1.63e-10

rs717246 1:79329349 Intergenic rs113584153 8:72639552 Intergenic -0.903 0.139 8.37e-11 -1.175 -0.63 0.564 2.54e-10

rs566676 12:119927705 CCDC60 rs4646579 15:58329528 ALDH1A2 -0.419 0.065 8.56e-11 -0.546 -0.292 0.401 2.06e-11

rs113706158 1:79340958 Intergenic rs113584153 8:72639552 Intergenic -0.902 0.139 8.79e-11 -1.175 -0.629 0.57 2.50e-10

rs143911136 12:115384277 Intergenic rs11665940 19:19830928 ZNF14 -0.862 0.133 8.91e-11 -1.122 -0.601 0.732 2.01e-10

rs61933475 12:115384431 Intergenic rs11665940 19:19830928 ZNF14 -0.862 0.133 8.91e-11 -1.122 -0.601 0.732 2.01e-10

rs1862182 5:95999526 CAST rs10786160 10:82736947 Intergenic 0.61 0.094 8.95e-11 0.426 0.795 0.686 1.80e-10

rs10010558 4:173185798 GALNTL6 rs9654631 6:122136335 Intergenic 0.631 0.097 9.08e-11 0.44 0.822 0.7 1.05e-09

rs60347052 2:20353631 Intergenic rs7896927 10:15126964 ACBD7 1.292 0.199 9.10e-11 0.901 1.683 0.937 5.40e-09

rs72480678 1:79339882 Intergenic rs113584153 8:72639552 Intergenic -0.901 0.139 9.13e-11 -1.174 -0.629 0.584 2.36e-10

rs143911136 12:115384277 Intergenic rs73006763 19:19827948 ZNF14 -0.861 0.133 9.22e-11 -1.121 -0.6 0.733 2.21e-10

rs61933475 12:115384431 Intergenic rs73006763 19:19827948 ZNF14 -0.86 0.133 9.22e-11 -1.121 -0.6 0.733 2.21e-10

rs143911136 12:115384277 Intergenic rs73006760 19:19827898 ZNF14 -0.861 0.133 9.23e-11 -1.121 -0.6 0.733 2.22e-10

rs61933475 12:115384431 Intergenic rs73006760 19:19827898 ZNF14 -0.86 0.133 9.24e-11 -1.121 -0.6 0.733 2.22e-10

rs1862182 5:95999526 CAST rs7088863 10:82714182 Intergenic 0.611 0.094 9.27e-11 0.426 0.795 0.961 2.19e-10

rs143911136 12:115384277 Intergenic rs56167115 19:19827724 ZNF14 -0.86 0.133 9.31e-11 -1.121 -0.6 0.733 2.26e-10



Non-word reading
SNP1 Chr1:Pos1 Gen1 SNP2 Chr2:Pos2 Gen2 Beta SE Meta.Pval CI_Low CI_UP Het Glide.Pval

rs61933475 12:115384431 Intergenic rs56167115 19:19827724 ZNF14 -0.86 0.133 9.31e-11 -1.121 -0.6 0.733 2.26e-10

rs1862182 5:95999526 CAST rs12219230 10:82736598 Intergenic 0.61 0.094 9.43e-11 0.425 0.795 0.686 1.82e-10

rs60347052 2:20353631 Intergenic rs11259476 10:15130315 ACBD7 1.269 0.196 9.45e-11 0.885 1.653 0.939 3.91e-09

rs28816175 1:79340628 Intergenic rs113584153 8:72639552 Intergenic -0.901 0.139 9.49e-11 -1.174 -0.628 0.58 2.45e-10

rs28846376 1:79340794 Intergenic rs113584153 8:72639552 Intergenic -0.901 0.139 9.57e-11 -1.173 -0.628 0.581 2.46e-10

rs1862182 5:95999526 CAST rs10882418 10:82731800 Intergenic 0.609 0.094 9.59e-11 0.425 0.794 0.691 1.95e-10

rs1862182 5:95999526 CAST rs10882414 10:82729687 Intergenic 0.609 0.094 9.61e-11 0.425 0.794 0.692 1.95e-10

rs1862182 5:95999526 CAST rs10882417 10:82731700 Intergenic 0.609 0.094 9.62e-11 0.425 0.794 0.691 1.95e-10

rs1862182 5:95999526 CAST rs10786157 10:82730435 Intergenic 0.609 0.094 9.62e-11 0.425 0.794 0.692 1.95e-10

rs1862182 5:95999526 CAST rs11187880 10:82735722 Intergenic 0.61 0.094 9.64e-11 0.425 0.794 0.686 1.86e-10

rs1862182 5:95999526 CAST rs10159799 10:82733412 Intergenic 0.61 0.094 9.70e-11 0.425 0.794 0.687 1.87e-10

rs7521586 1:79323362 Intergenic rs4406444 8:72636606 Intergenic -0.901 0.139 9.74e-11 -1.174 -0.628 0.54 4.12e-10

rs1862182 5:95999526 CAST rs10882434 10:82736052 Intergenic 0.612 0.095 9.75e-11 0.426 0.797 0.69 1.60e-10

rs78739610 1:79324284 Intergenic rs4406444 8:72636606 Intergenic -0.903 0.14 9.76e-11 -1.177 -0.63 0.559 4.20e-10

rs10982719 9:118141673 DEC1 rs497234 11:100817012 ARHGAP42 0.841 0.13 9.85e-11 0.586 1.096 0.855 4.68e-12

rs11587713 1:79341461 Intergenic rs113584153 8:72639552 Intergenic -0.9 0.139 9.92e-11 -1.173 -0.627 0.579 2.54e-10

rs6434538 2:192991640 TMEFF2 rs371164 19:6489814 Intergenic -0.514 0.083 6.30e-10 -0.677 -0.351 0.808 4.84e-10
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