N

Max-Planck-Institute of Psychiatry
Statistical Genetics

Identification of genetic variants involved in dyslexia
pathogenesis by joint analysis of QTLs and epistasis

Nazanin Karbalai Mirza Agha

Vollstiandiger Abdruck der von der Fakultit fiir Medizin der Technischen
Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Markus Ploner
Priifer der Dissertation: 1. apl. Prof. Dr. Bertram Miiller-Myhsok

2. Univ.-Prof. Dr. Hans-Werner Mewes

Die Dissertation wurde am 12.08.2014 bei der Technischen Universitit Miinchen eingereicht und
durch die Fakultit fiir Medizin am 17.12.2014 angenommen.






ldentification of genetic variants
involved in dyslexia pathogenesis by
joint analysis of QTLs and epistasis

Nazanin Karbalai Mirza Agha






For my parents






Contents

5
13
(L _Introduction| 15
[I.1 Research question and motivation| . . . ... ... ... .......... 15
2 Background| 17
2.1 Genetic background|. . . . ... ... ... oo oo oo o 17
RI11 Geneticfactors . .................. ... .. ..., . 17
2.1.1.1  Single Nucleotide Polymorphism| . . . . ... ... ... 17
2.1.1.2  Genotype and allele frequencies| . . . . . ... ... ... 18
2.1.1.3 Hardy-Weinberg equilibrium{ . . .. ... .. ... ... 18
2.1.1.4 Linkage disequilibrium| . . . . ... ... ... ... ... 19
2.1.1.5 Population stratification| . ... ... ... ... ... .. 21
2.1.2  Genetic variation and complex traits|. . . . . ... ... ... ... 21
2.1.3 Diversity of the epistasisterm|. . . . . ... ... ... ... .... 23
14 From GWA 7 24
2.1.5 Dyslexia, a common complex disorder|. . . . . .. ... ...... 26
2.1.5.1  Genetics of dyslexia (Genetic epidemiology)(. . . . . . . 28
2.2 Statistical background| . . . ... ... oo oo o oo 33
[2.2.1 Basics of the epistasismodel| . . . . ... ... ... ... . ... 33
2.2.1.1 Multiplicative interaction - a deviation from the additive |
I modell . ... ... 33
2.2.2 Problem of multipletesting| . . . ... ... ..... ... ..... 33
2.3 Technical background| . ... ... ... ... .. ... ... ... . ... 37
P33T R .. 37
232 QUANTOQ . . . . .o e 37
2.3.3  Principles of Graphics Processing Unit computing| . . . . . . . .. 37
2.3.3.1 Graphics Processing Units| . . .. ... .......... 38
2.3.3.2 Compute Unified Device Architecture| . . .. ... ... 39
[2.3.4 Statistical Epistasis Tools|. . . . ... ..... ... ... . .... 40
2.34.1 EPIBLASTER - A correlation- interaction meth
tor binary phenotypes|. . . . ... ... ... 0L 41




2.3.4.2 Algorithm and Implementation of EPIBLASTER| . . .. 41

343 FEPIGPUNSIC - Corrclation ] ' - hod l

for quantitative phenotypes| . . . . ... ... ... ... 42

2.3.4.4  Algorithm and Implementation of EPIGPUHSIC| . . . . 43

2.3.4.5 GLIDE - Linear regression based method for epistasis |

I detectionl . . ... ... . ... . o oL 44
2.3.4.6  Algorithm and Implementation of GLIDE . . . . .. .. 45

R35 MAGENTA] . . . ..ot 46
2.3.6  Ariadne Pathway Studio|. . . .. ... .... ... . ... ... . 47
237 ENCODE . ..... ... .. ... . 47
3_Matenals and Methods| 49
1 rials| . . ... 49
B.1.1 Proband ascertainment/. . . . .. ... ... ... ... . L. 49
3.1.2  Endophenotype ascertainment| . . . .. ... ... ... .. .... 51
B.1.2.1 Single-wordreading|. . . . .. ... ... ... ... ... 51

B3.1.22 Spellingl . .. ..... ... .. ... o 0. 51

3.1.2.3 Phonological awareness|. . . . .. ... ... ... .... 52

B.1.24 Non-wordreading|. . . . . .. ... ... ......... 52

3.1.3 Epilepsiasample] . . . ... ... ... oo 000000 52

B2 Methods . .. ... ... ... .. 53
3.2.1 Datapreprocessing| . . . .. ... ... ... ... ... ... ... 53
3.2.1.1 Dyslexiasample| . . . ... ................. 53

3.2.1.2 Epilepsiasample]. . . . ... ... .. 000000 53

322 Studydesign| . .. ... ... ... o o 54
3.2.2.1  Association of univariate genetic variants in dyslexia|. . 54

13.2.2.2  Association of bivariate genetic variants in dyslexia| . . 55

3.2.2.3 Regional based interaction in hippocampal expression| . 56

3.2.2.4 Pathwayanalyses| . ... ... ............... 56

3.2.2.5 Functional sequence mapping| . . . . .. ... ... ... 57

4 Resultd 59
4.1 Association of univariate genetic variants in dyslexia| . . . .. ... ... 59
4.2 Association of bivariate genetic variants indyslexia| . . . . ... ... .. 59
421 Single-wordreading| . . . ... ... ... ... . ..o L. 61
@4.2.2 Phonological awareness| . . . . . ... ... .. ... . 000 67
423 Non-wordreading| . .. ... ... .. ... ............ 72
424 Spellingl .. .... ... ... ... 76
@.2.5 Validation of p-value distribution| . . . ... ... ... ...... 81
@4.2.6  Endophenotype correlation| . . . ... ... ..... ... ... .. 81
@4.2.7 Functionalanalyses|. . . . ... ... ... ... .. .0 0. 82
#4.2.8 Hippocampus candidate gene analyses| . . . . ... ... ... .. 86




#4.2.9 Endophenotype specific pathway analysis| . . . . ... ... ... 88

@4.2.10 Pathway analysisindyslexia| . . . .. ... ... ..... ... .. 91

15 Discussion| 93
P.1 Epistasis and genome-wide interaction analyses| . . . . . ... ... ... 93
p.1.1 Interaction analyses are required for understanding complex dis- |

I €ASES| . . .. e 93
p.1.2  Statistical power in interaction analyses| . . . . . .. ... ... .. 94

B.1.3 Marginal effects of interaction partners| . . . ... ... ... ... 95

.2 Statistical epistasis in dyslexia pathogenesis|. . . . . ... ... ... ... 97
p.2.1 Interactions involving the gene FOXP2| . . . ... ... .... .. 98

.22 Interactions involving NCAM1} . . . .. ... ... ... ..... 99

.23 Interactions involving TMEFF2 . . . .. ... ... .. .. ... .. 100

B.2.4 Interaction involving two intergenicloci| . . . ... ... ... .. 100

0.2.5 Expression levels of the identified genes|. . . . . . . ... ... .. 101

0.2.6  Pathwayanalyses|. . . . . ... ... ... ... .. ... ... . 102
nclusion an loold . . . ... 105
[Zusammentassung] 107
109
ppend 129
[Acknowledgment] 157

Dedication! 159






Acronyms

A Adenine.

ADHD attention deficit hyperactivity disorder.
ALSPAC Avon Longitudinal Study of Parents and Children.
ALU Arithmetic Logic Unit.

API application programming interface.

ASD autism spectrum disorder.

BP biological process. 94} 0f]

bp base-pair.
BWA Burrows-Wheeler Alignment.

C Cytosine. 23} [24]
ChIP chromatin immunoprecipitation.

Cl confidence interval. [69]

CNS central nervous system.
CNV copy number variation.

CPU central processing unit.

CUDA Compute Unified Device Architecture.

d.f. degree of freedom.
DNA deoxyribonucleic acid.

DZ dizygotic.

ENCODE Encyclopedia of DNA Elements.
eQTL expression quantitative trait locus. @



10

eSNP expression single nucleotide polymorphism.

FAIRE Formaldehyde Assisted Isolation of Regulatory Elements.

FDR false discovery rate. 40}

fMRI functional magnetic resonance imaging.

FWER familywise error rate. 40}

G Guanine. 23|

GO gene ontology.

GPU graphics processing unit. 20} A2H47}

GSEA gene set enrichment analysis. o6}

GWA genome-wide association. [28} ]

GWAS genome-wide association study:.
GWIA genome-wide interaction analysis. 30} B1} 40} 67

GWIS genome-wide interaction study.

HGP Human Genome Project. [27]

HS hypersensitive site.
HSIC Hilbert-Schmidt Independence Criterion.

HWE Hardy-Weinberg equilibrium.
IBD identity-by-distance. [59

IBS identity-by-state. 26} 59
IC inbreeding coefficient.

Kb kilo base pairs.

LD linkage disequilibrium. 25} [26] [38] [0} 59} [67}
LINE long interspersed nuclear element. [67

LTR long terminal repeat.

MAF minor allele frequency. 24} 59}



11

Mb mega base pairs.

MDR multifactor dimension reduction. 111l

MDS multidimensional scaling. )

MMN mismatch negativity.

MRI Magnetic Resonance Imaging. [33]

mRNA messenger ribonucleic acid.

mSNP methylation single nucleotide polymorphism.

MZ monozygotic. 34

NMJ neuromuscular junction. 109

NRSF neuron-restrictive silencer factor.

NS nervous system. 06} [107]
NWR non-word reading.

PA phonological-awareness.
PCA Principal Component Analysis. 26]

PCER per-comparison error rate.

Q-Q Quantile-Quantile.

QC quality control. b7
QTL quantitative trait locus. [I7} 24} [37] 47}
RD reading disability. b7

RNA ribonucleic acid. 27

SD standard deviation. 55H57]

SE standard error. [61]

SIMD Single Instruction Multiple Data.

SLD speech and language disorder.

SLI specific language impairment.



12

SNP single nucleotide polymorphism. 20}
[B9H63) [65H68 73} [77 [78) B6H89] PTHO3| PIHI02] [T04H108|

SP spelling.
SSD speech sound disorder.

SVM support vector machine. [I17]

SWR single-word reading, [7} 56 58 0} ) 5 7} 9} 70, ') 85 53, O3 0} 0105,

109

T Thymine.

TF transcription factor.

UCSC University of California, Santa Cruz.
UK United Kingdom. [36] B7]

US United States. 36} 37]



List of Figures

2.1 Haplotypeblocks| . . . . ... ... ... ... oo 20
2.2 Dyslexia susceptibility loci| . . . . ... ... ... ... .. 000 32
2.3 GPU threads cooperation| . ... ....................... 39
2.4 ENCODEschemal . . ... .. .. ... .. ... .. ... ... ....... 48
B.1 Populationstructure] . . ... ... ... ... ... .. 0 0L 50
4.1 Circos diagram of interacting genetic variants|. . . . . . . ... ... ... 60
4.2 Schematic illustration of single-word reading associated SNP-pairs within |
| the LD-structurel . . . . . .. ... ... oo 62
4.3 3D plot of the 2-way associations to single-word reading| . . . . . .. .. 63
4.4  Boxplot and contingency table of the single-word reading top hitf . . . . 65
4.5 Forest plot of the single-word reading top hit| . . . . ... ... ... ... 65
4.6 Schematic illustration of phonological awareness associated SNP-pairs |
| within the LD-structurel . . . .. ... ... ... .. ... ... . ..., 67
4.7 3D plot of the 2-way associations to phonological awareness| . . . . . . . 68
4.8 Forest plot of the phonological awarenesstop hit| . . . . . ... ... ... 69
4.9 Boxplot and contingency table of the phonological awareness top hit| . . 70
.10 Schematic illustration of non-word reading associated SNP-pairs within |
| the LD-structurel . . . . . .. ... ... o 72
.11 Forest plot of the non-word reading tophit| . . . .. ... ... ... ... 74
.12 Boxplot and contingency table of the non-word reading top hit|. . . . . . 74
.13 Schematic illustration of spelling associated SNP-pairs within the LD- |
I structurel . . . . .. L 76
.14 3D plot of the 2-way associations tospelling| . . . . ... ... ... ... 77
.15 Boxplot and contingency table of the spelling top hit}. . . . . . ... ... 78
.16 Forest plot of the spellingtophit| . . . .. ... ... ... ... ...... 79
117 Q-Qoplotl . . ... .. 81
.18 ENCODE, non-word reading top hits| . . ... ... ....... ... .. 83
4.19 ENCODE, single-word reading top hits| . . . . .. ... ... ... .... 84
4.20 ENCODE, non-word reading top hits| . . ... ... .... ... ... .. 85
.21 ENCODE, spellingtophits. . . . .. ... .................. 85
p.1  Detectionpower|. . . . ... ... ... .. oo 000000 95
.2 Two-locus epistasismodels| . . .. ... ... ... .. ... 0L, 96

13






List of Tables

2.1 FWER Hypotheses definition| . . . . ... ... ... ... ......... 36
4.1 Univariate SNP associations to single-word reading| . . . . . . ... ... 63
4.2 Cohort specitic interaction of the single-word reading top hit|. . . . . . . 64
4.3 Statistical epistasis top hits of the single-word reading study| . . . . . . . 66
4.4 Univariate SNP associations to phonological awareness| . . . . . . . . .. 69
4.5 Cohort specitic interaction of the phonological awareness top hitf . . . . 70
4.6  Statistical epistasis top hits of the phonological awareness study|. . . . . 71
4.7 Univariate SNP associations to non-word reading| . . . . ... ... ... 73
4.8 Statistical epistasis top hits of the non-word reading study| . . . . . . .. 75
4.9  Cohort specific interaction of the non-word reading top hit| . . . . . . .. 75
.10 Univariate SNP associations tospelling| . . . . . ... ... ... ... .. 78
.11 Cohort specific interaction of the spelling top hit| . . . . . ... ... ... 79
.12 Statistical epistasis top hits of the spellingstudy| . . . .. ... ... ... 80
4.13 Pearson’s correlation between measured endophenotypes| . . . ... .. 82
.14 Expression analysis, FOXP2| . . . .. ... ... ... .. .......... 86
.15 Expression analysis, NCAMI| . . ... ... .. ... ........... 87
.16 Expression analysis, TMEFF2| . . . . . ... ... ... ........... 88
.17 Gene-set enrichment analysis, non-word reading| . . . . . ... ... ... 89
.18 Gene-set enrichment analysis, phonological awareness| . . . . ... ... 89
4.19 Gene-set enrichment analysis, single-word reading|. . . . . .. ... ... 90
4.20 Gene-set enrichment analysis, spelling| . . . ... .............. 91
.21 Gene-set enrichment analysis over all studies| . . . . ... ... ... ... 92

15






Abstract

The aim of this thesis was the identification of genetic susceptibility factors contributing
to developmental dyslexia. Dyslexia is a highly prevalent disorder in children, char-
acterized by deficits in reading and spelling [Schulte-Korne et al., 2001].The clinical
picture of dyslexia can be categorized into various endophenotypes, describing different
cognitive abilities. The underlying hierarchical processes of these cognitive competences
suggest a highly heterogeneous genetic architecture composing the disorder, which
obstructs single locus scans [Carrion-Castillo et al., 2013|]. From this perspective, the
question arose whether disturbances of cognitive processes in dyslectics could be a
result of genetic interactions. Here, we therefore went beyond established single-locus
association methods in order to analyze higher order genetic interactions.

So far, genetic studies of dyslexia and other complex traits have focused on single-locus
effects, utilizing the present gold standard of genome-wide scans. Like all approaches,
also this method has its limitations, such as the inability to capture higher order connec-
tions. However, single-locus effects explain just a low proportion of heritability. In fact,
the interplay of individual factors is an essential component of the underlying genetical
processes. Due to computational challenges, this central aspect was nevertheless often
neglected.

By exploiting the technical and methodological progress, we were able to utilize a
genome-wide two-locus interaction scan using the tool GLIDE [Kam-Thong et al., 2012].
We identified genetic interactions affecting susceptibility for altered cognitive skills in
dyslexic individuals. Indeed, dyslexia proved to be an ideal phenotype for the genome-
wide search of epistatic effects.

The genotype profiles of 862 dyslexic children from different ethnic origins (Germany,
USA, Great Britain, and France) were determined. Measurements for the quantitative
dyslexia endophenotypes single-word reading, phonological awareness, non-word
reading, and spelling were conducted for each individual in a battery of psychometric
tests. Within these samples, we performed exhaustive two-locus interaction searches
for epistatic effects.

We were able to detect strong evidence for genetic interactions affecting various dyslexia
endophenotypes, such as single-word reading and phonological awareness. The results
included highly relevant genomic loci, comprising both novel and previously known
dyslexia-sensitive loci. An example is the interaction between 18411.2, a genomic region
linked to various|quantitative trait loci (QTLs)|with intronic variants of NCAM1, a gene
involved in the development of the nervous system. These interactions were found for
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the dyslexia endophenotypes phonological awareness and single-word reading. An
additional interesting interaction that was detected took place between intergenic vari-
ants on chromosome 9 and intronic variants of FOXP2, a gene associated with linguistic
deficits. FOXP2 was recently shown to play a role in the etiology of developmental
dyslexia [Wilcke et al., 2011].

Our findings suggest that the multifacetedness and the etiology of dyslexia is likely
to be explained by multi-genetic mechanisms like allelic interactions, with both single
dependent and independent factors contributing to the disorder.

Taking into account the complexity of genetics and quantitative traits, the ubiquity of
epistasis, and the success of our study, we suggests that epistasis should be shifted
further into the focus of investigations. This would likely lead to a better understanding
of complex traits and genetic heredity.




1 Introduction

1.1 Research question and motivation

Dyslexia is one of the most common neurodevelopmental disorders, with a prevalence
of approximately 5-12% in school-aged children [Ludwig et al., 2008]]. Affected children
show pronounced difficulties in learning to read and spell, with a possible social impact
on the child reaching until adulthood, and affecting their career prospects
et al., 1990].

Several genetic factors for dyslexia have been identified. Among those are genes in-
volved in memory-related aspects of the brain [Ludwig et al., 2010], neuronal migration
[Ludwig et al., 2008], as well as a major neuronal glucose transporter
2011]]. Some of these genes are known to be strongly expressed and regulated in the
cortex, hypothalamus, amygdala, and hippocampus [Meng et al., 2005].

The disorder comprises a variety of different endophenotypes. Affected children can
exhibit difficulties in reading, spelling, phonological abilities or even show various
disabilities simultaneously. Several endophenotypes have been shown to be associated
with certain genomic regions (e.g. 6p22) or genes (DCDC2, KIAA0319, GRIN2B, SLC2A3)
[Carrion-Castillo et al., 2013, (Grigorenko, 2001]. Both the cluster of different symptoms
and the involvement of various genetic factors indicate that the predisposition for
dyslexia is likely to be explained by complex coherences and networks, conclusively
the interaction of genetic factors. The research group of Statistical Genetics at the Max-
Planck-Institute of Psychiatry [Czamara et al., 2013, Ludwig et al., 2008| Roeske et al.|
and other research groups has already conducted several studies in the field of
dyslexia. The extensive findings regarding the pathogenesis of dyslexia pointed to
the assumption that a highly heterogeneous pattern underlying the disorder
(Castillo et al., 2013].

Given the complexity of the phenotype, the knowledge about the pathogenesis of
dyslexia, and the availability of eligible datasets as well as a tool for rapid detection of
interactions between two genetic loci, we formed the hypothesis that a genome-wide
analysis beyond single-locus effects may help to unveil unknown genetic contributions
to the development of reading disability (RD)|among individuals. The assumption that
interaction effects are strong on the level of genetic markers seems reasonable, since

such effects are consequences of evolution. Epistatic effects are more likely to withstand
purifying selection, as they are protected by epistatic shielding [Moore and Williams,

2009].
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The strategy of this thesis comprise of two major sections: a genome-wide
icleotide polymorphism (SNP)| interaction search and a subsequent candidate-gene
analysis. The term epistasis may have different meanings: on one hand for a biologist it

might be an aspect of biological mechanisms, on the other hand for a statistician the
interaction between two factors represents deviation from a mathematical model for
joint effects of several factors [Clayton, 2009]. The challenge is to satisfy the demands of
both disciplines. The statistical evidence has to support the biological understanding.

Keeping this idea in mind, the first stage of the thesis was a hypothesis-free approach,

in which a genome-wide two-locus scan was employed to unmask possible marker
interactions within genotypic information of dyslexic subjects. The second stage was
conceived as the validation phase, in which genes detected to be significantly associated
to the phenotypic pattern in the initial stage, was used as candidates for an [expression|
iquantitative trait locus (eQTL)|analysis in hippocampal expression profiles.

The hippocampus plays an important role in associative behaviors, not only in the trans-
duction of information from short to long-term memory, but also in spatial memory
and attention functions that likely participate in the development of dyslexia [Carrion;
Castillo et al., 2013, Ludwig et al., 2008, Moser and Moser, 1998} |Smith, 2007]].

The aim of this thesis was to identify novel genetic factors involved in dyslexia patho-
genesis through a joint analysis of epistasis and [eQTLs} The analyses comprised novel
combinations of stablished bioinformatic and statistical methods and biological com-

prehension. In order to provide a more in-depth understanding of complex traits and
predispositions the focus was set on methods beyond single associations.
Whole-genome exhaustive epistasis search was enabled via GLIDE [Kam-Thong et al.)
2012], a tool for calculation of SNPSNP|interactions, implemented in [Compute Unified)|
[Device Architecture (CUDA)|for fast computation on|graphics processing units (GPUs)|
of graphics cards. Utilizing|GPUs|for parallel computation reduced calculation time by
a factor of 100 compared to conventional methods, which opens a wide dimension for
novel analyses.

Provided datasets for the project included: (1) four dyslexia case samples comprising
200 German, 92 French, 377 British, and 194 American dyslexic individuals. For a
wide spectrum of dyslexia related phenotypes, such as single-word reading, spelling,
non-word reading and phonological-awareness measurements were recorded. (2) For
candidate gene analyses, hippocampal gene expression data, as well as genotypic data
of 138 epilepsy-patients were available. In this dataset, we already identified 360 cis-
and 75 trans-acting [eQTL]associations on a Bonferroni-corrected genome-wide signifi-
cance level (publication in preparation).

The most straightforward approach for an analysis was to examine whether detected
dyslexia-associated interaction marker pairs represent hippocampal [eQTLs| Gene ex-
pression data constitutes an excellent biological phenotype for the identification of
regulatory genomic regions of candidate genes. The motivation here was to evaluate
statistical epistasis findings with biologically appropriate expression profiling data with
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respect to their potential as novel markers that could help to infer new hypotheses for
dyslexia pathogenesis.

Epistasis analysis may help to improve and extend classical [genome-wide associat
ftion studies (GWASs )| effectively, opening a new area of investigations, and moreover,
enlighten genetic causes of dyslexia.







2 Background

2.1 Genetic background

2.1.1 Genetic factors

This section addresses basic genetic factors that are crucial for effect analysis in genome
association mapping. Each subsection will cover the biological basics and address the
[quality control (QC)|steps to avoid confounding impacts on the statistical analysis.

2.1.1.1 Single Nucleotide Polymorphism

A single nucleotide polymorphism describes genetic variations involving only a
single nucleotide (Adenine (A)} [Cytosine (C), (Guanine (G)[or [Thymine (T)) exchange
on a certain genomic position on the [deoxyribonucleic acid (DNA)| that is observed
between individuals in a population. It is assumed that there are up to 30 million
variations covering the where each variant is located at a specific site (locus) and
occurs with a particular frequency within populations [Kwok, 2003].

These polymorphisms are point mutations that withstood natural selection and are
manifested in the genome. [SNPs|are genetic determinants of the individual development
and measurable phenotypes, such as complex diseases and disorders, which make them
biological markers of interest. With the progress of modern technologies, especially the
development of microarray platforms and sequencing strategies, the whole genome
of hundreds of individuals can be scanned and single variations can be subjected to
surveys. On the basis of these variations genomic studies are conducted, where the
correlation of an explicit locus to a trait of interest is ascertained in a cohort.

are unequally distributed over the whole genome, they are more frequent in non-
coding regions than in more conserved coding-regions of the genome. Occurrences of
in coding regions of genes can be classified in synonymous and non-synonymous
mutations, where the latter lead to a change in the amino-acid sequence of the encoded
protein while the former does not [Kwok, 2003].

Biologically functional [SNPs|are further categorized depending on the traits they are
affecting. A regulating respectively affecting the expression of a certain transcript
is annotated as|expression single nucleotide polymorphism (eSNP)| If any impact on
methylation processes can be estimated it is referred tomethylation single nucleotide|
fpolymorphism (mSNP)| In genetic mapping studies of continuous traits, a specific locus

23
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that is detected to significantly affect the trait outcome it is annotated /declared as a
In the genotyping process, the pair of alleles on the homologous chromosome (diploid
cells consist of pairs of chromosomes, where one chromosome is transmitted maternally
and one paternally) are taken into account. An individuals genotype can be homozygous
by harboring two copies of the same allele (e. g., [T[T| or[JC), or heterozygous with one of
each alleles . An allele is either less (minor allele) or more frequent (major allele) in
various populations and can differ between those. The linkage/connection between the
prevalence of a risk-allele and the affected disease are often controversy discussed, and
will be briefly subjected in the following subsection

2.1.1.2 Genotype and allele frequencies

Genotype frequency describes the prevalence of a given[SNP|genotype in a population

. . # individual genotypes . .
by the simple expression ~ - #ormgviduai - Allele frequency in turn defines the rate

of each single allele in the population by » # of cach allele [IKam-Thong, 2012|]. It is

x # of individuals

established that ajminor allele frequency (MAF)|less than 1%-5% in a given population
is considered as a rare allele, and alleles with a frequency above that threshold are

common alleles.

It is highly discussed whether causative mutations for complex traits are more likely
to be common or rare [Salyakina, 2007, Manolio et al., 2009]. One standpoint is that
common variants, which occur often in a population are less likely to be malicious as
the statistically associated disease would be highly prevalent in the population. On the
other hand, if genetic variants account only for 10-15% of a trait [Manolio et al., 2009]
and environmental factors have an important role in complex traits, then it is possible
that the interplay of both factors causes the phenotype. Therefore common complex
diseases may be caused by common variants.

A notable example is a study published by Thorleifsson et al., where 25% of the general
population are homozygous for the highest-risk haplotype associated with exfoliation
glaucoma [Thorleifsson et al., 2007].

In order to avoid misclassification, bias, high false positive or negative rates a
criterion is the exclusion of [SNPs/with a[MAH < 5%. The intention is that biomarkers
with a less than 0.05 do not show much variation across the population and
detection of effects becomes unlikely unless the effect sizes are very large, such as in
monogenic conditions [Manolio et al., 2009]. Facing the complexity of genetics, both
mentioned mechanisms may exist in various combinations [Salyakina, 2007].

2.1.1.3 Hardy-Weinberg equilibrium

The principle of the [Hardy-Weinberg equilibrium (HWE)|is an ideal scenario where
the allele frequency in a population remains constant (Eq. 2.1 on the facing page)
over generations, without being influenced by mutation, selection, genetic drift, or
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non-random mating.

P(A)? 42 x P(A)P(B) + P(B)?> =1

2.1
P(A): allele frequency of allele A &4

P(B): allele frequency of allele B

Deviation from within genotyped can indicate inbreeding, population
stratification, genotyping errors [Wigginton et al., 2005] or imputation inconsistencies.
In genetic studies deviation from [HWE| can provide wrong evidence for association
due to incorrect genotyping. The usual actions include a test to remove
biomarkers violating the expectation of [HWE| [HWE tests are commonly performed
using a simple x? goodness-of-fit test [Wigginton et al., 2005]. A commonly defined
threshold for a genome-wide genotype chip (550K) is p < 5 x 107>, meaning that
each [SNP| violating the[HWE|assumption with a significance level less then the defined
p-value will be excluded from further analysis. On the other hand there is the
dilemma that susceptibility variants often violate[HWE| expectation and are excluded

via[HWE]testing.

2.1.1.4 Linkage disequilibrium

[Linkage disequilibrium (LD)|is the genetic phenomenon of non-random allelic relations

at different loci usually on one chromosome, whereby the physical distance does not
always explain the level of linkage and can differ from case to case. The association of
two or multiple markers are influenced by recombination and is more or less frequent
than expected from haplotypes. A haplotype can be one locus or a set of loci on one
chromosome inherited together [Li et al., 2003]. The degree (D) of [LD|between loci can
be measured and is expressed as the deviation of the observed frequency f(A;B;) of a
haplotype from that expected for independent alleles f(A;) x f(B;), via D’ (Eq. or
the correlation coefficient > (Eq.[2.4 on the following page).

p D
P "D
(2.2)
:f(Asz) _f(Ai)f(Bz)
Dinas
D = {max<—f<Ai>f(Bi>, —f(ADf(B}), D <0 23)
min(f(A;)f(B;), f(A;)f(Bi)), D >0
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Dy is the maximum disequilibrium at an allelic frequency of 0.5.

re = : : : (2.4)

The values of D’ and 72 of two markers can range between 0 and 1, where 0 implies a
total independence and 1 a complete @l for D" and a perfect @l for r2.Ther? is usually
the measure of choice in population genetics, as a value of 1 between two loci can just
be reached when identical allele frequencies are given and the occurrence of an allele at
a locus perfectly predicts the allele at the other locus [Salyakina, 2007].

A genomic region on a chromosome with high[LD} or conserved [LD} which is structured
into a small number of haplotypes is referred to as an[LD}block (figure
2.I). In genetic studies it is expected that variants of an[LD}block have demonstrate to a
certain extent, and in dependence to the 7 value associations to the same phenotypic
trait. In other words, if a tag is associated to a phenotypic trait, then marker in
high (r? < 0.7) should likewise exhibit the effect. A tag [SNP|is a representative
variant of a[LDfblock. Well chosen tag can provide enough information to predict
information about other variants in the corresponding [LD}block. The extent of
structures, haplotypes and the prevalence are population specific [Amaral et al., 2008].

2.1.1.5 Population stratification

A confounding factor in genetic studies may be population stratification, specially
in studies with a huge sample size and more over in those with admixture cohorts.
Population stratification describes ancestral differences, resulting in variation of marker
allele frequencies among subpopulations. Samples comprising multiple populations
can corrupt[LD|structures and lead to incorrect and false positive associations driven
for instance by unexpected relatedness of individuals.

To intercept inaccuracy and avoid nonexistent associations, machine learning algo-
rithms can be applied to account for population stratification. A conceivable ap-
proach, besides the general [Principal Component Analysis (PCA)[ approach, is the
complete linkage agglomerative clustering provided by the open-source tool PLINK
v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) [Purcell et al., 2007]. Using
PLINK a multidimensional scaling (MDS)| analysis on the pairwise [identity-by-state|
distance matrix of each individual, measured by the respective whole genome [SNP]
data, can be performed. Coexisting subpopulations, the relatedness degree between
individuals and single outliers can be detected and either excluded or corrected for, by
utilizing the MDS}components as covariates in statistical analyses. Applying genomic
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Figure 2.1: An Haploview example of a haplotype structure on chromosome 19. The figure
depicts a chromosomal region with sparse LD-structure. Values in the squares
annotate the 72 of the SNP to its neighboring SNPs, supported by the color gradient.
Increasing 72 is indicated by a darker color, while white implies no or very little LD,
red would mark higher correlation between the SNPs. In black framed triangles
indicate LD-blocks at the sequence position.

scans heritability estimates can be generated free of potential confounding, due to
unmeasured environment factors [Manolio et al., 2009].

A confounding factor describes a known or hidden factor disturbing the association
between two other variables of consideration, due to relationship with both of them,
the dependent and independent variables [Mosby, Inc, 2009]. In statistical genetics
analyses confounding factors can originate from diverse sources. As mentioned above,
confounders can arise by mingled populations or cohorts being genotyped in diverse
laboratories. Especially in microarray (e. g., expression or methylation) analyses re-
searchers are faced with confounders, like processing batch or measured
quality, unknown or specific environmental factors, medication and other
contamination factors. Such factors can reduce the power of association detection and
even facilitate false-positive associations [Stegle et al., 2012].

2.1.2 Genetic variation and complex traits

Since the establishment of genetic science by Gregor Mendel (19th century), the dis-
covery of the molecular DNA|structure by James D. Watson and Francis Crick up to
the sequencing of the human genome in 2001 — 2003 by Craig Venter and the [Human|
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[Genome Project (HGP), researchers are on the hunt for genetic factors affecting pheno-
typic outcomes, with the aim to reveal disease susceptibilities and understanding basic
genetic concepts for a better diagnosis, treatment, and prevention.

Apart from monogenic diseases, common human diseases and heritable traits are sug-
gested to be shaped by several genetic and environmental factors following complex
inheritance patterns. Individuals within the same species show heritable attributes for
many traits of biological and medical interest, but until recently the identification of
genetic factors contributing to these complex traits has been slow and arduous
et al., 2009, Bloom et al., 2013].

A complex trait is a phenotype that is determined by multiple factors, either genetic,
or environmental. Generally, several genetic factors contribute to the development of a
continuous outcome, or increase susceptibility for a disease. Susceptibility factors, or
more specific in genetics a susceptibility allele describes a risk allele that is associated
to a specific disease and increases the probability of the carrier developing the delete-
rious phenotype. Investigation of such complex traits are often complicated, as each
contributing factor has usually a small effect.

have been a landmark in the investigation of genetic susceptibility factors in
complex traits. With the advancement of high throughput genotyping technologies, up
to one million common[SNPs|can be assayed in thousands of individuals, representing
a powerful opportunity for investigating the genetic architecture of complex species.
Compared to whole-genome sequencing, genotyping is much more time- and cost-
efficient. Consequently a lot more individuals can be scanned for specific genetic
variants of interest.

Large sample sizes are beneficial to gain statistical power for the detection of genetic
effects and increase reliability of the results. In the past years these studies have
identified more than a thousand loci harboring genetic variants affecting over 165
common human diseases and phenotypes [Zuk et al., 2012], providing precious insights

into the complexities of human genetics.

The [genome-wide association (GWA)|method represents a hypothesis-free approach
and is an important advance beyond candidate gene studies and family-based linkage
studies that are both limited in their sample sizes and the assayed variants. Despite
many convincing successes in monogenic Mendelian traits the moderate success of
linkage studies has been attributed to their low power and resolution for variants of low
effect. However even markers identified by genome-wide mapping meant to account
for only 5-15% of the given phenotypic variance in human beings. A famous example
is human height with an estimated heritability of about 80%. Meanwhile 40 loci have
been identified to be associated to height, nevertheless they explain only about 5% of
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the trait variance despite studies with reasonable sample size [Manolio et al., 2009]. If
15% of heritability is explained by common genetic variants and another proportion by
environmental conditions or rare and structural variants, what explains the remaining
proportion? This leads to the question what explains missing heritability in genetic
epidemiology. Heritability of continuous traits, formally defined as the , proportion
of phenotypic variance in a population attributable to additive genetic factors (narrow-sense
heritability), which can be inflated by non-additive genetic effects” (dominance and epistasis,
or gene-gene interaction) [Manolio et al., 2009], which are captured under the term
broad-sense heritability. The next section[2.1.3will cover different aspects of epistasis and
its role in nowadays mapping studies.

2.1.3 Diversity of the epistasis term

As discussed in the previous section the identification of single genetic marker mapping
to an attribute does not fully explain underlying variance. A possible explanation
apart from environmental or undiscovered factors, rare and structural variants, or other
heritable epigenetic factors and unforeseen sources could be the interplay between
unlinked loci [Bloom et al., 2013]], the so-called epistasis.

Epistasis nomenclature has a variety of different notations and meanings. Starting from
the very beginning, the first definition of epistasis was given by Bateson and Punnett
[Bateson, 1909] to define the masking action of one gene by another. They observed in
a chicken and a follow-up pea flower experiment that alleles at one locus could mask
the effects of the alleles at another locus forcing a totally new phenotypic outcome
[Miko, 2008]]. Another famous example of epistasis is the mouse coat color, where the
homozygotes of the recessive alleles (e. g., aa) at one locus (A) alter the phenotypic effect
of alleles at the other locus (B) regardless of the alleles B being recessive or dominant
[Miko, 2008]|. In this sense the term of epistasis would be limited to a kind of inhibiting
or interfering effect, nevertheless, meanwhile the broad sense of epistasis covers a
variety of interactions between genes.

The first specification of this kind of interplay beyond masking effects was made by
Fisher, by defining the term of epistacy to describe deviation from the addition of su-
perimposed effects between Mendelian factors [Fisher, 1918], in other words, epistacy
is the deviation from additive linear effects of two loci on the phenotype. Under this
definition interaction can be modeled mathematically (statistical epistasis), it is said to
explain the combined effect of multiple genes on an outcome, which cannot be predicted
by the sum of their separate effects [Frankel and Schork, 1996].

In the past years, the term epistasis was adopted by Fisher’s more general definition
of genetical interactions [Phillips, 2008|]. One has to be aware about the biological
interpretation of statistical interaction as a statistically detected significant interaction
does not necessarily mean an interaction in biological senses and vice versa, biologically
discovered epistasis does not have to be detectable statistically, for example due to
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non-linear interaction patterns, making the whole survey in this field even more com-
plicated. In the statistical sense, interaction is just the non-additive effect of multiple
factors on an independent variable.

Very little is known about the role of epistasis in human biology, as initially the focus
was placed on single locus effects and investigations on the interaction level were ne-
glected. Phillips [Phillips, 2008|] defined three major categories of epistasis: functional
epistasis, compositional epistasis and statistical epistasis.

Functional epistasis describes any kind of molecular interactions of genetic elements,

such as proteins that operate within the same pathway or directly build complexes with
one another.

Compositional epistasis addresses the traditional usage of epistasis denoted by Bate-
son as the blocking effect of one allele by another allele at a different locus.

Finally, and most important for our demands, is the statistical epistasis, in which the
deviation of allele combinations is estimated over all other genotypes present within a
population [Phillips, 2008].

Considering the complexity of genetics and the ubiquity of epistasis it is natural that
accounting for interactive effects is one step towards unveiling missing heritability, at
least partially.

Examples of phenotypes for which synergistic effects, this is the variation addressed
by the interaction of multiple factor that is greater as the sum of their single effects,
between loci have indeed demonstrated to be reliable predictor variables of the phe-
notypic variance include diseases such as type 1 and type 2 diabetes, hypertension
[Kam-Thong et al., 2012] and increased risk for schizophrenia [Nicodemus et al., 2010b]].
Ashworth et al. observed interactions in the context of cancer cell proliferation and listed
examples detailing the different nature of genetic interactions enhancing or suppressing

cancer mutations with new therapeutic treatments proposed to target these interactions
[Ashworth et al., 2011} Kam-Thong et al., 2012].

Rohlfs et al. noticed unusual allelic association, not attributable to population struc-
ture, between the coevolving interacting genes ZP3 and ZP3R. Coevolving interacting
genes undergo complementary mutations to maintain their interaction. Alleles of such
coevolving genes interact differently and can create several varying degrees of fitness.
They mentioned that if the created fitness differential is adequately large the resulting
selection for allele matching could maintain allelic association, even between physically
distant loci [Rohlfs et al., 2010].

Statistical modeling of interactions may be helpful in identifying genes influencing

disease susceptibility that otherwise would remain unidentified. It is important to
note that the presence of statistical epistasis can help generate new hypotheses, but
requires an in-depth investigation of the elementary molecular mechanisms involved to
substantiate the findings.

Keeping all that in mind and with the aim to understand functional and pathophysiolog-
ical properties of epistasis we tried to take a step beyond towards|genome-wide]
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finteraction analyses (GWIAs)|(section [2.1.4).

2.1.4 From GWA to GWIA

GWASs|are the gold-standard in single-locus analysis strategies, wherewith genotyped
variants are assessed individually for association with a specific phenotype.
harbor the lack of discounting the existence of interactions either environmental or
genetical. The complex relationship between genotype and phenotype, thus, may be
inadequately described by simply summing the modest effects from several contributing
loci. Instead, the relationship may depend in a fundamental way on epistasis between
multiple loci and/or genotype and environment [Culverhouse et al., 2002].

It is not deniable that the hypothesis-free approach of single-locus mapping, besides
linkage studies and targeted candidate gene studies, has been incredibly successful in
the last decade and has offered a great insight in the genetical complexity of disease
susceptibility, but each technique has, beyond its benefits, also its individual drawbacks

and limitations. Naturally, genetic factors work through nested mechanisms that involve
multiple genes and environmental factors. The detection of such convoluted effects
would be totally missed if the gene is examined in isolation without allowing for its
potential intrinsic interactions with other unknown genetical factors [Cordell, 2009].
Targeting this deficiency of and utilizing the recent progress in adequate hard-
and software new methods (examples are addressed in chapter were developed
addressing potential multiple loci interactions by scanning the effectiveness of two or
more loci on a specific phenotype. Schematically [GWIA|does not differ substantially
from|[GWAS¢| In either method the association relies on a linear (in dichotomous traits:
logistic) link between a given genotype and phenotype. In this link involves
multiple, respectively two loci. In fact the simplest and most direct way is the exhaustive
search between all loci. In a two-locus interaction search all possible SNP}pairs are
considered for their effects while allowing for interactions, meaning that the single
effect of a locus will be a component of all tests that involve that locus [Cordell, 2009].
Such an exhaustive search, that can comprise up to 104 tests in the two-dimensional
space, is incredibly time consuming and computationally intense but feasible with new
technologies (see section 2.3.3). Meanwhile a variety of tools have been developed to
compute interactions; and controversial debates about the reasonability and adequately
of approaches have been argued and examined. Discussions about the validity of the
results split the opinions of researchers. A very common theory expects a marginal
penetrance model, in which marginal single locus effects of both markers have to be
present to explain the validity of the association and biological interpretation. This
approach is often taken into consideration, apart from the assumption of biological
causality, to shrink data dimensionality and thus the search space concerning time and
computation feasibility.

However, the so-called purely epistatic model does not expect additive or dominance
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variation at any of the susceptibility or involved loci. The idea is that the effect on
a phenotype is only perceivable through the interaction. Studies proposed complex
theoretical penetrance models by accounting for multiple loci interactions without
displaying any main effects. Culverhouse et al. [Culverhouse et al., 2002] illustrated
that two-locus models can exist without marginal effect at either locus involved, which

nonetheless accounts for a large portion of the population variance. He summarized
that a purely epistatic model includes both incomplete penetrance and phenocopies and
that by now it is very ambitious to judge the extent to which purely epistatic interactions
are manifested in human disease. He also mentioned that in situations in which single
locus analyses do not account for the predicted genetic variance it is worth to comprise
interaction effects.

Since 2002, few publications were able to validate statistical epistasis with biological
functionality e. g., Nicodemus et al. [Nicodemus et al., 2007, Nicodemus et al., 2010a]]
which is abstracted in the discussions (section [5). Still we are far to tell what is literally
right or wrong, but it is reasonable to assume that scenarios displaying small marginal
effects can account for more variation and seems more natural [Culverhouse et al., 2002].
Nevertheless, considering only SNP}sets on the basis of marginal effects would lead
to a loss of information as effects between non-significantly associated variants, which
could well be a part of complex genetics, would be completely uncovered.

2.1.5 Dyslexia, a common complex disorder

Dyslexia (specific reading disability) is a common neurodevelopmental disorder mainly
characterized by difficulties in reading and spelling in children. Developmental dyslexia
was first verified in English-speaking populations; a language where the relation be-
tween graphemes and phonemes is inconsistent [Grigorenko, 2001]]. As meanwhile
known dyslexia occurs in all languages with a prevalence of approximately 5-12% in
children all over the world [Carrion-Castillo et al., 2013| Schulte-Korne et al., 2007]].

Thus, cross-linguistic approaches, as in the case of this thesis, would be more promising

to uncover more universal aspects of the disorder development. Longitudinal studies
have proven that the disorder involves an extremely stable developmental disturbance,
where some individuals are able to compensate their learning deficits with adolescence
while others remain functionally reading-impaired their whole life [Pammer, 2014].

According to the International Classification of Diseases 10th Revision (ICD-10 Ver-
sion:2010, http://apps.who.int/classifications/icd10/browse/2010/en) the patho-
genesis is characterized by , pronounced difficulty in learning to read and spell despite
conventional instruction, adequate intelligence and sociocultural opportunity”. It can have
substantial impact on affected individuals and may impair their whole conduct of life.
Documentations indicate an elevated appearance of depression [Maag and Behrens,

1989] and anxiety disorders [Smith, 1991] among dyslexic individuals, due to difficulties
at school and work.
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The first detectable symptoms are deficits in word reading and spelling, but several
other cognitive components impact the core phenotype [Galaburda, 1999]. Studies
implicate phonological deficits as central to dyslexia, which is not deceptive at all

considering the complex hierarchical process of reading embracing cognitive systems
being mutually in an influential relationship like visual recognition, symbol mapping,
phonological, semantic, and syntactic processing and memory [Grigorenko, 2001].

Hence facing all these factors a limitation to a categorical definition (affected vs. not
affected) may be too simple. Over the past years it has been established to work directly
with psychometric measures for assessing relationships between molecular elements
and the disorder. For such estimations a battery of cognitive tests (details of assessment
can be found in section [3.1) are assessed for the study subjects, where the individual’s
performance on single word reading, spelling, orthographic processing, phonological-
awareness, non-word reading, rapid automatized naming and phonological short-term
memory are measured [Carrion-Castillo et al., 2013]. These so called endophenotypes are
defined as quantitative indices close to the underlying biological phenomena and that
are conceivably easier to link with the genetic factors [Gottesman and Gould, 2003].

The etiology of reading is not fully described not even in its non-disturbed normal pro-
cesses. A handicap of cognitive and especially dyslexia research is that many findings
have been poorly replicated, suggesting that dyslexia may have several manifestations
at different stages of development and that cognitive systems are highly exposed to

environmental systems affecting measurable outcomes [Grigorenko, 2001]]. Nonetheless,

it is plausible and known that learning deficits underly biological dysfunctions. Studies
characterized cognitive deficits attributable to neurological abnormalities, which may
affect other disorders as well. Comorbidity studies of dyslexia, [attention deficit hypery
factivity disorder (ADHD)|and [speech sound disorder (SSD)|demonstrate genetical and
cognitive commonalities between these conditions [Czamara et al., 2013, Smith, 2007].

Regarding the variety of the underlying systems such disorders should be consid-
ered in an interdisciplinary manner. Beginning by studying the brain structure many
different observations via autopsy or structural Magnetic Resonance Imaging (MRI)|
techniques were published identifying varying sizes or unusual symmetry in different

brain areas between dyslexic and non-dyslexic individuals. Furthermore the thalamus,
insula, hippocampus, and other regions were mapped to the dyslexic brain
2001]. An important component is the neurophysiology of dyslexia. Humphreys et
al. [Humphreys et al., 1990] described unusually organized nerve cells and suggested
fetal developmental disturbances hindering neuronal migration. Meanwhile, the role of
cell migration and axon guidance during the development of the nervous system and
disturbances inducing dyslexic endophenotypes are well studied and widely accepted
[Carrion-Castillo et al., 2013} Smith, 2007, Grigorenko, 2001]]. Wood et al.
observed irregulary distributed metabolic activities through the brain in dyslexic
persons compared to more equally distribution in unaffected persons. The observation

of differentially regulated metabolites in cases and controls was also recognized in a
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study by Garret et al. [Garret et al., 1997].

Overall the basal patterns of dyslexia are neither simple nor straightforward and it
seems that no single mechanism or region can be allocated to the various disabilities of
the phenomenon of dyslexia. The suggestion that the disorder reflects selective distur-
bances of a cognitive system seems more reasonable [Grigorenko, 2001]. Going deeper
in the pathogenesis, the elementary question revolves around the genetic fundamentals
and the heredity of the phenotype.

2.1.5.1 Genetics of dyslexia (Genetic epidemiology)

Family and twin studies provide evidence that developmental dyslexia is highly hered-
itary with an estimated proportion of variance that is explained by genetic factors
ranging from 0.4 to 0.8 [Schumacher et al., 2007, Carrion-Castillo et al., 2013]. Wolff et al.
detected higher risk for sibs showing dyslexic endophenotypes with both parents being
affected, than those with one affected parent, indicating patterns of additive effects
[Wolff and Melngailis, 1994]. Twin studies estimated concordance rates of 20% to 55%
for[dizygotic (DZ)|twins and 68% up to 100% for [monozygotic (MZ)|twins
1959, [Zerbin-Riidin, 1967| Bakwin, 2008].

Since heritability studies provide strong evidence for solid genetic impact on the pheno-
type many surveys searching for genetic background and abnormalities were conducted.
Considering the mentioned nebulous and multifaceted biological processes involved
in the mastering of reading or spelling it stands to reason that the genetic architecture
is not less complex or multifactorial. For example Olson et al. [Olson et al., 1999]
demonstrated that genetic effects on phonological decoding and orthographic coding
are due to shared and independent components. Moreover, it is important to keep
in mind that in reading and spelling involved processes underly huge environmen-
tal influences, but nevertheless there is a high broad-sense heritability suggesting the
contribution of genetic factors [Grigorenko, 2001]. More and more genetic risk factors
are identified causing susceptibility to single endophenotypes of the disorder. In this
section an overview of detected loci and genes being published in the field of dyslexia
will be provided.

Despite the fact that currently the genetic architecture of dyslexia appears very compli-
cated, there are some genes identified to be involved in the pathogenesis, however not
in a Mendelian way. The trait pattern rather indicates to be a result of the interplay of
genetic factors involving combinations of polygenicity, heterogeneity [Carrion-Castillo|
and pleitropic genes [Grigorenko, 2001] with small effects manifesting the
clinical picture [Paracchini, 2011].

The introduction of reported susceptibility regions should be initiated with the nine
most popular candidates that indeed own their nomenclature from the disorder, namely
DYX1 (Dyslexia susceptibility 1) to DYX9 [Schumacher et al., 2007] (figure[2.2), enumer-
ated by the order of their detection (Nomenclature is assigned by the HUGO Gene
Nomenclature Committee (http://www.gene.ucl.ac.uk/nomenclature/).
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DYX1 on 15921 was one of the first detected and replicated regions for reading and
spelling disability [Smith et al., 1983, Bates et al., 2007]. Nopola-Hemmi et al.
Hemmi et al., 2000] discovered DYX1C1 as a candidate gene in a Finnish family study
in which balanced translocations involve the region 159 and different chromosome
arms of chromosome 2, co-segregating with reading and writing difficulties. Markers in
DYX1C1 have been reported to be associated with developmental dyslexia and with
short-term memory performance in affected females [Dahdouh et al., 2009]. Furthermore
Tammimies et al. [Tammimies et al., 2013|] detected interactions between DYX1C1,
DCDC2 and LIS1 (a protein implicated in lissencephaly, a rare brain disorder caused by
severely disrupted neuronal migration) [Schumacher et al., 2007].
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Figure 2.2: Ideogram of published dyslexia susceptibility loci. Chromosomes (1, 2, 3, 4, 6,
7, 11,12, 15, 18, X) of interest are shown with the cytogenetic bands. Red bars or
boxes respectively indicate approximate cited susceptibility regions for dyslexia, with
the corresponding locus or gene names. Reference: UCSCs Genome Browser (hgl9)

DYX2 DCDC2 (6p22.2) a gene that clusters among others (VMP, KIAA0319, RREAP,
THEM?) in the DYX2 locus, one of the most consistent findings in dyslexia genetics
[Smith, 2007]], was reported originally by Cordon et al. [Cordell, 2009]. DYX2 is one of
the most replicated DYX loci [Gibson and Gruen, 2008]], especially the intra-cluster genes
DCDC2 and KIA00319 [Harold et al., 2006| Konig et al., 2011} [Ludwig et al., 2008] [Pinell
et al., 2012]. Variants in DCDC2 are described for association to reading by Meng et al.
[Meng et al., 2005]), as well as to the quantitative phenotype spelling by Schumacher et
al. [Schumacher et al., 2005] and recently an allele has been identified by Marino et al.
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being associated to memory [Marino et al., 2012]]. Precise function of DCDC2 is not fully
enlightened, but it is suggested to be involved in cell and neuronal migration
2007]. Beside all findings there were also documented surveys that could not replicate
any associations of this gene with dyslexia [Schumacher et al., 2007].

KIAA0319 seems to be more robust in replication studies than DCDC2, it is found to
be significantly associated with risk to dyslexia by Francks et al. [Francks et al., 2004]
in populations from the [United Kingdom (UK)|and the [United States (US)| thus was
later confirmed by Paracchini et al. with further involvement of the gene in neuronal
migration [Paracchini et al., 2006] and associations to reading skills in the general pop-
ulation [Paracchini et al., 2008, |Paracchini, 2011]]. Studies have also investigated the
question whether KIAA0319 variants might have impact across different neurodevel-
opmental disorders. Scerri et al. mentioned the association of KIAA0319 with reading
and spelling scores and relations to comorbid disorders such as[ADHD)|and [specifid]
language impairment (SLI)| [Scerri et al., 2011]. Subsequently in 2012 Scerri et al. found
along with markers in KIAA0319 also variants in the MRPL19/C20RF3 gene on the
DYX3 locus (2p12-2p16) to be significantly associated with verbal and performance IQ
in an investigation in the |[Avon Longitudinal Study of Parents and Children (ALSPAC)
cohort of 5,000 individuals [Scerri et al., 2012].

DYX3 locus (2p12-2p16) was identified by Fagerheim et al. [Fagerheim et al., 1999] for
linkage to dyslexia in a multigenerational Norwegian family where dyslexia is inherited
as an autosomal dominant trait. Kamine et al. [Kaminen et al., 2003|] confirmed linkage
to DYX3 in a sample ascertained from Finland. Another study realized by Anthoni et al.
supported DYX3 as susceptibility locus, by encountering risk haplotypes located in an
intergenic region between FL]13391 and MRPL19/C20ORF3 [Anthoni et al., 2007].

DYX4 In comparison to the previously mentioned loci DYX4 is poorly reported.
Petryshen et al. [Petryshen et al., 2001] suggested linkage of the qualitative phenotype
phonological coding and the continuos phenotypes: phonemic awareness, phonological
decoding, rapid naming, and spelling to the region 6411.2—q12 and designated this locus
as DYX4 [Carrion-Castillo et al., 2013} |Grigorenko, 2005].

DYX5 The location 3p12—q13 referred to as DYX5 is replicated more often. Initially
Nopola-Hemmi et al. [Nopola-Hemmi et al., 2001]] described in an analysis of dyslexic
subjects a shared identical copy of a haplotype on chromosome 3, later this region led
to the identification of the ROBO1 gene with alleles associated to dyslexia showing
an altered (attenuated) expression level [Smith, 2007]. Stein et al. [Stein et al., 2004]
detected also linkage of the locus to [SSD| Bates et al. [Bates et al., 2007] replicated
this region in a genome-wide linkage analysis for reading and spelling. Homologous
genes of ROBO1 in mouse and Drosophila melanogaster seems to be involved in axon
guidance cross the brain. Hannula-Jouppi et al. [Hannula-Jouppi et al., 2005] suggested
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that a slight disturbance in neuronal axon navigation, dendrite guidance, or another
function of ROBO1 may manifest as a specific reading disability in humans.

DYX6 In a[QTL]based genome-wide scanning in[UK]and [US|samples [Fisher et al.)
DYX6 (18p11—12) showed increased evidence for linkage to [single-word read}
ing and measures related to phonological and orthographic processing. In a
subsequent replication with a second [UK]sample they could detect strongest evidence
from phoneme awareness measures to that loci. With a combined analysis of both [UK]
families Fisher et al. substantially validated that the 18p is probably a general risk
factor for dyslexia, influencing several reading-connected mechanisms. Furthermore
Bates et al. [Bates et al., 2007]] could detect linkage of DYX6 to phonological decoding

and awareness as well as and orthographic awareness.

DYX7 Apart from those finding Fisher et al. investigated the region 11p15 being
linked to phonological-awareness in their[UK|sample. Results of a study of Hsiung et
al.[Hsiung et al., 2004] have provided significant evidence for linkage of dyslexia to
11p15.5 which is assigned to DYX?7.

DYX8 (1p34-p36) could repeatedly be mapped to qualitative and quantitative dyslexia
phenotypes [Tzenova et al., 2004]. Grigorenko et al reported not only chromosome 1
being associated to dyslexia they also assumed interaction between a 1p36 locus and
a 6p22.2 locus (DYX2) [Grigorenko, 2001} Grigorenko et al., 2001]. Again Bates et al.
[Bates et al., 2007]] were able to replicate this region in their replication study of reported

linkages for dyslexia and spelling.

DYX9 Last but not least DYX9 which is assigned to the X chromosome (Xg27.3), was
identified by de Kovel et al. as a genome-wide significant peak of linkage in a Dutch
tamily. Their observations led to the assumption that the supposed risk allele has to be
dominant with reduced penetrance and more variable effects in females [de Kovel et al.|
2004, Carrion-Castillo et al., 2013].

Apart from the DYX regions there are few other genes and loci that are not con-
sidered as dyslexia candidate loci, as solid evidence for linkage or association is still
not proven, they are rather correlated to other neurological abnormalities or disorders
demonstrating comorbidity with dyslexia.

One of the most popular genes in neurodevelopmental speech and language distur-
bances is FOXP2. FOXP2 (7q31) was the first candidate gene studied in [SLI} a point
mutation in exon 14 of the gene was found to be involved in the developmental process
of speech and language [Lai et al., 2001]]. Later MacDermot et al. [MacDermot et al.)
investigated the entire coding region of FOXP2 in subjects affected with verbal
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dyspraxia and detected protein sequence altering variants in 3 of 49 probands cosegre-
gating with speech and language difficulties. Vernes et al. [Vernes et al., 2008|] reported
down-regulating actions of FOXP2 on CNTNAP2, a gene expressed in the developing
human cortex where polymorphisms in that gene are detected for association to
A second paper of Vernes et al. [Vernes et al., 2011] indicated that FOXP2 modulates
neuronal network formation by directly and indirectly regulatingmessenger ribonucleic|

lacids (mRNAs)|involved in the development and plasticity of neuronal connections.
Besides the monogenic syndrome of FOXP2, causing impaired speech development and
linguistic deficits, reduced dosage of the gene result in abnormal synaptic plasticity and
impaired motor-skill learning in mice, and disrupts vocal learning in songbirds [Fisher
and Scharff, 2009, Kurt et al., 2012]]. Effects of FOXP2 were often investigated in the field
of dyslexia with moderate success. Recently Wilcke et al. were able to find a variant of

the gene significantly associated with dyslexia in a case-control and [functional magnetic|
[resonance imaging (fMRI)|study [Wilcke et al., 2011]. A [MRI|survey of Pine et al. could
detect three intronic of FOXP2 significantly associated with reading activation
in two brain regions (frontal regions of the left hemisphere: the inferior frontal gyrus
and the dorsal part of the precentral gyrus), and intriguingly they also observed a
within the KIAA0319/TTRAP/THEM? locus (DYX2) associated with temporal functional
asymmetry [Pinel et al., 2012].

Further discoveries in the field of genetic dyslexia were done by Roeske et al.
and Ludwig et al. [Ludwig et al., 2010], where two genes on chromosome
12 were detected for association to neurophysiological endophenotypes of dyslexia.
Roeske et al. identified a marker (4332.1) to be correlated with latemismatch negativity|
component, which reflects automatic speech deviance processing that is altered
in dyslectics; and a second in[LD} both in turn being significantly association with
expression levels of SLC2A3 (12p13.31), suggesting trans-regulation of the gene that
is involved in glucose transport in neurons, which might lead to glucose deficits in
dyslexic children and could explain their attenuated MMN]in passive listening tasks
[Roeske et al., 2011].

The next gene on chromosome 12 supposed to be related to dyslexia is GRIN2B, Ludwig
et al. describe three intronic of the gene associated with short-term memory in
dyslexia. They observed even stronger effects when only maternal transmission were
considered [Ludwig et al., 2010].

Even though all the promising findings in the complex and multifaceted nature of
dyslexia it appear complicated to discover highly effective genetic factors, probably due
to genetic heterogeneity and relatively small single-locus effect sizes. It is conceivable
that the syndrome is rather explainable by considering the interplay of genetic factors
on the different neurophysiologic endophenotypes of dyslexia. From this perspective it
seems reasonable to take an epistatic look on the genetics of dyslexia.
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2.2 Statistical background

2.2.1 Basics of the epistasis model

Statistical interaction can be well described in relation to a regression model that depicts

the relationship between an outcome variable and predictor variables [Cordell, 2009].
Depending on the outcome variable i.e., qualitative or quantitative, one needs to dis-
tinguished between the logistic- or linear regression model. Assuming a dichotomous
trait e. g., the disease affectedness of the observation sample, the logistic approach is the
method to choose (subsection [2.3.4.T)) and the log-odds ratio between the binary values
is mapped as the outcome variable. The genetic effect on quantitative traits, obviously
not classifiable in to two distinct groups, is estimated by applying the linear model

(subsection [2.2.1.1)).

2.2.1.1 Multiplicative interaction - a deviation from the additive model

By definition, epistasis is the statistical deviation from additive linear effects of two
involved loci on the phenotype [Fisher, 1918]. The basic mathematical approach to
model statistical epistasis of two independent loci and their impact on a quantitative
phenotype is the linear regression model, in simplified terms posed by Eq.

Phenotype = Intercept + «aSNP 4 + BSNPp + ySNP,SNPg (2.5)

«SNP, and BSNPg present the main effects of each of the two (SNP4 and SN Pg),
and ySNP,SNPg the interactive effect of both[SNPs|on the Phenotype. Genetic variants
are represented by numerically coded alleles (detailed explanation available under
section[2.3.4). The term Intercept absorbs any bias that is not accounted for by the given
terms, in genetic models it could be variations arising from the environmental or other
confounding factors. In the case of the additive model [Wade et al., 2001] the interaction
coefficient YSNP4 SN Pg is equal to zero, as no multiplicative effect is present, meaning
that the single affect the relation to the trait independently only in an additive
way; in other words, there is no interaction present. The realization of the linear model
in statistical epistasis tools is provided in section[2.3.4]

2.2.2 Problem of multiple testing

In genetic association testing, where simultaneously hundreds of thousands are
tested for their effect on a specific outcome the risk of discovering false positive effects,
in other words incorrectly rejecting the null hypothesis, is very high.

The null hypothesis is rejected if a rare event is detected, but the larger the number of
tests, the easier it is to find such events and therefore the easier to interpret an effect as

rare when there is none [[Abdi, 2006].
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To prevent wrong interpretations based on multiple testing many statistical methods
were developed by which the number of independently performed tests are taken into
account for correction of the multiple testing hypothesis. The usual 5% level, meaning
that there is a 5% chance that a result is incorrectly true, has to be corrected for the
number of tests for the determination of the significance level. In a analysis that
would be the number of the considered SNPg

One of the most commonly applied methods to control familywise error rate (FWER)|
(the probability of one or more false positive discoveries (type I errors) among multiple
tests) is the Bonferroni-correction, which is also the most conservative technique with a
very stringent threshold. The Bonferroni-correction is the simple approximation method
of the Sidak equation in which a test reaches significance with a smaller probability as
295 [Abd, 2006].

To ensure that significance is not due to randomness and within the expectation of
independence this method is surely the appropriate choice, on the other hand taking
all (which indeed are not all independent due to [LDjstructures) into account the
significance level will converge to highly small probabilities and would possibly lead to
false negative results. Hence two approaches are often applied, first selecting a limited
number of @—pruned loci for consideration, which shrinks the search space and, thus,
the significance level correction, or the adoption of a permutation based method, which
might be computationally infeasible [Cordell, 2009, |Culverhouse et al., 2002].

Facing interaction analyses one can imagine that the problem of multiple testing gets
even more server and stringent considering the number of tests, 7. Tim Becker et al.
[Becker et al., 2010] published a promising modification approach of the Bonferroni-
correction for which is also applied in this thesis. The Bonferroni-Becker ap-
proach implies that a correction with roughly 0.44 x m (m being the number of tests,

i.e., the number of [SNPpairs: m = ”(”T_l) and 0.44 the correction factor) is appropriate
for The correction factor can be calculated for each dataset individually, the
methodology relies on the combination of permutation and Sidak strategy, which given
computational constraints is not always feasible.

Basically, the permutation procedure is repeated x times for a given dataset, the ob-
tained minimum p-value of each run is kept, from which the specific correction factor
for [GWIA]is inferred via the reverse Sidak equation (in R the function ks.test). Despite
its benefit for accuracy this is a highly time consuming and computational expensive
approach that is not realizable in every case; Becker et al. demonstrated that the correc-
tion factor of 0.44 is appropriate for[GWIAg with the Tlumina® 550 HumanHap chip,
or either any genotyping data with up to 500,000

Another less stringent method is the [talse discovery rate (FDR) approach. was
developed by Benjamini and Hochberg [Benjamini and Hochberg, 1995] to control error
in the multiple-testing situation. It is used to estimate false positive results. The formula
is based on the FWER|with the traditional situations described in table 2.1
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‘ True Hy ‘ True H; H Total ‘

Declared significant \Y% S R
Declared non-significant U T m-R
Total my m - mg m

Table 2.1: Hypotheses definition for familywise error rate testing m null hypotheses

m is the number of (null) hypotheses Hj to be tested, of which m are the true null
hypotheses. R is the number of rejected hypotheses (non-null hypotheses (H;)). R is
an observable random variable; U, V, C and T are unobservable random variables. If
each individual null hypothesis is tested separately at level a (usually 0.05 or 0.1), then
R = R(w) is increasing in «. In terms of these random variables, the per-comparison|
ferror rate (PCER)| (the probability of a result in the absence of any formal multiple
hypothesis testing correction) is E(V /m) and the FWER|is the probability P(V > 1).

In association studies the is more commonly applied. It is defined by the random
unobserved variable Q = V/(V + S) the proportion of rejected null hypotheses which
are rejected erroneously. Obviously, the unobserved random variable Q would be
null if the number of false positives (V) and true positives (S) is zero. Therefore the

[FDR] expectation corresponds to Q (Eq.[2.6). If all null hypotheses are true, the [FDR]is
equivalent to otherwise is smaller than or equal to the

FDR = E(Q) =E {ﬁ} —E (%) (2.6)

2.3 Technical background

23.1 R

R (http://www.r-project.org) is an open source software environment for statistical
computing and graphics. It runs on a wide variety of operating systems. It is a GNU
project based on the S language and environment that was developed at Bell Laborato-
ries (formerly ATT, now Lucent Technologies) by John Chambers and his colleagues. R
provides a huge variety of statistical (linear and nonlinear modeling, classical statistical
tests, time-series analysis, classification, clustering, etc.) and graphic techniques and
is readily extensible [Core, 2008]]. It offers a huge range of packages especially for
biological questions, for example the packages from Bioconductor [Gentleman et al.)
2004]. All statistical analyses for this thesis that were not performed with specific tools
were realized utilizing R.
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2.3.2 QUANTO

The software QUANTO (http://biostats.usc.edu/Quanto.html) [Gauderman, 2002
is a 32-bit Windows application for the computation of detection power for various as-
sociation study models like single-locus, gene-environment-, or gene-gene interactions.
It includes different study designs (for example, case-control or case-only) and can be
used over a graphical user interface [Gauderman, 2002]. Study power for statistical
interaction analyses can be estimated using the allele frequencies, population size, single
effect size, interaction effect size, and genome-wide significance level (in our case:
p=161x10"12).

2.3.3 Principles of Graphics Processing Unit computing

The massive data production, due to the impressively fast progress in biotechnology
confronts computer experts with the challenges of data handling, memory usage, and
computational power. While single locus association studies have become manageable
with standard computer resources, such as high-performing single desktops, multi-core
processor servers or cloud-computing, higher order (interaction) calculations remain
a huge performance problem; another issue is the outsourcing of clinical data, due to
security standards the use of cloud computing is often prohibited.

In quest of new strategies addressing these limitations the idea arose to leverage the
power of the multiple cores available on [GPUs|on graphics cards to enhance compu-
tation speed arose. The high-performance ability of graphic cards are established in
game consoles, but were barely taken into account as computing processors as a result
of insufficient implementation abilities and expertise of [GPUs|as arithmetic units
Nowadays high performance computing solutions are ubiquitous. A new approach
is heading towards heterogeneous systems where the [central processing unit (CPU)
of the system handles the serial part of a task and helps to coordinate the parallel
environment on for massive parallel computation. In this model [CPU]and [GPU]
work in a heterogeneous co-processing computing model, where the [CPU|carry over the
sequential part of the task and the the computationally intensive part in a
[Instruction Multiple Data (SIMD) manner [Kam-Thong et al., 2012].

In the field of bioinformatics and biostatistics the demand for higher performance
solutions increases, amongst others when it comes to high dimensional data analysis,
such as the systematically brute force search for epistatic interactions between genetic
variants. Meanwhile programming is constantly growing in biosciences and sev-
eral open-source software tools are designed to perform epistasis searches on [GPUs|
, such as SHEsisEpi [Hu et al., 2010], GBOOST [Yung et al., 2011]], EpiGPU
et al., 2011], and those developed in our group EPIBLASTER [Kam-Thong et al., 2010],
EPIGPUHSIC [Kam-Thong et al., 2011] and GLIDE [Kam-Thong et al., 2012].

To enable|[GPUs|as processors there is the need of special interfaces, like NVIDIAs Com-
pute Unified Device Architecture (CUDA) (see subsection which is a parallel
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computing architecture application facilitating [GPUs| to operate as co-processors within
a host computer. Each has its own memory and processing elements that are
separate from the host computer. The following subsections ([2.3.3.1] [2.3.3.2) will give
an overview of the implemented soft- and hardware of the epistasis tools developed in
the research group Statistical Genetics at the Max-Planck-Institute of Psychiatry.

2.3.3.1 Graphics Processing Units

on graphics cards are composed of several hundred |Arithmetic Logic Units|
(ALUs) providing the massive parallel environment in which an exhaustive search can
be computed extremely time-efficient. Apart from the advantages concerning computa-
tional time, the economical aspects, as the lower price, lower power consumption and
at least the less rack space requirement as for multi-core machines, made
programming more popular and operative.

For our research question, we chose NVIDIAs CUDA computation architecture, avail-
able for application development with the graphics cards series GeForce, ION Quadro
and Tesla. The consumer level GeForce GTX series fulfilled all our needs and allowed
us to build a queue system. We opted for custom-built compute nodes based on a
high-performance PC that accepts three GTX graphics cards (GTX580, offering 512
cores) for [GPU|computations [Piitz et al., 2013]. Overall we could built a[GPU}cluster
by assembling four high-performance PCs with three graphics cards each.

The working mechanism of [GPUs|can be visualized well by figure[2.3} in general process-
ing elements in [GPUs]are called threads tha