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Abstract

Omics studies allow for a system-wide characterization of molecules on genomic,

transcriptomic, proteomic or metabolomic level. Each of these levels only partly

explain the molecular mechanisms that underlie these observations. Hence, the

interplay between these levels is of key interest to better understand complex

processes. The joint analysis of several omics levels enables us to capture the

molecular changes more comprehensively. Typically, statistical and functional

analysis of omics data only deals with a single molecular level. The integration

of omics data from different molecular levels is, however, not straight-forward.

To address this issue, we propose novel methods for the joint analysis of omics

data across different levels. Our goal is to identify functional and regulatory

properties of the molecular interplay between omics levels.

The understanding of interactions across different omics levels provides broa-

der insights into the mechanisms of complex diseases such as type 2 diabetes

mellitus. This disease becomes more and clinically relevant due to its sharp rise

in prevalence. In particular the process of adipogenesis is an important factor

of diabetes onset as disorders of adipocyte differentiation may have strong im-

pact on the insulin homeostasis. But even though the process of adipogenesis

has been widely studied, the complex interplay of molecular mechanisms across

different levels is still not elucidated. We therefore propose methods for inte-

grating microRNA and mRNA expression as well as DNA methylation data to

give novel insights into the system-wide molecular properties of adipogenesis.

We initially focus on the functional role of microRNAs by combining mi-

croRNA with gene expression data to identify regulatory relationships. We

show that microRNAs with functional similarities also tend to be co-expressed

and thus contribute to the research on microRNA regulation. Based on these

findings, we provide a biologically-driven method, called miRlastic, which uses

multiple linear regression with elastic net penalty to identify putative miRNA-

target relationships. We validate our approach on synthetic and experimental

data and show that it outperforms related methods. We use the resulting reg-

ulatory network to determine biological functions of microRNAs by performing

a local gene set enrichment. By assigning locally overrepresented cellular pro-

cesses to the corresponding microRNAs, we can assess functional roles to single
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microRNAs and sets of cooperating microRNAs in adipogenesis.

Finally, we extend the basic idea of integrative data analysis towards a mod-

ular framework for functional analyses on multiple molecular levels. We are

the first to introduce a model-based enrichment analysis, called MONA, for

joint analysis of multiple omics levels. We show that our multilevel approach

provides better insights into processes, which play a role in adipogenesis. We

implemented a web application to make this approach available to applied re-

searchers, which is easy to use and provides an enhanced output.

In summary, the analysis of multi-level omics data using our novel methods

allows us to determine interactions across DNA methylation, mRNA expression

and microRNA expression in adipocyte differentiation and to characterize them

with regard to their functional properties.
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Zusammenfassung

Systemweite Studien, wie beispielsweise Genomik, Transkriptomik oder Proteo-

mik, erlauben es uns Moleküle in großem Maßstab auf unterschiedlichen Ebenen

zu charakterisieren. Jedes dieser Ebenen kann jedoch nur teilweise die moleku-

laren Mechanismen erklären, die den beobachteten Daten zugrundeliegen. Das

Zusammenspiel dieser Ebenen ist daher von zentralem Interesse, um komplexe

Prozesse besser verstehen zu können. Die gemeinsame Analyse von mehreren

Omik-Ebenen bietet uns die Möglichkeit, die molekularen Veränderungen um-

fassender nachzuvollziehen. Üblicherweise befassen sich statistische und funk-

tionelle Analysen lediglich mit einer einzelnen molekularen Ebene, wohingegen

die Integration von Omik-Daten aus unterschiedlichen molekularen Ebenen sehr

komplex ist. Um diesen Ansatz zu realisieren, führen wir neue Methoden ein für

die gemeinsame Analyse von Omik-Daten über verschiedene Ebenen. Unser Ziel

hierbei ist die Identifikation von funktionellen und regulatorischen Eigenschaften

des molekularen Zusammenspiels zwischen unterschiedlichen Omik-Ebenen.

Das Verständnis von Interatktionen über verschiedene Omik-Ebenen kann

bessere Einblicke in die Mechanismen von komplexen Krankheiten wie Typ 2

Diabetes bieten. Aufgrund der weltweit dramatisch steigenden Häufigkeit dieser

Krankheit, hat sie sich zu einem zentralen Forschungsthema entwickelt. Speziell

der Adipogenese-Prozess ist ein wichtiger Faktor für den Ausbruch von Typ 2

Diabetes, da Störungen im Verlauf der Adipozytendifferenzierung großen Ein-

fluss auf den Insulihaushalt haben können. Obwohl der Adipogenese-Prozess

bereits intensiv untersucht wurde, ist das komplexe Zusammenspiel der mole-

kularen Mechanismen über verschiedene Ebenen nach wie vor nicht aufgeklärt.

Daher wenden wir unsere Methoden zur Multi-Omik Datenintegration auf einem

Datensatz an, der sowohl aus microRNA- und mRNA-Expressionsdaten als auch

aus DNA Methylierungsdaten besteht, um neue Einblicke in die systemweiten

molekularen Eigenschaften der Adipogenese zu gewinnen.

Wir beschäftigen uns zunächst mit der funktionellen Rolle von microRNAs

durch die Kombination von microRNA- mit Genexpressionsdaten, um regu-

latorische Beziehungen zu identifizieren. Wir können zeigen, dass funktionell

ähnliche microRNAs dazu neigen, auch ko-exprimiert zu sein. Hierdurch tragen

wir zu der Erforschung von microRNA-Regulation bei. Basierend auf diesen Er-
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kenntnissen präsentieren wir eine Methode, genannt miRlastic, die multiple Re-

gression mit Elastic-Net Penalisierung verwendet um mögliche miRNA-target-

Beziehungen zu identifizieren. Wir validieren unseren Ansatz auf synthetischen

und experimentellen Daten und können zeigen, dass er im Vergleich zu ver-

wandten Methoden bessere Ergebnisse liefern kann. Wir verwenden das mit die-

ser Methode generierte regulatorische Netzwerk um durch die Anwendung eines

lokalen Genset-Enrichments biologische Funktionen von microRNAs zu bestim-

men. Durch das Zuweisen von lokal überrepräsentierten zellulären Prozessen zu

den entsprechenden microRNAs können wir funktionelle Rollen einzelner oder

mehrerer microRNAs beurteilen.

Die grundlegende Idee der integrativen Datenanalyse erweitern wir schließ-

lich zu einer modularen Methode für die funktionelle Analyse von multiplen

molekularen Ebenen. Wir sind hierbei die ersten, die eine modellbasierte Enrich-

mentmethode für die gemeinsame Analyse von multiplen Omik-Ebenen präsen-

tieren. Wir können zeigen, dass unser multi-Ebenen-Ansatz einen besseren Ein-

blick in Prozesse bietet, die eine Rolle in der Adipogenese spielen. Durch die

Implementierung in Form einer Webapplikation machen wir diese Methode an-

wendungsorientierten Wissenschaftlern zugänglich. Diese Applikation ist einfach

zu bedienen und bietet eine umfassende Aufbereitung der Ergebnisse.

Zusammenfassend können wir durch die Analyse von Omik-Daten multipler

Ebenen unter Verwendung unsere neuen Methoden Interaktionen zwischen DNA

Methylierung, mRNA-Expression und microRNA-Expression in der Adipozy-

tendifferenzierung bestimmen und im Hinblick auf ihre funktionellen Eigenschaf-

ten charakterisieren.
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Chapter 1

Introduction

Since the discovery of regulatory mechanisms on molecular level within prokary-

otes in the late 1960s [184], research in molecular Biology has more and more

focused on the investigation of complex regulatory interactions [177]. Even in

this early stages of research in that field, the importance of the interplay between

several molecular levels has already been pointed out. At that time, regulatory

mechanisms have been studied on a small, well-defined scale and primarily in

prokaryotes, such as the lac operon in Escherichia coli [11]. The progress in

experimental techniques [74] and new insights into molecular and cellular mech-

anisms [149] enabled the researchers to extend their focus from small distinct

regulatory mechanisms to complex molecular interactions in biological systems

[150]. Nowadays, research in molecular biology is focusing on the comprehensive

characterization of molecular mechanisms also in higher eukaryotes by investi-

gating gene activity and regulatory features in a system-wide fashion [35, 139].

It is supported by modern high-throughput technologies for the large-scale mea-

surement of biological molecules. These are also referred to as “omics studies”

in molecular biology. They deal with the characterization of a comprehensive

set of molecules, which primarily include DNA, RNA, proteins and metabolites.

Omics studies allow us get a broad and unbiased insight into changes of molec-

ular activities, which arise due to certain environmental or cellular conditions.

This information can then be used to globally infer affected cellular mechanisms.

The understanding of these system-wide molecular mechanisms is essential

1
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to reveal the causes of complex diseases, which may depend on a multitude

of genetic and environmental factors. For example, due to their sharp rise in

prevalence, type 2 diabetes mellitus [54] as well as obesity and associated car-

diovascular diseases [140] become more and clinically relevant. These diseases

have in common that they are directly linked to an excessive accumulation of

adipose tissue, which is often accompanied by decreased insulin sensitivity [62].

The adipose tissue comprises adipocytes, which react to insulin with the storage

of lipids and which can also secret hormones to modulate insulin sensitivity in

distant tissues, thereby controlling the energy homeostasis in the whole human

body [65]. The disruption of one of these processes, which may arise during the

development of these cells, can lead to metabolic disorders and to a dramatically

increased risk for type 2 diabetes [165]. The process of adipocyte differentiation

has thus become an important research subject over the past two decades [145].

Several omics studies have been conducted to investigate the adipocyte differ-

entiation process in a system-wide fashion using large-scale molecular profiling

techniques [147, 181, 189]. However, the underlying molecular mechanisms of

adipogenesis are still not fully understood.

The goal of this thesis is the integration of data from different omics ex-

periments in order to reveal molecular mechanisms that are involved in the

differentiation of adipocytes. For this purpose, we introduce novel methods

that are specifically designed to account for the molecular characteristics of the

respective level.

1.1 Molecular interactions across multiple levels

Changes in cellular or environmental conditions may act as a stimulus for a cell

to modulate certain cellular properties and processes, which can influence the

genome, transcriptome, proteome or metabolome level (Fig. 1.1).

On genome level, external factors usually do not alter the sequence of the

DNA itself, but rather act epigenetically [79]. One of the most important epi-

genetic mechanisms is the methylation of DNA (Fig. 1.1b). The methylation

of promoter regions prevents the attachment of transcription factors, thereby

modulating the activity of the associated genes [83]. It has been shown that
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mRNA

metabolites

proteins

DNA methylation

miRNA

Metabolome

Proteome
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cellular
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Figure 1.1: An external stimulus can affect several molecular levels (A). This
leads to changes in the concentration or activity of molecules, which themselves
affect other molecular levels via regulation (orange arrows) or translation (blue
arrow) (B). The multi-level changes as a whole affect certain cellular processes
(C), which then give rise to an altered phenotype (D).

the methylation state of a cell highly depends on environmental factors and is

especially altered due to aging or dietary changes [79].

The transcriptome level comprises all RNA molecules, which are produced

in a cell. The most-well studied response on transcriptional level is the modu-

lation of messenger RNA (mRNA) expression. The mRNA is transcribed from

protein-coding genes on the genome and then translated into proteins. It is thus

regarded as a proxy for the abundance of proteins, which carry out the biochem-

ical gene function. Another type of RNA molecules are microRNAs (miRNAs).

miRNAs are very short and bind specifically to a target mRNA, which enables

them to post-transcriptionally regulate the gene expression. Since the discovery

of miRNAs in the early 90’s [98], their important role in influencing biological

processes has become more and more obvious [30]. But even though miRNAs

have been studied intensively during the last two decades, their regulatory mech-

anisms are still not fully understood [86].

The proteome level describes the set of all proteins of a system. This level

can be regarded as the “functional” level. Proteins can serve as enzymes for

modulating the metabolome and metabolites can in turn influence the activity

of proteins. The metabolome then provides a readout of the overall underlying

molecular interactions

The interplay between all molecular levels contains the full regulatory infor-
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mation of the cell, where one level alone might not be sufficient to understand

the underlying biological processes. For example, we can not determine whether

altered methylation patterns actually affect the expression of associated genes by

only taking into account methylation data. Similarly, if we focus only on mRNA

expression data, we do not know if the changes directly affect the protein level

and to which extent mRNAs are regulated post-transcriptionally. Measurements

on miRNA level do not provide any functional information if we do not take their

target relationships into account. Equally, the proteome level alone cannot pro-

vide satisfactory functional insights, as the technologies for assessing large-scale

protein concentrations are still laborious and less comprehensive than measure-

ment techniques for mRNA expression [4]. Finally, metabolite concentrations

only indicate the overall readout of cellular mechanisms and can not directly

explain regulatory relationships [55]. In addition, all of these omics studies are

prone to measurement errors arising from the individual high-throughput tech-

niques. We thus benefit most from the joint analysis of different omics levels as

we can combine the advantages of each of them.

1.2 Research questions

MiRNAs are known to fine-tune the expression of specific target genes post-

transcriptionally but the mechanisms of target gene regulation are still not

fully elucidated. However, to investigate miRNA influences on the adipocyte

differentiation process, a clear understanding of miRNA-target relationships is

necessary. A variety of target prediction algorithms has been proposed, which

basically make use of sequence features. But since these approaches are prone

to a large number of false positives [142], several methods have been proposed

to include expression data to improve this prediction [153, 111, 122]. We asked

whether we can improve these methods by taking into account the properties of

miRNA regulation. Another question we want to answer is the specific role of

miRNAs in the regulation of cellular processes.

Up to know, bioinformatic methods mainly focus on a single omics level.

Hence, these methods are not able to fully capture molecular responses and can

only partly reveal affected processes. We therefore asked whether we can make
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use of the multilevel omics data to reliably identify molecular responses, which

occur during adipogenesis.

1.3 Overview of this thesis

In the following, we will give a brief outline of this thesis. A graphical repre-

sentation of this outline is given in Figure 1.2.
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Figure 1.2: Overview of this thesis. In chapter 3, we will introduce the adipocyte
differentiation dataset, which is analyzed throughout this thesis. Basic mecha-
nisms of miRNA regulation are described in chapter 4. In chapter 5 and 6, we
will integrate the miRNA and mRNA expression data on the basis of miRNA
target predictions to generate a miRNA-mRNA regulatory network and to func-
tionally characterize adipogenesis-associated miRNAs. In chapter 7, we will in-
tegrate the multiple molecular levels to perform a multilevel ontology analysis.
Finally, we will introduce a web application for this analysis in chapter 8.

Chapter 2 introduces the biological and technical background, which is

relevant throughout the thesis. This includes an overview of gene expression

profiling, omics analysis and statistical methods. In addition, we will introduce

the basic molecular mechanisms of adipocyte differentiation.

Chapter 3 introduces the adipogenesis dataset, which is used to investi-

gate the molecular properties of adipocyte differentiation on multiple molecular

levels in the subsequent chapters. We will show the results of statistical anal-

yses for determining differentially expressed mRNAs and miRNAs as well as
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differentially methylated CpG sites.

Chapter 4 consists of two parts. In the first part, we will introduce the

mechanisms of post-transcriptional gene regulation through miRNAs as well

as the properties of transcriptional regulation of miRNAs themselves. We will

initially point out important steps in the biogenesis of mature miRNAs and

introduce important bioinformatic resources, which are essential for the investi-

gation of miRNAs. One of the most important questions in miRNA research is

the prediction of miRNA-mRNA interactions to determine functional properties

of miRNAs. We will outline common approaches, which deal with this target

prediction, especially the in silico methods.

In the second part of this chapter, we will introduce our own bioinformatic

analyses to show that co-expression among miRNAs, which arises due to the

fact that several miRNAs are often under the control of a common promoter, is

directly linked to a coordinated regulation of protein complexes.

In Chapter 5 we will introduce a novel approach for the identification of

miRNA-mRNA interactions (miRlastic), which is based on combined miRNA-

mRNA expression data as well as on in silico target predictions. By integrating

these different levels of information using a multiple regression approach, we aim

to identify a reliable regulatory miRNA-mRNA network, which is specific for

the given experimental setup. We will show that co-expression among miRNAs

is an important aspect in this analysis of combined expression data. We thus

account for the correlation between expression profiles in our method, which

we will then use for building up a miRNA-mRNA network that is relevant for

the regulatory processes in adipocyte differentiation. Finally, we will show that

our method outperforms other common approaches both for simulated and real

data.

Chapter 6 introduces a method, which can be applied on the previously

generated miRNA-mRNA networks in order to gather functional information

about miRNAs. We introduce a local enrichment analysis (LEA) in the network

for the identification of miRNAs that are supposed to significantly contribute to

a given process. We will furthermore use this method to determine processes out

of a given set of functional groups, whose associated genes are targeted only by

a specific set of miRNAs. By applying LEA to the data-driven miRNA-mRNA
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network for adipocyte differentiation, we revealed miRNAs regulating processes

and signaling cascades, which play crucial roles in this differentiation procedure.

We furthermore observe that several miRNAs act together in regulating these

processes even if they are apparently not directly related to each other.

In chapter 7 we will extend the basic idea of integrative data analysis

towards a modular framework for functional analyses on multiple molecular

levels. We will introduce a method for multi-level ontology analyis (MONA),

which integrates data resulting from various omics experiments. Using a model-

based enrichment approach, we will summarize the diverse molecular levels to

a functional unit, which is regarded as gene response. These gene responses

then serve as a basis for the inference of potentially affected biological functions

with regard to the experimental setup. The MONA framework can be easily

extended to simultaneously account for any possible regulatory mechanism. We

will use MONA for the integration of mRNA, methylation and miRNA data from

the adipocyte differentiation study in order to determine associated biological

processes. We will show that our approach is appropriate for the functional

characterization of affected molecular changes during the formation of mature

adipocytes.

An implementation of the MONA approach in form of a web application

is introduced in chapter 8. This web application is called remotely accessible

multi-level ontology analysis (RAMONA) and provides an easy-to-use interface

for performing a model-based enrichment analysis on combined data from differ-

ent molecular levels. It incorporates a database for processing several common

gene identifiers and for mapping them to functional categories from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [84] and Gene Ontology (GO)

[5]. RAMONA depicts the results from the underlying MONA algorithm in a

comprehensive fashion to provide functional insight into the inferred processes.

We will demonstrate the application of RAMONA by showing the multi-level

effects of adipocyte differentiation on signaling pathways.
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Chapter 2

Background

This chapter introduces the theoretical concepts and experimental techniques,

which are used throughout this thesis. First, the experimental approaches sec-

tion describes technologies for measuring transcriptomic and DNA methylation

profiles. In addition, we will clarify the principles of hypothesis testing, corre-

lation and regression analysis, omics analysis and Bayesian networks. Finally,

we will briefly outline the basic mechanisms of adipogenesis.

2.1 The omics landscape

Large-scale measurements of biological molecules like DNA, RNA, proteins or

metabolites are also commonly referred to as omics studies. Several experi-

mental techniques have been developed for measuring these molecules. In the

following, we will introduce the basic principles of the experimental techniques

that can be used for transcriptional or DNA methylation profiling.

2.1.1 Transcriptomics

Transcriptomics refers to studies dealing with the genome-wide analysis of all

RNA molecules produced in a certain organism. These RNA molecules include

mRNAs, ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and all non-coding

RNAs. The focus of transcriptomics is the large-scale measurement of RNA

abundance in order to determine the global gene activity.

9
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Currently, the most commonly used experimental method for transcriptional

profiling are DNA microarrays. The great advantage of microarrays is that they

are easy to handle and relatively cheap. However, it is necessary to define a set

of transcripts in advance. This does not allow for the identification of unknown

transcripts or alternative splice variants.

With the advent of next-generation sequencing (NGS) for RNA expression

profiling, which is commonly referred to as RNA sequencing (RNA-seq), these

issues could be overcome. Since almost all transcripts in a biological sample are

measured, even unknown transcripts can be identified and quantified. Further-

more, the identification of alternative splicing is possible, allowing for a much

deeper insight into transcriptional processes. However, the analysis of RNA-seq

data is cumbersome and demands a large amount of computational power. In

addition, the generation of RNA-seq data is more expensive than microarrays,

even though the costs for NGS are constantly decreasing [115]. In addition, we

have to note that coverage for identification as well as for quantification is not

complete, especially for low abundant transcripts. Also the assembly of tran-

scripts from sequenced reads and expression estimation is not yet standardized.

Transcriptional profiling using microarrays

The basic principle of a microarray experiment is to combine a set of DNA spots

on a chip (probes) with the target sequences from the sample of interest by DNA

strand hybridizations (Fig. 2.1). The probe sequences are specifically designed

to serve as reporters for transcripts. The isolated RNA from the biological

sample is transcribed into complementary DNA (cDNA), which is afterwards

labeled with a fluorescent dye. This labeled cDNA is then hybridized with the

probes on the microarray. The fluorescence intensity of the spots is measured

using a laser scanner and can be directly used to identify relative changes in

RNA expression across samples.

Generally, microarrays can be produced in two ways, spotted and in-situ

synthesized. For spotted microarrays, the probes are prepared before the at-

tachment to the array. This is either done by preparing cDNA from the mRNA

or by creating respective oligonucleotides. These DNA sequences are then spot-

ted on a glass slide. The advantage of spotted microarrays is the relatively cheap
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Figure 2.1: Comparison of spotted (left) and oligonucleotide microarrays
(Affymetrix, right). For both workflows, the RNA is initially extracted from
the cell population. The spotted array allows for two-channel measurements,
which may correspond to a control and a diseased cell population. The RNA
is transcribed into cDNA, which is then labeled with Cy3 (green) or Cy5 (red)
by in vitro transcription (IVT). These cDNA fragments are then hybridized
with the probes on the array, washed, and finally scanned with a laser to assess
fluorescence intensity. In case of the oligonucleotide array, only one channel is
available. The IVT step is used to incorporate biotinylated nucleotides, which
are then stained with streptavidin after the hybridization. Figure adapted from
[164].

and uncomplicated production. In addition, two different dyes may be used to

analyze two samples simultaneously. However, these types of microarrays are

prone to measurement errors since there exists a large amount of variation aris-
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ing from the spotting procedure [163].

Nowadays, in-situ synthesized microarrays are usually preferred over spotted

microarrays, as they yield more reproducible results [7]. The main difference

between spotted and in-situ synthesized microarrays is that in the latter case

oligonucleotides are synthesized directly on the array. These kind of microar-

rays are therefore also referred to as oligonucleotide microarrays, even though

there exist spotted microarrays based on oligonucleotides, too. The most promi-

nent procedure for the production of oligonucleotide microarrays is similar to

the production of electronic chips where a photolithographic process is used

to synthesize the oligonucleotides on the array [132] (Fig. 2.2). The surface

of the array is covered with photolabile protecting groups, which prevent the

attachment of nucleotides. By using a photolithographic mask, these groups

can be specifically removed by light exposure. Special nucleotides, which are

again protected by photolabile groups, are then presented to the surface. These

nucleotides are then able to bind at the positions on the array, which were ex-

posed to the light. The process is repeated until the desired oligonucleotides

for each position are synthesized. This procedure allows for the exact synthesis

of predefined probe sequences, which therefore can be specifically designed to

prevent cross-hybridization between different transcripts [107].

Affymetrix was the first company to produce oligonucleotide microarrays,

which are based on a photolitographic procedure [132]. The Affymetrix “Gene

Chips” are still the most popular platform for measuring the transcriptome.

The latest Affymetrix chips comprise of about 1 million distinct oligonucleotide

probes, which are grouped into about 50,000 probe sets. These probe sets cover

known transcripts of an organism.

Microarrays are available for different kinds of studies. The most common

application of microarrays is for measuring mRNA expression within a cell pop-

ulation or tissue. But special microarray solutions are also available to measure,

for example, miRNA expression. These miRNA microarrays cover the complete

set of known miRNAs across different organisms. MRNA and miRNA mea-

surement approaches primarily differ in the preparation of the samples. The

amplification of the mRNA concentration prior to the microarray analysis typ-

ically requires the isolation of poly(A) RNA [107]. In case of mature miRNAs,
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Figure 2.2: Principle of oligonucleotide synthesis using a photolithographic pro-
cess. Initially, the surface of the microarray is covered with photolabile protect-
ing groups, which can be specifically removed at predefined positions by light
exposure using a photolithographic mask. This allows a binding of special nu-
cleotides, which are themselves covered with a photolabile protecting group. By
systematically repeating this procedure, the previously designed oligonucleotide
sequences can be synthesized. Figure adapted from [118].

the isolation procedure usually aims to select the RNA molecules by their size

[93].

2.1.2 Epigenetic gene regulation by DNA methylation

The study of stable and possibly heritable changes in phenotype or gene ex-

pression, which do not occur as a result of altered DNA sequence, is referred to

as epigentics [51]. One of the most important epigenetic mechanisms is DNA

methylation whose great importance, especially for cell differentiation, is well

established [69].

DNA methylation is carried out through the attachment of a methyl group
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on the 5C position of cytosine residues in DNA. This modification is maintained

by a set of methyltransferases and predominantly happens in the context of a

CpG site [52]. However, the methylation of cytosines may also occur in non-

CpG regions [138]. CpG islands are regions on the DNA with a length greater

than 500 bp and a GC content equal to or greater than 55% [167], which are

usually unmethylated. Since methylated cytosines are prone to mutations, these

regions underlie a lower mutagenic pressure as compared to other regions and

are therefore well-conserved. However, the methylation of CpG islands in a

promoter region can cause a stable inheritable transcriptional silencing by pre-

venting the attachment of transcription factors [83].

It has been shown that stable methylation patterns are established during

embryonic development when cells differentiate from embryonic stem cells to

specific cell types [79]. However, changes in DNA methylation are also important

during the differentiation process of adult stem cells [159, 189]. Furthermore,

the methylation state of a cell highly depends on environmental factors [79].

Experimental techniques for large-scale methylation profiling

A variety of approaches have been proposed for the assessment of genome-wide

DNA methylation. They differ either in the pretreatment or in the analysis

technology [94]. A pretreatment step is necessary, since the methyl groups are

removed from the sequences during the amplification of the DNA. Furthermore,

methylation itself can not be identified by hybridization. Hence, array-based

approaches would not be applicable. The pretreatment techniques include affin-

ity enrichment or sodium bisulphite treatment. Affinity enrichment utilizes

antibodies, which are specific for methylated cytosines, in order to separate

methylated DNA fragments from the fragmented genomic DNA via immuno-

precipitation [121]. This technique is referred to as methylated DNA immuno-

precipitation (MeDIP) [176]. The treatment of denatured genomic DNA with

sodium bisulphite makes use of the fact that deamination, which is caused by

this treatment, happens much faster for unmethylated cytosines as compared to

methylated ones [174] (Fig. 2.3). This leads to a rapid conversion of unmethy-

lated cytosines into uracil, whereas the methylated ones remain unchanged. The

bisulphite treatment allows for base-pair resolution, which is a great advantage
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over the affinity enrichment.

Figure 2.3: Principle of methylation profiling using the Illumina Infinium plat-
form. Each CpG site is represented by two bead types. (A) Within a CpG
site the bisulfite treatment causes a conversion of unmethylated cytosines (C)
to uracil (T). It matches perfectly with a corresponding (U) probe, whereas
a mismatch occurs for the (M) probe. The (U) signal will therefore become
high and the (M) signal low. (B) Methylated CpG sites remain unchanged by
the bisulfite treatment. In this case, the (M) probe matches perfectly and the
matching of the (U) probe is imperfect. This causes a high signal for the (M)
probe and a low signal for the (U) probe. Only perfect matches can be extended
and become labeled with a fluorescent dye. Figure adapted from [14].

For both pretreatments, commonly used follow-up quantification techniques

are microarray- or NGS-based. These two techniques have the same advantages

and disadvantages in methylation analysis as in transcriptome analysis (see

above). In case of MeDIP, the array-based variant is called MeDIP-chip [176]

and the NGS-based variant MeDIP-seq [32]. A powerful array-based technology

for bisulphite treated DNA is the Illumina Infinium platform [14] (Fig. 2.3).

The amplified bisulphite treated DNA is hybridized with methylation-specific

probes, which correspond to predefined CpG sites in the genome. The probe

for an unmethylated site binds perfectly, if the respective cytosine was replaced

by a uracil. Otherwise, the probe for the methylated site binds perfectly. Only

perfect matches can be extended by a sequence with a fluorescent label, which

enables the detection. A measure for the methylation of a CpG site is the β-

value, which is the ratio of the fluorescent signals from the methylated probe to
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the total locus intensity. This value can be transformed into M-values, which

are an appropriate measure for the statistical analysis of methylation [33]. The

M-value Mi for a CpG site i can be calculated from its β-value βi as:

Mi = log2

(
βi

1− βi

)
The HumanMethylation450 chip is the most recent version of this technology

and covers 485,577 methylation sites in the human genome [13]. Bisulphite-

converted DNA can also be analyzed by using NGS approaches [105].

2.2 Hypothesis testing

In statistics, hypothesis testing is used to judge whether given phenomena can

be rejected with a certain probability or not. Performing such a test involves

the formulation of two hypotheses - the null hypothesis H0 and the alternative

hypothesis H1. H0 summarizes common events which are observed with high

probability and H1 captures rare events which can be observed only with a low

probability. Deciding wether H0 can be rejected and thus H1 can be assumed

is the goal of the hypothesis test. For this purpose, we have to identify an

appropriate test statistic, whose distribution can then be used to determine a p-

value. A p-value is the probability of observing a value of the test statistic which

is equal or more extreme than the test statistic value obtained from the tested

data. H0 can then be rejected if the p-value is below a certain significance level

α, which is typically chosen as 0.05 or 0.01. Statistical tests can be performed

as one-tailed or two-tailed tests. If we perform a one-tailed test, we reject H0

only if the test statistic is lower or higher than a given critical value, but not in

both cases. In a two-tailed test, either lower or higher values of the test statistic

lead to a rejection of H0. Note that we have to modify the critical value to

obtain the identical area under the tails for one- and two-tailed tests.

We distinguish between parametric and non-parametric tests. Parametric

tests are used in cases when a specific probability distribution of the tested

observations can be assumed, whereas non-parametric tests do not have any

probability assumptions.
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2.2.1 Student’s t-test

Student’s t-test is a parametric statistical test to determine whether the means

µX and µY of two normally distributed populations X and Y significantly differ

from each other given two samples x of size n and y of size m from the two pop-

ulations with sample means x̄ and ȳ. Hence, the null hypothesis is formulated

as H0 : µX = µY and the alternative hypothesis as H1 : µX 6= µY . If we assume

equal variance for X and Y and an unequal sample size, we can calculate the

test statistic t as follows:

t =
x̄− ȳ

s ·
√

1
n + 1

m

,

with s denoting the square root of the weighted mean of the two sample variances

s2x and s2y:

s =

√
(n− 1)s2x + (m− 1)s2y

n+m− 2
.

The observed value of t is then compared to the quantiles of a Student’s t

distribution with n+m− 2 degrees of freedom, which yields a p-value. Given a

pre-defined significance level α we can thus decide whether the null hypothesis

can be rejected or not.

2.2.2 Wilcoxon rank-sum test

If we can not assume that two populations X and Y are normally distributed,

we can use the non-parametric Wilcoxon rank-sum test to test whether one of

these populations is ranked as superior to the other. This can be also regarded

as a shift between the two populations X and Y . The Wilcoxon rank-sum

test, which is also known as MannWhitney U test [117], serves as a powerful

alternative to the t-test if we can not make any assumptions on the underlying

distribution. The null hypothesis H0 states that an observation of X exceeds

an observation Y with the same probability as vice versa. Under the alternative

hypothesis H1 this probability is not equal to 0.5. Given two samples x of length

n and y of length m from the populations X and Y we can calculate the test

statistic U to decide whether the null hypothesis can be rejected or not.

Initially, we rank the combined set of x and y from the lowest to the highest

value where average ranks are assigned in case of ties. Let Rx be the sum of all
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ranks for the observations of the sample x and Ry for sample y. We can then

calculate

Ux = nm+
n(n+ 1)

2
−Rx

and

Uy = nm+
m(m+ 1)

2
−Ry,

from where we define the test statistic as U = min(Ux, Uy). To determine

whether H0 can be rejected, we have to compare the U statistics to a table

of critical values for a significance level α. If the sample size is high, U is

asymptotically normally distributed. We can thus calculate a z score as follows:

z =
U − nm

2√
nm(n+m+1)

12

with z ≈ N(0, 1). A p-value can be obtained using the cumulative distribution

function of the standard normal distribution φ by p = φ(z).

2.2.3 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test can be used to test whether two random

variables X and Y follow the same distribution given two samples x of length

n and y of length m. The null hypothesis is formulated as H0 : FX(z) =

FY (z), where FX and FY correspond to the empirical cumulative distribution

functions obtained from x and y, respectively. the alternative hypothesis is thus

formulated as H1 : FX(z) 6= FY (z) meaning that X and Y do not follow the

same distribution. The test statistic D is calculated as follows:

D = sup
z
|FX(z)− FY (z)|.

The null hypothesis can then be rejected at significance level α if

Kα > D

√
n+m

nm
,

where

Kα =

√
ln
(
2
α

)
2
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for large sample sizes. If the sample sizes are small, we have to use a table of

critical values for a significance level α.

2.2.4 Fisher’s exact test

The Fisher’s exact test can be used to test for a significant association between

two properties A and B given n observations, where we can determine for each

observation whether or not it possesses the property A and B. The numbers of

observations with a certain property can be arranged in 2× 2 contingency table

as illustrated in Table 2.1):

Table 2.1: 2× 2 contingency table

A Ā row sum
B n11 n12 n1·
B̄ n21 n22 n2·

column sum n·1 n·2 n

The null hypothesis is formulated as H0 : n11/n·1 = n12/n·2 meaning that

the observation of property A is independent from observing property B. Con-

sider the case that number of observations with property A and B is x yielding

n11 = x. The probability P of obtaining such a particular configuration is then

given by the hypergeometric distribution [38]:

P (n11 = x) =

(
n1·
x

)(
n2·
n21

)(
n
n·1

)
If we assume a one-sided test, we can obtain a p-value for rejecting the

null hypothesis by summing up the probabilities for the given configuration

and all possible more extreme configurations, i.e. higher values of n11: p =∑min(n1·,n·1)
i=x P (n11 = i)

2.2.5 Multiple testing correction

If we perform a statistical test on a dataset several times, the probability in-

creases that the alternative hypothesis for one of these tests was falsely con-

sidered as true. To correct for this error we can make use of methods for the

adjustment of p-values. These methods usually increase the p-values, which
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were calculated in a multiple testing procedure, depending on the amount of

performed statistical tests and on the chosen significance level α.

Bonferroni correction

The Bonferroni correction is a simple and conservative method to correct for

multiple testing errors arising from a repeated hypothesis testing procedure. Let

H1, . . . ,Hm be the set of null hypothesis for m repeated tests, which yield a set

of p-values p1, . . . , pm. The Bonferroni method controls for the multiple testing

error by rejecting a null hypothesis Hi only if pi ≤ α
m for a given significance

level α [16]. In order to correct the given set of p-values to obtain a set of

adjusted p-values p̂1, . . . , p̂m, we can thus simply multiply each of them with

the total number of tests: p̂i = pim for i = 1, . . . ,m.

Benjamini-Hochberg False Discovery Rate

The p-value correction method by Benjamini and Hochberg is based on the

concept of false discovery rates (FDR) [12]. Let H1, . . . ,Hm be the set of null

hypothesis for m repeated tests, which yield a set of ordered p-values p1, . . . , pm

with p1 ≤ p2 ≤ . . . ≤ pm. To control the FDR, we can define the following

multiple testing procedure for a given significance level α:

Let k be the largest i for which pi ≤ i
mα; then reject all Hi with i = 1, . . . , k.

We can use this procedure to obtain a set of adjusted p-values p̂1, . . . , p̂m as

follows:

Set p̂m = pm and p̂i = min(pi
m
i , p̂i+1) for i = m− 1, . . . , 1.

2.3 Correlation analysis

One way to determine a dependency between two random variables is the ap-

plication of correlation analysis. In this section, we will introduce Pearson’s

product-moment coefficient and Spearman’s rank correlation coefficient, which

are both measures for a correlation between two random variables. In addition,

we will show how we can test for statistically significant correlation.



2.3. CORRELATION ANALYSIS 21

2.3.1 Pearson’s product-moment coefficient

Pearson’s product-moment coefficient [131] is a measure for the linear depen-

dency between two random variables X and Y . It is defined as

ρX,Y =
Cov(X,Y )

σXσY
,

where Cov(X,Y ) = E [(X − E [X])(Y − E [Y ])] corresponds to the covariance

between X and Y and σX =
√
E(X2)− (E(X))2 denotes the standard devia-

tion of X. ρX,Y takes on values between −1 and 1, where −1 and 1 corresponds

to perfect anticorrelation and correlation, respectively. A value of 0 denotes

that the two variables are uncorrelated.

The sample Pearson correlation coefficient r is defined as

rx,y =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
,

where x̄ = 1
N

∑N
i=1 xi represents the sample mean of x and N denotes the sam-

ple size of x and y.

2.3.2 Statistical significance

In many cases, we want to know whether the correlation between two variables

is statistically significant. For this purpose, we can apply a statistical test that

is based on the Fisher transformation [39] of the correlation coefficient r. It can

be calculated as follows

F (r) =
1

2
ln

(
1 + r

1− r

)
.

If we assume that the two underlying random variables X and Y are normally

distributed, also F (r) is normally distributed with mean µ = F (ρ) and standard

error σ = 1√
n−3 , where n denotes the sample size. Usually, we want to test the

null hypothesis that ρ = 0. Hence, we can calculate a z-score as

z =
F (r)− µ

σ
= F (r)

√
n− 3.
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By using the cumulative distribution function of the standard normal distribu-

tion φ we can then obtain a two-sided p-value indicating whether the correlation

significantly differs from zero:

p = (1− φ(F (|r|)
√
n− 3)) ∗ 2.

If we only want to test for significant anticorrelation, we can obtain the one-sided

p-value by

p = φ(F (r)
√
n− 3).

2.3.3 Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient assesses the dependency between two

random variables X and Y using a monotonic function. In contrast to Pearson’s

product-moment coefficient, it can also determine non-linear relationships and

is robust to outliers.

Let x and y be two samples of size N , which were drawn from the random

variables X and Y , respectively, and let R(x) and R(y) be the ranks of x and

y. Spearman’s rank correlation coefficient then can be calculated as

rx,y = 1−
6
∑N
i=1(R(x)i −R(y)i)

2

N(N2 − 1)
.

To assess the statistical significance of Spearman’s rank correlation coefficient,

we can apply the Fisher transformation to rx,y as for Pearson’s product-moment

coefficient. However, the standard error should be chosen as σ =
√

1.06/(n− 3)

[21].

2.4 Linear regression analysis

Here we give a brief introduction into the principles of regression analysis and

penalized regression, which is inspired by [63].

Regression is a method in statistics for modeling a quantitative output

y = (y1, . . . , yN ) given a set of p input variables X = (x1, . . . ,xp). Based

on a regression model, a relationship between the output variable and the input

variables can be estimated. If we assume a linear relationship between y and X,
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we call the process linear regression and furthermore multiple linear regression,

if X consists of more than one variable (p > 1). A linear regression model has

the form

y ∼ β0 + XβT + ε

with normally distributed error ε ∼ N (0, σ), parameters β = (β1, . . . , βp) and

the intercept β0. We can use the linear regression model to predict an outcome

ŷ by estimating the corresponding coefficients β̂ = {β̂0, . . . , β̂p}. A common

method for estimating β̂ is the least squares approach where an optimal coeffi-

cient set is chosen that minimizes the residual sum of squares

RSS(β) =

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2.

This can be expressed in matrix notation as follows

RSS(β) = (y −Xβ)T (y −Xβ).

Differentiating this equation with respect to β and setting it to zero results in

XT (y −Xβ) = 0.

We can therefore obtain the parameter set β̂ that minimizes the residual sum

of squares by

β̂ = (XTX)−1XTy.

Note that β̂ is only computable by this expression if XTX is invertible. This

only holds if X has full rank, which means that all predictors in X must be

linearly independent.

The least square method is a suitable approach for the estimation of an

optimal parameter set. However, the precision of the least squares estimates

may become low if some input variables do not fit well into the model. In this

case, we might shrink the coefficients of these variables or even set them to zero,

thereby excluding them from the model. This furthermore provides a subset of

input variables with the strongest effects on the output variable.
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Several approaches have been proposed in order to identify a subset of input

variables that describe the output variable best. The most intuitive one is best

subset regression, where for each k ∈ {0, . . . , p} the subset of size k is determined

by a leaps and bounds procedure [46] that gives smallest residual sum of squares.

However, this approach becomes infeasible for large p. For this reason,

forward- and backward-stepwise selection may be more appropriate. Here, a

greedy algorithm starts with the empty or full model and adds or removes vari-

ables in each step, respectively. In each step, the quality of the model is evalu-

ated by using a quality measure like the Akaike information criterion (AIC) [1].

Finally, the model with the best quality is retained.

2.4.1 Shrinkage

Even though best subset regression provides a model that might have lower

prediction error than the full model, several problems have to be considered

[41]. One major drawback is the strongly biased R2 value, which leads to an

overestimation of the fit. Furthermore, the regression coefficients are usually

estimated too large. In order to overcome these drawbacks, shrinkage methods

have been proposed. These methods aim to shrink the regression coefficients by

introducing a penalty on their size.

The coefficients obtained by ridge regression [67] minimize a penalized resid-

ual sum of squares as follows:

β̂
ridge

= arg min
β


N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j

 .

Note that this expression is equivalent to the expression of the unpenalized

regression above if λ = 0. On the other hand, the magnitudes of β̂ are forced to

become smaller dependent on the magnitude of λ. The parameter λ therefore

controls the amount of shrinkage in the regression model.

The expression can be solved in closed form by solving the following equation

in matrix form [63]:

β̂ = (XTX + λI)−1XTy,
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where I denotes the identity matrix. Since we add a positive constant to the

diagonal of XTX for λ > 0, it is not necessary for ridge regression that X must

have full rank, which is the prerequisite for unpenalized regression. However,

we have to assure that the predictor variables are on the same scale in order to

provide a fair penalization of the regression coefficients. We therefore have to

standardize the data prior to the regression analysis.

Another shrinkage method is the least absolute shrinkage and selection op-

erator (lasso) [170]. The lasso estimate is defined as

β̂
lasso

= arg min
β


N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |

 .

This expression differs only slightly from ridge regression. In case of the lasso,

the penalty is defined as λ
∑p
j=1 |βj |. This penalty can be also expressed as ||β||1

and is referred to as the L1 penalty. The ridge penalty in turn corresponds to a

L2 penalty and can be also expressed as ||β||2. In contrast to the L2 penalty of

ridge regression, the nature of the L1 penalty causes a shrinkage of the regression

coefficients so that the may become exactly zero. It therefore actually performs

a feature selection on the predictor variables by removing variables that do not

fit the model well.

Another property of the L1 penalty of the lasso is that it can not be solved

in closed form as it is the case for ridge regression. Hence, we have to approxi-

mate the solution by a certain optimization algorithm. Originally, a quadratic

programming approach was proposed for finding optimal lasso solutions [170].

However, more efficient algorithms have been introduced. The Least Angle Re-

gression (LARS) [34] allows for the calculation of the lasso solution with the

same computational costs as for ridge regression. Other methods for the effi-

cient calculation of lasso solutions are based on coordinate descent approaches.

These approaches were originally proposed in the late 90’s [45] and meanwhile

further improved to be very competitive with LARS, thereby providing a higher

flexibility [42]. In general, all approaches yield an entire regularization path as

λ is varied. The optimal choice of lambda can then be determined by cross-

validation.
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2.4.2 Elastic net

Even though the lasso provides a powerful tool for feature selection in a linear

regression model, it has some major drawbacks. Primarily, it has been shown

that the lasso has several issues with regard to predictor variables that are

highly correlated with each other [190]. In this case, the lasso tends to select

only one representative out of a set of highly correlated predictor variables. This

leads to a certain loss of information, especially if one is interested in analyzing

predictors that are correlated with each other. In this case, a method would be

desirable that retains the correlated variables in the model, if a combined effect

can be determined. For this purpose, the elastic net was proposed [190]. The

elastic net solves the following problem:

β̂
EN

= arg min
β

 1

2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λPα(β)

 ,

where

Pα(β) = (1− α)
1

2
||β||22 + α||β||1

=

p∑
j=1

1

2
(1− α)β2

j + α|βj |.

Pα denotes the elastic net penalty and includes both, the lasso penalty (L1) and

the ridge penalty (L2). The elastic net penalty is therefore a certain compromise

between the two penalties. The additional parameter α controls how strong one

of the two penalties is taken into account. In the extreme cases α = 0 and

α = 1, an ordinary ridge regression and lasso is performed, respectively. If

0 < α < 1, both penalties are considered accordingly, which combines the

advantages of both penalties: feature selection of the lasso and appropriate

handling of correlated variables by ridge regression.

As for the lasso, the elastic net solution can not be determined in closed

form. Therefore, the LARS algorithm has been adapted for the calculation

of a whole elastic net regularization path with the computational costs of a

single ordinary least squares fit (LARS-EN) [190]. It has been shown that the

LARS-EN algorithm can even be outperformed by using a coordinate descent
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approach [43]. This approach is implemented in the R package glmnet [43],

which furthermore includes the ability of calculating the solutions of the pure

lasso and ridge regression.

2.5 Analysis workflow for large-scale molecular

profiling data

In the following we will describe a common workflow for the analysis of large-

scale molecular profiling data, which can be used for the basic analysis of

datasets from different experiments such as microarrays or RNA-seq. It is di-

vided in two parts: statistical analysis and functional gene set analysis.

2.5.1 Statistical analysis

An important goal of large-scale molecular profiling is to gain comprehensive

insight into molecular changes caused by a certain phenotype. These pheno-

types include diseases, cell differentiation, treatments or tissue type. In order to

identify these changes, statistical tests can be applied on a data set of replicated

samples under the respective conditions. A typical approach is the application

of a t-test combined with a predefined significance cutoff, which is typically

p < 0.05. An generalization of the t-test is the analysis of variance (ANOVA),

which can be used if we want to compare more than two groups. In this case,

the ANOVA assesses whether at least one population mean is different from the

others. ANOVA can also be further generalized if we express it in form of a

linear regression model. This allows for a flexible modelling of relationships be-

tween the given phenotypic information and the observed molecular signature.

It can be used for different scenarios for example time-resolved experimental

setups and can also account for batch effects. A prominent example for a lin-

ear model-based approach is Linear Models for Microarray Data (limma) [162],

which can be used for for the analysis of differential molecular abundances and

which is part of Bioconductor [50] for the R environment [137]. Limma cal-

culates a moderated t statistic if applied on two conditions, which, in contrast

to an ordinary t-test, includes the information of all molecular signatures to

calculate the individual variances. These methods yield a binary decision for
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each molecule in the dataset whether its molecular signature is differentially

abundant between the given conditions or not.

2.5.2 Functional analysis

After the identification of molecular changes related to a certain phenotype,

we may want to interpret this result with regard to the underlying biological

processes. A common approach to achieve this is the application of gene set

enrichment methods.

The basic principle of gene set analysis is the identification of functional

properties, which are enriched among a gene set of interest. These functional

properties in turn can be regarded as sets of genes, which share a common func-

tional property. We define these gene sets as functional groups, whose functional

property is described by a term. A collection of terms is defined as ontology.

An ontology can be interpreted in many ways but usually corresponds to bio-

logical processes or signaling pathways. However, an ontology may also have

different meanings such as chromosomal regions. Several ontology databases

have been set up to map functional information on genes. The most prominent

resource is GO [5], which holds three different ontologies: biological processes,

molecular functions and cellular components. Other resources, such as KEGG

[84], WikiPathways [87] or Reactome [26], deal with the mapping of signaling

pathways on genes. These resources are often used for gene set analysis.

The most commonly used method for gene set analysis is the application of

Fisher’s exact test [18, 58] (see Sec. 2.2.4) on the basis of functional categories

from a certain ontology resource. It is implemented in several popular gene

set analysis tools like GOstats [37] or DAVID [72]. Let R denote the set of

significantly altered genes out of a total set of analyzed genes N , which were

determined by the statistical analysis (see above). Given an ontology with m

terms, we want to test for each term i whether its associated functional group

Di is enriched among the set of interest R with i = 1, . . . ,m. For this purpose,

we can apply Fisher’s exact test on a 2× 2 contingency matrix (see Sec. 2.2.4),

by defining property A as “assigned to R” and property B as “assigned to Di”.

The corresponding table is illustrated in Tab. 2.2.

Applying this procedure to each of the functional categories Di available in
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Table 2.2: 2× 2 contingency table for gene set analysis given a functional cate-
gory Di and a gene set of interst R.

A Ā
B |R ∩Di| |Di \R|
B̄ |R \Di| |M \ (R ∪Di)|

the database yields m p-values. This repeated testing procedure results in a

multiple testing problem. We therefore have to correct the p-values accordingly.

However, the functional groups retrieved from the established databases are

usually not independent of each other. Especially the functional groups from

GO [5] are highly dependent on each other, since the categories are built up

as a directed acyclic graph (DAG), which gives rise to a tree-like representa-

tion. Due to the true-path rule of GO, all parent categories also contain the

genes associated with their children categories. p-value correction is therefore

strongly biased. Another problem caused by these overlaps is the high amount

of redundancy among the resulting categories from the enrichment analysis.

A number of methods have been proposed to overcome these issues. The elim

algorithm [2] decorrelates the GO terms by processing the GO DAG in a bottom-

up fashion to systematically remove genes from the assigned gene set. Starting

at the bottom of the GO DAG, the elim algorithm performs Fisher’s exact test

on each GO term to calculate its p-value. It then marks the corresponding node

as significant if the p-value (Bonferroni corrected) is below a significance level

of 0.01. If a node is marked as significant, the algorithm removes all assigned

genes from its ancestor nodes. A related approach is the weight method [2],

which down-weights the genes in less significant neighbor categories instead of

removing them completely from the analysis.

Furthermore, model-based approaches were introduced in order to deal with

redundancies, which were initially based on the combination of the model like-

lihood and a penalization [110] and were further optimized by using a Bayesian

modelling approach [9] (see Chapter 7.1).

Since nowadays more and more studies make use of multiple omics tech-

niques at once, methods have been proposed that perform gene set analysis on

several levels simultaneously. Thomas et al. [169] have addressed this issue

by introducing an ontology jointly representing disease risk factors and causal
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mechanisms based on genome typing and epidemiology studies. The proposed

ontology is disease-specific (nicotine addiction and treatment) and only appli-

cable to very specific research questions. Recently, an algorithm was introduced

for the combined analysis of the protein and mRNA level [25].

2.6 Bayesian networks

In this section, we give a brief introduction into Bayesian networks and the

inference of posterior probability distributions, which is inspired by [15].

2.6.1 The concept of Bayesian networks

A Bayesian network is a graphical model that represents the joint probability

distribution of a set of random variables. It is a directed acyclic graph (DAG)

where the nodes correspond to the random variables and the edges to the condi-

tional dependencies between them. Each of the random variables is associated

with a conditional distribution, which is conditioned on the parent nodes in the

graph. As these graphical models represent the causal processes, by which the

data was generated, they are often called generative models.

The joint distribution corresponding to a Bayesian network is given by the

product over all conditional distributions of the nodes with pak denoting the set

of parents of xk and x = {x1, . . . , xK}:

p(x) =

K∏
k=1

p(xk|pak)

For example, in the case of three random variables a, b, c, the joint distribution

is given by

p(a, b, c) = p(b|a, c)p(c|a)p(a).

Then, this joint distribution then can be represented as a DAG as illustrated in

Fig. 2.4.



2.6. BAYESIAN NETWORKS 31

a

c

b

Figure 2.4: A directed acyclic graph corresponding to the joint distribution of
the three random variables a,b, and c. In this case, the joint distribution is
given as p(a, b, c) = p(b|a, c)p(c|a)p(a).

2.6.2 Bayesian inference

Consider two nodes x and y in our network with joint probability distribution

p(x, y) = p(x)p(y|x). Let us suppose that we have obtained observations of a

node y in our network. This enables us to compute the conditional probability

p(x|y) using Bayes’ theorem

p(x|y) =
p(y|x)p(x)

p(y)
.

The joint distribution is then expressed in terms of p(y) and p(x|y). In general,

we assume that a subset of variables is observed whereas the others are hidden.

We then aim to calculate the posterior probability distributions conditioned on

the observed variables. In the following, we refer to the observed variables as

the given data D with probability p(D). The hidden variables correspond to

the model parameters θ with prior p(θ) and posterior probability distribution

p(θ|D) conditioned on the data.

In practice, the posterior probability distribution of a Bayesian network

usually can not be analyzed analytically, which is due the fact that p(θ|D)

can only be evaluated up to the normalization constant p(D). The evalua-

tion of p(D|θ)p(θ) is feasible, whereas the marginalization over θ for p(D) =∫
p(D|θ)p(θ)dθ is usually intractable. However, several approximate inference

algorithms are available that allow for an efficient computation of the pos-

terior probability distribution given a Bayesian network. These methods are

either based on stochastic or deterministic approximations. The most promi-

nent stochastic inference technique is Markov chain Monte Carlo (MCMC).

However, sampling methods can become computationally demanding especially

for large-scale setups. Deterministic approximation techniques like expectation

propagation or variational Bayes may be the better choice in these cases.
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Markov chain Monte Carlo

The arrangement of the joint probability distribution implies a certain hierarchy

among the random variables in the network. In order to draw samples from such

a distribution, we have to consider this hierarchy. Therefore, we have to start

with drawing samples from all nodes with no incoming edges. Following the

hierarchy given in the model, we are then able to successively draw a sample

from the conditional distribution p(xn|pan) of the child node n assuming that a

sample of the parent nodes pan has already been drawn. Drawing a sample from

the conditional distribution of a lowest node in the hierarchy then corresponds

to a sampling from the joint probability distribution p(x). It is furthermore

possible to sample from the marginal probability distribution by drawing from

a subset of nodes corresponding to a certain node n in the network. To do so,

we just have to take the sampled value of n into account and discard the others.

The sequential drawing of samples is the basic principle in the inference of

the posterior using MCMC. However, the generation of these samples is not

straight-forward and requires sophisticated approaches. MCMC methods allow

for the sampling from a variety of distributions, thereby scaling well with the

dimensionality of the sampling space. It has the ability to generate exact results

if the algorithm is run with infinite computational resources.

The goal of MCMC is the use of Markov chains to sample from a given

distribution. A first-order Markov chain is defined as a sequence of random

variables z(1), . . . ,z(M) such that

p(z(m+1)|z(1), . . . ,z(m)) = p(z(m+1)|z(m))

holds for m ∈ {1, . . . ,M − 1}. Hence, the random variable z(m+1) is exclu-

sively conditioned on its predecessor z(m). Furthermore, Tm(z(m), z(m+1)) is

the transition probability between each random variable z(m) and its successor

z(m+1). Such a Markov chain is illustrated in Fig. 2.5.

A Markov chain is called homogenous if all transition probabilities are the

same for all m. A distribution is called invariant with respect to a Markov

chain if that distribution remains invariant after each step in the Markov chain.

If the transition probabilities are chosen in a way such that p∗(z)T (z, z′) =
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z(2) z(m) z(m+1)z(1)
Tm(z(1),z(2)) Tm(z(m),z(m+1))

Figure 2.5: Concept of a Markov chain with regard to the random variables z.
Each random variable z(m+1) exclusively depends on its predecessor z(m)

with the transition probability Tm(z(m), z(m+1)).

p∗(z′)T (z′, z) (detailed balance), the distribution will be always invariant. In

order to be able to sample from a given distribution using Markov chains, we

have to ensure invariance of the distribution as well as homogenity of the Markov

chain. In addition, for m → ∞, the distribution p(z(m)) has to converge to

the required invariant distribution p∗(z), irrespective of the choice of initial

distribution p(z(0)) (ergodicity). A homogenous Markov chain is ergodic with

very few restrictions on the invariant distribution and the transition probabilities

[124].

The Metropolis-Hastings algorithm [64] is a popular MCMC method and is

based on a random walk through the sample space. Instead of directly sampling

from a given distribution p(z), which might be infeasible, the samples are drawn

from a simpler proposal distribution q(z). These samples z(1), z(2), . . . then form

a Markov chain, where each sample corresponds to the current state z(τ) and

the proposal distribution q(z|z(τ)) directly depends on this current state. We

therefore draw at each state z(τ) a sample z∗ from the proposal distribution

q(z|z(τ)). This sample is then accepted with the probability

A(z∗, z(τ)) = min

(
1,

p̃(z∗)q(z(τ)|z∗)
p̃(z(τ))q(z∗|z(τ))

)
.

Here we suppose that the evaluation of p̃(z) for the given sample z is feasible,

where p̃(z) is proportional to p(z) with p(z) = p̃(z)/Zp for an unknown constant

Zp, which corresponds to p(D) in our context.

In fact, we accept a sample if Ak(z∗, z(τ)) > u, where u is some random

number drawn from an uniform distribution over the interval (0, 1). The new

state z(τ+1) is then set to z∗, if the sample was accepted. Otherwise, it becomes

the same as before, which means that z(τ+1) is set to z(τ).

It can be easily shown that p(z) is in detailed balance [15]. The required

invariance condition is therefore satisfied.
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We finally obtain the desired posterior probability distribution p(z), since

the distribution of z(τ) tends to p(z) as τ → ∞ [15]. Alternative sampling

methods include slice sampling [125] and Gibbs sampling [49]. The Metropolis-

Hastings algorithm is summarized in Algorithm 2.1.

Input: Proposal distribution q(z|z(τ)), initial state z(1).
Result: z(τ), which tends to p(z) as τ →∞.
τ = 1;
repeat

Draw sample z∗ from q(z|z(τ));
A(z∗, z(τ)) = min

(
1, p̃(z∗)q(z(τ)|z∗)

p̃(z(τ))q(z∗|z(τ))

)
;

if A(z∗, z(τ)) > rand.uniform(0, 1) then
zτ+1 = z∗;

end
τ = τ + 1;

until converge;

return z(τ)

Algorithm 2.1: Metropolis-Hastings algorithm [64]

Approximate inference

The inference of posteriors using sampling methods may become very chal-

lenging for large-scale problems. Therefore, we often wish to use deterministic

approximations for this purpose. These approaches perform well with regard to

computational costs also for large applications. In contrast to MCMC, they will

always only provide an approximation of the posterior. However, this is usually

sufficiently accurate for many problems.

Expectation propagation (EP) is an approximate inference method proposed

by Minka et al. [120].

The basic assumption of EP is that the posterior probability distribution

factorizes in the following way:

p(θ|D) =
1

p(D)

∏
i

fi(θ),

where θ are all parameters of the model and fi functions as defined in the model

specifications, which depend on the definition of the specific generative model.
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The model evidence p(D) is given by

p(D) =

∫ ∏
i

fi(θ)dθ.

This marginalization over θ however is usually intractable and demands for

some sort of approximation. In EP this is realized by an approximation of the

form

q(θ) =
1

Z

∏
i

f̃i(θ),

where the factors fi(θ) in the true posterior are approximated by f̃i(θ) com-

ing from the exponential family. The factor 1/Z serves as a normalizing con-

stant. In order to obtain an optimal approximation, we aim to minimize the

Kulback-Leibler (KL) divergence between the true posterior and the approxi-

mation, which is given by

KL(p||q) = KL

(
1

p(D)

∏
i

fi(θ)

∥∥∥∥∥ 1

Z

∫ ∏
i

f̃i(θ)

)
,

where

KL(p‖q) =

∫
p(θ|D) ln

(
p(θ|D)

q(θ)

)
dθ.

This approximation is again intractable but could be roughly approximated by

a pairwise calculation of the KL divergence between the factors fi(θ) and f̃i(θ).

However, this would lead to a very poor approximation. Hence, EP aims

to optimize each factor in the context of the remaining factors. We iteratively

refine each of the factors f̃j(θ) by initially removing this factor from the product

yielding
∏
i6=j f̃i(θ). We then generate a revised form of the factor f̃j by ensuring

that

qnew(θ) = f̃j(θ)
∏
i 6=j

f̃i(θ)

is as close as possible to

fj(θ)
∏
i 6=j

f̃i(θ),

which can be easily evaluated by the KL divergence. This refinement is then

repeated for each factor in several steps. We can then obtain the approximated

normalization constant Z by integrating over the product of all optimized fac-
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tors. The algorithm for approximating the posterior probability distribution

using EP is summarized in Algorithm 2.2.

Input: Factorized posterior

p(θ|D) =
1

p(D)

∏
i

fi(θ)

Result: Gaussian approximation q(θ|D) of posterior.
Initialize Gaussian term approximations f̃j(θ);
repeat

for j=1:Number of factors do

Update f̃j such that f̃j(θ)
∏
i 6=j f̃i(θ) minimizes KL-divergence

from fj(θ)
∏
i 6=j f̃i(θ)

end

until all f̃j converge;

Approximate p(D) as Z =
∫ ∏

i f̃i(θ)dθ;

return q(θ|D) = 1
Z

∏
i f̃i(θ)

Algorithm 2.2: Expectation Propagation for approximating the posterior
[120]
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2.7 Molecular mechanisms of adipogenesis

Adipocytes derive from multipotent mesenchymal stem cells [145] from where

they undergo certain intermediate states until they become fully differentiated

mature adipocytes. These intermediate states can be divided in two major steps.

It starts with the commitment to the adipocyte lineage, which leads to the

conversion of the multipotent stem cells to preadipocytes. These preadipocytes

then lack the ability to differentiate into other cell types. In a second step,

they differentiate into mature adipocytes, which are equipped with the cellular

machinery that is needed to act as regulators of the organism’s energy household.

The process of adipocyte differentiation involves a variety of molecular mech-

anisms. The most intensively studied transcription factor, which is also re-

garded as the “master regulator” of adipogenesis, is the peroxisome proliferator-

activated receptor γ (PPARγ) [145]. It has been shown that the activation of

this receptor is necessary for adipogenesis and at the same time sufficient for its

induction [146]. Hence, pro-adipogenic factors like CCAAT-enhancer-binding

proteins (C/EBPs) and Krüppel-like factors (KLFs) generally act as activators

of PPARγ [145] (Fig. 2.6a). Essential pathways in adipogenesis furthermore

activate or repress the PPARγ gene transcriptionally in order to influence the

process of differentiation. For instance, the activation of bone morphogenetic

proteins (BMPs), which are part of the transforming growth factor-β (TGFβ)

superfamily, is known to inhibit adipogenesis through activation of SMAD3,

which in turn binds to C/EBPs and inhibits their transcriptional activity [24].

Further important signaling pathways in adipogenesis are amongst others the

WNT pathway [148], insulin growth factor-1 (IGF1) receptor signaling [161] and

the mitogen-activated protein kinase (MAPK) pathway [17].

Besides the formation of adipocytes, mesenchymal stem cells may also dif-

ferentiate in other cell types including osteoblasts [80], which form bone tissue.

The key factor for the commitment of this lineage is the runt-related transcrip-

tion factor 2 (RUNX2). In fact, the decision whether a mesenchymal stem cell

differentiates into the osteogenic or adipogenic lineage primarily depends on the

presence of RUNX2 and PPARγ, respectively, which are in turn found to be

down-regulated in the other cell type [102]. Several cofactors are involved in

the lineage decision of which some are able to act as both co-activators and
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Figure 2.6: (a) Peroxisome proliferator-activated receptor γ (PPARγ) is the
key regulator of adipocyte differentiation, which is itself regulated by a set of
other factors. Other pro-adipogenic factors such as CCAAT-enhancer-binding
proteins (C/EBPs) and Krüppel-like factors (KLFs) act as activators of PPARγ.
Effects on gene expression are indicated by black lines, whereas effects on protein
activity are indicated by blue lines. (b) Depending on the activity of nuclear
cofactors of such as HIC5 and TRAP220, the differentiation process may end
up in different cell fates. Some cofactors like the transcriptional co-activator
with PDZ-binding motif (TAZ) can act as both co-activators and co-repressors
of gene expression. TAZ can repress the pro-adipogenic activity of PPARγ and
at the same time promote osteoblast differentiation through the activation of
RUNX2. Figure adapted from [145].

co-repressors of gene expression. For example TAZ can promote osteogenesis

and at the same time inhibit adipogenesis by activating RUNX2 and repressing

PPARγ, respectively (Fig. 2.6b) [70].



Chapter 3

Materials

Throughout this thesis, we will investigate the molecular mechanisms of adipo-

cyte differentiation using a dataset, which comprises mRNA and miRNA ex-

pression as well as DNA methylation. The dataset was generated by collecting

preadipocytes from 20 highly obese probands (body-mass index >40) at the

group of Harald Staiger (Universitätsklinikum Tübingen). These preadipocytes

were differentiated in vitro for 20 days. Measurements were taken of the pre-

adipocytes (day 0) and the fully differentiated mature adipocytes (day 20).

For mRNA profiling the Affymetrix GeneChip R©Human Gene 1.0 ST Array, for

miRNA profiling the Affymetrix GeneChip R©miRNA 2.0 Array and for DNA

methylation the Illumina Infinium HumanMethylation450 Array was used. All

these experiments were conducted in the group of Johannes Beckers (Institute

of Experimental Genetics at the Helmholtz Center Munich).

Microarray quality analysis identified one miRNA array, which exhibited an

irregular expression pattern. Therefore, this array was excluded from further

analysis. We processed the miRNA and mRNA samples within the R framework

for statistical computing [137] using the affy package [48], which is included in

Bioconductor [50]. We used robust multi-array average (RMA) [77] for microar-

ray normalization.

We analyzed the mRNA and the methylation data separately using statisti-

cal methods to determine individual changes on these two levels. Prior to the

statistical analysis, the mRNA data was filtered independently using the gene-
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Figure 3.1: Differentially expressed genes (a) and differentially methylated CpG
sites (b) between preadipocytes (red samples) and adipocytes (blue samples).
The gene expression and methylation values were standardized row-wise, re-
spectively. Low values are indicated in blue whereas high values are colored
orange.

filter package for eliminating probesets, which are unexpressed or not annotated.

For all datasets, we used limma [162] to identify statistically significant changes

between preadipocytes and adipocytes. For the mRNA dataset, we calculated

the moderated t statistics (see Chapter 2.5.1) on the mRNA expression dataset

for inferring the p-values that indicate statistically significant gene expression

changes between the two cell types. We applied the p-value correction by Ben-

jamini and Hochberg [12] to account for multiple testing. We considered a gene

to be differentially expressed if its adjusted p-value was below 0.05 and if it was

at least two fold up- or down-regulated.

For the methylation data, we used M-values, which are an appropriate mea-

sure for the statistical analysis of methylation across the samples [33] (see Chap-

ter 2.1.2). The moderated t statistics were computed for each CpG site on the

array and the resulting p-values were corrected for multiple testing accordingly.

A CpG site was considered to be differentially methylated between the two cell

types if its corrected p-value was below 0.05. The testing procedure revealed
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1,396 differentially expressed mRNAs and 201 differentially methylated CpG

sites (Fig. 3.1).
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Figure 3.2: Heatmap of differentially expressed miRNAs between the samples
derived from adipocytes and the ones from preadipocytes. The coloring indi-
cates the row scaled expression values from low expression (blue) over medium
expression (grey) to high expression (orange). The columns are marked blue
if the respective sample is derived from an adipocyte and red if it is derived
from a preadipocyte. The clustering of miRNAs and samples is based on the
correlation of the miRNA and sample expression profiles, respectively.

In case of the miRNA dataset, we applied Bonferroni p-value correction.

Hence, the raw p-values were multiplied by the total number of miRNAs in the

dataset. A miRNA was supposed to be differentially expressed if their adjusted

p-value was below 0.05 and its mean expression was at least 4-fold up- or down-

regulated between the adipocyte and preadipocyte samples. The statistical

analysis revealed 30 differentially expressed miRNAs, with 9 of them down- and

21 up-regulated after the differentiation process (Fig. 3.2).
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Chapter 4

MicroRNAs and their role

in gene regulation

In this chapter, we will introduce the basic principles of post-transcriptional

gene regulation through miRNAs. We subdivide this chapter in two parts. The

first part introduces the process of miRNA biogenesis and gene regulation as

well as experimental methods and bioinformatic resources, which are commonly

used in miRNA research. We furthermore discuss the properties of miRNAs

with regard to their chromosomal arrangement and transcription. As the un-

derlying mechanisms of miRNA regulation are still only poorly understood, we

aim to further broaden this knowledge by investigating coordinated miRNA

regulation of protein complexes. This work is introduced in the second part of

this chapter. By showing that co-expression of miRNAs is an important aspect

in the coordinated regulation of protein complexes we can provide insights into

regulatory mechanisms that are essential for the development of novel methods

dealing with the identification of miRNA-target relationships. This part of this

chapter was published in:

• Steffen Sass∗, Sabine Dietmann∗, Ulrike C. Burk, Simone Brabletz, Do-

minik Lutter, Andreas Kowarsch, Klaus F. Mayer, Thomas Brabletz, An-

dreas Ruepp, Fabian J. Theis, and Yu Wang. MicroRNAs coordinately

regulate protein complexes. BMC Systems Biology, 5(1):136, August 2011.
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∗ = equal contributions

4.1 MicroRNA biogenesis

Similar to protein-coding genes, miRNA genes are transcribed by Polymerase

II. They may be located in the intronic regions of coding or non-coding genes

leading to the transcriptional regulation through the promoters of these host

genes [92]. A set of miRNAs may be furthermore located in close proximity on

a chromosome, which is referred to as miRNA cluster. These clustered miRNAs

are usually under the control of a common promoter and therefore transcribed

as a single transcript [92]. Due to this co-regulation, miRNAs are frequently

co-expressed either with their host genes or clustered miRNAs [8].

The original transcript (pri-miRNA) is processed in two major steps yielding

the functional mature miRNAs (Fig. 4.1). Initially, the pri-miRNA is cleaved by

the Drosha protein inside of the nucleus resulting in ∼70-nucleotide precursor

miRNAs (pre-miRNAs). These pre-miRNAs consist of stem-loop structures,

which are further processed outside of the nucleus. The export from the nucleus

to the cytoplasm is mediated by exportin 5, which specifically binds to correctly

processed pre-miRNAs [112]. In the cytoplasm, the hairpin of the pre-miRNAs

is cleaved by the Dicer protein into ∼21-25-nucleotide double-stranded RNA

which consists of the 3’ miRNA and the 5’ miRNA.

miRNAs are able to post-transcriptionally regulate the expression of genes

in a specific manner. The mature miRNA is loaded into the RNA-induced

silencing complex (RISC). The double-stranded mature miRNA is initially in-

serted into Argonaut (Ago) proteins, which form the core component of the

RISC [86]. Within the Ago proteins, the RNA duplex is separated. Only one

strand remains bound to the complex (functional strand) while the other one

is discarded (passenger strand). Usually, one of the two pre-miRNA strands is

preferably selected as functional strand. Hence, it was common to indicate this

by the nomenclature. The strand of the miRNA, which was supposed to serve

as passenger strand more frequently, was annotated as miRNA while the other

one as “star” miRNA (miRNA*). However, several recent publications report

biological functions of miRNA* [183, 127]. Therefore, the miRNA/miRNA*
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Figure 4.1: MiRNA biogenesis and post-transcriptional gene regulation. The
miRNA-containing gene on the genome is transcribed by Polymerase II. The
resulting pri-miRNA, which may consist of several miRNAs, is then cut by
Drosha within the nucleus, which yields the pre-miRNAs. These pre-miRNAs
are then exported to the cytosol by exportin 5 where the hairpin is removed by
Dicer. This results in the double-stranded mature miRNA, which is then loaded
in the RISC, where one of the two strands becomes degraded. The RISC then
can bind to the target mRNA where it either leads to the degradation of the
mRNA or the repression of its translation. The translational repression may
also happen if the binding is not perfect. Figure outline partly adapted from
[66].

nomenclature becomes more and more outdated [90].

4.2 Post-transcriptional gene regulation

The miRNA strand incorporated in the RISC serves as guide strand, which can

bind specifically to the 3’ UTR of target mRNAs. The bases 2-8 can form a

Watson-Crick-paired, A-form double helix with complementary regions in the

target mRNA [135]. This region is also referred to as the “seed region”, which

is the most important region for target recognition [99]. Bases 2-6 of the guide

strand are fully exposed to the outside of the RISC and therefore play an even

more important role in the binding of the RISC to the target mRNA [135].
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miRNAs that have evolved from a common ancestor are commonly grouped in

so-called miRNA families [56]. They are supposed to be similar in function,

thereby usually sharing a common target set. The affiliation of miRNAs to the

same family is usually indicated by the name.

The regulation of target genes by miRNAs can happen in different ways.

In general, miRNAs are supposed to down-regulate the expression of the target

genes, even though there is evidence for positive effects on gene expression [171].

The negative regulation happens either by the degradation of the bound mRNA

or by the repression of its translation. The mRNA degradation demands for a

near-perfect match of the guide strand and the target mRNA [106]. If such a

perfect match is given, the RISC component Ago2 can act as ribonuclease. The

ribonuclease activity of Ago2 then leads to the cleavage and the degradation

of the target mRNA. For the translational repression, a perfect complementary

of the guide strand and the target mRNA is not required [135]. Although the

translational repression was initially supposed to be the most prevalent mode of

target gene down-regulation, more recent studies report a predominant role of

mammalian miRNAs in decreasing target mRNA levels [60]. Independently of

the mechanism, the effect of miRNA down-regulation on the protein outcome

often tends to be moderate [6]. Therefore, miRNAs usually act as fine-tuners

of gene regulation [76].

4.3 Experimental identification of target rela-

tionships

Several experimental efforts were made to identify potential targets of miRNAs

for example by the transfection or knock-down of miRNAs [104, 81]. The altered

abundance of miRNAs is then supposed to directly influence the expression of

the target gene expression, which can be measured for example by using PCR

or microarrays. However, it is not clear if the miRNA has direct effects on

the determined genes, since the set of altered genes in the expression analysis

may also contain genes whose expression changes were caused by targets of the

miRNA and not by the miRNA itself.

More recent approaches are focused on identifying mRNAs with bound
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RISC, namely high-throughput sequencing of RNA isolated by crosslinking im-

munoprecipitation (HITS-CLIP) [23] and photoactivatable-ribonucleoside-en-

hanced crosslinking and immunoprecipitation (PAR-CLIP) [61]. These tech-

niques actually allow for the identification of direct targets. The basic principle

of both techniques is an in vivo crosslinking of the mRNA with the Ago proteins

by UV irraditaion. In case of PAR-CLIP, the cells are fed with 4-thiouridin to

facilitate crosslinking. The mRNA-protein complex is immunoprecipitated by

utilizing an anti-Ago monoclonal antibody. The sequences of the extracted mR-

NAs, which were bound to the Ago proteins, are then determined by RNA-seq.

4.4 Bioinformatic resources

After the identification of miRNA genes initially in C. elegans, efforts were

made to characterize miRNAs bioinformatically [96, 91]. The goal was to pre-

dict hairpin structures among cloned small RNA sequences in order to classify

them as miRNAs. Due to the rising number of identified miRNAs, comprehen-

sive databases were built up, which make miRNA annotations easily accessible

[57]. The advances in experimental and computational techniques allow for

a constant increase in identified miRNAs. Especially the application of small

RNA deep sequencing experiments identified a multitude of formerly unknown

miRNA genes [90]. The most prominent database for miRNA annotations (miR-

Base) currently contains 24,521 microRNA loci from 206 species, processed to

produce 30,424 mature microRNA products (v20, June 2013) [90].

Besides the identification and annotation of miRNAs, one of the most im-

portant fields in miRNA research is the prediction of target genes. A functional

characterization of miRNAs is actually only possible with the knowledge of po-

tentially regulated genes. Due to the short length of miRNAs and the fact

that their regulatory mechanisms are still not fully understood, miRNA target

prediction is a non-trivial task.

In order to make the information on experimentally validated miRNA-mRNA

interactions available to the scientific community, several databases were set up

containing interactions determined by various experimental approaches. In par-
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ticular, these are TarBase [172], miRecords [180] and miRTarBase [71]. Another

database, starBase, is specially focused on results from HITS-CLIP and PAR-

CLIP experiments [182].

As mentioned above, experimental methods may often not lead to direct

miRNA-mRNA interactions. Even the more advanced CLIP approaches have

several limitations, especially with regard to the specificity [28]. All of the

experimental techniques are furthermore conducted under specific conditions.

This makes them prone to missing miRNA-mRNA interactions, which heavily

depend on the experimental conditions like the tissue [3]. Computational target

predictions are thus essential, especially for narrowing down potential miRNA-

mRNA interactions for the experimental validation. Many approaches were

proposed in order to overcome primarily the high amount of false positives

arising from the short length of the binding sites and basically include some of

these four common features, which are reviewed in [134]:

Seed match Only the nucleotides in the seed region (nucleotides 2-8) of the

guide strand are able to form a stable association with the target mRNA

[99]. Nearly all approaches therefore test for a sequence match between

the seed region of the miRNA and the target mRNA.

Conservation miRNAs are often observed to be conserved across different

species, especially within mammals, which indicates their important role in

developmental processes [100]. Information on the conservation of binding

sites is therefore usable for the prediction of “true” functional binding sites

of miRNAs. Conservation analysis is usually restricted to the 3’ UTR of

the target mRNAs [44]. Even though conservation plays an important role,

regulation of target genes by miRNAs through non-conserved binding sites

is also observed frequently [6].

Free energy An important aspect in the functionality of binding sites is the

free energy (or Gibbs free energy), which is an indicator for the stability

of the miRNA-mRNA association. The prediction of the free energy can

therefore be used to infer functional binding sites [185].

Site accessibility The stability of the mRNA secondary structure can influ-
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ence the ability of forming a miRNA-mRNA association. Unwinding of the

target mRNA secondary structure at the respective position is necessary

in order to allow for the binding of a miRNA. Regions with less stable

secondary structures are therefore preferred as functional binding sites

[108]. The stability of the mRNA secondary structure can be predicted

and utilized to determine functional target sites.

Among the whole set of target prediction approaches, the most prominent

ones are TargetScan [99], miRanda [36] and DIANA-microT-CDS [128]. All

of these three approaches include seed matching, conservation and free energy.

DIANA-microT-CDS is based on a machine-learning approach that also takes

further information like experimental data, binding site position and site acces-

sibility into account.

Besides the sequence-based target prediction algorithms, mRNA targets of

miRNAs are also predicted by joint gene expression analysis [103]. Both, ab

initio and sequence-based predictions may infer false positive mRNA targets

for individual miRNA regulators. Hence, several methods have been proposed,

which combine both, sequence information and expression data. The first study

to match transcriptome-wide miRNA and mRNA profiles aimed to validate

putative miRNA-mRNA target relationships by proposing GenMiR++, which

utilizes Bayesian networks for finding functional miRNA targets [73]. For se-

lecting potential miRNA-mRNA relationships on a “1:1” basis, regression and

correlation based approaches have been proposed [153, 101, 175]. Other meth-

ods have been proposed to select miRNA-mRNA relationships in a “n:1” fashion

by using penalized regression analysis. This has been done by using the lasso

penalty [111, 122] or by applying penalized Cox regression [20]. It has been

shown that the introduction of an negativity constraint in the regression anal-

ysis allows for the identification of more experimentally validated interactions

and better biological interpretation [111].

With the knowledge on target interactions of miRNAs, further functional

analyses become possible. In order to provide insight into the functional role

of miRNAs, a variety of bioinformatic resources were built up. These resources

primarily deal with the association of miRNAs to functional categories like path-
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ways [89], diseases [109] and other biological processes [152]. Other approaches

use the network information of the miRNA-target network for the identification

of miRNA modules, which include related miRNAs together with their target

sets [19, 133]. These modules can then be functionally characterized indepen-

dently.

4.5 Coordinated protein complex regulation

In this section, we will show our own bioinformatic analyses to reveal novel

insights into the regulatory mechanisms of miRNA regulation. This section

is part of a publication [155], which also comprises further analyses such as

the identification of miRNA-regulated complexes. In this section we will focus

on the global properties of clustered and co-expressed miRNAs with regard

to their coordinated regulation of protein complexes, as it is the basis for the

development of our miRNA-target identification approach (see Chapter 5).

Several components of protein complexes may be regulated simultaneously

by a single miRNA or by several co-expressed miRNAs. Thus, we hypothesize

that regulation of protein synthesis may be marginal for some of the miRNA

targets. A cumulative effect for substantial phenotypic consequence may be

achieved for those targets, which are members of the same protein complexes.

To test our hypothesis, we developed a robust computational framework to

infer protein complexes, of which several distinct components are simultaneously

regulated by either single miRNAs or co-expressed miRNAs. We applied the

framework to characterize the protein complex networks, which consist of 722

experimentally verified protein complexes and protein-protein interactions from

the CORUM database, which provides a resource of manually annotated pro-

tein complexes from mammalian organisms [151]. We furthermore assembled

a miRNA-protein target network for 677 human miRNAs and 18,880 targets

which are listed in the TargetScan database (v5.2, June 2011) [99]. The protein

complex networks from the CORUM database are regulated by 677 miRNAs

and 154 known miRNA clusters in humans.
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Protein complexes and miRNA expression

Initially, we tested whether miRNAs which target different components of the

same protein complex, are more likely to be co-expressed. For this purpose, we

used a dataset from a previously published study where miRNA expression pro-

files were assessed across 26 different organ systems and cell types [95]. Hence,

this dataset provides comprehensive insights into the properties of miRNA ex-

pression, which may be very specific for different cell types [178]. To assess the

co-expression among the measured miRNAs, we retrieved the pairwise Pearson

correlation coefficients of the miRNA expression profiles from the publication

website. To test for statistical significance, we combined all pairwise correlation

values obtained from the sets of miRNAs which significantly target the same

complex. These correlation values were then compared to all other pairwise

correlation values which are present in the dataset from [95] (Fig. 4.2).
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Figure 4.2: Pearson correlation distributions of miRNAs that target the same
complex (red line) is plotted against the distribution of all observed Pearson
correlation values (black dotted line). Also the distributions of excluded Pearson
correlations of miRNAs from the same family (blue) and the same cluster (green)
are plotted.

We performed a one-sided KS test for the two correlation value distributions

and obtained a significantly (p = 6.106 × 10−24) higher co-expression within

the sets of miRNAs that target the same complex. Since we are interested in

coexpression of miRNAs that are not in one transcriptional unit, we also tested

for increased correlation only for miRNAs of different miRNA clusters. Only

a few (3.3%) of the correlated miRNAs were actually contained in one miRNA
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cluster. The result remains highly significant (p = 2.11× 10−18). Another bias

of our results might occur due to fact that all miRNAs from one family must

target the same complex since they target the same set of mRNA. We compared

only miRNAs within one complex which belong to different families. The KS

test resulted in a p-value of 5.8 × 10−3. Taken together, our statistical test

indicates that miRNAs targeting different components of a protein complex are

significantly co-expressed.

Protein complex networks coordinately regulated by miRNA clusters

We systematically characterized the protein complex networks, which are si-

multaneously regulated by clustered miRNAs in 154 transcription units gained

from miRBase (v17, April 2011) [90]. The interconnectivity of the target sets

of the miRNA gene clusters was first assessed as follows: the number of PPIs

between the target sets of each pair of miRNAs in the cluster was counted, and

these values were compared to 1,000 randomly sampled sets of miRNAs. To

avoid miRNA target prediction bias arising from redundant prediction of clus-

tered miRNA family members, only targets of one family member were counted

within each cluster. Comparing the observed number of interactions (Fig. 4.3)

with the corresponding distributions of randomly sampled sets of miRNAs pro-

vides a strong indication that a significant fraction of miRNAs in clusters might

coordinately regulate targets (p-value <0.02 Wilcoxon signed rank test).
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Figure 4.3: Boxplot for direct interactions of proteins targeted by N miRNAs
within a cluster as compared to a null model of N randomly sampled miRNAs,
respectively.
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4.6 Conclusion

In this chapter, we introduced the concept of post-transcriptional gene regu-

lation by miRNAs. We pointed out that there commonly exist relationships

between miRNAs in form of clusters families. Clustered miRNAs are located in

near proximity on the genome and often under the control of a common pro-

moter. They are therefore frequently found to be co-expressed. We statistically

analyzed the regulatory effect of these clustered miRNAs on protein complexes

and could show that clustered miRNAs also have functional similarities. This

functional similarity is illustrated by the fact that the genes among the pre-

dicted target sets are found to interact on protein level more often as compared

to random target sets. On the other hand, we could also show that miRNAs

targeting components of the same protein complex tend to be co-expressed.

Hence, co-expression between miRNAs is directly linked to a coordinated gene

regulation. This knowledge is important for the understanding of miRNA regu-

lation and should also be taken into consideration when investigating regulatory

relationships between miRNAs and genes.
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Chapter 5

MicroRNA-target network

construction

The main focus of miRNA research is the identification of regulatory influences

on their target genes. Especially in specific experimental setups, we are inter-

ested in the functional role of miRNAs, which may be affected by a certain

biological condition. One natural way to determine putative targets for the

miRNAs of interest is the use of in silico target prediction approaches, which

are typically based on sequence features. These approaches are prone to a large

number of false positives and very unspecific for the given setup. In order to

gain specific target relationships between miRNAs and genes, the integration of

additional data is therefore essential. One resource, which is suitable for improv-

ing the quality of miRNA-target relationships, is gene expression data. These

data can be used to select only observable miRNAs-target relationships out of

the predicted target set. While simultaneous measurement of entire transcrip-

tomes including mRNAs and miRNAs is relatively easy with high-throughput

techniques, their integration is not straightforward. Several methods have been

proposed to integrate miRNA and mRNA data for the identification of miRNA-

target networks either based on correlation [153, 101, 175] or multiple linear

regression analysis with lasso penalty [111, 122]. However, correlation analysis

does not take into account a combined effect of miRNAs whereas lasso tends to

exclude co-expressed miRNAs.
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In this chapter, we introduce miRlastic, a method for the identification of

data-driven miRNA-mRNA interactions by integrating in silico target predic-

tions with paired miRNA and mRNA expression measurements. To meet draw-

backs of existing methods, we use a multiple linear regression model with elastic

net penalty and thus accounts for both, joint effects of several miRNAs on a

common target and co-expression between miRNAs. We will point out why this

co-expression is an important aspect in the joint-analysis and will show that

miRlastic outperforms other common methods for the joint analysis of miRNA-

mRNA data both on simulated and real data. With miRlastic we neglected the

obvious and dominant modulator of mRNA expression, namely transcription

factors. Thus, we performed additional analysis with a combination of miRNA

and transcription factor data and provide evidence that miRlastic is preferable

when compared to experimentally verified miRNA-target interactions. Finally,

we use miRlastic to identify potential target genes of miRNAs, which are altered

during adipogenesis. The resulting miRNA-mRNA regulatory network serves as

a basis for the investigation of miRNA influences on the differentiation process.

The basic principle of the approach described in this chapter is discussed in:

• Swanhild U. Meyer, Katharina Stoecker, Steffen Sass, Fabian J. Theis,

and Michael W. Pfaffl. Posttranscriptional regulatory networks: from

expression profiling to integrative analysis of mRNA and microRNA data.

Methods Mol Biol, 1160:165–188, 2014.

5.1 Dependencies of microRNA expression

To design a biologically-driven method to filter miRNA-mRNA profiles, we first

had to interrogate typical expression characteristics. We therefore assessed the

typical correlations of miRNA profiles alone.

Among miRNA expression profiles from the adipocyte differentiation dataset,

we calculated pairwise Pearson correlations of all miRNAs predicted to have a

common target (Fig. 5.1a). Besides a partitioning of the miRNAs in two groups

of moderate correlation, we observe subgroups of very high correlation, for in-

stance the miRNAs miR-30a/b/c/d/e and miR-320a/b/c. While the partition-

ing in the two groups can be explained by the biological variation arising from
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the differentiation process (up- or down-regulation in adipocytes), the grouping

into the smaller highly correlated subgroups exhibits strong functional similar-

ities of the respective miRNAs. The two groups of miRNAs miR-30a/b/c/d/e

and miR-320a/b/c both form a set of miRNAs coming from the same family.

Furthermore, the sets of miRNAs miR-30b/d, miR-30c/e, miR-132/212 are lo-

cated in the same miRNA cluster on the chromosome. All of these miRNAs

are also highly correlated with each other, which corresponds to the expecta-

tion that functionally related miRNAs or miRNAs in high proximity on the

chromosome tend to be co-expressed [155].

5.1.1 Correlation strength among a set of variables

To systematically analyze whether miRNA expression profiles are typically cor-

related, if they share a putative target, we next define a measure of correlation

strength of a pairwise correlation matrix.

Let X be a matrix of miRNA expression measurements (xik) for n mea-

sured miRNAs, which is assessed across s observations with i ∈ {1, . . . , n} and

k ∈ {1, . . . , s}. To summarize the pairwise correlation values, we introduce a

measure of correlation strength c(X) as

c(X) =
||R(X)||F√
(n2 − n)/2

,

with the Pearson correlation matrix R(X) = (ρi1i2) = (rXi1·Xi2·
) for i1, i2 ∈ i.

The Frobenius norm of the correlation matrix R(X) is calculated as

||R(X)||F =

√∑
i1<i2

ρ2i1i2 .

Note that only the upper triangular matrix with (n2 − n)/2 elements is con-

sidered for the calculation of the Frobenius norm. As all elements of R(X)

range between [−1, 1], all values of c(X) range between [0, 1]. The extreme

values c(X) = 0 and c(X) = 1 indicate an entirely uncorrelated and perfectly

(anti-)correlated set of miRNAs, respectively. When miRNAs are strongly corre-

lated in groups while correlating little between groups (Figure 5.1a), the value of

c(X) decreases. In principle, c(X) can be interpreted as a measure of correlation
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strength: the more entries of miRNA expression profiles X are (anti-)correlated

amongst each other, the higher c(X).

5.1.2 Principles of collective miRNA regulation

We further evaluated the properties of collective miRNA regulation by assessing

the (anti-)correlation strength across all miRNAs, which are predicted to target

a common mRNA. We found that these sets of miRNAs are more correlated

among each other than randomly sampled sets of miRNAs (Fig. 5.1b). As a

result of coordinated targeting, individual miRNA subsets are highly correlated.

Our general assumption is that for a single mRNA, we end up with several

miRNAs (1:n relationship) where the miRNA profiles themselves are correlated,

which is a typical observation e.g. for clustered miRNAs [8]. Generally, cor-

relation of miRNA profiles imply that they are again commonly regulated by

some unknown process (Figure 5.1c). Even though a binding might be pre-

dicted for several of these co-expressed miRNAs, we may only observe an effect

for a subset of these predicted target interactions. We thus aim to select func-

tional predicted target interactions by simultaneously accounting for clusters

of correlated miRNAs as effect from a number of unobserved regulatory layers.

We furthermore assume that the target gene expression is modulated due to a

combinatorial effect of several miRNAs, rather than a single miRNA, which has

been suggested previously [116, 143].

5.2 Related methods

Previously proposed methods, such as the web application MAGIA [153], did

not simultaneously capture all facets of miRNA dynamics: On the one hand,

correlation-based approaches assume that expression of all miRNA regulators is

well correlated together explaining mRNA target expression while other groups

of correlated true miRNA regulators are neglected. On the other hand, L1

regression-based approaches select one representative miRNA from each cor-

related group, which in turn allows to explain mRNA target expression. The

web application TaLasso [122] is one example for a method, which is based on

L1 regression. Another approach for scoring putative miRNA-mRNA targets is
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Figure 5.1: Collective effects of co-expressed miRNAs. (a) Pairwise correla-
tion of putative, expressed miRNA regulators together with their target gene
CCDC117 (obtained from the adipocyte differentiation dataset). The miRNAs
are themselves clustered into several co-expressed groups. We observe a cor-
relation strength of c(X) = 0.5 for the given example. (b) The distribution
of correlation strengths c(X) of miRNA sets, which are predicted to target a
common gene, (red curve and histogram) is higher than for randomly resampled
miRNA-mRNA associations (blue, Wilcoxon rank sum test has p = 4.5×10−78)
in the adipocyte differentiation miRNA expression dataset. (c) Schematic draw-
ing of miRNAs co-expressed in clusters induced by an yet unknown regulatory
layer. Only several of the putative miRNA regulators are finally collectively
regulating mRNA expression.

based on Bayesian inference and is implemented in GenMiR++. This method

ranks the miRNA-target interactions according to the calculated score and then

selects a set of validated interactions via an arbitrary threshold of e.g. 50% of

the input interactions.

A detailed overview of methods for the joint analysis of miRNA and mRNA

expression data is given in [123].

In addition, miRNA expression has been included in the construction of
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miRNA-transcription factor regulatory networks. Besides correlation-based ap-

proaches for setting up these kind of networks [157], regression analysis using the

elastic net penalty has been used to combine miRNA and transcription factor

information [10].

5.3 miRlastic for miRNA-target networks

We developed a novel approach, called miRlastic, to detect data-specific miRNA-

mRNA targeting relationships inspired by biological principles. Beyond sole

correlation- or standard regression-based models, we use the elastic net tech-

nique to identify all associations which are explained by the measured expression

values.

By first clarifying our biological aims, the methodological implementation

will be naturally explained. We aim to identify all and only those miRNA-

mRNA targeting relationships, which are biologically sound with respect to the

underlying experimental setup. For example, different cell types often employ

a condition-specific miRNA-mRNA regulatory network required to fulfill its

function. By integrating experimental data to filter putative miRNA-mRNA

target predictions, we can account for the situative regulatory mechanisms.

Our novel method miRlastic filters those miRNAs out which are commonly

and selectively regulating mRNA expression values. By trying to best explain

mRNA expression by putative miRNA regulators, we have to account for both,

additive effects of several miRNAs on the target mRNA as well high correlation

between miRNA profiles. We use a multiple regression approach with an elastic

net penalty to best balance feature selection without arbitrary thresholding.

Our proposed method allows to derive biologically sound miRNA-mRNA (in a

“n:1”-manner) relationships.

5.3.1 Preliminaries

The datasets Y, X contain mRNA and miRNA measurements (yjk) and (xik),

respectively. Both of them are simultaneously assessed across s observations,

typically the biological samples, with k ∈ {1, . . . , s}, i ∈ {1, . . . , n} and j ∈

{1, . . . ,m}. n and m are the number of measured miRNAs and mRNAs, thus,
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Y ∈ Rm×s and X ∈ Rn×s, respectively.

We denote the regulatory relationships between miRNA regulators and their

putative mRNA targets as a bipartite graph. A bipartite graph has two disjoint

node sets. Here the miRNA and the mRNA both constitute the node in the

graph G. The bipartite graph captures all putative miRNA-mRNA relationships

in G = (V miR, V mR, E) with disjoint clusters of two node sets as V miR and

V mR. The set of all mRNAs are the nodes listed in V mR = {vmR1 , . . . , vmRm },

and likewise the miRNA are the nodes in V miR = {vmiR1 , . . . , vmiRn }. The set

of edges E = {e1, ..., ez} connect nodes from V miR to V mR as el = (vmiRu , vmRw )

with l ∈ {1, . . . , z}.

Edges el are exactly those yielded by target prediction algorithms, which

are subjected to data-based filtering. G is validated with miRlastic and yields

G′ = (V miR, V mR, E′) with E′ ⊆ E.

5.3.2 miRNA-mRNA models

Observing the miRNA-mRNA regulator-target graph G from the perspective

of a single mRNA j, it is targeted by a set of miRNAs with indices i∗ =

{i|∃(vmiRi , vmRj ) ∈ E} connecting n∗ miRNA nodes vmiRi∗ with mRNA node

vmRj . We refer to the observations of one mRNA j as yj and its associated

miRNA observations as X(j) = XT
i∗ . The 1-dimensional vector yj and the

s× n∗-dimensional matrix X(j) are response and predictors of a corresponding

regression model, respectively, which is given by

yj ∼ βj0 + X(j)βj + εj .

with normally distributed error εj ∼ N (0, σ), parameters βj = (βj1, . . . , βjn∗)

and the intercept βj0.

5.3.3 miRNA-mRNA feature selection

Several penalization techniques have been proposed to shrink the regression

coefficients β by imposing a penalty on their size (see Chapter 2.4.1). With

ridge regression, a L2 penalty is applied, which has only nonzero β coefficients.

Thus, ridge regression does not provide any feature selection and maintains all
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predictors in the model. With lasso, a L1 penalty is implemented yielding many

coefficients equal to zero and only a subset not equal to zero. Subsequently, lasso

has a sparse solution performing feature selection on X. For highly correlated

predictors, only the strongest predictor will have non-zero coefficients with lasso

[43].

For modeling miRNA-mRNA relationships, we want the regression model

not only to maintain correlated miRNA predictors in the model but also to

have a feature selection option efficiently excluding miRNAs with no effect on

the mRNA response. The elastic net penalty was introduced to balance between

L1 and L2 penalties [190].

We propose a penalized regression model to systematically evaluate all pu-

tative miRNA-mRNA interactions. microRNA target predictions G serve as

putative interaction graph to be validated by given transcriptome expression

measurements, i.a. given graph G, for each mRNA j a penalized regression

model is calculated. In order to allow only for the down-regulation of mRNA

abundances, we introduce a negativity constraint on the coefficients βj . The

values of βj then serve as an indicator for the strength of regulation for each

individual miRNA.

Assume that the expression values yj are standardized with mean 0 and

standard deviation 1 as well as the columns of X(j). The miRNA coefficients

βj for a mRNA j are estimated by the following optimization:

β̂j = arg min
βj

|yj −X(j)βj |,

subject to (1− αj)
1

2
||βj ||22 + αj ||βj ||1 ≤ tj and βj ≤ 0,

with αj denoting the elastic net mixing parameter for mRNA j with 0 ≤ αj ≤ 1.

Note that we do not have to estimate an intercept as it is supposed to be

zero for scaled variables and response. The regularization parameter tj can be

chosen using a 10-fold cross-validation procedure. The non-zero entries of β̂j are

then considered as the evaluated edges of the input network G and as a result,

miRlastic returns the validated miRNA-mRNA relationships as G′ gathered

from all models for yj and non-zero coefficients in βj of corresponding miRNA

predictors X(j) for j = {1, . . . ,m}.
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Figure 5.2: Choice of the elastic net parameter αj . Given the measure of
correlation strength c(X(j)) among a set of miRNAs collectively targeting a
mRNA j, we determine the value of αj by α = 10−c(X(j)). Lower values of αj
are preferred over high values. In the case of perfectly uncorrelated miRNAs
(c(X(j)) = 0) we perform native lasso (αj = 1). If the miRNAs are perfectly
correlated (c(X(j)) = 1), we aim to keep the correlated variables within the
model (αj = 0.1). However, we always want to perform feature selection, which
would be prevented by ridge regression. Therefore, we never set αj to zero.

To finally tune the elastic net penalty chose to adjust α with respect to the

potentially expected fraction of correlated predictor groups. Another possibility

to tune α is cross-validation, but results were not satisfactory and the computa-

tion is very time-consuming. Thus, as an educated guess of α to balance the L1

and L2 penalties, we make use of the previously introduced measure of miRNA

correlation strength c(X).

Let X(j) be the expression matrix of miRNAs, which are predicted to si-

multaneously target a common mRNA j with expression profile yj . The pa-

rameter αj of the elastic net regression model of yj given X(j) is then defined

as αj = 10−c(X(j)). This allows for an unbiased parameter tuning whereas

lower values of αj are slightly preferred. However, we do not want to set αj

too low, since we never want to prevent the feature selection procedure by per-

forming ridge regression. Therefore, the choice of αj in the given way is a good

trade-off (see Fig. 5.2). The algorithm for the construction of the evaluated

miRNA-mRNA network G′ is summarized in Algorithm 5.1.
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Input: Predicted miRNA-target network G = (V miR, V mR, E), miRNA
expression matrix X, mRNA expression matrix Y.

Result: Evaluated miRNA-target network G′.
n:=Number of mRNAs in G;
m:=Number of mRNAs in G;

Initialize G′ = (V miR, V mR, E′) with E′ = ∅;
for j=1:m do

i∗ = {i|∃(vmiRi , vmRj ) ∈ E};
X(j) = XT [, i∗];

αj = 10−c(X(j));
yj = Y[j, ];

β̂j = arg minβj |yj −X(j)βj |,
subject to (1− αj) 1

2 ||βj ||
2
2 + αj ||βj ||1 ≤ tj and βj ≤ 0;

Determine best tj via 10-fold cross-validation;

for i′ = {i∗|β̂ji∗ 6= 0} do

E′ = E′ ∪ (vmiRi′ , vmRj ) with weight β̂ji′ ;

end

end
return G’

Algorithm 5.1: Construction of the evaluated miRNA-mRNA network
G′ using miRlastic.

We here use TargetScan 6.2 [99], but any prediction method may be used or

even a combination of several. MiRlastic is implemented as an R package using

the elastic net implementation from the glmnet R package [43].

5.3.4 Evaluation on synthetic data

Quality Measure

By counting the number of incorrectly selected miRNAs (false positives, FP )

and the number of missed correct miRNAs (false negatives, FN) for several

runs, we can compute the F1 measure based on precision and recall as

F1 = 2 · precision · recall

precision + recall
.

With precision = TP/(TP + FP ) and recall = TP/(TP + FN) of any related

confusion matrix comparing actually classes (true and false) to any classification

results (positive and negative).
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Synthetic data

In order to assess the performance of our approach, we built up a test environ-

ment. In each test run, a set of synthetic miRNA and mRNA expression values

was generated adapting to biological features. We modeled a set of 25 miRNAs

X = (x1, . . . ,x25) with expression values xi ∼ N (0, 1) corresponding to the set

of miRNAs predicted to target a common gene. Since we assume a coordinated

regulation among this set of miRNAs, we furthermore model 4 expression pro-

files of unknown regulatory factors {h1, . . . ,h4} with hi ∼ N (0, 1), which are

assumed to target a certain subset of the predicted miRNAs. We therefore ran-

domly pick one of these factors j for each miRNA i and introduce a correlation

of corr(i, j) = 0.99|i−j| between the profiles xi and hj (Fig 5.3a). Hence, we
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Figure 5.3: Application to synthetic data. a. Heatmap illustrating a set of ran-
domly generated synthetic miRNAs with 30 samples. b. Heatmap of pairwise
correlations between the generated miRNAs. c. Success-rates (measured F1)
of all algorithms across varying sample numbers and noise levels to recover the
true synthetic miRNA-mRNA associations.

obtain groups of miRNAs that are highly correlated among each other while
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the correlation to miRNAs in different groups is rather low (Fig 5.3b). As il-

lustrated in Figure 5.1, this characteristics is in accordance with the biological

data.

The whole set of 25 generated miRNA profiles was then randomly partitioned

into 15 profiles X̂ = (x̂1, . . . , x̂15) corresponding to the actual regulators of the

mRNA and another set of 10 miRNAs that did not have an influence on the

mRNA expression. Assuming a repressive effect of the targeting miRNAs, the

mRNA expression profile y was then generated as

y = σε+

15∑
i=1

−x̂i

with ε ∼ N (0, 1) corresponding to the noise arising out of biological reasons or

from measurement errors. In order to evaluate our method on different noise

levels, we performed the test runs with different magnitudes of σ. To check

whether miRlastic is competitive with other common methods, we also applied

correlation analysis and lasso on the generated data. For correlation analysis, a

synthetic miRNA was considered as true regulator of the corresponding mRNA,

if the adjusted p-value (Bonferroni corrected) of negative Pearson correlation

was below 0.05, which corresponds to analysis workflow of MAGIA [153]. For

lasso, we used an approach, which is basically identical to miRlastic. However,

the value of α was set strictly to 1. This kind of analysis is similar to the

approach, which is implemented in TaLasso [122].

The whole test procedure was repeated three times where each time a differ-

ent number of samples was determined for the synthetic miRNAs and mRNA,

namely 10, 30 or 50 samples. Every test procedure consisted of 500 runs for 15

different values of the noise level σ. For each noise level, the amount of arising

false positives and false negatives was recorded for every method. Finally, the

F1 measure was calculated for the respective noise level.

Performance on synthetic data

We observe a good performance of miRlastic with regard to the arising false

positives and false negatives in comparison to the other methods for each of

the three test procedures (Fig. 5.3c). It outperforms correlation analysis and
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lasso especially for low sample numbers. This indicates that miRlastic is able

to provide reasonable results even when applied on datasets with low sample

numbers. Low sample numbers are an important issue in biological research

since the preparation of samples using large-scale techniques can still become

costly. Especially for combined expression data, the number of matched samples

can be low since measurements have to be performed twice. Correlation analysis

performs weakly for low sample numbers whereas the results improve for high

sample numbers. Lasso performs well for medium and high sample numbers

only for low noise level indicating a low robustness against noisy observations.

In summary, we can show that miRlastic is able to reliably identify true reg-

ulators with high specificity and sensitivity in a biologically reasonable synthetic

test environment. It outperforms other methods, since it has a high tolerance

against noisy observations and low sample numbers.

5.4 miRlastic on adipogenesis data

Given the set of differentially expressed miRNAs in the dataset, we applied

miRlastic on the expression measurements of these miRNAs combined with the

mRNA expression measurements for potential targets. The underlying target

predictions were downloaded from TargetScanHuman (version 6.2) [99] by only

considering conserved target sites for conserved miRNAs families. Target predic-

tions were available for 20 of the 30 differentially expressed miRNAs. Especially

for miRNA* target predictions were unavailable in TargetScan. MiRNA interac-

tions were predicted for 14,242 genes in our dataset whereas 3,498 of them were

predicted to be targeted by at least one of the differentially expressed miRNAs.

Overall, we used 9,995 target interactions in combination with the respective

miRNA and mRNA expression values as input for miRlastic.

The miRlastic approach then selected 4,020 miRNA-mRNA interactions out

of the given target predictions (Fig. 5.4).

We observe a high amount of mRNAs which are jointly targeted by the

miR-30 family. Interestingly, this set contains the runt-related transcription

factor 2 (RUNX2). RUNX2 is the key factor in the formation of osteoblasts,

which are similarly to adipocytes derived from mesenchymal stem cells [80] (see
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Figure 5.4: MiRNA-mRNA network for the adipogenesis data obtained by
miRlastic. Based on the combined expression data, 4,020 miRNA-mRNA in-
teractions were selected from the 9,995 given target predictions. The net-
work contains nodes for the differentially expressed miRNAs (orange) and
for the targeted genes (blue). The edge width corresponds to the respec-
tive coefficient in the regression model and indicates the strength of the
interaction. We provide an interactive representation of this network at
http://icb.helmholtz-muenchen.de/sass/adipo/ .

Chapter 2.6). The fact that the miR-30 family is up-regulated during adipo-

genesis, thereby targeting RUNX2, indicates a potential role of this family in

this lineage-decision. In fact, the negative regulation of osteoblast differentia-

tion through targeting of RUNX2 by the miR-30 family has already been shown

[179].

http://icb.helmholtz-muenchen.de/sass/adipo/
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5.5 Comparison with transcription factor model

Even though miRNAs are known to play essential roles in almost all cellular

processes [30], their regulatory effect on gene expression is generally moderate

in comparison to gene expression changes driven by transcription factor (TF)

activity [6]. We could therefore argue that the integration of transcription fac-

tor information might lead to a more precise prediction of true miRNA-target

relationships, as our model would account for the underlying mechanisms of

gene regulation more appropriately. In fact, several studies already dealt with

the integration of both miRNA and TF information for the construction of reg-

ulatory networks where mRNA expression was considered to describe the TF

activity [157, 10]. The aim of these studies was generally to analyze network

properties of the inferred target networks and to identify potential key regula-

tors. A systematic analysis of explainable variance by miRNAs in comparison

to TFs has not been done before.

We therefore aim to evaluate whether the addition of TF information can en-

hance the quality of the resulting miRNA-target network. For this purpose, we

extended our prior miRNA-target network obtained from TargetScan by TF-

target interactions. We downloaded experimentally verified TF binding sites

which were obtained by chromatin immunoprecipitation using specific antibod-

ies for the transcription factors followed by sequencing of the precipitated DNA

(ChIP-seq) [82]. This dataset was retrieved from the ENCODE database [35]

and comprises 1,582,526 genomic binding sites for 161 TFs, which were inves-

tigated in 25 cell types. We overlapped these binding sites with the genomic

positions of predicted human promoters determined by the Genomatix Promo-

terInspector [156] and finally obtained a total set of 971,933 TF-target interac-

tions. We use respective mRNA expression profiles as a proxy for transcription

factor activity. We then performed miRlastic on the newly generated target ma-

trix consisting of both, miRNA-target and TF-target relationships and denote

this approach as miRlasticTF. To account for the different regulatory properties

of miRNAs and TFs, we redefined the optimization problem for the feature se-

lection procedure (see Chapter 5.3.3) such that we only constrain the coefficients

of the miRNAs to be negative. The coefficients of the TFs were not constrained,

thus, can be either positive or negative. In other words, we model that TFs can
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act either as activators or inhibitors of gene expression, whereas we only expect

a repressive effect of miRNAs. As above, we analyzed the miRNA and mRNA

data from the adipogenesis dataset. Here, we use the mRNA data to assign

expression profiles to the TFs. In order to prevent a perfect fit in the regression

model, we omit the case that TFs can regulate themselves.

The application of miRlasticTF on the given setup yielded a set of 149,815

evaluated TF-target interactions and a set of 1,944 miRNA-target interactions.

If we compare this result with the miRNA-target network determined by miR-

lastic solely for miRNAs (Chapter 5.4), we observe that miRlasticTF yields

only about half of the miRNA-target relationships as compared to miRlastic

(Fig. 5.5A). Notably, more than 95% of the miRlasticTF miRNA-target rela-

tionships could also be detected by miRlastic.
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Figure 5.5: (A) Number of overlapping miRNA-target relationships yielded by
miRlastic and miRlasticTF. More than 95% of the miRlasticTF relationships
could also be determined by miRlastic, whereas miRlasticTF yields only about
half of the miRlastic relationships. (B) Violin plot illustrating the kernel den-
sity estimation of the probability density function of explained variance R2,
where the median is indicated by a white dot. The value R2 is assessed for all
regression models of evaluated miRNA-target relationships by miRlastic (blue)
and miRlasticTF (pink). The overall R2 of miRlasticTF (red) indicates the
amount of variance that could be explained in all regression models including
both, miRNA and TFs.

To next dissect contributions of miRNA or TFs to their targets, we calculated

the explained variance of all target mRNAs by the corresponding miRNAs and

TFs, which were evaluated by miRlasticTF. We therefore calculated for each
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mRNA the explained sum of squares (ESS) for the model, which solely included

the identified miRNAs, as well as for the complete model including TFs. The

ESS is defined as ESS =
∑s
k=1 (ŷk − ȳ)

2
, where ŷ is the predicted response

variable of length s and ȳ the mean of the given response variable. To determine

how much of the total variance could be explained, we compared the ESS to the

total sum of squares (TSS), which is defined as
∑s
k=1 (yk − ȳ)

2
. The amount of

explained variance is expressed as R2 = ESS/TSS.

By comparing the magnitude of R2 for miRlasticTF with miRNAs only to

the magnitude of R2 for the overall miRlasticTF results (Fig. 5.5B), we observe

an increase of R2 of only about 0.15 if the TFs are included in the model. In

addition, we can not determine whether increase of R2 is only observable due

to a naturally higher correlation among the genes or by a regulatory relation-

ship. This correlation can be related to the fact that genes are often jointly

regulated and that they were measured on the same platform. Since we further-

more know that transcription factor activity is predominantly regulated through

post-translational modifications like phosphorylation [78], these results could be

prone to errors. Interestingly, the magnitude of R2 for miRlastic is equivalent

to the magnitude of R2 for miRlasticTF with miRNAs only. If we neglect tran-

scription factors for the identification of miRNA-target relationships, we can

thus still sufficiently well explain our regulatory model.

5.6 Evaluation using experimental data

In the previous section, we evaluated whether our miRlastic approach is rea-

sonable if applied on miRNA data only, thereby neglecting the influence of

transcription factors. The even more interesting aspect is the evaluation of the

two results with regard to experimentally verified miRNA-target relationships.

Therefore, we confirmed the interactions with experimentally validated interac-

tion data retrieved from starBase [182] and compared the performance to other

existing methods.

The aims of our validations are twofold: we want to demonstrate that the

identified set of interactions using combined expression data is significantly en-

riched by experimentally validated interactions in comparison to TargetScan
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only. Furthermore, we want to show that this enrichment is considerably higher

for miRlastic as compared to other common methods. For this purpose, we se-

lected all miRNA-mRNA interactions determined by HITS-CLIP or PAR-CLIP

(high stringency) from the starBase database [182] which overlapped with our

set of tested miRNAs and genes also predicted by TargetScan. In total, 4,039

previously validated target interactions between the overlapping set of 15 miR-

NAs and 2,627 genes were derived. We found that 2,049 out of 3,322 target

interactions between these overlapping miRNAs and genes in our resulting net-

work could be already experimentally verified. We then applied Fisher’s exact

test in order to determine whether this proportion of validated interactions in

our network is significantly higher than the proportion of validated interactions

from TargetScan. The test yielded a highly significant p-value of p = 5.7×10−21

(Fig. 5.6A).
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Figure 5.6: Validation of miRlastic using experimental data. MiRlastic (blue),
MAGIA using Spearman (red) and Pearson (orange) correlation coefficient, Ta-
Lasso (purple), GenMiR++ (turquoise) as well as miRlasticTF (pink) were
applied on the adipogenesis data using target predictions from TargetScan [99].
(A) The bars indicate the p-value resulting from the application of Fisher’s ex-
act test to determine the over-representation of experimentally validated target
relationships from starBase [182] in comparison to the TargetScan predictions.
(B) Total number of identified miRNA-target interactions for each of the ap-
plied methods.
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MiRNA-target networks were also generated by applying correlation analysis

(MAGIA [153]) and lasso (TaLasso [122]) as described above (Section 5.3.4). By

applying Pearson correlation analysis, we identified 4,557 miRNA-mRNA rela-

tionships (Fig. 5.6B). The usage of the Spearman correlation coefficient yielded

a network of 4,497 miRNA-mRNA relationships. The network, which was de-

termined by lasso, contained 2,229 target interactions. In addition, we applied

GenMiR++, which yielded 4,998 miRNA-mRNA relationships. We then again

used Fisher’s exact test to test whether the set of verified interactions are en-

riched in these networks. We obtained a p-value of p = 2.6 × 10−17 for the

Pearson correlation network, p = 3.5× 10−18 for the Spearman correlation net-

work, p = 3.6 × 10−5 for the TaLasso network, p = 1 for GenMiR++ and

p = 5.9× 10−6 for miRlasticTF (Fig. 5.6A).

These results indicate that miRlastic is able to identify a higher fraction of

previously validated target predictions as compared to the other methods. The

two correlation approaches also performed well. The fraction of experimentally

validated interactions in the lasso network was clearly lower. However, this

fraction is still significantly higher as compared to TargetScan. In the case of

GenMiR++, no significant overrepresentation of experimentally validated inter-

actions could be observed. In addition, we show that the results of miRlasticTF

are not as highly enriched as for miRlastic on miRNA only. We can there-

fore argue that the integration of TF information in combination with mRNA

expression is not a suitable approach for the improvement of our approach. Fur-

thermore, the degree of enrichment does not directly depend on the number of

identified miRNA-target interactions (Fig. 5.6), as we observe a higher enrich-

ment in miRlastic as for the MAGIA and GenMiR++ results even though the

total number of interactions is less. On the other hand, the degree enrichment

for miRlastic is also higher for miRlastic as for TaLasso and miRlasticTF, which

yield a smaller number of target interactions.

5.7 Discussion and Conclusion

In this chapter, we introduced a method for the construction of miRNA-mRNA

regulatory networks. These networks represent potential regulatory relation-
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ships between miRNAs and genes based on sequence information and combined

expression data. The aim of this approach is to validate in silico target pre-

dictions, which are known to be prone to a large number of false positives,

and reduce them to a set of miRNA-mRNA interactions that can actually be

explained by the expression data. Depending on the underlying experimental

setup, we can therefore account for tissue- or condition-specific interactions,

which can be used to investigate affected molecular processes with regard to

post-transcriptional gene regulation.

Post-transcriptional gene regulation by miRNAs usually happens in a coor-

dinated way, which results in the co-expression of functionally related miRNAs.

We could show that co-expression between miRNAs, which are predicted to tar-

get a common gene, can actually be observed in the expression data. Hence, we

optimized our method to account for correlated expression among miRNAs in

order to capture the biological properties of miRNA regulation.

We evaluated our results by using mRNA expression data in addition to

miRNA expression data. To fully unravel effective miRNA-mRNA interactions,

we additionally need to consider the integration of protein expression data in-

stead. This would allow to take both ways of miRNA regulation into account,

mRNA degradation and translational repression. But even though the large-

scale proteome measurement techniques have been improved remarkably during

the last decade, the procedure for acquiring these measurements are still more

laborious and less comprehensive than mRNA expression profiling experiments

[4]. Since mammalian miRNAs are assumed to predominantly decrease the

mRNA levels of their targets [60], the choice of mRNA expression measure-

ments appears reasonable.

We could show that our approach performs well on both, synthetic and

biological data and outperforms other methods, which are commonly used in

miRNA research. Furthermore, we identified miRNA-mRNA relationships play-

ing important roles in the context of adipogenesis, which is additional an indi-

cator for valuable results.



Chapter 6

Functional characterization

of miRNA-target networks

Even though many functional associations of miRNAs have been revealed, their

full functional potential is still not exhausted. In the previous chapter we in-

troduced miRlastic, which is able to infer a miRNA-mRNA regulatory network

from target predictions and combined expression data (see Chapter 5) while the

functional role of individual miRNAs was not yet elucidated.

In this chapter we introduce a local enrichment analysis (LEA) for networks

generally consisting of a regulatory layer that is connected to set of genes. We

want to use our approach to characterize this regulatory layer for which no

functional annotation is available, whereas the genes can be mapped to func-

tional groups from an ontology database. LEA is based on weighted bipartite

networks, which can be derived e.g. from miRlastic (see Chapter 5). However,

it is generally not restricted to this kind of application and may be applied on

any bipartite network consisting of a node set that can be mapped to functional

properties. Using the LEA approach, we can determine functional groups, which

are locally enriched in the network, and identify these regions in order to allow

for the inference of individual miRNA functions. We will apply LEA on the

network, which was generated by the joint analysis of the miRNA and mRNA

data from the adipogenesis study (see Section 5.4). We could identify processes

that are specifically regulated by a subset of miRNAs. This enabled us to gain

75
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insight into the functional role of miRNAs and also to determine joint functional

properties of several miRNAs.

6.1 LEA: Local enrichment analysis

The primary goal of LEA is to identify regions within a miRNA-mRNA network

which are strongly enriched for a certain biological process, thereby inferring

information on the functional role of specific miRNAs. For this purpose, we can

make use of functional gene annotations derived from databases such as GO [5]

or KEGG [84]. These databases provide gene sets that are involved in specific

processes or pathways denoted as functional groups. We assume that the genes

in a locally enriched area are located in close proximity to genes assigned to the

respective functional group. We thus use shortest paths as a basis to infer areas

of local enrichment for a given functional group.

The concept of network proximity analysis has also already been used to

identify regions in signaling pathways, which are specifically targeted by a set

of miRNAs [89]. We want to translate this concept of network proximity to

miRNA-target networks as follows: if we expect a term to be targeted by a

special subset of miRNAs in the miRNA-target network, we assume a certain

proximity for the genes assigned to that process. We measure this proximity

by calculating the shortest paths between the genes in the network. This infor-

mation can then be used to evaluate whether the given arrangement of nodes

assigned to a certain process occurs by chance or not. The use of weighted

edges for the calculation of the shortest paths furthermore accounts for the

strengths of miRNA-mRNA relationships, which emphasizes the relevance of

strongly regulated genes associated with the process.

Current methods for the functional analysis of miRNA-target networks pri-

marily account for the whole set of regulated targets [89, 109]. Other methods

partition the network into functional modules, which are then tested for func-

tional enrichment [19, 133]. However, these methods demand for an a priori

specification of module numbers and do not take the whole network structure

into account. In addition, the strength of regulation is not considered for the

determination of the modules.
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6.1.1 Shortest distances between targets

The input of LEA is a directed bipartite graph G = (V miR, V mR, E). The

set of edges E = {e1, . . . , ez} corresponds to the potential regulatory rela-

tionships between the nodes from V miR and V mR as el = (vmiRu , vmRw ) ∈ E

with l ∈ {1, . . . , z}. The edges and edge weights are represented as a matrix

W = (wij) with z non-zero entries. In the case of a miRlastic network, this

weight corresponds to the scaled negative regression coefficient obtained by the

elastic net approach. Hence, all non-zero entries of W must be smaller than

zero.
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Figure 6.1: Weight transformation of miRNA-mRNA networks. (a) The neg-
ative edge weights w are indicated by the edge width and correspond to the
regression coefficients determined by miRlastic. We transform these weights
by ew. (b) The transformation has three effects: edge weights become posi-
tive, negative coefficients become small and vice versa and highly negative edge
weights are restraint to prevent a biased calculation of shortest paths.

The edge weight wij of the edge (vmiRi , vmRj ) corresponds to the strength of

regulation between miRNA i and gene j (Fig. 6.1a). For easier interpretation

of edge weights, we initially transform the non-zero entries of W such that we

obtain a new matrix W̃ = (w̃ij) with

w̃ij =

e
wij if wij < 0

0 otherwise.

This transformation yields positive edge weights where highly negative coeffi-

cients become small and vice versa (Fig. 6.1b). In addition, we do not want

to overestimate the influence of highly negative weights, which would bias the

calculation of shortest path. We therefore restrain highly negative edge weights.

The effect of transformation for the adipocyte miRNA-mRNA network gener-
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ated by miRlastic (see Chapter 5.4) is illustrated in Fig. 6.2.
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Figure 6.2: Histogram of edge weights for the adipocyte miRNA-mRNA net-
work generated by miRlastic showing the effect of transformation. The x-axis
is reversed and negative values become positive. Highly negative values are
restrained after the transformation.

A path between two gene nodes vmRa and vmRb is defined as P (a, b) =

(vmR1 , . . . , vmRp ) with vmR1 = vmRa and vmRp = vmRb such that there exists a

miRNA node that is connected to both nodes vmRk and vmRk+1 in P (a, b) for all

1 ≤ k < p. The distance of the path between this two nodes vmRa and vmRb is

defined as

d(a, b) =

p−1∑
k=1

min
i∗

(wi∗k + wi∗k+1),

with i∗ denoting the miRNAs that target the mRNAs k and k + 1. A path

P (a, b) between the mRNAs a and b is then called shortest path Pmin(a, b) if it

minimizes the distance d(a, b). The distance of the shortest path is then defined

as dmin(a, b) and denoted as shortest distance. The set of shortest distances

from a mRNA a to a set of mRNAs S is defined as Dmin(a, S). In case of the

example in Fig. 6.1a, the shortest distances between all nodes in the graph are

listed in Tab. 6.1.

In order to calculate these shortest paths in a given miRNA-mRNA network,

we use the implementation of Dijkstra’s algorithm [31] in the igraph package [27]

for R [137].
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Table 6.1: Shortest paths between mRNA nodes in the given example (Fig. 6.1).

A B C D E F G H
A 0.00 1.64 1.80 1.80 3.04 2.80 3.20 1.40
B 1.64 0.00 1.64 1.64 2.88 2.64 3.04 1.24
C 1.80 1.64 0.00 1.80 3.04 2.80 3.20 1.40
D 1.80 1.64 1.80 0.00 1.48 1.24 1.64 1.40
E 3.04 2.88 3.04 1.48 0.00 1.24 1.64 1.64
F 2.80 2.64 2.80 1.24 1.24 0.00 1.40 1.40
G 3.20 3.04 3.20 1.64 1.64 1.40 0.00 1.80
H 1.40 1.24 1.40 1.40 1.64 1.40 1.80 0.00

6.1.2 Scoring local neighborhoods

Let Mk = {g1k, . . . , gmk} denote the functional group consisting of m annotated

genes for a specific term k with k ∈ {1, . . . , l} retrieved from a database and let

Mk,G := Mk ∩ V mR be the set of genes associated with Mk that overlap with

the genes contained in G. In order to determine the enrichment of Mk,G around

a certain mRNA j in G, we compare the distribution of the shortest distances

Dmin(j,Mk,G) to the distribution of shortest distances Dmin(j,G\Mk,G). Note

that Dmin(j,Mk,G) includes the shortest path distance to a node itself, which

is defined as zero, if vj ∈ Mk,G. We apply a left-tailed Wilcoxon rank-sum

test, which yields a p-value indicating whether the values of Dmin(j,Mk,G) are

significantly shifted to lower values as compared to the values of Dmin(j,G \

Mk,G). We then use these p-values to assess a score S(vj) in form of the negative

logarithm to base ten:

S(vj) := − log10(pj),

which describes the enrichment of the term for the given functional group Mk

around gene j.

Eventually, we want to characterize the importance of certain miRNAs in

G. For this purpose, we can calculate a score SmiR(vi) for every miRNA node

vi ∈ V miR by considering the set Vi := {vj |(vj ∈ VmR) ∧ (∃(vi, vj) ∈ E)} of

associated mRNA nodes. The score is then defined as

SmiR(vi) =
1

|Vi|
∑
vj∈Vi

S(vj)

The algorithm for the calculation of the gene and miR scores is summarized in
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Algorithm 6.1.

Input: Assignment matrix W for graph G (neg. weights), Functional
group Mk.

Result: Vector of gene scores, vector of miR scores.
Transform each non-zero element wij of W to wij = ewij ;
n:=Number of miRNAs in G;
m:=Number of mRNAs in G;
Initialize ShortestDists[m,m];
for j1 = 1 : m do

for j2 = 1 : m do
ShortestDists[j1, j2] = dmin(j1, j2);

end

end
Initialize scores[m];
for j = 1 : m do

distsToSet = ShortestDists[j, k∗] for k∗ ∈Mk;
bgDists = ShortestDists[j, k′] for k′ /∈Mk;
scores[j] = − log10(p.Wilcoxon.leftTailed(distsToSet, bgDists));

end
Initialize mirScores[n];
for i = 1 : n do

mirScores[i] = sum(scores[j∗]) for
j∗ = {j|(vj ∈ VmR) ∧ (∃(vi, vj) ∈ E};

end
return scores,miRscores

Algorithm 6.1: Calculation of gene and miR scores using LEA for a given
functional group Mk.

Consider for example the given miRNA-mRNA network G in Fig. 6.3a. Let

the overlap between the functional group Mk of a term k with the genes in

G be Mk,G = {A, I, J,P} (diamond shape). We now want to infer the genes

in the proximity of the genes in Mk,G. For this purpose, we calculate the

set of shortest distances for node M (blue) the genes in Mk,G, which yields

Dmin(M,Mk,G) = {1.01, 1.21, 1.00, 1.05}. In case of node B (purple), the set

of shortest distances is Dmin(B,Mk,G) = {2.07, 2.16, 2.30, 3.11}. We can now

compare these distributions of shortest distances to the respective distributions

of shortest distances to genes, which are not in Mk,G, namely Dmin(M, V mR \

Mk,G) and Dmin(B, V mR \Mk,G) (Fig. 6.3c). We observe that in case of node

M, the distribution of shortest distances Dmin(M,Mk,G) tends to be shifted to

lower values as compared to Dmin(M, V mR \Mk,G), which is not the case for

node B. In order to statistically test for this shift to lower values, we apply a one-
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Figure 6.3: Node scoring in an example network. (a) We assume that four
genes are assigned to a certain functional group (A, I, J, P; diamond shape).
The edge weight indicates the strength of negative regulation. (b) The shortest
path distances between these four nodes and the two nodes M (blue) and B
(purple) are exemplary shown. The edge labels denote the weights after the
transformation. (c) The distribution of shortest paths from node M to the
nodes A, I, J and P is significantly shifted to lower values. No shift can be
observed for node B. The p-values determined by Wilcoxon rank-sum test are
converted to the node scores. (d) The scores of all nodes are indicated by the
color. The size of the miRNA nodes corresponds to the miR score, which is the
mean score of targeted nodes.

sided Wilcoxon rank-sum test and obtain a significant p-value in case of node M

(p = 7× 10−3), while the p-value for node B is not significant (p = 6.5× 10−1).

We can therefore conclude that node M is actually located in close proximity of

the nodes associated with the term k, whereas node B is not.

Given the p-values from the Wilcoxon rank-sum test, we can calculate the

scores of the two nodes M and B as S(M) = − log10(7×10−3) = 2.15 and S(B) =

− log10(6.5× 10−1) = 0.19, respectively. This score indicates the proximity of a

gene to the genes in the functional group (Fig. 6.3d).

6.1.3 Identification of locally enriched functional groups

We are not only interested in finding particular overrepresented regions in our

network for a preselected group of interest, but first of all in identifying these

groups of interest. Hence, we aim to select functional groups, whose associated
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genes are not equally distributed over the network but have the tendency to

be located in close proximity. In other words, when genes are in a non-random

close proximity in the miR-target network, we consider a functional group as

enriched. For this purpose, we aim to identify terms whose functional groups

are located in close proximity to each other and which are at the same time

strongly regulated by the miRNAs in these areas.

Let again G be the network, which represents the regulatory relationships

between miRNAs and mRNAs and Mk,G the set of overlapping genes between

the functional group Mk of term k and the genes in G. We now select all

shortest distances Dmin(Mk,G) between the nodes vj ∈ Mk,G. By comparing

the distribution of this set to the distribution of all other shortest distances

Dmin(VmR\Mk,G), we can determine whether the nodes of the functional group

Mk,G are located in a closer proximity compared to the other nodes in G. We

are again able to quantify this shift by applying a one-sided Wilcoxon rank

sum test, which yields a p-value for each given functional group. We can thus

assess the enrichment of associated terms in a local area of the network. As

we perform a repeated testing procedure, we have to correct the resulting p-

values by a correction procedure such as the FDR or Bonferroni method (see

Chapter 2.2.5). The algorithm for obtaining locally enriched functional groups

is summarized in Algorithm 6.2.

Consider for example the network above (Fig. 6.3a) with the given arrange-

ment of nodes Mk,G = {A, I, J,P} assigned to a term k. If we compare the

distribution of shortest path distances between these nodes (Fig. 6.4a), we can

observe a shift to lower values. This test results in a p-value of p = 1.3× 10−2.

Now consider another term k̃ with Mk̃,G = {M,K,E}. Obviously, these

nodes are equally distributed over the whole network (Fig. 6.3a). Therefore,

clearly no shift to lower values can be observed as compared to the background

distribution (Fig. 6.4b). Hence, we obtain a highly non-significant p-value by

applying an one-sided Wilcoxon rank sum test (p = 0.9).
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Input: Assignment matrix W for graph G (neg. weights), Set of
functional groups M .

Result: Vector of p-values for local enrichment.
Transform each non-zero element wij of W to wij = ewij ;
m:=Number of mRNAs in G;
Initialize ShortestDists[m,m];
for j1 = 1 : m do

for j2 = 1 : m do
ShortestDists[j1, j2] = dmin(j1, j2);

end

end
Initialize pvalues[|M |];
for k = 1 : |M | do

setDists = ShortestDists[k∗, k∗] for k∗ ∈Mk;
bgDists = ShortestDists[k′, k′] for k′∗ /∈Mk;
pvalues[k] = p.Wilcoxon.leftTailed(setDists, bgDists);

end
pvalues = p.adjust(pvalues);
return pvalues

Algorithm 6.2: Calculation of p-values to determine locally enriched func-
tional groups using LEA.

6.2 Biological properties of microRNA-target

network in adipogenesis

In the previous chapter we described the application of miRlastic for the con-

struction of a miRNA-mRNA regulatory network that describes the relation-

ships between miRNAs, which are altered by the adipocyte differentiation pro-

cess, and potential target genes. We now aim to identify functional groups,

which are specifically enriched in a certain area in our network. This allows

us to infer functional properties of involved miRNAs. Therefore, we used the

previously generated network (see Chapter 5.4) as input for our LEA approach.

We used human pathway annotations from KEGG [84] as functional groups.

Among this set of KEGG pathways, we selected only those that did not cor-

respond to a disease or drug development group. In total, we obtained 135

functional groups, which we used for LEA. We applied LEA as described above,

which resulted in a p-value for each group indicating the local enrichment of the

respective pathway. We then applied the p-value correction by Benjamini and

Hochberg [12] in order to correct for multiple testing and selected all pathways
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Figure 6.4: Shortest path distributions for nodes with high proximity (nodes A,
I, J, P) and low proximity (nodes M, K, E). The selection of the nodes refers
to the genes that are assigned to a certain functional group. The shortest path
distribution of the high proximity nodes is significantly shifted to lower values
compared to the background whereas the low proximity nodes are not shifted.

whose adjusted p-value was smaller than 0.05. We then finally obtained seven

significantly locally enriched pathways (Tab. 6.2).

Table 6.2: Locally enriched pathways from KEGG in the adipogenesis network
with adjusted p-value less than 0.05.

KEGG ID p-value adj. p-value pathway name
hsa04010 1.00E-18 1.36E-16 MAPK signaling pathway
hsa04120 2.71E-10 3.63E-08 Ubiquitin mediated proteolysis
hsa04020 3.81E-09 5.07E-07 Calcium signaling pathway
hsa04380 1.49E-07 1.97E-05 Osteoclast differentiation
hsa04360 2.08E-07 2.73E-05 Axon guidance
hsa04512 5.01E-07 6.52E-05 ECM-receptor interaction
hsa04350 4.76E-05 6.14E-03 TGF-beta signaling pathway

For these seven pathways, we then calculated the scores S(vmR) for the

gene nodes vmR in our network. We observed an unequal distribution over the

network indicating the local enrichment for the respective pathway (Fig. 6.5).

We then used the scores of the gene nodes for calculating the miR scores

SmiR(vmiR) for the miRNA nodes vmiR. Hence, we obtained a measure for the

relevance of each miRNA for the respective pathway (Fig. 6.6).

By clustering the pathways and miRNAs with regard to the miR scores, we

can primarily identify two sets of miRNAs with similar behavior and relevance

to distinct sets of pathways. We obtain similar miR scores for the miRNAs of

the miR-30 family across all pathways, which is what we would be expect by
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Figure 6.5: Local enrichment analysis for the TGF-beta signaling pathway and
osteoclast diferentiation. The color of the mRNA nodes vmR corresponds to
their score S(vmR). The size of the miRNA nodes vmiR corresponds to their miR
score SmiR(vmiR). For osteoclast diferentiation, the enrichment can be primarily
observed for the miR-30 family whereas the TGF-beta signaling pathway is
mainly enriched for the miRNAs hsa-miR-194, hsa-miR-148a/b, hsa-miR-4284,
hsa-miR-708 and hsa-miR-628-3p.

taking into account that all four miRNAs have the identical predicted target

set and exhibit similar expression profiles. The same holds for the two miRNAs

miR-148a/b. However, the miRNAs miR-194/4284/6283p and 708 also seem

to have similar relevance across the pathways even though they are apparently

not directly related to each other in terms of family or cluster membership.

Hence, we are able to characterize coordinated regulation of biological processes

for related miRNAs as well as for miRNAs, whose functional similarities are

beyond the cluster or family membership.

The miRNAs of the miR-30 family show functional relevance for MAPK

signaling, Ubiquitin mediated proteolysis, Osteoclast differentiation, Calcium

signaling and Osteoclast differentiation. MAPK signaling [17] as well as cal-

cium signaling [85] play important roles in adipogenesis. Also the suppressive

effect of ubiquitin mediated proteolysis of PPARγ on adipocyte differentiation

has already been pointed out [88]. Recent studies have already shown that the
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Figure 6.6: Heatmap of miR scores for each miRNA in the network indicating
the functional role in the significantly locally enriched KEGG pathways.

miRNAs of the miR-30 family suppress the key players in adipogenesis, whose

up-regulation is essential for the differentiation process [186], thereby negatively

regulating osteoblast differentiation [179]. KEGG does not include a functional

group for osteoblast differentiation but for osteoclast differentiation, which is

indeed under strong influence of the miR-30 family. The regulation of osteo-

clast differentiation is in good agreement with previous findings as osteoclast

differentiation directly depends on the regulation by osteoblasts [85] and as a

functional role of miR-30 in osteoclast differentiation has also already been pro-

posed [179]. Hence, we were able to reveal processes, which are relevant for

adipogenesis and which are regulated by miR-30 family.

The two miRNAs from the miR-148 family in contrast exhibit a functional

pattern, which is very distinct from the miR-30 family. The highest miR score

for these two miRNAs is for extracellular matrix (ECM) receptor interaction
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but they are also associated with TGF-β signaling. As discussed above, the

TGF-β signaling pathway is a crucial process in adipogenesis [24]. Our results

suggest that not only the miR-148 family act as regulator of this pathway, but

also the miRNAs miR-194/4284/6283p and 708.

6.3 Discussion and Conclusion

In this chapter we introduced a local enrichment approach (LEA) for miRNA-

mRNA networks, which allows for the functional characterization of miRNAs.

LEA uses the network structure, which represents the regulatory relationships

between miRNAs and target genes. It is based on the calculation of shortest

paths between genes in the network, which are assigned to a certain functional

group, thereby taking into account the strength of miRNA regulation. As a

result, functional groups were identified, whose associated genes are locally en-

riched in the network. In addition, LEA identifies the enriched areas in the

network and determines the miRNAs, which are associated with these areas.

LEA is especially designed for the output of miRlastic, but may also be

adapted to networks generated by other approaches. The only requirement is

that weighted bipartite graph is provided, where one node set can be mapped to

functional properties. Another application may be the local enrichment analysis

in a network consisting of genes and metabolites.

We showed that LEA generates good results when applied to the previously

generated miRNA-mRNA network for the adipogenesis data. We could de-

termine specific functional roles of miRNAs in processes, which are important

for the adipocyte differentiation. We therefore gain functional insight into the

regulatory mechanisms of miRNAs, which are affected during adipogenesis.
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Chapter 7

MONA: Multilevel ontology

analysis

In this chapter, we will introduce a novel approach called multilevel ontology

analysis (MONA), which extends the basic idea of data integration from various

sources towards a modular framework for functional analyses on multiple molec-

ular levels. The goal of this approach is to provide a flexible method for gene

set analysis, which is able to determine gene responses across multiple omics

datasets.

The MONA model includes the associations between genes and functional

categories, which commonly represent certain cellular functions and may be

retrieved from databases like KEGG [84] or GO [5]. These categories, however,

usually exhibit a high degree of redundancy. This holds especially for GO due

to its hierarchical term structure. Our model-based approach accounts for this

redundancy by inferring enriched functional categories simultaneously.

We will introduce the cooperative and the inhibitory model, which both rep-

resent special molecular relationships between the observed molecular levels. In

general, MONA can be easily extended with regard to different kinds of molec-

ular interactions between these levels in order to determine the hidden gene

responses.

We will show the performance of MONA on both, synthetic and previously

published real data. Finally, we will combine the cooperative and the inhibitory

89
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model in order to account for the mRNA expression, DNA methylation and

miRNA expression data from the adipogenesis dataset. Using this approach, we

are able to reveal cellular processes that are affected on several molecular levels,

which in turn allows us to gain deeper insight into the regulatory mechanisms

that play a role during adipogenesis.

This chapter was published in parts in:

• Steffen Sass∗, Florian Buettner∗, Nikola S. Mueller, and Fabian J. Theis.

A modular framework for gene set analysis integrating multilevel omics

data. Nucleic Acids Res, 41(21):9622–9633, Nov 2013.

∗ = equal contributions

7.1 Model-based enrichment analysis

The ability of cells to adjust to given environmental or disease conditions is

a result of their ability to perform specific biological functions and processes.

These are in turn orchestrated by a tight regulation of gene responses across

many molecular levels (Fig. 7.1). The gene product carrying out the biologi-

cal function is a result of not only protein expression and activity, but also of

gene expression on mRNA level, gene promoter methylation states and existing

single nucleotide polymorphisms within the genome. Fine-tuning mechanisms

of e.g. microRNA (miRNA) post-transcriptional modification of mRNAs also

contribute to the joint gene responses of cells. Finally, protein phosphoryla-

tion controls the enzymatic activity of a gene product for example in signaling

cascades [75].

Here, we propose a model-based method to reliably calculate interpretable

probabilities for GO terms activity by integrating multi-level gene response data.

We perform a multi-level ontology analysis (MONA) using a Bayesian approach

with a computationally efficient method to approximate the marginal poste-

riors of ontology terms given lists of genes responding to experimental condi-

tions. MONA is designed to easily handle any combination of molecular levels

in a modular fashion. This is illustrated by a cooperative and an inhibitory

model. We demonstrate that MONA outperforms existing methods by integrat-

ing multi-omics levels with appropriate biological models not only on synthetic
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Figure 7.1: Multilevel gene responses. The signature of condition-specific
changes in biological functions is captured in gene responses, which are mea-
surable on many omics levels. When integrated across levels, organism-wide
profiling provides a comprehensive and multilevel picture that most reliably
describes active biological processes.

data but also on three integrative studies covering mRNA, protein, methylation

states as well as post-transcriptional modifications by miRNA. The framework

and inference method is flexible enough to easily allow for other data, underly-

ing regulatory motifs or ontologies. For example, an extension to a cooperative

three-level model is straight-forward.
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Figure 7.2: A modular approach for gene set enrichment analysis with multiple
observed levels. a. In the base model terms T are connected to hidden gene
products H. Each hidden gene product is observed in form of noisy measure-
ments of one or several levels. b,c. Two examples for modules coupled to one
hidden gene product depending on the biological relationship of the molecular
levels analyzed. Each molecular level in the observation layer O has separate
error rates. Noise of the measurements is represented by false positive and false
negative rates α and β. Note that only the hidden gene products Hi are at-
tached directly to an ontology term. The hidden inhibitor activity HI,inh

i is
specific for a respective gene.

The base model can be represented by a Bayesian network with two layers
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(Fig. 7.2a) as described previously [110, 9]: the (ontology) term layer consists of

boolean nodes indicating whether a term is active or not. Each term (T ) is con-

nected to a set of hidden gene products (H) as defined by e.g. Gene Ontology

(GO). This hidden (unobserved) layer of gene responses has to be introduced

between the ontology and the layer of observed variables, for two reasons: First,

measurement errors result in false positives (FP) and false negatives (FN) that

have to be handled adequately. Second, incorrect or imprecise term-gene assign-

ments may occur e.g. due to links inferred automatically by GO. Altogether,

the hidden gene response layer also allows for a coherent integration of biological

observations across multiple layers.

More formally, we define our base model (Fig. 7.2a) in form of conditional

probability densities. These conditional densities are described in the following

sections.

7.1.1 Terms

Ti are Bernoulli-distributed boolean random variables modelled with a prior

probability p of being on. As we do not know p in advance, we place a Beta

prior over p so that we can learn it from the data:

p ∼ Beta(a, b) (7.1)

with a and b being the shape parameters of the Beta-Distribution with proba-

bility density function

f(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1,

where Γ(z) = (z − 1)!. When a and b are set to 1, we have a uniform prior

(i.e. before having seen the data we consider all possible values for p as equally

likely). Prior knowledge on the distribution of p (e.g. if p is known to be small)

can be included in form of different choices of a and b (e.g. a = 1 and b = 5

places most of the probability mass on values less than 0.5).

It is worth noting that the previously defined base model [9] slightly differs

form our model: while we place a continuous prior on the probability for a term

being on, they chose a restrictive, discrete prior which is defined by default as
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p ∈ {1/N, . . . , 20/N} with N being the number of terms.

7.1.2 Hidden nodes

The nodes Hi represent the underlying hidden response of each individual gene.

They are modelled as boolean variables, which are deterministically defined

such that Hi = 1 if at least one term to which Hi is annotated is on; otherwise

Hi = 0. If we define T (Hi) to denote the set of terms to which gene Hi is

annotated, then we can write:

P (Hi|T ) =

1 if ∃ Tj ∈ T (Hi) : Tj = 1

0 otherwise

(7.2)

7.1.3 Modular framework to integrate multilevel observa-

tions

Depending on the number of observed levels (e.g. mRNA, protein and methy-

lation) and their relation to each other, the observed nodes Oi are connected

to hidden gene responses Hi. With MONA we present a general framework

allowing for an easy integration of arbitrary molecular levels. We illustrate our

novel approach by describing three different models in detail.

Single-level Model

In this scenario, measurements are only available for one level (e.g. mRNA

expression). Consequently, each observation is connected to exactly one hidden

node representing its respective gene product (this can be interpreted as a special

case of figure 7.2b with only one observed level OIi ).

Observations OIi are observed with false positive and false negative rates αI

and βI ; similar to p we place (usually uniform) Beta priors on αI and βI as we

usually do not know these rates in advance and want to infer them from the
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data.

P (OIi = 1|Hi) =

1− αI if Hi = 1 (true positive: TP)

αI if Hi = 0 (false positive: FP)

(7.3)

P (OIi = 0|Hi) =

1− βI if Hi = 0 (true negative: TN)

βI if Hi = 1 (false negative: FN)

(7.4)

Cooperative Model

The cooperative model accounts for studies where measurements of two (or

more) different levels are available, which may be regarded as independent noisy

observations (e.g. mRNA and protein) of an underlying common gene response.

In contrast to the single-level model, an additional level is observed, which is

modelled as independent observation OIIi of gene product with separate false

positive and false negative rates αII and βII (Fig. 7.2b). Again we place Beta

priors on αII and βII . For each additional levels, error rates are defined accord-

ingly.

P (OIIi = 1|Hi) =

1− αII if Hi = 1

αII if Hi = 0

(7.5)

P (OIIi = 0|Hi) =

1− βII if Hi = 0

βII if Hi = 1

(7.6)

Inhibitory Model

The inhibitory model is applicable when two levels are measured, but they could

not be interpreted as independent measurements of the hidden gene function

(Fig. 7.2c). A prominent example is the post-transcriptional modulation of

mRNA expression by miRNAs. We introduce an additional hidden variable

HI,inh
i to the model for each respective gene response H. HI,inh

i is a boolean

random variable which represents the true underlying state of the inhibitor: If

the inhibitor is active, HI,inh
i = 1, otherwise HI,inh

i = 0. HI,inh
i is modelled to

be active with prior probability pinh (P (HI,inh
i = 1) = pinh). HI,inh

i is observed

in form of OI,inhi with own false positive and false negative rates αI,inh and
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βI,inh:

P (OI,inhi = 1|HI,inh
i ) =

1− αI,inh if HI,inh
i = 1

αI,inh if HI,inh
i = 0

(7.7)

P (OI,inhi = 0|HI,inh
i ) =

1− βI,inh if HI,inh
i = 0

βI,inh if HI,inh
i = 1

(7.8)

The second observable in the model is the inhibited level (OIi ). As opposed to

the cooperative model, the conditional probability density does not only depend

on Hi, but also on HI,inh
i :

P (OI
i = 1|HI,inh

i , Hi) =



1− αI if (HI,inh
i = 0 ∧Hi = 1)

∨(HI,inh
i = 1 ∧Hi = 0) (TP)

αI if (HI,inh
i = 1 ∧Hi = 1)

∨(HI,inh
i = 0 ∧Hi = 0) (FP)

(7.9)

P (OI
i = 0|HI,inh

i , Hi) =



1− βI if (HI,inh
i = 1 ∧Hi = 1)

∨(HI,inh
i = 0 ∧Hi = 0) (TN)

βI if (HI,inh
i = 0 ∧Hi = 1)

∨(HI,inh
i = 1 ∧Hi = 0) (FN)

(7.10)

This reflects the interaction between the two levels: true gene response can

either be explained by uninhibited first level or if the inhibitor is active without

the first level being active.

For inference a variety of techniques exist. Lu et al. [110] proposed a

maximum-likelihood approach (analyzing only a single level), where the like-

lihood L(Tactive|D,θ) is maximized with respect to the set of active GO terms

Tactive, given the observed data D and a set of parameters θ. A drawback of

the maximum likelihood method is that no distribution is inferred and only

one local maximum is found, ignoring alternative solutions. A more robust ap-

proach then used Markov Chain Monte Carlo (MCMC) methods to estimate

the marginal posterior probabilities P (T |D) of being active [9]. The marginal

posterior is calculated by using a Metropolis-Hastings algorithm to sample from

the joint posterior distribution P (T,θ|D). Such MCMC approaches asymptot-

ically provide a random sampler of a target distribution when being run long

enough. Consequently, they are a family of algorithms commonly used for in-
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ferring posterior distributions of Bayesian networks, which cannot be analyzed

analytically. However, major drawbacks are comparatively long run times and

for every model definition (e.g. if a another level is measured) a new custom

sampler has to be implemented which can be very time-consuming and requires

expert knowledge.

In order to overcome the drawbacks of existing methods, we use computa-

tionally efficient approximate methods [15] to approximate the marginal poste-

rior.

The marginal posteriors of interest were approximated using the EP algo-

rithm [120], which is described above. These marginal posterior probabilities

P (T |D) (in the following simply referred to as term probability) can be inter-

preted as the outcome of the MONA algorithm in form of the probabilities for

each term to be active as best explained by the data.

The posterior of the model factorizes as: p(θ|D) = 1
p(D)

∏
i fi(θ) , where

θ are all parameters of the model and fi functions as defined in the model

specifications while depending on the specific generative model definition. For

example, for the cooperative model θ = {p, T,H, αI/II , βI/II} such that

p(T,H, p, α, β|D) =
p(T |p)p(D|H,α, β)p(H|T )p(α)p(β)p(p)

p(D)
(7.11)

with the individual factors as defined in equations 7.1 to 7.6.

7.2 Implementation

We use probabilistic programming to perform the inference within the Infer.NET

framework [119]. Infer.NET is a framework allowing for Bayesian inference in

graphical models, which has been used successfully in the bioinformatics com-

munity in recent years [129, 160]. The approximation of the marginal posterior

is performed by the infer.NET inference engine. The main advantage is that it

is straight-forward to specify different models of gene responses given a com-

mon base model. Thus, changing model specification and adding additional

level only requires few lines of code resulting in a fast and flexible framework

for Bayesian GO analysis. We provide an implementation of MONA for the
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cooperative and the inhibitory model together with a graphical user interface

in form of a .NET application. The user has to provide a list of zeros and ones

corresponding to the set of altered genes out of a total set of measured genes for

each level. According to this list, an assignment matrix has to be provided that

maps the gene at each position to a set of terms. This tool can also be used

via the command line, which allows for a flexible integration into multi-omics

analysis pipelines. Using the Mono ASP.NET framework, it can be used on any

operating system.

7.3 Evaluation

7.3.1 Synthetic data

Realistic synthetic data generated for the single-level and the cooperative model

were sampled from genome-wide yeast genes mapped to GO [5] (retrieved Oct.

2012). We used the Bioconductor package org.Sc.sgd.db which annotated 3890

terms to 6396 genes. Realistic data for the inhibitory model was generated

by sampling from hgu133plus2.db,for Affymetrix human genome annotations

where 14740 genes are annotated with 10944 terms. We randomly selected 3

to 6 independent terms to be active in each data-set. We sampled the cor-

responding observed level according to the single level, cooperative and the

inhibitory model respectively. This was done for a range of different param-

eter values of αI/II , βI/II and pinh. For the single/cooperative and the in-

hibitory model, we generated 600 and 400 synthetic datasets with different

levels of observation noise respectively. More specifically, for the single-level

model and the cooperative model we chose 3 different settings: αI/II = 0.25

and βI/II = 0.25; αI/II = 0.25 and βI/II = 0.4; αI/II = 0.1 and βI/II = 0.4.

The inhibitory model was evaluated for four different levels of observation

noise and miRNA activation: αI/I,inh = 0.25, βI/I,inh = 0.25 and pinh = 0.25;

αI/I,inh = 0.25, βI/I,inh = 0.25 and pinh = 0.4; αI/I,inh = 0.1, βI/I,inh = 0.4

and pinh = 0.25; αI/I,inh = 0.1, βI/I,inh = 0.4 and pinh = 0.1.

We compared results of MONA to related approaches for GO enrichment

analysis, all suited for analysing single-level data. We quantified the statis-

tical significance of differences in predictive power between the following ap-
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Figure 7.3: Performance of the cooperative model on synthetic data for 3 dif-
ferent levels of noise: (a) medium noise (αI/II = 0.25, βI/II = 0.25), (b) high
noise (αI/II = 0.25, βI/II = 0.4) and (c) mixed noise (αI/II = 0.1, βI/II = 0.4).
AUC values are listed in the respecitve figure legends. With MONA the infer-
ence is based on 2 levels, all other algorithms are based on one level only.

proaches: inferring active GO terms based on i) one level only with MGSA,

ii) one level-model of MONA and iii) multi-level integrative method MONA.

Therefore, we performed an receiver-operating-characteristic (ROC) analysis of

each synthetic dataset and quantified the statistical significance between two dif-

ferent approaches by performing a paired t-test (Bonferroni corrected) between

the respective area-under-the-curve (AUC) values.

Although, most similar to MONA, MGSA [9] can only be applied to indi-

vidual molecular levels. As MGSA is an MCMC sampling scheme for inferring

marginal posteriors for the single-level model and converges to the exact so-

lution when run long enough, we used the solutions provided by the MCMC

sampling as gold standard for the single-level model. To illustrate benefits over

the commonly used Fisher’s exact test for GO enrichment, where each term is

tested independently, we also tested the null-hypothesis of a term being off for
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Figure 7.4: Performance of the inhibitory model on synthetic data for 3 different
levels of miRNA activation and 2 different noise levels: (a) medium noise levels,
medium miRNA influence (αI/I,inh = 0.25, βI/I,inh = 0.25, pinh = 0.25), (b)
medium noise levels, high miRNA influence (αI/I,inh = 0.25, βI/I,inh = 0.25,
pinh = 0.4), (c) mixed noise levels, medium miRNA influence (αI/I,inh = 0.1,
βI/I,inh = 0.4, pinh = 0.25) and (d) mixed noise levels, low miRNA influence
(αI/I,inh = 0.1, βI/I,inh = 0.4, pinh = 0.1). AUC values are listed in the
respective figure legends. With MONA the inference is based on 2 levels, all
other algorithms are based on one level only.
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all terms and calculated ROC curves based on the p-values for all datasets.

For the single-level model as well as the cooperative model, we used unin-

formative priors for α, β and p in order to introduce as little bias as possible.

However, when the marginals yielded an unrealistic value for p (i.e. more than

30% of terms being on) we repeated the inference with a weakly informative

prior for p and set the shape parameters of the Beta distribution a and b to 1

and 5 respectively, placing most of the probability mass on values less than 0.5

(this was necessary in about 5% of the synthetic datasets). As we found that

parameters p in the inhibitory model converged to unrealistic values more often,

we always performed inference with weakly informative priors in this case.

We found that approximate inference with MONA in a single-level model

yielded equally good results as the MCMC-based inference with MGSA (Fig. 7.3)

for 3 different noise levels. AUC values for MGSA and the single-level model

of MONA were 0.932, 0.878, 0.946 and 0.922, 0.87, 0.943 respectively. We used

paired t-tests to test the null-hypothesis that both inference methods result

in equal performance for a given observation error rate. Resulting p-values of

0.007, 0.14 and 1 indicate that only for error rate α = 0.25 and β = 0.25 the

difference in AUC was significant. However, in this case the mean difference in

AUC of only 0.01 was rather small. This corresponds to an overall good qual-

ity of the EP approximation used by MONA compared to the exact inference

method of the MGSA implementation.

AUC curves generated by MGSA do seem to differ systematically from the

ROC curves generated using single-level MONA (Fig. 7.3): for all error rates,

MGSA achieved higher true positive rates for low false positive rates. This is

a consequence of systematic differences between the MCMC sampling approach

and EP. For MGSA, the probability of a term being “on” is restricted to 20

discrete values between 0.0002 and 0.0051 so that all models with a higher value

for p have a probability of 0. In contrast, for the EP algorithm a continuous

Beta prior (0, 1) is used.

Furthermore, the EP approximation is designed such that it prefers broad

approximations and due to this zero-avoidance can assign non-zero probabilities

to models which actually have a zero probability (this is the opposite behaviour

of the MCMC sampling approach which assigns zero probability to all models
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with p > 0.0051, some of which actually may have a non-zero probability). Con-

sequently, MGSA should be used instead of using the approximate EP inference

for a single level if only one level of observations is available.

When comparing the benefits of using integrated data information over in-

dividual data levels, the cooperative model yielded AUCs, which were signifi-

cantly better than the performance of MGSA (p-values < 10−12 in all settings).

Similarly, in the inhibitory setting, MONA performed significantly better than

MGSA (p-values < 10−6) for low (10%), medium (25%) and high (40%) in-

fluence of miRNA activation (Fig. 7.4). As expected the benefit of including

knowledge on the second level was greatest for the setting with high miRNA in-

fluence. In this setting also the benefit of the model-based single-level approach

over the Fisher test, was smallest.

Run time

For evaluating run times, we applied MONA (here, the cooperative model),

MONA on single level and MGSA on the synthetic data described above and

repeated this procedure 10 times. MGSA took 192.59 seconds on average (SD =

45.09s) to compute the results, while MONA and single-level MONA took 8.45

and 6.96 seconds on average, respectively (SD = 0.44s; SD = 0.36s). MONA

has a considerable gain of run time performance. Note, that MONA had only

a slight increase in run time when a second level was introduced in the model.

7.3.2 Real data

The induction of environmental stress to an organism leads to changes on all

molecular levels in order to cope with the new condition. An integrative study

in yeast investigated changes in the proteome and transcriptome in response

to an osmotic shock by NaCl [97]. The regulatory response was measured at

different time points after NaCl treatment. We adopted the testing procedures

for differential expression from the original study to calculate p-values of mRNAs

and proteins [97]. We then considered mRNA and protein as responsive to

osmotic stress if their calculated p-value was less than 0.05. In addition we

applied a threshold of the absolute median fold change over time of > 0.5 and

> 0.3 for mRNA and protein, respectively. Out of 5,916 genes and 2,207 proteins
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Figure 7.5: Analysis of mRNAs and proteins upon salt stress in yeast. (a) The
cooperative model for mRNA (magenta) and protein (yellow) was used to specify
the hidden gene response (green). (b) For each GO term, p-values of Fisher’s
exact test on mRNA and protein level are plotted against each other. Active
terms resulting from MONA are marked as dots and are colour- and size-coded
by its respective MONA term probability. (c) Probabilities of terms derived
from MONA and MGSA on mRNA and protein level. (d) Term probabilities
plotted against the p-values of Fisher’s exact test for MGSA on mRNA and
protein level. (c-d) Blue and red lines indicate probability of 0.5 and significance
level of 0.05, respectively.

annotated to a GO term, 1,274 genes and 214 proteins were responding to

osmotic shock.

The cooperative model is applicable to the present two-level study of gene

and protein expressions (Fig. 7.5a). Here we assume that differential expres-

sion of a specific gene can be observed on both, mRNA and protein level. This

was shown to hold especially for upregulated genes [97]. However, in practice

it is possible that differential expression can only be observed in one of these

levels due to measurement limitations or also biological reasons (imperfect cor-

relation between mRNA and protein expression [29]). This is accounted for in
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the generative model by introducing false positive and false negative rates (Fig.

7.2).

MONA yields probabilities for GO term for yeast response to osmotic shock,

whereof we considered 19 GO terms to be active as their marginal posterior

probability was greater than 0.5 (Fig. 7.5c). Amongst those terms, five terms

had a probability of one to be active.

In order to investigate to what extent the probability of active terms depends

on the cooperative influence of mRNA and protein activity, we first calculated

p-values resulting from Fisher’s exact test on mRNA and protein level separately

(Fig. 7.5b). Most of the terms that were determined as active by MONA, were

also significantly enriched among results of Fisher’s exact test on both, mRNA

and protein level. Expectedly, some terms were active with a high probability

although they were only significant on mRNA level. This indicates that MONA

uses the protein information to enhance the probability of certain terms but not

necessarily dependent on it.

We next examine the biological relevance of active biological functions iden-

tified by MONA (Fig. 7.5c, green bars) starting with the most likely terms. The

term cellular response to oxidative stress (P = 1) is consistent with the origi-

nal study [97], which reported the general induction of stress response genes on

both, mRNA and protein, levels. Typically there is a high overlap of genes for

osmotic and oxidative stress [141], while the oxidative stress response is acti-

vated following the osmotic stress condition. A key gene known to be activated

during this process is the oxidoreductase GRE2 [141], which is also responding

in the present study on both mRNA and protein level.

Another result of the original study was the induction of genes involved

in trehalose metabolism [97], which was shown to be directly linked to the

yeast stress response [68]. MONA identified the term trehalose metabolic process

(P = 1) in good agreement with these findings. In the same context, MONA

identified the following terms: energy reserve metabolic process (P = 0.92), hex-

ose catabolic process (P = 0.68), monosaccharide catabolic process (P = 0.70),

glucose catabolic process (P = 0.65), alcohol catabolic process (P = 0.74) and

glucose transport (P = 0.76). In addition, the respiratory electron transport

chain term (P = 1) is active under osmotic stress conditions arising also due to
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the oxidative stress response. The activation of proteins involved in mitochon-

drial electron transport chain is crucial to counteract the production of reactive

oxygen species upon salt stress [130]. The activity of arginine biosynthetic pro-

cess (P = 0.81) is also in agreement with the literature, as it has been reported

to be induced during oxidative stress [126]. Accordingly, the original study

reported amino acid biosynthesis as being enriched in their analyses. Interest-

ingly, MONA identified arginine as a more a specific amino acid to be active,

which offers a more detailed insight to yeast stress response to an osmotic shock.

We finally compare MONA results to MGSA on mRNA and protein level,

where only four and two terms were active, respectively. Terms identified on

mRNA level alone were also considered as active by MONA, but had always

lower probabilities < 0.6 (Fig. 7.5c, purple bars) and were also significantly

enriched among the results of Fisher’s exact test (Fig. 7.5d).

One of the two terms identified on protein level by MGSA (Fig. 7.5c, yellow

bars) is oxidation reduction process which was also identified by mRNA MGSA

(P = 0.99) and MONA. The other active term is small molecule catabolic process

(P = 0.52). Interestingly MONA is able to identify the more specific child-term

respiratory electron transport chain, which we have shown to be in agreement

with literature. Both terms were also highly enriched at Fisher’s exact test on

protein level (Fig. 7.5d).

7.4 Analysis of multilevel gene responses during

adipogenesis

In this section, we will show the results of MONA applied on the adipogenesis

data. We will define a MONA model that is able to integrate mRNA, methyla-

tion and miRNA data simultaneously. Using this approach, we aim to identify

processes, which are affected during adipogenesis and which may exhibit molec-

ular changes on different levels.
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Figure 7.6: Three-level MONA model consisting of a cooperative part (mRNA
+ methylation; red) and an inhibitory part (mRNA + miRNA; blue). The
hidden gene response is modeled by the independent observation of methylation
and mRNA changes, whereas the mRNA response

7.5 Multilevel ontology analysis on adipogenesis

data

In order to set up an appropriate framework for the integrative gene set analysis

of mRNA, methylation and miRNA data, we combine the cooperative and the

inhibitory model, which were described above (see Section 7.1.3). We obtained

independent observations of mRNA and methylation response and can model

them in a cooperative fashion (Fig. 7.6; cooperative model). The regulatory

influence of miRNAs on the gene expression was determined by the miRlastic

approach by integrating miRNA and mRNA expression measurements (Chap-

ter 5.4). We do not regard miRNA regulation as an independent observation

of gene response and model it via the inhibitory model (Fig. 7.6; inhibitory

model). We refer to this appraoch as three-level MONA. The implementation

of three-level MONA was performed in collaboration with Melanie Kopp in the

course of the work for her master thesis, which is currently ongoing.

Initially, we assigned the differentially methylated CpG sites to associated

genes according to the annotation of the chip manufacturer. We primarily ob-

served hypomethylation of CpG sites during adipogenesis (Fig. 3.1) and there-

fore only selected CpG sites out of the set of differentially methylated ones,
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which are hypomethylated during adipogenesis. Since hypomethylation of the

DNA furthermore usually has an activating influence on the activity of as-

sociated genes [83], we selected only genes whose mRNA expression was up-

regulated during adipogenesis. In addition, a gene was considered to be miRNA

regulated, if it was targeted by a miRNA in the miRlastic network that was

down-regulated during adipogenesis (Fig. 3.2).

In order to assign the genes to functional categories, we retrieved the human

pathway annotations from WikiPathways [87]. We obtained a set of 2,978 genes

that could be mapped to a certain functional category from Wikipathways of

which we determined 352 genes whose mRNA was up-regulated, 19 genes with

an associated hypomethylated CpG site and 384 genes which were considered

to be targeted by an up-regulated miRNA. Only functional categories were con-

sidered that consisted of more than 10 assigned genes. In total, 218 functional

categories were used as input for MONA together with the observed multi-level

gene responses. We finally obtained a set of 14 functional categories with a term

probability > 0.5, which we consider as active terms (Tab. 7.1).

In order to quantify the impact of each individual molecular level to the out-

come of three-level MONA, we performed MONA runs for mRNA, methylation

and miRNA data separately using the single-level model. The term probabilities

of active terms determined by each of these runs in comparison to the outcome

of three-level MONA are illustrated in Fig. 7.7.

We are able to reveal functional categories, which mainly correspond to the

energy household machinery like the citric acid (TCA) cycle and respiratory

electron transport, Fatty Acid Biosynthesis, fatty acid, triacylglycerol, and ketone

body metabolism and Mitochondrial LC-Fatty Acid Beta-Oxidation. This is in

accordance to the biological background of adipogenesis, since these processes

are altered in adipocytes to become equipped with the ability for lipogenesis

and lipolysis [113].

Most interestingly, we identified the functional category Adipogenesis, which

actually comprises the whole set of molecular factors, which are known to play

major roles in adipogenesis. It is worth noting that we could determine this

functional category only by using the three-level model and not by any single

model run. We observe indeed gene responses on all three molecular levels,
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Table 7.1: Functional categories from WikiPathways with term probability> 0.5
obtained by three-level MONA. The term probability for each functional cate-
gory is specified in the column “prob”. The total amount of genes assigned to a
functional category is listed under “sum”. “mR” indicates the amount of genes
with differentially up-regulated mRNA, “met” refers to the amount of genes
with hypomethylated CpG site and “miR” to the amount of miRNA regulated
genes assigned to the respective functional category.

ID prob name sum mR met miR
WP1817 1.00 Fatty acid, triacylglycerol, and

ketone body metabolism
42 28 0 1

WP197 1.00 Cholesterol Biosynthesis 15 11 0 0
WP357 1.00 Fatty Acid Biosynthesis 21 18 0 0
WP2766 1.00 The citric acid (TCA) cycle and

respiratory electron transport
29 11 0 0

WP465 1.00 Tryptophan metabolism 29 14 0 1
WP236 1.00 Adipogenesis 89 25 4 20
WP716 1.00 Vitamin A and Carotenoid

Metabolism
21 9 0 3

WP325 0.97 Triacylglyceride Synthesis 18 9 1 1
WP368 0.92 Mitochondrial LC-Fatty Acid

Beta-Oxidation
16 11 0 1

WP2788 0.84 Sphingolipid metabolism 25 6 0 1
WP24 0.61 Peptide GPCRs 24 6 0 0
WP100 0.60 Glutathione metabolism 16 4 0 0
WP241 0.56 One Carbon Metabolism 19 4 2 2
WP49 0.50 IL-2 Signaling Pathway 24 6 0 8

mRNA expression, DNA methylation as well miRNA regulation. However, these

changes are not pronounced enough to yield any enrichment individually. The

term actually becomes active only through the combination of the data from

the individual levels.

We observe that the result of MONA using the three-level model is primarily

dominated by the mRNA data. Most of the arising terms can also be determined

by using the single model only. This is actually not surprising if we consider

that mRNA expression measurements are a very comprehensive and meaningful

data type for describing the gene activity. On the other hand, we do not observe

any enrichment for the methylation data only. This indicates that there are

no systematic changes in the methylation pattern that influence a process as

a whole but rather affect only a small fraction of genes. On miRNA level,

we primarily observe the activity of signaling pathways. This is also what we

would expect, since we know that the most important role of miRNAs is the
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regulation of signaling cascades [30]. However, these pathways do not seem

to be affected on mRNA and methylation level. Hence, these terms are not

considered as active by three-level MONA. As we model the miRNA influences

via the inhibitory model, we do not account for the targeted genes in the same

way as for the single level on miRNA data alone. In the three-level model,

we rather aim to highlight the combinatorial effect of the levels and can thus

consider terms to be specific for a certain level if they do not appear in the three-

level model results. A good indicator for a miRNA-specific result on the miRNA

single levels is that we obtain the term miRtargeted genes in muscle cell. We
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could thus conclude that the changes in the regulation of signaling pathways are

primarily carried out by miRNA activity. Interestingly, we also observe the TGF

Beta Signaling Pathway as affected on miRNA level, which we already found in

the LEA results (see Chapter 6.2). Note that we use LEA for the identification

of locally enriched terms in the miRNA-target network, whereas we investigate

global effects by applying the single-level MONA on the miRNA data. But as

we observe a large fraction of miRNAs that cooperatively regulating this process

(Fig. 6.6), it makes sense that this pathway is also determined to be globally

affected.

7.6 Discussion and Conclusion

In this chapter, we introduced a modular framework for gene gene set analysis

integrating multilevel omics data, which is named multilevel ontology analyis

(MONA). The goal of this approach is the model-based identification of cellular

processes through the assessment of gene responses across multiple large-scale

molecular profiling experiments.

It is well known that a set of cellular processes is differently active among

cells in different conditions. These conditions can be induced by an external

stimulus but can also arise from different cell types or tissues. The activation

of a certain cellular process in turn, implies the induction of a specific set of

genes. We therefore expect that if a cellular process is active, the corresponding

genes also respond to the condition. However, gene response is an abstract

term, and we may observe it quite differently on different levels (e.g. mRNA,

protein, methylation). Hence, we integrate gene response as latent variable in

multi-omics observations. This concept is represented as a Bayesian network in

MONA (Fig. 7.2).

Similar to common gene set analysis methods, MONA is applied to a given

set of functional categories that may be retrieved from databases like KEGG [84]

or GO [5]. However, the model-based approach has the great advantage over

ordinary enrichment methods that it infers the activity of cellular processes

across all given terms simultaneously, thereby accounting for term redundancies

and related multiple testing problems [110]. Our method therefore combines
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two benefits: the appropriate handling of integrated data from any omics level,

while in parallel coping with term redundancies.

The models introduced in this chapter plugged to the base model are only

a subset of possible models. For example, methylation, mRNA and protein

levels can be inferred simultaneously using a cooperative model with three ob-

servations. In addition, the design allows us to implement additional models to

simultaneously capture different molecular levels (Fig. 7.1). For example, when

measuring proteins and the metabolome of cells, we may introduce a third “acti-

vating” model, where e.g. an existing metabolite may have an activating (unlike

an inhibiting) effect on a proteins activity. Protein phosphorylation levels may

also serve as activating evidence of a proteins function. Even complex gene

interactions may be a basis for a model that could be plugged to the hidden

gene response. The development of more and more powerful techniques for the

inference of gene interactions [136] leads to a comprehensive and reliable knowl-

edge of gene regulation and may improve the outcome of the MONA algorithm.

Another improvement could also be achieved by introducing a weighted variant

of MONA. Here, the magnitude of the fold change between different conditions

could be considered in order to infer the hidden gene response.

We evaluated our approach on both, synthetic and real data in order to

emphasize the advantages of combining data from multiple levels over individual

analyses. We can show that MONA outperforms single-level approaches in terms

of arising false positive and false negative terms when applied on synthetic data.

Furthermore, we determined a more reliable set of functional categories from

the application on previously published data.

After thorough validation of our method, we combined the cooperative and

the inhibitory model to set up an appropriate model for the application of

MONA on the adipogenesis dataset, which comprises mRNA expression, DNA

methylation and miRNA expression data. Initially, we assessed gene responses

on mRNA and methylation level using standard methods. In addition, we in-

cluded the previously generated miRlastic results in order to obtain a set of

genes, which is considered to be regulated by adipogenesis-associated miRNAs.

We showed that even though the results of the multilevel gene set analysis is

dominated by the response on mRNA level, the most comprehensive and mean-
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ingful functional category can only be obtained by the combinatorial effect of

multiple molecular levels.
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Chapter 8

RAMONA: Remotely

accessible multilevel

ontology analysis

In the previous section, we introduced MONA, a model-based enrichment analy-

sis approach for the integration of omics data from multiple molecular levels. In

this chapter, we introduce the remotely accessible multilevel ontology analysis

(RAMONA), which is a web interface for MONA. By providing an easily acces-

sible implementation of MONA in combination with a comprehensive database

structure, we aim to facilitate the application of the MONA approach for any

applied researcher dealing with combined large-scale omics data. In addition,

RAMONA enhances the MONA output with valuable information. We will

describe the implementation of RAMONA and how it can be used to perform

gene set analysis on a dataset derived from either one or two omics levels. We

will then introduce the structure of the database, which provides ontology and

mapping information for processing the input data. The output of RAMONA,

which we will show subsequently, provides functional insight into the activity of

biological processes across the given molecular levels. Finally, we will present

the application of RAMONA on the adipogenesis data, thereby showing how

the output of MONA can be used to visualize areas in signaling pathways,

113
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which are affected on more then one molecular level. RAMONA is available

at http://icb.helmholtz-muenchen.de/ramona. This chapter was published in

parts in:

• Steffen Sass, Florian Buettner, Nikola S. Mueller, and Fabian J. Theis.

RAMONA: a web application for gene set analysis on multilevel omics

data. Bioinformatics, under review.

Preliminary work on the web interface has been done by Benedikt Rauscher and

Michael Schollerer during a practical course, which was supervised during this

work.

8.1 RAMONA: A web application for multilevel

ontology analysis

Decreasing costs of large-scale molecular profiling studies, such as transcrip-

tomics or proteomics, allow for the joint analysis of several molecular levels in

parallel. The crucial step in the analysis of such diverse data is to combine

the different levels such that a comprehensive insight in the response of genes

to these conditions can be assessed. This in turn can be directly linked to the

underlying biological processes affecting the activity of genes on several molec-

ular levels. However, these kind of analyses are not straight-forward and often

the molecular levels are treated as independent in order to allow for the use of

single-omics analysis techniques.

In practice, gene response is initially determined by using statistical methods.

Among the resulting set of altered genes one usually searches for overrepre-

sented biological processes by applying common gene set enrichment methods

[18, 166] that incorporate functional annotations from databases like Gene On-

tology (GO) [5] or the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[84]. Even though there exists a multitude of easy-to-use web-based enrichment

tools [73, 187], they are only capable of analyzing a single molecular level. Fur-

thermore, no web tool is available that properly deals with term redundancies

appearing frequently e.g. due to the tree structure of GO.

In order to provide a powerful method to integrate multi-level gene response

http://icb.helmholtz-muenchen.de/ramona/
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data for the determination of altered biological processes, we recently intro-

duced the multilevel ontology analysis (MONA) [154]. MONA is a model-based

Bayesian method, which is able to integrate data sets from multiple molecular

levels by simultaneously dealing with term redundancies and related multiple

testing problems.

However, the usage of the standalone MONA application can be a cumbersome

process, since the user has to specify the data structure of the activated genes

and their term annotations by himself and lacks a comprehensive visualisation

of the results. Furthermore, it can only be run on Windows machines as it

depends on the .NET library.

Here we introduce a web-based implementation of MONA, called remotely acces-

sible MONA (RAMONA), which is designed with the focus on practical usability

for any applied researcher. It offers three models to analyze most common ex-

perimental setups. The web interface is capable of processing many given gene

identifiers as well as of automatically mapping them to widely used ontologies

derived from GO and KEGG. The detailed output of RAMONA includes an

interactive visualisation of the inferred active terms in the context of their re-

spective pathways or ontology hierarchy. This provides functional insight into

the activity of biological processes and the role of associated genes responding

to the given conditions by providing relevant details on the resulting processes.

8.1.1 Implementation

RAMONA is a web-based application whose interface is implemented in the

Mono ASP.NET framework. The underlying MONA application is written in

C# and is based on the Infer.NET framework [119].

MONA currently provides three models of molecular interactions (Fig. 8.1).

The single level model, which can be used when measurements are only avail-

able on a single level. This corresponds to the principle of the Model-based

Gene Set Analysis (MGSA) [9]. The cooperative model accounts for studies

where measurements of two different levels are available, which may be regarded

as independent noisy observations (e.g. mRNA and protein) of an underlying

common gene response. The inhibitory model is applicable when two species

are measured, but they could not be interpreted as independent measurements
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Figure 8.1: RAMONA workflow. The user has to specify the input according
to the selected model. He can choose between GO and KEGG as ontologies.
Using a Bayesian modelling approach, the tool is able to infer non-redundant
enriched terms among the given gene lists.

of the hidden gene function. A prominent example is the post-transcriptional

modulation of mRNA expression by miRNAs.

Given the user input, the MONA algorithm infers the marginal posterior

probability of the term activity using a Bayesian network as described in [154].

The user has to specify the input of RAMONA according to the selected model.

In general, this must be a set of genes that show a special behavior like the re-

sponse to a certain condition and a set of measured genes which is referred to as

background. A typical example for an input would be two lists of differentially

expressed genes between two conditions for both, mRNA and protein level. For

the cooperative model two lists of differentially expressed genes together with a

background of all measured genes have to be provided. The probabilistic nature

of RAMONA allows for the analysis of experiments, where different numbers

of genes are measured (e.g. usually the case for mRNA and protein data). For

the inhibitory model, a set of inhibited genes has to specified in addition to the

responding genes and background. All these sets can be provided by text field

input or text file upload. The user can manipulate the shape of all priors via the

expert settings in order to e.g. encourage a sparser result; uniform priors are

used as default settings for the single and cooperative case. In case of the in-

hibitory model, weakly informative priors are used as discussed previously [154].

RAMONA supports a variety of common gene identifiers for several organ-
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isms that are mapped to specific terms. These terms include biological processes,

molecular functions and cellular components from GO [5] as well as pathways

from KEGG [84].

The actual MONA process runs in a background thread on the web server

with runtime depending on the size of the input and the selected ontology. For

common setups RAMONA runs not longer than one minute. In addition to the

term probabilities provided by the model-based enrichment analysis, p-values

for enrichment of the individual terms are calculated by using Fisher’s exact

test on each molecular level separately when the cooperative model is chosen.

8.1.2 Database structure

In order to allow for a flexible usage of RAMONA, we provide a MySQL

database, which is storing several types of identifiers from different species as

well as functional categories from GO or KEGG. The structure of the database

is designed in way that allows for the easy retrieval and mapping of information

on genes and ontologies (Fig. 8.2).

The central table of our database is the “gene” table, which stores all known

genes for each species. The gene information is retrieved from the National Cen-

ter for Biotechnology Information (NCBI) Gene database [114] and is indexed

by the corresponding Entrez identifier. These genes are mapped to terms via

the “gene2term” table in a many-to-many fashion. The terms are retrieved from

GO and KEGG, respectively, which correspond to an “ontology”. Information

on ontologies is stored in a separate table. In order to allow for the input of sev-

eral types of gene identifiers, we added another table called “identifier”, which

stores all identifiers that can be mapped to Entrez gene identifiers. Since the

mapping of foreign identifiers to Entrez genes is not always unique, we also map

them in a many-to-many fashion via the “identifier2gene” table. Besides Entrez

gene ids, we currently support Ensembl ids [40], HGNC gene symbols [53] and

Uniprot ids [168].

8.1.3 Output format

The output of RAMONA consists of three parts: a plot panel, a table and a

panel for further term information (Fig. 8.3). If the cooperative model was
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Figure 8.2: RAMONA database structure. Genes are linked to terms and foreign
identifiers in a many-to-many fashion. The structure allows to map from several
identifiers to the internal gene representation. In addition, different species and
ontologies are supported.

chosen, the user can switch between a bar plot (Fig. 8.3A) and a scatter plot

(Fig. 8.3B) to illustrate the results of RAMONA. Otherwise, only the bar plot is

shown, which displays the term probabilities for the top 30 terms. The scatter

plot displays the p-values of the Fisher tests, which are performed on the two

input lists individually, in comparison to the term probabilities. This represen-

tation allows the user to determine the effect of the two individual input gene

lists on the RAMONA outcome. In addition, it uncovers the redundancies that

arise from the traditional gene set analyses and which do not appear in the

RAMONA results. The table (Fig. 8.3C) provides an overview of all relevant

information on the terms, namely the number of assigned genes and the num-

ber of altered genes in the given gene list(s). Additionally, the percentage of

assigned genes is shown which were missing in the smaller background set.

By selecting a term, either in the bar plot, scatter plot or table, detailed

information for the respective term can be displayed (Fig. 8.3D). This includes
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Figure 8.3: The RAMONA output. A Resulting term probabilities are shown
in a bar plot. B If the cooperative model is chosen, a scatter plot can be
displayed that shows the p-values for each term determined by traditional gene
set analysis (Fisher’s exact test) on the two input gene lists individually. The
color and size of the points correspond to the RAMONA term probability. C
The tabular representation gives an overview of all relevant term information.
D Additional information can be obtained by clicking on the terms in any of the
three panels. This information includes the set of altered genes for each level as
well as the decision whether a term is active (red) or not (black) for RAMONA
or Fisher’s exact test.

for each molecular level a list of regulated genes assigned to this term as well as

the percentage of missing genes in case of the cooperative model. Furthermore,

a link to the term database is provided, which allows for a graphical mapping
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of the results. In case of KEGG, the respective pathway is displayed and the

regulated genes are marked by a color for each molecular level. If GO was

selected, the GO tree will be shown illustrating the term hierarchy including all

active terms (probability >0.5).

8.2 Adipogenesis pathway analysis

We applied RAMONA on the mRNA expression and DNA methylation data

from the adipogenesis dataset to demonstrate the functionality of our method.

As a basis, we used the gene lists, which were generated by the statistical

analysis (see Section 7.4). As above, we selected only genes whose mRNA

was up-regulated during adipogenesis as well as genes with an associated hy-

pomethylated CpG site. In total, we used the Entrez identifiers of 384 genes

with up-regulated mRNA and 19 genes with hypomethylatd CpG sites as input

for RAMONA. We chose the human genome as background set for both input

lists and the cooperative model as input model. In addition, we placed an in-

formative prior on p in order to put the probability mass on lower values (see

Section 7.1).

In Chapter 7, we aimed to identify affected pathways using triple level

MONA and WikiPathways. Here, we use the cooperative model and KEGG

pathways as ontology. The miRNA information is therefore not included. As

a result of the combined input data, we obtained 10 pathways, which were

considered as active (term probability > 0.5), namely steroid biosynthesis, va-

line, leucine and isoleucine degradation, biosynthesis of unsaturated fatty acids,

PPAR signaling pathway, vitamin digestion and absorption, Tyrosine metabolism,

Glyoxylate and dicarboxylate metabolism, Propanoate metabolism, citrate cycle

(TCA cycle), Terpenoid backbone biosynthesis and Pyruvate metabolism. The

PPAR signaling pathway, which includes the activation of PPARγ, is the key

mechanism in adipogenesis [145]. Hence, we selected this pathway for visualiza-

tion within the RAMONA framework (Fig. 8.4).

We observe that almost all targets of PPARγ, as well as PPARγ itself,

are up-regulated in adipocytes on mRNA level (blue nodes). Clearly affected

are the factors associated with the processes lipogenesis, fatty acid transport
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Figure 8.4: PPAR signaling network from KEGG [84], which was considered as
active by RAMONA on the two sets consisting of genes with differentially up-
regulated mRNA and hypomethylated promoters, respectively. The gene nodes
in the KEGG pathway are colored by RAMONA according to the presence in
the two gene sets. Blue nodes correspond to genes, which are contained in the
list of genes with differentially up-regulated mRNA. Yellow nodes correspond
to genes, which are part of both input gene lists. Green nodes are not part of
any input gene list. White notes are not part of the human pathway.

and oxidation as well as gluconeogenesis. Interestingly, almost all of the fac-

tors, which are associated with adipocyte differentiation, are up-regulated, too.

Among these factors, we observe that adiponection (ADIPO) is not only altered

on mRNA level, but also on methylation level (yellow nodes). Hence, we can

assume a regulatory effect of the DNA methylation on the mRNA expression

of the adiponectin gene. Recently, a relationship between reduced methylation

of the adiponectin promoter and the combined presence of obesity and insulin

resistance has been reported [47]. This supports our finding that changes in the

methylation pattern could actually regulate the activity of adiponectin, thereby

playing an important role in adipocyte differentiation. Abnormal methylation

patterns could then be a reason for irregular adipogenesis, which in turn may
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cause metabolic disorders like diabetes. We furthermore observe mRNA and

methylation changes for the LXRα gene. Differences in the methylation sta-

tus of the LXRα genes have also already been reported to be associated with

diabetes in rats [22].

8.3 Discussion and Conclusion

In this chapter, we introduced RAMONA, which is a web application for the

increased usability of the MONA framework. We integrated the single, cooper-

ative and inhibitory model in the RAMONA environment. RAMONA is built

upon a database, which is used for the mapping of gene identifiers and for the

association between genes and functional categories. In addition, it provides an

enhanced output of the MONA results, which includes the coloring of KEGG

pathways as well as the generation of term trees for GO.

The database structure of RAMONA is designed in a way that allows for

an easy extension of the provided ontologies and identifiers. We therefore aim

to successively increase the amount of ontologies for example by functional cat-

egories from WikiPathways [87]. In addition, the implementation of further

models could be considered.

We showed that the application of RAMONA on the mRNA expression

and DNA methylation data from the adipogenesis dataset allows us to gain

functional insight into the regulatory mechanism of adipocyte differentiation.

We could boil down the observed changes on mRNA and methylation level to a

set of active pathways and furthermore identify two genes, which are supposed

to be regulated by methylation changes. These genes are already known to

play a role in insulin resistance and might be potential subjects for further

investigations with regard to epigenetic regulation of adipogenesis.
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Summary & Outlook

The advances in large-scale experimental techniques for assessing molecular pro-

files in a comprehensive fashion enabled us to investigate molecular interactions

not only on a small well-defined scale, but also on a system-wide level. The

ability to measure various types of molecular features like RNA and protein

expression, DNA methylation or metabolite concentration furthermore allows

us to model complex regulatory relationships across different levels of gene ac-

tivity. Hence, we can gain a comprehensive understanding of gene regulatory

mechanisms in biological processes, which may be crucial for the investigation of

complex diseases. These processes include the differentiation of preadipocytes

into mature adipocytes, which are important players in the human energy home-

ostasis. It has been shown that adipocyte dysfunctions are directly linked to

diseases such as type 2 diabetes mellitus or cardiovascular diseases [59]. The

profound knowledge of complex molecular interactions throughout this process

is thus necessary to improve the understanding of such multifactorial diseases.

Even though the adipocyte differentiation process has been subject of many

studies already, its molecular properties are still not fully understood [145].

In this thesis, we investigated this process by integrating multilevel large-

scale molecular profiling data. We aimed to identify regulatory interactions be-

tween different molecular features, which are relevant among the different mech-

anisms of adipogenesis. The underlying study incorporated large-scale measure-

ments of mRNA and miRNA expression as well as DNA methylation, which were

123
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assessed prior and after the differentiation process of human adipocytes. In gen-

eral, these datasets comprise a large amount of data whose joint analysis is not

straight-forward. In order to build up an appropriate analysis pipeline for these

data, we introduced novel analysis techniques for the integration of multilevel

large-scale molecular profiling data together with prior knowledge from different

sources.

9.1 Summary

One important aspect in the differentiation process of adipocytes is the post-

transcriptional gene regulation through miRNAs [188]. The interplay between

miRNAs and mRNAs itself is a complex process, which is under the control

of further regulatory levels. We therefore initially aimed to reveal properties

of miRNA regulation itself. We could show that miRNA regulation often hap-

pens in a coordinated fashion, which leads to an increased coexpression among

miRNAs that target proteins from a common protein complex (Chapter 4). In

addition, we showed that targets of clustered miRNAs tend to be connected

more densely in a protein-protein interaction network.

By considering our findings on coordinated miRNA regulation, we proposed

a novel method called miRlastic (Chapter 5) to determine regulatory relation-

ships between miRNAs and targets, which are relevant for the adipocyte differ-

entiation process, on the basis of combined miRNA and mRNA expression data

and in silico target predictions. We used a multiple regression analysis approach

with elastic net penalty, which accounts for the co-expression among miRNAs

arising due to coordinated gene regulation. We could show that our approach

outperforms other common methods in the identification of previously validated

target interactions and in terms of arising false positives and false negatives on

simulated data.

Based on the inferred miRNA-mRNA regulatory relationships, we aimed to

determine whether adipogenesis-associated miRNAs play individual roles in cer-

tain biological processes. For this purpose, we introduced a method for local

enrichment analysis within miRNA-target networks using functional gene anno-

tations (Chapter 6). As we are able to assess the interaction strength between
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miRNAs and mRNAs, we included this information by calculating the shortest

paths among the genes in the network. We could identify certain functional

categories in our previously generated miRNA-mRNA network, which are sig-

nificantly locally enriched. We then assigned the enriched regions in our network

to the corresponding miRNAs. By doing so, we could show that certain groups

of miRNAs tend to act together individually in regulating essential processes of

adipogenesis. Especially the miR-30 family, which is up-regulated during adipo-

genesis, exhibited a conspicuous functional role in adipogenesis, which has been

also already suggested in the literature [186, 173].

As a next step, we introduced a multilevel enrichment analysis, which allowed

us to identify processes, which are affected during adipogenesis across different

molecular levels (Chapter 7). Since we may describe alterations of gene activity

not only on each of these levels separately, our approach combines them in order

to provide a better functional insight into the underlying molecular mechanisms.

Using this information, we could in turn infer the individual effect of changes in

mRNA expression, DNA methylation and miRNA regulation on the respective

process. We showed that the joint model-based enrichment analysis is actually

able to determine relevant processes for adipogenesis, which we do not observe

on any of the single levels. We designed our approach in a modular fashion,

which means that it can be easily adapted to any given experimental setup in

order to account for the corresponding molecular features. It can serve as a

powerful tool for the joint analysis of molecular profiling data, which might be

used by any applied researcher dealing with such kinds of data.

We thus introduced an implementation of our method in form of a web appli-

cation to facilitate the usage of our approach (Chapter 8). Our web application

can process several kinds of input gene identifiers for different species by includ-

ing a database that holds information from various resources. The database is

furthermore used to map the given input to functional categories. Whereas the

user has to specify this information in the standalone version, the web appli-

cation provides an automated mapping of the data. In addition, the enhanced

output makes it possible to determine the combined effects of the gene responses

across the given molecular levels. Using this approach, we were finally able not

only to infer affected pathways on the combined mRNA and methylation lev-
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els, but also to identify specific genes among these pathways, which might be

epigenetically regulated factors in the adipocyte differentiation process.

9.2 Outlook

For the methods and findings presented in this thesis, several extension may be

possible, which we will discuss in this section.

9.2.1 Methodological extensions

MiRlastic

• We tested whether we could improve our results by taking transcrip-

tion factor activity into account, which we define as the corresponding

mRNA expression. However, especially in mammalian systems, the

activity of transcription factors is not only determined on transcrip-

tional level, but rather post-translationally [78]. Instead of using the

mRNA expression to assess the transcription factor activity, we could

also consider the integration of further experimental data e.g. from

phosphoproteomics experiments [144].

• Since the techniques for measuring large-scale protein profiles are

constantly improving [4], we might consider the application of miR-

lastic not only on combined miRNA-mRNA data but also on miRNA-

protein data. This would allow us to to take not only mRNA degra-

dation by miRNAs into account, but also translational repression.

• Currently, miRlastic is implemented as a package for R [137]. To

facilitate the usability of miRlastic, we could provide a web imple-

mentation together with an optimized visualization of the output.

LEA

• We designed LEA specifically for the application on weighted miRNA-

target networks. However, the LEA approach could be also extended

for the application on any network that contains nodes with anno-

tated terms.
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• LEA is currently available as implementation for R [137]. Since the

outcome of LEA especially benefits from an appropriate visualization,

we could link it directly to a visualization tool. For this purpose, we

could consider the implementation of a plug-in for Cytoscape [158].

MONA

• The input of MONA currently consists of a boolean list, which indi-

cates whether a gene is altered on a certain level or not. However,

a continuous measure for this alteration would be more appropriate,

since we may account for the fact that larger changes might have

stronger effects than smaller ones. In addition, we do not necessar-

ily depend on an arbitrary threshold for differential changes in gene

activity. Our method could be improved by integrating the direction

of these changes. By knowing whether the activity of a gene is in-

creased or decreased, we could considerably improve the modeling of

the interactions between different molecular levels.

• The development of more and more powerful techniques for the iden-

tification of gene interactions allows us to determine regulatory rela-

tionships between the genes in our model [136]. By integrating these

interactions into the MONA model, we could further improve the

inference of term activity.

• We could further extend the joint analysis of multiple datasets to-

wards the integration of additional molecular levels that can describe

the activity of genes such as SNPs, metabolites or post-translational

modifications. For this purpose, we could adjust the MONA model

for example to account for enzymatic activity of genes.

RAMONA

• The RAMONA database currently includes functional categories from

KEGG [84] and GO [5]. We could extend the set of functional an-

notations by additional ontologies which may be retrieved from re-

sources such as WikiPathways [87] or REACTOME [26]. We could

furthermore add additional identifiers and species.
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• The output of RAMONA could be further enhanced in order to pro-

vide insight into the contribution of the individual molecular levels

to the resulting term activity. This could be achieved by an addi-

tional plot that highlights the outcome of the enrichment analysis

on the single levels. By showing the results of Fisher’s exact test

on the single levels, we could furthermore point out the reduction of

redundancy by using our model-based approach.

9.2.2 Follow-up studies on adipogenesis

• In the underlying study we focused on the molecular changes in adipo-

genesis. However, further phenotypic information could be included to

enhance the results such as the insulin sensitivity of the probands. This

could provide novel insights into the onset of type 2 diabetes.

• By integrating mRNA and miRNA data we were able to determine po-

tential miRNA-target relationships for altered miRNAs. To validate our

findings, experimental proof for the differential expression of the miRNAs

as well as for the miRNA-target interactions should be provided. To ex-

perimentally evaluate the functional effect of the miRNAs, transfection or

knock-down experiments would be necessary.

• Using three-level MONA, we find that all three molecular levels, mRNA

expression, DNA methylation and miRNA regulation, jointly influence the

process of adipogenesis. It would be worthwhile to further elucidate the

regulatory interplay between the associated genes, especially with regard

to epigenetic regulation.

9.3 Conclusion

In this thesis, we addressed the problem of data integration from different molec-

ular profiling experiments in order to provide useful tools for the identification

of functional and regulatory relationships between molecular features. Using

our methods, we were able to reveal molecular mechanisms, which are involved

in the differentiation of adipocytes. On the one hand, we could confirm previ-
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ously gathered knowledge on adipocyte differentiation, but on the other hand

also reveal novel insights. In conclusion, we showed that our proposed methods

are able to provide valuable results when applied on combined data from dif-

ferent molecular levels. We made user-friendly implementations of our methods

available for the research community in order to support the data analysis of

future studies.
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