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1 Introduction

Supernovae are powerful explosions when stars reach the end of their life. They
are fascinating phenomena that involve a broad spectrum of different branches of
physics. For some class of supernovae, core collapses, a neutron star comes into
existence. Their properties need to be described by high-density nuclear physics. To
describe the dynamics of the collapse and the explosion of the star we have to use
hydrodynamics. At the same time neutrinos play a very important role, which have
to be described by particle physics and their interaction with the stellar matter
has to be modelled with radiative transport methods. An accurate description
of a supernova thus becomes very complicated and can only be accomplished by
numerical simulations.

The type of supernova we are interested in are indeed such core collapse super-
novae. In this scenario the star collapses when its gas pressure, thermally generated
by the fusion of its light elements, becomes incapable of sustaining the star against
its own gravity. The core of the star collapses and the density of the inner core rises,
till nuclear density is reached. Then, strong nuclear forces appear and are enough
to hold the collapse. This sudden halt causes a slight rebound and a shock wave is
formed which moves outwards. From the outer hull of the star matter is still falling
onto the core which causes the shock to stall. At the high-density conditions in the
proto neutron star it becomes favourable for protons and electrons to transform
into neutrons and neutrinos,

p+ + e− → n+ νe.

Next to that, huge amounts of neutrinos are also thermally produced. These highly
energetic neutrinos slowly leave the core and might be capable of re-energising the
shock and thereby cause the explosion of the star, provided they deposit a fraction
of their energy on their way out.

An important subclass of this kind of supernovae are the so called Electron
Capture Supernova (ECSN). Most massive stars collapses with an iron core at the
end of their life. The least massive stars that still undergo a core collapse end up
with a strongly degenerate Oxygen, Neon and Magnesium core. There the collapse
is initiated by rapid electron captures on O, Ne, and Mg before a large iron core
has formed. These stars are interesting as they end up with a thin, loosely-bound
outer hull, due to their previous evolution. Therefore, the explosion is achieved
easily, while simulations of iron core collapses still have difficulties to predict robust
explosions. Also, more low mass stars exist than high mass stars – it was calculated
that ECSN could make-up up to ≈ 30% of all supernovae (Wanajo et al., 2009). A
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prominent example is the Crab Nebula, that was formed by the supernova observed
in the year 1054, that is thought to be the remnant of such an event.

Furthermore supernovae eject elements which where fused during the evolution
of the star, additionally more heavy elements can be produced during the explosion
itself. It is believed that ECSN might be able to produce r-process elements, as
their explosion is so fast that they might eject neutrino rich matter with the right
conditions for r-process nucleosynthesis to occur. As neutrinos play an important
role for the explosion, a sophisticated neutrino transport is needed to simulate
these kind of supernovae.

Between the first attempt to simulate a supernova and the formation of a neu-
tron star (Colgate et al., 1961) and today’s multi dimensional, even fully 3D,
simulations, (Nordhaus et al., 2010; Hanke et al., 2012; Burrows, 2012; Murphy
et al., 2013; Dolence et al., 2013; Couch, 2013; Hanke et al., 2013) several improve-
ments have been made. The important role of neutrinos for the explosion was
already suggested by Colgate and White (1966), and experimentally confirmed
when neutrino detectors observed a handful of neutrinos from a supernova in the
Large Magellanic Cloud in 1987. Epstein (1979) suggested that instabilities due
to convection should be considered, e.g. Colgate and Petschek (1980) simulated
therefore Rayleigh-Taylor instabilities within the core. Additionally Bethe (1990)
also mentioned the importance of convective instabilities outside the core. With
the improvement of computers more and more sophisticated simulations where
possible, and still improvements are made. But there are still some unknowns,
like purely constrained high-density nuclear physics, needed to describe the proto
neutron star (see e.g. Lattimer, 2006; Lattimer and Prakash, 2007; Steiner et al.,
2013). We have to deal with this by using a number of different models in the form
of Equation of State tables, given to us by nuclear theorists.

We hope to contribute to the knowledge about supernovae, by simulating ECSN
with a number of different Equations of State and improved micro physics, in
spherically and axially symmetric radiation-hydrodynamical simulations in general
relativity.

We will address the influence of general relativity on the explosion of the star and
the cooling of the proto neutron star. GR is necessary as both the proto neutron
star is a very compact object and the velocities in such a supernova explosion can
easily approach the speed of light. Most previous studies either approximated the
effects of GR or used a comparable less sophisticated neutrino treatment. Mart́ınez-
Pinedo et al. (2012) and Roberts (2012 and Roberts et al., 2012a) discovered that
previously published simulations with the VERTEX and VERTEX-CoCoNuT code
(which we also use here) neglected an important term in the neutrino-nucleon cross
section related to the nucleon mean-field potentials at high densities. This is
corrected in the simulations shown here and the influence of the correction will
be studied. Additionally, we will investigate the effect of convection and methods
to model this multi dimensional effect in spherical symmetry and compare this
to axially symmetric simulations. Wanajo et al. (2011, 2013a) noted that multi
dimensional simulations of ECSNe can eject also some neutron rich matter and
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could thus be a site for r-process nucleosynthesis. We will reinvestigate this with
our general relativistic code and better numerical resolution, and also over a longer
timespan than previous work. Furthermore, we are also interested in the influence
of different Equations of State, and will therefore make use of five different Equation
of State tables.

Organization of the Thesis

In this thesis we will first discuss the numerics of the code we used for our simu-
lations in Chapter 2. The rest of the thesis is split in to two main chapters, one
for the spherically symmetric (“1D”) simulations in Chapter 3, and one for the
axially symmetric (“2D”) simulations in Chapter 4. In the 1D chapter we will also
give a short overview over the progenitor we use and its explosion. The effects of
different energy and radial resolutions will be discussed. In the rest of this chapter
we will discuss the collapse and explosion of the star, the following cooling of the
proto neutron star, the neutrino driven wind, and the explosion energy. In each
of these sections we will discuss the influence of general relativity, the corrected
nucleon opacities, convection and the effect of different Equations of State.

In the 2D chapter we will additionally address the influence of the angular
resolution. We will show the neutrino signal, and early ejecta, for different Equations
of State. The cooling phase, and explosion energy, will be discussed on the example
of one long time 2D simulation and compared with 1D results.
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2 Numerical Implementation

2 x 3 macht 4
Widdewiddewitt und Drei
macht Neune!
Ich mach’ mir die Welt
Widdewidde wie sie mir gefällt

(Hey, Pippi Langstrumpf,
Astrid Lindgren, dt. Ver-

sion von Wolfgang Franke)

For our supernova simulations we use the VERTEX1- CoCoNuT2 code of the
Garching core-collapse supernova group. This code is the general relativistic version
(Müller et al., 2010, 2012b, 2013) of the VERTEX code, which is described in detail
in Rampp and Janka (2002) and Buras et al. (2006). The code is a hydrodynamic
solver with a neutrino radiation transport module. It is capable of multi dimensional
simulations. We use it to simulate the gravitational collapse and explosion of a
star at the end of its life. Furthermore we can follow the cooling of the so produced
proto neutron star.

The GR version of the code is described in great detail also in Müller (2009),
we will therefore only sketch the most important equations.

2.1 Hydrodynamics

The stellar plasma and the neutron star matter is treated as a fluid with a local
velocity ~v, baryon density ρB, pressure p and internal energy density ε. We have
to solve the Euler Equations of hydrodynamics, in Newtonian form these are:

∂

∂t
ρB +

∂

∂xi
(
ρBv

i
)

= 0, (2.1a)

∂

∂t
(ρBvj) +

∂

∂xi
(
ρBvjv

i
)

+
∂

∂xj
p = −ρB

∂

∂xj
Φ +QMj , (2.1b)

∂

∂t
(ρBε) +

∂

∂xi
(
(ρBε+ p)vi

)
= −ρBvi

∂

∂
xiΦ +QE + viQMi . (2.1c)

Note that i and j run from 1 to 3. The first equation is the continuity equation
followed by the momentum and energy equations. p and ε have to be given by
an Equation of State (EoS) and QM and QE respectively are the source terms of

1Variable Eddington factor Radiative Transfer for Supernova EXplosions
2Core Collapse with “Nu” (=new) Technology
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momentum and energy. Φ is the Newtonian gravitational potential. In general, the
EoS depends on the chemical composition to determine the pressure p. Therefore,
we also have to account for the advection of the chemical composition of the fluid
with equations similar to Eq. (2.1). The net electron fraction Ye is defined as the
ratio of the net electron per baryon number density,

Ye =
ne− − ne+

nB
, (2.2)

where n−e , n
+
e , and nB are the electron, positron and baryon number densities,

respectively. As a result of the neutrino transfer, a source term QN arises for Ye
due to electron flavor neutrino reactions, resulting in

∂

∂t
(ρBYe) +

∂

∂xi
(
ρBYev

i
)

= QN . (2.3)

Similarly, for the chemical composition of a nucleus k,

Yk =
nk
nB

, (2.4)

with source term QNk
, one has

∂

∂t
(ρBYk) +

∂

∂xi
(
ρBYkv

i
)

= QNk
. (2.5)

The grav. potential Φ in the Euler Eqs. (2.1b) and (2.1c) is the solution of
Poisson’s Equation,

∇2Φ = 4πGρB. (2.6)

In a supernova environment it is possible for the matter to reach very high
velocities. Even velocities higher than the speed of light were found in Newtonian
codes. Also, a neutron star or a black hole which are the possible results of a core
collapse supernova are genuinely relativistic objects. To consider this, we need a
relativistic treatment, which is done by the VERTEX-CoCoNuT code.

The Euler Equations in general relativistic form become a little bit more difficult.
A perfect fluid can be modelled with two conservation equations:
Particle number conservation,

∇µJµ = 0, (2.7)

with the baryonic rest mass current Jµ = ρuµ, uµ being the four-velocity, and
conservation of energy,

∇µTµν = 0, (2.8)

where Tµν is the stress-energy tensor,

Tµν = (e+ p)uµuν + pgµν . (2.9)

Here e = ρc2 +ρε is the total energy density, p the pressure, ρ the rest-mass density,
ε the specific internal energy density and gµν the metric tensor. Again ε and p are
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given by the EoS. All variables are measured in the local frame of the fluid and
µ, ν ∈ {0, 1, 2, 3}.

To be able to integrate Eqs. (2.7) and (2.8) as well as the evolution equation for
the metric numerically, we use the Arnowitt-Deser-Misner (ADM) 3+1 formalism
(Arnowitt et al., 2008) for the metric. Note that from here on for the rest of this
Chapter we use geometrical units with c = G = 1.
With that, the four-dimensional line element is set to

ds2 = gµν dxµ dxν = −α2dt2 + γij
(
dxi + βidt

)(
dxj + βjdt

)
, (2.10)

where α is called the lapse function, γij the induced three-metric tensor on each
hypersurface and βi the shift vector.

We use the conserved variables defined by Banyuls et al. (1997)

D = ρW rest mass density, (2.11)

Si = ρhW 2vi momentum density, (2.12)

τ = ρhW 2 − p− ρW total energy density, (2.13)

where h = 1 + ε + p/ρ is the specific enthalpy, W = 1/
√

1− vivi is the Lorentz
factor and vi = ui/(αu0) + βi/α is the three-velocity in the Eulerian frame. With
that we can finally write down the equations of general relativistic hydrodynamics
in flux-conservative form,

∂

∂t
(
√
γρW ) +

∂

∂xi
(√−gρWv̂i

)
= 0, (2.14a)

∂

∂t

(√
γρhW 2vj

)
+

∂

∂xi
(√−g

(
ρhW 2vj v̂

i + pδij
))

=

√−gTµν
(

∂

∂xµ
gνj − Γλµνgλj

)
+

(
∂

∂t
(
√
γSj)

)
C

, (2.14b)

∂

∂t

(√
γ
(
ρhW 2 − p− ρW

))
+

∂

∂xi
(√−g

((
ρhW 2 − p− ρW

)
v̂i + pvi

))
=

α
√−g

(
Tµ0 ∂

∂xµ
ln(α)− TµνΓ0

µν

)
+

(
∂

∂t

(√
γ
(
ρhW 2 − p− ρW

)))
C

, (2.14c)

see Müller et al. (2010). Here,
√−g = α

√
γ, with γ = det(γij), v̂

i = vi−βi/α, Γδµν
are the Christoffel symbols and δij the Kronecker delta.

Like in Eqs. (2.1) the first equation is the continuity equation, followed by the
momentum and energy equations.
Also the terms for the evolution equation of the chemical composition change in
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general relativistic form to

∂

∂t
(
√
γρWYe) +

∂

∂xi
(√−gρWYev̂

i
)

=

(
∂

∂t
(
√
γρWYe)

)
C

, (2.15a)

∂

∂t
(
√
γρWXk) +

∂

∂xi
(√−gρWXkv̂

i
)

= 0. (2.15b)

Again Eq. (2.15a) is the relativistic version of Eq. (2.3) and Eq. (2.15b) of Eq. (2.5).
The terms which are marked with a subscript “C” in Eqs. (2.14) and (2.15a) are

the source terms due to the exchange of momentum and energy with the neutrino
field and are explained in Müller et al. (2010) and the next section.

CFC

To solve the Equations for α, βi, γij we use the Conformal Flatness Condition
(CFC) approximation, this is described in detail in Dimmelmeier (2001).

In the CFC approximation we assume that the three-metric γij can be approxi-
mated as

γij = φ4γ̂ij =

φ4 0 0
0 φ4r2 0
0 0 φ4r2 sin2 θ

, (2.16)

where φ is called the conformal factor. This reduces the number of metric quantities
to five, φ, α, β1, β2, β3. We also demand that CFC is fulfilled instantaneously, which
allows us to get rid of the time derivatives. This results in equations for the lapse
function α, the conformal factor φ, and the shift vector βi,

∆̂φ = −2πφ5

(
ρhW 2 − p+

KijK
ij

16π

)
, (2.17)

∆̂(αφ) = −2παφ5

(
ρh
(
3W 2 − 2

)
+ 5p+

7KijK
ij

16π

)
, (2.18)

∆̂βi = 16παφ4Si + 2Kij∇̂j
(
α

φ6

)
− 1

3
∇̂i∇̂kβk, (2.19)

where ∆̂ and ∇̂ are the Laplace and covariant derivative operators for a flat three-
space, Kij is the extrinsic curvature and Si = ρhW 2vi.

2.2 Equation of State (EoS)

Initially the star is well described by an ideal gas, with densities . 1010 g/cm3.
Electron and positrons are treated as a Fermi gas with arbitrary degeneracy, and
the nuclei are treated as classical Boltzmann gases (Janka, 1999). For higher
temperature we also take nuclear reactions into account. We use two different
treatments, an approximate burning treatment and an accurate burning network,
see Section 2.3. For very high temperatures we assume nuclear statistic equilibrium
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Table 2.1: Properties of the five EoS we use in our simulations

K J L

LS180 180 MeV 28.62 MeV 73.83 MeV
LS220 220 MeV 28.61 MeV 73.82 MeV
SHEN 281 MeV 36.89 MeV 110.79 MeV
SKA 263 MeV 32.85 MeV 74.53 MeV
WOLFF 263 MeV 32.9 MeV

(NSE).3 To calculate this, we use a composition table as described in Buras et al.
(2006)

When the star collapses, we reach densities above 1014 g/cm3. The matter at such
high densities involves complicated nuclear physics. This can not be calculated
during the simulation. Thus we use high density EoS tables of nuclear physics
calculations and lookup the needed quantities. For the high density EoS we use in
total five different models. We use two different EoS from Lattimer and Swesty (1991
and Lattimer et al., 1985), with the nuclear incompressibility K = 180 MeV and
K = 220 MeV, which are based on a compressible liquid drop model. Additionally
we use another EoS from Lattimer (2009), called SKA. Also, we use the EoS
from Shen et al. (1998a,b) in the form of Shen et al. (2011), which is based on a
relativistic mean field model. Finally, we use also the EoS of Hillebrandt and Wolff
(1985), which was calculated by a Hartree-Fock method.

The nuclear parameters of this five EoS are given in Table 2.1, where K is
the nuclear incompressibility parameter, J the symmetry energy at the saturation
density, and L the logarithmic derivative of the symmetry energy. A detailed de-
scription of these properties can be found in e.g. Steiner et al. (2013). In Figure 2.1
we show the Tolmann-Pppenheimer-Volkov (TOV) (Tolman, 1939; Oppenheimer
and Volkoff, 1939) solution, that is, the structure equation for a static neutron
star configuration in GR, for the five mentioned EoS. Recent observations found
a neutron star with a mass of ∼ 2M�, (Demorest et al., 2010; Antoniadis et al.,
2013). This is a tight constraint for the EoS. We see in Figure 2.1 that the LS180
is the only one of the five EoS that can not fulfil this constraint. But the LS180
was used very often in previous work in the literature and we will therefore use it
as well, to be able to do a better comparison with existing results.

In Figure 2.2 we show the sketch of the partitioning of the high and low density
EoS setup. Up until the formation of a neutron star we use the schema on the left
hand side. TNSE is the transition temperature for NSE and is set to 0.776 MeV.
The value of ρlow depends on the high density EoS we use and is ∼ 106−8 g/cm3,
the exact values not relevant for the setup. The threshold density ρhigh is always
set to 1011 g/cm3.

After a neutron star is formed we switch over the scheme on the right hand side

3A condition where all nuclear reactions and their inverse reactions happen so fast (on the time
scales of the hydrodynamics) that an equilibrium composition is established immediately
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Figure 2.1: Mass-radius relation of the five EoS we used is shown in the upper panel, the
dot marks the most massive stable configuration. For the WOLFF EoS we could not
find a most massive stable configuration in the tabulated region. In the lower panels on
the left hand side are the β-equilibrium Ye values for a cold configuration (as cold as
possible for the irregularly tabulated WOLFF EoS), and the mass central energy-density
relation is shown on the right hand side of the lower panel.
Image credit: Lorenz Hüdepohl.

of Figure 2.2, where TNSE and ρhigh stay the same. At 30 ms after the neutron
star formation we reduce TNSE to 0.4 MeV/kB to account for the formation of
α-particles and the so-called α-effect, see Section 3.6.4.

2.3 Nuclear burning treatment

We use two different burning treatments for our simulations. One is an approximate
burning treatment described and implemented by Kitaura (2007, Appendix II D).
The other one is a full nuclear reaction network, implemented by A. Marek. The
approximate burning treatment uses the most important reactions of C12, O16
Ne20, Mg24, and Si28 burning. The network takes all possible reactions between
the traced species into account. Both burning treatments use additional electron
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Figure 2.2: Two different (ρ, T ) partition used for the different Equation of State par-
titions used for the simulations. The diagram on the left hand side shows the layout
during the collapse, on the right hand side the one used after the formation of the
neutron star. During the collapse we use the high density equations of state down to
lower densities for high temperatures than in the post collapse phase. The low density
regime is further split into, the nuclear statistical equilibrium regime, and an ideal gas
regime with the nuclear burning treatment.

capture rates from Takahara et al. (1989).

2.4 Neutrino transport

Depending on the density, neutrinos can either be fully trapped in the stellar
medium inside the core, interact with the stellar fluid, or at low density travel
freely and escape. Therefore, neutrinos have to be treated as radiation and must
be calculated using a Boltzmann treatment. In the Newtonian case the Boltzmann
equation is:

∂f

∂t
+ vi

∂f

∂xi
+

(
dpi
dt

)
∂f

∂pi
= C[f ], (2.20)

where C[f ] is the “collision integral” and f(~x, ~p, t) is the particle distribution func-
tion of a neutrino species. In our code we only model three kinds of neutrinos:
νe, ν̄e and the all heavy lepton neutrinos νµ, ν̄µ, ντ , ν̄τ combined as a single rep-
resentative species νx. This is justified as these heavy lepton neutrinos can only
interact with the medium by neutral current interactions, as the typical neutrino
energies are not enough to create large amounts of muons.

Usually the neutrino intensity I is used instead of the neutrino distribution
function f , which is related to I as

I =
ε3

h3c2
f. (2.21)

With this, we can rewrite Eq. (2.20) to

1

c

∂

∂t
I + µ

∂

∂r
I +

1− µ2

r

∂

∂µ
I = C[I] (2.22)
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Table 2.2: Neutrino interactions as used in our simulations. ν stands for any neutrino
or anti-neutrino, A represents heavy nuclei, N stands for neutrons or protons.

Reaction References

ν e± 
 ν e± Mezzacappa and Bruenn (1993a), Cernohorsky (1994)
ν A 
 ν A Horowitz (1997), Bruenn and Mezzacappa (1997)
ν N 
 ν N Bruenn (1985), Mezzacappa and Bruenn (1993b), Bur-

rows and Sawyer (1998), Horowitz (2002), Carter and
Prakash (2002), Reddy et al. (1999)

νe n 
 e− p –”–, Burrows and Sawyer (1999)
ν̄e p 
 e+ n –”–, Burrows and Sawyer (1999)
νeA

′ 
 e−A Bruenn (1985), Mezzacappa and Bruenn (1993b), Lan-
ganke et al. (2003)

ν ν̄ 
 e− e+ Bruenn (1985), Pons et al. (1998)
νν̄ NN 
 NN Hannestad and Raffelt (1998)

νA 
 νA∗ Langanke et al. (2008)
νµ,τ ν̄µ,τ 
 νeν̄e Buras et al. (2003)
↪ ↩νµ,τ ↪ ↩νe 
 ↪ ↩νµ,τ ↪ ↩νe Buras et al. (2003)

where µ = cos θ is the angle-cosine and vi
∂
∂xi

= µ ∂
∂r + 1−µ2

r
∂
∂µ was used. Eq. (2.22)

is a complicated integro-differential equation. In order to solve it we take angular
moments of Eq. (2.22). We define angular moments of I

{J,H,K,L, . . . }(r, t, ε) =
1

2

∫ +1

−1
µ{0,1,2,3,... }I(r, t, ε, µ)dµ, (2.23)

and take
∫ +1
−1 µ

ndµ of Eq. (2.22).

This gives an infinite system of moment equations,

1

c

∂

∂t
J +

1

r2

∂

∂r

(
r2H

)
= C(0), (2.24)

1

c

∂

∂t
H +

1

r2

∂

∂r

(
r2K

)
+

1

r
· (K − J) = C(1), (2.25)

1

c

∂

∂t
K +

1

r2

∂

∂r

(
r2L

)
+

2

r
· (L−H) = C(2), (2.26)

where C(n) denotes the n-th moment of the collision integral. In each equation
the next moment appears, therefore the system does not have a closure. We could
close the system would we know the Eddington factors

fK =
K

J
and fL =

L

J
. (2.27)

This is achieved in VERTEX by iterating system (2.24) - (2.24) together with a
simplified Boltzmann equation, see Rampp and Janka (2002). The neutrino transfer
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is coupled to hydrodynamical part via the source terms,

QE = −4π

∫ ∞
0

dε
∑
i

C(0)
νi (ε), (2.28)

QM = −4π

c

∫ ∞
0

dε
∑
i

C(1)
νi (ε), (2.29)

QN = −4πmB

∫ ∞
0

dε ε−1
(
C(0)
νe (ε)− C(0)

ν̄e (ε)
)
, (2.30)

to the hydrodynamical equations, mB is the baryon mass.

The general relativistic transport follows in principle the same concept. As the
equations tend to be very long we will only mention the important ones. A detailed
explanation can be found in Müller et al. (2010), once again G = c = 1. We also
use the moment definition as in Eq. (2.23), one finds for the first two transport
Equations,

∂W
(
Ĵ + vrĤ

)
∂t

+
∂

∂r

[(
W

α

φ2
− βrvr

)
Ĥ +

(
Wvr

α

φ2
− βr

)
Ĵ

]
−

∂

∂ε

{
WεĴ

[
1

r

(
βr − αvr

φ2

)
+ 2

(
βr − αvr

φ2

)
∂ lnφ

∂r
− 2

∂ lnφ

∂t

]
+

WεĤ

[
vr

(
∂βrφ2

∂r
− 2

∂ lnφ

∂t

)
− α

φ2

∂ lnαW

∂r
+ αW 2

(
βr
∂vr
∂r
− ∂vr

∂t

)]
−

εK̂

[
βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(
α

rφ2

)
+W 3

(
α

φ2

∂vr
∂r

+ vr
∂vr
∂t

)]}
−

WĴ

[
1

r

(
βr − αvr

φ2

)
+ 2

(
βr − αvr

φ2

)
∂ lnφ

∂r
− 2

∂ lnφ

∂t

]
−

WĤ

[
vr

(
∂βrφ2

∂r
− 2

∂ lnφ

∂t

)
− α

φ2

∂ lnαW

∂r
+ αW 2

(
βr
∂vr
∂r
− ∂vr

∂t

)]
+

K̂

[
βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(
α

rφ2

)
+W 3

(
α

φ2

∂vr
∂r

+ vr
∂vr
∂t

)]
= αĈ(0),

(2.31a)

13



for the J Equation and,

∂W
(
Ĥ + vrK̂

)
∂t

+
∂

∂r

[(
W

α

φ2
− βrvr

)
K̂ +

(
Wvr

α

φ2
− βr

)
Ĥ

]
−

∂

∂ε

{
WεĤ

[
1

r

(
βr − αvr

φ2

)
+ 2

(
βr − αvr

φ2

)
∂ lnφ

∂r
− 2

∂ lnφ

∂t

]
+

WεK̂

[
vr

(
∂βrφ2

∂r
− 2

∂ lnφ

∂t

)
− α

φ2

∂ lnαW

∂r
+ αW 2

(
βr
∂vr
∂r
− ∂vr

∂t

)]
−

εL̂

[
βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(
α

rφ2

)
+W 3

(
α

φ2

∂vr
∂r

+ vr
∂vr
∂t

)]}
+(

Ĵ − K̂
)[
vr

(
βr

r
− ∂βr

∂r

)
+

∂

∂r

(
Wα

φ2

)
− Wα

rφ2
+W 3

(
∂vr
∂t
− βr ∂vr

∂r

)]
+(

Ĥ − L̂
)[W 3α

φ2

∂vr
∂r

+
βW

r
− ∂βW

∂r
−Wvrr

∂

∂r

(
α

rφ2

)
+
∂W

∂t

]
−

WĤ

[
1

r

(
βr − αvr

φ2

)
+ 2

(
βr − αvr

φ2

)
∂ lnφ

∂r
− 2

∂ lnφ

∂t

]
−

WK̂

[
vr

(
∂βrφ2

∂r
− 2

∂ lnφ

∂t

)
− α

φ2

∂ lnαW

∂r
+ αW 2

(
βr
∂vr
∂r
− ∂vr

∂t

)]
+

L̂

[
βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(
α

rφ2

)
+W 3

(
α

φ2

∂vr
∂r

+ vr
∂vr
∂t

)]
= αĈ(1).

(2.32a)

for the H Equation, where the conformal factor φ, the lapse function α, and the
radial shift vector βr are the metric functions from the CFC approximation, W is
again the Lorentz factor.
Also here the Eddington factors fK and fL, are closing the system. The relativistic
form of the source terms in Eqs. (2.14) and (2.15a) is given by

(
∂

∂t
(
√
γS1)

)
C

=
√
γW (vrQE +QM ), (2.33)(

∂

∂t

(√
γ
(
ρhW 2 − p− ρW 2

)))
C

=
√
γW (QE + vrQM ), (2.34)(

∂

∂t
(
√
γρWYe)

)
C

=
√
γQN . (2.35)

with the quantities QE , QM QN from Eqs. (2.28) – (2.30)

The code is capable to do multi dimensional simulations. For that we solve a
spherically symmetric problem along each angular ray. Additionally we consider
the advection of trapped neutrinos between different rays in the neutron star due
to fluid motion. This is called ray-by-ray-plus method, see Buras et al. (2006).
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2.5 Nucleon potentials

Mart́ınez-Pinedo et al. (2012) and Roberts (2012); Roberts et al. (2012a) detected
that in the neutrino nucleon opacities of Burrows and Sawyer (1999) a term with
the nucleon mean-field potentials was not considered. This therm was therefore
also missing in all previous simulations done with the VERTEX and VERTEX-
CoCoNuT code. For fist simulations with the VERTEX code and the corrected
treatment see Hüdepohl (2014). Also here we used for most simulations the cor-
rected opacities.

2.6 Convection

Simulations in spherical symmetry (1D) can not model non-radial flows. For this
reason, they can not simulate truly multidimensional effects such as convection. To
compensate, Hüdepohl (2014) implemented a mixing length scheme in his thesis
to account for the additional matter fluxes due to convection. He could show that
with this treatment, the 1D simulations match multidimensional simulations more
closely and are especially important for the cooling phase.

For this reason, here we also ported his Newtonian version into the GR hydro-
dynamics part and use it in some selected models.

In spherical symmetry, a region becomes unstable against convective fluid mo-
tions if the Ledoux criterion is positive, that is if

Cled =

(
∂ρ

∂s

)
Y,p

ds

dr
+

(
∂ρ

∂Y

)
s,p

dY

dr
(2.36)

=
dρ

dr
− 1

c2
s

dp

dr
> 0. (2.37)

Müller et al. (2010) mentions that this should be modified in the relativistic case
to

Cled−GR =
dρ(1 + ε)

dr
− 1

c2
s

dp

dr
> 0, (2.38)

where ρ is the density, ε the specific internal energy density, cs the sound speed and
p the pressure. We also implemented this criterion next to the classical expression
of Eq. (2.37).

2.7 Simulations

In the following Chapters we will compare various models with each other. Table 2.3
give an overview of the names, and their meaning, of our spherically symmetric
simulations and Table 2.4 for the axially symmetric simulations.

Additionally, we will add the high density EoS we used to the name of the
simulations, if unclear.
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Table 2.3: Overview of the abbreviation used for the various spherically symmetric
models. E bins are the number of energy bins, ML is the mixing length convection
method used.

Model GR E bins
Nuclear
potentials

ML
Nuclear
reaction

p-newt -/- 21 -/- -/- Kitaura (2007)
std-12 X 12 -/- -/- Kitaura (2007)
std-21 X 21 -/- -/- Kitaura (2007)
np-12 X 12 X -/- Kitaura (2007)
con X 21 -/- Cled Kitaura (2007)
r-con X 21 -/- Cled−GR Kitaura (2007)
con-np X 21 X Cled Kitaura (2007)
r-con-np X 21 X Cled−GR Kitaura (2007)
net X 21 X Cled Network
r-net X 21 X Cled−GR Network

Table 2.4: Denotation of the models done for the axially symmetric simulations.

Model angular bins
angular
resolution

Energy
bins

Nuclear
potentials

128 128 1.44◦ 12 -/-
np-140 140 1.29◦ 21 X
np-280 280 0.64◦ 21 X

In the axially symmetric (2D) case the digit always gives the number of angular
(θ) zones, measuring the angular resolution. All 2D models were simulated with
the VERTEX-CoCoNuT code.

The non-relativistic models were provided to us by Hüdepohl (2009)
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3 Spherically Symmetric Simulations
(1D)

Pumbaa: Hey, Timon, ever wonder what
those sparkly dots are up there?

Timon: Pumbaa, I don’t wonder; I know.

Pumbaa: Oh. What are they?

Timon: They’re fireflies. Fireflies that, uh...
got stuck up on that big bluish-black
thing.

Pumbaa: Oh, gee. I always thought they
were balls of gas burning billions of
miles away.

Timon: Pumbaa, with you, everything’s gas.

(The Lion King)

Oxygen-Neon-Magnesium core progenitors are very interesting objects to study.
Nomoto (1983) wrote that an ONeMg core star could be a progenitor candidate
for the supernova that produced the Crab Nebula, due to the observed abundances.
It would produce a low explosion energy and the ejected Ni mass would also be
low. For a recent discussion see also Tominaga et al. (2013) and Nomoto et al.
(2014). Furthermore, this type of progenitor is the only one where a neutrino-driven
explosion does occur already in spherically symmetric simulations. It is possible
that supernovae from such stars might make up to ≈ 30% of all supernovae (Wanajo
et al., 2009),

The first, purely hydrodynamic simulations with Nomoto’s (1984) ONeMg pro-
genitor where done by Hillebrandt et al. (1984). They obtained a prompt explosion,
due to nuclear burning that increased the pressure behind the shock. Later simu-
lations by Burrows and Lattimer (1985) and Baron et al. (1987) could not verify
this, in fact they got no explosion at all. Nevertheless, Baron et al. (1987) hinted
that neutrino heating might cause an explosion at later times. When Mayle and
Wilson (1988) ran their simulations for a longer time, they indeed obtained such
an explosion via “late-time neutrino heating”. It was discussed that the different
outcomes (prompt explosion, no explosion at all, and neutrino-driven explosions)
where mostly a result of the different high density neutron star EoS used in the
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simulations. Nowadays the supernova community mostly agrees on the viability of
the delayed neutrino heating mechanism. Still, the question remained how much
impact the high density neutron star EoS has on an electron capture supernovae
(ECSNe). Kitaura et al. (2006) used in their simulations two different EoS, a rather
soft (LS180) and very stiff (WOLFF) one. They conclude that both simulations
lead to a neutrino-driven explosion. In fact even without neutrinos one finds an
“explosion”.

The ECSNe kept being of interest as it was suggested that the rapid expansion
of the shock surface could be a possible site for the formation of r-process elements.
Ning et al. (2007) could produce r-process elements on trajectories on the shocked
surface layers, if they assumed favourable conditions for the temperature, density,
entropy and electron fraction. Janka et al. (2008), however, could not back that
up with their hydrodynamical simulations, as they could never achieve similarly
favourable conditions for the r-process as had been assumed by Ning et al. (2007).
They conclude that the reason for that is that their simulated shock velocity is
much smaller than that assumed by Ning et al. (2007). Therefore, the expansion
timescale is too low in order to to eject matter with such a high entropy.

The shock region was not the only suggested site for r-process nucleosynthesis.
Woosley and Hoffman (1992), Hoffman et al. (1997), Witti et al. (1994), Takahashi
et al. (1994) suggested the neutrino driven wind, an outflow of matter that is lifted
by neutrinos leaving the surface of the proto neutron star as it cools. But to confirm
this, long-time (longer than 1 s) simulations with detailed neutrino transfer where
needed. Such kind of simulations were done by Fischer et al. (2010) and Hüdepohl
et al. (2010). Fischer et al. (2010) used the AGILE-BOLTZTRAN code with a full
nuclear network and the SHEN EoS to simulate a number of iron and the ONeMg
core for over 20 s. Hüdepohl et al. (2010) gave a direct comparison to Fischer
et al. (2010) with the VERTEX code and a comparably better neutrino rates
treatment. Both groups could not confirm that r-process conditions are present in
the neutrino driven wind. Both studies get a proton-rich wind and therefore no r-
process is possible. Even though, the neutrino driven wind keeps to be an interesting
site, as a weak r-process might still be possible there (Wanajo, 2013; Arcones and
Thielemann, 2013). Also, axially symmetric simulations showed that neutron-rich
ejecta are possible (Wanajo et al., 2011), due to early convective motions that are
able to eject neutron-rich matter more quickly than in 1D simulations, which will
be explored in detail in the next Chapter.

Müller et al. (2010) published first 1D results with the ONeMg progenitor and
the VERTEX-CoCoNuT code. They compared their results with the simulations
done by the post-Newtonian VERTEX version to test the long-time performance of
the code. They showed that the effective potential approach of the VERTEX code
is in good agreement with the relativistic one and that the VERTEX-CoCoNuT
simulations are stable also for long-time runs. We repeat those full relativistic
simulations over a longer timespan and also for different EoS. We used these models
as a comparison for our models with better resolution and to see the influence of the
EoS. Furthermore, we improved our simulations with a corrected nucleon potential
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treatment in the neutrino nucleon interactions and in the spherically symmetric case
also with a mixing length treatment to approximate multidimensional convection.
In some of our simulations we also used a nuclear burning network. All simulations
where done with five different EoS that cover a range from very stiff (WOLFF) to
soft (LS180).

3.1 Progenitor

For all our simulation we use one specific progenitor model, the Oxygen/Neon/Magnesium
(ONeMg) core progenitor from Nomoto (1984, 1987). We want to sketch a simpli-
fied evolution of this progenitor. Detailed information about the stellar evolution
and such kind of stars in general can be found in e.g. Kippenhahn et al. (2012)
and references therein.

This star belongs to the so called (Super-)Asymptotic Giant Brance stars (AGB
stars). This kind of stars have an initial mass or “zero age main sequence mass”
(ZAMS mass) between 8− 12 M� (Siess, 2006). They are the low mass end of star
which later undergo core collapse (Janka, 2012).

The structure of such stars is roughly the same, see Figure 3.1a, only the quanti-
tative elemental abundances might differ. AGB stars have H- and He-burning shells

H
He
C/O

(a) AGB phase

H

He

C/O
O/Ne
Mg

(b) Super-AGB phase

Figure 3.1: Composition of an star in the AGB phases

and a Carbon/Oxygen core due to the evolution they went trough. SAGB stars
can also ignite Carbon and end up with an Oxygen/Neon/Magnesium (ONeMg)
core as shown in Figure 3.1b.
The final fate of the star depends on its mass. More massive star can ignite Neon
and will probably go through all the nuclear burning stages of a massive star and
collapse with an iron core,

In less massive stars, Neon does not ignite and the core becomes strongly electron
degenerate (Nomoto, 1984). There, the electrons have to fill every low energy
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quantum state and additional electrons are forced to fill up quantum states with
higher and higher energies, as the same electrons can not occupy the same state
due to the Pauli exclusion principle. The resulting degeneracy pressure sustains the
core against its gravitational pull. The core still grows as it still accumulates the
ashes from the burning shells above. But it can only grow up to a certain critical
limit, the so-called “Chandrasekhar Mass”. This limit is reached when the electron
degeneracy pressure can not counter the force of gravity any longer. The inner core
of the star collapses. Due to the increased density it now becomes favourable for
the electrons to combine with the nuclei in electron-capture reactions. The emitted
neutrinos from the electron capture reactions carry away energy and lepton number
from the core. These electrons are now ”taken away” from the core, the degeneracy
pressure is reduced and the core collapses even more rapidly. In the case of the
ONeMg core, the most important electron capture reactions are (Nomoto, 1987):

24Mg + e− → ν + 24Na, (3.1)
24Na + e− → ν + 24Ne, (3.2)
20Ne + e− → ν + 20F, (3.3)

20F + e− → ν + 20O. (3.4)

As the core contracts, density and temperature rise and the conditions for Oxygen
ignition are reached, the released energy then quickly heats the matter into nuclear
statistical equilibrium (NSE). While the nuclear reaction release some amount of
energy, they do not halt the collapse, as the velocity of the resulting deflagration
front is much smaller compared to the infall velocity (Hillebrandt et al., 1984).
Actually, it can even accelerate the collapse, as electrons can now also be captured
on the ensemble of newly present elements in the NSE composition.

Figure 3.2 shows the initial mass fraction and electron fraction Ye using the
enclosed mass as a radial coordinate of the progenitor we use. Ye shows two drops
due to previous electron captures, the drop is more prominent in the NSE region
as there are more elements available which can capture electrons. In comparison
to that Figure 3.3 shows a profile of the mass fraction and density as a function
of radius.
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Figure 3.2: Initial composition and electron fraction Ye of the ONeMg progenitor. The
orange shaded region marks the area where the matter is in NSE.
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Figure 3.3: Profile of the initial mass fraction and density.The orange shaded area
marks the NSE region.

One can see that most of the mass of the star is contained in its very compact
(∼ 1000 km) ONeMg core. On the right y-axis, the steep density profile is also
shown. A sharp drop in density over many orders of magnitude separates the
ONeMg core from the H/He hull.

The stellar evolution of such stars is very difficult to model due to complicated
processes happening there, such as dredge-ups, flashes, stellar winds and the ac-
companied nuclear reactions, see Siess (2006) for an exemplary evolution of an
9.5 M� star. Thus, there are not a lot of progenitors published in the literature
that have been modelled up until the point of gravitational collapse. The one of
Nomoto (1984, 1987) is currently the only one available to us.
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Figure 3.4: Evolution of mass shells over time for the SHEN std-12 model. Colour coded
is the net neutrino heating(reddish) or cooling (bluish) over time. The time is normalized
to the moment of core bounce. The solid grey lines indicate mass shells separated by
0.05 M�, the dashed thick black line marks one solar mass and the dashed grey lines
above 1.36 M� are separated by 10−3 M�. The red line it the proto neutron star radius,
here defined as the density contour of 1011 g/cm3. The shock radius is marked with a
blue line.

3.2 Overview

Figure 3.4 gives an overview about the first second. As the behaviour is similar in all
our simulations we use a spherical symmetric (1D) simulation with the SHEN EoS
as an example. The figure shows the evolution of selected mass shells, and colour
coded the neutrino heating rate. From the time −0.05 s to 0.0 s the inner mass
shells are falling down, the inner core of the star is collapsing. During that phase
the nuclei in the core get compressed till nuclear density (ρnuc ≈ 2.7·1014 g/cm3) is
reached. Then, heavy nuclei dissolve into individual nucleons and the core becomes
a proto neutron star (PNS). The increasing pressure of the nuclear matter stops
the collapse. The core gets compressed a little bit more and bounces back, this
creates a shock wave, which travels out through the still in-falling matter.

Table 3.1 gives an overview of the different shock radii, enclosed masses and the
collapse duration for the different available models at bounce time. The difference
between the std-12 and np-12 model to the con-np and net model is mainly due
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Table 3.1: Various quantities at the moment of bounce, the shock radius (rsh), the enclosed
mass (Msh) and the collapse duration tcol.

Model LS180

rsh Msh tcol

[km] [M�] [s]

con-np-1D 10.23 0.414 0.061
np-12-1D 10.08 0.410 0.059
r-con-np-1D 10.24 0.414 0.061
std-12-1D 10.12 0.411 0.059
std-21-1D 10.26 0.412 0.062

Model LS220

rsh Msh tcol

[km] [M�] [s]

con-np-1D 10.09 0.427 0.060
np-12-1D 10.04 0.422 0.059
r-con-np-1D 10.03 0.426 0.060
std-12-1D 10.16 0.427 0.059
std-21-1D 10.08 0.421 0.061

Model SHEN

rsh Msh tcol

[km] [M�] [s]

con-np-1D 11.06 0.485 0.060
np-12-1D 11.19 0.488 0.058
r-con-np-1D 11.06 0.485 0.060
std-12-1D 11.08 0.486 0.059
std-21-1D 11.09 0.484 0.060

Model SKA

rsh Msh tcol

[km] [M�] [s]

con-np-1D 10.62 0.494 0.062
np-12-1D 10.57 0.494 0.061
r-con-np-1D 10.58 0.493 0.062
std-12-1D 10.58 0.494 0.061
std-21-1D 10.61 0.492 0.063

Model WOLFF

rsh Msh tcol

[km] [M�] [s]

con-np-1D 12.05 0.467 0.070
np-12-1D 11.94 0.466 0.067
r-con-np-1D 12.02 0.467 0.070
std-12-1D 12.08 0.467 0.068
std-21-1D 12.11 0.467 0.071
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Figure 3.5: Similar to Figure 3.4 but without neutrino transport, therefore no neutrino
heating and cooling. Note that also here the shock travels outwards, however, not all
of the matter behind it is ejected, but will fall back at some point.

to their different energy resolution, see Section 3.3.

From 0 s to around 0.1 s the outer layers of the star are falling through the shock,
whereby the heavy nuclei get photodissociated into nucleons. We saw in Figure 3.3
that the density profile of the star is very steep. Therefore, there is not enough
infalling matter to hold the outwards movement of the shock. Once the shock
passes the steep gradient if can move out freely.

The outer shells of the star get accreted onto the PNS while releasing their
binding energy in the form of neutrinos. Meanwhile, neutrinos from the surface
of the PNS get released. Those neutrinos carry away energy from the PNS and
are able to deposit some of it on matter behind the shock. This neutrino heating
region is the red shaded area in Figure 3.4. From around 0.08 s on we can see that
these heated layers expand, leading to an explosion. The blue shaded areas indicate
neutrino cooling, where the neutrinos take away energy by leaving the system. For
more details on this neutrino driven explosion mechanism, see e.g. Janka (2001).

As a comparison we show in Figure 3.5 a similar plot of a 1D simulation with the
SHEN EoS, but without any neutrino interactions allowed after the formation of
the proto neutron star. Again, the grey and black lines represent different enclosed
masses and red and blue are the PNS and shock radius, respectively. Due to the
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Figure 3.6: Evolution of mass shells over the time of the std-12 model with the LS220
EoS. Colour coded is the radial velocity over time. The green line it the proto neutron
star radius.

fact there a no neutrinos leaving the PNS it can not cool down and stays hot
and expanded. Also the shock on it’s own is not enough to trigger a explosion as
indicated by the still down-falling mass shells. Some matter gets blown away with
the shock but it is not enough to explode all of the outer hull of the star or to
attain similar explosion energies as with neutrino heating.

We found that the evolution of the collapse is very unstable against small changes.
An example of a peculiar case is shown in Figure 3.6, where we colour coded the
radial velocity. We see two separated regions with outwards movement, one behind
the shock tat formed at the birth of the proto neutron star, resulting in the explosion
we also saw in Figure 3.4. The other one starts around 0.06 s, where the increased
velocities of the outer shell show another outwards moving shock. We find that
this second shock front comes from explosive burning of the intermediate mass
elements, such as Mg and Si. This effect occurred in some of our simulations with
the LS220 EoS and in most of the simulation done with the full burning network.
We find that slight adjustments of typically inconsequential numerical parameters
or even the use of different compiler or compiler version can trigger or inhibit this
apparently chaotic phenomenon.
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3.3 Resolution study

Marek (2007) pointed out that it is always nice to know that your simulations
are stable against changes in the numerical resolution. In our simulations with
the VERTEX-CoCoNuT code the most important dimensions are firstly the grid
in neutrino energy space, secondly the grid in radial direction, and thirdly – for
the axially symmetric (2D) simulations – the angular grid. In this section we will
discuss the effect of changing the first two on the basis of the neutrino signal. The
2D case will be discussed in Section 4.1.

The neutrino luminosity is the total amount of neutrino energy emitted through
a spherical surface per unit time. Also of interest is the neutrino mean energy,
which is defined as the ratio of neutrino energy density J over neutrino number
density J ,

〈ε〉 =

∫
J dε∫
J dε =

∫∞
0 dε

∫ 1
−1 dµ I(ε, µ)∫∞

0 dε
∫ 1
−1 dµ ε

−1I(ε, µ)
, (3.5)

where I is the neutrino intensity.

3.3.1 Energy resolution

The energy grid consist of geometrically spaced energy bins over the energy range
of 0 MeV − 380 MeV. Mostly, the VERTEX-CoCoNuT simulations are done with
12 energy bins, as the relativistic treatment is already computationally expensive.
But for a better comparison with the non-relativistic simulations from Hüdepohl
et al. (2010), see Section 3.4.1, we also performed simulations with 21 energy bins.
Figure 3.7 shows the resulting neutrino signal for different EoSs. All quantities
were taken at a radius of 500 km and we considered the redshift to infinity and
the doppler shift from the co-moving frame. On the left hand side we see the
luminosities and on the right hand side the mean energies. The Lνe has a local
maximum peak even before the core bounce, we concur with Hüdepohl (2014)
that this peak comes from a semi-transparent region before the proto neutron
star is formed. This first maximum is followed by the νe breakout burst, when the
neutrinosphere becomes transparent for the electron neutrinos. When we analyse
the model with 21 energy bins (std-21) and the model with 12 energy bins (std-12)
we see, that the luminosity signal is very similar up to the time of bounce. After
that, the std-21 model shows a higher electron neutrino burst than the 12 bin
model. The Lν̄e and Lνx look the same for the first 50 ms.

The mean energies differs visibly before the time of bounce. Note that only the
mean energies of the electron neutrinos are well defined during collapse, as there
are practically no ν̄e and νx neutrinos emitted during that time. After bounce the
〈ενe〉 of the 21 bin model is higher than in the 12 bin case. The 〈εν̄e〉 shows the
same behaviour. The 〈ενx〉 of the std-21 model on the other hand is for a short
moment after bounce lower than in the std-12 model, till it also gets higher. Theses
effects are seen in all five EoS shown in Figure 3.7. We indicated already that the
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Figure 3.7: Comparison of the neutrino signal for simulations for the first 50 ms with
different numbers of energy bins and for all five EoSs. On the right hand side, of each
panel, is the neutrino luminosities and on the left hand side the neutrino mean energies.
The colours represent the neutrino species, electron neutrinos νe (black), anti-electron
neutrinos ν̄e (red) and heavy-lepton neutrinos νx (blue).
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energy resolution has some effect on the collapse duration. Therefore, we compare
std-12 and std-21 model in more detail. In Table 3.1 the influence of the number
of energy bins on to the collapse time and the shock formation radius as well as
the enclosed mass at that time can be seen. The strongest effect is visible in the
collapse time, which can vary around 1− 3 ms depending on the resolution. The
enclosed mass and the shock radius at the moment of bounce stay roughly the
same, however.

We also wanted to see if the resolution has any affect on a longer timescale.
Figure 3.8 therefore shows the neutrino signal up to 4 s post-bounce for models
with four different EoS, and 2.5 s post-bounce for the models with the WOLFF
EoS in Figure 3.9.

For the luminosities we do not see a huge difference. Only if we look very
closely we see that the luminosities for the electron and anti-electron neutrinos are
minimally higher for the 21 energy bin model than for the 12 energy bin model,
whereas the luminosities for the heavy lepton neutrinos of the 21 energy bin model
are lower. For the energies, we actually can see a difference. We see the strongest
effect for the heavy lepton neutrinos, where the std-21 model has lower energies
than the std-12 model. The same is true for the anti-electron energies. The electron
neutrino energies of both models are very close. But we see that the model with
the 21 energy bins has a slightly higher mean energy than the 12 energy bin model.
This is found for all the Equations of State, shown in Figures 3.8 and 3.9.

To quantitatively assess the impact of the higher energy resolution, we compare
in Tables 3.2 and 3.3 the time averaged neutrino parameters after a few seconds
for these models. Shown are the neutrino mean energies whose time evolution we
saw in the figures before, the number of emitted neutrinos N , and the cumulatively
emitted total neutrino energy E, which is defined as

Etot
ν (t) =

∫ t

−∞
Lν(t′) dt′. (3.6)

We see that all in all the relative changes stay within 3 % at worst. The total
emitted electron neutrino energy Eνe shows the highest difference between the 21
and 12 energy bin models.

The transport of our code is already quite expensive, therefore simulations with a
lower number of energy bins are thus acceptable, although simulations with higher
energy bins are certainly preferred. We simulated most of our simulations with 21
energy bins. As those models are computational more expensive, and evolve slower
than models with 12 energy bins, we continued the models that had been set-up
with 12 energy bins. Especially the models with the corrected nucleon potentials,
because we were interested in the late time effect of those models in particular.

3.3.2 Radial resolution

For the ONeMg progenitor we also need to have a good radial resolution to represent
the steep density profile of the star, see Figure 3.3. Therefore, we already use more
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Figure 3.8: Similar to Figure 3.7 but for the first 4 seconds post-bounce. The upper panels
in each sub plot show the electron neutrinos, the middle the anti-electron neutrinos,
and the lower the heavy lepton neutrinos.
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Table 3.2: Time averaged neutrino mean energies and total number of emitted neutrinos
for the first four seconds after bounce, for four EoSs and the models with 12 and 21
energy bins. Note that to get the total emitted neutrino number/energy one has to
weight the νx with a factor of four, as they only represent one of the four heavy lepton
neutrino kinds (νµ, ν̄µ, ντ , ν̄τ ).

Model LS180

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

std-12-1D 10.1 12.8 13.1 1.68 1.08 1.08 27.2 22.2 22.8
std-21-1D 10.2 12.8 13.0 1.69 1.09 1.09 27.8 22.4 22.7

Model LS220

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

std-12-1D 10.1 12.9 13.1 1.70 1.09 1.09 27.6 22.5 22.9
std-21-1D 10.2 12.8 13.0 1.71 1.10 1.09 28.1 22.6 22.8

Model SHEN

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

std-12-1D 9.7 12.2 12.4 1.74 1.11 1.08 27.0 21.8 21.4
std-21-1D 9.8 12.2 12.3 1.75 1.12 1.08 27.5 21.9 21.3

Model SKA

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

std-12-1D 9.8 12.4 12.5 1.75 1.13 1.11 27.5 22.5 22.2
std-21-1D 9.9 12.4 12.4 1.77 1.14 1.11 28.0 22.6 22.1

Table 3.3: As Table 3.2 but only for the first 2.5 s for the models with the WOLFF EoS.

Model 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

std-12-1D 9.5 12.2 12.3 1.59 0.97 0.89 24.2 18.9 17.6
std-21-1D 9.7 12.2 12.3 1.59 0.97 0.89 24.7 18.9 17.4
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Figure 3.9: As Figure 3.8 but for the WOLFF EoS.
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Figure 3.10: Radial resolution for the first two grids used in our simulations. The black
line shows the initial radial resolution of all our models. The red line gives an example
of a possible first grid refinement.

radial zones than is common for other progenitors. In our case we simulate all
models with 1400 radial zones initially. The radial resolution ∆r/r is shown in
Figure 3.10. We made some tests with an even higher radial resolution using 1600
zones and 1800 zones, which did however not change the results measurably.
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Figure 3.11: Comparing the neutrino luminosities and mean energies of a model which
was refined when needed (solid lines) with one which was not refined at all (dashed lines),
on the bases of the SHEN EoS. The values were extracted at 500 km and transformed
into a resting observer’s frame.

As the simulation progresses, the proto neutron star shrinks. Therefore, we
have again a steep density profile which we want to resolve as best as possible,
considering also that this is the region most important for the transport of the
escaping neutrinos. To achieve this we have to refine our radial grid periodically
as the simulation progresses. An example of such a refinement is also illustrated in
Figure 3.10. We found that it has a great effect if we do not refine the simulations,
see Figure 3.11, where we compare a model which we refine when ever found
necessary, and a model which we did not refine at all during the simulation. We see
that the luminosities and energies of the unrefined model starts to rise above the
refined model, at a certain point. This sharp rise is clearly an unphysical behaviour.
We usually refine our models the first time around 70 ms post-bounce, which is way
before the time we see first resolution effects (≈ 200 ms). Note also that all curves
show a small irregularity at around 0.07 s. This is due to a numerical artefact and
visible in all our models: When the shock front passes through 500 km, where we
typically evaluate the neutrino signal, the velocities there get very high and when
we then transform the co-moving neutrino signal into the observer frame, slight
inaccuracies in the transformation are greatly amplified.

We can safely say that 1400 radial zones at the beginning of the simulation are
reasonable and the radial grid should be refined during the simulation as often as
needed in order to resolve the neutron star’s surface.

3.4 Early Phase

The Neutrino signal is the first and possibly only sign we might get from a core
collapse supernova. Neutrinos also play an important role for the explosion of the
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star. For the famous supernova SN1987A, several neutrino events where detected,
eleven by Kamiokande II (Hirata et al., 1987), eight in the IMB water-Cherenkov
detector (Bionta et al., 1987) and possibly also five from the Baksan scintillator
detector (Alexeyev et al., 1988). These events occurred before the first photons
from SN1987A where visible, as it takes hours to days for the shock wave to reach
the visible surface of the star. Currently running detectors are even linked together
in the SuperNova Early Warning System (SNEWS) in order to alert astronomers
in advance when a galactic supernova happens. Future detectors are planned
which could even detect a neutrino signal beyond the Milky Way (Scholberg, 2007).
As ECSN could make up to ≈ 30% of all supernova (Wanajo et al., 2009), it is
interesting what kind of neutrino signal one could expect from them.

In this section we will investigate the neutrino signal for the first 500 ms for
different models, starting with the comparison between our GR models with the
post-Newtonian models from Hüdepohl (2009). Then, we will concentrate purely
on our GR models and demonstrate the evolution of our models as we include
more and more relevant physics, step by step.

3.4.1 GR vs. Post-Newton

We want to do a comparison of models with and without GR to see the effects
from the fully relativistic treatment, when using similar neutrino physics. To do
so, Lorenz Hüdepohl kindly provided us with his simulation data from Hüdepohl
(2009). They are simulated with the VERTEX code and a pseudo relativistic
potential, to mimic the most important effects of a general relativistic potential,
which also includes simulations for the LS180, SHEN and SKA EoS. The initial
set-up was done with 1600 radial zones and 21 energy bins. We will compare those
to our 21 energy bin simulations with the fully relativistic treatment. We saw in
Section 3.3.2 that the difference of the radial zones between Hüdepohl (2009) and
our simulation has no effect.

First of all, the most visible improvement is the velocity. Müller et al. (2010)
already stated that in the post-Newtonian simulations the shock gets accelerated
over the steep density profile so fast that it reaches velocities way above the speed
of light. Therefore, also the shock radius is higher as illustrated in Figure 3.12.
On the left hand side we see the velocity evolution over time and on the right the
shock radius as it moves outwards for the GR and the post-Newtonian simulations.
In the post-Newtonian case we get maximum velocities of 5.3 c, whereas in the GR
case the velocities obviously stay always below c, as expected.

The influence on the neutrino signal is less pronounced. In Figure 3.13 we show
the first 500 ms of the neutrino signal for all available EoS. In the top panel of all
figures the electron neutrinos are shown, followed by the anti-electron neutrinos
in the middle and the heavy lepton neutrinos at the bottom. On the left hand
side are always the luminosity and on the right hand side the mean energy. All
in all the neutrino signal of the GR simulations are all at a slightly lower level
than those on of the post-Newtonian ones. Also the neutron star radius is lower,
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Figure 3.12: Comparison of the GR (black line) and post-Newtonian (red line) models.
On the left hand side we see the velocity evolution over time. On the right hand side
we have the evolution of the shock radius over time.

and contracts faster for the GR model than for the p-newt model, we define the
neutron star radius as the density contour of ρ = 1011 g/cm3. The neutron star
mass is very similar, as we see in Figure 3.14.

To first order one can assume that the luminosity is proportional to the proto
neutron star radius and surface temperature, Lν ∝ T 4R2, and 〈εν〉 ∝ kBT . With
this we would expect, judging from the difference of the neutron star radius, an
even bigger difference between the luminosities of the GR and post-Newtonian
models than we see in Figure 3.13. Of course, this is just a crude approximation,
which shows that we can not so easily estimate the influence of GR.

3.4.2 Nucleon potentials

A further improvement was done for the neutrino nucleon opacities. As already
stated in Section 2.5 the simulations before were not taking the nucleon potentials
into account for the neutrino nucleon interactions. As this affects νe and ν̄e dif-
ferently, we want to discuss in this section what the impact of this improvement
is on the neutrino signal. We compare therefore in Figure 3.15 models done with
the SHEN EoS which do and do not have the corrected nucleon opacities. We see
that both models have similar luminosities for the first 0.15 s. At later times the
luminosities of the corrected nucleon opacities model are below the other models
luminosities. This is seen more prominent in νe and νx than in ν̄e. Mart́ınez-Pinedo
et al. (2012) shows the same trend, using the SHEN EoS, in the first 0.5 s of their Fig
2 (upper left panel). We can compare our np-12 model with their RMF “(Un,Up)”
and our std-12 with their “(Un,Up) = 0” model.

In case of the mean energies, the model with corrected nucleon opacities has
lower energies than the model without for the νe and νx. For the mean energy of
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Figure 3.13: Comparing the neutrino signal of the GR and post-Newtonian models over
the first 500 ms, for the three different EoS.
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Figure 3.14: Comparing the time evolution of the proto neutron star mass Mpns (upper
panel) and proto neutron star radius rpns (lower panel) of the GR models with the
post-Newtonian models.
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Figure 3.15: The neutrino signal of models with the SHEN EoS with and without the
corrected neutrino nucleon opacities. Shown are the first 500 ms at a radius of 500 km
transformed into a resting lab frame. We see on the left hand side the time evolution of
the neutrino luminosities and on the right hand side the time evolution of the neutrino
mean energies. As before the top panel shows the electron neutrinos νe, the middle one
the anti-electron neutrinos ν̄e, and the bottom one the heavy-lepton neutrinos νx.

the ν̄e, the corrected model has a slightly higher energy than the std-12 model.
This is also in agreement with Mart́ınez-Pinedo et al. (2012) as we see in his Fig.
2, lower left panel.

Comparing those observation with the simulation of the LS180, SKA, and
WOLFF EoS, at the end of this Chapter, we can see similar effects, more or
less pronounced. The luminosities show more diversity between the different EoS.
The WOLFF EoS models, shows the smallest relative influence compared to the
other EoS. For the mean energies, we see that the relative influence of the nucleon
potentials is very similar for all EoS.

Mart́ınez-Pinedo et al. (2012) and Hüdepohl (2014) show that the main influence
of the nucleon potentials occurs during the cooling phase of the proto neutron star.
We will also see this in Section 3.5.2.

3.4.3 Convection

Hüdepohl (2014) already confirmed that the convection treatment helps to improve
1D simulations and make them more comparable to axially symmetric (2D) simula-
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tions. We want to confirm this with our own simulations that now also include GR.
We use both convective cases described in Section 2.6. The Newtonian version of
Eq. (2.37) was already implemented and well tested with the VERTEX code, see
Hüdepohl (2014). Therefore, we adapted his version to the GR module and made a
number of test runs with this implementation before conducting simulations with
the relativistic criterion of Eq. (2.38).

We actually find that the Newtonian convection criterion agrees better with the
2D simulations than the relativistic convection criterion, see Figure 3.17. The reason
for this could be that the larger convectivly unstable region in the Newtonian case
better models the overshooting in the multidimensional simulation, another reason
could be that there are still some unresolved numerical problems for the relativistic
criterion. Also, the neutrino pressure and energy density would in principle also
need to be included in Eq. (2.37) and (2.38) which should be explored in the future.
We kept both cases running with the VERTEX-CoCoNuT code, to compare the
effects of both criteria.

To show the differences of those two treatments we made a similar plot as
Figures 3.2 and 3.3 from Hüdepohl (2014), to illustrate the convective regions, see
Figure 3.16. We see the time evolution of the convective regions of a 2D and a 1D
model with the WOLFF EoS. The green region shows the convectively unstable
area in the Newtonian case, and the cyan region for the relativistic treatment.
To illustrate the convective unstable region of the 2D model we mark the lateral
velocities above certain values.

We see two distinct convectively unstable regions. A short lived convection in the
core at lower radii and the classical proto neutron star convection, visible for the
whole time. We see that the green region is extended over a wider range than the
cyan area, especially over the first 0.3 s. Although both treatments lay on top of the
convectively unstable area of the 2D model, they do not fully cover the actual area.
This might also be due to overshooting, which happens when convective matter is
carried into the surrounding convective stable region by its momentum. The 2D
model also shows lateral velocities above the PNS radius in the accretion layer,
which can not be modelled by a simple mixing-length scheme. We thus allow the
mixing length scheme only to work within the proto neutron star.

We want to look at the effect the different convectively unstable areas have
in our simulations. Therefore we compare a 2D model of the WOLFF EoS with
a non-convective 1D model and two 1D models with convection, one with the
relativistic and one with the Newtonian mixing length convection treatment. For
this comparison we used models with the same radial and energy resolution, to rule
out differences due to that. Also, all models where simulated without the corrected
neutrino nucleon opacities as the longest running 2D WOLFF model was set-up
without them and to concentrate on the effect of the convection treatment alone.
In Figure 3.17 we show in the upper panels a profile of the electron fraction Ye,
entropy s, and temperature T of those models, at a time 125 ms post-bounce. We
see that the electron fraction and entropy are the most affected quantities. We also
see that the Newtonian convective treatment matches the 2D simulations better

38



0.0 0.1 0.2 0.3 0.4 0.5

t [s]

106

107

108
r

[c
m

]

Figure 3.16: The lateral velocities higher than 1000, 2000, and 3000 km/s of the 2D model
where used to indicate its convection. The green shaded region shows the region where
a 1D model would have its convective instable region if the newton Ledoux criterion
was used. The cyan shaded region, is the convective instable region for the relativistic
Ledoux criterion. The blue lines represent the proto neutron star radius, solid for the
2D model, dashed for the non-convective 1D model.

then the relativistic one, which stays closer to the non-convective model.

The lower panels of Figure 3.17 show a direct comparison of the Newtonian
convective treatment, left side, and the relativistic convection treatment, right side,
with the non-convective model. There, we show the profile, also at 125 ms post-
bounce, of the Brunt-Väisälä frequency ωBV , a direct measure of the growth rate
of a convective instability. We see that in both cases the convective peak around
20 km of the non-convective model is flattened in the case of the models with
mixing length convection. Note that the second smaller peak at around 100 km is
not flattened by the convective models, as it is outside the PNS.

The different convection treatment also affects the neutrino signal. In Figure 3.18
we show luminosities, left hand side, and the mean energies, right hand side, of the
same models as in Figure 3.17. We see again that the convective model with the
Newtonian criterion comes closer to the 2D model than the one with the relativistic
version. In all flavors is the neutrino luminosity of the 1D non-convective model
below the other models. The gap between the 1D non-convective model and the
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Figure 3.18: Comparing the effects of a convective treatment in 1D on the neutrino
signal with 2D. Note that the 2D mean energy is averaged over all angles.

2D model increases from the Lνe to Lν̄e to the Lνx . While the 1D Newtonian
convective model stays closely below the 2D model, the 1D relativistic convective
model is still very similar to the 1D non-convective model. Even tough the Lνe
are less affected, the 1D model with Newtonian convection agrees better with 2D
model than the other two.

For the mean energies of the 2D model we used an angular averaged mean energy,
for a better comparison, similar to Eq.(3.5) defined as the angle-integrated neutrino
energy density over the angle-integrated number density,

〈ε〉Ω =

∫
Ω

∫∞
0 dε

∫ 1
−1 dµ I(ε, µ, θ, φ)∫

Ω

∫∞
0 dε

∫ 1
−1 dµ ε

−1 I(ε, µ, θ, φ)
. (3.7)

We see that the mean energies of the 2D model are a bit higher than the 1D models,
especially in the 〈ενx〉 case. Although the differences are minimal, we can, at least
for the νx mean energies, see that again the model with the Newtonian convection
criterion agrees better with the 2D case than the model with the relativistic
convection criterion.

In Figure 3.19 we see that the proto neutron star radius for the 2D and convection
models is higher than the for the non-convective model. This explains the shallower
luminosity of these models. The luminosity can be estimated on the basis of the
proto neutron star (PNS) radius with Lν ∝ R2T 4. As the mean energies of the
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Figure 3.19: Comparison of the proto neutron star between the non-convective 1D model,
the two convective 1D models and a 2D model.

models are quite similar to each other, we can ignore the temperature component
as 〈εν〉 ∝ kBT . And we find that the relative difference of R2

PNS matches the
relative differences of the luminosities of the different models, the different PNS
radius thus seems to be the dominat source for the different luminosities.

(We chose the WOLFF EoS for this comparison as it is the 2D model which has
been simulated longest.)

We also want to investigate the relative effects of a convective model compared
to a non-convective model in 1D and with different EoS. Note that from here on
the convective models with both types of convection are also simulated with the
corrected neutrino nucleon opacities.

In Figure 3.20 and 3.21 we show the neutrino signal of all our models with the
five different EoS. To look only at the effect of the convection on has to compare
the convection models (con-np, r-con-np) with the non-convective models with
corrected neutrino nucleon opacities (np-12). In our simulations all the luminosities
of the convective models are higher then those of the non-convective models, for all
EoS. But the luminosity of the different EoS models vary in the relative influence
of the convection. The LS180 (the softest EoS) model shows the biggest differences,
the WOLFF (the stiffest EoS) model the lowest. Also we see, as mentioned above,
that the Newtonian convective models have higher luminosities than the relativistic
convection models. For the relativistic criterion the highest difference to the non-
convective model are also found for the LS180 and the lowest for the WOLFF
EoS.

The effect of the Newtonian convection models are comparable to Hüdepohl
(2014). But one should consider that in these models the accretion phase is much
longer and the explosion has not occurred in the first 0.5 s. A better comparison
can be done in the later cooling phase.

The relative influence of the convection on the mean energies is very similar
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Figure 3.20: Neutrino signal for all models for four different EoSs.
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Figure 3.21: Neutrino signal for all models with the WOLFF EoS.

for all EoS and also for the Newtonian and relativistic convection. After 0.3 s the
νe mean energies are always higher for the convection models than for the non-
convective models, as are the ν̄e energies, for all EoS. The same effect is seen for
the νx mean energies, but more pronounced. This is in contrast to Hüdepohl (2014)
where his Table 3.4 shows that the mean energies are lower for the first 0.5 s. The
reason is that in his models the accretion is still ongoing during the first 0.5 s. If
we compare our models with the later cooling phase of the models in Hüdepohl
(2014), e.g. his Figure 5.3, we see that the mean energies for the first few seconds
are also higher there for the convection models than for non-convective ones.

In our simulations the higher luminosities for the convective models goes hand in
hand with the increased proto neutron star radius, which we show in Figures 3.22
for each EoS. We see that the proto neutron star radius for the convection models
follows the non-convective models for the first ∼ 0.15 s, in the Newtonian cases, and
∼ 0.25 s for the relativistic cases. After that the radius gets larger for the convection
models than the non-convective models, just like the luminosities, which also get
higher after ∼ 0.15 s, ∼ 0.25 s, respectively.

All five EoS show similar behaviour in the relative differences of the models. Only
the LS180 EoS shows some peculiarity around the formation of the proto neutron
star, where the Newtonian convective model is higher than all other models. This
might be due to an extended “prompt” convection region.
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Figure 3.22: The proto neutron star radius for all models with the five different EoS in
the first 500 ms.
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Figure 3.23: Comparing the mass fraction and Ye of the models with and without network
burning treatment at the time of bounce. Exemplary for the models with the SHEN
EoS, at the moment of core bounce.

3.4.4 Network

The next step of improvement are simulations done with the full nuclear burning
network instead of an approximative burning treatment, see Section 2.3. The
neutrino signal of the simulations with the network shows almost no difference
to the one with the approximative burning treatment, see Figure 3.20. Also the
time averaged neutrino parameters over the first 0.5 s are nearly the same for the
models with and without network, see Table 3.5.

During the collapse the initial elements of the progenitor get burned to heavier
elements. In Figure 3.23 we show the mass fraction at the time of core bounce to
see the difference between both burning models. In the upper panels we show the
mass fraction of a model where we used the full nuclear burning network and the
lower panels show simulations with the approximative burning treatment. We see
that the approximative burning is quite good to reproduce the same abundances
as the models with the full network. We get the same result for the models with
the SKA EoS. In Table 3.4 we compare quantities at the moment of collapse of the
model with and without network. We see that also the collapse quantities are in a
good agreement with each other. The difference is within a 1 % range. Differences
appear however later, during the explosion. If we define the time of explosion to be
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Table 3.4: Comparison of quantities at the moment of bounce for the models with the
approximative burning treatment and the models with the full network, the shock radius
(rsh), the enclosed mass (Msh) and the collapse duration tcol.

Model SHEN

rsh Msh tcol

[km] [M�] [s]

con-np-1D 11.06 0.485 0.060
net-1D 11.10 0.486 0.061
r-con-np-1D 11.06 0.485 0.060
r-net-1D 11.06 0.485 0.061

Model SKA

rsh Msh tcol

[km] [M�] [s]

con-np-1D 10.62 0.494 0.062
net-1D 10.59 0.492 0.063
r-con-np-1D 10.58 0.493 0.062
r-net-1D 10.58 0.493 0.063

when the shock radius reaches 500 km, we see that models with network explode
a bit later than models with the approximative burning treatment. The highest
difference, with 9 ms delay, is found for the models with the SKA EoS and the
Newtonian convection criterion, see Table 3.11 and 3.12.

Fischer et al. (2010) use for their simulation of the ONeMg core also a nuclear
reaction network. Comparing their mass fraction and Ye at bounce with ours we
actually find that our simulation with the approximate burning treatment agrees
better with their result than our network simulation.

3.4.5 EoS

The neutron star Equation of State is one of the biggest uncertainties for supernova
simulations. We saw in the sections above that we get quite different results for
different EoS. By comparing the neutrino signal for the different EoS one might
hope to find differences which could be detectable by neutrino detectors. Figure 3.24
shows the neutrino signal for the first 500 ms of five different EoS models with the
relativistic convection. We see that for the luminosity the five EoS models have
different ν̄e and νx maxima. This is also the case for the νe burst, although it is
difficult to see. The difference gets smaller at later times. The highest luminosities
for the νe burst is obtained by the model with the SKA EoS, followed by the models
with the WOLFF and SHEN EoS. The models with the LS180 and LS220 EoS
have the lowest luminosities for the νe burst. For the maxima of the ν̄e and νx, the
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Figure 3.24: Neutrino signal for the relativistic convection models with five different
EoSs. Note the small irregularity at around 0.07 s is due to a numerical artefact when
we transform the co-moving neutrino signal into the observer frame.

models with the LS180 and LS220 show the highest luminosities followed by the
models with the SKA and SHEN EoS. The model with the WOLFF EoS shows
the lowest maxima for the ν̄e and νx luminosities.

Models of the ONeMg progenitor with the LS180 and the WOLFF EoS where
also simulated by Kitaura (2007, Appendix II). He used the VERTEX code with a
post-Newtonian effective gravitational potential and found that also for his models
with the WOLFF EoS the νe is higher than for his models with LS180. Also we
find the maxima of the ν̄e and νx luminosities higher for the models with the
LS180 than for the models with the WOLFF EoS. A similar behaviour as we found
was seen by Hüdepohl (2009) who used models with the SHEN, LS180 and SKA
EoS. (Hüdepohl (2009) also did simulations with the ONeMg progenitor and the
VERTEX code with an effective gravitational potential.)

The mean energies on the right side of Figure 3.24 show a similar behaviour
within all neutrino flavors. Over the whole first 0.5 s the models with the LS180
and LS220 EoS show the highest energies closely followed by the SHEN and SKA
EoS models. The WOLFF EoS model has always the lowest energies for all flavors.
To set that into a relation, the relative difference between the LS180 model with
the highest and WOLFF EoS model with the lowest mean energies is at 0.4 s, 9 %,
8 %, and 10 % for the νe, ν̄e, and νx mean energies. In the case that neutrinos
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Figure 3.25: The upper panel shows the shock radius of the models with relativistic
convection treatment and all five EoS. We define the point when the shock radius passes
500 km, gray dotted line, as the explosion time. The middle panel shows the proto
neutron star radius and the lower panel the mass accretion, evaluated at 500 km, which
ceases as soon as the explosion sets in.

would be observed at one could potentially infer something about the EoS. The
behaviour of the different EoS models for the mean energies is also in agreement
with the literature mentioned above.

Thompson et al. (2003) give a comparison of the neutrino signal for simulations
done with the LS180 and LS220 EoS. They use a 1D Boltzmann neutrino radiation
transport with Newtonian hydrodynamics and an 11 M� progenitor and find, as
we do, that the neutrino signal is quite similar. Sumiyoshi et al. (2005) use a
1D general relativistic hydrodynamics code with a Boltzmann neutrino transport.
They compare models with the LS180 and SHEN EoS with a 15 M� progenitor.
Similar to us they find higher neutrino luminosities and mean energies for the
model with the LS180 EoS than for the model with the SHEN EoS, although their
luminosities show a higher difference between the two. This is probably due to the
larger progenitor which has a longer accretion phase. Sumiyoshi et al. (2005) also
claims that they find a significant difference in the proto neutron star radius and
the shock radius. In Figure 3.25 we see in the upper panel the shock radius and
in the middle panel the proto neutron star radius of our models with five different
EoS. Comparing the shock radius to models done in 1D with other progenitor is
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Figure 3.26: The left panel shows the central density of the models with the relativistic
convection criterion. On the right panel we show the temperature, of the relativistic
convection models, as a function of density, at 0.4 s post-bounce. Note that we define
the proto neutron star radius to be at at a density of 1011 g/cm3, where we also switch
from the high-density EoS to the low density prescription. This is the cause of the small
defects visible around that density.

difficult, as they tend not to explode. Anyhow we see that the model with the
WOLFF EoS explodes first followed by the models with the SKA, SHEN EoS. The
model with the LS180 EoS explodes ∼ 12 ms after the model with the WOLFF
EoS, see also Tables 3.9 and 3.8. We do not show the relativistic convection model
with the LS220 EoS, as this is one of the models which showed an early explosion
of the outer hull, see Figure 3.6.

The WOLFF EoS model has the highest proto neutron star radius, followed
by the SHEN and LS180 EoS models with very similar radius and the SKA EoS
model with lowest radius. After 0.2 s, the WOLFF EoS model has still the highest
proto neutron star radius but the other models have changed places. The SKA EoS
model has now a higher PNS radius than the SHEN and LS180 models, and the
LS180 EoS model has now the lowest. As the WOLFF EoS model did not contract
as fast as the other models, we can expect that we also have a colder proto neutron
star with the WOLFF EoS. Having lower temperatures, less energetic neutrinos get
emitted, hence the lower energies. Similarly, the proto neutron star of the LS180
EoS model is the hottest of all five EoS models as it contracted fastest. Here we
find higher temperatures and thus more energetic neutrinos. This can be seen
in Figure 3.26, where the time evolution of the central densities are shown. The
temperature profile can be seen on the right hand side of Figure 3.26. We see that
the WOLFF EoS has the lowest temperature around the proto neutron star radius.
This is followed by the SKA and SHEN EoS models, as well as the LS220 and
LS180 EoS models, which are almost on top of each other. At 1011 g/cm3 we see a
small dip, more or less pronounced, for all models. This comes from the fact that
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Figure 3.27: Regions of convective instability (ωBV−GR > 0) for the various EoSs.

we change from high density EoS to low density EoS at this threshold.

Marek et al. (2009) compare in their 1D and 2D simulations, with the VERTEX
code with an effective relativistic gravitational potential, models with the LS180
and WOLFF EoS of a 15 M� progenitor. They find similar behaviour between
the models with those two EoS as we do for the proto neutron star radius and
neutrino signal. Additionally they also compared the convectively unstable region
of their 2D models. They see that the prompt convection for the WOLFF EoS
model is larger than for the LS180 EoS model. They also say that the convective
unstable region of the WOLFF EoS involves more mass and extents over larger
radii. We saw in Section 3.4.3 that our mixing length approach does not cover
the full extent of the convectively unstable region of a 2D model. But we still can
make some approximate remarks about the extent of the convectively unstable
region for the different EoS. In Figure 3.27 those areas shaded for each EoS. We see
that in the first 0.1 s the SHEN and SKA EoS models cover a larger convectively
unstable region than the other EoS models. After that, the unstable region of the
two models lies between the one of the WOLFF EoS model and the LS180, LS220
models. Interesting is that the LS180 EoS model has the smallest unstable area
at the beginning up to around 0.12 s after which it has the largest. This is also
reflected in the neutrino signal, where we see the main effect of the convection
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after 0.12 s. The convectively unstable region for the LS220 model is around the
same as the one for the LS180 model. The WOLFF EoS model has the smallest
unstable area during the first 0.5 s. Marek et al. (2009) show the first 700 ms of
their simulations and we agree with them that for this timespan the convectivly
unstable region involves more mass for the model done with the WOLFF EoS than
with the LS180 EoS.

Summarising for the early phase we show time averaged neutrino parameters of
all our model and all five EoS for the first 0.5 s in in Tables 3.5 and 3.6. If we
compare our values to the s11.2 models of Hüdepohl (2014), which have similar
proto neutron star masses, we see very similar values. The neutrino mean energies
of Hüdepohl (2014) are higher than in our models, due to the ongoing accretion of
those models. The cumulatively emitted neutrino energies are also quite similar.
On average, we see that the models with the LS180 and LS220 EoS have the highest
mean energies and total emitted energies, whereas the models with the WOLFF
EoS have the highest total emitted neutrino number. Other than that the models
with the WOLFF EoS have the lowest mean energies, and the SKA EoS models
have the lowest total emitted neutrino number and energies.
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Table 3.5: Time averaged neutrino parameters of all models up to 0.5 s post-bounce. To
get the total emitted energy we have to sum the energies of the νe, ν̄e and four time
the νx as they only represent one of four heavy lepton neutrino kinds.

Model LS180

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

con-np-1D 10.5 12.7 13.5 0.98 0.42 0.38 16.4 8.6 8.2
np-12-1D 9.9 12.7 13.4 0.90 0.41 0.34 14.2 8.3 7.3
r-con-np-1D 10.1 12.8 13.5 0.92 0.42 0.36 15.0 8.6 7.7
std-12-1D 9.9 12.6 13.5 0.91 0.42 0.35 14.5 8.5 7.5
std-21-1D 10.1 12.7 13.5 0.91 0.42 0.35 14.8 8.5 7.5

Model LS220

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

con-np-1D 10.0 12.7 13.4 0.96 0.42 0.37 15.5 8.6 8.0
np-12-1D 9.8 12.7 13.4 0.90 0.41 0.33 14.2 8.4 7.2
r-con-np-1D 10.1 12.8 13.4 0.93 0.42 0.35 15.0 8.7 7.6
std-12-1D 9.9 12.6 13.5 0.91 0.42 0.34 14.4 8.5 7.4
std-21-1D 10.1 12.6 13.4 0.91 0.42 0.34 14.8 8.4 7.3

Model SKA

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

con-np-1D 9.8 12.4 12.9 0.94 0.41 0.36 14.9 8.1 7.6
net-1D 9.8 12.4 12.9 0.95 0.41 0.36 14.9 8.1 7.6
np-12-1D 9.6 12.4 12.9 0.88 0.40 0.33 13.6 7.9 6.8
r-con-np-1D 9.9 12.4 12.9 0.91 0.41 0.35 14.4 8.1 7.2
r-net-1D 9.9 12.4 12.9 0.91 0.41 0.35 14.5 8.2 7.2
std-12-1D 9.7 12.2 12.9 0.90 0.41 0.34 14.0 8.0 7.0
std-21-1D 9.9 12.3 12.9 0.90 0.41 0.34 14.4 8.0 6.9
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Table 3.6: Continuation of Table 3.5 but for the models with the SHEN and WOLFF
EoS.

Model SHEN

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

net-1D 9.8 12.4 13.0 0.96 0.42 0.37 15.1 8.4 7.6
np-12-1D 9.6 12.4 13.0 0.90 0.41 0.33 13.8 8.1 6.9
r-con-np-1D 9.9 12.4 13.0 0.93 0.42 0.35 14.7 8.3 7.3
r-net-1D 9.9 12.4 12.9 0.93 0.42 0.35 14.7 8.4 7.3
std-12-1D 9.7 12.3 13.0 0.92 0.42 0.34 14.2 8.2 7.1
std-21-1D 9.9 12.3 12.9 0.92 0.42 0.34 14.6 8.2 7.0

Model WOLFF

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1057] [B]

con-np-1D 9.7 12.1 12.5 0.98 0.42 0.36 15.3 8.0 7.2
np-12-1D 9.5 12.0 12.5 0.95 0.42 0.34 14.4 8.0 6.8
r-con-np-1D 9.7 12.1 12.5 0.96 0.42 0.35 14.9 8.1 7.0
std-12-1D 9.5 11.9 12.5 0.96 0.42 0.34 14.6 8.0 6.9
std-21-1D 9.7 12.0 12.5 0.96 0.42 0.34 14.9 8.0 6.8
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Figure 3.28: The proto neutron radius of models with and without neutrino interactions
done with the SHEN EoS.

3.5 Cooling

After the explosion, the proto neutron star becomes exposed. Comparing Figure 3.4
and 3.5 we saw the huge difference of a simulation done with and without neutrino
transport. We illustrate especially the effect the lack of neutrinos have on the
proto neutron star in Figure 3.28, where we show the proto neutron star radius of
a model with and without neutrino interactions. We see that the proto neutron
star radius of the model without neutrino interactions stays constant, while it can
cool and shrinks drastically for the other model. As the proto neutron star cools
further, more and more trapped neutrinos can escape. The neutrinos still deposit
some energy in the matter at the surface of the proto neutron star. This leads to
a thermally driven mass outflow, called the neutrino driven wind (Duncan et al.,
1986).

The cooling of the proto neutron star can also be treated with a steady state
approach, as was done by e.g. Pons et al. (1999); Thompson et al. (2001); Roberts
(2012). They treat the cooling as a diffusion process. This is reasonable in the
proto neutron star itself as the density and optical depth are very high there and
neutrinos are still trapped. But these simulations can not accurately simulate the
region of decoupling near the proto neutron star surface and the outflow, where
these conditions are not given anymore. They can therefore also not accurately
predict the correct neutrino mean energies.

Simulations with a more accurate neutrino transport have been done by Fischer
et al. (2010); Hüdepohl et al. (2010); Hüdepohl (2014). In this Section we will
compare our results with Hüdepohl (2009) and look at the influence of the corrected
neutrino nucleon opacities and convection for the cooling phase.
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3.5.1 GR vs. Post-Newton

As our models with the higher energy resolution have not progressed far enough
so far, we therefore have to compare the long time simulations from Hüdepohl
(2009) with our standard models which have, with 12 energy bins, a lower energy
resolution. As the relative effects of the difference between GR and non-GR is
greater than that of the energy resolution, see Section 3.3, it is probably justified
to use the 12 energy bin models.

In Figure 3.29 we compare the neutrino signal over several seconds for the models
with and without GR for the available three EoS. We see that the luminosities
for the GR models are lower than for the post-Newtonian models for the first few
seconds. In case of the models done with the LS180 EoS around 3 s post-bounce,
the luminosities of the GR model than gets higher than those of the p-newt model,
for all three flavors. This behaviour is seen in all three EoS only the point of
time when the luminosities of the GR model getting higher than those of the
post-Newtonian model differ. The behaviour of the mean energies is similar. The
GR models have lower energies at the beginning and higher mean energies at the
end of the simulations, compared to the post-Newtonian models. This is seen in
all three flavors and all three EoS. Again the point when the energies of the GR
model gets higher than the p-newt model differs between the EoS.

This is expected, as the total emitted energy is the same for both models the
gravitational binding energy of the proto neutron star. (Hüdepohl (2009) found
that also the effective potential approach reproduces this very well.) The luminosity
of a model which starts with a higher value therefore must, at some point, drop
below the other one. Müller et al. (2010) see similar results for the first 4 s in their
Figure 11.

In Table 3.7 we show values of the neutrino signal and the proto neutron star
radius for each EoS at 1.8 s. We choose this point as around this time the LS180 and
SKA EoS models have their maxima for the mean energies We see that the relative
differences between the GR and post-Newtonian models of those two models are
similar, both for the luminosities and the energies. The relative differences are
around half as much for the SHEN EoS model. The higher luminosities of the
p-newt models can be partially explained by their higher proto neutron star radius,
see middle panels of Figure 3.30. The mean energies are also higher and we would
therefore expect even higher luminosities for the post-Newtonian models. Another
effect could be due to the different contraction of the proto neutron star with and
without GR.

In Figure 3.30 we show the shock radius, top panels, and proto neutron star
radius, middle panels. Additionally we can see the mass outflow rate of the out
streaming matter from the proto neutron star in the bottom panel. We see that the
shock radius of the GR models is lower than for the post-Newtonian model. This
is due to the large velocities of the post-Newtonian models which can be up to 5 c.
It also shows that the GR model explodes slightly later than the post-Newtonian
model. The mass outflow of the GR models is for the first 2 s lower than in the
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Figure 3.29: The neutrino cooling signal of the GR and post-Newtonian models.
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Figure 3.30: Shock radius, proto neutron star radius and mass outflow rate during the
cooling phase for the GR and post-Newtonian models.
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Table 3.7: The values of the luminosities and mean energies at 1.8 s, for the GR and
post-Newtonian models.

Model LS180

Lνe Lν̄e Lνx 〈ενe〉 〈εν̄e〉 〈ενx〉 rpns t
[B/s] [foe/s] [foe/s] [MeV] [MeV] [MeV] [km] [s]

p-newt-1D 4.42 4.61 5.17 10.78 13.39 13.29 16.71 1.8
std-12-1D 3.84 4.07 4.61 10.51 13.16 13.11 14.33 1.8

Model SHEN

Lνe Lν̄e Lνx 〈ενe〉 〈εν̄e〉 〈ενx〉 rpns t
[B/s] [foe/s] [foe/s] [MeV] [MeV] [MeV] [km] [s]

p-newt-1D 4.18 4.40 4.62 10.01 12.48 12.23 19.84 1.8
std-12-1D 3.96 4.16 4.45 9.91 12.49 12.31 17.46 1.8

Model SKA

Lνe Lν̄e Lνx 〈ενe〉 〈εν̄e〉 〈ενx〉 rpns t
[B/s] [foe/s] [foe/s] [MeV] [MeV] [MeV] [km] [s]

p-newt-1D 4.59 4.89 5.13 10.26 12.87 12.71 19.52 1.8
std-12-1D 4.10 4.36 4.64 10.04 12.69 12.56 17.19 1.8

post-Newtonian case and after that higher (depending on the EoS). This fits with
the lower proto neutron star radius and the lower mean energy for the first seconds.

3.5.2 Nucleon potentials

In Figure 3.31 and Figure 3.32 we see the comparison of the models with (np-
12) and without (std-12) the corrected neutrino nucleon opacities for each EoS,
over several seconds. We see that the trend we observed in Section 3.4.2 for the
luminosities continues also for the first few seconds. The luminosities of all three
flavors are lower for the model with the corrections than for the std-12 model. Also
the mean energies for the np-12 model of the νe and νx stay below the std-12 model.
We stated in Section 3.4.2 that in the case of the 〈εν̄e〉 the energies are higher for
the model with than for the model without corrected nucleon opacities after the
first 0.5 s. We see now that around 1 s, depending on the EoS, the energy of the
model with the correction drops below the model without them. We see that over
the long timescale the luminosities and mean energies of the two models are coming
closer together again. Eventually, the np-12 model ends up with higher luminosities
and mean energies than the std-12 model. The point when this happens depends
on the EoS. But all EoS models have in common that it happens earlier for the
ν̄e and νx than for the νe. This behaviour of the models with and without the
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Figure 3.31: Comparing the neutrino signal for the models done with and without
corrected neutrino nucleon opacities.
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Figure 3.32: As Figure 3.31 but for the WOLFF EoS.

corrected neutrino nucleon opacities is also seen by Hüdepohl (2014), see his Figure
5.9.

The models with the WOLFF EoS, Figure 3.32 build a small exception as the
EoS is not tabulated in such a large parameter space as the other EoS are so we
were only able to simulate up to ≈ 2.5 s, where parts of the simulation started to
exceed the tabulated region. In this case the luminosities and mean energies of the
model with the corrected opacities are still below the model without them.

Summarising, we see that the cooling time for the corrected neutrino nucleon
opacities models differs from std-12 model, this is also found by Mart́ınez-Pinedo
et al. (2012); Roberts et al. (2012a); Hüdepohl (2014). In difference to Mart́ınez-
Pinedo et al. (2012) we see that the mean energies for the anti-electron neutrinos
can also be decreased rather than increased for the corrected opacity models. This
agrees with Hüdepohl (2014), here we can make a more direct comparison as he
has also done simulations with a lower mass star (s11.2), whereas the 15 solar mass
star of Mart́ınez-Pinedo et al. (2012) has also a more massive proto neutron star.
Also Roberts (2012c) comes to this result after they fixed a numerical bug in their
implementation of Roberts (2012). But overall, all agree that the main influence of
the corrected opacities is on the electron neutrinos and by that also on the wind
electron fraction. We can see the effect of the nuclear potentials on the electron
neutrinos also in Figure 3.33. Here the corrected model shows a higher Ye and Yνe ,
especially at 2 s, than the model without corrected neutrino nucleon opacities. We
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Figure 3.33: The left hand side shows the time-evolution of profiles of the matter density ρ,
temperature T , electron fraction Ye, electron neutrino optical depth τνe , matter entropy
s, and net electron neutrino per baryon fraction Yνe , while the right hand side shows
the central values of those quantities.

also see that the other quantities are in a good agreement for both models.

3.5.3 Convection

Hüdepohl (2014) noted that the difference between a standard model and the cor-
rected neutrino nucleon opacities is bigger than the difference between simulations
done with convection and with both convection and corrected opacities for the
EoSs he used. A suitable set of models to look at this is only availably for the
WOLFF EoS, as we see in Figure 3.34. The WOLFF EoS is quite stiff and the
effect on the different models less pronounced compared to the other EoS. We do
not see the difference as clearly as Hüdepohl (2014). In this case the difference
between the models with convection (con, con-np) is similar to the difference of
the models without convection (std-12, np-12). The same is true if we consider the
relativistic convection treatment.

In Figure 3.35 we look directly at the cooling of the proto neutron star. We see
that the matter density, the electron neutrino optical depth τνe , and temperature
are fairly similar for all shown models. In the case of the entropy we see that
the convection treatment smoothes out the entropy gradient. This is done more
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Figure 3.34: Comparison of the neutrino signal of models with (np-12) and without
(std-12) the corrected neutrino nucleon opacities to models with Newtonian convection
(right panels) and relativistic convection (left panels), also with and without corrected
opacities.

efficiently by the model with the Newtonian convection treatment than by the
model with the relativistic convection treatment. We also see that for the models
with convection the Ye shrinks faster than without convection, left panel, and this
effect is a little bit reduced for the models with convection and with corrected
neutrino nucleon opacities, right panel. This is also nicely seen for the central Ye
and Yνe in Figure 3.36.

In Figures 3.37 – 3.38 we display the neutrino signal of all available models with
the five different EoSs. Note that from here on the convective (con-np/ r-con-np)
model and the non-convective (np-12) model, which we will compare with each
other, are both simulated with the corrected neutrino nucleon opacities. We see
that the luminosities, for all flavors, of the convective models are higher than the
one of the non-convective model for at least the first second, for all EoSs. The same
is true for all flavors for the mean energies. After the first second the behaviour
of the convective models more strongly depend on the EoS. In case of the SHEN
EoS the convective models have not progressed much further than the first second.
For the LS220 we see that as long as the simulations last the luminosities of the
convective models are higher than the non-convective model, for all flavors. The
luminosities of the Newtonian convective model stays even higher than the one
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Figure 3.35: Comparing the hydrodynamical evolution of the models with the WOLFF
EoS, with and without (Newtonian and relativistic) convection. On the left hand side
we show the models without corrected neutrino nucleon opacities, on the right hand
side models with the correction.

without convection and corrected neutrino nucleon opacities (std-12). Note that
the relativistic convective model with the LS220 EoS is one of the models where the
outer hull exploded during the collapse, but we do not really expect to see a sign of
that in the neutrino cooling signal, especially at this late times. For the luminosities
it nearly follows the std-12 model and has values which are between the values
of the Newtonian convective and non-convective models. For the mean energies
we see the same picture. The convective models stay above the non-convective
models for the simulated time. Also for the anti-electron and heavy-lepton neutrinos
the energies of the Newtonian convection model is higher than the std-12 model.
The energies for the relativistic convection model are between the values of the
Newtonian convection and the non-convective models. A similar behaviour is also
seen for the LS180 EoS models. The SKA EoS models shows a different picture:
The convective models do not stay above the non-convective or std-12 model for
the simulated time. Actually the luminosities of the Newtonian convection model
are lower after ∼ 3 s than the non-convective model, for all flavors. (The convection
model with the relativistic treatment could not be simulated that long.) Also the
energies of the model with the Newtonian convection criterion are first higher and
after around ∼ 3 s below the non-convective model, for all flavors. In the case of
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Figure 3.36: Central quantities for models with and without convection, and with and
without corrected neutrino nucleon opacities, for the WOLFF EoS models.

the WOLFF EoS all models have reached the end of the possible simulation time.
The models with the WOLFF EoS are quite similar to each other. The luminosities
of the convective model are higher than those of the model without convection but
come quite close if not equal to the end of the simulation. This is also the case for
the mean energies.

The different behaviour of the convection models with different EoS was also
found by Roberts et al. (2012b) and Hüdepohl (2014). Roberts et al. (2012b) states
that the convection region is sensitive to the behaviour of the symmetry energy of
the EoS, specifically the parameter J of Table 2.1.
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Figure 3.37: Neutrino signal for all models of four different EoS
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Figure 3.38: As Figure 3.37 but for the WOLFF EoS.
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Figure 3.39: Comparing the effect of different EoS on the neutrino signal for the best
physics models.

3.5.4 EoS

Finally we also want to make a direct comparison of the EoS to each other. In Fig-
ure 3.39 we show the neutrino signal for the models with the convective treatment
and all five EoS. On the left hand side we show the models with the Newtonian
convective treatment. We see that the luminosities for the different EoS models
are very similar for the first ∼ 0.5 s. After that, the luminosities of the models
evolve differently to each other but in the same manner for each flavor. At the end
of the simulation the models with the LS220 and LS180 EoS are very similar to
each other and they have the highest luminosities, for all flavors. The model with
the WOLFF EoS lies between the luminosities of the models with the LS180 and
LS220 EoS followed closely by the model with the SKA EoS.

The LS180 and LS220 EoS models have also very similar mean energies, again
the highest of all models. The model with the SKA EoS has at the beginning
higher mean energies than the model with the WOLFF EoS. But for the electro
neutrinos the mean energy of the WOLFF EoS model gets higher than the SKA
EoS model at the end of the simulation.

For the models with the relativistic convection treatment we see a slightly dif-
ferent behaviour, see right panel of Figure 3.39. Additionally, the model with the
SHEN EoS has progressed further for this case and we can see that at the end of
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Figure 3.40: Comparing the effect of different EoS on the proto neutron star radius.

the simulations it has the lowest luminosities and mean energies. We see that the
models with the LS180 and LS220 EoS get lower luminosities and mean energies
earlier than in the Newtonian convection case.

We can see this behaviour also for the proto neutron star radii, see Figure 3.40.
The proto neutron star for the LS180 and LS220 EoS models contracts faster in
the case of the relativistic convection treatment than in the Newtonian convection
treatment. In contrast to that is the behaviour of the other EoS models, which
are more similar in both cases. Additionally we see in Figure 3.40 the influence
of the different EoS itself on the proto neutron star radius. The model with the
stiffest EoS (WOLFF) has the highest radius whereas the model with the softest
EoS (LS180) has the lowest radius.

In Figure 3.41 we see the evolution of certain central quantities. We see how
the different EoS influence the central density and entropy very strongly. Also
we see how the Newtonian convection treatment model reaches the maximal core
temperature faster for the LS220 EoS model than the other EoS models and also
faster than in the relativistic convection treatment.

Table 3.8 and 3.9 give a summary about interesting quantities of the simulations.
The proto neutron star mass is e.g. needed by Blaschke et al. (2014) to constrain
their Equation of State. As we define the proto neutron star radius at an arbitrary
density contour of ρ = 1011 g/cm3 we also give values for the density contour of
ρ = 109 g/cm3 to assess the influence of this definition. We see that with the
convection the cooling proceeds much more rapidly. Note that for the WOLFF
EoS no completly cold configuration could be used.
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Table 3.8: This tables sums up the properties of the proto neutron star at the end of
the simulations . tend gives the end of the simulated time, rpns the proto neutron star
radius defined as the density contour of ρ = 1011 g/cm3, Mpns the associated baryonic
proto neutron star mass, MG the associated baryonic gravitational mass. r′pns gives the
proto neutron star radius defined as the density contour of ρ = 109 g/cm3, M ′pns the
associated baryonic proto neutron star mass, M ′G the associated baryonic gravitational
mass. (Note that we use in our code a baryon mass of 1.66 · 10−24 g) Eν is the total
emitted neutrino energy for all flavors up to tend, and NL total radiated net Lepton
number, in brackets also as a fraction of the available gravitational binding energy for
an ideal TOV solution with that baryon mass.

Model LS180

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

con-np-1D 2.742 13.3 1.3658 1.2891 16.0 1.3659 1.2892 137 (0.70) 6.49 (0.94)
np-12-1D 10.100 10.8 1.3695 1.2738 11.8 1.3695 1.2739 171 (0.86) 6.20 (0.90)
r-con-np-1D 3.432 11.9 1.3689 1.2945 13.6 1.3689 1.2946 133 (0.67) 5.70 (0.83)
std-12-1D 11.041 10.6 1.3687 1.2641 11.5 1.3688 1.2641 187 (0.95) 6.79 (0.99)
std-21-1D 4.914 11.6 1.3686 1.2835 13.3 1.3686 1.2835 152 (0.77) 6.20 (0.90)

Model LS220

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

con-np-1D 4.042 12.4 1.3669 1.2777 14.3 1.3670 1.2778 159 (0.82) 6.81 (0.97)
np-12-1D 5.179 11.9 1.3707 1.2926 13.5 1.3707 1.2927 140 (0.72) 5.73 (0.82)
r-con-np-1D 4.534 11.8 1.3718 1.2908 13.3 1.3718 1.2909 145 (0.74) 5.89 (0.84)
std-12-1D 8.008 11.3 1.3685 1.2705 12.5 1.3685 1.2706 175 (0.90) 6.73 (0.96)
std-21-1D 4.686 12.1 1.3686 1.2846 13.8 1.3686 1.2846 150 (0.77) 6.28 (0.90)

Model SKA

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

con-np-1D 4.099 13.2 1.3667 1.2889 15.0 1.3668 1.2889 139 (0.75) 6.12 (0.91)
net-1D 1.983 16.4 1.3664 1.3078 19.9 1.3666 1.3079 105 (0.56) 5.88 (0.87)
np-12-1D 9.399 11.7 1.3692 1.2756 12.8 1.3692 1.2756 167 (0.90) 6.29 (0.93)
r-con-np-1D 3.818 13.5 1.3682 1.2954 15.5 1.3682 1.2955 130 (0.70) 5.81 (0.86)
r-net-1D 1.762 17.0 1.3701 1.3169 20.8 1.3703 1.3171 95 (0.51) 5.49 (0.81)
std-12-1D 10.657 11.1 1.3680 1.2679 11.9 1.3680 1.2680 179 (0.96) 6.72 (0.99)
std-21-1D 4.330 13.2 1.3680 1.2878 15.3 1.3681 1.2878 143 (0.77) 6.31 (0.93)
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Figure 3.41: Time evolution of the central values of the matter density ρ, temperature
T , electron fraction Ye, electron neutrino optical depth τνe , matter entropy s, and net
electron neutrino per baryon fraction Yνe , for the convective models with different EoS.
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Table 3.9: As Table 3.8 but for the SHEN and WOLFF EoSs

Model SHEN

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

net-1D 1.822 17.5 1.3673 1.3104 21.4 1.3675 1.3106 102 (0.60) 6.00 (0.91)
np-12-1D 9.447 12.9 1.3664 1.2793 14.0 1.3665 1.2794 156 (0.92) 6.20 (0.94)
r-con-np-1D 5.286 13.7 1.3688 1.2910 15.3 1.3688 1.2911 139 (0.82) 6.00 (0.91)
r-net-1D 1.780 17.2 1.3703 1.3166 21.0 1.3704 1.3168 96 (0.57) 5.55 (0.84)
std-12-1D 6.231 13.4 1.3681 1.2827 15.0 1.3681 1.2828 153 (0.90) 6.49 (0.98)
std-21-1D 5.572 13.6 1.3671 1.2841 15.3 1.3672 1.2841 148 (0.88) 6.45 (0.97)

Model WOLFF

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

con-np-1D 2.723 16.6 1.3643 1.2970 20.0 1.3645 1.2972 120 (0.69) 6.49 (0.97)
np-12-1D 2.518 16.9 1.3679 1.3070 20.4 1.3681 1.3072 109 (0.62) 5.95 (0.89)
r-con-np-1D 2.638 16.6 1.3659 1.3013 20.0 1.3661 1.3015 115 (0.66) 6.13 (0.92)
std-12-1D 2.489 16.8 1.3661 1.3023 20.5 1.3663 1.3024 114 (0.65) 6.17 (0.92)
std-21-1D 2.457 16.9 1.3639 1.3006 20.6 1.3641 1.3008 113 (0.65) 6.19 (0.93)
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Figure 3.42: Evolution of mass shells over time for the SHEN std-12 model. Colour coded
is the electron faction Ye over time. The green line represents the radius of the explosion
shock, the black dotted lines are mass shell at a distance of 0.5 s and are Mpns + (138.2,
73.8, 46.2, 30.5, 21.1, 15.2, 11.6, 9.3) ·10−5M�, the dark red line is the proto neutron
star radius and the magenta line indicates the mass shell of the final proto neutron star
mass.

3.6 Neutrino Driven Wind

When the proto neutron star cools mass gets ejected, called the neutrino driven
wind (Duncan et al., 1986). To illustrate the wind, we show in Figure 3.42 the mass
outflow and its Ye with selected mass shells. We see how mass from the surface
of the proto neutron star radius gets ejected. The proto neutron star itself is of
course very neutron rich and the neutrino driven wind carries matter directly from
the proto neutron star’s surface. It is natural to assume that this could be a site
for r-process nucleosynthesis to occur.

Hoffman et al. (1997); Meyer and Brown (1997); Freiburghaus et al. (1999) found
that the necessary conditions for an r-process to occur are high entropies, a low
expansion timescale (i.e. a fast ejection of matter) and Ye < 0.5. Qian (2008) gives
a very nice overview of those conditions.
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Figure 3.43: Properties relevant for the r-process, taken at 500 km. Shown are the entropy
s, expansion timescale τexp, electron fraction Ye and the mass outflow, only values with

positive Ṁ are shown.
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Table 3.10: The minimum ejected Ye and corresponding values of the entropy and τexp

as well as the time of that minimum value.

Model LS180

t Ye s τexp

[s] [1] [kB] [ms]

p-newt-1D 0.161 0.485 18.49 38.46
std-12-1D 0.189 0.487 18.61 40.77
std-21-1D 0.189 0.500 18.88 42.54

Model SHEN

t Ye s τexp

[s] [1] [kB] [ms]

p-newt-1D 0.180 0.491 18.02 51.84
std-12-1D 0.202 0.493 18.72 44.94
std-21-1D 0.183 0.493 18.74 42.63

Model SKA

t Ye s τexp

[s] [1] [kB] [ms]

p-newt-1D 0.164 0.485 17.59 38.62
std-12-1D 0.198 0.487 19.31 41.24
std-21-1D 0.196 0.499 18.11 46.74

3.6.1 GR vs. Post-Newton

In Figure 3.43 we show the interesting quantities for the r-process. In contrast to
Otsuki et al. (2000) and Thompson et al. (2001) we don’t see a remarkable difference
in the entropies of the post-Newtonian and GR models. Otsuki et al. (2000) and
Thompson et al. (2001) compared Newtonian and GR simulations. Cardall and
Fuller (1997) compared his general relativistic results with the post-Newtonian
results of Qian and Woosley (1996) and also find a good agreement of the entropies,
as we did. This shows that the post-Newtonian simulations are a relatively good
approximation. We also see that the mass loss rate of the GR models is relatively
similar to the post-Newtonian model for all three EoSs. In the GR case we have
significantly lower expansion timescales than in the post-Newtonian case. This
was also found by the tree papers mentioned above. We expected this, as in the
post-Newtonian case the velocities can become higher than five times the speed of
light, see Figure 3.12, which is of course not possible in the GR case. Interesting is
that also the Ye has lower values in the GR case than in the post-Newtonian case,
at later times. Interestingly we see even some wind matter with Ye < 0.5 at very
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early times after the explosion, while later we get only values above 0.5, indicating
a proton rich wind. In Table 3.10 we show the minimal values of Ye of each model
and EoS. We see that the post-Newtonian models have a lower Ye than the GR
models. Fuller and Yong-Zhong (1996) wrote that the Ye in the relativistic case
tends to be closer to 0.5 as a result of the different effect of redshift of the emitted
νe and ν̄e, due to the different locations of their neutrinospheres. Even though,
also the post-Newtonian models of Hüdepohl (2009) take redshift into account, the
slightly deeper gravitational well in GR thus might be responsible for the difference
we see.

Also, the GR models with 21 energy bins have a slightly higher Ye than the
models with 12 energy bins. The corresponding entropy, during the short time we
have a neutron rich wind, is too low and the expansion timescale to high for a
classical r-process to occur, cf. Hoffman et al. (1997) and Woosley et al. (1997)

3.6.2 Nucleon potentials

We mentioned in Section 3.5.2 that the corrected neutrino nucleon opacities have an
influence on the electron fraction. In Figures 3.44 and 3.45 we can see this influence,
they show the comparison between the models with and without corrected neutrino
nucleon opacities. We see also that the entropies for all five EoS are slightly higher
for the models with corrected opacities than for the models without. Also, the τexp

is higher for the np-12 than the std-12 models for all five EoS, up to very late
times. In case of the SHEN, LS180 and SKA EoS we see that after around 6 s the
expansion time of the np-12 models gets smaller than in the std-12 models. The
Ṁ of the corrected neutrino nucleon opacity models is lower then for the models
without correction for all five EoSs for the first ∼ 7 s. Also here we see that the
mass loss rate for the np-12 model gets slightly higher than in the std-12 models
after that point. For the Ye we see a huge influence: It is lower for the models with
corrected neutrino nucleon opacities, for all five EoS, than for the models without
corrections. We expected such a lower values as Ye depends on the luminosity
and mean energies of electron and anti-electron neutrinos due to β-reaction with
matter in the wind,

n+ νe → p+ e−,

p+ ν̄e → n+ e+.

We found in Section 3.5.2 that in most cases the ν̄e and νx mean energies are higher
for the np-12 models than for the std-12 models. This was also found by Roberts
(2012c), and Hüdepohl (2014). In the case of the WOLFF EoS we see that the Ye
of the np-12 model shows a small tendency to get to lower values at the end of the
simulation. Sadly, the WOLFF EoS is not tabulated in a large enough parameter
space, that we could simulate further. This highlights that with the inclusion
of the nuclear potentials, the electron fraction is much more EoS dependent. In
Figures 3.44 and 3.45 we see that for the models with corrected opacities we again
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Figure 3.44: As Figure 3.43 but a comparison between the models with and without
corrected neutrino nucleon opacities.
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Figure 3.45: As Figure 3.44 but with the WOLFF EoS.

have slightly neutron rich early ejecta, also over a longer time than in the case
without the corrected opacities. To investigate this further we show in Figures 3.46
and 3.47 mass histograms of the entropy s and electron fraction Ye of the ejecta.
We see that we get the necessary high entropies for r-process conditions only for
matter which also has Ye > 0.5, for all EoS. For only neutron rich ejecta the LS220
model has the highest entropy with ∼ 42 kB. The SHEN EoS model the lowest Ye
of ∼ 0.48, but at a corresponding entropy of ∼ 20 kB.

Again here the entropy is not high enough for a classical r-process nucleosynthesis.
Wanajo (2013), however, states that a “weak r-process” might be possible under
those conditions.
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Figure 3.46: The upper sub-panel of each four plots shows a histogram of the ejected
mass by Ye, with a bin width of 0.005. The right sub-panel shows a histogram of the
ejected mass by entropy s, with a bin width of 1.5 kB. Matter with Ye < 0.5 (blue) and
> 0.5 (red) is summed individually and shown as two separate histograms there. The
histograms where created by recording all matter streaming through a radius of 250 km.
The central panels show the colour coded amout of matter as a function of both electron
fraction and entropy at the same time.
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Figure 3.47: As Figure 3.46 but for the WOLFF EoS.
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3.6.3 Convection

In Figures 3.48 and 3.49 we show the comparison with the physically next best
model, the models where we added a convection treatment. For this purpose we
only show the time range where we also have data for those models. We see that
the entropy of the convection models is very similar to the non-convective models.
Also the expansion time scales of the convection models are fairly similar to the
non-convective models, as is the mass outflow rate. In the case of Ye, we see that for
the models with convection (both Newtonian and relativistic criterion) we find no
more neutron rich early ejecta. In fact, there the wind is always proton rich. While
the Ye of the convection models has at the beginning higher values then the non-
convective models, they tend to lower values at late times. Hüdepohl (2014) also
found that all his models with convection and corrected nucleon opacities (marked
with co) were proton rich, probably due to the inclusion of weak magnetism (which
we also include). The models with the LS220, LS180 and SKA EoS show proton
rich early ejecta. This is in agreement with the luminosities. Before ∼ 250 ms the
luminosity of the νe are higher for the convection models, while the luminosities
of the ν̄e are lower, than in the non-convective case. This leads to a higher Ye. It
seems that the convection affects the neutrinospheres of the νe and ν̄e differently.

3.6.4 Network

In Figure 3.50 we show a comparison of the r-process relevant quantities for models
done with the full nuclear reaction network and models with the same physics
but and approximate burning treatment. We see that the quantities beside the
expansion timescale are fairly similar for all shown models and EoS. Hüdepohl
(2009); Hüdepohl et al. (2010) slightly overestimated their calculated Ye by ignoring
the so called α-effect: In the wind outflow equal parts of free proton and neutrons
form α-particles, which have a very low neutrino interaction cross-section and
remain stable (or form even heavier elements). This leaves only the remaining
particle kind, either neutrons or protons. Meanwhile the neutrinos change a part
of those remaining particles in β-reactions, ultimately driving the Ye towards 0.5
from any initial value (Fuller and Meyer, 1995). To model that, we lowered for the
models with the approximate burning treatment the NSE temperature threshold
to 0.4 MeV/kB, in order to fully account for α-particle formation.

In Figure 3.51 we see profiles of the mass fractions and Ye at one second. We see
that for the model without the full network we can not fully model the formation
of intermediate mass elements. But the α-effect is well captured, as we also see in
Figure 3.50, the amount of free nucleons (protons here) is very similar.

3.6.5 EoS

In Figure 3.52 we show a comparison of the different EoS for our best physics models
with the Newtonian convection treatment and with the relativistic convection
treatment which both include the corrected nucleon opacities, as mentioned before.

81



0

50

100

150

s
[k

B
]

SHEN

0
20
40
60
80

τ e
x
p

[m
s]

std-12
np-12

con-np
r-con-np

0.45

0.50

0.55

Y
e

[1
]

0 1 2 3 4 5

t [s]

10-810-710-610-510-410-310-210-1

Ṁ
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Figure 3.48: As Figure 3.43 but a comparison between the models with and without
convection, using both the Newtonian and the relativistic convection criterion.
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Figure 3.49: Same as Figure 3.48 but for the WOLFF EoS.

We see that the Ye of the models with the relativistic convection treatment varies
less than that of the Newtonian convection criterion. Also, here the expansion
timescale and the entropy of the convection models show a strong dependence on
the EoS.
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Figure 3.50: As Figure 3.43, here we compare for the SHEN and SKA EoS the models
done with a full nuclear network and with approximate burning treatment, for the
version with Newtonian and relativistic convection criterion. Note that we show only
the first 2 s here.
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Figure 3.51: Profiles of the mass fraction and Ye of the models with and without a full
nuclear reaction network at 1 s post-bounce. On the left hand side we show the model
which also have Newtonian convection treatment and on the right hand side models
with relativistic convection treatment.
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Figure 3.52: A comparison of r-process relevant quantities in the wind for our best physics
models with Newtonian and relativistic convection treatment for all five EoS.
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Figure 3.53: The upper, red line indicates the explosion energy when we assume that all
ejected matter is burned to Fe56. The lower, blue line indicates the explosion energy
when we assume tat everything ends up as He4. These two lines can be seen as the
maximal and minimal reachable explosion energies. The line in the middle shows the
diagnostic explosion energy with the calculated mass fractions from the simulation.

3.7 Explosion Energy

From a supernova remnant observation an estimate of the explosion can be drawn.
The ONeMg progenitor was therefore suggested as a progenitor for the supernova
1054 that caused the Crab Nebula, as a weak explosion could explain the observed
properties (Nomoto et al., 1982). The explosion energy would be low as the progen-
itor has only a thin, loosely bound outer shell. We define a diagnostic ”explosion
energy” as the sum of the binding energy of all ejected matter. The binding energy
is defined as the sum of the thermal and degeneracy energy, i.e. the specific internal
energy ε, the kinetic energy and the (negative) gravitational energy Φ,

Ebin = ρ · (ε+ Ekin + Φ), (3.8)

cf. Equation (27) and (28) in Buras et al. (2006) and Equation (3) in Müller
et al. (2012a). For the relativistic case we use a pseudo-Newtonian potential Φ =
(α− 1) · c2, where α is the lapse function, see Eq.(2.18) and for the specific internal
energy we use the internal energy directly from the EoS. The explosion energy is
then obtained by

Eexp =

∫
Ebin>0

Ebin dV, (3.9)

where dV is the volume element for the curved space time metric, cf. Equation
(29) in Buras et al. (2006) and Equation (4) in Müller et al. (2012a).
Figure 3.53 shows the explosion energy for the std-12 model with the SHEN EoS.
We see that around 0.1 s the explosion energy rises steeply up to around 0.3 s. This
is obtained when the matter which is heated by neutrinos before the onset of the
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explosion has gained enough energy to overcome the gravitational binding energy.
From 0.3 s on the explosion energy flattens and rises slower. Here, the additional
energy comes form the neutrino driven wind, see Janka et al. (2008). As the ejected
matter will still undergo nuclear reactions and thereby release energy, we show
two extreme case in Figure 3.53. The red line shows the explosion energy when
we assume that all the matter is burned to Fe56. During this process energy gets
released, resulting in higher explosion energy. Conversely, if we assume that all
ejected matter is split up into He4, we get the lower blue line for the explosion
energy. The green shaded area indicates therefore the region where the values of
the explosion energy could be. The black line in Figure 3.53 is the explosion energy
which we get by using the mass fraction as calculated by the code. We will us this
particular explosion energy for the rest of our Figures, the extreme values can be
interpreted as a very cautious error estimate.

The behaviour of the other models and EoSs is very similar. In Tables 3.11 and
3.12 we give the values of the other models of the three explosion energies shown
in Figure 3.53.

3.7.1 GR vs. Post-Newton

In Figure 3.54 we show the comparison of our relativistic models with the post-
Newtonian models, for the three different EoS. We see that for the SHEN EoS
model the behaviour of the explosion energy is different than for the other two
EoS models. First of all there is a notable difference between the model with 12
energy bins and the one with 21 energy bins. The 21 energy bin model has a
higher explosion energy than the 12 energy bin one. Both models have a higher
explosions energy than the post-Newtonian model, for the SHEN EoS. We do not
see this behaviour for the LS180 and SKA EoS models, where the order of the
explosion energies of the different models is the other way round. For the LS180
and SKA EoS models the explosions energies of the 12 and 21 energy bin models
are quite similar. Both relativistic models have a lower explosion energy than the
post-Newtonian models.

The main difference between the models is the gradient of the steep rise at the
onset of the explosion energy. We know that the steep rise comes from the matter
which is heated by the neutrinos. The heating rate is given by Janka (2001) in
Equation (28),

Q+
ν ∝

〈
ε2
νe

〉
Lνe . (3.10)

With this we find that the matter from the 21 energy bin model of the SHEN EoS
is heated up to 20 %, more than the matter of the 12 energy bin model, during
the first 70 ms. This is also the reason why more mass is ejected for the std-21
model, as we see in Table 3.11. We see that for the LS180 and SKA EoS models
the ejected mass of the std-21 and std-12 models are relatively similar, as is their
explosion energy.

Comparing the GR model with 21 energy bins and the post-Newtonian models
we observe again that the matter of the std-21 model of the SHEN EoS was heated
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Table 3.11: Interesting properties for the explosion energy at the end of each simulation
(tend). With texpl we denote the time when the explosion energy is 0.001 B, tshock the
time when the shock reaches 500 km, Mej is the total ejected mass, Eexpl the diagnostic
explosion energy, Eexpl,He the explosion energy if we assume that all ejected matter is
He4, and Eexpl,Fe is the explosion energy if we assume that all the matter is burned to
Fe56.

Model LS180

tend texpl tshock Mej Eexpl,He Eexpl Eexpl,Fe

[s] [s] [s] [10−3M�] [B] [B] [B]

con-np-1D 2.742 0.103 0.104 11.5 0.064 0.086 0.101
np-12-1D 10.100 0.105 0.108 0.1 0.039 0.056 0.064
p-newt-1D 15.998 0.088 0.088 11.5 0.073 0.069 0.110
r-con-np-1D 3.432 0.103 0.106 8.5 0.044 0.061 0.071
std-12-1D 11.041 0.105 0.108 8.6 0.047 0.064 0.074
std-21-1D 4.914 0.103 0.104 8.8 0.046 0.063 0.073

Model LS220

tend texpl tshock Mej Eexpl,He Eexpl Eexpl,Fe

[s] [s] [s] [10−3M�] [B] [B] [B]

con-np-1D 4.042 0.101 0.104 10.4 0.057 0.077 0.091
np-12-1D 5.179 0.108 0.123 6.7 0.032 0.046 0.053
std-12-1D 8.008 0.105 0.105 8.9 0.047 0.065 0.075
std-21-1D 4.686 0.103 0.106 8.8 0.046 0.063 0.074

Model SHEN

tend texpl tshock Mej Eexpl,He Eexpl Eexpl,Fe

[s] [s] [s] [10−3M�] [B] [B] [B]

net-1D 1.822 0.100 0.106 10.1 0.043 0.052 0.075
np-12-1D 9.447 0.098 0.097 10.9 0.052 0.076 0.086
p-newt-1D 8.874 0.085 0.084 11.0 0.060 0.045 0.095
r-con-np-1D 5.286 0.098 0.099 8.6 0.032 0.049 0.059
r-net-1D 1.780 0.104 0.112 7.1 0.028 0.035 0.050
std-12-1D 6.231 0.099 0.102 9.3 0.039 0.057 0.068
std-21-1D 5.572 0.098 0.100 10.2 0.046 0.067 0.078

Model SKA

tend texpl tshock Mej Eexpl,He Eexpl Eexpl,Fe

[s] [s] [s] [10−3M�] [B] [B] [B]

con-np-1D 4.099 0.093 0.095 10.6 0.045 0.067 0.080
net-1D 1.983 0.098 0.106 10.9 0.049 0.058 0.084
np-12-1D 9.399 0.096 0.099 8.2 0.031 0.049 0.057
p-newt-1D 14.665 0.082 0.082 11.8 0.064 0.063 0.101
r-con-np-1D 3.818 0.094 0.097 9.2 0.037 0.056 0.066
r-net-1D 1.762 0.103 0.111 7.3 0.029 0.037 0.052
std-12-1D 10.657 0.095 0.098 0.1 0.040 0.059 0.070
std-21-1D 4.330 0.094 0.095 9.3 0.038 0.056 0.068 89



Table 3.12: As Table 3.11 but for the model with the WOLFF EoS.

Model tend texpl tshock Mej Eexpl,He Eexpl Eexpl,Fe

[s] [s] [s] [10−3M�] [B] [B] [B]

con-np-1D 2.723 0.091 0.012 13.1 0.046 0.074 0.088
np-12-1D 2.518 0.100 0.104 9.4 0.029 0.049 0.058
r-con-np-1D 2.638 0.091 0.091 11.5 0.036 0.060 0.073
std-12-1D 2.489 0.098 0.100 11.2 0.038 0.061 0.073
std-21-1D 2.457 0.092 0.092 13.4 0.052 0.081 0.094
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Figure 3.54: Time evolution of the diagnostic explosion energy, for the GR models and
the post-Newtonian models, for the three different EoS for which we were provided with
a post-Newtonian model.
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Figure 3.55: Time evolution of mass shells for the models with and without corrected
nucleon potentials. The blue line indicates the shock radius, solid for the model without
nucleon potentials and dashed for the model with nucleon potentials. The green line
shows the proto neutron star radius.

more and over a longer time than the p-newt model. This leads to the higher
explosion energy of the std-21 model. The opposite is the case for the models with
the LS180 and the SKA EoS models.

Kitaura et al. (2006) and Janka et al. (2008) published results of the explosion
energy with the ONeMg progenitor. The also assumed the positive binding en-
ergy to be the explosion energy. They used a Newtonian code with an effective
relativistic potential and published results with the LS180 as high-density EoS.
As an extrapolation of the explosion energy, they assume for their 1D model a
value of 0.15 B. Judging from the curve of the explosion energy, we see that the
behaviour is similar to our case when we assume that the whole matter is burned
to Fe56. Also, their plateau part of the explosion energy rises slightly steeper than
ours, indicating a stronger wind in their models, which results in the higher end
value. We can assume that in our case the explosion energy of the post-Newtonian
model with the LS180 EoS has reached its saturation and is 0.11 B, if we assume
everything is burned to Fe56, see Table 3.11.

3.7.2 Nucleon potentials

Our next step is to compare the models with and without corrected neutrino
nucleon opacities. For this, one has to compare from Figure 3.56 always the solid
black line (std-12) with the blue dash-dotted line (np-12). We see, in the upper
right panel of Figure 3.56, that for the SHEN EoS the model with corrected nucleon
opacities has a higher explosion energy than the std-12 model. In fact it even has
the highest explosion energy of all SHEN EoS models. For all the other four EoS
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Figure 3.56: The diagnostic explosion energy for all models with all the five different
EoS.
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the np-12 model is always below the std-12 model. The late saturation of the
explosion energy is for the std-12 and np-12 models similar for all EoSs. Also here
the main difference is the height of the initial, steep rise during the explosion. In
Figure 3.55 we compare the behaviour of the model with and without corrected
neutrino nucleon opacities for the SHEN and, representative for the other four EoS,
the SKA EoS. We see, with the help of selected mass shells, that in the SHEN EoS
case (left panel of Figure 3.55) the np-12 and the std-12 model behave very similar
up to the time of bounce. After that the corrected model explodes earlier than the
model without the corrected opacities, which is indicated by the red coloured mass
shells rising earlier than the grey ones. This seems to be the cause of the higher
explosion energy, even though the matter of the std-12 model gets heated over a
longer period. In the case of the SKA EoS (right panel of Figure 3.55) we do not
see such a drastic difference between the explosion time of the models with and
without the inclusion fo the nucleon potentials. We see that here the std-12 model
explodes before the model with corrected neutrino nucleon opacities. Additionally,
we see that both models with the SKA EoS explode later than the np-12 model
with the SHEN EoS, see also Figure 3.58.

3.7.3 Convection

In Figure 3.56 we also see the comparison between the models with (con-np/r-con-
np) and without convection (np-12) Again we differentiate between the Newtonian
convection treatment (green dotted line) and the relativistic convection treatment
(magenta short dashed line). We should keep in mind that the convective models
where simulated with 21 energy bins and the non-convective models with 12 energy
bins. At least for the models with the SHEN EoS this has some impact, as we
saw in Section 3.7.1. We see that the Newtonian convection models have the
highest explosion energies, except for the SHEN and WOLFF EoS. In case of the
models with convection treatment, the proto neutron star losses its energy faster
than in the non-convective treatment. More energy is released in the first second,
making the explosion energy higher than in the non-convective case. In the case of
the SHEN EoS our convection model with the Newtonian criterion could not be
simulated far enough to calculate an explosion energy. For the WOLFF EoS, the
21 energy bin model without convection and without corrected neutrino nucleon
opacities (std-21) has the highest explosion energy, followed by the model with
Newtonian convection treatment (con-np). Also here the std-21 model explodes
earlier than the con-np model.

In case of the relativistic convection models we see that for the LS180, SKA, and
WOLFF EoS the explosion energies are higher than the non-convective models
(np-12). For the SHEN EoS, the relativistic convection model has a lower explosion
energy then the non-convective model (np-12). We do not show the explosion
energy of the r-con-np model with the LS220 EoS in the upper right panel of
Figure 3.56, as this is one of the cases where the outer shell explodes during the
collapse.
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We find that the explosion energy of the relativistic convection model with the
SKA EoS lies at early times between the models with 12 and 21 energy bins. After
around 3 s the explosion energy of the relativistic convection model becomes flat
while the explosion energy of the 21 energy bin model rises above it. This suggest
that the energy gained from the neutrino driven wind is different in both cases.
For the WOLFF EoS the explosion energy of the relativistic convection model
is nearly the same as for the model with 12 energy bins. At later time it starts
to differ, from around 1.5 s on, after which the explosion energy of the r-con-np
model becomes lower than the std-12 model. Also here the energy gained from the
neutrino driven wind seems to be different.

3.7.4 Network

The explosion energies from the model done with the burning network have not
reached saturation. For the SHEN EoS, we can only compare the models with the
relativistic convection treatment. We see that the explosion energy of the model
with the network is lower then for the model without the network. This is also
the case for the models with the SKA EoS. Here we can compare the models
with Newtonian convection treatment. The explosion energy of the model with the
network is below the model with out the network, as well.

Interesting is that even if we assume that all the matter gets burn to Fe56 the
explosion energy, is lower for the model with the network than of those without,
see Table 3.11. In the upper two panels of Figure 3.57 we compare the behaviour of
the mass shells for the model with and without the network. On the left hand side
we see that the models are very similar, whereas the models on the right hand side
differ a lot. This might come from a different amount of nucleons in the heating
region we therefore examine them in the lower two panels of Figure 3.57 at the
time the explosion sets in. We do see a slightly different amount. Note that this is
not necessarily a result of the network itself, but can also be due to the different
NSE temperature threshold with and without the network, as indicated by the
grey shaded areas.

3.7.5 EoS

We saw in the Sections above that there is a huge difference of the explosion
energy between the EoS. In this Section we want to compare the explosion energy
of the models with different EoS directly. It is always a hope that with the help of
observations one could infer constraints on the EoS, as the explosion energy is a
somewhat observable quantity. In Figure 3.58 we show the explosion energy of the
different EoS. We see in the upper left panel the comparison of the models without
convection and without corrected neutrino nucleon opacities with different EoS. In
this case the explosion energies are quite similar to each other. The explosion energy
of the LS220 EoS model, which has the highest explosion energy, is ∼ 14 % higher
than the one of the SHEN EoS model, which has the lowest energy. Kitaura et al.
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Figure 3.57: The upper two panels are the time evolution of mass shells for the models
with and without network burning treatment. On the left hand side are the models
with the Newtonian convection criterion, on the right hand side are the models with
the relativistic convection criterion. The blue line indicates the shock radius, solid for
the model without network and dashed for the model with network. The green line
shoes the proto neutron star radius. The lower two panels are the comparing the mass
fraction and Ye of the SKA EoS models with and without the network. On the left hand
side we show the models with the Newtonian convection criterion and the right hand
side we show the model with the relativistic convection criterion. The gray shaded area
indicates where NSE temperature is reached.
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Figure 3.58: Comparing the diagnostic explosion energy between the models with different
EoS. Note the different timescales.

(2006) compares the explosion energy of a LS180 EoS model (labeled L&S) with
one done with the WOLFF EoS (labeled W&H). They finds that the WOLFF EoS
model has a lower explosion energy than the LS180 EoS model. By extrapolating
they claim that the explosion energy of the LS180 EoS model will be ∼ 50 % larger
than the WOLFF EoS model. In our case the models with the WOLFF and LS180
EoS are fairly similar to each other, and the quantitative values we get for the
explosion energy are below those calculated by Kitaura et al. (2006)

In the case of the models with the corrected neutrino nucleon opacities, upper
left panel of Figure 3.58, we see a wider spread of the explosion energy. Here, the
SHEN EoS model has the highest energy, followed by the LS180, WOLFF, SKA
and LS220 EoS models. The relative difference of the explosion energy of the SHEN
EoS model to the LS220 EoS model is ∼ 65 %. Even compared to the LS180 EoS
models with the second highest explosions energy the SHEN EoS model has a
∼ 36 % higher explosion energy.
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If we look at the difference in the explosion energies of our best physics models
we see that they are again not that large, see the lower panels of Figure 3.58. In
case of the Newtonian convection criterion, the LS180 EoS model has the highest
explosion energy. This model has also the highest explosion energies of all our
available models and is still rising. The lowest explosion energy here has the SKA
EoS model and is around 21 % lower than the LS180 EoS model. In the case of the
relativistic convection the WOLFF EoS model has the highest explosion energy
for the first 1.5 s after which the LS180 gets higher. The SHEN EoS has the lowest
explosion energy here and has an, around 20 %, lower explosion energy than the
LS180 EoS model.

We have therefore to conclude that no sufficiently accurate predictions about
explosion energies from our models can be made. Slight differences during and
before the explosion seem to be able to alter the explosion energy to a very large
extent.

We see that the relative differences between the EoS for the best physical models,
meaning the convection models, are low. Therefore we assume that it would be
very hard to be able to eliminate EoS with the help of the explosion energy.

Additionally the issue about the correct criterion for convection would have
to be resolved. We would argue that the Newtonian criterion is appropriate. It
reproduces our 2D results very nicely as we will show in the next chapter.

We can see in Table 3.11 that in most cases the explosion energy does coincide
with the ejected mass. When the model explodes slightly earlier, more mass gets
ejected. But when and how the models explodes seems to be very sensitive and we
found that it depends on even minor numerical changes.
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4 Axially Symmetric Simulations (2D)

Have no fear of perfection,
you’ll never reach it

(Salvador Dali)

In this Chapter we will discuss the results of our axially symmetric (2D) simulations.
Multi dimensional simulations are considered to be necessary, despite the higher
computational costs: Observations of SN1987A show that there is some indication
for a non spherical explosion (Catchpole 2012, Sinnott et al. 2013). Also, 1D models
typically do not explode. The non-spherical convective motions in the accretion
layer seem to be necessary to boost the neutrino heating efficiency, for more massive
progenitors.

In the literature, multi dimensional simulations are usually discussed mostly in
regard to the feasibility to produce an explosion. In our case, the used progenitor
even explodes in spherical symmetry, however it is still expected that the details
of the explosion will be changed in a multi dimensional simulation.

The help of multidimensional effects was already suggested by Epstein (1979),
and based on this simulated by Bethe (1990). One such multi dimensional effect
is convection. We saw in Section 3.4.3 and 3.5.3 that 1D simulations, even with
a mixing length treatment for the convective flows, can not reproduce the PNS
convection of the 2D results completely. For typical, more massive progenitors it
was found that the increase in luminosity by proto neutron star convection is not
enough to trigger an explosion, see Dessart et al. (2006) and Burrows et al. (2007).
Another multi dimensional effect is the neutrino-driven convection in the accretion
layer between the proto neutron star and the shock radius. Like in boiling water,
neutrino heated matter is rising from above the proto neutron star upwards near
to the shock front. At the same time, cooler matter streams downwards, (Janka
and Müller, 1996). This is also interesting in another aspect, recent 2D simulations
have shown that electron-capture supernovae could be a possible source of (weak)
r-process elements (Wanajo et al., 2011): In contrast to 1D simulations, in 2D the
mushroom shaped convective bubbles (see their Figure 1) can be expanded fast
enough to also eject matter with low Ye (see their Figure 2), before neutrinos can
change the Ye to higher values.

Our 2D simulations are also done with a general relativistic treatment, as the
expansion timescale is very important for the r-process freeze-out. The simulations
are performed as a 180◦ setup (i.e. the whole sphere), with 128 as well as 140 and
280 angular zones, to test the angular resolution dependence of the lowest values
of Ye and their ejecta mass distribution. In contrast to simulations done with the
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VERTEX code, we do not map a spherically symmetric calculation onto a 2D grid
after collapse. We do, however, calculate the innermost 300 zones as a spherically
symmetric core during collapse. This is justified, as the collapse should be almost
perfectly spherically symmetric. After the collapse, we reduce this number to only
the innermost 6 zones (∼ the innermost km), to avoid very small time steps, see
Marek (2007).

In this chapter we will concentrate on the possibility of r-process elements
from the early ejected matter, and the effects of proto neutron star cooling, as
we performed the first long-time multi dimensional cooling simulations with the
VERTEX-CoCoNuT code.

Unfortunately, due to pre-existing numerical problems in the CoCoNuT module
of VERTEX only one 2D model could be simulated for an appreciable amount
of time (2.2 s for the WOLFF 2D-128 model). Only very recently we succeeded
to produce a number of additional models, which so far have only reached a very
short simulated time. These models where also done with the corrected neutrino
nucleon opacities, which were discussed in Section 2.5. In Table 2.4 we find a list
of the model names used. The model WOLFF 2D-128 is the only 2D model which
was simulated without the corrected nucleon potentials and with only 12 energy
bins. The simulations are still ongoing and could possibly be explored more in the
future. The model without the corrected nucleon potentials has run longest (2.2 s)
and we will therefore have to concentrate much of the discussion on this model
(WOLFF 2D-128).

4.1 Angular resolution

In the case of 2D simulations we have now another dimension to resolve, the
angular direction. 2D simulations are computationally expensive and take a long
time. For this reason most of our 2D simulation have not progressed as far as the 1D
simulations. A full comparison can sadly thus not yet be done. The simulations we
compare here where done with 140 angular bins on a 180◦ setup, which corresponds
to an angular resolution of 1.3◦, and with 280 angular bins and thus 0.6◦ angular
resolution. In contrast to Marek (2007) we didn’t change the radial grid for the
simulation with the higher resolution, both were done with an initial grid of 1400
radial zones, with a periodical refinement as was done in 1D, see Section 3.3.2

In Figures 4.1 we show the comparison of the neutrino signal of those two
versions. As the behaviour is quite similar we will discuss the angular resolution
on the basis of the models with the SHEN EoS, as both models have progressed
the farthest of the 2D models with different resolutions. The effect we can see
up to the simulated time is that the Lνe burst of the better resolved model is
slightly higher than those of the less resolved one. After that, the luminosities of
the model with the higher angular resolution are slightly below the lower angular
resolution model, for all neutrino flavors. We compare in Figures 4.1 the angular
averaged mean energies of the models with each other, see Eq. (3.5). The mean
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Figure 4.1: Compare neutrino signal for two SHEN EoS models with different angular
resolution. The mean energy shown is averaged over the angels.

energies of the 2D-280-np model are slightly lower than for the 2D-140-np model.
A similar behaviour was also seen by Marek (2007), he compared two models with
an angular resolution of 0.94◦ and 1.41◦. Marek (2007) claims that the observed
difference were due to the different initial radial grid he used. This is not so in
our case as we used the same initial grid for both models, and must therefore be
an effect of the different angular resolution. In Figure 4.2 we show the spread of
mean energies depending on the angle of the SHEN EoS model. We see that in
the accretion phase the neutrino mean energies of the high resolution model are
spread over a broader range than in the low resolution model.

We found that the angular resolution has an influence on the explosion. In
Figure 4.3 we show mass shell plots color-coded with the velocity evolution. We
see that both models are similar to around 0.05 s. From there on we see that in
the outer shells of the model with 280 angular zones collapse inwards normally.
However, in the 140 zone model the outer shells stop collapsing, even expand into
another shock front. There we obtain a nuclear burning explosion of the outer
shells, before the actual neutrino driven explosion sets in, similar as in Figure 3.6.
We also observe this for the lower angular resolution model with the SKA EoS.
This is not the case for the WOLFF-2D-128 model, even though it has even less
angular resolution. But one should keep in mind that this model was done without
the corrected neutrino nucleon opacities. We have no comparative simulations
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Figure 4.2: The angular spread of neutrino mean energies for the two SHEN EoS models
with different angular resolution. The lines show the angle-averaged mean values.

done with the other EoS and the simulations with the corrected neutrino nucleon
opacities and the other WOLFF EoS models are not that far developed. The model
with the SHEN EoS and the high angular resolution does not show an explosion
of the outer shell. On the other hand the actual explosion of the model with 280
angular zones sets in much faster than for the model with the 140 angular zones.

We also want to look at the influence of the angular resolution on the convective
regions, as this is important for the ejecta composition. In Figure 4.4 we show
therefore the lateral velocities as a measurement of the convection. We see that
for the first 0.01 s the flow is relatively similar. But it already starts to differ at
0.02 s. On the right hand side the flow looks a bit more fine grained than on the
left hand side, as would be expected from a model with higher angular resolution.
At 0.05 s we can already see the explosive burning of the outer shell of the model
with 140 angular zones. At the snapshot of 0.1 s the explosion of the model with
280 angular zone has set in and we see a high velocity slosh in the upper half of
the panel.

The lateral velocity and therefore the convection is influenced by the premature
outer shell explosion in the low resolution model. We also see the already indicated
faster explosion of the high resolution model acting up here. Marek (2007) saw
in his comparison also an inhomogeneous behaviour of the convectively unstable
regions. But his simulations did not have the very early explosion as we see them
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Figure 4.3: Evolution of mass shells over time for the SHEN EoS model with the lower
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in our models.
It would be very interesting to see the long term effects of the different angular

resolutions on the proto neutron star convection, but unfortunately our simulations
have not progressed far enough yet.
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Table 4.1: Time of the end of the simulation for all 2D models.

Model LS180 LS220 SHEN SKA WOLFF

t t t t t
[s] [s] [s] [s] [s]

128-2D -/- -/- -/- -/- 2.229 s
140-np-2D 0.079 s 0.006 s 0.337 s 0.157 s 0.011 s
280-np-2D 0.083 s 0.005 s 0.115 s 0.070 s 0.010 s

4.2 Neutrino signal for different EoS

In Figure 4.5 we show the neutrinos signal of all our 2D models in comparison
with a suitable 1D model. We see that sadly most of our 2D simulations did not
run very long yet, see also Table 4.1 where we show the post-bounce time at the
end of the simulations. For the models with the LS220 EoS, which are the least
progressed 2D simulations, we see a good agreement between the 2D models with
the different angular resolution and the 1D model. This is expected as the collapse
is spherically symmetric. The high angular resolution models of the WOLFF ran
a little bit further and we see that for the νe luminosity burst the model with the
least angular resolution has a lower peak than the two other 2D models. Also we
see some differences to the 1D models in the luminosities. For the models with
the LS180 EoS we see that both 2D models are in a good agreement and have in
comparison to the 1D model a lower luminosity for all flavours. The mean energies
of the 2D models are a bit higher than the 1D model, with the exception of the
maxima of the νe. For the SKA EoS models the 2D models are also in a good
agreement with each other but here the luminosities are higher than for the 1D
model, while the mean energies are fairly similar.

The progenitor we use explodes usually around 70 ms. Therefore we are only
interested in the models which where simulated longer than that. This leaves us
with the models: WOLFF-2D-128, SHEN-2D-140-np, SHEN-2D-280-np, and SKA-
2D-140-np. In Figure 4.6 we compare the neutrino signal and proto neutron star
(PNS) radius of those models with each other. We see that the WOLFF EoS model
has the lowest luminosity and mean energy. This was also observed for the 1D
models. The SHEN and SKA EoS models show very similar luminosities and mean
energies for the time shown. Also this is similar as in the 1D case. The model with
the WOLFF EoS has the highest PNS radius. The different angular resolution
models with the SHEN EoS have the same PNS radius with is a little bit higher
than the PNS radius of the model with the SKA EoS. This behaviour is also seen
for the 1D simulations.
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Figure 4.5: The neutrino signal of 2D models with different angular resolution and a
comparable 1D model, for four different EoS.
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4.3 Early Ejecta

Wanajo et al. (2011, 2013a) showed with 2D simulations from Janka et al. (2012)
that early ejected matter from relativistic 2D simulations with the ONeMg pro-
genitor could produce some r-process elements. In Figure 4.7 up to Figure 4.11 we
show the entropy and Ye of our 2D models for different EoS. Figures 4.7 and 4.8
show snapshots of the early ejecta for the WOLFF EoS models. In the snapshot
at 0.05 s we see how the matter falls onto the proto neutron star (PNS) and gets
slowed down by the accretion shock. With the help of streamlines we can see the
convection inside and outside the PNS. One can see the beginning of Rayleigh-
Taylor instabilities within the shock radius. Matter gets more neutron rich on its
way down to the proto neutron star. However, the convection is able to lift some
of this matter back up again and eject it in the following explosion. From 0.08 s
to 0.5 s we can see how the shock moves further out. At 0.5 s we see the neutrino
driven wind developing and the expansion of the mushroom shaped convective
bubbles. For the Ye, we see in the lower left corner neutron rich matter getting
ejected, at the same time we see in the upper corner how the neutrino driven wind
already starts to make the ejected matter proton rich. At 2.2 s we can see this
proton rich wind even better.

In Figure 4.9 we see snapshots for the model with the SKA EoS. Comparing
with the WOLFF EoS, we see that that the SKA EoS model explodes a bit later
then the WOLFF EoS model. The lower left panel shows the last possible snapshot
for the SKA model. We see that it shows a quadrupolar explosion. For the models
with the SHEN EoS, Figure 4.10 and 4.11, we find for the model with the low
angular resolution at 0.3 s a very neutron rich outflow in the north hemisphere.
But this model is one where we saw that the outer shell showed explosive burning,
cf. Figure 4.3. This outer shell explosion takes away infalling matter and thereby
the matter from around the PNS might be able to flow out easier. This could
influence the dynamics of the explosion and thereby the ejecta composition.

The explosions with an ONeMg progenitor are quite fast. Due to the steep
density profile the explosion sets in quickly and with very high outflow velocities.
Therefore, neutron rich pockets can be ejected outwards fast enough to avoid
changes in composition by neutrinos.
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Figure 4.7: Two dimensional plots with colour coded entropy per nucleon at the left hand
side and Ye on the right hand side, at different times for the WOLFF EoS model. The
arrows are streamlines, that is lines tangential to the momentary velocity field (which
is not to be confused with particle trajectories). The colour of the streamlines indicates
the (relative) velocity magnitude, white for large, black for smaller velocities. The red
dotted line indicates the proto neutron star radius, and the blue dotted line the shock
radius.
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Figure 4.8: As Figure 4.7 for the model with the WOLFF EoS at the last simulated time.
Nicely seen is the appearance of a proton rich neutrino driven wind from the center.
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Figure 4.9: As Figure 4.7 for the model with the SKA EoS.
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Figure 4.10: As Figure 4.7 for the low resolution model with the SHEN EoS.
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Figure 4.11: As Figure 4.7 for the high resolution model with the SHEN EoS.
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Table 4.2: The minimal values of Ye and the corresponding entropy for our 2D simulations
which ran longer than 70 ms.

Model SHEN

t Ye s τexp

[s] [1] [kB] [ms]

140-np-2D 0.105 0.348 12.67 41.11
280-np-2D 0.095 0.354 12.56 29.45

Model SKA

t Ye s τexp

[s] [1] [kB] [ms]

140-np-2D 0.110 0.376 13.22 -62.06

Model WOLFF

t Ye s τexp

[s] [1] [kB] [ms]

128-2D 0.133 0.392 14.22 37.84

To also quantitatively evaluate these snapshots we show in Figures 4.12 and
4.13 histograms of the entropy and Ye of the ejected matter. We see that the
matter with the lowest Ye gets ejected quite early but we also get some slightly less
neutron rich matter ejected at late times. For the model with the WOLFF EoS we
get neutron rich matter even after 1 s with Ye ∼ 0.42 and a coresponding entropy
of s ∼ 55 kB. In Table 4.2 we show the minimal values of Ye in the ejected matter.
We see that the model with the SHEN EoS and the lower resolution has the lowest
Ye. Again, this model, had the explosive shell burning in the outer hull, therefore
the value is not reliable. But the SHEN EoS with the higher angular resolution
has also a very low Ye and this model did collapse normally. We find lower values
of Ye than Wanajo et al. (2011, 2013a,b) used for their calculations with a similar
entropy. This is very exciting, as with these low values of Ye the production of
heavy elements up to silver and palladium in these events seems feasible!
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Figure 4.12: The histogram in the upper sub-panel shows the Ye distribution of the ejected
mass, and the right sub-panel shows the entropy distribution, separate for Ye < 0.5 and
Ye > 0.5. The central panel shows both the Ye and entropy distribution in a 2D histogram,
colour coded is the amount of mass in a (Ye, s) bin. To also show the time-evolution,
we mark the Ye/s region of ejected matter for certain time intervals with the dashed
lines. One can see that the lowest Ye values are ejected earliest. Everything is evaluated
as it streams through a radius of 250 km.116
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Figure 4.13: As Figure 4.12 but for the two models with the SHEN EoS. Note the very
low Ye values.
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Figure 4.14: Comparing the neutrino signal, left hand side, and the proto neutron star
radius, right hand side, of the 2D model with suitable 1D models.

4.4 Cooling

In this section we will discuss only the model with the WOLFF EoS, as it is the
only one which was simulated long enough. To set the cooling of the PNS into a
context we will compare the 2D model with suitable 1D models, those are:

• a 1D non-convective model (std-12),

• a 1D model with the Newtonian convection criterion (con),

• a 1D model with the relativistic convection criterion (r-con),

all those 1D models are simulated without the corrected neutrino nucleon opacities,
as is the 2D model used here.

First of all, we want to compare the cooling phase of the neutrino signal for our 2D
results with our 1D simulation. The left panel of Figure 4.14 shows this comparison.
We see that the 2D simulation has for all flavors higher luminosities and higher
mean energies than the 1D model, especially for the mean energy of the heavy-
lepton neutrinos. Within the 1D models, the Newtonian convection treatment
reproduces the 2D simulations better than the relativistic criterion (and of course
the non-convective model). The luminosity of the relativistic convection treatment
model stays below the 2D model but also below the Newtonian convection model.
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The same is true for the mean energies. We assume that the difference in the 1D
convection model lies in the smaller convectively unstable region of the relativistic
convection treatment. Also both 1D convection models have a smaller convective
unstable region than is found in the 2D model.

On the right hand side of Figure 4.14 we show the comparison of the PNS
radii. We see that the 2D model has the highest PNS radius, which is very well
reproduced by the 1D model with the Newtonian convection treatment. Only the
early maxima of the radius for those two models is slightly different. The PNS
radius of the relativistic convection 1D model is almost the same as for the non-
convective 1D model. At the end of the simulation, the radii get very similar for
all models.

In Figure 4.15 we see the time evolution of certain quantities against the enclosed
mass as a radial coordinate. We see that the non-convective 1D model is not in a
good agreement with the 2D model. The 1D model with the relativistic convection
treatment shows a better agreement, but we get a much better agreement between
the 1D model with Newtonian convection treatment and the 2D model. This
reinforces our belief that Eq. (2.37) is the proper criterion or that there are still
some numerical issues with the version using Eq. (2.38).

All models show a similar behaviour over time. The matter density gets higher
with time, as the proto neutron star is still contracting, see Figure 4.14. We can
see that the core is still heating up due to the neutrino energy transport inside
the PNS. The Ye shows nicely the deleptonisation of the PNS over time. In the
panel with the entropy we see the influence of the convection, which smoothes out
the entropy gradient. We see that this works very well for the 1D model with the
Newtonian convection criterion. To illustrate this, we show in Figure 4.16 the time
evolution of the conectively unstable regions of the 2D and the 1D model with
Newtonian convection criterion. For this, we show a map of ωBV for the 1D model
in comparison with the absolute value of the velocity field for the 2D simulation.
We see that the 1D convectively unstable regions, (where ωBV > 0), represents the
2D convectively unstable regions very well. The only area we can not represent in
the 1D case is an unstable region in the centre of the PNS that appears between
1.0 and 2 seconds.
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Figure 4.15: Similar as Figure 3.33 for the 2D model in comparison with a suitable set
of 1D models.
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Figure 4.16: Comparison of the convection with the mixing length scheme in 1D and for
the truly multi dimensional model. To illustrate the 1D convection we use the Brunt-
Väisälä frequency ωBV and for the actual 2D convection the local velocity maximum.
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Table 4.3: Proto neutron star configuration at the end of the simulations.

Model SHEN

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

140-np-2D 0.337 33.6 1.3653 1.3399 50.7 1.3681 1.3427 45 (0.27) 5.32 (0.80)
280-np-2D 0.115 52.2 1.3447 1.3314 117.8 1.3694 1.3561 24 (0.15) 4.85 (0.74)

Model SKA

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

140-np-2D 0.157 46.4 1.3579 1.3419 90.0 1.3707 1.3547 29 (0.16) 4.88 (0.73)

Model WOLFF

tend rpns Mpns MG r′pns M ′pns M ′G Eν NL
[s] [km] [M�] [M�] [km] [M�] [M�] [B] [1] [1056] [1]

128-2D 2.229 17.5 1.3619 1.2962 21.7 1.3621 1.2964 118 (0.67) 6.42 (0.96)
con-1D 2.707 16.5 1.3644 1.2944 20.1 1.3645 1.2946 125 (0.71) 6.61 (0.99)
r-con-1D 2.645 16.5 1.3672 1.2994 20.0 1.3674 1.2996 121 (0.69) 6.31 (0.94)
std-12-1D 2.489 16.8 1.3661 1.3023 20.5 1.3663 1.3024 114 (0.65) 6.17 (0.92)
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Figure 4.17: Explosion energy of the 2D model compared with suitable 1D models.

4.5 Explosion energy

For calculating the explosion energy of our 2D models only the WOLFF-2D-128
model, ran long enough. Here we will therefore only discuss the low resolution
model with the WOLFF EoS. The explosion energy is calculated as described in
Section 3.7.

In Figure 4.17 we show the explosion energy of this 2D model and compare it
with suitable 1D models.

We saw in the section above that the 1D model with Newtonian convection
treatment agrees better with the 2D model than the 1D model with the relativistic
convection treatment. This is again seen here, even more pronounced, as the
explosion energy of the relativistic convection model is barely half of that in 2D.
Also the 1D model with the Newtonian convection does not attain an explosion
energy that is as high as the 2D model, as we can only approximate the proto
neutron star convection there. In the case of the 2D model, we have additionally
the neutrino driven convection above the proto neutron star in the accretion layer.
Therefore, matter can flow back and get heated repeatedly. Also, the explosion
itself is a little bit faster in 2D, thus ejecting more matter.

All in all, we see that the 2D explosion energy is higher higher than all 1D
explosion energies shown, see also Table 4.4. This was also found by Kitaura
(2007). He showed in his Appendix II, Figure 3.4, a comparison of the explosion
energy of a 2D and 1D model done with the LS180 EoS. In contrast to that, Janka
et al. (2008) sees that in their case (see their Figure 5) the explosion energy of the
2D and 1D model, also done with the LS180, are quite similar.
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Table 4.4: Properties of the explosion energy at the end of our simulations, similar to
Table 3.11.

Model tend texpl tshock Mej Eexpl,He Eexpl Eexpl,Fe

[s] [s] [s] [10−3M�] [B] [B] [B]

128-2D 2.229 0.070 0.094 15.4 0.064 0.100 0.112
con-1D 2.707 0.098 0.101 13.0 0.048 0.075 0.089
r-con-1D 2.645 0.098 0.100 10.1 0.032 0.052 0.063
std-12-1D 2.489 0.098 0.100 11.2 0.038 0.061 0.073
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5 Summary and Conclusion

We have presented a number of 1D and 2D simulations of the electron capture
supernova of an ONeMg progenitor, with five different Equation of State models.

We showed that general relativity plays an important role for the result of
supernova simulations, even compared to post-Newtonian simulations. In the post-
Newtonian case one can reach velocities which are far too large, even higher than
the speed of light. But accurate velocities are very important for the details of
the mass ejection. It was already hinted that neutron rich matter can be ejected
by convective motions during the explosion, we investigated this in detail. We
found that neutron rich matter gets ejected quite early and therefore will also stay
neutron rich, as the neutrinos do not have a chance to change the composition that
quickly. This re-opens the possibility of r-process nucleosynthesis in a supernova
environment (Wanajo et al., 2013a; Wanajo, 2013). We also showed that the EoS
plays a huge role in the amount, distribution and composition of the ejected neutron
rich matter. Most of our 2D simulations did not run long enough yet and need
to be studied further in the future. It would also be interesting to investigate the
relative effect of the improved neutrino opacities on 2D simulations. Also a fully
3D simulation of an ECSN would be an interesting challenge to study. However,
in GR this probably would be computationally excessively expensive.

We saw that the improved neutrino opacities play an important role, especially
for the neutrino driven wind phase. There, 1D simulations are appropriate, as the
wind phase is again very spherically symmetric, which we have actually seen in the
first long-time 2D proto neutron star cooling simulations with VERTEX-CoCoNuT
that we presented here. With the improved opacities, the wind Ye gets reduced
considerably and depends more strongly on the EoS. We still always find proton
rich ejecta, but it is conceivable other EoS models might produce neutron rich
outflows, see e.g. Roberts (2012c); Hüdepohl (2014).

A convection treatment in the form of a mixing length scheme was adapted to our
GR code and improved the 1D simulations considerably. An effect was seen for the
explosion itself, but the influence is most important during the cooling phase. We
could show that the mixing length prescription matches our truly multi dimensional
models very well. The proto neutron star convection strongly accelerates the cooling
and deleptonization of the proto neutron star. Also here we saw a strong dependence
on the EoS.

We conclude that both convection and improved neutrino nucleon opacities
should be considered in all future simulations.

The stronger than previously thought EoS dependence creates possibilities and
problems: The possibility that r-process nucleosynthesis might again be feasible in
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a supernova environment, with the problem that much of the high density Equation
of State is still poorly constrained.
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Lorenz, vielen Dank für die hilfreichen Plotting-Routinen und das tolle Skript fürs
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