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ABSTRACT

The problem of optimum analog receive filtering for digital

signal detection and parameter estimation is considered. Here

the case of a signal source with bandwidth Bt and a receiver

with fixed sampling rate fs is discussed under the assumption

that 2Bt > fs. We investigate the impact of adjusting the re-

ceive bandwidth Br of the analog pre-filter, which is applied

prior to the sampler, with respect to the deflection coefficient
or the Fisher information measure. This reveals that the de-

sign rule 2Br < fs, known as the sampling theorem, does not

necessarily lead to optimum system performance. Studying

the two analytical information measures under a fix sampling

rate fs and an arbitrary choice of Br, we provide an example

where receive setups with 2Br > fs achieve higher detection

and parameter estimation performance.

Index Terms— analog filtering, detection theory, estima-

tion theory, sub-Nyquist sampling, satellite-based positioning

1. INTRODUCTION

The design of future mobile signal processing systems be-

comes challenging as it asks for high performance under se-

vere cost, power and complexity constraints. In particular

analog-to-digital conversion (ADC) turns out to be a bottle-

neck for the design of energy efficient receive systems [1].

Especially, when signals of high bandwidth have to be re-

ceived and processed, the complexity of the ADC has to be

taken into consideration. In such cases the well-known sam-

pling theorem [2–4], which provides a sufficient condition for

perfect signal reconstruction, guides the engineer’s decision

to increase the sampling rate along with the bandwidth of

the analog pre-filter in order to enhance system performance.

While the analog filter is not critical with respect to runtime

complexity, the high ADC rate makes this option unattractive.

However, many signal processing tasks do not require full sig-

nal reconstruction and therefore the sampling theorem is not

necessarily the right design rule when heading for an opti-

mum trade-off between system complexity and performance.
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The works concerned with compressed sensing [5–7] show

that signal processing is in general possible with random sub-

Nyquist sampling, while [8] explores the sampling strategy

which maximizes channel capacity. In contrast the discussion

here focuses on performance gains for signal detection and es-

timation problems which can be attained within the classical

sampling framework by shaping signal aliasing through the

analog pre-filter. Deriving analytical characterizations of de-

tection and estimation theoretic measures under sub-Nyquist

sampling, we analyze the optimum bandwidth of the ana-

log pre-filter under a fixed sampling rate. The results show

that for example satellite-based navigation receivers (GPS,

Galileo, etc.) which violate the sampling theorem have the

potential to attain higher performance with the same sampling

rate as receivers which follow the traditional filter design.

2. SYSTEM MODEL

2.1. Analog Transmit and Receive Signal

For the discussion, we assume a periodic transmitter x̆(t) ∈ R

x̆(t) =
∞�

m=−∞
bmod (m,M)ğ(t−mTc), (1)

where b ∈ {−1, 1}M is a sequence of M binary symbols,

each of duration Tc, mod (·) is the modulo-operation and ğ(t)
is a pulse with one-sided bandwidth Bt. The receive sensor

y̆(t) = γx̆(t− τ) + η̆(t) (2)

attains a copy of the transmit signal x̆(t), attenuated by γ ∈ R
and delayed by τ ∈ R. Thermal noise and possible interfer-

ence are taken into account within the receive model by an

additive random signal η̆(t). During the following pages we

will approximate η̆(t) by a white and wide-sense stationary

Gaussian random process with power spectral density
N0
2 , i.e.

r̆(t) =

� ∞

−∞
η̆(λ)η̆(λ− t)dλ =

N0

2
δ(t) ∀t.
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2.2. Analog Pre-Filtering and Sampling

For further processing the receive signal is band-limited by

an ideal analog low-pass filter h(t;Br) with one-sided band-

width Br, i.e.

H(ω;Br) =

�
1 if |ω| ≤ 2πBr

0 else,

where H(ω;Br) = F{h(t;Br)} with F{·} being the

Fourier-transform. Consequently, the analog sampler input is

y(t) = y̆(t) ∗ h(t;Br) = γx(t− τ) + η(t). (3)

For one signal period To = MTc the analog signal is sampled

at a rate of fs =
1
Ts

, resulting in a digital block signal model

y = γx(τ) + η,

with N = To
Ts

samples, where

x(τ) =
�
x(−τ) x(Ts − τ) . . . x((N − 1)Ts − τ)

�T
∈ RN

η =
�
η(0) η(Ts) . . . η((N − 1)Ts)

�T
∈ RN

y =
�
y(0) y(Ts) . . . y((N − 1)Ts)

�T
∈ RN

.

2.3. Noise Properties

The filtered noise process η(t) is in general no longer white

as the autocorrelation function is given by

r(t) = BrN0 sinc(2Brt),

such that the entries of the filtered noise covariance matrix

R = E
�
ηηT

�
are given by

Rij = BrN0 sinc(2BrTs|i− j|).

3. DETECTION AND ESTIMATION PROBLEMS

With the defined system model we consider two basic prob-

lems of statistical signal processing, summarized here briefly.

3.1. Detection Problem

Given the digital receive signal y, detection is concerned with

distinguishing between two possible receive situations

H0 : y = η

H1 : y = γx(τ) + η,

i.e. to determine if the signal source x̆(t) is active or inactive

while the parameters γ and τ are known constants. Under

the assumption that both receive situations occur with equal

probability, i.e. P (H0) = P (H1) = 0.5, the error-probability

Pe = P (H0|H1)P (H1) + P (H1|H0)P (H0)

of the maximum-likelihood detector which decides for H1 if

p(y|H1) > p(y|H0),

is given by [9]

Pe = Q

�
1

2

�
γ2xT (τ)R−1x(τ)

�
= Q

�
1

2

�
D(τ, Br)

�
,

where D(τ, Br) is referred to as deflection coefficient. With

the Q-function Q(·) being a monotonically decreasing func-

tion, the optimum receiver setup B
D

r
(τ) minimizing the error-

probability Pe is

B
D

r
(τ) = arg max

Br∈R+
D(τ, Br).

3.2. Estimation Problem

Estimation is concerned with the inference of an unknown

signal parameter from a noisy receive signal, like for example

the time-delay τ . Under the assumption that γ is a constant

and τ is unknown but deterministic, the optimum unbiased

estimator is the maximum likelihood estimator [10]

τ̂ML(y) = argmax
τ∈R

p(y; τ).

As this estimator is asymptotically efficient for the considered

system model, its performance with sufficiently large N is

equal to the Cramér-Rao lower bound (CRLB) [10]

Var
�
τ̂ML(y)

�
= CRLB(τ, Br)

=
1

F (τ, Br)
,

where the Fisher information measure is defined by

F (τ, Br) =

�

Y
p(y; τ)

�
∂ ln p(y; τ)

∂τ

�2

dτ

= γ
2 ∂x

T (τ)

∂τ
R−1 ∂x(τ)

∂τ
.

The receiver setup B
E

r
(τ) minimizing Var

�
τ̂ML(y)

�
is

B
E

r
(τ) = arg max

Br∈R+
F (τ, Br).

4. COMPACT ANALYTIC PERFORMANCE
CHARACTERIZATION

To attain compact analytical expressions without inversion of

large matrices, frequency domain characterizations of the in-

formation measures D(τ, Br) and F (τ, Br) are derived. Us-

ing the fact that x(t) is periodic with ω0 = 2π
To

,

x(t) =
1

To

∞�

k=−∞
X(kω0) e

j kω0t =
∞�

k=−∞
x̃k e

j kω0t,
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where

X(ω) =

�

To

x(t) e− jωt dt (4)

and

x̃k =
1

To

X(kω0),

with X(kω0) being the Fourier transform (4) of the signal

x(t) evaluated at the discrete frequency point kω0. Note that

due to the signal model (1), (2) and (3)

X(kω0) = B(kω0)Ğ(kω0)H(kω0;Br),

with B(kω0) being the coefficients of the discrete Fourier

transform of the binary sequence b. Defining the spectrum

of the sampled signal

X
�(kω0; τ) =

∞�

l=−∞
X(kω0 − lωs) e

− j(kω0−lωs)τ ,

with ωs =
2π
Ts

, the signal samples with delay can be written

x[n] =
1

To

∞�

k=−∞
X(kω0) e

j kω0(nTs−τ)

=
1

To

∞�

k=−∞
X(kω0) e

− j kω0τ ej kn
2π
N

=

N
2 −1�

k=−N
2

�
1

To

∞�

l=−∞
X(kω0 − lωs) e

− j(kω0−lωs)τ

�
ej kn

2π
N

=

N
2 −1�

k=−N
2

x̃
�
k
(τ) ej kn

2π
N , (5)

where it was used that ω0Ts = 2πTs
T0

= 2πω0
ωs

= 2π
N

and

ej kn
2π
N = ej(k−lN)n 2π

N , ∀l ∈ Z. A modified version of the

inverse discrete Fourier transformation matrix

Wnk =
1

√
N

ej 2π

�
−N

2 −1+k

��
n−1

�
N ,

with k, n = 1, . . . , N and (5) allows to write

x(τ) =
√
NWx̃�(τ),

where the Fourier coefficient vector is defined

x̃�(τ) =
�
x̃
�
−N

2
(τ) x̃

�
−N

2 +1
(τ) . . . x̃

�
N
2 −1

(τ)
�T

∈ CN
.

Accordingly, with

ψ̃k(τ) =
1

To

∞�

l=−∞
j lωsX(kω0 − lωs) e

− j(kω0−lωs)τ ,

the sampled signal derivative is given by

∂x[n]

∂τ
=

1

To

N
2 −1�

k=−N
2

� ∞�

l=−∞
− j(kω0 − lωs)·

·X(kω0 − lωs) e
− j(kω0−lωs)τ

�
ej kn

2π
N

=

N
2 −1�

k=−N
2

�
− j kω0x̃

�
k
(τ) + ψ̃k(τ)

�
ej kn

2π
N ,

where

ψ̃k(τ) =
1

To

Ψ(kω0; τ)

=
1

To

∞�

l=−∞
j lωsX(kω0 − lωs) e

− j(kω0−lωs)τ .

Then, with the diagonal matrix

Σkk = − jω0

�
−

N

2
− 1 + k

�

and the vector

ψ̃(τ) =
�
ψ̃−N

2
(τ) ψ̃−N

2 +1(τ) . . . ψ̃N
2 −1(τ)

�T
∈ CN

,

the signal derivative in vector notation can be written

∂x(τ)

∂τ
=

√
NW

�
Σx̃�(τ) + ψ̃(τ)

�
.

Note that for large N the noise covariance matrix [11]

R ≈ WΩWH
,

where the entries of the diagonal eigenvalue matrix are

Ωkk =
1

Ts

R
�

��
−

N

2
− 1 + k

�
ω0

�
,

with the sampled noise power spectral density

R
�(kω0) =

∞�

l=−∞
R(kω0 − lωs).

This allows to write the deflection coefficient

D(τ, Br) = γ
2
N
�
Wx̃�(τ)

�H
WΩ−1WHWx̃�(τ)

=
γ
2

T0

N
2 −1�

k=−N
2

|X �(kω0; τ)|2

R�(kω0)
(6)

and the Fisher information measure

F (τ, Br) = γ
2
N
�
Σx̃�(τ) + ψ̃(τ)

�H
Ω−1�Σx̃�(τ) + ψ̃(τ)

�

=
γ
2

T0

N
2 −1�

k=−N
2

(kω0)2|X �(kω0; τ)|2

R�(kω0)
+

|Ψ(kω0; τ)|2

R�(kω0)
−

−
2kω0 Im {X �∗(kω0; τ)Ψ(kω0; τ)}

R�(kω0)
. (7)
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4.1. Expected Performance Measures

The information measures (6) and (7) are dependent on the

specific choice of the binary sequence b. Since b is in general

a white random sequence, i.e.

Eb [bibj ] =

�
1 if i = j

0 else,
(8)

an average performance characterization, independent of b, is

needed. To this end, the expected informations measures

D̄(τ, Br) = Eb [D(τ, Br)]

=
γ
2

T0

N
2 −1�

k=−N
2

Eb

�
|X �(kω0; τ)|2

�

R�(kω0)
(9)

and

F̄ (τ, Br) = Eb [F (τ, Br)]

=
γ
2

T0

N
2 −1�

k=−N
2

(kω0)2 Eb

�
|X �(kω0; τ)|2

�

R�(kω0)
+

+
Eb

�
|Ψ(kω0; τ)|2

�

R�(kω0)
−

−
2kω0 Im {Eb [X �∗(kω0; τ)Ψ(kω0; τ)]}

R�(kω0)
(10)

are introduced. From (8) it follows that

Eb [B(kω0 − lωs)B
∗(kω0 − lωs)] = M · I(l,m),

where the indicator function is defined

I(l,m) =

�
1 if

l−m

M

ωs
ω0

∈ Z
0 else.

Therefore, the expected values in (9) and (10) can be written

Eb

�
|X

�(kω0; τ)|
2
�
= M ·

∞�

l=−∞

∞�

m=−∞
ζ(l,m; τ)

Eb

�
|Ψ(kω0; τ)|

2
�
= M ·

∞�

l=−∞

∞�

m=−∞
lmω

2
s
ζ(l,m; τ)

Eb [X
�∗(kω0; τ)Ψ(kω0; τ)] = M ·

∞�

l=−∞

∞�

m=−∞
j lωsζ(l,m; τ)

with

ζ(l,m; τ) = I(l,m) ej(l−m)ωsτ G(kω0 − lωs)G
∗(kω0 −mωs),

where G(ω) is the Fourier transform of the band-limited pulse

g(t) = ğ(t) ∗ h(t;Br).

5. OPTIMUM ANALOG FILTER BANDWIDTH

To visualize the gains with optimized bandwidth Br, we as-

sume M = 1023, a rectangular pulse ğ(t), fc = 1
Tc

= 1.023

Mhz (GPS C/A L1), To = MTc and τ = Tc
2 . The sam-

pling rate is fs = 2.5fc and the filter bandwidth Br = α
fs

2

with α ∈ R+
. For each α, the performance is evaluated and

normalized to a reference system operating at Br = fs

2 , i.e.

α = 1. Fig. 1 shows the detection performance with max-

imum at α = 1.32 and Fig. 2 shows the estimation perfor-

mance which attains its maximum at α = 1.40. We notice that

here the performance hardly depends on the sampling time τ .

0.8 1 1.2 1.4

0.99

1

1.01

α

D̄
(T

c 2
;
f
s 2
α
)/
D̄
(T

c 2
;
f
s 2
)

Fig. 1. Detection performance versus filter bandwidth Br

0.8 1 1.2 1.4 1.6

1

1.2

α

F̄
(T

c 2
;
f
s 2
α
)/
F̄
(T

c 2
;
f
s 2
)

Fig. 2. Estimation performance versus filter bandwidth Br

6. CONCLUSION

Investigation of the behavior of detection and estimation per-

formance under sub-Nyquist sampling has shown that the per-

formance of signal processing systems with a sampling rate

constraint can be significantly increased by adjusting the ana-

log pre-filter h(t;Br). Interestingly, if a broadband transmit

signal of bandwidth Bt is received under a sampling rate con-

straint 2Bt > fs, the optimum bandwidth of the analog re-

ceive filter Br lies above the aliasing-free region 2Br < fs.
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