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A B S T R A C T

Scene understanding and recognition in dynamic environments is a primary goal of

cognitive perception systems. "See", "analyze" and "understand" are three keywords

best describing the ultimate objectives of the perception system. By utilizing hybrid

visual sensors and fulfilling the requirements of different application scenarios, the

dynamic environment is represented as multiple data structures at various layers of

abstraction. There has been significant interest in recent years in effectively and effi-

ciently extracting useful information from the analysis of the properties of such visual

data structures. In this thesis, we present multiple contributions to scene understand-

ing and recognition in the areas of both texture and textureless object recognition as

well as pose estimation, dense/deformable motion extraction for dynamic scene, mod-

eling of articulated object, and real-time human motion estimation.

We propose an object descriptor in the form of a viewpoint oriented color-shape

histogram for object recognition and pose estimation, which combines the object’s

color and shape features. The descriptor is efficiently used in a real-time textured/tex-

tureless object recognition and 6D pose estimation system. We validate our approach

through a large number of experiments, including daily complex scenarios and object

localization in a large-scale semantic map. Secondly, a hierarchical MRF optimization

method is designed for dense and deformable motion extraction from dynamic scenes.

It consists of two layers, named the segmentation and the correspondence layer re-

spectively. The dynamic foreground data is first segmented and then used to estimate

motion by employing point correspondences. A new surface descriptor aptly titled

the "deformable color and shape histogram" is proposed and a dataset of dynamic

scenes is built for benchmarking purposes, which involves different motion patterns

and surface properties. We propose a new articulated object modeling method by in-

tegrating visual and manipulation information for articulated object recognition and

manipulation. Depth-based skeletonization is realized to extract the skeleton from vi-

sual observations of different configurations. The kinematic joints are characterized

and localized. Robot manipulation information is gained by kinesthetic learning in ob-

ject joint state space. Following modeling, manipulation of the object is realized by first

identifying the current object joint states and generalizing the learned force to accom-

plish the new task. Lastly, we propose a real-time 3D human body motion estimation

based on three-layer laser scans. The relevant scanned points represent human body

contour information and are subtracted from the image as part of feature extraction.

In order to avoid situations of unsuccessful segmentation, a new iterative template
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matching algorithm for clustering is proposed. The positions of human joints in 3D

space are retrieved by associating the extracted features with a pre-defined articulated

human body model while simultaneously estimating accurate human body motion in

real time.
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Z U S A M M E N FA S S U N G

Verständnis und Erkennung von Szenen in dynamischen Umgebung ist ein Hauptziel

von kognitiven Wahrnehmungssystemen. Das "Sehen", die "Analyse" und das "Ver-

ständnis" sind drei Schlagwörter, die die Ziele vom Wahrnehmungssystem am Besten

beschreiben. Unter Verwendung von hybriden Sensoren und unter Berücksichtigung

der Anforderungen von diversen Anwendungsszenarien werden dynamische Umge-

bungen als verschiedene Datenstrukturen in unterschiedlichen Abstraktionsschichten

realisiert. Es gibt aktuell signifikantes Interesse an der effektiven und effizienten Gewin-

nung von Informationen aus der Analyse der Eigenschaften solcher visuellen Struk-

turen. In dieser Arbeit werden Beiträge zum Verständnis und zur Erkennung von

Szenen vorgestellt, die sowohl im Bereich der textur-und texturlosen Objekterkennung

als auch zur Schätzung der Pose, der Bestimmung von dichter Bewegungsinformation

für deformierbare Objekte in dynamischen Szenen, der Modellierung von beweglichen

Objekten und der Bewegungsschätzung von Menschen in Echtzeit angesiedelt sind.

Wir schlagen einen Objektdeskriptor vor, der mithilfe eines betrachtungsabhängigen

Farb-und Formhistogramms für Objekterkennung und Positionsbestimmung genutzt

werden kann und welcher die Farb-und Formmerkmale eines Objekts kombiniert.

Der Deskriptor wird effizient in einem System sowohl für die Erkennung von tex-

turlosen und texturierten Objekten in Echtzeit als auch für die 6D Positionsbestim-

mung eingesetzt. Das Vorgehen wurde durch eine Vielzahl an Experimenten vali-

diert, die alltägliche komplexe Szenarien nachbilden und die Lagebestimmung von

Objekten in einer komplexen semantischen Karte testen. Zweitens wurde ein MRF-

Optimierungsverfahren für dichte und deformierbare Bewegungen in dynamischen

Szenen entworfen. Das Verfahren besteht aus zwei Schichten, die als Segmentierungs-

und Korrespondenzschicht bezeichnet werden. Die dynamische Vordergrundinforma-

tionen werden zunächst segmentiert und im darauf folgenden Schritt für die Bewe-

gungsschätzung mittels Punktkorrespondenzen verwendet. Ein neuer Oberflächen-

deskriptor wird vorgestellt, der als "deformierbares Farb- und Formhistogramm" beze-

ichnet wird. Zusätzlich wurde ein neuer Datensatz aus dynamischen Szenen zusam-

mengestellt, der diverse Bewegungsmuster und Oberflächeneigenschaften beinhaltet,

um eine Bewertung des Verfahrens zu ermöglichen. Außerdem wird eine neue Meth-

ode zur Modellierung von artikulierten Objekten vorgeschlagen, welche visuelle und

manipulationsrelevante Informationen zur Erkennung und Manipulation von artikulie-

rten Objekten integriert. Tiefenbasierte Skelettierung wird zur Extraktion des Skeletts

aus visuellen Beobachtungen verschiedener Konfigurationen eingesetzt. Kinematische
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Gelenke werden charakterisiert und lokalisiert. Information zur Manipulation mit

einem Roboter wird durch Lernen der Kinästhetik im Zustandsraum der Objektge-

lenke vermittelt. Nach der Modellierung wird die Manipulation des Objektes realisiert,

indem zuerst der aktuelle Zustand der Objektgelenke identifiziert wird und dann die

gelernten Kräfte generalisiert werden, um neue Aufgaben zu erfüllen. Zum Schluss

wird eine echtzeitfähige 3D Bewegungsschätzung von Menschen mithilfe von Laser-

scans mit drei Ebenen vorgestellt. Die erfassten Punkte stellen Konturinformationen

des menschlichen Körpers dar und werden im Rahmen der Merkmalsextraktion vom

Bild abgezogen. Damit erfolglose Segmentierungen vermieden werden, wird einen

neuer iterativer Template-Matching Algorithmus für das Clustering vorgestellt. Die

Positionen der Körpergelenke im 3D Raum werden durch Zuordnung der extrahierten

Merkmale zum einem vordefinierten artikulierten menschlichen Modell bestimmt, gle-

ichzeitig wird die Körperbewegung in Echtzeit mit hoher Genauigkeit geschätzt.

viii



A C K N O W L E D G M E N T S

First and foremost, I would like to sincere thank my supervisor Prof. Dr.-Ing. Dar-

ius Burschka to provide me an opportunity to conduct my research in his prestigious

group. He gave me research guidance, professional expertise and comprehensive sup-

port. His encouragements provided me the concentration and freedom in pursuing my

own ideas. Many thanks, my "Doctor Father".

Next, I would like to express my gratitude to all of the colleagues in Machine Vi-

sion and Perception Group (MVP) for their kind support. A special thanks to Dr. Kon-

stantinos Dalamagkidis, Dr. Susanne Petsch, Dr. Michael Jäntsch, Dr. Steffen Wittmeier,

Artashes Mkhitaryan, Philipp Heise, Brian Jensen, Rafael Hostettler, Benito Clemente

Diaz Nava, Aurelien Bustin, Shufang Liu and Terresa Dominguez Rincón, for research

discussions and enjoyable interactions. I also want to thank my co-authors for the

insightful discussions, fruitful collaborations, and late-night paper writing sessions.

Moreover, I want to thank my previous students and Murola people. I enjoyed every

minute working with them.

Last but not least, my deepest gratitude goes to my family for their continuing

support. And I also own great thanks to my wife Lili, who has been always standing

by me and giving powerful encouragements during all these years. Also thanks to my

daughter Yicheng, who brings a colorful life to me. Without their love and support, I

cannot get these achievements and reach this step.

ix





C O N T E N T S

1 introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 related work 11

2.1 3D Object Recognition and Pose Estimation . . . . . . . . . . . . . . . . . 11

2.2 Dense and Deformable Motion Extraction . . . . . . . . . . . . . . . . . . 14

2.3 Articulated Object Recognition and Manipulation . . . . . . . . . . . . . 16

2.4 Real-Time Human Motion Estimation . . . . . . . . . . . . . . . . . . . . 19

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 real-time 3d object recognition and pose estimation 23

3.1 Framework for Object Recognition and Pose Estimation . . . . . . . . . 23

3.2 3D Object Modeling and Viewpoint oriented Patch Generation . . . . . 24

3.2.1 3D Object Modeling based on RGB-D images . . . . . . . . . . . 24

3.2.2 Different-view Object Patch Extraction from Synthetic Viewpoints 25

3.3 Viewpoint oriented Color-shape Histogram . . . . . . . . . . . . . . . . . 26

3.3.1 Smoothed Color Ranging . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Shape Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Color and Shape Feature Correlation . . . . . . . . . . . . . . . . 30

3.4 Multiple Object Recognition and Pose Retrieval . . . . . . . . . . . . . . 31

3.4.1 Object Recognition and Initial Pose Estimation . . . . . . . . . . . 31

3.4.2 Object Pose Optimization and Verification . . . . . . . . . . . . . 33

3.4.3 Object Localization in a Large-scale Semantic Map . . . . . . . . 34

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 dense and deformable motion extraction of dynamic scene 47

4.1 Framework of Dynamic Scene Motion Extraction . . . . . . . . . . . . . 47

4.2 Hierarchical MRFs Structure Design . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Markov Random Field Basics . . . . . . . . . . . . . . . . . . . . . 48

xi



xii contents

4.2.2 Hierarchical MRFs Structure in Different Layers . . . . . . . . . . 48

4.3 Dynamic Foreground Extraction . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Data Term from Image Similarity . . . . . . . . . . . . . . . . . . 50

4.3.2 Smoothness Term Calculation . . . . . . . . . . . . . . . . . . . . . 51

4.4 Correspondences Labeling for Foreground Pair . . . . . . . . . . . . . . 52

4.4.1 Deformable Color-shape Histogram . . . . . . . . . . . . . . . . . 53

4.4.2 Data Term from DCSH Similarity . . . . . . . . . . . . . . . . . . 56

4.4.3 Neighborhood Constrain Term Calculation . . . . . . . . . . . . . 57

4.4.4 Occupancy Constrain Term Calculation . . . . . . . . . . . . . . . 57

4.5 Optimization Scheme for Energy Minimization at Different MRF Layers 58

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 articulated object modeling based on visual and manipula-

tion observations 67

5.1 Articulated Object Modeling based on Visual and Manipulation Data . 67

5.1.1 Definition of Articulated Object Model . . . . . . . . . . . . . . . 67

5.1.2 Manipulation Skills Formalization . . . . . . . . . . . . . . . . . . 68

5.2 Framework for Articulated Object Modeling . . . . . . . . . . . . . . . . 68

5.3 Object Skeletonization from Visual Observation . . . . . . . . . . . . . . 70

5.3.1 Vector Field Generation . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Line-shape Skeleton Estimation . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Skeleton Topology Extraction . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Determination for The Number of Kinematic Joint . . . . . . . . 74

5.4 Articulated Joint Type Characterization . . . . . . . . . . . . . . . . . . . 75

5.5 Learning Force Skills from Manipulation Observation and Mapping . . 77

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 real-time human body motion estimation based on layered laser

scans 83

6.1 Framework for Real-time Human Motion Estimation . . . . . . . . . . . 83

6.2 Human Foreground Data Extraction . . . . . . . . . . . . . . . . . . . . . 84

6.3 Human Contour Features Extraction . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 Segmentation by Nearest Neighbor Clustering . . . . . . . . . . . 85

6.3.2 Segmentation Using Template Matching . . . . . . . . . . . . . . 87

6.3.3 Iterative Template Matching for Segmentation and Clustering . . 89



contents xiii

6.4 Human Modeling and Data Association . . . . . . . . . . . . . . . . . . . 92

6.4.1 Articulated Human Model Building . . . . . . . . . . . . . . . . . 92

6.4.2 Contour Feature Association with Human Model . . . . . . . . . 93

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 conclusions and future work 99

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

list of figures 105

list of tables 109

list of algorithms 110

bibliography 111





1
I N T R O D U C T I O N

Scene understanding and recognition in dynamic environments is a primary goal of

cognitive perception systems. A perception system may be defined as a system that

retrieves, then organizes and finally interprets sensory information in order to repre-

sent and understand the environment. To retrieve sensory information, hybrid visual

sensors, have been widely employed in lots of applications, provide significant ad-

vantages due to the richer information they provide. The collected information then

could be typically organized in multiple data structures at various layers of abstraction.

This data as well as the properties and relationships between the data structures can be

used to extract useful information, which is needed in the last step (interpret) to under-

stand the environment. A successful and robust perception system of dynamic scene

understanding and recognition is therefore encouraged to be developed in massive

research and industrial areas. For instance, in the application of robotics, the system

brings effective abstractions of entire environments for autonomous robots, so that

being able to adapt their actuators for different applications. With this capability, the

robot can be applied as a real autonomous assistant for human beings in daily life,

without pre-programmed processes.

In the last decades, a major research question as the topic of this thesis is how to

effectively and efficiently extract the information from these data structures to fulfill

the requirements of different application scenarios. The latter include topics such as

object recognition as well as pose estimation, dense/deformable motion extraction in

dynamic scenes, modeling of articulated objects, and real-time human motion estima-

tion. This chapter introduces the background of scene understanding and recognition

from visual data structures in dynamic environments. It then presents the research ob-

jectives, challenges and contributions of this thesis which are followed by an overview

of its structure.

1.1 background

A scene understanding and recognition system comprises many low-, mid- and high-

level visual computations such as sensing, construction and analysis. Due to their great

importance, perception systems have attracted the great interests of vision researchers

as well as researchers from the brain and neural science, psychology, cognitive science

and computer science domains. Perception systems have been used in a number of

1



2 introduction

Sensor 

System

Scene Understanding 

and Recognition

Dynamic Environment

Visual Data

Structure Properties

(Analyze)

(See)
(Understand)

Figure 1.1: Perception system for scene understanding and recognition, which contains sensor
system, analysis for visual structure properties and cognition process.

different applications, such as visual surveillance (object tracking and behavior anal-

ysis) [9, 13, 14, 24, 182], object exploration (recognition and pose estimation) [33, 51,

107, 122, 115], self-localization (autonomous robot exploration) [3, 43, 101, 113, 117]

and scene analysis (dynamic motion extraction and prediction) [86, 97, 102, 123, 179].

In general, a perception system, as shown in Figure 1.1, consists of three main compo-

nents as follows:

• "see", i.e. a sensor system to collect scene data;

• "analyze", i.e. the organization, analysis and extraction of useful information;

• "understand", an application-dependent system that "makes sense" out of the

data.

There are normally two ways to represent a dynamic environment utilizing the scene

data obtained from a sensor system. In the first case, static sensors are utilized and the

movements of active agents provide the dynamic information. In the second case, the

sensors are moving and the scene data are dynamic even if there is no moving object

in the scene. For different working environments and applications, different sensors

are developed and utilized to collect visual data of the dynamic scene. These sensors

include RGB cameras, stereo cameras, lasers, time-of-flight cameras and RBG-D cam-

eras such as the Microsoft Kinect among others. Networks of multiple sensors can be

used to collect different types of data such as intensity, color and depth information.

The raw sensor data can then be organized into different data structures for future

analysis [133].

The aforementioned data structures can be categorized into "iconic images", "seg-

mented images", "geometric representations" and "relational models". The "iconic im-

ages" category consists of images containing original data like intensity, brightness or
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4 introduction

depth. Useful information can be extracted by highlighting some aspects of the image

important for further treatment using operations such as filtering and edge sharpen-

ing. At the next higher level visual data structures as "segmented images", parts of

the image is separated into regions based upon their classification. This can be used

to obtain a compact scene representation, extracting only the "interesting" areas and

reducing complexity. In many applications, objects need to be represented using a

comprehensive and efficient descriptor. The latter can be based on "geometric repre-

sentations" of the object that can be extracted from the segmented image. The last

category refers to "relational models" that provide the means to treat data at a very

high level of abstraction. These models are obtained leveraging a priori knowledge

about the application as well as a number of assumptions and constraints, e.g. en-

vironment context, physics models, motion constraints and group relationships. This

kind of prior knowledge is widely applied in different computer vision applications,

for instance, multiple people tracking, dynamic motion extraction, surface deforma-

tion analysis etc. The relationships of these four level visual data structures and some

vision applications are illustrated in Figure 1.2.

Finally, the last component of the perception system, "understanding" provides users

with reasoning information utilizing matching and optimization processes. Based on

the analysis of properties of visual data structure, it provides the capabilities for un-

derstanding and recognition of dynamic scenes. For instance, the perception system

of an autonomous robot can adapt its actuators from the understanding results, which

are geared towards multiple robotic applications.

When planning a perception system for a specific vision application, the sensor

subsystem is first designed to provide all the raw information necessary to represent

the surrounding dynamic environment. Based on processing and analysis of the raw

data, visual data structures at different levels of abstraction are then constructed. The

properties of the visual data structures are then used to extract the relevant high level

information that is the output of the perception system. For example, in the problem of

tracking multiple people from a RGB camera, the raw data are the pixels of each video

frame. The moving pixels can then be segmented from the background scene based

on a color image. The structure properties are then used to define an object descriptor

based on the geometric relationships between individual features. Each such descrip-

tor corresponds to a person that can be detected, localized and tracked. At a higher

level, motion constraints and other assumptions will be used to make the tracking

more robust and to allow group tracking and behavior analysis.
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1.2 challenges and objectives

To build a successful perception system several challenges still exist and significant

improvements need to be implemented within the different components:

• How can a suitable sensor system be built that can collect comprehensive infor-

mation representing the surrounding dynamic scene, and matching the applica-

tion requirements?

• How can useful information be efficiently extracted from visual data structures

at different levels of abstraction?

• How can this lead to an improved understanding of the dynamic environment?

From the technical point of view, a perception system for scene understanding and

recognition has to find a good trade-off between robustness, accuracy, and efficiency.

When such a system is used in different vision applications it has to reach different

goals accurately and robustly despite sensor noise and ambiguous observations.

In this thesis, we focus on the research area of scene understanding and recogni-

tion from visual data structure properties in dynamic environments. This research

is divided into four different vision application areas. Their objectives are separately

described as follows:

(i) Real-time object recognition and pose estimation for robot’s manipulation and exploration

The objective is to recognize and determine the 6D pose of textured/textureless

objects in 3D dynamic environments in real time;

(ii) 3D Motion estimation and analysis for dynamic scenes

The objective is necessary to extract the dense and deformable motion in 3D space

and retrieve the detailed surface deformation information simultaneously;

(iii) Articulated object recognition and manipulation for autonomous robots

The objective is to recognize deformable object can be recognized within different

configurations in dynamic environment. And at same time, the robot can adapt

proper manipulation skills based on relevant joint state and task goal ;

(iv) Real-time human body motion estimation for outdoor autonomous exploration robots

A suitable sensor system needs to be built for outdoor robotic vision applications.

The objective is to estimate the accurate human body part position, motion and

full human pose in real time.
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1.3 main contributions

In this thesis we aim to tackle the problem of scene understanding and recognition

from visual data structure properties in dynamic environments for several application

areas. In each of these areas we bring a number of contributions as detailed below:

3D Object Recognition and Pose Estimation: we propose a real-time object recog-

nition and pose estimation system for autonomous robot exploration and object ma-

nipulation. This system can recognize both textured and textureless objects, as well as

accurately determine their 6D pose in a 3D dynamic environment. The main contribu-

tions of this research include:

• A novel object descriptor called Viewpoint oriented Color-Shape Histogram combin-

ing color and shape features, as well as information about the camera viewpoint;

• A real-time object recognition and pose estimation system which gives high

recognition rate and accurate 6D pose recovery under various unstructured en-

vironments;

• 3D object recognition and localization for coherent semantic mapping;

• Performance evaluation and state-of-the-art comparisons on object recognition

rate, pose accuracy and stability analysis with respect to illumination changes;

Dense and Deformable Motion Estimation: we propose a motion estimation and

analysis system for dynamic scenes that can extract dense and deformable motion in

3D space. Point-level motion is estimated and detailed surface deformation informa-

tion is retrieved from the spatial and temporal properties of the visual data structures.

The main contributions in this area include:

• A novel hierarchical MRF structure for 3D dense and deformable motion extrac-

tion. It consists of segmentation and correspondence layers, which are formalized

as an image pixel-level and a 3D point-level MRF;

• Novel global energy functions for optimization of the segmentation and corre-

spondence layers in our hierarchical MRFs;

• A new deformable surface descriptor Deformable Color and Shape Histogram com-

bining photometric and geometric information;

• A dataset of dynamic RGB-D scene sequences featuring different motion patterns

and surface properties of the dynamic foreground;

• Performance evaluation on segmentation and correspondence accuracy, runtime

performance and comparison of different optimization schemes.
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Articulated Object Recognition and Manipulation: we design an articulated object

recognition and manipulation system for autonomous robots. The deformable object

can be recognized regardless of its current configuration. At the same time, the robot

can apply appropriate manipulation techniques based on the task and the state of the

articulated joints of the object. The main contributions include:

• A framework for single-joint articulated object recognition, joint state estimation

and robotic manipulation;

• A novel articulated object modeling method combined with visual and manipu-

lation observations;

• A depth-based skeletonization method to extract visual observations of articu-

lated object;

• Determine number and type of joints as well as their working space constraints;

• Learning of manipulation tasks by demonstration that is mapped into the articu-

lated object joint space.

Real-Time Human Motion Estimation: we propose a real-time human body mo-

tion estimation system for outdoor autonomous exploration robots. A suitable sensor

system is built for outdoor robotic vision applications. With the extraction of useful in-

formation representing human motion, this perception system can accurately capture

the position and motion of human body parts as well as the full human pose in real

time. The main contributions in this area include:

• A framework for real-time human body motion estimation based on multi-layer

laser scans;

• A novel method of Iterative Template Matching for Clustering and Segmentation

(ITMC) to extract the human visual features;

• Human contour extraction from multi-layer 2D laser sans;

• Mapping of extracted features with pre-specified articulated human skeleton

model in real time;

• Motion accuracy and runtime performance evaluation and comparisons;

In all of the aforementioned areas, the perception system is designed to capture

raw visual data (RGB, depth images and 2D points) into a hierarchical set of data

structures. The properties of these visual data structures are then analyzed and used

for extracting application-specific high-level information. Although in this thesis, we

propose the application in four areas, this processing enables a further number of

different applications in both academic as well as industrial domains.
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1.4 outline of the thesis

The remainder of the thesis is organized as follows. Chapter 2 provides an overview of

the related work in the field of object recognition and pose estimation, dynamic scene

motion extraction, articulated object recognition and manipulation, real-time human

motion estimation and other research that influenced this thesis.

Chapter 3 presents a real-time textured/textureless object recognition and 6D pose

estimation system, and extension for object localization in a coherent semantic map.

The global object descriptor named Viewpoint oriented Color-Shape Histogram is de-

scribed here to represent rigid object patch data that is oriented by camera viewpoint.

We also present the strategy to build the object model and generate object patch data

from different synthetic viewpoints. An object recognition scheme and a pose optimiza-

tion method are illustrated afterwards. In the following we present a large number of

experiments, including daily complex scenarios and indoor semantic mapping. The

detailed evaluations and state-of-art comparisons are presented in the end.

Chapter 4 presents a novel hierarchical MRFs optimization method for dense and

deformable motion extraction from dynamic RGB-D scenes. In particular, we show

the details of this hierarchical MRFs structure consists of two layers, respectively the

segmentation and correspondence layer. A new surface descriptor, named Deformable

Color and Shape Histogram, is proposed. The discrete optimization scheme is uti-

lized for these binary classification and multi-labeling problems. Moreover, a dataset

containing common dynamic RGB-D scenes is introduced in general, which involves

different motion patterns and surface properties of dynamic foreground. The evalu-

ation of accuracy and runtime performance are illustrated to validate the proposed

method.

Chapter 5 presents an approach to model articulated objects by integrating visual

and manipulation information. Firstly, we illustrate a new method of line-shaped skele-

tonization based on depth image data which extracts the skeleton of an articulated

object in different configurations. A method for the characterization and localization

of the joint types is then presented. Followed by a description of how to learn to learn

a robotic end effector’s force data in terms of the task-space force required to ma-

nipulate the object, into estimated object kinematic joint state space. In the end, the

experimental results of multiple demonstrations are described and the effectivity and

efficiency of our propose articulated object modeling method is validated.

Chapter 6 presents a method for real-time 3D human body motion estimation based

on three-layer laser scans. All the useful scanned points, presenting the human body

contour information, are subtracted from the learned background of the environment.

A novel iterative template matching algorithm for segmentation and clustering is pro-

posed. We also present a method for the robust extraction of distinct motion features
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using a maximum likelihood estimation and nearest neighbor clustering. Subsequently,

the method is illustrated in detail, which associates the extracted features with a pre-

defined articulated model of a human body to retrieve the positions of the human

joints in 3D space. Finally, the experimental results are presented with evaluations

and comparisons.

Chapter 7 concludes this thesis, listing the key contributions and detailing a number

of interesting issues that are left for future work. Some extensions of our approaches

respect to other related computer vision and robotics issues are also discussed.





2
R E L AT E D W O R K

In this chapter we provide the context behind this research. An exhaustive literature

review in the topic of scene understanding and recognition is impossible due to the

large volume of published work in the area. As a consequence, this chapter will focus

on work that has had a significant impact on this field or is closely related to the

work presented in this thesis. We present an overview of the most recent advances

in the areas of object recognition and pose estimation, motion extraction of dynamic

scene, articulated object recognition and manipulation, and real-time human motion

estimation. Strengths and potential deficiencies are discussed through a comparative

analysis, which enables us to identify the key points that need to be considered by this

research.

2.1 3d object recognition and pose estimation

To interact with autonomous robots in unstructured environments, it is essential for

a robot to successfully recognize objects, estimate its accurate pose and perform high-

level tasks in real time (Figure 2.1). Therefore, object recognition and pose estimation

plays a crucial role in a wide range of robotics applications. It is also at the heart of

other high-level tasks such as object localization for semantic mapping. However, it

presents a very challenging problem due to the large variability in respect to object

size, position and viewpoints, as well as the heavily cluttered environments and/or

the occlusions in the scene (see Figure 2.2) [15, 16, 37, 38, 41].

Some previous approaches have been developed to address the challenges men-

tioned above. Among these, an efficient object descriptor plays a very critical role.

There is a large variety of object descriptors using diversified features. For 2D images,

SIFT [92], SURF [12], HOG [31] and BRIEF [21] are the most popular descriptors that

can be extracted based on the photometric properties (texture) of objects. In addition

to gray-scale features, color-based features have also been widely proposed for object

recognition [1, 30, 47, 48]. However, the photometric features have the limitation of not

being able to cover all potential poses in 3D space. In the case of 3D depth images, a

wide variety of geometric quantities have been used to emulate comparable features,

in order to be used for geometric descriptors. These include local patches [96], local

moments [29], volumes [46], polygon surfaces [121], spherical harmonics [129], con-

11
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tours [106] and edges [81]. However, these geometric features only describe 3D object

shape primitives while ignoring photometric information.

PoseRecogniton

Figure 2.1: An autonomous robot needs to recognize objects in its view and get their 6D pose
in unstructured environments.

Lately new RGB-D sensors such as the Kinect and stereo cameras have been intro-

duced. These sensors can provide both photometric and geometric information at the

same time. Object descriptors based on multi-dimensional photometric and geometric

features provided by the aforementioned sensors are a powerful alternative for object

recognition and pose estimation. Such descriptors have been considered for example

in [27, 73, 74, 146, 151]. Furthermore, an object should be recognized regardless of its

pose (scale and rotation invariant). To achieve this the viewpoint component needs to

be integrated into the object descriptor [39, 62, 82, 87, 119, 148].

A large variety of approaches have been proposed for object recognition and pose

estimation. Within those approaches, object descriptors are mainly classified into two

categories: global and local. Global object descriptors extract features from well seg-

mented and clustered object data [119, 146, 167]. The object needs to be well clustered

and it is sensitive to partial occlusions. On the other hand, a local descriptor is based

on a pair-to-pair feature matching strategy from real-scene data which results in a high

computational cost for final recognition and pose recovery [27, 74, 118, 150, 151].

More specifically for global object descriptors, new VFH [119] as an extension of

FPFH [118], integrates the viewpoint variant component into the 3D geometric fea-

tures. However, it neither allows for full pose estimation nor considers texture or color

features. Wohlkinger et al. propose a global 3D descriptor named Ensemble of Shape

Functions (ESF) [167]. ESF creates a dataset by generating synthetic views using CAD
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Rotation Invariance Scale InvarianceTranslation Invariance

Figure 2.2: The object descriptor needs to be rotation, translation and scale invariant.

object models. The combination of angle, point distance and area shape are applied on

randomly selected point pairs, while local distribution features are accumulated into a

global descriptor. Nevertheless, ESF neglects the object’s photometric information and

is thus unable to accurately provide pose estimation for certain types of objects. Tang

et al. [146] directly use the Naive Bayes matching method for object recognition and

pose recovery. The object global hue value histogram is generated from the complete

mesh object model. Combined with the extracted 3D SIFT from object’s texture, the

object can be recognized and its pose can be estimated. However, this approach needs

a detailed object mesh model for training. Moreover, objects need to be fully textured.

For local object descriptors, Signature of Histograms of Orientations (SHOT) divides

the spherical volume around one point into spherical grids based on the local refer-

ence frame [151]. The normal of each point falling into a certain grid is compared

with the normal of the centroid. The angle relationship is measured and represented

as a histogram on each grid which is then concatenated as a descriptor. CSHOT is

an extension of SHOT that adds color information during the construction of the de-

scriptor and is presented in [151]. This method relies on a local reference frame, but

the reference frame cannot be robustly estimated for objects with rotational symmetry

(e.g. a basketball). A real-time object recognition system is proposed in [74]. It uses

ConVOSCH object descriptors which correlate geometric and visual RGB data, but is

unable to accurately obtain the object’s pose. Choi et al. [27] define a local object color

point pair feature descriptor, which is represented as a hash table combining geomet-

ric and HSV color information. However, the color information is only utilized for

pruning potential false matches and is not considered as a general object descriptor

for recognition and pose estimation. Moreover, this approach results in a high com-

putational cost. And the result quality strongly relies on high dimensional parameter

settings, which needs to be adjusted respect to different scenes.
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2.2 dense and deformable motion extraction

Dense and deformable motion extraction in dynamic scenes is arguably one of the

most interesting and important fundamental problems in many computer vision ap-

plications. The 3D motion field in the dynamic time-varying image sequence can be

represented as a dense displacement vector field that links the locations of each image

point across consecutive image frames. Motion estimation provides a comprehensive

understanding of the dynamic scene. It is also crucial for a number of computer vision

tasks such as object segmentation [49, 60, 65, 112], object tracking [18, 25, 75, 134, 170],

human motion estimation [32, 56, 135, 175], etc., as shown in Figure 2.3.

However, after decades of research and development on motion extraction, there

are still several challenging situations that remain unaddressed. These includes cases

where: 1) the dynamic scene contains different motion patterns; 2) the dynamic fore-

ground data has different surface types like rigid or deformable; 3) different features

need to be extracted and correlated effectively and efficiently; 4) a difficult balance

needs to be struck between accuracy and computational cost.

The literature provides several methods directly related to dynamic scene motion ex-

traction. These methods are mainly classified in two categories: transformation model

based and correspondence matching based.

In methods based on transformation models, each point is considered to be con-

strained in its possible displacement across consecutive frames [53, 61, 67, 111, 120,

158]. Optical flows [128], is perhaps the most popular one, and was originally proposed

for the 2D motion field estimation based on image changes. To deal with the limitation

of large motion estimation of optical flows, Brox and Malik [18] incorporated local de-

scriptor matching to improve differential optical flows. Wedel et al. [165] extend the

work of [18]. They proposed decoupling of the motion estimation from the disparity

estimation while maintaining the stereo constraints to calculate the 3D motion in real

time. With the combination of depth and color information, scene flows are presented

as an extension of optical flows to represent the 3D motion of points [60, 156, 157, 175].

However, methods based on transformation models have the drawback that they can-

not capture the true deformation of surface details. This method is therefore not suit-

able for motion extraction of a deformable foreground with large displacements. Such

a situation appears often in dynamic scenes, for example when the scene contains a

moving soft cloth surface.

Opposite to the transformation model based methods, correspondence matching

methods extract dynamic motion based on global point-point matching [77, 159]. With-

out a transformation assumption, a correspondence map is extracted only based on

similarity matching and regularization by different constraints. The dynamic scene mo-

tion can be retrieved, once the displacement of a point with its correspondence across
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Figure 2.3: Different type of dynamic motion as rigid dense motion or deformable motion. The
extracted motion can be used for different applications.

consecutive frames is established. In [4], SIFT is used to obtain sparse correspondences

between adjacent frames under the assumption of isometric deformations. Zaharescu

et al. [171] extend 2D local features to 3D feature detectors and descriptors to improve

sparse matching of meshes. The descriptors capture photometric properties as well as

local geometric properties. However these keypoint-based matching cannot deal with

a homogenous foreground. Instead, all surface points correspondences are considered

to model the detailed deformable surface motion. Dense point clouds are registered

using a randomized feature matching algorithm relying on geodesics [147]. Tung et

al. [153] present an approach for dense matching of dynamic surfaces in 3D videos us-

ing geodesic maps. But this technique does not involve any photometric information,

while at the same time requiring the existence of prior models and resulting in a heavy

computational cost. Thus, we consider a hierarchical strategy to extract an interesting

area at first followed by a matching of points in this extracted area instead of using

entire image. This strategy can extract the detailed surface motion with a lower com-

putational cost. The work most similar to ours is by Zhang et al. [174]. They proposed

the extraction of human motion by tracking all 3D points of a deformable object with-

out any transformation assumptions. They emphasize that their work is the first to
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track all point clouds for motion extraction. However, photometric information is not

considered in this work. Their coarse-to-fine procedure relies on the assumption that

the matching candidates are searched only in a certain area. This method also does

not prevent multiple points to be matched with a single point. Moreover, it does not

focus on dynamic motions and the final correspondences are not sufficiently accurate

to calculate detailed deformations.

In general, most of the related work in this area is application-dependent, relying on

prior knowledge or strong constraints to simplify problem. For instance, rigidity, small

displacement and/or elastic deformation constraints may be imposed [125, 172]. Other

approaches have assumed pre-defined accurate object models [98, 137], full texture,

and so on.

2.3 articulated object recognition and manipulation

Most daily tasks require manipulation of articulated objects of one or more degrees

of freedom. Some characteristic examples of such tasks are opening doors, opening/-

closing drawers or rotating a water tap. Manipulation of articulated objects is a great

challenge for autonomous robots. They are required to recognize an articulated object

often using vision and make a decision about how to manipulate it. Robots that have

the aforementioned capabilities can be used for helping humans in daily tasks or for

taking over dangerous/difficult tasks without needing to modify the objects to be ma-

nipulated. As shown in Figure 2.4, the Murola robot1 is trying to manipulate a car

door (open and close). This door can be viewed as an articulated object with single

rotational joint.

An articulated object is defined as a deformable object composed of a kinematic

chain connecting different rigid parts. Figure 2.5 shows examples of articulated ob-

jects. Previous research on articulated object modeling mainly focused on solving the

problem of identifying the kinematic characteristics of articulated objects using differ-

ent types of sensor systems [17, 138, 140, 141, 166].

To recognize an articulated object from visual information, it is necessary to extract

features or properties for different object configurations. For example, texture features

or marker-based detection processes have been used to get the deformation trace of

articulated objects [17, 138, 141]. These methods are limited to certain object visual

information types (textured) and are inefficient when solving the rotation invariant

problem. Instead, Pellegrini et al. use a generalization of interactive close point (ICP)

to estimate the articulated structure. On the other hand, Sturm et al. use a depth im-

age to classify the articulation type and predict the motion [139]. Nevertheless, these

1 http://www.lsr.ei.tum.de/en/research/areas/robotics/murola-the-multi-robot-lab/

http://www.lsr.ei.tum.de/en/research/areas/robotics/murola-the-multi-robot-lab/
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 End-effector (Schunk PG70)

Figure 2.4: A 7 DoF robotic arm manipulates a car door.

approaches are based on either prior knowledge on object model or rigid surface as-

sumptions. Weiss et al. present a method for representing and recognizing objects

based on range images [166]. Their work uses the object’s regions to estimate invari-

ants to deal with low resolution images, when it is hard to use common features such

as edges. Sturm et al. use visual markers to estimate the configuration of articulated ob-

jects [138], In their follow-up work [140], an approach is presented to learn kinematic

models of articulated objects from observations. They also apply same learning ap-

proach for articulation classification and motion prediction of objects based on depth

images [139]. The object is under an assumption of planar surface. This method can es-

timate the pose and motion of an single-joint articulated object. Research in articulated

object tracking has also focused on tracking the human body [34, 45, 154, 181]. These

methods handle a specific kind of input (e.g. video only) or attempt to learn motion

models to improve performance. Brookshire et al. use particle filters for articulation

pose estimation via over-parametrization and noise projection [17]. Their proposed sys-

tem works under the assumption that patch maker positions for the object have been

given. In general, the previously reported approaches do not allow for object identifi-

cation and ignore kinematic joint localization as well as its working space constraints.
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Door Drawer Scissors Phone Arm Human Body

Figure 2.5: Some examples of articulated object.

An object skeleton has been widely used for many vision applications, such as hu-

man pose estimation [26, 28, 59, 71, 78, 124, 136] and object recognition [141, 166].

Object skeletonization is mostly based on the geometric analysis of complete 3D object

models [58, 91, 110, 127, 149, 168, 178], center line extraction from contour informa-

tion [10, 114, 164] and predefined skeleton models [26, 59, 124, 136].

Katz et al. [76] use kinematic task-relevant knowledge and generate manipulation

skills in the joint state space of the articulated object. This is realized via interaction

with the environment and, finally, a kinematic model of the object is incrementally

built. However, only visual data is employed and information about the dynamic prop-

erties of the object is not taken into account for manipulation. In [66], the position of

the joint axes of an articulated object is estimated given different object configurations

from depth image data. This aims at providing grasping points and a position trajec-

tory to the robot. However, recognition of the object configuration is not considered.

All of these approaches lack a framework for recognition of different articulated ob-

jects. In addition, they do not allow the estimation of the current joint state in order

to adapt the manipulating behavior accordingly. In addition, previous research did

not account for learning the force that is required to operate an object. For example,

opening a completely closed and opening a semi-closed door are two different tasks

which require different manipulating forces. On the other hand, other researchers have

focused on manipulating articulated mechanisms by learning force control skills while

ignoring the mechanism structure of the object. In all these works [72, 93], no visual

information is used to recognize the object, the number and type of joints or the con-

straints that apply on each joint of the object. Therefore, these approaches cannot

generalize to objects with different structures or configurations.

To the best of our knowledge, most of research works on articulated objects focuses

either on using visual data for object characterization without learning manipulation

force [70], or on learning manipulation force skills without analyzing the articulation

characteristics of the object. Learning manipulation of even a single-joint articulated

object is a challenging problem, since the articulation characteristics of the object have

to be extracted first before an appropriate manipulation force is learned.
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2.4 real-time human motion estimation

Nowadays human body motion capturing [8, 11, 132, 180] and pose estimation [2,

40, 54, 64, 84, 100, 103, 126, 169, 177] have attracted increasing attention due to their

widespread use in human robot interaction, the analysis of human social behavior and

other applications for service robots [105, 116]. Nevertheless, several challenges still

exist: 1) Because of sensor technology limitations, it is difficult to choose the proper

sensor to acquire enough visual information for human; 2) The information from sen-

sors is limited for extracting a sufficient number of features; 3) Visual feature extraction

based on raw information is hard to be efficiently obtained to represent the cues of hu-

man pose and motion; 4) It is difficult to correlate and associate these visual features

with human model, to estimate human motion in real time.

In the early days of human pose and motion estimation research, 2D images were

first considered. Fujiyoshi et al. [44] use skeletonization technology from human image

boundaries to get human motion in a video stream. Aiming to get 3D human motion,

Sidenbladh et al. [131] use a probabilistic method for tracking 3D articulated human

motion in monocular image sequences. Hofmann et al. [63] use video surveillance

from four corner cameras to estimate the 3D human pose. Iwashita et al. [68] propose

a model-based motion tracking system using distributed network cameras that are

placed in a sizeable environment. These methods limit applications to a certain work-

ing space or cannot retrieve accurate 3D human motion. Hence, these methods are

not well suited for the real-time human motion estimation system of an autonomous

robot.

Some researches have used depth cameras to estimate human motion. Time of Flight

(TOF) camera based approaches are utilized for online 3D human body motion captur-

ing, due to the richness of the information obtained [79, 108]. With the development of

new sensor technologies, some sensors find increased use in robot perception system.

Such a sensor is the Microsoft Kinect2, which can provide full 3D view depth and

color information. Ye et al. [169] present real-time human body pose estimation from

a single Kinect. This was achieved by matching the frame image configuration with

pre-captured motion exemplars. To improve the tracking quality and reduce ambigui-

ties as for example caused by occlusions, Zhang et al. [173] fuse the depth images of

all available cameras into one joint point cloud to track the high-dimensional human

pose.

Nevertheless, an important issue with these kinds of sensors is that they are quite

sensitive to illumination and other environmental changes, which is why most of them

are still limited to indoor applications. Compared to these sensors, laser range finders

(LRF) are much more robust to illumination changes [22, 99, 109]. They also provide a

2 http://www.primesense.com

http://www.primesense.com
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Figure 2.6: Autonomous city explorer robot ACE.

large scan range, a high data rate, and accurate measurement that makes them espe-

cially suitable for outdoor applications such as autonomous city explorer robot ACE3

(see Figure 2.6). However, the disadvantage of standard LRFs is that the obtained in-

formation is 2D, which is limited compared to the aforementioned sensors.

There are two ways to overcome the 2D limitation of LRFs: actuation or use of multi-

layer scanning. As demonstrated in [94, 104], it is possible to achieve good 3D scans

of static environments by actuating LRFs. However, it is usually quite time-consuming

to make a full scan which makes this approach unsuitable for real-time tasks such

as human tracking. Multi-layer laser scanning does not have this problem and can be

obtained either using multiple single-layer LRFs or a sensor with built-in multi-layer

scanning, such as the ibeo-LUX4.

Multi-layer LRFs system has been widely utilized for accurate people detection and

tracking [22, 109]. Mozos et al. [109] use a static 3-layer LRFs system to detect the

surrounding people. This approach is composed of a probabilistic combination of the

outputs from different classifiers which are extracted from each layer LRF. These in-

dependent classifiers provide the detections of particular body parts including head,

torso and leg. Carballo et al. [22] mount a 2-layer LRFs system on autonomous robot to

estimate human position. In this work, a predefined human model is built to estimate

the specifical person’s position in scene, by associating multiple features, e.g. area of

3 http://www.ace-robot.de/
4 http://www.ibeo-as.com/

http://www.ace-robot.de/
http://www.ibeo-as.com/
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chest and leg and a volume representation. Nevertheless, these works only focus on

people position estimation and tracking. Moreover, there exist some research works to

estimate people position as well we pose using multi LRFs [50, 95]. Glas et al. [50] pro-

pose a people tracking method using particle filter to get not only the people location

but also the body rotation and arm position, by using the contour information from

the torso-level lasers. Matsumoto et al. [95] try to use multi LRFs to get the contour

features for multiple people pose estimation. These LRFs are located at same height

and in four corners of a certain area. Some predefined pose candidates are weighted

get the best matched pose as the final result, based on a resampling process and propa-

gation by a transition model. The estimation region is limited and only certain number

of poses can be estimated.

The aforementioned related works based on multi-LRF setups are only used for

either people detection and tracking, or estimation of certain number of human poses.

Laser range finder has its benefits like fast, wide range, robust and wide working

space. However there still exists a drawback, that only a fewer amount of information

is obtained compared with other full 3D view sensors. Consequently, there exist huge

challenges to estimate real-time human body motion based on the multi-layer LRFs

mounted on an autonomous robot.

2.5 summary

In this chapter, a literature review in the fields of scene understanding and visual

recognition for dynamic environment has been provided. The detailed background

and related works which have had a significant impact on these fields or are closely

related to our works are presented for following sub-topics: 3D object recognition and

pose estimation; dense and deformable motion estimation; articulated object recogni-

tion and manipulation; real-time human body motion estimation. We have discussed

the advantages and potential deficients of the related works and potential deficiencies

according to the problems that we aim to solve.

In the following chapters, we will present the details of the proposed methods, sys-

tem structures, experimental results and conclusions for these four subtopics.
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R E A L - T I M E 3 D O B J E C T R E C O G N I T I O N A N D P O S E E S T I M AT I O N

In this chapter, we propose a novel global object descriptor, called Viewpoint oriented

Color-Shape Histogram (VCSH), which combines 3D object’s color and shape features.

The descriptor is efficiently used in a real-time textured/textureless object recognition

and 6D pose estimation system, while also applied for object localization in a coher-

ent semantic map. We build the object model firstly by registering multi-view color

point clouds, and generating partial-view object color point clouds from different syn-

thetic viewpoints. Thereafter, the extracted color and shape features are correlated as

a VCSH to represent the corresponding object patch data. For object recognition, the

object is identified and its initial pose is estimated through matching within our offline

generated dataset. Afterwards the object pose can be further optimized utilizing an it-

erative closest point strategy. Therefore, all the objects in the observed area are finally

recognized and their corresponding accurate poses are retrieved. We validate our ap-

proach through a large number of experiments, including realistic, complex scenarios

and indoor semantic mapping. Our method is proven to be efficient and guarantees

a high object recognition rate, accurate pose estimation, It is also capable of dealing

with environmental illumination changes.

The remainder of this chapter is organized as follows: Section 3.1 to Section 3.4 pro-

vide a detailed description of the VCSH descriptor, its integration within the object

recognition and pose estimation system as well as for object localization in semantic

maps. The experimental results including the pose accuracy evaluation, stability anal-

ysis under illumination changes and runtime performance experiments are presented

in Section 3.5. Finally, Section 3.6 summarizes this chapter.

3.1 framework for object recognition and pose estimation

In this section, we provide details on the design of our VCSH descriptor, and how it

is integrated into an object recognition and pose estimation system, and finally show

that it is efficiently applied for object localization in semantic mapping.

The framework of our proposed approach is illustrated in Figure 3.1. During the

offline training phase, we first build the complete 3D object model by registering all

of the object’s RGB-D data in different poses into a single coordinate frame. By using

the centroid of the object model as the origin, we generate a sphere with a certain ra-

dius. On the surface of this sphere, a large amount of viewpoints are homogeneously

23
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Figure 3.1: Overview of a real-time textured/textureless object recognition and pose estimation
system using the viewpoint oriented color-shape histogram (VCSH) descriptor.

generated with their direction pointing to the sphere origin. Using each of these gen-

erated viewpoints, object patch data representing the object identification and its cor-

responding viewpoint pose, are generated. Subsequently VCSH can be computed as

a global object descriptor for all object patch data, within which the color and shape

information of all points is used for the descriptor generation. Consequently, an ob-

ject is represented by the generated VCSH set and stored into the dataset. During the

online recognition and pose estimation phase, the object data is segmented and clus-

tered from the real world scene, and we compute its corresponding VCSH. Thereafter,

the likeliest candidate is retrieved from our generated descriptor dataset by nearest

neighbor searching. Using the initial candidate pose, the recognized object’s accurate

6D pose can be estimated through a pose optimization and verification step. In addi-

tion, the object recognition and pose estimation system is applied into the coherent

semantic map, for the robotic exploration in large-scale map and for further object

manipulation. Next we explain in greater detail the parts involved.

3.2 3d object modeling and viewpoint oriented patch generation

3.2.1 3D Object Modeling based on RGB-D images

Our proposed object model building platform consists of a rotatable plane and a

stationary Kinect sensor. After segmentation from the plane and Euclidean distance-

based clustering, object color point cloud data {Of} for each single view and its trans-

form {TFf} relative to the initial frame O0 are captured, where f = {0 · · · F} is the frame



3.2 3d object modeling and viewpoint oriented patch generation 25

Azimuth

Elevation

Figure 3.2: Sampling the synthetic viewpoints in the upper hemisphere for object patch data
generation: Red vertices represent the virtual camera viewpoints and the red circles
illustrate some generated data from synthetic viewpoints.

index. By registering {Of} with {TFf} into a single object coordinate, the whole 3D

model Ω can then be generated as a cluster of color point clouds,

Ω = O0 ∪ TF−11 ·O1 ∪ · · · ∪ TF
−1
F ·OF. (3.1)

In order to eliminate noise, the Moving Least Squares (MLS) algorithm [6] is utilized

to smooth the entire 3D model. Note that the detailed object mesh model and surface

texture information are not necessary here.

3.2.2 Different-view Object Patch Extraction from Synthetic Viewpoints

For each object model Ωi, i = {1...I}, we generate J object patch data Mj with syn-

thetic viewpoint VPj where j = {1 · · · J}. Note that the viewpoint is the sensor’s view

direction relative to the object. Since the view direction needs to cover all potential 6D

poses of the object, the synthetic viewpoints are therefore generated on a half sphere

surface, with the origin being the centroid of the object model. The synthetic viewpoint

position is generated on the sphere surface homogeneously both in the elevation and

azimuth directions, with its direction pointing to the sphere’s origin. With the gener-
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ated synthetic viewpoint VPj, object patch data Mj can be generated according to VPj
from the whole 3D object model Ω by using the ray-casting method, as illustrated in

Figure 3.2. A pseudocode implementation is also given in Algorithm 3.1.

It is necessary to mention that the object model Ω is not only restricted to the raw

color point cloud model, but can also be obtained from CAD models.

Subsequently, a global object descriptor is needed to describe each Mj with its view-

point VPj for object recognition and 6D pose recovery.

Algorithm 3.1 Object patch data generation using sampled synthetic viewpoint

1: Model Ω; # whole 3D object model
2: Data M; # generated object patch data
3: Viewpoint VP; # related synthetic viewpoint
4: Double ε; # threshold for point in a line
5: for i := 0 to Ω.pointsize step 1 do
6: p← Ω.points[i]; # point in Ω
7: L← line3D(VP,p); # get the relative 3D line
8: Flag← false; # flag of occluded
9: for j := 0 to Ω.pointsize step 1 do

10: if i 6= j then
11: p? ← Ω.points[j];

# another point in Ω
12: if dist(p?,L) < ε and ‖VP− p?‖ < ‖VP− p‖ then
13: Flag← true; # point in line and closer to viewpoint (occluded)
14: break;
15: end if
16: else
17: break;
18: end if
19: end for
20: if Flag = false then
21: push p into M; # if not occluded, push into patch data
22: end if
23: end for

3.3 viewpoint oriented color-shape histogram

For recognition and pose recovery of everyday objects, use of an object descriptor

which consists of both color and shape information is a prerequisite. In particular, this

descriptor needs to be able to differentiate the objects which have the same shape

but different colors and also deal with both textured and textureless objects. In order

to fulfill the aforementioned requirements, a novel object descriptor called viewpoint

oriented color-shape histogram is proposed here based on both color and shape features.

During VCSH construction, firstly the color of each point p in object patch data Mj is

smoothly ranged and color distributions for different ranges are estimated. Secondly,
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Figure 3.3: Left: smoothed color range and estimation of contributions for adjacent regions in
HS space. Right: illustration for the chromatic and achromatic areas in SV space.

the shape features are estimated to describe the geometrical relationship of each point

with the viewpoint VPj and the Mj’s centroid c. Finally, the extracted color and shape

features are correlated and built as a VCSH to describe each object patch data Mj.

3.3.1 Smoothed Color Ranging

To represent the uniqueness of a color feature for all object patch data, the feature

needs to be characterized and color distributions for different ranges need to be es-

timated according to their color values. The HSV color space is employed here for

better characterizing the color features of each point due to its robustness to illumina-

tion changes [48]. As shown in Figure 3.3, there are chromatic and achromatic areas in

SV space, in which the chromatic area represents the true color space while achromatic

area represents the gray scale space. That is, the histogram is divided into 8 regions

as REu with the index of u = {0 · · · 7}, in which six are for the chromatic area, and the

other two are for the achromatic area [142].

In more detail, firstly, we consider the six true color histogram regions RE0 to RE5,

which represent six typical colors CR0 to CR5. Each point’s hue value can then be

quantized into a certain color region CR. However, the hard quantization cannot rep-

resent the true color correctly. To overcome this issue, a smoothed ranging method is

proposed, by estimating two distributions wH for two consecutive histogram regions

RE in true color space. The detailed steps are presented as follows:

• Identify CRn: red as CR0 = 0, yellow as CR1 = 60, green as CR2 = 120, cyan

as CR3 = 180, blue as CR4 = 240, purple as CR5 = 300. Consequently, six
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histogram ranges are divided based on the color index CR, as REu → CRn where

u = n = {0 · · · 5}.

• For each color point p, its hue value H is ranged into two consecutive histogram

regions REu and REu+1 as u = bH/60c, if u = 5, the next histogram region

REu+1 would be reset to RE0.

• Estimate color distributions wHu , wHu+1 according to the ranged adjacent re-

gions REu, REu+1 in true color space, based on the distance from hue value H to

CRn and CRn+1:

wHu = (H−CRn+1)/60,

wHu+1 = 1−wHu .
(3.2)

Secondly, we consider the achromatic area which consists of two histogram regions

RE6 and RE7. When one of the saturation S and value V is near zero in HSV space,

the point color will be represented in gray scale. Since the color in achromatic space is

highly sensitive to illumination changes, the previous estimated distributionswHn and

wHn+1 in true color space needs to be redesigned according to the influence from S and

V . In order to capture the nature color, a soft decision method [155] is employed and

we update both chromatic and achromatic components of the histogram. The weight

wC of the chromatic and wG of achromatic components is determined by S, V , and

their sum equals unity:

wC = Sr(1/V)r1 ,

wG = 1−wC,
(3.3)

where r, r1 ∈ [0, 1]. The latter are empirically chosen to be r = 0.14 and r1 = 0.9

to give the best precision on true color. Furthermore, the value of saturation V is

quantized. Based on V, the distributions w6 and w7 are calculated for regions RE6 and

RE7: w6 = wG if V < 0.5, otherwise w6 = 0; while the value of w7 is the reverse.

We therefore update all the previous estimated color distributions as wu and wu+1,

by considering the chromatic weight wC’s influence on true color representation.

wu = wHu ·wC,

wu+1 = wHu+1 ·wC.
(3.4)

Finally, each point p with HSV color value is ranged into three histogram regions

〈REu,REu+1,RE6|RE7〉 with respective contributions being 〈wu,wu+1,w6|w7〉.
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Figure 3.4: Shape features of point p. c is the centroid of object patch data. np is the normal
of p. v is the synthetic viewpoint direction. cp is c’s projection point on the tangent
plane of p (blue rectangle frame). dc and dp are the distances from c to p and from
c to cp. α is the angle between v and np, and β is the angle between v and the line
segment cp.

3.3.2 Shape Feature Extraction

After the color contributions have been estimated for the specific histogram regions,

it is necessary to extract each object patch data M’s shape features F = {f0 · · · fm} for

the final histogram building, where m is the point number in M. With object patch

data M representing the partial data of the object from viewpoint VP, the geometrical

information of point p can be extracted in order to describe the object shape accurately

and robustly. Partly inspired by the work in [5], we extract the shape features depend-

ing on point p’s relationship with the centroid of M and viewpoint VP. As a global

descriptor, the surface normal np of each point p in M and the centroid c of M are

computed at first. The relationship of p and c represents the 3D shape of the object

cluster. The relationship of p and VP indicates the rotation of the object cluster relative

to the sensor direction. Note that VP and c represent the object’s 6D pose.

As shown in Figure 3.4, the tangent plane of p is defined as a plane that is orthogonal

to p’s normal np. The centroid c is projected on this tangent plane as a point cp.
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A four dimensional geometrical feature f consists of two distances and two angles

components 〈dp,dc,α,β〉, which are calculated as:

dp = ‖p− c‖ ,

dc = ‖cp − c‖ ,

α = arccos(np · (p− c)),

β = arccos(v · (p− c)).

(3.5)

In the object partial data M, the feature f is calculated for each point p. Therefore,

for a single object model O which contains J object patch data, the final feature set is

F = {f0 · · · fm} with m points, representing the object’s shape from a certain viewpoint

VPj.

3.3.3 Color and Shape Feature Correlation

VCSH descriptor needs to be correlated with color and shape features to describe an

object’s patch data M with the viewpoint VP discriminatively and comprehensively as

a histogram. In the smoothed color ranging phase, the entire histogram are combined

with eight regions. Every component in each point’s shape feature f has 30 bins, there-

fore each RE contains 120 bins inside. Each p’s two distance components 〈dp,dc〉 are

indexed as 〈INdp , INdc〉 by the quantization using their values scaling from minimum

value 〈dpmin ,dcmin〉 to maximum value 〈dpmax ,dcmax〉. Two angle components 〈α,β〉
are indexed as 〈INα, INβ〉 by the quantization using their values with the range of 0

to 90°as follows:

INdp = b
30 · (dp − dpmin)
dpmax − dpmin

c,

INdc = b
30 · (dc − dcmin)
dcmax − dcmin

c,

INα = b α
90
· 30c,

INβ = b β
90
· 30c.

(3.6)

During the object’s color and shape features correlation step, each p’s color contribu-

tions as 〈wu,wu+1,w6|w7〉 for three histogram regions 〈REu, REu+1, RE6|RE7 〉 are

incrementally added into 〈INXdp , INXdc , INXα, INXβ〉. The final certain bins index
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INX in VCSH regarding to each of these three REm,m ∈ [u,u+ 1, 6, 7] are quantized

as follows:

INXdp = INdp + 120 ·m,

INXdc = INdc + 120 ·m+ 30,

INXα = INα + 120 ·m+ 30 · 2,

INXβ = INβ + 120 ·m+ 30 · 3.

(3.7)

The entire histogram has incremental values corresponding to color contributions

from all the points in M. During the final object recognition phase, the object’s descrip-

tor should not change with varying distance but constant view direction. However the

histogram’s absolute value of each bin will change according to the object cluster point

number. To overcome this problem, the values of the histogram are finally normalized

using the point number. Thus, the VCSH can be viewed as a geometrical constrained

color feature histogram. As shown in Figure 3.5, color contributions of all points in

object patch data respected to different viewpoints are incrementally added into the

certain indexes of whole VCSH, based on smoothed color ranging and shape feature

extraction. An example of two picked points in object patch data for the final VCSH

generation is illustrated in Figure 3.5, with the step of color-shape features extraction

and correlation step. The patch data of object can then be represented as one VCSH.

The final correlated histogram has (6+ 2)× (30× 4) = 960 dimensions. The compu-

tational complexity of VCSH is O(n), where n is the point number of object patch

data M. Consequently, the final generated histogram gives the possibility of achieving

a high object recognition rate as well as accurate pose estimation while maintaining

real-time processing capabilities.

3.4 multiple object recognition and pose retrieval

3.4.1 Object Recognition and Initial Pose Estimation

We are now going to get the identification label L and the general pose P of the object

cluster in the real scene using the VCSH descriptors dataset. Our system first segments

and clusters the object cluster C from the background. Two frameworks of segmenta-

tion and clustering are proposed to accommodate different environments for object

recognition and pose estimation:

Planar Background Environment The environment can be simplified when all the

objects share a planar background, for example a table surface as shown in Figure 3.9a.

Utilizing the raw RGB-D image from a Kinect sensor, the largest plane surface can be
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extracted by RANSAC [119]. The object clusters Ck are then segmented from the plane

surface and clustered by Euclidean distance [163].

Cluttered Background Environment The cluttered background environment is rep-

resented as a heavily cluttered background. It is difficult to constrain the objects’ local-

ization for segmentation and clustering, as the target objects have the possibilities of

being with various pose as shown in Figure 3.9b. Aiming to solve that, the initial back-

ground image is trained in off-line phase based on Octree data structure [36]. With the

extracted foreground data, the object clusters Ck will be segmented and clustered by

Euclidean distance [160].

Based on object clusters Ck, the real scene objects’ VCSH is calculated. The chi-

squared distance χ2 between the real scene object’s VCSH value H(C) and Hij in the

trained dataset is calculated for the best matching, through fast approximate K-Nearest

Neighbors (KNN) method based on kd-trees [119]. ˆ〈L,P〉 as the best matched object

identification and corresponding pose can be extracted as:

ˆ〈L,P〉 = arg min
〈L,P〉ij

χ2(H(C),Hij). (3.8)

Note that in VCSH definition, P in ˆ〈L,P〉 represents the rotation of the object respect

to the sensor’s viewpoint. The centroid of the object cluster in real scene indicates the

current position, which is used to update P as the object initial pose.

3.4.2 Object Pose Optimization and Verification

Even though the estimated pose P is recovered as the best matched pose from the

model dataset, P may be not the real pose. This is due to the sampling rate of the

synthetic viewpoints during the generation of the VCSH dataset. Consequently, the

iterative closest point (ICP) method is employed to further optimize the estimated

pose [176, 7], providing a transform Ticp. The sources for the ICP are the point cloud

data of the best matched object patch data and the object cluster in real scene. The

accuracy and speed of the ICP strongly rely on the given initial guess, which can be

provided by our estimated pose P. The final pose of the object Pfinal is optimized ac-

cording to the extracted initial pose P and the ICP optimized transform Ticp. Therefore,

the accuracy of the final object pose Pfinal = T−1icp · P can be significantly improved.

Moreover, the iteration speed is high enough for real-time recognition and pose esti-

mation.

A pose verification step is necessary to make sure that the optimized pose Pfinal
is the correct estimation. The new object patch data Mrec will be generated by Pfinal
and the 3D model Ω of the recognized object using Algorithm 3.1. Since the final pose
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is optimized, the detected object patch data Mrec might be not in the object model

patch dataset that generated from the synthetic viewpoints during modeling. False

positives can be rejected using the difference between Mrec and the real object cluster

data Ck with appropriate thresholds for photometric and geometric differences.

3.4.3 Object Localization in a Large-scale Semantic Map

Semantic mapping has attracted huge attention in robotic applications, especially for

wide-range navigation and exploration. Therefore, it is obvious that a coherent seman-

tic map, which provides both semantic level understanding and metric representa-

tion of the environment, is very important for an intelligent robot to successfully and

efficiently perform daily tasks. To fulfill these requirements, VCSH is an important

component in building a coherent semantic map. Specifically, VCSH allows the local-

ization of objects in large-scale semantic maps through its efficient and accurate 3D

object recognition and pose estimation. This can be achieved in real time while the

robot is building the map. Moreover, VCSH imposes no constraints with respect to the

object type and can deal with both textured and textureless objects using color and

shape information.

We employ a two-step coherent map building strategy. In the first step, laser range

data is processed by a grid mapping algorithm, in this case GMapping [52]. This re-

sults in an occupancy grid map of the environment and provides a coherent global

coordinate system [152]. The resulting grid map is then used as input for the process

of parametric environment abstraction which uses rectangular space units to approx-

imate the geometry and the topology of the perceived environment [89]. Within each

space unit, unknown areas of the grid map are detected using connected-components

analysis [23]. Such areas are considered to be obstacles which cannot be traversed by

robots [57]. More details on parametric environment abstraction can be found in [90].

3D objects are localized in the global semantic map using our proposed object recog-

nition and 6D pose estimation method. Finally, a coherent semantic map that captures

the geometrical, topological and object information of the operating environment is

generated by incorporating the 3D object information into the parametric environment

model.

3.5 experimental results

We performed experiments where the goal was to evaluate our proposed viewpoint

oriented color-shape histogram descriptor as well as the entire object recognition sys-

tem. At first, an object dataset consisting of more than 25 objects is built, where some
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Calibration Ball

Object Rotatable Plane

a) Raw image of modeling platform b) RGB_D data acquisition

c) Some samples of the built 3D object models 

Figure 3.6: Object 3D modeling where model data are represented as color point clouds. a) the
platform used for obtaining object models; b) captured object data using the Kinect
sensor; c) a selection of objects models in our dataset.

objects have the same shape but differ in surface color information. As shown in Fig-

ure 3.6a, a platform was developed that can rotate by different angles using a KUKA

arm end-effector controller. With a stationary Kinect sensor mounted on the robot,

the color point cloud of the object can be captured under different angles of rotation

corresponding to different object poses. Furthermore, a calibration ball is used to de-

termine and optimize the coordinate system of the final object model. In total, for each

object, 25 frames of data using 10° as an angle step are captured. Some objects have

the same shape but different color information such as the COLA and SPRITE cans.

Some objects are textureless such as the emergency button (Figure 3.6c). Due to the

way the data is captured, the part of the object that is in contact with the platform is

not considered in the object model.
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Kinect Fusion

Datasets [TUM IAS, ICRA WG, Washington]

CAD Models

Figure 3.7: Other object modeling platform. These object models can also be successfully ap-
plied in our system.

During the object patch data generation, the viewpoints are sampled on the upper

sphere surface around the object origin with radius of 0.8 m. A synthetic viewpoint

and the corresponding object patch data are generated for all combinations of eleva-

tion θe and azimuth θa, where θe ∈ [10°, 80°] with a step of 10° and θa ∈ [0°, 360°]

with a step of 2°. Therefore, 7× 180 = 1260 synthetic views patch data for each object

model are generated in total. In our dataset, each viewpoint object patch data contains

around 1000 to 2000 color points. Consequently, each object is represented as 1260

VCSH descriptors. Each of these descriptors represents a different viewpoints, cover-

ing the full range of potential object poses. Note that we also tested other object model-

ing strategies including Kinect Fusion [69], CAD modeling and public datasets [74, 83]

as shown in Figure 3.7. By converting these different object model types into colored

point clouds, these objects can be successfully modeled by our system.

To demonstrate its performance, we designed multiple challenging scenarios. Some

special objects are chosen to present VCSH’s stability of recognition and also pose

accuracy. We used objects which have the same shape but different visual information,

as well as objects with textured and textureless surface. High-speed recognition and

accurate pose estimation of common objects remains a challenge that has not been

satisfactorily solved by existing techniques [27, 73, 74, 118, 119, 146].

At first, we validate the effectivity and efficiency of our proposed VCSH descriptor

using offline simulations. The selected object patch data in our dataset is chosen to be
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Figure 3.8: Extract the nine closest object VCSHs with relevant viewpoints in the dataset (after
the recognition step using the simulation data). The green markers present the
distances to the chosen target VCSH.

generated as a VCSH. Then it is used to retrieve the closest VCSH as the best matched

to evaluate this accuracy. As shown in Figure 3.8, the best matched VCSH in dataset

is estimated to present the correction of its recognition and the relevant viewpoint

retrieval. The green scores present the nine closest VCSH by comparing its histogram

distance respect to the target VCSH. The object patch data for test can be recognized

correctly and its relevant pose can be reached. From our testing, all of the object patch

data in our dataset can be correctly matched with 100% success rate.

We now demonstrate real time object recognition and 6D pose estimation using the

real scene RGB-D data, which is captured from a single Kinect on an autonomous

mobile robot. Because of the data acquisition range of the Kinect, the objects need to

be within a distance of 0.5 m to 3.5 m with respect to the sensor. The 3D models of

the recognized objects are projected into the real scene with the estimated 6D poses

as shown in Figure 3.9. For the planar background scenario shown in Figure 3.9a, we

extracted the object cluster under the assumption that all the objects stand on a planar

surface. The latter needs to cover at least 50% of the point cloud points captured by

the sensor. Figure 3.9b illustrates the cluttered background scenario. The background

is necessary to be trained at first, and all the objects have no geometrical constrains

in real scene. The objects for the experiments include the textured (tea box and milk

bottle) and also the textureless (emergency button). Same shape and different color

objects are also tested such as various tea boxes to present the necessary for the object

descriptor combined with color and shape features. All the trained objects can be



38 real-time 3d object recognition and pose estimation

Real Scene 3D Object Model Backprojection after Recognition and Pose Estimation

View 0 View 1 View 2 View 3

a) Experiment Results in Planar BackGround Environment 

b) Experiment Results in Cluttered Background Environment 

View 0 View 1 View 2 View 3

Figure 3.9: 3D models of recognized objects are projected onto the real scene with estimated 6D
poses: a) using a planar background environment; b) using a cluttered background
environment. (left column) RGB-D data from the real scene. (columns 2-5) the dif-
ferent view results after the object model is backprojected into the scene data after
recognition and pose estimation. Different color frames illustrate different objects.
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correctly recognized and their estimated poses are highly accurate. Note that the Point

Cloud Library1 was used in obtaining these results.

Our VCSH is a global object descriptor combining color and shape features. The

later is based on the centroid of the object cluster in the real scene. Due to its na-

ture, use of the VCSH imposes certain limitations. Specifically all the objects must be

rigid and must not be reflective or transparent. In addition, these objects should be

well segmented from their background environment. As described in Section 3.4 and

demonstrated by the experimental results shown in Figure 3.9, our system can effec-

tively deal with both planar backgrounds and cluttered environments. To analyze the

influence of object occlusions on the final results, we utilized multiple experiments for

multiple objects with manual configurations for occlusion. During the experimental

testing, if the occluded colored point clouds are less than 8% of the ideal whole object

data, our VCSH provides stable and correct results for both recognition and 6D pose

estimation.

Furthermore, we apply our object recognition and 6D pose estimation method in

semantic mapping of an indoor environment, as illustrated in Figure 3.10. As shown

in Figure 3.10a, the resulting coherent semantic map correctly interprets the perceived

environment with space units U1,U2 · · ·U6 and their corresponding topology (con-

nectivity by doors and adjacency). In Figure 3.10b, the detected obstacles represent

the furniture of the perceived environment, such as tables and cabinets. 3D paramet-

ric models along with the detected 3D objects are shown in Figure 3.10c. Here the

detected table planes and objects are back-projected in the map. Figure 3.10d depicts

the details of object recognition and localization. In space units U1,U2 and U5, several

3D objects are recognized and localized with respect to their 6D poses. By cell-wise

checking of our parametric model and the input grid map, we measured an accuracy

of 94.1% in geometry approximation. The mismatch of 5.9% is mainly due to some

not-fully-explored areas of the input map.

Table 3.1 presents the state-of-the-art methods on the topic of object recognition and

6D pose estimation. There are mainly two types of descriptors including global and

local. In particular, the local type is similar to the method of model registration. It can

solve the problem when object data contains occlusions using the pairwise matching

of different features. However, this method incurs a high computational cost and is not

suitable for real-time processing such as robotic applications. Furthermore, most of the

local object descriptors must have the prior knowledge about the existence of the object

in the real scene (see CPPF [27]). Instead, in this work, we introduce a new global object

descriptor VCSH. Compared with other global methods like VFH [119] and Tang [146],

we can retrieve accurate 6D pose, which cannot be solved in VFH. Moreover, VFH

only uses shape features and as a result it cannot distinguish between objects of the

1 http://www.pointclouds.org

http://www.pointclouds.org
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Table 3.2: Runtime performances of our VCSH and Tang [146] on similar scenarios.

Single Feature Pose
Object Train Extract Recognize Recovery

Our VCSH 2 min 5 ms 37 ms 0.83 s

Tang [146] 7 min 5 s 1 s 14 s

same shape but different visual appearance. Tang [146] uses the SIFT feature based on

surface texture information. This method requires that the target objects are textured

with high quality and cannot deal with textureless object, such as the "emergency

button" in our dataset. Our VCSH is based on color and shape features and thus has no

object model type constraints dealing equally well with extured and textureless objects.

Comparatively, most other methods impose constraints on the types of object models,

such as textured (Tang [146]), uniform color (LINEMOD [62]), depth only (VFH [119]).

To the best of our knowledge, we are currently among the first to solve these problems

with high recognition rate, accurate 6D pose estimation and low computational cost

for any type of object by combining the photometric and geometric information.

After 1000 demonstrations our framework was able to correctly recognize the object

and determine its pose in 92% of the cases. The object was correctly recognized but

its pose was wrong in 6% of the cases and only 2% of the cases resulted in wrong

recognition. Achieving a good runtime performance is very important for applying

our framework into applications involving autonomous mobile robots. The runtime

performance for single object recognition and pose recovery are evaluated and com-

pared with the results from Tang et. al. [146] for similar setups. Results are shown in

Table 3.2. All experiments ran on AMD X6 3.0 GHz with 8 GB of RAM, while Tang

et al. used a 6-core 3.2 GHz i7 with 24 GB of RAM. One second was required for

single object recognition and pose recovery without employing any GPU speed-ups.

This runtime performance enables implementation in real time robotic applications,

for instance, object grasping and manipulation based on an appropriately designed

perceptual system.

To further evaluate the pose accuracy using our proposed approach, the QUALISYS

motion capture system2 is employed to capture the ground truth of the sensor pose

while the robot with the Kinect senor moves around the stationary object. The camera

pose is estimated with two methods for accuracy analysis: 1) recovered pose respect to

the stationary object from our proposed method; 2) estimated pose using QUALISYS

system as the ground truth. By transforming these data into the world coordinate

system, we can compare the estimated pose with its ground truth to get the pose

2 http://www.qualisys.com/

http://www.qualisys.com/
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recovery accuracy, as shown in Figure 3.11. The root mean square error (RMSE) during

the whole 10 frames is calculated for the pose accuracy analysis. From Table 3.1, the

6D pose error compared with the ground truth is 23.4 mm in translation and 1.59

degrees in rotation, while in [146] it amounted to 50mm and 10 degrees respectively.

Our VCSH outperforms Tang et. al.’s method both in translation and rotation accuracy

with similar object models for similar scenarios.

Since color information is used as a photometric feature during the generation of the

VCSH, its stability with respect to illumination changes is a crucial requirement that

needs to be analyzed. We utilize one light meter DT1309 to estimate the illumination

intensity around the object under an adjustable white LED array light. The stability

is evaluated by the difference between the estimated VCSH under various illumina-

tion conditions and the target VCSH (correct identification and pose) captured in the

dataset. As illustrated in Figure 3.12, even when the illumination intensity exceeds 50

lux, all the histogram differences remain under 220 and the VCSH is stable until 700

lux, which is the maximum illumination intensity in a daily environment. Note that

the object modeling environment is approximately 230 lux, while most of the common

indoor and outdoor light conditions range between 150 and 400 lux. From the result of

the stability analysis, our recognition and pose estimation framework and in particular

the VCSH object descriptor is stable enough under varying illumination.

Based on our experimental results, we conclude that our proposed approach consist-

ing of a novel object descriptor VCSH is efficient and robust. It guarantees high object

recognition rate, fast and accurate pose estimation as well as exhibits the capability of

dealing with illumination changes.

3.6 summary

In this chapter, we presented a framework consisting of a global object descriptor View-

point oriented Color-Shape Histogram, which combines color and shape information for

object recognition and 6D pose estimation. The proposed approach can be easily in-

tegrated into various robotic perception systems for textured/textureless object recog-

nition and 6D pose estimation in real time. In addition, we successfully incorporated

this approach in a coherent semantic map, which can be used for robot exploration of

objects in large-scale map.

Our approach achieves 92% success object recognition rate for both of correct object

identification and pose retrieval. The estimation error of the 6D pose is under 24mm

in translation and 1.6 degree in rotation. Our proposed framework also has a low com-

putation cost. For a single object, it requires less than 1 s to recognize and accurately

estimate it’s pose after pose optimization. Moreover, our VCSH is efficient and stable
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enough under varying illumination conditions found in common environments. Our

experimental results demonstrate that the proposed approach is efficient by guarantee-

ing high object recognition rate, accurate pose estimation result. Moreover, it exhibits

the capability of dealing with environmental illumination changes.



4
D E N S E A N D D E F O R M A B L E M O T I O N E X T R A C T I O N O F

D Y N A M I C S C E N E

In this chapter, we present a novel hierarchical MRFs optimization method for dense

and deformable motion extraction in dynamic RGB-D scenes. In particular, this hier-

archical MRFs structure consists of two layers, respectively named segmentation and

correspondence layer. Firstly, in the segmentation layer, the dynamic foreground data

is successfully segmented through a pixel-level MRF. Secondly, in the correspondence

layer, the extracted foreground data is constructed as a 3D point-level MRF. A new sur-

face descriptor named deformable color and shape histogram is proposed. It is com-

bined with photometric and geometric features to represent a deformable surface. The

foreground data correspondences across consecutive frames are extracted next. Finally,

the dynamic scene motion is retrieved correctly from these correspondences. The dis-

crete optimization scheme is utilized for binary classification and multi-labeling prob-

lems in these two layers. Moreover, a dataset of dynamic RGB-D scenes is built, which

involves different motion patterns and surface properties of dynamic foreground. The

effectiveness and efficiency of our proposed approach for highly accurate foreground

segmentation and motion extraction is validated in experiments.

The remainder of this chapter is organized as follows: Section 4.1 to Section 4.5 pro-

vide detailed system framework, construction of hierarchical MRFs structure, design

of DCSH descriptor and optimization schemes. The experimental results including dy-

namic RGB-D scene sequence dataset building, accuracy analysis and evaluation of

runtime performance are presented in Section 4.6. Finally, Section 4.7 summarizes this

work.

4.1 framework of dynamic scene motion extraction

We propose a system framework that estimates the dynamic foreground data and

3D motion fields of all foreground points by extracting their correspondences across

consecutive RGB-D image frames. It is used to retrieve the dynamic scene motion and

detailed surface deformations.

As shown in Figure 4.1, for each RGB-D sequence, background model needs to be

learned in the initial phase. After that, the dynamic foreground data is extracted based

on differences to the learned background scene model and previous image frame. We

track all the extracted foreground points using correspondences labeling across con-

47
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Figure 4.1: Flowchart of dynamic scene motion extraction system using hierarchical MRFs.

secutive frames under global optimization scheme. Finally, the consecutive dynamic

scene motion is estimated from the 3D displacements of corresponding points. This

way, we can follow the possible large displacement in the foreground data motion and

can calculate the detailed surface deformation at the same time.

4.2 hierarchical mrfs structure design

Aiming to extract dynamic foreground and retrieve motion from correspondences of

foreground data across consecutive frames, we design a hierarchal MRFs optimization

method for respective binary classification and multi-labeling problems.

4.2.1 Markov Random Field Basics

Markov Random Field (MRF) has been frequently employed for different computer

vision problems. These problems can be modeled as a graphical model and optimally

posed as Bayesian labeling using the maximum a posteriori (MAP) probability estima-

tion. Let a graph be defined as G = (V,E), where V denotes the graph vertices and

E edges. E ⊆ V × V is antisymmetric and antireflective. An ordered pair (s, t) ∈ E

represents an edge connection. It is necessary to find an optimal configuration of the

graph G that assigns the label set L to all nodes s. For different vision problems, dif-

ferent energy functions are minimized which corresponds to a maximum a posteriori

configuration.

4.2.2 Hierarchical MRFs Structure in Different Layers

As shown in Figure 4.2, our proposed hierarchical MRFs consists two layers: segmen-

tation and correspondence layer. In particular, segmentation layer is designed for the

dynamic foreground extraction, and higher correspondence layer is designed to main-
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Image Pixel-level MRF 3D Point-level MRF
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ro
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Hierarchical MRFs Structure

 a) Segmentation Layer b) Correspondence Layer

Figure 4.2: Hierarchical MRFs structure: In the segmentation layer, all pixels are well struc-
tured by 2D image coordinates (column, row). This image pixel-level MRF is built
with the local neighbors in image’s column and row directions; In the higher cor-
respondence layer, all 3D RGB-D points of the extracted dynamic foreground from
the segmentation layer, are not well structured. This 3D point-level MRF is built by
searching the nearest neighbors in 3D Euclidean space.

tain the correspondences of extracted foreground data across consecutive frames. In

the segmentation layer, all pixels are well structured by their 2D image coordinates.

This image pixel-level MRF is built on the local image neighbors in column and row

directions. The 3D points in the correspondence layer are not well structured. Hence,

this 3D point-level MRF is needed to built by searching the nearest neighbors in 3D

Euclidean space.

In segmentation layer, we formulate this dynamic foreground extraction problem

as a binary classification problem. Each node representing a pixel in the image needs

to be labeled as foreground or background in the label set L = {fg,bg}. In correspon-

dence layer, we formulate the foreground correspondence problem as a multi-labeling

problem. The extracted consecutive dynamic foreground pair is built as 3D point-level

MRF pair < Ft, Ft−1 >. These two corresponding MRFs may contain different num-

ber of foreground points. We define the MRF which has less nodes as the source

Fsource = minnum(Ft, Ft−1), and the one with more point as the target MRF as

Ftarget = maxnum(Ft, Ft−1). This ensures the source finds unique correspondence

with the target. Therefore, the node set S = {s0...sm},m = num(Fsource) and the

discrete label set L = {l0...ln},n = num(Ftarget) are defined for the MRF pair corre-

sponding process.
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4.3 dynamic foreground extraction

Firstly, the dynamic foreground data is necessary to be extracted from the RGB-D

dynamic scene sequences. It is formalized to label each node of MRF as foreground or

background as a binary segmentation problem.

As the input data, the synchronized RGB and depth images are given with frame

oder in entire dynamic sequence. The MRF for segmentation layer is structured by the

image coordinates. At each pixel position (Px,Py), the node in MRF has the informa-

tion of (r,g,b, x,y, z). The edge of MRF nodes is defined as the connection with its

four spatial nearest neighbors at pixel positions (Px ± 1,Py) and (Px,Py ± 1).
In this dynamic foreground segmentation problem, we find an optimal configure

Ω̂ that assigns a label li for each node si in G, so that following energy function is

minimized:

E(Ω|Θ) =
∑
si∈V

Θs(li) + λ
∑
si∈V

∑
(s,t)∈E

Θst(ls, lt), (4.1)

where Θs is the unary potential representing the data similarity that s is classified

as foreground or background, Θst is the pairwise potential representing the smooth-

ness penalty that s and t are signed as different label, and λ is a suitable weighting

coefficient of smoothness penalty.

4.3.1 Data Term from Image Similarity

The data term Θs measures the similarity or likelihood that node s is classified as the

possible label li ∈ (fg,bg), and calculated as:

Θs(li) =

1−Ds when li is background

Ds when li is foreground
(4.2)

where Ds is the node data similarity to the class "foreground".

The dynamic foreground data is defined as the points that have large differences

between the past and current frame. These points represent the moving objects in

scene and are our interests to estimate their 3D motion field. During the movements

of foreground points, the occluded background scene model data in the current frame

are also possible to be viewed as the dynamic foreground. Nevertheless, these static

data is not of any interests for the final corresponding process. The final data term

needs to involve not only the consecutive frame data similarity term DF, but also

the background scene model similarity term DB. The average filter-based method is
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utilized for background scene learning in our system framework [130]. These two

terms DF and DB need to be combined to represent the final Ds:

Ds = min(DF,DB). (4.3)

From the source point data, all the color (r,g,b) and depth (x,y, z) information is

considered to compute the similarity.

DF = αf
F
color + (1−α)fFdepth,

DB = αfBcolor + (1−α)fBdepth,
(4.4)

where α is a weight coefficient, fcolor and fdepth are the functions to calculate color

and depth differences. For the color differences, RGB information is converted into

HSV space, and only H and S components are utilized to make the differences inde-

pendent of the brightness [42]:

fcolor = exp(− ‖ (S cos(2πH), S sin(2πH)) − (S ′ cos(2πH ′), S ′ sin(2πH ′)) ‖), (4.5)

and for the depth distortion, the euclidian distance with two 3D points p = (x,y, z) is

used:

fdepth = exp(− ‖ p− p ′ ‖2 /σ2), (4.6)

where σ2 is the variance of this 3D Euclidean distance, (HS,H’S’) and (p,p ′) represent

the relevant nodes at same pixel position in the consecutive frames for DF calculation,

and at same pixel position in current frame and the learned background scene model

for DB calculation.

4.3.2 Smoothness Term Calculation

The smoothness term Θst captures the spatial continuity between neighboring pixels.

It gives certain penalty if these two pixels within neighborhood are assigned as differ-

ent label. If s and t are the connected nodes in G. Consequently, the smoothness term

is defined as :

Θst(ls, lt) =

τ if ls 6= lt

0 if ls = lt,
(4.7)

where τ is a constant penalty. As our definition, it equals to the largest data term value

as τ = maxi(Dsi).
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4.4 correspondences labeling for foreground pair

The dynamic foreground has been extracted in the segmentation layer MRF (see Fig-

ure 4.2a) for each frame of RGB-D sequence. The 3D point-level MRF is built in the

correspondence layer from our hierarchical MRFs, to find all the foreground correspon-

dences across consecutive frames (Figure 4.2b). Currently, we focus on the correspon-

dence problem between two adjacent frames. Each frame’s foreground data is a set of

colored 3D points p = (r,g,b, x,y, z). Note that the raw foreground point clouds need

to be converted into voxel grids at first. On one side, it downsamples the raw high

density data. On the other, it deals with the image scaling problem for the building

of MRF structure. In particular, more colored point clouds will be captured when an

object is moving closer to the sensor. In this case, the points representing the moving

object should have the same number. This scaling problem needs to be solved for many

vision applications.

In correspondence layer, the MRF network is built by nearest four neighbors in 3D

Euclidean space. The consecutive frames are classified as source and target MRF based

on the number of their nodes respectively. In the source MRF, each node s has its own

identity as a set S = {s0...sm}. We define the target MRF’s node identity space {0...n}

as corresponding label space L = {l0...ln}, where n > m. After the correspondence

process, each node in the source MRF gets its relevant corresponding identity of node

in the target MRF. Consequently, the displacement of the point across consecutive

frames can be extracted and converted into 3D motion field.

This multi-labeling problem for correspondences extraction is formalized to find an

optimal configure Π̂ that assigns a certain label li for each source node si in the source

MRF. The label li is in the identity space L of node set T in the target MRF. A global

energy function needs to be minimized as following:

E(Π|Φ) =
∑
si∈V

Φs(li) +β
∑
si∈V

∑
(s,t)∈E

Φnb(ls, lt) + γ
∑
si∈V

∑
sj∈V

Φocp(li, lj), (4.8)

where Φs is the unary potential representing the data similarity between source node

si and target node tli , when s is corresponded to an id label li. Φnb is the pairwise

potential representing the neighborhood constrains. The corresponded nodes should

also be neighbors in the target MRF when labels of s and its neighbor t are assigned.

Φocp is the pairwise potential representing the correspondence occupancy constrains,

which safeguards that each source node s should not be assigned as the same identity

label. β and γ are suitable weighting coefficients for the respective potentials.

In order to present the MRF node data comprehensively and efficiently, we design

a new surface descriptor named Deformable Color-Shape Histogram (DCSH) which com-
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bined its shape and color features. This new descriptor is an extension of the work

presented in [161, 162].

4.4.1 Deformable Color-shape Histogram

The deformable color-shape histogram is proposed to describe each node, based on

its surrounding surface information. This is necessary to utilize comprehensive photo-

metric and geometric components. This novel descriptor is combined with shape and

color features from the raw colored point clouds, whose center is the node.

4.4.1.1 Shape Features

The entire correspondence process needs to have the capability to deal with deformable

foreground data. The surface deformation of foreground might be caused by inlier ar-

ticulated or bending motion. As shown in Figure 4.3, the foreground data of a paper

is extracted when it is moving and its surface is bending in the meanwhile. Geodesic

distance is employed here for the deformable surface’s shape feature of node s. In

particular, geodesic distance captures the geometry of point clouds and automatically

adapts to deformation [88]. At first, the entire foreground point clouds is built as an

adjacency map using euclidean distance-based k-nearest neighbor searching. The node

s of our MRF network represents a vertex of point clouds.Dijkstra’s algorithm is used

for searching its shortest paths to target point and extracting their pairwise geodesic

distances Dgeo = {gi}.

Dijkstra’s search algorithm is one of the most popular algorithm for single source,

shortest path estimation. A node-connected graph as a adjacency-map is required at

first. With the index of the source and target nodes, it operates as an iterative algorithm

to get the shortest path between them.

The entire process can be divided into three steps: 1) preprocessing; 2) distance

computation; 3) reasoning. The preprocessing part is visited only once in the beginning

of the execution. All the nodes of the graph except the source node are marked as

unvisited, and the distance to them is set to infinity. The distance of the source node

is set to zero, and the node itself is tagged as current. In the computation part, the

distance between the current node and all of its adjacent unvisited nodes is computed.

Furthermore, if the newly computed distance to the adjacent node is shorter than the

one already present, it will be updated with the new value. The current node is tagged

as visited and the node with the smallest path distance is tagged as current. This is

followed by the reasoning part where the current node is compared to the target node.

If the match is reached then the system returns, if not the computation part for the new

current node is executed then. The detailed algorithm is presented in Algorithm 4.1.
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Algorithm 4.1 Dijkstra’s search algorithm for finding the shortest path in a adjacency
map (graph). The algorithm takes as an input a connected graph, the index of the
source node and the index of the target node.

1: # build an adjacency map using k-nearest neighbor searching
2: G← adjacency map;
3: # get the source and target node indexes
4: source← source node index;
5: target← target node index;

6: # initialization of distance and visited label vector for each node
7: for all V ∈ G do
8: dist[V .index]← inf; # initialize as infinite
9: visited[V .index]← false; # initialize as not visited

10: end for
11: dist[source]← 0;
12: C← GraphPath[start]; # graphical path as a vector of index
13: PC ← distance(C); # total distance from visited path

14: # if reach the target node, stop iterating and return the geodesic distance
15: if C.index = target then
16: return dist[C.index];
17: end if

18: # search the shortest path based on current node’s neighbors
19: for all N ∈ V .neighbors do
20: # guarantee it has not been visited
21: if not visited[N.index] then
22: ND; # distance with current neighbor
23: d← PC +ND; # update the distance
24: if d < dist[N.index] then
25: dist[N.index]← d;
26: end if
27: end if
28: end for

29: visited[C.index]← true; # assign as visited
30: # update the shortest path
31: C← GraphPath[index(min(dist[]))];

32: # continue computing until it find the target node
33: goto 7;
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Given a geodesic distance threshold, a colored point set (represented as deformable

surface) around s is extracted to build its final DCSH descriptor. Illustrated by Fig-

ure 4.3, the red star represents the node s, the cyan star is one target point in s’s

descriptor area (red circle) and the red line is its geodesic path from s.

4.4.1.2 Color Features

The HSV value of each point is used to estimate color contributions both in chro-

matic and achromatic area. The chromatic area is considered as the true color space,

and achromatic area represents the gray scale space in the whole SV space. Eight his-

togram regions RE with index u = {0 · · · 7} are defined to build the entire DCSH. Six

of them are used for chromatic area, and the other two are for achromatic area. Ac-

cording to the HSV value, each point p is ranged into two adjacent histogram regions

〈REu,REu+1〉 in chromatic area, and one region RE6 or RE7 in achromatic area, with

respective contributions being 〈wu,wu+1,w6|w7〉. For more details of color ranging

process, see Section 3.3.1.

4.4.1.3 Shape and Color Feature Correlation

An example of generating DCSH using color and shape features is illustrated in Fig-

ure 4.3. Constant histogram bin range for each shape feature g in each RE is given

firstly. Then g is indexed into a final DCSH bin as INXg. The color contributions

〈wu,wu+1,w6|w7〉 of each point are added at its shape feature’s indexes in the corre-

sponding three histogram regions 〈REu, REu+1, RE6|RE7〉. Each node’s shape feature

g has 30 bins INg for each histogram region, and final bin index in DCSH regarding

to each REh:

INg = b 30(g− gmin)
gmax − gmin

c,

INXg = INg + 30h,
(4.9)

where h ∈ {u,u + 1, 6, 7} as the range id. Finally, these extracted color and shape

features are correlated as a DCSH to represent the node s’s descriptor.

4.4.2 Data Term from DCSH Similarity

The data term Φs represents the data similarity between the source node s and the

target node tl, where l is s’s corresponding label which associated with the relevant

node id in the target MRF. Bhattacharyya distance of node s’s DCSH descriptor DHs
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and its corresponded node tl’s DCSH descriptor DHtl , is used to represent the data

term:

Φs(li) =

√
1−

1√∑
hiDHs

∑
hiDHtl

∑
hi

√
DHs(hi) ·DHtl(hi), (4.10)

where hi is the histogram bin of each DCSH.

4.4.3 Neighborhood Constrain Term Calculation

The neighborhood constrain term Φnb is proposed to guarantee that, the source node

s and its neighbor t to be as close as possible in the target MRF network T for corre-

sponding. We use Euclidean distance ∆(p1,p2) =‖ p1− p2 ‖ to evaluate the neighbor-

hood likelihood. Therefore, this neighborhood constrain term as a pairwise interaction

potential function is defined as:

Φnb(ls, lt) =


|∆(Tls,Tlt)−∆(s,t)|−mini,j∆(Ti,Tj)
maxi,j∆(Ti,Tj)−mini,j∆(Ti,Tj)

if ls 6= lt

τnb if ls = lt,
(4.11)

where τnb is a constant to prevent two nodes s and t, (s, t) ∈ E, when these edge-

connected nodes are assigned as the same correspondence label. Here, we set τnb =

maxiΦsi which is the maximum value of the data dissimilarity.

4.4.4 Occupancy Constrain Term Calculation

The occupancy constrain term Φocp, also a pairwise potential, is utilized to prevent

the two nodes si and sj not to be assigned as the same label. It is similar with the

τnb meaning in Equation 4.11. Instead, these two nodes are edge-connected, that are

not the neighbors in MRF network as (si, sj) /∈ E. Therefore, we define the occupancy

constrain term as following:

Φocp(li, lj) =

τocp if li = lj

0 if li 6= lj,
(4.12)

where τocp is also a constant and its value is same as τnb.
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foreground

background

Segmentation Layer Correspondence Layer

Figure 4.4: Global optimization scheme structure for energy minimization in different layers of
the hierarchical MRFs.

4.5 optimization scheme for energy minimization at different mrf

layers

After the hierarchical MRFs structure is built, an optimization scheme is necessary to

minimize the energy functions in the segmentation layer and also in the correspon-

dence layer as in Equation 4.1 and Equation 4.8 respectively. We adapt the sequential

tree-reweighted message passing (TRW-S) algorithm [80], that has been developed for dis-

crete energy minimization recently. In particular, TRW-S adjusts the message updating

schedule and yields a lower bound guaranteed no to decrease. The energy is solved

iteratively until convergence or a maximum number of allowed iterations is exceeded.

Thus it is preferable compared to the belief propagation (BP) algorithm in which schedul-

ing is heuristic and convergence is not guaranteed [143].

The optimal scheme is shown in Figure 4.4. In the segmentation layer, each node

will be given data term Θs for different classes (foreground, background) and the

smoothness term Θst for its neighbors when they have edge connection E. The data

term module is defined as Seg :: NodeData(Θs(fg),Θs(bg)). The binary pairwise

data 〈ls, lt〉 is converted into 〈(bg,bg), (bg, fg), (fg,bg), (fg, fg)〉 as a four-dimension

vector. Thus the smoothness term module is defined as Seg :: EdgeData(0, τ, τ, 0) from

Equation 4.7.

In correspondence layer, each node will be given the data term Φs, neighborhood

contain term Φnb and occupancy contain term Φocp. We define the data term mod-

ule as Corres :: NodeData([Φs(l0), ...,Φs(ln)]), where n is number of label. The node

s and its neighbor node t contributes the neighborhood constrain term. This pair-

wise data is converted into a vector Vnb with the size as n× n, where Vnb[lt + ls ×
n] = Φnb(ls, lt). Thus the neighborhood constrain module is defined as Corres ::

EdgeData(Vnb), if two nodes si and sj have no edge connection. We need to define

the occupancy constrain module as Corres :: OcpData(τocp) from Equation 4.12.
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4.6 experimental results

To demonstrate the effectiveness of the proposed method, we perform a large variety

of tests on RGB-D sequences involving different motion patterns and object surface

properties of the dynamic foreground. Static Kinect sensor is used to record each se-

quence involves calibrated and synchronized color and depth images in time series

within 30Hz. The sequence is reconstructed as ROS BAG1.

We collect a dataset of various dynamic RGB-D scenes consisting of different back-

ground, various dynamic motion patterns and foreground data with different surface

properties. The entire dataset will be released in the near future. In this work, three

sequences with different features are chosen to present the experimental results and

evaluations (see Figure 4.5, Figure 4.6 and Figure 4.7): The "DRAWER" sequence in-

volves the motion of manipulating a drawer, that involves a prismatic articulation and

its foreground data is relative rigid; The "PAPER" sequence collects the motion of wav-

ing a paper, that its motion is complex; The "CLOTH" sequence collects the motion of

moving a hand-hold cloth, whose foreground data is strongly deformable.

Original RGB and depth images’ resolution are both 640× 480. In our experiments,

we synchronize and downsample these images into half. Firstly, pixel-level MRF is

built for dynamic foreground data extraction. After that, we convert these image pixel-

level foreground data into colored point clouds. And then, the 3D point-level MRF

is built for foreground correspondences across consecutive frames, finally extract the

dynamic motion. Note that our implementation is partially based on Point Cloud

Library2. The sequences of our dataset contain enough initial frames at the beginning

for background model building. The dynamic foreground data is extracted from image

points with constant number as 320 × 240 = 76800. In these entire sequences, the

dynamic foreground data contains 200 to 600 colored voxels for correspondence in

general. For discrete optimization in segmentation and correspondence layer in our

hierarchical MRFs structure, we set the iteration times to 15 and 20 respectively with

the consideration of accuracy and computational cost.

We present the experimental results through these three sequences, to emphasize the

benefits and uniqueness of proposed approach, that can deal with complex motion, dy-

namic rigid and deformable foreground data. As shown in Figure 4.5, Figure 4.6 and

Figure 4.7. the dynamic foreground data is correctly segmented from the background,

and foreground pairs across consecutive frames (four frames distance are used here)

are corresponded afterwards. The red array represents the correct nodes correspon-

dences and motion direction. In the "DRAWER" sequence (Figure 4.5), the hand’s and

drawer’s motion are obviously different. It is represented as different correspondences

1 http://wiki.ros.org/rosbag
2 http://www.pointclouds.org

http://wiki.ros.org/rosbag
http://www.pointclouds.org
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a) Segmenting Error

b) Segmenting Runtime Performance

Figure 4.8: a) Segmentation error of different testing sequences. b) Runtime performances for
segmentation of different sequences.

distances across consecutive frames. The dynamic motion field is extracted and can

be used for the rigid segmentation, motion pattern classification and articulated ob-

ject modeling. At frame pair < 84 :: 88 >, our system still can retrieve correct results

even the dynamic foreground data dramatically changed. In the "PAPER" sequence

(Figure 4.6), the correct correspondences are extracted, when moving up and down
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a) Corresponding Error

b) Corresponding Runtime Performance

Figure 4.9: a) Correspondence error of different testing sequences. b) Runtime performances
by different nodes numbers for corresponding.

at frame pair < 84 : 88 > and with large displacements at frame pair < 108 : 112 >,

that cannot be solved by optical flow and other motion model based methods. In the

"CLOTH" sequence (Figure 4.7), the foreground data deforms strongly during the mo-

tion. The correct correspondences results present our proposed method’s efficiency

and stability. Especially, our deformable color and shape histogram (DCSH) can de-

scribe this kind of deformable objects correctly.
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To better evaluate our proposed approach, the ground-truth data is first manually

labeled and quantitative evaluations are provided. We analyze the error mean and vari-

ance of incorrect corresponded node percentage for different sequences. Belief Propa-

gation (BP) is also utilized for comparison within the same optimization data structure

as TRW-S. For evaluation of segmentation result evaluation, the error involves the false

positives and false negatives percentage of entire image points. Figure 4.8a shows the

mean error and error variance of different test sequences and Figure 4.8b illustrates

their time costs. These two optimization methods work almost with same quality. Un-

der 0.0004% of 76800 image points are segmented falsely. Because of the constant node

number and binary label set, the time cost is preserved under 0.13 ms for all sequences.

For correspondence result evaluation, as shown in Figure 4.9a, TRW-S outperforms BP

obviously. In general, the performance of our system is presented as mean error under

0.03% and error variance under 0.01%. For the runtime performance analysis, the time

cost for different number of corresponding nodes are presented in Figure 4.9b. Since

the cost is influenced by nodes number and label set size, runtime cost is dynamic

during entire sequence processing. For runtime performance evaluation and compari-

son, we select the label size as 50 more than nodes number in general, to analyze the

performance using BP and TRW-S optimization methods. In general cases, the runtime

cost is under 40 s to get the correct correspondences extraction of foreground pair. All

experiments run on 4-core 2.8 Ghz i7 CPU and 8 GB of RAM.

From above experimental results, the hierarchical MRFs structure is proven its effi-

ciency and stability by guaranteeing highly correct motion extraction. Because of our

proposed deformable surface descriptor DCSH, the system can deal with the dynamic

scenes that contain various motion patterns and surface properties of dynamic fore-

ground.

4.7 summary

In this chapter, we presented a novel hierarchical MRFs optimization method for dense

and deformable motion extraction in dynamic RGB-D scenes. This hierarchical MRFs

structure consists of segmentation and correspondence layer, constructed with respec-

tive image pixel-level and 3D point-level MRF. The discrete optimization scheme is

utilized under novel energy functions in two different layers. At first, the dynamic

foreground data is segmented from entire image at each frame, and afterwards, the

dynamic motion is retrieved correctly by corresponding these extracted foreground

pair across consecutive frames. A surface descriptor DCSH is also newly designed

to represent deformable surface of foreground data, combined with photometric and

geometric features. Moreover, a dataset of various dynamic RGB-D scenes is built ef-
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ficiently and will be released to public in the near future. Our proposed approach

is proven to be effective and efficient by guaranteeing high accurate foreground seg-

mentation and motion extraction from experimental results. Our method can easily be

implemented in various higher level computer vision applications, such as 3D motion

based object segmentation, articulated object modeling and deformable object analysis

and so on.



5
A RT I C U L AT E D O B J E C T M O D E L I N G B A S E D O N V I S U A L A N D

M A N I P U L AT I O N O B S E RVAT I O N S

This chapter proposes an approach to model articulated object by integrating visual

and manipulation information. Line-shaped skeletonization based on depth image

data is realized to extract the skeleton of an articulated object, which are in different

shape configurations. Using observations of the extracted object’s skeleton topology,

the kinematic joints of the object are characterized and localized. Robot end effector’s

force data in the form of task-space force are required to manipulate the articulated

object. This data is collected by kinesthetic teaching and learned by Gaussian Mixture

Regression in kinematic joint state space of object. Following modeling, manipulation

skills for articulated object are realized by first identifying the current object joint

states from visual observations and second generalizing learnt force to accomplish the

new task. We validate the proposed method from the experimental results in different

scenarios of an autonomous robot.

This chapter is organized as follows. From Section 5.1 to Section 5.5, We define the

problem and propose a method to model an articulated object, mapping the learnt

manipulation force into object joint space, and generation of manipulation skills based

on recognized articulated object’s joint state and goal of new task. The experimental

setup and results are presented In Section 5.6. Finally, Section 5.7 summarizes this

work.

5.1 articulated object modeling based on visual and manipulation

data

5.1.1 Definition of Articulated Object Model

Articulated object is defined as a combination of multi rigid parts which are connected

with multiple kinematic chains. To manipulate articulated objects, comprehensive vi-

sual and manipulation information is required. This data is necessary to represent the

structure, kinematic relationships and dynamic properties of unique articulated object

. An articulated object can be described by its structure with number and type of kine-

matic joints, link properties and kinematic relationships between neighboring links of

its rigid parts. Figure 2.5 shows some examples of articulated object. Basic geometry

features which are used for rigid object modeling and recognition, such as Viewpoint

67
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Feature Histogram (VFH) [119], are not suitable for deformable objects. However, these

approaches require complete depth information of the object. Since articulated objects

can lie in a practically huge number of different configurations, capturing information

about all these potential configurations is practically infeasible. For this reason, ob-

ject skeletonization is the most suitable method to extract the structure and kinematic

joint constraints of an object. Moreover, for fast manipulation on articulated object,

autonomous robots need to obtain the capability to generate the proper manipulation

skills based on articulated object’s joint state and can adapt with the different goal

of new task. Consequently, to the best of our knowledge, we are the first to model

an articulated object combining visual and manipulation observations. The detailed

contents of articulated model is described as following:

Obj = (S, Jm(T , P, C), f),m = 1, ..,M (5.1)

where S represents the skeleton of the object which is used for object recognition, Jm
joint descriptor of the m-th joint, T joint type, P joint position and C joint constraints.

The f(J1, ..., JM) is the Cartesian force which is needed to manipulate the object where

J1, ..., JM are joint descriptors of the articulated object where M is the number of joints.

5.1.2 Manipulation Skills Formalization

Investigating multiple-joint objects is highly complicated and implies sufficient mod-

eling of all individual joints of the object. Because of this, in this work, we focus on

modeling of single-joint articulated objects where visual and manipulation informa-

tion is integrated for highly efficient object manipulation. The framework presented

here can be extended to modeling multiple-joint objects though and this is going to

be developed in near future. Manipulation force constitutes part of an object’s model

since it indicates the dynamic properties of the object. This force is critical to the suc-

cess of a robotic task and depends on the object’s current joint states. The manipulating

force can be represented by f = π(sJm , e), m = 1, ...,M, where π is a force generation

policy, sJm the state of the m-th joint which may describe the angle of a rotational joint

or length of a prismatic joint, and e indicates the new task goal as the target state of

relevant kinematic joint.

5.2 framework for articulated object modeling

Figure 5.1 shows the framework which is used to model a single-joint articulated ob-

ject. The framework consists of two main components. A database of articulated object

models is built at first based on modeling method. For the real scenarios, the incom-
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ing object can be recognized based on visual information and proper manipulation

can be generated based on object joint state and goal of new task. The modeling stage

can be divided into two parts where the first part involves vision-based object skele-

ton topology extraction and the second part consists of identification of the object’s

dynamic properties by teaching the robot appropriate force to operate the object. The

kinematic joint properties (T ,P,C) of a joint J are estimated from observation of the

skeleton S across multiple configurations. Using learning by demonstrations, the ap-

propriate force f is learned and mapped into the joint space of articulated object. The

autonomous robot observes the articulated object and extracts its current joint state.

Then the proper manipulation skills are generated based on the task goal such as the

position or joint angle the object can finally reach and its current joint state.

5.3 object skeletonization from visual observation

A point cloud, in terms of depth image data representing the arc shape of object, is

used for skeletonization for articulated object. This is realized by observing multiple

frames of the object’s kinematic links. The skeleton of the object is extracted and pro-

vides the capability for robot to automatically recognize the object and estimate its

current joint states. Based on extracted object skeleton and the location of skeleton

nodes, the object is classified as a single or multi-joint object. Skeleton models which

represent the medial axis of a 3D model are widely used for object reconstruction

and arterial object analysis. In [144], rotational symmetry axis is used for the object

skeleton points estimation. That work requires the full range point cloud of the object

and uses the assumption that all object’s model is pipe-like. Instead, a novel method

of skeletonization of articulated objects is presented in this work. Our proposed skele-

tonization method is not based on the assumption of pipe-like configuration. It can

identify the objects from abstract structures even within a plane-like shape. As two ex-

amples of articulated object with different type of structure, the phone arm is pipe-like

as shown in Figure 5.2 and the car’s door is plane-like as shown in Figure 5.4.

5.3.1 Vector Field Generation

To simplify the problem, the articulated objects are assumed to be attached with a

planar background. Firstly, the Random Sample Consensus (RANSAC)-based plane

fitting algorithm is used to extract the point cloud of an articulated object [119], shown

in Figure 5.2a and Figure 5.4b. After that, the vector field presents the best local rota-

tional symmetry of each point in the extracted object point cloud. Our method extracts

the vector field utilizing the optimized cutting plane. Based on RANSAC plane estima-
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Figure 5.3: Skeleton node traces through different visual frames: black lines present the skele-
ton topology; each skeleton node trace is shown by a different-color solid line.

tion with a certain number of iteration steps Tc, the vector field over the entire point

cloud is generated. The best cutting plane Cc = plane[xi, vi] which goes through the

point xi with the normal v̂ is estimated by minimizing the number of inliers which

are within the distance dc. In addition, these points are necessary to be in the same

cluster Ni of the related point xi using the geometric nearest neighbors searching. The

process is described as following:

v̂i = arg min
v∈<3,‖v‖=1

num({jNi | ‖cj −C
(t)
c ‖ 6 dc; xj ∈ Xraw}), (5.2)

where t ∈ [1, Tc] is the iteration index. Figure 5.2(b) shows the result where the circles

show the iteration step. Note that the direction of optimized cutting plane can be

inverse. However, this case does not influence the following process and the generation

of vector field. These estimated directions are reorganized based on the coefficients of

base plane as the background.

A Gaussian-weighted method is developed to smooth the estimated vector field.

The point xi with normal vi has the neighbor cluster Xi with points number n, which
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is determined by the distance threshold ds. The weight function w is defined based

on the gaussian contribution. This contribution is calculated by each neighbor’s 3D

distance respect to the point xi:

wj =
1√
2πσ2

exp(−
1

2σ2
‖xj − xi‖2),

vi:new =

∑n
j=1wjvj∑n
j=1wj

, xj ∈ Xi.
(5.3)

In particular, the standard deviation σ = 1 is used in this work. Figure 5.2c and Fig-

ure 5.4c show the smoothed vector fields over the point cloud of object within different

shape.

5.3.2 Line-shape Skeleton Estimation

The skeleton of the object is represented as the combinations of straight lines and

linked nodes. These nodes are named as skeleton nodes. After smoothing, the vector

field is clustered using the nearest neighbor clustering method [160]. We consider the

positions and the directions of the estimated vector field for object skeleton extraction.

At the same time, the object’s skeletal point position can be estimated using the center

of the raw object points in 3D space. Those points are in the cutting plane through the

relevant vector point, when they are under a given distance threshold. These skeletal

points can be extracted from planar object. Compared with us, Tagliasacchi et. al min-

imize the sum of squared distances from the point to the related normals [144]. That

method will cause the problem that the position of the skeletal points for the planar

object is infinite. Afterwards, the best line l can be reached by minimizing the sum

of distances with the extracted skeletal points. The line detection result is shown in

Figure 5.2d).

5.3.3 Skeleton Topology Extraction

As shown in Figure 5.2d, the result of line detection does not constitute the entire

skeleton of articulated object. It is because that some skeleton points have been filtered

out by clustering step. To deal with this case, the line growth algorithm is used to

estimate the entire skeleton topology. All of the detected lines grow in both positive

and negative direction to overcome the object’s skeleton. The lines will stop growing

when they arrive in two situations as follows:

(i) reach the edge of the object point cloud and are viewed as skeleton root node as

the Node 1 and Node 5 in Figure 5.3;
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(ii) meet another skeleton line and at that time they stop growing up and are char-

acterized as skeleton link node as the Node 2, 3 and 4 in Figure 5.3.

These points are clustered and merged by 3D Euclidean clustering [160]. After that,

the entire object skeleton nodes are extracted. Simultaneously, the root and link nodes

indicate the topology of the skeleton of articulated object. These results are shown in

Figure 5.2e and Figure 5.4c. Different colored points represent the different estimated

skeleton nodes. The dashed line links represent the skeleton topology.

5.3.4 Determination for The Number of Kinematic Joint

As shown in Figure 5.3 and Figure 5.4d, the object skeleton topology is extracted to

represent the different configuration of articulated objects. The dashed lines represent

the object skeleton topology and the traces of different extracted skeleton nodes are

shown as different colored solid lines. With the traces of skeleton nodes in different

frames, all of the dynamic observations are presented. From frame 1 to 8, it is obvious

that the observation patterns of nodes 3 to 5 differ from the patterns from frame

8 to 11. These two types of pattern in terms of the skeleton topology of object are

changing based on this analysis. It implies that the estimated object is not a single

joint articulated object. The skeleton node Si with index i is viewed as the base node

to estimate the Euclidean distances with others as Ei = ‖S0 − Si‖, i ∈ [1,n]. These

distances are used to calculate the difference cost function DIFj between current frame

j with the previous frame j− 1 as following:

DIFj =

n∑
i=1

|E
j
i − E

j−1
i |

E
j−1
i

, j ∈ [1, F] (5.4)

where F is the number of frames. At frame 9,DIF9 increases significantly, which means

this articulated object contains multi kinematic joints. In comparison, the door of car

is the single joint articulated objects as shown in Figure 5.4d.

With the certification of the joint number from the object skeleton topology obser-

vations under different configurations, the kinematic joint type can be characterized

and the joint can be localized into the object. For a single joint articulated object, the

trajectory of one skeleton node can represent the articulated object’s motion pattern.

This data is also used for its kinematic joint characterization. In another case as multi

joint articulated object, we need to analyze all trajectories of its skeleton nodes hierar-

chically to extract the properties of kinematic joints respectively.



5.4 articulated joint type characterization 75

5.4 articulated joint type characterization

The kinematic joints of articulated object are constrained into two certain types, as

prismatic and revolute [140]. Given the 3D trajectories of the end-effector of the object,

it is rather straightforward to discriminate as these two types of kinematic joint. The

position vector of the point A of an articulated object which is moving in the 3D space

can be expressed by

~g = gxx̂+ gyŷ+ gzẑ. (5.5)

In the case that only one positional component is non-zero, the joint is characterized

as prismatic one. The positional components are in need to be digitized as follows: if

a component is different than zero, it is assigned as value 1, else value 0. The digitized

components gx, gy and gz are used as the input for a Boolean logic scheme which is

equivalent to the numerical computation given by

Y = (gx + gy + gz − gxgygz) (gx + gy − gxgy) . (5.6)

We apply Equation 5.6 at each time step and taking the average Ȳ of all outputs Y(n)

where n is the time index. The results deduce whether the joint is revolute or pris-

matic. If Ȳ = 0, the joint is prismatic. If Ȳ 6= 0, the joint is revolute. In case that the

joint is revolute which causes a rotational movement, the angle range of the joint is

estimated as the constraint of working space. The positional data of the end-effector of

an articulated object are recorded during demonstrations of the task. The angle range

is computed by

θ(n) = arctan(ḡi(n)/ḡj(n)), (5.7)

where n = 1, ...,N is the time index and ḡi and ḡj the two non-zero average positional

trajectories in directions i and j. The average positional trajectories are computed, since

many demonstrations are available, as

ḡi(n) =
1

K

K∑
1

g
(k)
i ,

ḡj(n) =
1

k

K∑
1

g
(k)
j ,

(5.8)

where g(b)a is the position of demonstration b in direction a and K is the number of

demonstrations of the task.
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5.5 learning force skills from manipulation observation and map-

ping

It is necessary to extract an average expert behavior for a task based on multiple

demonstrations [85]. Since the speed of the demonstrator varies from trial to trial

and demonstrations are not time-aligned, demonstrations become time-aligned by Dy-

namic Time Warping. The force policy of a task is extracted from multiple demon-

strations using a probabilistic approach proposed in [20]. This approach consists of

Gaussian Mixture Modeling and Regression. It can estimate a smooth generalized ver-

sion of demonstrated signals which captures all the important features of the task.

Time-aligned data pairs di = {si, fi}, i = 1, ...,N are considered, where N is the

number of data points in each demonstration, si the input joint states and fi ∈ <D×N

represent force data where D is the dimensionality of f. A mixture of L Gaussian

functions is considered with probability density function as

p(di) =

L∑
l=1

p(l)p(di|l), (5.9)

where p(di|l) is a conditional probability density function and p(l) = πl is the prior of

the l-th distribution. We model the mapping from joint angles to endpoint forces by a

mixture of L Gaussian functions. It is

p(di|l) =
1√

(2π)D|Σl|
exp(−

1

2

(
(ξi − µl)

TΣ−1
l (ξi − µl)

)
) (5.10)

where {πl,µl,Σl} is the Gaussian function’s parameter set represented by the prior

probability, the mean and covariance matrix. The parameters of the mixture are es-

timated using the Expectation-Maximization (EM) algorithm. Following learning of

the mixture parameters, a generic form of the signals fi is reconstructed using Gaus-

sian Mixture Regression (GMR). The states si are employed as inputs and the output

vectors f̂i are estimated by regression. The mean and covariance matrix of the l-th

Gaussian component are defined as

µl = {µs,l, µf,l}, Σl =

 Σs,l Σsf,l

Σfs,l Σf,l

 . (5.11)

The conditional expectation and covariance of the signal fl given s are

f̂l = µf,l + Σfs,l(Σs,l)
−1(s− µs,l),

Σ̂f,l = Σf,l − Σfs,l(Σs,l)
−1Σsf,l.

(5.12)
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Figure 5.5: Angle state space estimated based on the position of the car’s door handle. The
joint angles are expressed in degrees. The time step is equal to 1ms.

Finally, the conditional expectation and covariance of f given s for a mixture of K

Gaussian components are defined by

f̂ =

L∑
l=1

βlf̂l,

Σ̂f = Σ
L
l=1 β

2
l Σ̂f,l,

(5.13)

where βl = p(s|l)/
∑L
j=1 p(s|j) is the responsibility of the l-th Gaussian for si. The task

force profile f is learned in the joint space s which is represented by the angle θ.

5.6 experimental results

This work focuses on skeletonization and manipulating a single-joint articulated object.

We demonstrate the performance of proposed method in a pitstop scenario where the

single-joint car door is to be recognized and manipulated. A model of the door, repre-

sented by Equation 5.1, is built based on its skeleton topology, a kinematic descriptor

of the joint and the end-effector force required for manipulation.

The point cloud of the door is acquired by one Kinect1 sensor which is mounted

on the top of an autonomous robot, as shown in Figure 2.4. This data is used for

skeletonization of the door and estimation of the skeleton node traces over different

1 http://www.primesense.com

http://www.primesense.com
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(a) Door Opening

(b) Door Closing
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Figure 5.6: Learning the generalized 2-dimensional force profile of a task in joint angle space
given 3 task demonstrations. (a) Door opening, (b) Door closing.

frames, as shown in Figure 5.4. The skeletonization of object is realized partially based

on the Point Cloud Library2. We desire to learn manipulation skills in terms of the

force which is required to open or close this single-joint car door.

Appropriate force is demonstrated to the robot by kinesthetic teaching and learned

from multiple demonstrations of a task using the proposed approach. Several demon-

strations of opening-and-closing task are provided to a 7 DoF robotic arm. Task space

force as well as end-effector positional trajectories are captured during demonstrations.

Following task space force learning, generalization is required to situations where the

2 http://www.pointclouds.org

http://www.pointclouds.org
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Figure 5.7: Door opening and closing where the door is initially open at 8 degrees. The time
step is equal to 1ms.

initial door position may differ and based on the task goal such as the target angle

of opening or closing. To accomplish this, the force constraints of the task are learned

with respect to door’s joint states. The current joint states are estimated using current

frame’s visual data.

Skeletonization of the car door is shown in Figure 5.4, where the door is recognized

as single-joint articulated object using Equation 5.4. We observe that the trace of skele-

ton node has the same motion pattern with the robot arm end-effector trajectory. The

current door’s joint state can be achieved by the skeleton topology position and the

learned door’s rotational joint model.

Every demonstration consists of an opening and closing phase without any interrup-

tion between the two phases. The different start and end points of each trial are due to

slight sliding movement of the robot end-effector along the handle of the door. Given

manipulation trajectory, the type of joint is identified firstly by using the algorithm

described in Section 5.4. This door’s joint is characterized as revolute and estimate the

joint space constrains which is computed, as shown in Figure 5.5. This angle space

constitutes the input state space in terms of which the force trajectories are learned

from multiple demonstrations.
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Figure 5.6 shows the learning process of the 2-dimensional force for a door opening-

closing task from 3 demonstrations by using the method described in Section 5.5. The

force of robot’s end-effector is learned separately for the two phases of the task. Fol-

lowing with the learning process, we desire to generalize the force generation policy

to different tasks with different current state of articulated object. More specifically,

the case is considered where the car door is already open at 8 degrees and the force

profile is estimated which needs to be exerted in order to open the door completely

and close it afterwards. Figure 5.7 shows the generalized force for this task where the

two phases, opening and closing.

5.7 summary

In this chapter, we propose a novel method for modeling articulated object by combin-

ing visual and manipulation information. Visual processing contributes to recognize

the object and identifying its structure and more specifically, its skeleton topology,

the number and type of joints as well as the current joint states. Manipulation data

represented by robot end-effector’s force are learned from multiple task demonstra-

tions in order to be able to operate the articulated mechanism. The forces are encoded

with respect to joint states so that the system can generalize to new situations where

the initial object configuration, and thus, joint state differs. The proposed method is

demonstrated and validated in experiments as manipulation of a single-joint articu-

lated. We bring this new idea for the visual representation of articulated object and

also object’s proper manipulation skills generation for autonomous robots.





6
R E A L - T I M E H U M A N B O D Y M O T I O N E S T I M AT I O N B A S E D O N

L AY E R E D L A S E R S C A N S

In this chapter, we propose a method for real-time 3D human body motion estimation

based on three-layer laser scans. All the useful scanned points containing human body

contour information, are subtracted from the learned background of the environment.

For human contour feature extraction. To avoid segmentation problems during human

contour feature extraction, we propose a novel iterative template matching algorithm

for segmentation and clustering. Robust distinct human motion features are extracted

using maximum likelihood estimation and the nearest neighbor clustering method.

Subsequently, the positions of human joints in 3D space are retrieved by associating

the extracted features with a pre-defined articulated model of the human body. Finally

we validate our proposed methods with experimental results, which show accurate

human body motion tracking in real time.

The remainder of this chapter is organized as follows: Section 6.1 to Section 6.4

provide the detailed structure of the whole estimation system, including background

subtraction, feature extraction, modeling of articulated human body and data associ-

ation. The hardware setup and experimental results are presented and discussed in

Section 6.5. Finally, Section 6.6 summarizes this work.

6.1 framework for real-time human motion estimation

In this section, we provide the details about the human body motion estimation system

resulting in real-time estimation of body joint position in 3D space. The proposed

method aims at solving the problem of acquiring the real human motion based on

limited spatial data in terms of the scanned contour information retrieved from 3-

layered laser scans.

The system is presented in Figure 6.1, where three LRFs are vertically aligned on

different fixed heights from the ground plane. The heights are chosen in such a way

that the LRFs can capture the arc-shaped contour points of the human’s torso and

upper arms, the hip and forearms, and the thighs separately. Foreground points are

then extracted from the pre-learned background. During segmentation and clustering

a novel iterative template matching method is proposed to solve the self occlusions

and to get robust as well as distinct human motion features. The system is able to

83
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Layer 2
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Figure 6.1: Overview of the proposed estimation system.

estimate the full human body motion after associating the extracted features with the

pre-defined articulated human model in real-time.

The processing modules and components are illustrated in Figure 6.2. After the

background subtraction in the raw data from each LRF is done, all the related human

arc-shaped contour points are estimated. The human contour features are extracted

using segmentation and clustering while the final pose is retrieved by associating these

features with a pre-defined articulated human model.

6.2 human foreground data extraction

All the scanned contour points of objects in front of LRFs represent the raw data, which

means they include both the background information (such as walls and other static

objects) as well as moving object information. Background information subtraction is

needed in order to extract the human contour information from the data.

The three LRFs measurements are with X and Y axes parallel to the ground plane

and with heights z0, z1 and z2. All scanned points can be represented as P = {pi} and

pi = (xi,yi, zi), where i is the point index.

The background is learned in the initial stage before the target enters in the scene.

We take S scans to average the background information and save them in the back-

ground point set Pb = {
∑S
s=0 ps/S}. Therefore, the foreground data Pf can be extracted

by comparing the raw data with Pb with a given threshold, as shown in Figure 6.3.

However, it is possible that the background changes during the observation. This can

happen for example when a piece of furniture is moved. In our strategy, we deal with
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Figure 6.2: Diagram of the proposed estimation system.

this case by switching foreground points into background points when their position

variations are under a given threshold [19].

6.3 human contour features extraction

From the foreground data Pf, useful features can be extracted which are represented

as F(c, θ, l), where c is the cluster center position, θ is the rotation angle and l is

the length of cluster. The information c and θ will be used to get the pose and l

will be used to classify these human body parts. Using nearest neighbor and template

matching techniques these two kinds of segmentation and clustering methods are used

to obtain the needed features.

6.3.1 Segmentation by Nearest Neighbor Clustering

This segmentation criterion is based on the geometry relationship between the nearest

neighbor points [35]. All the points that are within a predetermined distance are seg-

mented as one cluster. The clusters that satisfy certain conditions will be viewed as the

effective human contour features.

The algorithm for cluster segmentation is as follows:

1. Compute the distances D between each pair of consecutive points from the effec-

tive human data Ph = {pi} in LRF data image: Di = ‖pi − pi−1‖.
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Figure 6.3: Extraction of human contour points from background on one layer laser scans.

2. Classify the suitable points into one cluster Cj(P,n) with vector of points P and

the number of points n using the distance threshold Tc: push pi into Cj ifDi < Tc
otherwise create a new cluster.

3. Delete the cluster Cj with index j if its number of points nCj is under a number

threshold Tn as nCj < Tn.

4. Compute the center position Cj as feature Fk position information:

cFk = (
∑

xCj/nCj ,
∑

yCj/nCj). (6.1)

5. Compute the rotation and the length of Fk based on the start- and endpoint

(pS,pE) of the cluster Cj:

θFk = arctan
ypS − ypE
xpS − xpE

,

lFk = ‖pS − pE‖.
(6.2)

However, this geometric clustering method fails when extracting the valid features in

two typical situations as shown in Figure 6.4:

A. Occlusion appears and occluded template cannot be estimated from available

estimation, e.g. forearm separates hip part cluster;
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clusters associated with different colors

human body parts

fail to segment

breakpoint

failed situation a

failed situation b

Figure 6.4: Two failure situations using NNC. Different colored points show distinct associated
clusters.

B. The outliers of the template cannot be excluded which will influence the template

estimation result, e.g. when upper arm is within distance threshold Tc to torso.

The final result generated from those estimated clusters in such situations will contain

incorrect features. Consequently, template matching is considered to solve the problem

of segmentation and associate the related information for clustering.

6.3.2 Segmentation Using Template Matching

Aiming to avoid the above failure situations, a circle template matching algorithm

based on [145] is employed with the following assumptions: 1) the torso and hip con-

tour are always scanned; 2) the shapes of torso and hip sections in terms of the contour

information are not changing.
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Figure 6.5: Torso circle template construction. The red points are scanned points. The real po-
sition of torso is represented by the shadow ellipse. The center of the torso can be
obtained from the matched circle center position, rotation angle α and the constant
distance parameter Dt.

The torso and hip circle template models are built, with each template having a

different radius rtorso and rhip. The center of the circle has a constant distance Dt
to the center of the torso section, as shown in Figure 6.5. The rotation angle α can be

obtained from the 5th step of the NNC algorithm in Section 6.3.1. The two radii of the

circle models are defined as rtorso = 320 mm and rhip = 300 mm respectively.

If the scanned points match the circle template, they need to fulfill the following

equation

Dist =
√

(x− x∗)2 + (y− y∗)2 − r = 0. (6.3)

where (x∗,y∗) is the center of the circle template, r is the radius andDist is the distance

between the point and its nearest circle border.

In order to obtain the center position of torso, the circle center needs to be computed

first. Therefore, Maximum Likelihood Estimation (MLE) is applied here to estimate

the center position of circle. Each scanned 2D laser point is assumed as having an

independent error which can be represented as a Gaussian distribution with zero mean

and standard deviation σ.
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As (xi, yi) is the true position of the scanned position (xi,yi) and n is the number of

scanned points used to match the circle template, then the likelihood of all the points

can be represented as

L(x,y) =
n∏
i=1

(
e
−

(xi−xi)
2

2σ2

√
2πσ2

e
−

(yi−yi)
2

2σ2

√
2πσ2

). (6.4)

For easier computation, we use − logL to minimize as

L−log = − log(
1

(2πσ2)n
e
−

∑n
i=1[(xi−xi)

2+(yi−yi)
2]

2σ2 ). (6.5)

By removing all the constants, which do not contribute to minimization, we obtain an

equivalent formulation optimization problem with the modified cost function

Lcircle =

n∑
i=1

(xi − xi)
2 + (yi − yi)

2

σ2
. (6.6)

The Lagrange method of undetermined multipliers are used including the equality

constraint given by Equation 6.3. The final equation to be used to get the MLE result

is

Lcircle =

n∑
i=1

[(xi − x
∗)2 + (yi − y

∗)2 − r2]2

(xi − x∗)2 + (yi − y∗)2
. (6.7)

Since the r is the parameter of circle template, MLE becomes the nonlinear problem of

obtaining the parameters (x∗,y∗) for minimizing Equation 6.7. The Newton-Raphson

(NR) method is adopted here to solve the optimization problem numerically.

6.3.3 Iterative Template Matching for Segmentation and Clustering

In addition, in order to obtain stable and accurate features, we propose an Itera-

tive Template Matching for Segmentation and Clustering (ITMC) method here. This

method can estimate the known template and other clusters whenever an occlusion

happens. The pseudocode for ITMC is listed in Algorithm 6.1.

The main idea of ITMC is to update the input data every time to match the circle

and exclude the points which are not related to the circle template. When the position

of the matched circle becomes stable, NNC is applied to segment and cluster the

excluded points. This algorithm can greatly improve the accuracy of segmentation

and clustering results while also solving the problem of failure situations such as

those shown in Figure 6.6. Notice that ITMC is employed on layer 1 and layer 2 which

used the torso and hip section template, whereas only NNC is applied on layer 0, since
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Algorithm 6.1 Iterative template matching for segmentation and clustering

1: Int i← 0; # iteration times for ITMC
2: Double Toutlier; # distance threshold to segment the outliers
3: Double εitmc; # threshold for ITMC
4: Double Rcircle; # radius of circle template
5: Double CE0 ← (x∗0,y∗0); # initialize as center of point set P as {pi}

6: # if error is larger than the threshold
7: while ε > εitmc do
8: i++; # increase the iteration times
9: MLE (P,CEi−1,Rcircle); # MLE circle matching

10: CE∗i ← (x∗i ,y
∗
i ) # get matched point’s center

11: for j := 0 to P.pointsize step 1 do
12: # each point’s distance to the circle
13: Dj ← abs(‖Pj −CEi‖− Rcircle);
14: if Dj > Toutlier then
15: push Pj into O; # push into the outliers
16: end if
17: end for
18: Pm ← all points of O; # reduce the outliers to update the input data
19: P ← P− Pm;
20: ε← ‖CEi −CEi−1‖; # displacement of estimated circle position
21: end while

22: NNC(O,CEi) + cluster{P}; # segment and cluster based on NNC
23: C← {Ci}
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cluster 2

(mm)
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cluster2 cluster 1
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a) segment and cluster the hip part

b) segment and cluster the torso part

Figure 6.6: Clustering based on ITMC. The final matched circle is red. A black arrow shows
the trace of the center of the matched circle during the iterative steps. (a) use 4

times iteration to get the center of the template of the human hip circle, meanwhile
segment the forearm clusters; (b) iterate 3 times to get the center of the template of
the human torso circle, meanwhile segment the upper arm clusters.
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torso point

hip point

right hipleft hip

left knee right knee

left shoulder right shoulder

left elbow right elbow

left wrist right wrist

Figure 6.7: Articulated human model for data association.

Table 6.1: Parameters of human model.

Link Start Joint End Joint Length(mm) DOFs

1 hip point torso point 490 3

2 torso point left shoulder 210 1

3 torso point right shoulder 210 1

4 left shoulder left elbow 290 3

5 right shoulder right elbow 290 3

6 left elbow left wrist 320 3

7 right elbow right wrist 320 3

8 hip point left hip 200 1

9 hip point right hip 200 1

10 left hip left knee 500 3

11 right hip right knee 500 3

it can achieve these clusters for legs feature extraction successfully. Subsequently, all

human body features are extracted in real time based on data of the three LRFs.

6.4 human modeling and data association

6.4.1 Articulated Human Model Building

The above extracted features F(c, θ, l) represent the 2D data at different heights. As

the three layered lasers have a fixed height above the ground plane, the system is able
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Hip point Torso point

Left hip Right hip

Left knee Right knee

Left shoulder Right shoulder

Left elbow Right elbow

Left wrist Right wrist

Figure 6.8: Hierarchical computation for each joint

to estimate a particular person. To get 3D human joints data, the features need to be

associated with the pre-defined articulated human model (illustrated in Figure 6.7).

This model has 11 fixed length links with 25 degrees of freedom. Details of the pre-

defined human model are shown in Table 6.1. These coefficients and the radii of torso

and hip templates mentioned in Section 6.6 are measured from the people proposed

as motion estimation targets.

6.4.2 Contour Feature Association with Human Model

The human contour features ftorso and fhip are obtained using the proposed ITMC

approach. All other features are based on the position relationship between layers,

in particular, right and left arms are classified depending on the positions of cluster

centers. Classified features can then be associated with the corresponding parts of the

human body such as:

Fbody = {ftorso, fhip, fl−upperarm, fr−upperarm,

fl−forearm, fr−forearm, fl−thigh, fr−thigh}.
(6.8)

Each feature just represents the horizontal sectional center position of the associated

human body part. Note that the position data of Fbody is a 2D position with fixed

height. Consequently, the next step is to get each related human joint position in 3D

space based on these extracted features and retrieve the human body motion in real

time.

In order to simplify the association of features, the height of hip in terms of fl−thigh
and fr−thigh is fixed, which is a reasonable approximation as long as the human is
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standing or walking only [55]. Furthermore the links 2, 3, 8 and 9 are approximated to

have only one DOF, as we ignore the vertical rotation of the torso and hip. In addition,

the foot joints are also neglected because of the lack of related height information. With

these assumptions, all associated human body part features Fbody are extended into

related human joint data which are hierarchically computated as shown in Figure 6.8:

1. Based on the torso and hip features, get the hip point with the fixed height;

2. Find the torso joint based on the fixed length of torso and direction with torso

and hip features;

3. Compute the rest of the joints hierarchically.

Finally, all predefined human joint positions in 3D space can be estimated as Pjoints.

The position data are then filtered using a Kalman filter to get a smoother result.

6.5 experimental results

The experimental setup consists of 3 SICK LMS-200 laser range scanners from SICK

AG1. The set of LRFs at each layer can scan with distance resolution of 10 mm and

angular resolution of 0.5 degree, angular range of 180 degree, and data transmission

rate at 500 kBps using the RS-422 interface. In the experiments, the three LRFs have

been fixed to a height of 590 mm, 950 mm and 1255 mm with respect to the ground

plane. The synchronization of data from the LRFs is not a problem due to the relatively

fast scanning rate while careful mounting also alleviates the need for additional cali-

bration. We use the Sick LIDAR Toolbox and the experiments to process for real-time

humane body motion estimation utilizes Matlab on a Core Duo PC (Linux kernel x86).

The entire time of processing is below 40 ms, which is fast enough to estimate human

motion at real time. In our experiments, multiple types of human motion are consid-

ered which include several typical behavior patterns, such as walking, running, arm

waving and moving sideways while standing in front of the multi-layer lasers as our

sensor system. Currently, our proposed system has been tested on the single specific

human pose estimation. It is due to the particular human model and the limitation of

the source data from lasers with the fixed heights.

In order to effectively evaluate our proposed system, a Kinect is utilized as a refer-

ence to compare based on the estimation results of "human skeleton tracking" interface

in the Kinect middleware. Figure 6.9 shows the experimental results of our proposed

3-layer LRF estimation system as well as the estimation results of tracking system pro-

vided by Kinect. These two systems are tested at the same environment and at the

1 http://www.sick.com

http://www.sick.com
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Figure 6.10: Different effective areas of the Kinect sensor and the laser scanners.
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Figure 6.11: Measured and estimated pose of right arm during dynamic motion-back-forth
swinging of the arm. Pose is described with wrist position (x,y, z) , the angle β
and the angle γ. Estimated data using laser scans is shown with full blue line and
reference data using PTI is shown with red dashed line.

same time. The results of comparison show that, our proposed system achieves accu-

rate full body motion, while in the effective range of the Kinect. The system performs

very close to the results obtained by the interface of Kinect. However. note that Kinect

sensor’s angular range is only 60 degrees, while the 3-layer LRF features a full 180

degrees. As shown in Figure 6.10, our estimation system still can perform quite well

in the location with larger angle, while the Kinect sensor does not provide any results

with its limitation of working space.
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Table 6.2: Root mean square error for the right arm pose

position error (mm) angle error(degree)

x y z β γ

21.63 22.79 33.43 6.12 11.84

Furthermore, the processing speed of our proposed system is 25 Hz. And it is supe-

rior to Kinect’s 13 Hz due to its high computational cost. Moreover, the Kinect sensor

does not work in outside environment which constrains robot’s working area. That is

also the benefits that our sensor system is suitable and reliable for the applications of

autonomous robot which is working outside, such as our ACE city explorer robot. All

in all, despite of the fewer data information of LRF, a relatively good estimation result

can be obtained within the area of half circle (180 degrees) with 4 m radius. For the

data accuracy evaluation, a Phoenix Technologies Incorporated VZ-4000 3D position

motion sensing system (PTI)2 is used to capture the joint’s position as ground truth.

Because of the limitation of the working area of PTI tracking system, only the right

arm’s motion are analyzed here, which is represented by the right wrist’s 3D posi-

tion pr−wrist = (x,y, z), the angle β between the torso and upper arm and the angle

γ between upper arm and forearm. This data can comprehensively describe the real

pose of human’s right arm and represents the motion of relevant human joints. The

estimation is evaluated during human’s movements. The accuracies of position and

angle are shown in Figure 6.11. More precisely, Table 6.2 illustrates the evaluation of

root mean square deviation (RMSD) during the experiment. From these evaluations,

the estimated arm pose is very accurate compared with the measured tracking result

from PTI system as ground truth. Nevertheless, the errors of z direction and in the an-

gles of arm are relatively larger, which is mainly ascribed to the redundancy and the

imprecise parameters of the pre-defined articulated human model. From Figure 6.11,

the incidental jumps of the estimated tracking result are due to the result of occasional

mismatching of human contour features from the scanning.

6.6 summary

In this chapter, we propose a real-time human body motion estimation system based

on 3-layer laser range finder scans. This system is singularly appropriate to autonomous

robots which explore the outdoor environment. The estimated human body motion

provides the potentials for human robot interactions. The three layered lasers provide

the 2D points at different hight respect to the ground plane. This data represents the

2 http://www.ptiphoenix.com/

http://www.ptiphoenix.com/
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human contour information and is extracted from the learned background environ-

ment at first. Afterwards, we used iterative template matching for segmentation and

clustering method (ITMC) to get robust extraction of body parts. This novel method

can solve the problems of segmentation and clustering in some cased during the move-

ments of human. From experimental results, our approach can simultaneously retrieve

the human motion and the accurate 3D position of human joints in real time.



7
C O N C L U S I O N S A N D F U T U R E W O R K

In this final chapter, we will summarize the main contributions of this thesis and

thereby concluded these works. According to these observations, possible improve-

ments and some interesting directions for future research are pointed out.

7.1 conclusions

This thesis has contributions on the scene understanding and recognition from visual

data structure properties in dynamic environment. We analyze and extract the effec-

tive and comprehensive information from the analysis at different levels of visual data

structure. Based on these, we are able to to achieve the understanding and recogni-

tion results, such as rigid or deformable object identification, pose localization and

motion observations et al.. These visual data structures are constructed hierarchically

at different-levels as "iconic images", "segmented images", "geometric representations"

and "relational models". The raw visual data of the perception system is epresented as

RGB images, depth images and multi-layer 2D points from multiple types of sensors.

That gives huge potential possibilities for different applications in the research and in-

dustrial domains. We also applied various contributions to related computer vision

and robotics applications of texture/textureless rigid object recognition, dense/de-

formable motion extraction for dynamic scenes, articulated object recognition and ma-

nipulation, and real-time human body motion estimation from multi-layer laser scans.

We will present the detailed contributions and conclusions of these works separately

as follows:

3D Object Recognition and Pose Estimation: We proposed a novel global object

descriptor, so called Viewpoint oriented Color-Shape Histogram, which combines 3D

object’s color and shape features. The descriptor is efficiently used in a real-time tex-

tured/textureless object recognition and 6D pose estimation system, while also applied

for object localization in a coherent semantic map. We initially build the object model

by registering multi-view color point clouds, and generate partial-view object color

point clouds from different synthetic viewpoints. Thereafter, the extracted color and

shape features are correlated as a VCSH to represent the corresponding object patch

data. For object recognition, the object can be identified and its initial pose is estimated

through matching within our self created database. Afterwards the object pose can be

optimized by utilizing an iterative closest point strategy. Therefore, all the objects in

99
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the observed area are finally recognized and their corresponding accurate poses are

retrieved. We validate our approach through a large number of experiments, including

daily complex scenarios and indoor semantic mapping. Our method is proven to be ef-

ficient by guaranteeing high object recognition rate, accurate pose estimation result as

well as exhibiting the capability of dealing with environmental illumination changes.

Dense and Deformable Motion Estimation: We presented a novel hierarchical MRFs

optimization method for dense and deformable motion extraction in dynamic RGB-D

scenes. In particular, this hierarchical MRFs structure consists of two layers, respec-

tively named the segmentation and correspondence layer. Firstly, in the segmentation

layer, the dynamic foreground data is successfully segmented through a pixel-level

MRF. Secondly, in the correspondence layer, the extracted foreground data is struc-

tured as a 3D point-level MRF. A new surface descriptor named the "deformable color

and shape histogram" is proposed. It is combined with photometric and geometric fea-

tures to represent a deformable surface. The foreground data correspondences across

consecutive frames are extracted next. Finally, the dynamic scene motion is retrieved

correctly from these correspondences. The discrete optimization scheme is utilized

for these binary classification and multi-labeling problems. Moreover, a dataset of dy-

namic RGB-D scenes is built, which involves different motion patterns and surface

properties of dynamic foreground. The effectiveness and efficiency of our proposed

approach for high accurate foreground segmentation and motion extraction is vali-

dated in experiments.

Articulated Object Recognition and Manipulation: We proposed an approach to

model articulated objects by integrating visual and manipulation information. Line-

shaped skeletonization based on depth image data is realized to extract the skeleton

of an object given different configurations. Using observations of the extracted object’s

skeleton topology, the kinematic joints of the object are characterized and localized.

Robot end effector’s force data in the form of task-space force required to manipulate

the object, are collected by kinesthetic teaching and learned by Gaussian Mixture Re-

gression in object joint state space. Following modeling, manipulation of the object is

realized by first identifying the current object joint states from visual observations and

second generalizing learned force to accomplish the new task.

Real-Time Human Motion Estimation: We proposed a method for real-time 3D hu-

man body motion estimation based on three-layer laser scans. All the useful scanned

points, presenting the human body contour information, are subtracted from the learned

background of the environment. For human contour feature extraction, in order to

avoid the situations of unsuccessful segmentation, we propose a novel iterative tem-

plate matching algorithm for clustering, where the templates of torso and hip sections

are modeled with different radii. Robust distinct human motion features are extracted

using maximum likelihood estimation and nearest neighbor clustering method. Sub-
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sequently, the positions of human joints in 3D space are retrieved by associating the

extracted features with a pre-defined articulated model of human body. Finally we

demonstrate our proposed methods through experiments, which show accurate hu-

man body motion tracking in real time.

7.2 future works

Although the results presented in this thesis are quite promising, there still exists

several open research challenges that remain for future investigation.

From research direction on the analysis of the visual data structure representation,

currently most of the focus is on image’s inlier neighborhood relationship in both pho-

tometric and geometrical aspects. Hence, the resolution and quality of the sampled

points have the largest influence on the feature point extraction and descriptor genera-

tion, so that further analysis of the properties of such methods are warranted. One of

further roads would be inspired by human perception and cognition to deal with the

noisy data, low resolution input and special cases involving missing data. That would

be interesting to utilize the data structure analysis directly for the raw sensor data and

reconstruct the data afterwards. On the other hand, from our understanding, it would

be an interest research direction to put more weights on the dynamic structural com-

ponents into the visual data analysis for scene understanding and recognition, such

as object physical model and motion constrains. That has the potential for improved

spatial and temporal visual feature extraction for detection, recognition and tracking.

We have contributed in multiple vision problems which appear in our daily life. For

future experimental-oriented applications, there are also a lot of potential for adapting

our work to robotics and industrial domains.

Regarding the topic on rigid recognition and pose estimation, it would be interesting

to extend the work onto the part of system optimization and model building of wider-

variety of objects. We have currently collected a variety of object model dataset from

our modeling platform and also third-party modeling approach, such as CAD mod-

eling. We would like to apply our system into the industrial cooperations. Especially

the automatic production line’s quality testing and pickup application for industrial

robotic arms. Our system can recognize the object within all possible 6D poses, which

also can be retrieved for next-step applications. In the domain of robotics research, we

already established the successful integration in robotic navigation and object explo-

ration applications in large-scale semantic maps. It combined the general semantics

and also the detailed object informations for the object-oriented scenarios. That would

be also an interesting direction for robotic grasping and manipulation. Since we al-

ready have the 3D object model, it is possible to generate the best grasping points for
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a specific object while also considering manipulation skills. To reach this goal, a prob-

abilistic map needs to be derived from 3D space analysis from the estimated objects

and complex background environment. Additionally, we would like to mention that it

is planned to release our object model dataset and source code to the ROS community.

In the application of dynamic motion extraction, we focused on dynamic motion

extraction only from the visual data structure with spatial and temporal relationships.

The GPU-based optimization is in plan to speed up the correspondence process for

real-time scenarios and for the construction of datasets consisting of a wider-variety

of dynamic scene sequences. In the near future, we plan to release this dataset into

public with ground truth information on the motion. Our system has no motion con-

strains or any deformation assumptions that limit its application to specific computer

vision scenarios. With the solution on this general problem, there exist a lot of future

extensions that would enable a multitude of computer vision and robotics applications.

For instance, one direction is the rigid part segmentation, with the extracted motion

field of the entire dynamic scene sequence. It would be possible to segment the rela-

tive rigid parts from the motion properties. Another application would be articulated

object modeling from their motion field. It provide the potential to classify different

joint types, to estimate the object joint space working constraints and to map the joint

information into articulated objects. Moreover, we are testing to apply our hierarchi-

cal MRF into the medical image registration and disease diagnose from the estimated

motion field.

For the articulated object recognition and manipulation applications, we currently

focus only on single-joint articulated object currently. To the best of our knowledge, we

are the first to propose an articulated object modeling method that combines visual

and manipulation observations. This new method can be applied into different robotic

applications. Future work will focus on modeling of a wide-variety of objects which

also involve more than one joint. There exist several potential extension of our method.

In particular, our object skeletonization method can be employed as part of a robot arm

configuration and calibration scheme. Because of the limitation that we only get the

arc-shaped object surface information from single Kinect mounted on autonomous

robot. As the initial step we are implementing the object shape completion process in

order to extract an accurate skeleton of the articulated object for best representing and

recognizing the object. Moreover, another direction is to use the extracted motion field

based on our dynamic dense/deformable scene motion estimation system, which can

be directly adapted for the articulated object modeling.

Based on our contributions in real-time motion extraction, we can apply this method

for human robot interaction applications. Currently, we have tested the single person

motion estimation. The data fusion and association with human model are developed

to retrieve the real-time motion, based on limited multi-layer 2D scanned points. Fu-
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ture work will focus on the multiple person motion estimation with different artic-

ulated human models. Because of the limitation of current sensor technology, some

sensors like Kinect and Time-of-Flight camera would not be considered to utilize for

autonomous robots that is working outside. However, laser range finder as a suitable

sensor, it only provides limited information that cannot represent the real 3D environ-

ment correctly. Hence, it is considered to develop our system to initially fit a different

person using our automatic human model building implementation. Moreover, it is

possible to extend our work into the pose classification based on feature learning and

recognition methods. To extract more detailed human data, it is imaginable to experi-

ment with 3D lidar scanners, such the velodyne lidar scanner used in the Google Car

project1. We are considering to use a panning or tilting laser to get the 3D environment

in front of the robot. Nevertheless, it leads relative lower frequency, which depends on

the speed of actuator. To deal with that, it is possible to extract the useful information

as interests utilizing optimization schemes, such as attention control in active vision

applications.

To conclude, this thesis has presented our research on dynamic scene understand-

ing from properties of visual data structures. Our method is contributed and vali-

dated from the innovations which are approached to solve different visual analysis

and robotic vision problems. We believe that the achievements of this research has

huge possibilities to be extended in large variety of application in near future. Ad-

ditionally, we hope that our work increase the dependability, flexibility, and ease of

usage of visual data structure analysis for vision and robotics, thereby contributes to

development of further research work and industrial applications.

1 thttps://plus.google.com/+GoogleSelfDrivingCars/videos

thttps://plus.google.com/+GoogleSelfDrivingCars/videos
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Figure 1.1 Perception system for scene understanding and recognition, which

contains sensor system, analysis for visual structure properties
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