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Abstract

The rupture of an abdominal aortic aneurysm (AAA) is the 13th common cause of death in the
western world. Approximately 90% of the patients with a ruptured aneurysm die as a conse-
quence of rupture. The prophylactic surgery of an AAA is not without potential risk. Thus, the
surgeon has to balance the risk of intervention against the risk of rupture. To assist the decision-
making, AAAs have been studied with the help of Finite Element Methods by assessing stresses
and strains acting in the AAA wall. These quantities reflect the current state of the aneurysm, but
give no information about its further development. To describe the growth of biological tissues,
computational growth and remodeling models have also been developed, but they have never
been applied to predict growth of a patient-specific aneurysms. The aim of this work is to design
a methodology that allows to predict the development of an aneurysm. To the best of the author’s
knowledge, this is the first method that calibrates the computational growth model not only to
accurately reproduce the given growth process but also to predict the future development of a
patient-specific aneurysm.
A full three-dimensional computational growth model is developed in order to perform an anal-
ysis of a patient-specific geometry. The derived model is utilized to model the formation of an
aneurysm and the development of an existing AAA. Normally, the healthy artery is the starting
point for growth and remodeling simulations like the formation of an aneurysm. However, the
shape of the initial healthy artery is unknown for patient-specific aneurysms. Hence, the compu-
tational growth model has to be adapted, when it is started from a patient-specific aneurysmatic
aorta. For this purpose, a novel technique to approximate the deformation preceding the initial
state is defined.
To characterize the initial state, a reference simulation is computed that reflects the formation
of an aneurysm originating from a idealized healthy artery with a local loss of elastin. After a
pronounced aneurysm arose, the aneurysmatic geometry is taken as a starting point for a new
simulation, where the past deformation is neglected to mimic the patient-specific case. By com-
paring the results of the reference simulation with the results of this new simulation after another
year of growth, the influence of the missing information about the healthy state on the future
development of the aneurysm can be characterized.
In order to reproduce the prescribed growth process defined by the reference simulation, the
computational growth model has to be calibrated. The growth parameters are computed by solv-
ing an optimization problem that aims to minimize the difference in the displacements after one
year of growth. To obtain spatially varying parameters, a novel idea of parameterization of the
design variables is introduced. The resulting optimization algorithm is successfully applied to
reproduce the reference simulation. The final parameters result in a prediction that corresponds
to the growth of the reference simulation. Hence, the proposed framework is validated.
Finally, the proposed methodology is applied to a patient-specific example. Two consecutive
computed tomography scans of a 62 years old male patient that are recorded in a time span
of two years are transformed into a displacement field that describes the deformation resulting
from growth. The computational growth model is calibrated with the help of the optimization
algorithm to reproduce these measured displacements. The measured displacements are only
partially reproduced. The calibrated growth model is utilized to gain insights into the further
development of the patient-specific aneurysm and to characterize the predicted state. Due to
the latest development of the proposed methodology, a few challenges arising from the patient-
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specific application are yet to be resolved, but valuable insights are gained that will be required
for future improvements, which are also proposed.
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Zusammenfassung

Die Ruptur Abdominaler Aortenaneurysmen (AAA) ist die dreizehnt häufigste Todesursache in
der westlichen Welt. In etwa 90% der Patienten mit einem gerissenen Aneurysma sterben in
Folge der Ruptur. Die prophylaktische Operation eines AAAs birgt potentielle Risiken, wes-
halb der Chirurg die Risiken eines Eingriffs gegen die Risiken einer Ruptur abwägen muss.
Um die Entscheidungsfindung zu unterstützen, wurden mit Hilfe der Finite-Element-Methode
die Spannungen und Dehnungen, die in der Wand eines AAAs wirken, berechnet. Diese Größen
spiegeln den momentanen Zustand des Aneurysmas wider, geben aber keine Auskunft über seine
weitere Entwicklung. Um das Wachstum von biologischem Gewebe zu beschreiben, wurden nu-
merische Wachstums- und Remodellingmodelle entwickelt, die allerdings nie zur Vorhersage
vom Wachstum eines patienten-spezifischen Aneurysmas verwendet wurden. Das Ziel dieser Ar-
beit ist die Entwicklung einer Methodik, die es erlaubt, die Weiterentwicklung eines Aneurys-
mas vorherzusagen. Nach bestem Wissen des Autors ist dies die erste Methode, die das nu-
merische Wachstumsmodell kalibriert, nicht nur um einen vorgegebenen Wachstumsprozess
akkurat nachzubilden, sondern auch um das zukünftige Wachstum eines patienten-spezifischen
Aneurysmas vorherzusagen.
Ein vollständig dreidimensionales numerisches Wachstumsmodell wird entwickelt, um eine pa-
tienten-spezifische Geometrie zu untersuchen. Das entwickelte Modell wird verwendet, um die
Entstehung eines Aneurysmas und die Entwicklung eines bereits bestehenden AAAs zu mo-
dellieren. Normalerweise ist die gesunde Arterie der Startpunkt für Wachstums- und Remodel-
lingsimulationen wie die Entstehung eines Aneurysmas. Allerdings ist die Form der gesunden
Arterie für patienten-spezifische Aneurysmen nicht bekannt. Deswegen muss das numerische
Wachstumsmodell angepasst werden, wenn die Simulation von einer patienten-spezifischen an-
eurysmatischen Aorta gestartet wird. Zu diesem Zweck wird eine neue Technik entwickelt, um
die Deformation, die dem initialen Zustand vorausgeht, zu approximieren.
Eine Referenzsimulation, die die Entstehung eines Aneurysmas ausgehend von einer idealisier-
ten gesunden Arterie mit einem lokalen Verlust von Elastin widerspiegelt, wird berechnet, um
den initialen Zustand zu charakterisieren. Wenn ein ausgeprägtes Aneurysma entstanden ist, wird
die aneurysmatische Geometrie als Startpunkt für eine neue Simulation verwendet. In der neuen
Simulation wird die vergangene Deformation vernachlässigt, um den patienten-spezifischen Fall
nachzubilden. Indem die Ergebnisse der Referenzsimulation mit den Ergebnissen dieser neuen
Simulation nach einem Jahr Wachstum verglichen werden, kann der Einfluss der fehlenden Infor-
mation über den gesunden Zustand auf die weitere Entwicklung des Aneurysmas charakterisiert
werden.
Um den durch die Referenzsimulation vorgegebenen Wachstumsprozess zu reproduzieren, muss
das numerische Wachstumsmodell kalibriert werden. Die Wachstumsparameter werden berech-
net indem ein Optimierungsproblem, das die Differenz der Verschiebungen nach einem Jahr
Wachstum minimiert, gelöst wird. Um räumlich variierende Parameter darstellen zu können,
wird eine neue Idee der Parametrisierung der Optimierungsparameter eingeführt. Der resul-
tierende Optimierungsalgorithmus wird erfolgreich angewandt, um die Referenzsimulation zu
reproduzieren. Die bestimmten Parameter resultieren in eine Vorhersage die mit dem Wachs-
tum der Referenzsimulation übereinstimmen. Mit dieser Übereinstimmung ist die vorgestellte
Methodik validiert.
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Abschließend wird die vorgestellte Methodik auf ein patienten-spezifisches Beispiel angewandt.
Zwei aufeinanderfolgende Computertomographieaufnahmen eines 62 Jahre alten, männlichen
Patienten, die in einem Zeitraum von zwei Jahren aufgenommen wurden, werden in ein Ver-
schiebungsfeld transformiert, das die durch das Wachstum entstehende Deformation beschreibt.
Das numerische Wachstumsmodell wird mit Hilfe des Optimierungsalgorithmuses kalibriert,
um diese gemessenen Verschiebungen zu reproduzieren. Die gemessene Deformation kann nur
teilweise nachgebildet werden. Das kalibrierte Wachstumsmodell wird verwendet, um Erkennt-
nisse über die weitere Entwicklung des Aneurysmas zu erhalten und um den vorhergesagten
Zustand zu charakterisieren. Da die vorgestellte Methodik dem neuesten Entwicklungsstand
entspricht, müssen noch einzelne Herausforderungen, die durch die patienten-spezifische An-
wendung entstehen, gelöst werden. Es werden wertvolle Erkenntnisse erlangt, die für zukünftige
Verbesserungen, welche ebenfalls vorgeschlagen werden, notwendig sind.
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lenten Rahmenbedingungen, die man hier am Lehrstuhl vorfindet. Seine Begeisterung für die
Forschung hat mich sehr geprägt und stets motiviert.
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Bei den weiteren Mitgliedern meiner Prüfungskommission, Herrn PD Dr. Christian Reeps und
Herrn Prof. Dr. Phaedon-Stelios Koutsourelakis, bedanke ich mich für die aufgebrachte Zeit und
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sphäre und die vielen spannenden, fachlichen (und nicht-fachlichen) Diskussionen haben für
mich die Promotionszeit zu einem unvergesslichen Lebensabschnitt gemacht. Besonders die un-
eingeschränkte Hilfsbereitschaft, die ich stets erfahren habe, war sehr wichtig für mich. Vor
allem Jonas Biehler, Dr. Caroline Danowski, Dr. Florian Henke, Sebastian Kehl, Dr. Ursula
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1 Introduction

1.1 Motivation

Cardiovascular diseases are a leading cause of death in industrial countries, e.g. 45% of men in
the age of 65-74 years die because of cardiovascular incidents (Scott et al. [85]). The rupture of
an abdominal aortic aneurysm (AAA) is one of these causes and is fatal in most cases. The elec-
tive repair of an AAA is not without potential risk. Hence, it is common practice to balance risk
of rupture against risk of intervention. The decision-making is often based on empirical statistics
that do not always account for the risks and needs of the individual patients. Consequently, a well
established criterion to indicate the necessity of a surgery is e.g. the maximal diameter criterion
(Ockert et al. [75]).
In recent years, increasing efforts have been made in interdisciplinary studies of medical and
engineering scientists. Computational finite element analyses (FEA) have been utilized to asses
the stresses and strains acting in the AAA wall (Reeps et al. [80]). The models have been refined
and include several patient-specific aspects like calcifications, intraluminal thrombus, prestress,
and patient-specific material properties (Gasser et al. [26], Gee et al. [27], Maier [64], Maier
et al. [65], Reeps et al. [81]). As a promising measure to help the decision-making, the rupture
potential index has been proposed (Vande Geest et al. [106], Maier et al. [66]).
Since all previous models reflect the current state of the aneurysm, they hold no information
about how the aneurysm is going to develop in the future. Even if a second computed tomography
(CT) scan exists that was recorded at a later point in time, it is difficult to make a substantiated
prediction of the development of the aneurysm, see Figure 1.1. However, in recent studies (Baek
et al. [9], Martufi et al. [69]) growth of several AAAs was monitored with follow up scans
and related to e.g. the thickness of the intraluminal thrombus (ILT). To model one aspect of
the transient behavior of an aneurysm, computational growth and remodeling models can be
utilized (Humphrey and Taylor [48]). These models are capable to give further insights into the
development of an aneurysm. Therefore, they have to be carefully calibrated and validated. To

Figure 1.1: Two states of a growing aneurysm are known. How does it develop in the future?
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1 Introduction

the best of the author’s knowledge, there is no established method to predict growth of an existing
AAA.
The aim of the presented work is to develop a methodology that allows to predict the develop-
ment of an existing aneurysm. Therefore, the Finite Element Method (FEM) is combined with a
growth and remodeling model that is calibrated to a given growth process. Moreover, a procedure
to validate the proposed framework is presented.

1.2 Growth and remodeling

Since growth and remodeling is a fundamental part of this work, a short introduction into this
topic is given in this section. First important terms are presented. In the second part, an overview
and a literature review of different computational growth models are given.

1.2.1 Terminology and underlying processes

Through the course of this work terms like growth and remodeling appear. Growth and remodel-
ing are often related and cannot be separated. Nevertheless, definitions of these terms are given
and underlying processes are presented. Afterwards, a brief introduction to the pathogenesis of
AAAs is given.

Growth
Growth is defined as a change of mass and volume, respectively. The change can be positive
or negative (atrophy). One distinguishes between two forms of growth: volume (interstitial) and
surface (appositional) growth, as described in Taber [92]. In Figure 1.2 one can see sketches of
the two forms of growth. During volume growth, the newly deposited mass is created within the
original volume. That means within every infinitesimal volume of the body, new and old mass
exists. The new mass can be created with cell division, cell enlargement or creation of additional
extracellular matrix. Examples of volume growth are swelling and growth of arterial tissue. In
surface growth, the new material is deposited at external or internal surfaces of the body, meaning
new and old masses are separated. Surface growth takes place during plating, wear and growth of
horns or shells. For more details regarding surface growth the reader is referred to Skalak et al.
[89].

(a) Volume growth (b) Surface growth

Figure 1.2: Different types of growth, the blue color indicates newly deposited material
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There are different ways how growth can occur (Himpel et al. [42]). Either the density is con-
stant or the volume is constant. In the first case, the volume has to adapt to the mass change, in
the second case, the density has to adapt to the mass change. A mixture of both variants is also
possible. Within this work, only density preserving volume growth is further investigated.

Remodeling
Remodeling describes the change in material properties. This change can stem from a change in
the microstructure of the material, like the reorientation of fiber directions or like the change of
the internal structure of bones. Within this work, volume growth combined with remodeling will
be further investigated.

Pathogenesis of AAAs
It is widely accepted that irreversible enzymatic degradation of structural matrix proteins plays a
significant role in the development of AAAs. Thereby, matrix metalloproteinases (MMPs) have
an important contribution (Choke et al. [17], Kadoglou and Liapis [49], Lehoux et al. [60], Longo
et al. [62], Thompson and Parks [97]). A single MMP is capable to induce the degradation of few
proteins, but all MMPs together are feasible to degrade the whole extracellular matrix (ECM)
(Chase and Newby [16]). Especially MMP 2 and 9 are reported as elevated in AAA tissue. They
are two of the four MMPs that are known to degrade elastin (Longo et al. [62]).
Normally, the synthesis of elastin and collagen is balanced by the presence of endogenous in-
hibitors. The inhibitors of MMPs, like tissue inhibitors of metalloproteinases (TIMPs), nitric ox-
ide (NO) and transforming growth factor-β (TGF-β), play a key role in this equilibrium. It has
been reported that the activity level of both, MMPs and TIMPs, is increased in AAA (Kadoglou
and Liapis [49], Thompson and Parks [97]). Other studies report that mechanical impulses are
able to upregulate the enzymatic activity (Humphrey [45], Newby [74]). Summarizing, the un-
derlying processes are a complex interplay between MMPs and their inhibitors and probably
other proteinases. Most of these findings have been reported for already existing AAA, the un-
derlying process of the initiation of the formation of an aneurysm is still part of current research.

1.2.2 Fundamental computational approaches
A classical treatment of growth is the work of D’Arcy Thompson [96]. He described the geomet-
ric features of growth. Other early attempts to model growth mathematically are summarized in
the review of Cowin [18]. Later Skalak et al. [87] formalized the general description of volumet-
ric and surface growth. In his textbook on biomechanics, Fung [23] presented a stress-growth law
that includes several equilibrium states of stress. On the basis of Skalak’s work, Rodriguez et al.
[82] introduced a continuum theory that accounts for the coupling of stress and growth. They
proposed a multiplicative split of the deformation gradient. Growth is transformed into a growth
deformation gradient of infinitesimal tissue elements. An elastic deformation gradient ensures
compatibility of the whole deformation and leads to residual stresses. This basic concept was
applied in several subsequent studies. It is capable to model growth in complex geometries and
describes isotropic growth in three dimensions. It can be easily incorporated in an existing finite
element code, since it only modifies the relation between stress and strain. Taber and Eggers
[94] modeled growth of a two layered artery, Taber [93] additionally included wall shear stress.
In Taber and Humphrey [95] the genesis of residual stress in arteries was further investigated.
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In Göktepe et al. [30, 31] the model was applied to cardiac growth. Adapted balance equations
were investigated in Lubarda and Hoger [63]. They also extended the isotropic growth model
to orthotropic and transversal isotropic growth. Ambrosi and Mollica [4] combined the split of
the deformation gradient with availability of nutrients that is described with a reaction-diffusion
equation to model growth of a tumor. In Ambrosi and Guillou [2] the nutrients were replaced by
a biochemical energy concentration. Himpel et al. [42] presented a numerical implementation
of the multiplicative split. The basic concept was also used in the incremental growth model of
Goriely and Ben Amar [32].
The previous growth model is a single phase model. Since the true tissue consists of several
different constituents, mixture models were developed. One of the first mixture growth models
was presented in Humphrey and Rajagopal [46, 47], where each constituent grows and remodels
individually. Constituents are gradually degraded and simultaneously new tissue is synthesized.
The amount of created mass is dependent on mechanical stimuli. The model was developed for
axisymmetric membranes and called constraint mixture model. There is a wide range of litera-
ture about applications and further developments of this model, e.g. growth of saccular (Baek
et al. [6], Kroon and Holzapfel [54]) and fusiform aneurysms (Baek et al. [7]). In Valentı́n et al.
[103] the model was extended with active smooth muscle cells. Different aspects and hypothe-
ses were investigated in Valentı́n and Humphrey [100, 101, 102] and more recently in Valentı́n
and Holzapfel [99]. In Kroon and Holzapfel [55] the influence of more then four collagen fiber
families was investigated.
In Figueroa et al. [21] growth of AAA was combined with fluid-structure interaction. Kroon and
Holzapfel [56], Cardamone et al. [14], and Sheidaei et al. [86] also included dynamic effects.
Zeinali-Davarani et al. [113] investigated the formation of aneurysms after a loss of elastin.
Their model is still a membrane model, but they are not restricted to axisymmetry. Karšaj et al.
[50] extended the model to three dimensions, but they were restricted to axisymmetric cylinders,
since they computed a semi-analytic solution. Valentı́n et al. [105] recently presented a full three
dimensional model. They compared their results to a two dimensional semi-analytical simula-
tion from Valentı́n et al. [104] and yielded a good agreement. Kwon et al. [57] investigated the
adaptation of the tissue after endovascular repair of an AAA. Zeinali-Davarani et al. [112] and
Wilson et al. [110] determined material parameters for the healthy human aorta and investigated
their influence on developing AAAs. Thorne et al. [98] and Hayenga et al. [38] coupled agent
based models with the biomechanical growth model. Alford et al. [1] proposed a combination of
the split of the deformation gradient and evolving natural configurations to be able to simulate
thick walled vessels.
The methods of Gleason et al. [29], Watton et al. [109] and Martufi and Gasser [68] are also
based on collagen turnover, but their implementation is different to the constraint mixture model.
For example, the model of Watton et al. [109] is based on the variation of the stress free state
of collagen fibers, which is modeled with the help of a recruitment stretch. In Watton and Hill
[108], the influence of different parameters of this model was investigated. Another possibility
to describe multi-phase growth was presented in Garikipati et al. [25]. In contrast to the other
approaches, a fluid phase was included in the growth process. They defined a multiplicative split
of the deformation gradient for several phases. The interaction between the different phases was
modeled with mass transport. The model was further refined in Narayanan et al. [73].
For a detailed discussion of the biomechanics of growth and the related topics of remodeling
and morphology, the reader is referred to the early review of Taber [92]. Garikipati [24] gave a
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brief review of the kinematics of biological growth. A recent summary of growth models and
perspectives in this field can be found in Ambrosi et al. [3]. A review of mixture models was
presented in Ateshian and Humphrey [5]. There exists a wide variety of growth models as shown
in the previous paragraphs. But the more complex models are seldom applied to complicated
geometries, not to even speak of patient-specific geometries.

1.3 Research approach

The computational models and methodologies that are developed within this work aim at bridg-
ing the gap towards the prediction of growth of a patient-specific aneurysm. To achieve this aim,
several components have to be combined. The basic concept of how the major components are
interrelated to each other, is sketched in Figure 1.3. A computational growth and remodeling
approach is calibrated with the help of an inverse analysis to reproduce growth, which is de-
fined by the data from two subsequent CT scans of one patient. The resulting calibrated growth
and remodeling model can be utilized to predict the future growth of the aneurysm. Since the
predicted state is not known, the proposed procedure has to be validated. In the following, the
requirements for each component are investigated in more detail.

0 t1 t2 t3
time

known known

predictiongrowth & remodeling

parameters

inverse analysis

second CT scanfirst CT scan

unknownunknown

pre-aneurysmal
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Figure 1.3: Development of an aneurysm: Starting from a healthy artery, two CT scans of the pa-
tient depict the development, whereas the healthy state and the further development
of the aneurysm are unknown in the patient-specific case

Computational growth and remodeling model
In recent years, a variety of computational models has been developed to model growth and
remodeling, as already discussed in Section 1.2.2. The growth and remodeling model that is uti-
lized within this work should not only describe the consequences of growth, but should also aid
in the understanding of the underlying processes. Most of these models can reflect the adaption
of a homeostatic state to the altered exterior and interior conditions for idealized geometries.
Hence, they can model the formation of an aneurysm starting from a healthy artery that is mod-
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eled as a straight cylinder. Unfortunately, this starting point is not known for a patient-specific
aneurysm, as sketched in Figure 1.3. Thus, the computational model that is applied to the spe-
cial case here should be able to start a growth and remodeling simulation from any reasonable
geometry. Additionally, it should account for the fact that the geometry reflects a grown state. To
the best of the author’s knowledge, there exists no computational growth and remodeling model
that meets all the requirements mentioned above.

Calibration of parameters
Each growth and remodeling approach depends on parameters that have to be chosen. For ex-
ample, the influence of stress on growth is regulated by such a parameter. In the patient-specific
case, these parameters may even vary locally. In the cases considered here, a part of the growth
process is known from data of two different CT scans of the same aneurysm at different time
points. They can be used to calibrate the developed growth and remodeling model with an inverse
analysis. The chosen method for the inverse analysis has to be capable of solving an optimization
problem with a partial differential equation (PDE) as constraint and to yield spatially varying pa-
rameters. Although the underlying PDE is quasi-static transient effects arise through growth.

Validation of prediction
The calibrated parameters are then utilized for a simulation that gives insights into the subse-
quent development of the specific aneurysm. Since the future growth of the aneurysm is not
known at the time the prediction is made, the quality of the prediction cannot be judged at this
point in time. Hence, a methodology has to be developed that validates the proposed framework.
The validation process should be as close as possible to a realistic setting.

In the previous paragraphs, the requirements for developing a predictive computational growth
model are discussed. To the best of the author’s knowledge, there exists no approach in litera-
ture to date that meets all the requirements. The important components of this thesis and new
scientific aspects it contributes to address these requirements are specified in the following:

• The expansion of an existing complex computational growth model that it is employable in
a three dimensional Finite Element Method and that it is applicable to arbitrary geometries.

• The characterization of the consequences from the lacking information of the growth pre-
ceding the initial state.

• The definition of a parameterization to yield a spatial distribution of the parameters and
the use of an established inverse analysis method to calibrate the growth parameters.

• The methodology to validate the proposed framework for determining the growth param-
eters by utilizing a known growth process as reference.

In summary, with the combination and extension of existing ingredients, like computational
models and optimization strategies, the potential of the growth and remodeling models to reflect
growth processes can be extended towards the prediction of growth.
All components of the proposed framework were implemented within the multi-purpose parallel
computing platform BACI (Wall and Gee [107]). This flexible finite element software is continu-
ously developed and maintained by the Institute for Computational Mechanics at the Technische
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Universität München. The object-oriented code is written in C++ and utilizes powerful open-
source libraries of the Trilinos project conducted by Sandia National Laboratories (Heroux et al.
[41]). Consequently, existing features such as common finite element formulations, time inte-
gration schemes, iterative solution techniques, or inverse analysis schemes are reused within this
thesis. All simulation results presented in the following were obtained using BACI.

1.4 Outline

This thesis is organized as follows. First, the basic concepts of structure mechanics, computa-
tional growth and remodeling, and optimization are presented. Afterwards, these methods are
combined with each other to yield a predictive computational growth model for aneurysms. A
more detailed explanation of the structure of this work is given in the following.
The fundamentals of nonlinear solid mechanics are introduced in Chapter 2. The quantities that
are required to fully describe a solid are introduced. Subsequently, the basic balance equations
that describe a closed system are presented. A brief summary of different material laws utilized
within this thesis concludes the continuum mechanics section. The principal of virtual work is
utilized to derive a boundary value problem that can be solved with the Finite Element Method.
Finally, the Finite Element Method is briefly introduced.
In Chapter 3, the basic equations are adapted to the needs of growth and remodeling. The theory
is extended to open system thermodynamics. As the first growth model, the isotropic growth
model is introduced. This model is based on the split of the deformation gradient. Its capabilities
are shown in illustrating examples. Subsequently, the constraint mixture model is presented and
extended to meet the specified requirements. This model is based on the continuous turnover of
collagen fibers. It is applied to meaningful examples and further refined. Thereafter, different
aspects of the formation of an aneurysm are investigated in more detail. In Appendix A, details
for special quantities and functions that are utilized in this chapter are provided.
The method that is utilized to inversely determine the parameters of the growth model is intro-
duced in Chapter 4. The underlying optimization problem is stated and an algorithm to solve the
described optimization problem is presented. Afterwards, a brief summary is given of how the
data of the two CT scans is converted into a displacement field. Additionally, a parameterization
of the parameters is established to be able to identify spatially varying parameters.
The methodology utilized for the validation of the proposed framework is derived in Chapter 5.
Therefore, the exemplary formation of an aneurysm is utilized as reference solution. In the vali-
dation process, the real setting is replicated. Thus, the healthy artery is assumed as unknown and
the simulation is started from a grown aneurysm, as sketched in Figure 1.3. The problems arising
from the start of the simulation from a grown body are further investigated and a technique to
circumvent some problems is proposed. Subsequently, the growth parameters are calibrated to
match the given growth process. Finally, the capability to predict growth is validated by compar-
ing the predicted results with the reference solution.
In Chapter 6, the proposed methodology is applied to a patient-specific example. First, the cre-
ation of a computational model is briefly summarized. Afterwards, the challenges arising from
patient-specific geometries are addressed and solved. Hence, it is possible to determine growth
parameters that can reproduce the growing aneurysm. Different spatial distributions are utilized
for the determination of the parameters to characterize their influence. Finally, the determined
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parameters are used to compute a simulation over a longer period of time that may provide a
prediction of the development.
Chapter 7 concludes with a summary of this work followed by an outlook on future directions.
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2 Nonlinear solid mechanics

In this chapter, a brief introduction in continuum mechanics is given. First the quantities to
describe a solid are introduced. Subsequently, the balance equations are derived for a closed
system. In the last section, the Finite Element Method (FEM) is briefly presented.

2.1 Nonlinear elasticity

Since the deformation in biology is often large and biological tissue commonly behaves nonlin-
ear, a nonlinear theory has to be applied. In solid mechanics typically a Lagrangean formulation
is used. Within this work cartesian coordinate systems are applied. For a more detailed descrip-
tion of the respective topics, the reader is referred to the corresponding text books, e.g. Bonet
and Wood [12], Holzapfel [43], and Zienkiewicz et al. [114].

2.1.1 Kinematics

In this section, the kinematic quantities describing the deformation are introduced. The domain
ΩR ⊂ R3 describes the reference or material configuration. A material point in this configuration
is characterized by the vector X . One component of the vector is specified by XI , where (·)I

depicts an index in the reference configuration. The current or spatial configuration is denoted
by Ωt and a point therein is written as x. Here, a component is described by xi with (·)i being
an index in the current configuration. The function ϕt describes the mapping between these
configurations, i.e.

ϕt :

{
ΩR → Ωt

X 7→ x = ϕt (X) .
(2.1)

The displacement vector u is defined as the difference between current and reference position,
i.e.

u (X) = x−X . (2.2)

An important kinematic quantity is the so-called deformation gradient, it is specified as

F =
dx

dX
= Grad (x) = 1 +

du

dX
, (2.3)

where Grad denotes the material gradient operator and 1 is the second order identity tensor.
Since the mapping is invertible, the Jacobian J = det (F ) > 0 has to be larger than zero. The
deformation gradient describes the mapping of a referential infinitesimal fiber dX to its value
dx in the current configuration, i.e.

dx = F dX . (2.4)
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The deformation gradient is a two-point tensor FjI . That means one index is related to the spatial
coordinate xj and the other to the material coordinate XI .
Since the deformation gradient maps a line element, the mapping of an infinitesimal area dA and
volume element dV can also be described with the deformation gradient, i.e.

n da = det (F ) F−T N dA , (2.5)
dv = det (F ) dV , (2.6)

where n and N are the unit normal vectors in current and reference configuration, respectively.
The deformation gradient can be split into a rotation tensor R (which contains the rigid body
movements) and a symmetric stretch tensor U , yielding

F = R U . (2.7)

This decomposition is called polar decomposition. The unique rotation tensor R is an orthogonal
tensor that means it fulfills R RT = RT R = 1. It follows that det (R) = 1. The tensor U is
called the right stretch tensor and is positive definite, since det (U ) = det

(
RT

)
det (F ) = J >

0. The orthogonal and normalized eigenvectors Ňi and the corresponding eigenvalues λ̌i of U
are defined via

U Ňi = λ̌i Ňi (2.8)

for i = 1, 2, 3. The eigenvectors Ňi are called principal axes. The spectral decomposition of U
is given as

U =
3∑

i=1

λ̌i Ňi ⊗ Ňi , (2.9)

where⊗ denotes the dyadic product. A kinematic quantity solely related to the reference config-
uration is the right Cauchy-Green tensor, it is defined as

C = F T F = U 2 =
3∑

i=1

λ̌2
i Ňi ⊗ Ňi . (2.10)

Herein, only the stretch part of the deformation gradient is contained, thus it does not include
any rigid body movements and is therefore well suited for describing the internal state of a body.
Its three principal invariants are defined as follows

I1 = I1 (C) = tr (C) = λ̌2
1 + λ̌2

2 + λ̌2
3 , (2.11a)

I2 = I2 (C) =
1

2

[
(tr (C))2 − tr

(
C2

)]
= λ̌2

1λ̌
2
2 + λ̌2

2λ̌
2
3 + λ̌2

3λ̌
2
1 , (2.11b)

I3 = I3 (C) = det (C) = J2 = λ̌2
1λ̌

2
2λ̌

2
3 . (2.11c)

The strain measure used within this work is the Green-Lagrange strain, which is defined as
follows

E =
1

2

(
F TF − 1

)
=

1

2
(C − 1) =

1

2

(
du

dX
+

(
du

dX

)T

+

(
du

dX

)T
du

dX

)
. (2.12)
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2.1 Nonlinear elasticity

For incompressible or nearly incompressible materials, it is useful to split the deformation gra-
dient into an isochoric (volume-preserving) and volumetric (volume-changing) part, i.e.

F = J
1
3 F̄ , (2.13)

where J
1
31 describes the volume change and F̄ the distortional deformation. Accordingly, the

modified Cauchy-Green tensor follows as

C̄ = J−
2
3 C (2.14)

and the modified invariants can be written as

Ī1 = J−
2
3 I1 , Ī2 = J−

4
3 I2 and Ī3 = 1 . (2.15)

To describe an anisotropic behavior of the solid, additional invariants, i.e. I4, I5, are required.
The direction of anisotropy in the reference configuration is denoted by ak

0. It often coincides
with a fiber direction. The corresponding structural tensor is Ak

0 = ak
0 ⊗ ak

0. The normalized
direction of anisotropy in the current configuration is given by ak =

∥∥F ak
0

∥∥−1
F ak

0. For each
direction two invariants can be defined as

Ik
4 = C : Ak

0 =
(
λk

)2
, (2.16a)

Ik
5 = tr

(
C2Ak

0

)
, (2.16b)

where λk is the stretch in fiber direction k. Further invariants can be defined when more directions
of anisotropy exist. They describe a connection between the different directions. But they are
omitted here, since they are not used within this work.
The modified anisotropic invariants, equivalent to (2.15), are

Īk
4 = J−

2
3 Ik

4 and Īk
5 = J−

4
3 Ik

5 . (2.17)

2.1.2 Stress measures

The deformation of an elastic body leads to internal stresses. To describe these stresses, the
traction vector is introduced as

t (n) = lim
∆a→0

∆f

∆a
, (2.18)

where ∆a is an area element with the unit normal n in the current configuration and ∆f the
resultant force on this area. According to Cauchy’s stress theorem, an unique second-order stress
tensor σ exists that fulfills the condition

t (n) = σ n . (2.19)

The tensor σ is the so-called Cauchy stress tensor. The traction vector (2.18) can be referenced
to the initial area element dA. Hence, the pseudo traction vector t0 is introduced, leading to

t da = t0 dA . (2.20)
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2 Nonlinear solid mechanics

Analogous to the Cauchy theorem, the 1st Piola-Kirchhoff stress tensor P is defined with

t0 = P N . (2.21)

Utilizing equations (2.5) and (2.20), a relation between P and σ follows

P = det (F ) σ F−T . (2.22)

Similarly to the pseudo traction t0, another pseudo traction T can be defined, which represents
a purely material quantity

T = F−1 t0 . (2.23)

The 2nd Piola-Kirchhoff stress tensor S defines a stress measure purely based on material quan-
tities, illustrated by

T = S N (2.24)

with
S = det (F ) F−1 σ F−T . (2.25)

Summarizing, the presented three different stress measures can be transformed to each other
with the following relations

S = F−1 P = det (F ) F−1 σ F−T . (2.26)

2.1.3 Balance equations
Balance equations are the basis to describe continuum mechanics physically. They can be stated
either globally, i.e. in an integral form, or locally, i.e. at a specific point. In the following, only
the material point of view is considered. In this section, the equations for a closed system are
derived. In Chapter 3.1, they are extended to open systems, since in growth mass changes.

Conservation of mass
The total mass m is defined as follows

m =

∫

ΩR

M dV =

∫

Ωt

ρ dv (2.27)

with M denoting the reference mass density and ρ the current mass density. It follows that
M = Jρ. In a closed system, the total mass m is constant that means in a global form

0 =
dm

dt
=

d

dt

∫

ΩR

M dV =

∫

ΩR

Ṁ dV , (2.28)

where the superscript ˙(·) denotes the first time derivative at a fixed reference position. In a local
form this reads

Ṁ = 0 . (2.29)

It follows that M = ρ0 with ρ0 being the initial reference density.
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2.1 Nonlinear elasticity

Balance of linear momentum
For a detailed description of the pressure applied to the inner wall of an artery, a fluid-structure
interaction (FSI) problem has to be solved. Since growth happens in a time scale of months,
which is much larger than the time scale of one heartbeat, a pure structural quasi-static for-
mulation with mean values for the boundary conditions is applied. For more details concerning
the coupling of a dynamic FSI simulation with growth and remodeling, the reader is referred to
Figueroa et al. [21] and Baek et al. [8]. The assumption of quasi-statics leads to a global balance
of linear momentum in the following form

0 =

∫

ΩR

b̂0 dV +

∫

∂ΩR

t̂0 dA , (2.30)

where b̂0 is an external body force and t̂0 an external traction vector. The superscript hat (̂·)
denotes prescribed quantities. With the help of the Gauss’ divergence theorem and the definition
of the 1st Piola-Kirchhoff stress (2.21), equation (2.30) can be transformed into

0 =

∫

ΩR

b̂0 dV +

∫

ΩR

Div (P ) dV =

∫

ΩR

b̂0 dV +

∫

ΩR

Div (F S) dV (2.31)

with Div denoting the material divergence operator. The local form reads

b̂0 + Div (F S) = 0. (2.32)

Balance of angular momentum
In the static case, the external moments acting on a body have to be balanced. For simplicity
only the moments around the origin are considered, leading to

0 =

∫

ΩR

x× b̂0 dV +

∫

∂ΩR

x× t̂0 dA . (2.33)

With the help of the Gauss’ divergence theorem and some algebra, the symmetry of the 2nd
Piola-Kirchhoff stress tensor can be shown, i.e.

ST = S . (2.34)

Accordingly, for the Cauchy stress tensor follows

σT = σ . (2.35)

Clausius-Planck inequality
For a purely mechanical problem, the second law of thermodynamics reduces to the following
form of the Clausius-Planck inequality

1

2
S : Ċ − Ẇ (C) ≥ 0 , (2.36)

where the scalar quantity W is the strain energy function (SEF) of the tissue.
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2.1.4 Constitutive laws
To prescribe a relation between the deformation and stress, the SEF W has to be specified.
Since we only consider hyperelastic materials, the SEF solely depends on the current state of
deformation, i.e. W = W (F ). The SEF has to be objective that means it is independent of rigid
body translations and rotations. Hence, it only depends on the stretch part U , see (2.7). Since C
and E can be written in terms of the stretch tensor U , the SEF can be expressed in these two
quantities too, leading to

W (F ) = W (U ) = W (C) = W (E) = W (I1, I2, I3) . (2.37)

Similar to the split of the deformation gradient (2.13), the SEF can be split into an isochoric and
a volumetric part according to (2.15), leading to

W (C) = Wiso

(
Ī1, Ī2

)
+ Wvol (J) . (2.38)

This split is especially reasonable for compressible materials, for which the volumetric defor-
mation behaves differently compared to the isochoric deformation. Furthermore, for the case of
nearly incompressible materials, the volumetric term can be interpreted as a penalty term.
To obtain a relation between stress and strain, the Clausius-Planck inequality (2.36) is applied.
Therefore, the time derivative of the SEF is necessary, i.e.

Ẇ (C) =
∂W (C)

∂C
: Ċ . (2.39)

Inserting this relation into the Clausius-Planck inequality (2.36), this leads to the well known
constitutive law for the 2nd Piola-Kirchhoff stresses

S = 2
∂W (C)

∂C
=

∂W (E)

∂E
. (2.40)

For the solution of the nonlinear problem (2.32), the constitutive tensor C is required. The fourth-
order tensor is defined as

C = 2
dS

dC
= 4

∂2W (C)

∂C∂C
. (2.41)

Since stress and constitutive tensor are both defined through the SEF, it is sufficient to specify a
SEF to describe the material behavior. In the following some SEFs utilized throughout this work
are summarized. The main focus of this work is to model the arterial wall. Hence, elastic and
anisotropic functions are presented.

Neo-Hooke
The Neo-Hooke material is a very simple and widely used isotropic material with the SEF

W =
µ

2
(I1 − 3) +

µ

2β

(
I−β
3 − 1

)
, (2.42)

where µ = E/2 (1 + ν) is the shear modulus and β = ν/(1− 2ν) a dimensionless parameter.
The scalar ν is the Poisson’s ratio and E the Young’s modulus.
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2.1 Nonlinear elasticity

Log-Neo-Hooke
Another coupled isotropic material law is defined as

W =
µ

2
(I1 − 3)− µ ln J +

λ

2
(ln J)2 , (2.43)

where λ = Eν/[(1 + ν) (1− 2ν)] is the first Lamé parameter and ln the natural logarithm. Fur-
thermore, the shear modulus µ is also known as the second Lamé parameter.

Raghavan & Vorp
A material law especially designed for the wall of an abdominal aortic aneurysm (AAA) is given
in Raghavan and Vorp [77] using the SEF

W = α (I1 − 3) + β1 (I1 − 3)2 , (2.44)

where α and β1 are stress-like parameters.

Sussman-Bathe
A pure volumetric SEF is defined in Sussman and Bathe [91] by

W =
κ

2
(J − 1)2 , (2.45)

where κ is the bulk modulus.

Ogden
Another pure volumetric SEF for rubber-like material is defined in Ogden [76] as

W = κβ−2
2

(
β2 ln J + J−β2 − 1

)
, (2.46)

where β2 ≥ 0 is a dimensionless parameter.

Holzapfel-Gasser-Ogden
The following material was first presented in Holzapfel et al. [44] for arterial walls. It is an
anisotropic material for cylindrical structures. The directions of anisotropy correspond to two
collagen fiber directions, which are oriented tangentially to the arterial wall as follows

a1
0 = cos γ ecir + sin γ eaxi , (2.47a)

a2
0 = cos γ ecir − sin γ eaxi , (2.47b)

where eaxi is the axial direction, ecir the circumferential direction and γ the fiber angle. The SEF
of the anisotropic part is defined as

W =
k1

2k2

2∑

k=1

[
exp

(
k2

(
Ik
4 − 1

)2
)
− 1

]
(2.48)

with k1 > 0 represents a stress-like parameter and k2 a dimensionless parameter. This material
can easily be extended to more than two fibers. For example Cardamone et al. [13] use four fiber
directions, where two additional fibers are oriented in circumferential and axial direction.
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2 Nonlinear solid mechanics

2.2 Finite Element Method

To solve the nonlinear solid mechanics problem defined in Section 2.1, in particular equations
(2.32) and (2.40), the Finite Element Method (FEM) is used. In the following, a brief introduction
to the FEM is given.

2.2.1 Weak form

The balance of linear momentum (2.32) leads to the following boundary value problem (BVP)

b̂0 + Div (F S) = 0 (2.49a)

with the boundary conditions

u = û on Γu , (2.49b)

P N = t̂0 on Γσ . (2.49c)

The first condition (2.49b) is a Dirichlet boundary condition and the second condition (2.49c) a
Neumann boundary condition. The corresponding boundaries Γu and Γσ are disjoint sets of the
whole boundary ∂ΩR, i.e.

Γu ∪ Γσ = ∂ΩR , Γu ∩ Γσ = ∅ . (2.50)

To solve the BVP (2.49) with the FEM, the weak form is required, i.e.
∫

ΩR

(
b̂0 + Div (F S)

)T

w dV +

∫

Γσ

(
t̂0 − P N

)T
w dA = 0 , (2.51)

where w is a weighting function, which fulfills w = 0 on Γu. The weighting function can
be interpreted as virtual displacements w = δu. Applying the Gauss’ divergence theorem and
inserting the definition of the weighting function leads to the principle of virtual work (PVW)

δW =

∫

ΩR

(Grad (δu))T : (F S) dV −
∫

ΩR

δuT b̂0 dV −
∫

Γσ

δuT t̂0 dA = 0 . (2.52)

Using the symmetry of S (2.35) and the relation δE =
1

2

[(
F T Grad δu

)T
+ F T Grad δu

]
the

PVW can be written as

δW =

∫

ΩR

δE : S dV

︸ ︷︷ ︸
−δWint

−
∫

ΩR

δuT b̂0 dV −
∫

Γσ

δuT t̂0 dA

︸ ︷︷ ︸
−δWext

= 0 , (2.53)

which is the basis for the FEM. The total virtual work δW can be split into an internal virtual
work δWint and an external virtual work δWext.
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2.2 Finite Element Method

2.2.2 Space discretization

In order to solve the weak form (2.53) numerically, the equation has to be discretized in space.
For this purpose, the FEM method is used throughout this work. The continuous displacements
are approximated by an interpolation of discrete displacements at discrete nodes. The variables
Xk and xk describe the position of node k in the reference and current configuration, respec-
tively. The vector dk denotes the discrete displacement of node k. The interpolated quantities are
indicated with the index (·)h. Several nodes are connected to form elements, which leads to a
partition of the domain

ΩR ≈
nele⋃
e=1

Ω
(e)
R , (2.54)

where the subdomains (elements) Ω
(e)
R are non-overlapping. Each element is mapped to the pa-

rameter space described by the coordinate ξ. This mapping depends on the number of nodes
(nnod) of the element. For an hexahedral element typically the cube [−1, 1] × [−1, 1] × [−1, 1]
is used. The element displacements u(e) are discretized as follows

u(e) (ξ, t) ≈ u
(e)
h (ξ, t) =

nnod(e)∑

k=1

Nk (ξ)dk (t) , (2.55)

where Nk is a polynomial of order p. The exact form of the polynomial depends on the chosen
element type dependent on the requirements of the given problem.
In this work, the isoparametric concept is applied, i.e. the geometry is discretized equally to the
displacements (2.55), leading to

X
(e)
h (ξ) =

nnod(e)∑

k=1

Nk (ξ)Xk , (2.56)

x
(e)
h (ξ, t) =

nnod(e)∑

k=1

Nk (ξ) xk (t) . (2.57)

The virtual displacements δu are also interpolated with the same shape functions, yielding

δu
(e)
h (ξ, t) =

nnod(e)∑

k=1

Nk (ξ) δdk (t) . (2.58)

This approach is often referred to as the Bubnov-Galerkin approach. The integration over the
domain ΩR is carried out element-wise on each element domain Ω

(e)
R using Gauss quadrature,

i.e. ∫

Ω
(e)
R

f (X) dV ≈
∑
gp

w(e)
gp f

(
X(e)

gp

)
, (2.59)

where w
(e)
gp are the weights of the Gauss points and X

(e)
gp their positions. Thus, the quantities in

equation (2.53) are evaluated at the Gauss points. Afterwards, the local quantities are sorted into
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2 Nonlinear solid mechanics

global vectors based on the so-called assembly operator A, leading to

∫

ΩR

(·) dV ≈
nele

A
e=1

∫

Ω
(e)
R

(·) dV . (2.60)

This leads to the discrete version of the PVW in the following form

δWh = δdT (f int (d)− fext) = 0 . (2.61)

This equation has to be fulfilled for all admissible virtual displacements. Consequently, it is
equivalent to the following discrete system of nonlinear equations

r = f int (d)− fext = 0 , (2.62)

where r is called the residuum. For solving this system of nonlinear equations, the Newton
scheme is used. Hence, the linearized form of (2.62) is solved iteratively, i.e.

Lin r = r
(
di

)
+

∂r (d)

∂d

∣∣∣∣
di︸ ︷︷ ︸

KT

∆di+1 = 0 (2.63)

with the stiffness matrix KT and the iteration index (·)i. The updated displacements are defined
in the following way

di+1 = di + ∆di+1 . (2.64)
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3 Growth and remodeling
To model growth and remodeling, the theory established in Section 2.1 has to be extended.
This extended theory is presented in the first section of this chapter. In the next two sections,
two approaches to model growth and remodeling in three dimensions are introduced. The first
approach models isotropic volumetric growth and is based on the consequences of growth on the
macroscopic level. Whereas, the second approach models growth and remodeling of individual
constituents and describes growth on a smaller scale. Thus, the first can be used to study large
scale results and the second to study underlying mechanisms (Ambrosi et al. [3]). For both
approaches, representative examples are presented to illustrate the behavior of the respective
model.

3.1 Introduction to open system thermodynamics
During growth and remodeling, the mass of the solid body changes. The mass can increase
(growth) or decrease (atrophy). Since the mechanical behavior of the body is defined through
the solid phase, it is meaningful to model only this phase. The other phases are omitted in the
following. Hence, the solid phase has to be treated as an open system, where the mass can vary.
In the following section, a brief introduction to open system thermodynamics is given. For a
more detailed explanation of this topic, the reader is referred to Epstein and Maugin [20] and for
the theory for more than one species to Garikipati et al. [25].
Due to the creation of mass, the balance equations have to be adapted. The total mass is still
defined as follows

m =

∫

ΩR

M dV =

∫

Ωt

ρ dv . (3.1)

It follows that M = Jρ. The mass balance equation reads now

d

dt

∫

ΩR

M dV =

∫

ΩR

R0 dV +

∫

∂ΩR

NT R dA , (3.2)

where R0 is the mass source and R the mass flux over the boundary. The vector N has already
been introduced as unit normal in the reference configuration. Applying the Gauss’ divergence
theorem to equation (3.2) leads to

d

dt

∫

ΩR

M dV =

∫

ΩR

R0 dV +

∫

ΩR

Div (R) dV . (3.3)

From this equation, the local form can be derived, i.e.

Ṁ = R0 + Div (R) . (3.4)
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3 Growth and remodeling

Since in the problems considered within this work, the mass flux is zero, it is omitted in the fol-
lowing. This assumption and the fact that a quasi-static analysis (see Section 2.1.3) is performed
result in simplified equations. The function W is no longer called a strain energy function, but
a Helmholtz free-energy function (HFEF) since the deformation leaves the elastic regime. Thus,
the HFEF depends not only on the actual deformation, i.e. W 6= W (C), but also on the history
of the deformation, e.g. W = W (C (h) ,h). The history vector h describes a collection of
variables, which may be history variables or quantities that describe the inelastic behavior. The
exact form of h depends on the chosen growth model. The summands of the HFEF may be strain
energy functions or potentials.
The balance of linear momentum has the same form as in equation (2.32) and from the balance of
angular momentum still follows the symmetry of the stresses. An extra entropy source S0 arises
to satisfy the second law of thermodynamics (Himpel et al. [42]). Hence, the Clausius-Planck
inequality (2.36) has to be adapted. It now reads

1

2
S : Ċ − Ẇ +

R0

M
W − TMS0 ≥ 0 , (3.5)

where T denotes the constant temperature. Since Ẇ (C (h) ,h) depends on the chosen growth
model, the relation between stress and strain cannot be given in general in contrast to the
elastic case. Often, the Cauchy-Green tensor C is independent of the history vector h, i.e.
W = W (C,h). Hence, the time derivative of the HFEF is defined as follows

Ẇ (C,h) =
∂W

∂C
: Ċ +

(
∂W

∂h

)T

ḣ . (3.6)

Since the Cauchy-Green tensor is independent of h, it follows from equations (3.5) and (3.6)
that

S = 2
∂W (C,h)

∂C
. (3.7)

This relation between stress and strain is nearly identical to the constitutive law of the elastic
case (2.40), only the dependency on h is different. The history vector h is treated as a local
quantity that is defined at each Gauss point independently. Hence, to incorporate growth into an
existing finite element code, the constitutive equations have to be adapted, i.e. a new material
law with the local variable h has to be implemented. Since the balance of linear momentum is
the same as in (2.32), the same boundary value problem as in the elastic case (2.49) has to be
solved. Thus, the weak form (2.53) remains the same and the finite element formulation does not
have to be adapted.
Inserting equations (3.6) and (3.7) into the Clausius-Planck inequality (3.5) yields for the extra
entropy source S0 the following relation

S0 =
1

TM

[
R0

M
W −

(
∂W

∂h

)T

ḣ

]
. (3.8)

The exact form of (3.8) is derived in the following chapters for the presented growth and remod-
eling approaches.
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3.2 Isotropic growth

3.2 Isotropic growth
The following method to model growth was first presented in Rodriguez et al. [82]. First, the
basic concept is introduced. Subsequently, some details needed for the implementation are given,
and finally, illustrating results are presented. Part of the notation and basic equations are taken
from Himpel et al. [42].

3.2.1 Model
The basic idea of this model stems from plasticity (Lee [59]). The deformation gradient (2.3) is
split into two parts, a growth deformation Fg and an elastic deformation Fe, yielding

F = Fe Fg . (3.9)

The growth deformation does not have to be compatible, since the elastic deformation ensures
compatibility of the whole deformation. Thus, growth can lead to residual stresses in the growing
body (Skalak et al. [88]). With the split of the deformation gradient an intermediate configuration
is defined. Quantities in this configuration are marked with (̌·), like the density ρ̌, the stretch
tensor Č, and the stress Š.

Č

F

ρ

F e

C

S

ρ̌

Š

F g

ρ0, M

Figure 3.1: Multiplicative split of the deformation gradient F into a growth part Fg and an elastic
part Fe

In Figure 3.1 a graphical summary of the different configurations and the mappings between
them is given. It is assumed that the pure growth deformation does not create any stresses. Thus,
the HFEF only depends on the intermediate stretch Č, i.e. W = W

(
Č

)
. The intermediate

stretch is defined as follows
Č = F T

e Fe . (3.10)

The Cauchy-Green stretch (2.10) is related to the intermediate stretch in the following way C =
F T

g Č Fg. The stress Š in the intermediate configuration is defined through the transformation
of the 2nd Piola-Kirchhoff stress S (2.24) into the intermediate configuration, i.e.

Š = Fg S F T
g . (3.11)

With the intermediate configuration an additional density ρ̌ arises. The different densities are
related as follows

ρ̌ = Jeρ, M = Jρ = Jgρ̌ (3.12)
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3 Growth and remodeling

with Je = det (Fe) and Jg = det (Fg). For an incompressible material, the densities in the
intermediate and current configuration are the same ρ̌ = ρ. During the growth process the density
is constant, i.e. when the mass is increased, the volume is increased relatively with the same
amount. For the density, this means that ρ̌ = ρ0 = M (t = 0) and M = Jgρ0.
For isotropic growth, the growth deformation gradient can be written as

Fg = ϑ1 , (3.13)

where ϑ is the growth stretch. Formulas for orthotropic and transversely isotropic growth can be
found in Lubarda and Hoger [63]. Here, only the isotropic growth model is further investigated.
In this case, the history vector h consists only of the growth stretch ϑ. Since the growth stretch
ϑ is a local variable, it is treated as a secondary variable. That means for every deformation state
a matching growth stretch is computed and the deformation itself is treated as independent of
the growth stretch at this stage. In the general case, all components of the growth deformation
gradient Fg would be part of the history vector.
Since the Cauchy-Green tensor is independent of the growth stretch, the HFEF can be described
in terms of both quantities in the following way W = W (C, ϑ). Thus, the assumption for
equation (3.7) is fulfilled, i.e. the 2nd Piola-Kirchhoff stress is defined as

S = 2
∂W

∂C
. (3.14)

From the definition of the intermediate stress Š (3.11) follows the constitutive law

Š = Fg S F T
g = 2 Fg

∂W

∂C
F T

g = 2
∂W

∂Č
. (3.15)

In order to compute the stresses, the growth stretch has to be defined. Therefore, the following
differential equation is used

dϑ

dt
= ϑ̇ = fϑ

(
ϑ, Č, Š

)
= fϑ (ϑ, C) . (3.16)

The last relation holds, since the intermediate stretch Č, and thus Š, can be expressed in terms
of ϑ and C. Equation (3.16) is solved at every Gauss point for a given Cauchy-Green tensor.
One possibility for the growth differential equation is proposed by Lubarda and Hoger [63] as

ϑ̇ = kϑ (ϑ)
(
trM̌ − M̌hom

)
, (3.17)

where M̌ = Č Š is the Mandel stress and M̌hom the trace of its homeostatic value. The factor
in front of the stress term is defined as

kϑ (ϑ) =





k+
ϑ0

[
ϑ+−ϑ
ϑ+−1

]m+
ϑ

for
(
trM̌ − M̌hom

)
> 0

k−ϑ0

[
ϑ−ϑ−
1−ϑ−

]m−
ϑ

for
(
trM̌ − M̌hom

)
< 0

(3.18)

with ϑ+ denoting the maximal value of ϑ and ϑ− the minimal value. Hence, the growth stretch
ϑ is restricted to the interval [ϑ−, ϑ+]. The dimensionless constants m+

ϑ and m−
ϑ describe the
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3.2 Isotropic growth

influence of the limiting values. The constants k+
ϑ0 and k−ϑ0 scale the overall behavior and are

measured in (Pa s)−1.
For the sake of completeness formulas for the mass source R0 and the extra entropy source S0

are derived. Since the reference mass density is defined as M = ϑ3ρ0 for the isotropic growth
defined in equation (3.13), the mass source can be computed from the local balance of mass
(3.4), leading to

R0 = Ṁ = 3ϑ2ϑ̇ρ0 . (3.19)

To compute the extra entropy source (3.8) the time derivative of the HFEF (3.6) is needed, it is
defined as

Ẇ
(
Č

)
=

∂W

∂C
: Ċ +

∂W

∂Fg

: Ḟg =
∂W

∂C
: Ċ −

(
2 Č

∂W

∂Č
F−T

g

)
: Ḟg . (3.20)

Inserting this equation into the Clausius-Planck inequality (3.5) leads to

1

2
S : Ċ − ∂W

∂C
: Ċ +

(
2 Č

∂W

∂Č
F−T

g

)
: Ḟg +

3ϑ2ϑ̇ρ0

M
W − TMS0 ≥ 0 . (3.21)

Inserting the two equations (3.14) and (3.15) into (3.21) gives

(
Č Š

)
︸ ︷︷ ︸

M̌

:
(
ḞgF

T
g

)

︸ ︷︷ ︸
Ľg

+
3ϑ2ϑ̇ρ0

M
W − TMS0 ≥ 0 . (3.22)

The Mandel stress is work conjugate to the growth velocity gradient Ľg. Hence, it is reasonable
to choose tr

(
M̌

)
as the driving force of growth. With Ľg = ϑ̇

ϑ
1, the extra entropy source is

defined as

S0 =
ϑ̇

Tρ0ϑ4

(
tr

(
M̌

)
+ 3W

)
. (3.23)

3.2.2 Time discretization and linearization
In order to solve the growth problem, one needs to discretize the growth differential equation
(3.16) and to linearize the stress, this is done as proposed in Himpel et al. [42]. The differential
equation is solved with an implicit Euler scheme in the following way

ϑ = ϑn + fϑ

(
ϑ, Č, Š

)
∆t , (3.24)

where ϑn is the stretch value of the previous time step and ϑ the value of the current time step.
To solve this equation a local Newton iteration is used. The residual is

Rϑ = ϑn − ϑ + fϑ

(
ϑ, Č, Š

)
∆t . (3.25)

The first derivative of the residual with respect to the growth stretch reads

dRϑ

dϑ
= −1 +

dfϑ

dϑ
∆t = −1 +

∂fϑ

∂ϑ
∆t +

(
∂fϑ

∂Č
+

∂fϑ

∂Š
:

∂Š

∂Č

)
:
∂Č

∂ϑ
∆t . (3.26)
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The derivative of Č with respect to ϑ can be easily computed as

∂Č

∂ϑ
=

∂
(
F−1

g C F−T
g

)

∂ϑ

(3.13)
= −2ϑ−3C = −2

ϑ
Č . (3.27)

The relation between stress Š and strain Č is defined through the constitutive law (3.15). The
intermediate constitutive matrix Če is defined as Če = 2 ∂Š

∂Č
. Using the proposed growth law

(3.17) the derivative of the residual can be computed, it reads

dRϑ

dϑ
= −1 +

∂kϑ (ϑ)

∂ϑ

(
tr

(
M̌

)− M̌hom

)
∆t− 2kϑ (ϑ)

ϑ

(
tr

(
M̌

)
+

1

2
Č : Če : Č

)
∆t .

(3.28)
When the local Newton iteration converged, a growth stretch ϑ that fulfills Rϑ = 0 is found.
For the linearization of the discrete residual (2.63), the derivative of the stress S with respect to
C is needed, it follows

Ceg = 2
dS

dC
= 2

(
∂S

∂C
+

∂S

∂ϑ
⊗ dϑ

dC

)
. (3.29)

The first term yields the elasticity matrix Ce = 2 ∂S
∂C

= F−1
g F−1

g ČeF
−T
g F−T

g . The second term
∂S
∂ϑ

can be computed as

∂S

∂ϑ
=

∂

∂ϑ

(
F−1

g Š F−T
g

)
=

∂
(
F−1

g

)

∂ϑ
Š F−T

g + F−1
g

(
∂Š

∂Č
:
∂Č

∂ϑ

)
F−T

g + F−1
g Š

∂
(
F−T

g

)

∂ϑ

(3.13),(3.27)
= −2

ϑ

(
S +

1

2
Ce : C

)
. (3.30)

The third term dϑ
dC

needs further considerations. To obtain it, one can differentiate the residual of
the growth equation for the final ϑ, yielding

dRϑ

dC
=

dRϑ

dϑ

dϑ

dC
+

∂fϑ

∂C
∆t = 0 ⇒ dϑ

dC
= −

(
dRϑ

dϑ

)−1
∂fϑ

∂C
∆t . (3.31)

To compute the derivative the following relation is required

∂fϑ

∂C

(3.17)
= kϑ (ϑ)

(
S +

1

2
C : Ce

)
. (3.32)

Inserting all derivatives into equation (3.29) yields the growth constitutive tensor

Ceg = Ce +
4

ϑ
kϑ (ϑ)

(
dRϑ

dϑ

)−1 (
S +

1

2
Ce : C

)
⊗

(
S +

1

2
C : Ce

)
∆t , (3.33)

which can be used to compute the tangential stiffness matrix KT.
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3.2.3 Examples

To show how the presented growth model works, several simulations are performed. First a cylin-
drical tube is stretched and compressed and compared to results from literature to validate the
implementation of the model. Second hypertension is simulated and the third example is growth
of a patient-specific aneurysm.

Tension and compression of a cylinder
The following example is taken from Himpel et al. [42]. A thick cylindrical tube, as depicted in
Figure 3.2, with inner radius 0.5 mm, outer radius 1.0 mm and axial length 2.0 mm is stretched
or compressed in axial direction by a quarter of its length. There is no Neumann boundary condi-

Figure 3.2: Reference geometry for compression and tension with symmetric boundary condi-
tions, sketch of important directions for cylindrical geometries: axial, circumferen-
tial, and radial direction

tion applied. Since the problem is symmetric in circumferential direction, only one quarter of the
cylinder with symmetric boundary conditions is simulated. It is discretized with four elements in
radial direction, eight elements in circumferential direction and eight elements in axial direction.
As elastic material the Log-Neo-Hooke material law (2.43) with parameters E = 3 N/mm2 and
ν = 0.3 is used. For the growth law the following parameters are prescribed M̌hom = 0 Pa,
ϑ+ = 1.5, ϑ− = 0.5, k+

ϑ0 = 0.5 1
Pa d

, k−ϑ0 = 0.25 1
Pa d

, m+
ϑ = 4.0 and m−

ϑ = 5.0. The time step
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(b) Compression

Figure 3.3: Tension and compression of a cylinder, evolution of the radial displacement over
time at a point at the inner and outer surface
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3 Growth and remodeling

size is ∆t = 0.1 d. In Figure 3.3 one can see the evolution of the radial displacement at a point at
the inner surface and a point at the outer surface. The growth model reacts quickly and compen-
sates the change of the geometry. After 100 time steps growth gets less, since an equilibrium is
nearly reached. Due to the choice of growth parameters, the adaptation takes longer in the case
of compression. The results from literature (Himpel et al. [42]) can be reproduced.

Hypertension
In a second example, the inner pressure of a thin walled cylinder is increased. This imitates hy-
pertension. The cylinder has an inner radius of 10 mm, an outer radius of 12 mm and a length of
10 mm, see Figure 3.4, what coincides with the dimensions of an artery. Again only one quarter
of the cylinder is simulated. The mesh consists of one element in radial, twelve in circumfer-
ential and eight in axial direction. The same material and growth parameters as in the previous
example are used.

Figure 3.4: Reference geometry for hypertension

During the first five time steps (t1) the pressure is increased linearly to its initial value of 0.01 Pa.
This leads to a homeostatic stress of M̌ = 0.061573 Pa. The linear increase is visible in the time
course of the mandel stress, the displacements and the thickness of the wall, see Figure 3.5(b)-
(d). After the tenth time step (t2) the pressure is increased by a factor of 1.5 and growth starts.
This leads to a jump in the stresses, see Figure 3.5(b). An equilibrium is achieved after about
80 time steps, see Figure 3.5(a)-(b). The trace of the mandel stress reaches its homeostatic value
and the growth stretch converges to ϑ ≈ 1.01172. The radial displacements also reach a maxi-
mal value. The inner radius cannot be restored, what would be expected for arteries (Matsumoto
and Hayashi [70], Fridez et al. [22]). Nevertheless, the thickness of the cylinder increases due to
growth. Summarizing, the growth model cannot reproduce the behavior of an artery that suffers
from hypertension.

Aneurysm
The third example is the growth of an aneurysm of a 67 years old male patient. As elastic material
the material of Raghavan and Vorp (2.44) with parameters α = 52.3 kPa and β = 3.12 MPa is
used with the modified invariants (2.15) and for the volumetric part the Ogden function (2.46)
with κ = 5.23 MPa and β2 = −2 (Maier [64]). The diastolic pressure of 11598.84 Pa is applied
while using the modified updated Lagrangian formulation (MULF, Gee et al. [27, 28]). At t =
0.3 y, growth starts with M̌hom = 50 kPa. The other growth parameters are nearly the same as
in the previous examples, only the two following values are adapted to the different homeostatic
stress: k+

ϑ0 = 0.5 · 10−6 1
Pa y

and k−ϑ0 = 0.25 · 10−6 1
Pa y

. During growth the end surfaces at the top
and bottom are fixed.
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3.2 Isotropic growth
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Figure 3.5: Time course of important quantities of a cylinder with increased inner pressure

(a) t = 0.3 y (b) t = 0.8 y (c) t = 1.2 y (d) t = 1.6 y (e) t = 2.0 y

Figure 3.6: Deformed geometry of a growing aneurysm at different time steps, colors depict the
magnitude of the displacements
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3 Growth and remodeling

In Figure 3.6 one can see the growth of the aneurysm until t = 2.0 y. The largest deformation
can be seen at the transition between the healthy aorta and the aneurysm, where the existing kink
is amplified. The diameter of the aneurysm increases, in Figure 3.7(c) one can see its evolution
over time. The diameter is measured by the distance between the two points marked in the figure.
It has not reached its maximal value at the end of the simulation. The peak mandel stress at the
final state is one order of magnitude higher than the homeostatic value. The maximal growth
stretch is 1.15, i.e. the aneurysm can still grow until the limit of 1.5 is reached. As one can see,
the stress at the center of the aneurysm sac is quite low compared to the rest of the aneurysm.
Thus, the growth stretch is low, too. Due to the fixation of the aneurysm atrophy occurs close to
the boundaries.

(a) Growth stretch ϑ (b) Growth stress tr
(
M̌

)
(c) Diameter

Figure 3.7: Growth variables at the final state and evolution of the diameter over time

3.3 Constraint mixture

Contrary to the previous model, this model distinguishes between different constituents of the
soft tissue and their behavior. It was first presented in Humphrey and Rajagopal [46, 47]. In
the following, the model is introduced and extended to three dimensions. Then, the temporal
discretization is presented. Afterwards, the homeostatic state is examined in more detail. While
investigating a steady state, some details regarding the driving force of growth arise. In the end,
the reaction of the model to two diseases and altered conditions is tested. The first disease is
hypertension, during aging the structure of the artery changes and the second disease is the
formation of an aneurysm.

3.3.1 Model

The constraint mixture model is especially designed for arterial tissue. The tissue consists of
several constituents like elastin, collagen fibers and smooth muscle cells. The basis of the model
is that all constituents are compatible in the spatial configuration (thus constraint mixture), but
they can grow and remodel individually. The following notation and formulas have been adapted
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3.3 Constraint mixture

from the two dimensional case in Baek et al. [6]. The fraction of the total mass of constituent i
defines its mass fraction φi. The sum of all mass fractions has to be one, i.e. φe + φc + φm = 1.
Constituent i has a SEF Ψi. For elastin a Neo-Hooke material (2.42) is used. The collagen fiber
families and the passive part of the smooth muscle cells are modeled with a Holzapfel-Gasser-
Ogden material (2.48). The SEF of the mixture in the elastic case is defined as the sum of the
SEFs of all constituents multiplied with their mass fraction φi. Additionally, a volumetric SEF
W vol (2.45) is added, leading to

W = φe Ψe + φc

4∑

k=1

Ψk + φm Ψm + W vol = W e +
4∑

k=1

W k + Wm + W vol , (3.34)

where collagen is modeled with four fiber families, which are oriented tangential to the wall, as
shown in Figure 3.8. The first two fiber families point in axial and circumferential direction of
the vessel. The last two fiber families are oriented diagonally to the first two directions.

Figure 3.8: Fiber directions of an artery

The total density is the sum of the densities of the different constituents, i.e.

M = M e +
4∑

k=1

Mk + Mm . (3.35)

Elastin has a half-life comparable to the lifespan of an animal. Thus, it normally does not
grow and remodel during maturity. Whereas, collagen has a half-life between weeks and month
(Langille [58]). Hence, it continuously turns over. Smooth muscle cells have a similar half-life
as collagen. To model smooth muscle cells correctly, a passive and an active contribution have to
be modeled. Since the time scale of growth is months, the active response of the muscle cells has
to be averaged. In arteries, the muscle cells only have an influence in circumferential direction.
Since the major goal of this work is to model growth of abdominal aortic aneurysms (AAAs)
and their wall does not contain much smooth muscle cells (He and Roach [39]), smooth muscle
cells are neglected in the following.
To get a better understanding of the model, the underlying processes are examined separately.
First, remodeling is investigated in more detail, later it will be complemented with growth. In
Figure 3.9 one can see a sketch of the process of remodeling for one collagen fiber family.
The fiber family is represented by three fibers that are oriented in horizontal direction. In the
undeformed geometry, all fibers have the same stretch λc

pre. This is the preferred stretch state of
all collagen fibers and called prestretch. To show how remodeling works, the biological tissue is
continually stretched in fiber direction. At time t1, one collagen fiber has been degraded and is
replaced by a newly generated fiber. This new fiber is deposited at its preferred stretch. Hence,
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3 Growth and remodeling
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Figure 3.9: Sketch of remodeling of one collagen fiber family, — original collagen fibers,
–– newly produced fibers

it has a lower stretch than the old fibers. The direction of the new fiber is the same as the one of
the old fibers. At time t2, the second fiber is replaced by a new one. The oldest fiber is stretched
with the whole deformation of the body, the newest fiber is only prestretched and the middle
aged fiber feels parts of the deformation. Thus, a variety of stretch states exist within one fiber
family, if the tissue is continually deformed.
In the following, this process is described more generally, as shown in Figure 3.10. The prestretch
of constituent i is defined by the prestretch tensor Gi

h. For elastin it corresponds to an isotropic
tensor Ge

h = λe
pre 1. The collagen fibers are prestretched in fiber direction, i.e. Gk

h = λk
pre ak ⊗

ak. The stress free configuration κi
n (τ) of constituent i that is deposited at time τ is called

natural configuration. This configuration is a pure virtual configuration, since the body never
passes through this configuration.
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Figure 3.10: Remodeling: scheme of different configurations and kinematic quantities
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3.3 Constraint mixture

In the beginning, elastin and collagen are directly deposited in the reference configuration ΩR,
which is identical to the prescribed geometry. Due to the prestretch of the constituents, the ref-
erence configuration is not stress free. Hence, it deforms. Together with the applied loads this
leads to a second configuration, the so-called initial loaded configuration Ω0. When prestretch
and load are balanced perfectly, reference and initial loaded configuration coincide, but most
often they are slightly different.
Since elastin behaves like an elastic material, its deformation gradient is defined as F e =
F (t) Ge

h. It follows for the SEF W e that W e = φeΨe (F (t) Ge
h). The deformation of the colla-

gen fiber deposited at time τ is defined as

F k (τ, t) = F (t) F (τ)−1 Gk
h , (3.36a)

λk (τ, t) = λk (t) λk (τ)−1 λk
pre . (3.36b)

Hence, the SEF of this fiber only depends on this deformation, i.e. Ψk = Ψk
(
F k (τ, t)

)
=

Ψk
(
λk (τ, t)

)
. Since every fiber is potentially in a different stretch state, an integration over time

has to be performed to get the total potential of the whole fiber family, i.e.

W k (t) =

t∫

−∞

mk
0

ρ0

qk (τ, t) Ψk
(
F k (τ, t)

)
dτ (3.37)

with mk
0 denoting the basal mass density production rate and qk (τ, t) the survival function. The

basal mass density production rate can be computed from the total density of the fiber family,
since during remodeling the density is constant. It follows

Mk (t) =

t∫

−∞

mk
0 qk (τ, t) dτ = Mk (0) ⇒ mk

0 =
Mk (0)

t∫
−∞

qk (τ, t) dτ

. (3.38)

The survival function qk (τ, t) describes the amount of collagen produced at time τ that still
exists at time t. At least three different forms of this function can be found in literature (cf.
Humphrey and Rajagopal [46], Baek et al. [6], and Valentı́n et al. [103]) :

qk
lin (τ, t) =

{
1 for t− τ ≤ tlinlf

0 for tlinlf < t− τ
, (3.39a)

qk
cos (τ, t) =





1 for t− τ < 0.2 tcos
lf

1
2

[
cos

(
π

0.8 tcos
lf

(
t− τ − 0.2 tcos

lf

))
+ 1

]
for 0.2 tcos

lf ≤ t− τ ≤ tcos
lf

0 for tcos
lf < t− τ

, (3.39b)

qk
exp (τ, t) =





exp

(
−

t∫
τ

ln(2)

texphl
dτ̃

)
for t− τ ≤ texplf

0 for texplf < t− τ

(3.39c)

with thl denoting the half-life and tlf the lifetime of collagen. These time values have to be
chosen for each function such that the mean age ak

m =
∫ tlf

0
qk (0, τ̃) dτ̃ of the collagen fiber
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3 Growth and remodeling

family is independent of the choice of the survival function. This leads to the following relations
for lifetime and half-life of the different survival functions

texphl

ln(2)

[
exp

(
− ln(2)

texphl

texplf

)
− 1

]
= 0.6 tcos

lf = tlinlf . (3.40)

With a half-life of 50 days and cutting off the exponential function after 300 days (Wilson et al.
[110]) this leads to tcos

lf = 118 d and tlinlf = 71 d. In Figure 3.11 one can see the time course of
qk (0, t) for these parameters. The linear (lin) survival function is the simplest choice. But it is
not reasonable that all collagen fibers that were deposited at time τ are degraded at once. The
cos function smooths this transition and is thus more reasonable. Most degradation processes in
nature are described by an exponential function. Hence, this choice would be the most reason-
able. But in this case, half of the collagen fibers are already degraded after 50 days, whereas the
lifetime of the collagen fibers is up to 300 days. This means that a large amount of collagen is
already degraded shortly after its production. Additionally, a lot of time steps have to be stored
for this long period of time, since a small time step is not admissible, due to the steep decrease
in the beginning. Hence, within this work the cos function is used when not stated otherwise.
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Figure 3.11: Different survival functions qk (0, t)

Since the remodeling process has been fully described, the model is extended with growth. The
mass of a collagen fiber family is no longer constant. That means the amount of newly produced
collagen is not anymore the basal rate mk

0, but a variable mass density production rate mk (τ).
The total density of one collagen fiber family has to be adapted as follows

Mk (t) =

t∫

−∞

mk (τ) qk (τ, t) dτ . (3.41)

The production rate is defined as

mk (t) = mk
0

[
1 + Kσ

g

(
σk (t)

σh

− 1

)
−Kτ

g

(
τw (t)

τw;h

− 1

)]
(3.42)

with σk denoting a scalar driving stress for growth, τw wall shear stress (WSS), σh and τw;h their
homeostatic values, and Kσ

g and Kτ
g growth factors for the respective terms. For more details

regarding WSS, the reader is referred to Appendix A.1. More details regarding the homeostatic
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3.3 Constraint mixture

variables are given in Section 3.3.3. The density production rate has to be positive, since newly
produced fibers cannot have a negative mass. A mass decrease is described with mk (t) < mk

0.
For stability reasons it is sometimes useful to bound the density production rate, e.g. when stress
peaks occur. Thus, the production rate mk (t) is restricted to the interval

[
0,mk

max

]
.

The scalar stress measure σk is evaluated in the current configuration. It is defined as the amount
of the growth stress σg in fiber direction, yielding

σk (t) =
∥∥σg (t) ak

∥∥ =

∥∥F Sg C ak
0

∥∥
λk(t) det (F )

, (3.43)

where the second term describes σk in quantities defined in the reference configuration. The
growth stress can be chosen as the total Cauchy stress σ, the stress of the fiber family σk or the
sum of the stress of elastin and collagen σe + σc, where the volumetric stress is omitted. Some
hints about the choice of the growth stress can be found in Section 3.3.4. Inserting the variable
mass production (3.42) into equation (3.37) leads to

W k (t) =

t∫

−∞

mk (τ)

ρ0

qk (τ, t) Ψk
(
F k (τ, t)

)
dτ . (3.44)

Growth occurs such that the density remains constant ρ0 = ρ. That means the volume has to
change relatively in the same amount as the mass changes. In the two dimensional growth model
proposed by Humphrey, the membrane thickness is adapted during post processing (Baek et al.
[6]). This is not possible in this fully three-dimensional model, the volume change has to be
enforced differently. Since the volumetric potential (2.45) prescribes the volume change J , it
has to be adapted. Since the mass change can be described with the change of the reference
density, the adaptation is done in the following way

W vol (t) =
κ

2

(
J − M (t)

M (0)

)2

=
κ

2

(
J − M (t)

ρ0

)2

. (3.45)

With this last ingredient, the HFEF W of the mixture (3.34) is defined and a relation between
stress and strain can be derived. Since the potential of the collagen fiber families (3.44) contains
an integral over the history of the deformation, the HFEF cannot be written in the form W =
W (C (h) , h). Hence, the constitutive law (3.7) derived in Section 3.1 cannot be applied. Thus,
to get a relation for stress the Clausius-Planck inequality (3.5) has to be evaluated. The mass
source (3.4) is defined through the time derivative of the density. Equations (3.35) and (3.41)
lead to the following mass source

R0 =
d

dt




4∑

k=1

t∫

−∞

mk (τ) qk (τ, t) dτ


 =

4∑

k=1


mk (t) +

t∫

−∞

mk (τ)
∂qk (τ, t)

∂t
dτ


 , (3.46)

where the first term represents the density production and the second term its degradation. The
time derivative of the HFEF defined in equations (3.34), (3.44) and (3.45) is also required, it
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reads

Ẇ =
∂W e

∂C (t)
: Ċ (t) +

4∑

k=1


mk (t)

ρ0

Ψk
(
F k (t, t)

)
+

t∫

−∞

mk (τ)

ρ0

∂qk (τ, t)

∂t
Ψk

(
F k (τ, t)

)
dτ




+
4∑

k=1




t∫

−∞

mk (τ)

ρ0

qk (τ, t)
dΨk

(
F k (τ, t)

)

dC (t)
dτ


 : Ċ (t)

+
∂W vol

∂C (t)
: Ċ (t)− κ

(
J − M (t)

ρ0

) R0

ρ0

. (3.47)

Inserting this equation into the Clausius-Planck inequality (3.5) and separating the terms with Ċ
leads to the following stress-strain relation

S (t) = 2


 ∂W e

∂C (t)
+

4∑

k=1




t∫

−∞

mk (τ)

ρ0

qk (τ, t)
dΨk

(
F k (τ, t)

)

dC (t)
dτ


 +

∂W vol

∂C (t)


 . (3.48)

How this integral can be evaluated is discussed in the following section. For the sake of com-
pleteness the extra entropy source S0 is also given

S0 = − 1

TM

4∑

k=1


mk (t)

ρ0

Ψk
(
F k (t, t)

)
+

t∫

−∞

mk (τ)

ρ0

∂qk (τ, t)

∂t
Ψk

(
F k (τ, t)

)
dτ




+
1

TM

(R0

M
W + κ

(
J − M (t)

ρ0

) R0

ρ0

)
. (3.49)

3.3.2 Time discretization
In order to compute the stress, one has to evaluate equation (3.48). In the form given in the
previous section, this is not possible, since the integral over time cannot be evaluated analyti-
cally. Hence, the integral is replaced by a numerical approximation, a quadrature formula. This
approximation is done in two different ways: in an explicit and an implicit way, as depicted in
Figure 3.12. These two possibilities are presented in the following sections.

tNt0 t

f (t)

(a) Explicit integration

f (t)

tt0 tN

(b) Implicit integration

Figure 3.12: Schemes of numerical integration over time
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3.3.2.1 Explicit integration

In this section, the so-called explicit integration is presented. Why it is called explicit can be seen
later. Since qk (τ, t) is zero for fibers older than tlf , the infinite integral

∫ t

−∞ (·) dτ reduces to a
finite integral

∫ t

t−tlf
(·) dτ . The time interval [t− tlf , t] is split into N discrete intervals [tl, tl+1[

for l = 0, . . . , N − 1 with t0 = t − tlf and tN = t. On the discrete intervals, the function that
is integrated, is approximated by a constant value. In case of the explicit integration the value
at time tl is chosen for the interval [tl, tl+1[ , see Figure 3.12(a). The reference density of one
collagen fiber family is computed by a sum over discrete time steps leading to

Mk (t) =
N−1∑

l=0

mk (tl) qk (tl, t) ∆tl+1 , (3.50)

where ∆tl+1 = tl+1− tl is the time step size. Since the previously computed time steps are used
for the discrete times tl, one does not need extra interpolation points. Just in the beginning N time
steps have to be initialized. Normally, this is done with the homeostatic values and artificial time
values tl. During the simulation, a finite number of time steps has to be stored. To be precisely:
for every Gauss point, mk (tl) and F (tl) have to be stored for each fiber family for N time steps
to be able to compute the stress. The 2nd Piola-Kirchhoff stress is approximated in the same way
as the density, yielding

Sk (t) = 2
N−1∑

l=0

mk (tl)

ρ0

qk (tl, t)
∂Ψk

(
Ik
4 (tl, t)

)

∂Ik
4 (tl, t)

(
λk

pre

λk (tl)

)2

Ak
0 ∆tl+1 . (3.51)

One possibility to memorize the history of the deformation would be to store the complete de-
formation gradient F (tl). Since the deformation gradient is not symmetric, nine scalar values
would have to be recorded for each time step. This is not necessary, since only the stress of
the collagen fibers depends on the past deformation. Since the fourth invariant can be expressed
in terms of the stretch in fiber direction, i.e. Ik

4 (tl, t) =
(
λk

preλ
k (t)

/
λk (tl)

)2 it is sufficient to
store just λk (tl). This leads to four scalar values contrary to the nine values for the deforma-
tion gradients. Hence, less storage is required. Since every summand in (3.51) depends through
Ψk

(
Ik
4 (tl, t)

)
nonlinearly on the current deformation state, the summation can not be simplified.

That means always N time steps have to be summed up. This can be very expensive, when e.g.
small time step sizes are required or the exponential survival function is used. This way of inte-
gration is called explicit, since it can be evaluated directly at time t. The production rate mk (t)
can be computed with equation (3.42). It does not influence S (t) as it is not included in the sum.

3.3.2.2 Implicit integration

In case of the implicit integration the value at time tl+1 instead of tl is used to approximate the
function in the interval ]tl, tl+1], see Figure 3.12(b). This leads to the following equations for the
density and the stress

Mk (t) =
N−1∑

l=0

mk (tl+1) qk (tl+1, t) ∆tl+1 , (3.52)
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Sk (t) = 2
N−1∑

l=0

mk (tl+1)

ρ0

qk (tl+1, t)
∂Ψk

(
Ik
4 (tl+1, t)

)

∂Ik
4 (tl+1, t)

(
λk

pre

λk (tl+1)

)2

Ak
0 ∆tl+1 . (3.53)

Now, the production rate mk (t) is part of the sum. It depends on Sk (t). Thus, equation (3.53)
cannot be evaluated directly as in the explicit case. Additionally, the volumetric stress Svol (t)
also depends on mk (t) for k = 1, . . . , 4.
To get a shorter notation (t) is omitted in the following. The growth stress Sg is a function of the
mass production rates and can hence be expressed as follows

Sg = g
(
m1,m2,m3,m4

) e.g.
= Se +

4∑

k=1

Sk + Svol . (3.54)

Here, exemplary the function is given for the whole stress as growth stress. Similarly, the density
production rate can be written as a function of stress leading to

mk = fk (Sg) = mk
0

[
1 + Kσ

g

(
σk (Sg)

σh

− 1

)
−Kτ

g

(
τw

τw;h

− 1

)]
. (3.55)

All equations together, i.e. equations (3.54) and (3.55) lead to a system of nonlinear equations in
Sg and mk, which reads

Sg − g
(
m1,m2,m3,m4

)
= 0

m1 − f 1 (Sg) = 0

m2 − f 2 (Sg) = 0

m3 − f 3 (Sg) = 0

m4 − f 4 (Sg) = 0 . (3.56)

It is not reasonable to solve these equations together in a large nonlinear equation, since they
have different units and orders of magnitude. In aortic tissue, the stresses are in the range of
105 Pa and the density production in the range of 10−3 g

mm3 . The density production rate is a local
quantity that is defined for each Gauss point. Thus, the density production rates are condensed
out and only one independent variable Sg and one equation remains. The equation is defined as

Sg − g
(
f 1 (Sg) , f 2 (Sg) , f 3 (Sg) , f 4 (Sg)

)
= 0 . (3.57)

This nonlinear equation is solved with a local Newton iteration. That means the following linear
equation is solved iteratively

Sg;i − g
(
Sg;i

)
+ ∆Sg;i+1 − dg

dSg

∣∣∣∣
Sg;i

: ∆Sg;i+1 = 0 . (3.58)

Hence, the following derivative is required

dg

dSg
=

4∑

k=1

∂g

∂mk

dfk

dSg
. (3.59)

The exact form of the derivatives on the right hand side are given in Appendix A.2.
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To solve the linearized residuum (2.63) of the structural equations, the derivative of the stress
with respect to C is required, it defines the constitutive matrixC = 2 dS/dC . The growth stress
has to be treated specially as it depends on the density production rate that depends on the strain
too. It follows for the growth constitutive tensor Cg that

Cg = 2
dSg

dC
= 2

∂Sg

∂C
+ 2

4∑

k=1

∂Sg

∂mk

(
∂mk

∂C
+

∂mk

∂Sg

dSg

dC

)
. (3.60)

Moving the last term of the right hand side to the left, a linear equation for Cg arises. It reads
(
I−

4∑

k=1

∂Sg

∂mk

∂mk

∂Sg

)
Cg = 2

∂Sg

∂C
+ 2

4∑

k=1

∂Sg

∂mk

∂mk

∂C
(3.61)

with Iijno = 1
2
(δinδjo + δioδjn). The derivative 2∂Sg

∂C
results in the normal constitutive matrix

depending on the chosen potentials. The missing derivatives, like ∂Sg

∂mk , ∂mk

∂Sg , and ∂mk

∂C
, are given

in Appendix A.2. The other parts of C, like 2dSe

dC
, can be computed normally.

This way of integration is more complex than the explicit way. At each Gauss point, a local
Newton iteration has to be solved. This local iteration can influence the convergence of the
global iteration, since equation (3.57) is not fulfilled exactly. Especially close to the solution,
when the error of the local iteration prohibits a higher accuracy of the global iteration. Since the
results for both methods are nearly similar (the explicit integration reacts one time step later to
changes in the surroundings), the explicit integration is used in the following.

3.3.3 Definition of homeostatic variables
Since the homeostatic state is the starting point for nearly all simulations that start with a healthy
artery, it will be further examined in this section. In literature, it is often stated that the simula-
tions start from the homeostatic state, but how it is achieved is not described in detail.
Patient-specific geometries stem from medical imaging. These geometries represent the pre-
stressed current configuration. Hence, techniques have been developed to imprint these pre-
stresses into the reference configuration (Gee et al. [27, 28]). In this model, a prestress is already
introduced with the prestretch of the constituents. Thus, no special techniques have to be used to
imprint it. Nonetheless, the reference configuration and the initial loaded configuration should
be identical to represent the desired geometry. Therefore, homeostatic variables and geometric
quantities like the thickness of the wall shall be chosen carefully.
To examine the homeostatic state, a thin walled cylinder with inner pressure is analyzed. To
save computational time only one quarter of the cylinder is modeled with symmetric boundary
conditions. In Figure 3.13(a) one can see a sketch of the geometry. The parameters used for the
material laws and the growth model are summarized in Table 3.1. They are taken from Wilson
et al. [110] of a 47 year old male patient, but the muscles cells are not modeled here. The cylinder
is meshed with one element in radial direction, twelve elements in circumferential and eight
elements in axial direction. As inner pressure a orthopressure of P = 13.322 kPa is applied to
the current inner surface. This corresponds to a mean value of the diastolic and systolic pressure
of a healthy patient. As one can see in Figure 3.13(b), the initial loaded configuration is quite
close to the reference configuration. The maximal radial displacement is ur = 0.068 mm. In
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3 Growth and remodeling

(a) Reference geometry ΩR (b) Initial loaded state Ω0

Figure 3.13: Reference and initial loaded configuration for a thin walled cylinder

Elastin µ = 77.7 kPa, ν = 0.49, φe = 0.3, λe
pre = 1.3

Collagen k1 = 917.175 kPa, k2 = 10.6, φk = 0.1375, λk
pre = 1.05

Volumetric κ = 10.0 MPa

Growth ρ0 = 0.00105 g
mm3 , tlf = 118.0 d, ∆t = 1.0 d, σh = 66.61 kPa, σg = σ

Geometry Ri = 10.0 mm, H = 2.0 mm, L = 10.0 mm

Pressure P = 13.322 kPa

Table 3.1: Parameters for a healthy artery of a 47 year old male patient (Wilson et al. [110])

the following, it will be shown that theoretical considerations predict a higher deviation. For the
example considered here the Kesselformel gives an approximation for the circumferential stress,
yielding

σcir =
PRi

H
(3.62)

with Ri denoting the inner radius and H the wall thickness. For the given geometry, this leads
to σcir = 66.61 kPa. To get a better understanding how this value is distributed over the con-
stituents, the stresses of the constituents are computed analytically in the reference configuration
for the ideal case, i.e. F (0) = 1. The volumetric stress is zero since J = 1. For elastin one gets
σe = 39.39 kPa · 1 and for a collagen fiber family σk ≈ 31.86 kPa ·Ak

0. Hence, the total stress
in circumferential direction is σcir ≈ 116.3 kPa, which is much higher than the value that stems
from the Kesselformel. If the corresponding inner pressure P = 23.26 kPa that is derived from
the Kesselformel is applied to the vessel, even larger radial displacements (umax

r = 0.408 mm)
arise. The question is where this difference stems from. The material is not an incompressible
material, but a slightly compressible one. Hence, it leads to small variations in the volume, i.e.
J ≈ 0.996. Due to the high bulk modulus κ, see Table 3.1, this variation leads to a high volumet-
ric stress of about σvol ≈ −39.84 kPa, what corresponds to the main part of the difference. This
slight variation of the volume cannot be predicted. Due to the high influence of the volumetric
stress, it is difficult to compute σcir in advance and thus, to define the proper thickness of the
wall, when the inner radius is preset.

38



3.3 Constraint mixture

In the following, the effect of this small deviation between initial loaded and reference configu-
ration is investigated. After the pressure is applied, growth and remodeling starts. It is expected
that the model reacts and finds a steady state close to the original state. This is not true, as one can
see in Figure 3.14 for different growth parameters. For high values of the growth factors, the sim-
ulation reaches a steady state, for low values, a steady state is not even achieved. In both cases,
the results are slightly better when the shear stress term is included in the density production,
since it controls the inner radius. The density changes most, when high growth factors for both
terms in the density production are used. In this case, the inner radius changes the least. Overall,
the model is not able to compensate quickly the variation between the two configurations.
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Figure 3.14: Time course of the radial displacements and the change of the reference density for
different combinations of growth parameters

In the most cases, the homeostatic state is the starting point for further investigations, i.e. it
should be simple and cheap to get. It is not feasible to perform a long simulation to get a steady
state, before the actual simulation starts. Furthermore, one has no control of the geometry of the
steady state. Thus, in the beginning of the simulation, a new prestretch and homeostatic stress
are defined in order to get a stable homeostatic state. This is done in the following way

λk
pre := λk;old

pre λk (0) and σk
h := σk (0) . (3.63)

To get the same stress as before, the stretches at deposition time have to be adapted too, i.e.
λk (τ) := λk (0). Moreover, the homeostatic inner radius, which is needed to compute the WSS
is adapted to the initial radius. Altogether, that means that the collagen fibers are deposited
with an adapted prestretch in the initial loaded configuration as sketched in Figure 3.15 con-
trary to the sketch in Figure 3.10, where they were deposited in the reference configuration. This
methodology makes only sense, when initial loaded and reference configuration are close to-
gether. Otherwise the newly computed prestretches differ a lot from the original values and are
not in a physiological range anymore. To guarantee that the initial loaded configuration matches
the initial geometry, this approach can be combined with the modified updated Lagrangian for-
mulation.
To get a better impression of the distribution of the homeostatic variables, a simulation with
three elements in radial direction has been performed. In Figure 3.16(a) one can see the distri-
bution of the circumferential prestretch over the radius. It decreases from the inner to the outer
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Figure 3.15: Different configurations and kinematic quantities after the adaptation of the home-
ostatic variables

surface. The homeostatic stress varies a lot over the radius, as shown in Figure 3.16(b). It de-
creases within an element, but the mean over each element increases with increasing radius.
Since the elastin stress is nearly constant over the radius and the stress of the collagen fibers is
defined through the prestretch, which does not oscillate, see Figure 3.16(a), the volumetric stress
is the only portion of the growth stress that can generate this oscillation. The hexahedral ele-
ments have a trapezoidal shape due to the curvature of the cylinder. This distortion causes shear
locking. Additionally, volumetric locking is present due to the nearly incompressible behavior of
the tissue. Both locking effects mainly influences the volumetric stress. To circumvent locking,
two element technologies are used, the Fbar method (de Souza Neto et al. [19]) and enhanced
assumed strains (EAS, Zienkiewicz et al. [114]). As one can see in Figure 3.16(b) the variation
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Figure 3.16: Variation over the radius of prestretch and homeostatic stress in circumferential
direction

within an element gets better, but does not completely vanish. The Fbar method leads to small
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oscillations in the prestretch, see Figure 3.16(a). Since the variations do not vanish and element
technologies cannot always be applied, a growth stress that includes only the contributions of
elastin and collagen was proposed in Section 3.3.1.
To test the stability of the homeostatic state, two different simulations have been performed. First
the pressure is held constant for a long time, second the pressure is increased by a factor of 1.3 for
a short time period and then reduced to its original value. With the constant pressure no alteration
in the displacements can be seen after 10000 days. In Figure 3.17 one can see the results for an
increase in pressure for one week. The growth model responds quickly to the disturbance and
the collagen mass is increased. When the pressure decreases again, the mass still increases, but
with a lower amount. After about 50 days the collagen mass decreases too. It takes long until the
homeostatic state is restored, but the radial displacement as well as the reference density of the
collagen fiber families converge to the homeostatic state. Thus, the stability of the homeostatic
state is shown.
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Figure 3.17: Radial displacements and change of the reference density of the axial and circum-
ferential fiber families for a one week jump in pressure

To show the applicability to more complex geometries, a short patient-specific segment of the
aorta is simulated. The thickness of the vessel wall is determined by the relation H = PRi

σcir
≈

0.2 Ri, where the values of the straight cylinder have been inserted. In Figure 3.18(a) one can
see the displacements after applying the inner pressure. The maximal value is 0.56 mm, the
mean value of the nodal displacements is 0.14 mm. This is just a small deviation, since the inner
radius is approximately 10 mm. In Figure 3.18(b) one can see the constant maximal displacement
magnitude for a long period of time. This means the proposed definition of the homeostatic state
is stable. In Figures 3.18(c)-(d) one can see the distribution of the new prestretch values of the
circumferential and axial fibers. Their values are still in a physiological range.

3.3.4 Analytic solution of the steady state
Normally, the human body is in the healthy homeostatic state, but it can react to alterations of
the environment. For example, patients with an elevated blood pressure have a thicker wall of
the arteries (Matsumoto and Hayashi [70]). Thus, the body is able to react to changes and to
maintain the resulting altered state. This state is a steady state and will be investigated in the
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(a) Displacement magnitude
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Figure 3.18: Radial displacements and prestretches for a patient-specific artery, view from two
different sides

following. Therefore, an analytic solution is computed. To be able to do so, wall shear stress
(WSS) is neglected. Furthermore, it is assumed that the volume change equals the mass change,
i.e. the volumetric potential (3.45) is zero. Starting point of the considerations is the homeostatic
state, which corresponds to the undeformed state. The homeostatic stress of one fiber family in
fiber direction is with equations (2.48), (3.38), and (3.51) defined as

Sk
h = φk

(
λk

pre

)2
2k1

((
λk

pre

)2 − 1
)

e
k2

“
(λk

pre)
2−1

”2

. (3.64)

In a steady state the displacements are constant. Hence, the stretch in fiber direction is constant
λk (τ) = λk (t) =: λk. That means the actual stretch of the collagen fibers is their prestretch, i.e.
λk (τ, t) = λk

pre. Since the density production depends on the deformation, it is also constant,
leading to

mk (τ) = mk (t) = mk
0

[
1 + Kσ

g

(
σk

σk
h

− 1

)]
∀τ : qk (τ, t) ≥ 0 , (3.65)

where σk is the constant scalar growth stress (3.43). It follows for the reference density of the
collagen fiber family that

Mk (t) = mk (t)

t∫

−∞

qk (τ, t) dτ
(3.38)
=

mk (t)

mk
0

Mk (0)
(3.65)
=

[
1 + Kσ

g

(
σk

σk
h

− 1

)]
Mk (0) .

(3.66)
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Since the volume change is defined through the density change (3.45), it leads to the following
equation for the determinant of the deformation gradient

J =
M (t)

M (0)
=

4∑
k=1

(
Mk (t)−Mk (0)

)
+ M (0)

M (0)
= 1 +

4∑

k=1

Kσ
g

(
σk

σk
h

− 1

)
φk . (3.67)

The stress of the fiber family in the steady state can be expressed with the help of their homeo-
static stress (3.64), yielding

Sk =
mk (t)

mk
0

Sk
h

(λk)2 Ak
0 . (3.68)

In order to determine the density production rate, one needs to define the growth stress σg. In
the following, the different possibilities are presented.

Fiber stress as growth stress, i.e. σg = σk

As first growth stress, the stress of the fiber family itself is chosen. The homeostatic stress is
defined by the fiber stress in fiber direction σk

h = Sk
h , as defined in equation (3.64). To compute

σk the Cauchy stress of the fiber family is required, it reads

σk =
1

J
F Sk F T (3.68)

=
σk

h

J

mk (t)

mk
0

Ak , (3.69)

where the relation
∥∥F ak

0

∥∥ = λk and the definition of the fiber direction in Section 2.1.1 have
been used. This yields the scalar growth stress σk that is defined in equation (3.43), as follows

σk =
∥∥σkak

∥∥ =
σk

h

J

mk (t)

mk
0

(3.65)
=

σk
h

J

[
1 + Kσ

g

(
σk

σk
h

− 1

)]
. (3.70)

Inserting equation (3.67) into equation (3.70) multiplied with J leads to a system of nonlinear
equations in the following form

[
1 +

4∑

k=1

Kσ
g

(
σk

σk
h

− 1

)
φk

]
σk = σk

h

[
1 + Kσ

g

(
σk

σk
h

− 1

)]
for k = 1, . . . , 4 . (3.71)

The two solutions of this equations are

σk = σk
h for k = 1, . . . , 4 and σk =

Kσ
g − 1

Kσ
g φc

σk
h for k = 1, . . . , 4 . (3.72)

For Kσ
g ≤ 1 the second solution makes no sense, since σk ≤ 0. Both solutions are independent

of the applied forces, since φk, Kσ
g and σk

h are defined through the chosen parameters. Thus,
the density, see equation (3.65), and therefore the volume in the steady state are independent of
the applied boundary conditions. That means in the case of hypertension the final density and
volume of the vessel wall are independent of the amount of increase of the blood pressure. The
model predicts the same volume change of the vessel wall for patients with low hypertension and
patients with high hypertension. The shape of the adapted vessel is different, since it is defined
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through the elastic properties of the wall. But the vessel wall of the patient with the higher blood
pressure should have a thicker wall and therefore a higher volume, than the one of the patient
with the slightly elevated blood pressure. Hence, it is not reasonable to use only the stress of the
fiber family as growth stress, when WSS is excluded.

Other growth stresses
For the other growth stresses, it is not possible to compute the value of σk generally, since the
relations are more complex. Since elastin does not remodel, its Cauchy stress σe depends on the
final deformation. Additionally, the volumetric Cauchy stress σvol depends in a complex way on
J . These two stresses lead to additional summands in equation (3.70). Thus, the terms depend-
ing on the boundary conditions do not cancel out. Hence, the adapted volume depends on the
boundary conditions.

To illustrate the obtained results, a simulation has been performed. The example of the previous
section is used, see Figure 3.13(a) and Table 3.1. The lifetime of collagen has been reduced to
tlf = 50 d to get a faster convergence to the steady state. Once the pressure is increased by a
factor of 1.05 and once it is decreased by a factor of 0.95. In Figure 3.19 one can see the resulting
displacements and the change of the reference density for σg = σk and σg = σ. The simulation
with the elevated pressure and the total stress as growth stress has not reached a steady state after
1500 days of growth, all other simulations reach a steady state. The displacement is the highest,
when the total stress is chosen as growth stress. When the fiber stress is chosen as growth stress,
the reference density nearly converges to its original value. The difference to the original value
stems from the fact that a numerical solution was computed, e.g. equation (3.67) is not fulfilled
exactly. In the case of the total stress as growth stress, the density is increased when the pressure
is increased and decreased when the pressure decreases. Thus, the volume of the steady state
depends on the applied force.
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3.3.5 Hypertension
High blood pressure is a common disease. The arteries adapt to the altered pressure such that the
inner radius is restored and the arterial wall gets thicker (Matsumoto and Hayashi [70], Fridez
et al. [22]). In this section, hypertension of a thin walled cylinder is modeled. Again the same
geometry as before, see Figure 3.13(a) and Table 3.1, is used. The mesh consists of 5 elements in
radial direction, 24 elements in circumferential direction and 16 elements in axial direction. The
pressure is increased by 30 percent. Since the segment of the artery is fixed in axial direction, the
vessel cannot expand in this direction. Thus, the increase in volume only leads to expansion in
the other directions and the grown tissue is compressed in axial direction. This leads to artificial
negative volumetric stresses in the axial direction. Hence, the stress in axial direction is smaller
than the homeostatic stress and will lead to degradation of the axial fibers, if the volumetric stress
is included in the growth stress. Thus, the volumetric stress is excluded from the growth stress
and only the stress of elastin and the collagen fibers is used, i.e. σg = σe + σc.
Since the pressure jump is large, the deformation is large too. Hence, the difference between
fibers that are deposited before the pressure jump and the fibers that are deposited afterwards is
significant. This effect has an influence on the results depending on the choice of the survival
function. When the oldest fibers are degraded, the younger fibers have to carry the load. If this
transition is too fast or discontinuous, it may affect the results. The exponential survival function
smooths this out. For the other functions it is visible in the results, see Figure 3.20. The linear
survival function leads to kinks after 70 d and 140 d of growth in the time course of the inner
radius. For the cosine survival function one can see a small oscillation with a period of approxi-
mately 120 d. Since the exponential survival function does not show oscillations, it is used within
this section.
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g = 3.0 and Kτ
g = 5.0

In Figure 3.21 one can see the evolution of the inner radius and the thickness of the vessel wall
for different growth factors. At first, the inner radius decreases after the increase due to the
pressure jump. Later, the inner radius increases again. For lower values of the growth factor Kσ

g

for stress, growth cannot compensate the pressure jump and the inner radius increases nearly
from the beginning. The radius increases again as more and more fibers that were deposited
before the pressure jump are degraded. Recall that the half-life of collagen is chosen as 50 days.
For all chosen parameters the thickness of the wall increases. For the highest value, it reaches a
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maximal value and slightly decreases afterwards. Compared to the observations in literature, the
model can predict a thickening of the wall, whereas the inner radius is not completely restored.

3.3.6 Aging of an artery

To validate the implemented growth and remodeling model, it is compared to results in literature.
In Valentı́n et al. [105], a three dimensional constraint mixture model is proposed. One example
in this paper is aging of an artery. A cylinder consistent of two layers (media and adventitia)
is modeled, see Figure 3.22 and Table 3.2. For simplicity only one element in axial direction
is used and movement in axial direction is prohibited. The mesh consists of 49 elements in
circumferential direction and 18 elements in radial direction.

Ri HAHM

Figure 3.22: Geometry

Geometry Ri = 6.25 mm, HM = 0.6 mm, HA = 0.3 mm,
P = 12.399 kPa

Growth ρ0 = 0.00105 g
mm3 , Kσ

g = Kτ
g = 1.0, σh = 65.0 kPa,

σg = σk, thl = 70 d
Elastin µ = 125 kPa, ν = 0.49, λe

pre = 1.3
Collagen k1 = 74.9 kPa, k2 = 20.0, λk

pre = 1.08
Media φe = 0.55, φk = 0.25, φm = 0.2

km
1 = 10.0 kPa, km

2 = 1.0
Adventitia φe = 0.05, φk = 0.95

Table 3.2: Material parameters of the arterial segment

During aging of arteries, elastin is degraded over time. Hence, the following relation µ(t) =
exp (−t ln(2)/(14600 d)) µ(0) is used for the elastin stiffness. This is a long term degradation.
Thus, the adaptation is only small within month. In order to model the example, a variable
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degradation of collagen fibers has been implemented. It reads

qk
expvar (τ, t) = exp


−

t∫

τ

K̂k
q

(
t̃
)
dt̃


 (3.73)

with

K̂k
q

(
t̃
)

=




[
∂Ψk

∂λk

(
λk

(
τ, t̃

))
∂Ψk

∂λk

(
λk

pre

) − 1.0

]2

+ 1.0


 ln(2)

texphl

. (3.74)

Thus, the total collagen mass can decrease even when the mass production is elevated. Addition-
ally, a different dependency of the density production rate on the growth stress and WSS is used,
leading to

mk (t) =
mk

0

2

[
χ

(
σk

σk
h

− 1

)
+ χ

(
− τw

τw;h

+ 1

)]
(3.75)

with

χ (·) =





0 for (·) ∈ (−∞,− π
2Kg

)
1
2
[1 + cos (2Kg (·))] for (·) ∈ [− π

2Kg
, 0)

1
2

[
6.0− 4.0 cos

(
1
2
Kg (·))] for (·) ∈ [0, 2π

Kg
)

5 for (·) ∈ [ 2π
Kg

,∞)

. (3.76)

In a small area close to the homeostatic values, the density production is nearly constant. That
means that small deviations from the homeostatic state are not penalized. Within this example,
the values are close to this area. Thus, the density production is only elevated marginally, as one
can see in Figures 3.23(c)-(d).
In Figure 3.23(a) one can see the evolution of the change of the inner radius over time for two
years of aging. The maximal value is about half of the value reported in Valentı́n et al. [105].
There are several explanations for this difference. First, the treatment of the smooth muscle
cells is different, since within this work smooth muscle cells are excluded from growth and
remodeling. Hence, they lead to an additional resistance to the widening of the artery. Second,
in Valentı́n et al. [105] they use a split of the deformation gradient and a different volumetric
potential, which also leads to differences.
The total mass decrease is so low that it cannot be seen in the volume, since the enforcement
of the volume change through the volumetric potential is not exact enough. Hence, the volume
change cannot be compared with the volume change of the reference solution in Valentı́n et al.
[105]. Other quantities have to be compared with the volume change. The sum of the densities
of all constituents gives no reasonable results, since the change in each density is very small
and cancellations lead to errors within the summation. Thus, the density of the circumferential
collagen fibers is examined. In Figure 3.23(b) one can see its decrease. The decrease is one
order of magnitude lower than the local volume change in the reference solution. The reduction
is the highest at the inner surface and decreases in outward direction. A jump occurs at the
transition between Media and Adventitia, since the material properties are different there. The
increase in collagen density production rates in circumferential and diagonal fiber direction, as
shown in Figures 3.23(c)-(d), is also one order of magnitude lower. The jump between Media
and Adventitia can be seen again. Also the decrease within each layer is visible.
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Figure 3.23: Time course of the inner radius, distribution of the change of density and density
production rates over the radius at different times for aging of an artery

The values of the measured quantities are all too low compared to the results in literature (Va-
lentı́n et al. [105]). But their trend can be reproduced, this means the results are qualitatively
correct. The differences in the results stem from different model assumptions, as has been ex-
plained already.

3.3.7 Exemplary formation of an aneurysm

Degradation of elastin is often regarded as an initial step in AAA formation (He and Roach [39],
Carmo et al. [15] and Sakalihasan et al. [83]). In the following section, the ability of the constraint
mixture model to reflect the genesis of an AAA is tested. Therefore, a long thin cylinder is used
as a starting point. The cylinder has the same properties as given in Table 3.1, only the axial
length is increased to 150 mm and κ is reduced to 1 MPa. As growth factor for the growth stress
Kσ

g = 1.0 is used. To initiate growth of an aneurysm, elastin is degraded in some regions. That
means the elastin stiffness µ is reduced as follows

µ (X) = ιe (X) µ0 , (3.77)
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3.3 Constraint mixture

where ιe describes the elastin content and µ0 the initial stiffness. In the first section, different
forms of aneurysms are created, in the second section, one form is investigated in more detail,
in the third section, the influence of the value of the growth factor on the development of the
aneurysm is shown, and in the fourth section, a mesh study is performed.

3.3.7.1 Different forms

To investigate the influence of elastin degradation on the formation of an aneurysm, the elastin
stiffness is reduced in certain regions to trigger the growth of an aneurysm. In Figure 3.24 one
can see three different shapes of these regions. To smooth the transition, cos functions have been
used. The functions that define the degradation area only depend on the axial position z and the
azimuthal angle φ. The exact definition of the degradation area can be found in Appendix A.3.

(a) Rectangular shape (b) Wedge shape

(c) Circles

Figure 3.24: Different patterns of elastin content ιe

(a) Rectangular shape (b) Wedge shape

(c) Circles

Figure 3.25: Resulting aneurysms after 7700 (rectangle), 3300 (wedge) and 4400 (circles) days
of growth for different patterns of elastin content ιe
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3 Growth and remodeling

All three shapes lead to a formation of an aneurysm. In Figure 3.25 one can see the resulting
shapes of the aneurysms. It is obvious that the form of the elastin degradation influences the
shape of the final aneurysm. The rectangle aneurysm results in a saccular aneurysm (cerebral
aneurysm), whereas the wedge shape leads to a fusiform aneurysm (AAA). The healthy part of
the artery is in all cases stable and the region, where the aneurysm bulges out, is close to the
region, where the elastin has been degraded. The rectangular shape takes the longest to evolve
an aneurysm, since the region of elastin damage is the smallest.

3.3.7.2 The rectangular shape in more detail

To get a deeper insight into the development of the aneurysms, the rectangular region is further
investigated. When the elastin stiffness is decreased, the stress decreases too. Thus, the mass
of the collagen fibers decreases, see Figure 3.26(b) and the wall gets thinner. This leads to a
further weakening of the wall, it starts to bulge out. In the beginning, the wall is able to nearly
compensate this effects, the increase in diameter is quite small, see Figure 3.26(a). When a
certain threshold is reached, the aneurysm develops abruptly. The aneurysm wall gets very thin,
as shown in Figure 3.27, since the mass increase is not high enough to compensate the expansion.
This extreme thinning of the wall has not been observed in reality. The presented approach only
models the turnover of the load bearing collagen fibers. Other processes occurring during the
creation of an aneurysm, like inflammation, are not considered. Hence, the wall is artificially
thinner.

 0

 4

 8

 12

 16

 0  2000  4000  6000  8000

ra
d
ia

l 
d
is

p
la

c
e
m

e
n
t 
[m

m
]

time [d]

(a) Radial displacement of the apex

 1

 1.25

 1.5

 1.75

 2

 0  2000  4000  6000  8000

re
la

ti
v
e
 d

e
n
s
it
y
 M

/ρ
0

time [d]

(b) Relative reference density M at the apex

Figure 3.26: Evolution over time of the aneurysm for a rectangular degradation of elastin

To characterize the developed aneurysm despite the shape, the von Mises stress and the reference
density are shown in Figure 3.28 for the final state. Both distributions are similar, the maximal
value is located at the apex. The von Mises stress in the apex is approximately three times higher
than the stress in the healthy part of the artery, as shown in Figure 3.28(a). The increase in the
reference density is not as high, see Figure 3.28(b). It is defined through an integral over time
over the stresses (see equations (3.35), (3.41), and (3.42)). Hence, the density change is defined
by the average stress change over a fixed time interval and not only by the maximal value at the
end time. Throughout the aneurysm sac, the reference density is elevated. Whereas in the healthy
part, the density is slightly decreased.
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(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 3.27: Slices of the developed aneurysm and position of the apex ×

(a) von Mises stress (b) Relative density M (t)/ρ0

Figure 3.28: Distribution of von Mises stress and relative density M (t)/ρ0 at the final state

To get a better insight into the effects leading to this density distribution, the relative densities
of the different collagen fiber families are investigated separately in Figure 3.29. The final dis-
tributions of the relative densities of the different fiber directions are drawn over lines through
the apex in axial direction in Figure 3.29(a), and in circumferential direction in Figure 3.29(b).
The position of the degradation area is indicated with strokes at the x axis. Again the locality
of the aneurysm is visible. There is a discontinuity at the border of the degradation area for all
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Figure 3.29: Distribution of relative fiber densities at the final state over lines through the apex
in axial and circumferential direction
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3 Growth and remodeling

fiber directions. The fibers in axial direction behave different than the other fiber directions. The
degradation of elastin is pronounced in axial direction. Hence, the distortion is distributed over
a larger region. This leads to smaller stresses in the axial direction. Thus, the increase in mass is
the smallest. The cylinder is fixed in axial direction at the boundary. This leads to compression
in the healthy part and consequently to a decrease in mass. The maximal increase in density in
the axial direction is next to the degradation. This effect stabilizes the healthy part, since the
resistance is increased.

3.3.7.3 Influence of growth factors

The growth factor Kσ
g plays an important role in the mass production defined in equation (3.42).

It determines how stress influences growth. To investigate the influence of the growth factor on
the formation of an aneurysm, its value was varied within [0.125, 1.5]. Elastin has been degraded
in the rectangular area. Higher values of the growth factor were not used, as numerical problems
occurred. The transition at the border of the degradation was too abrupt and led to stability
problems in this area. In Figure 3.30 one can see the resulting displacement and density time
curves for four different values of the growth factor. The highest value of the growth factor did
not lead to an aneurysm, since a thickening of the wall increased its stability, see Figure 3.31. In
this case, the decrease of the density at the beginning is the highest.
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Figure 3.30: Evolution of important quantities of the aneurysm for different values of the growth
factor, the arrow indicates increasing Kσ

g

The other simulations have been terminated, when the aneurysms had approximately the same
size. The density increase is the smallest for the smallest Kσ

g . Thus, it has the thinnest wall, but
all three aneurysms have a very thin wall, as shown in Figure 3.31. The locality of the aneurysm
increases with increasing growth factor. The higher the growth factor the later an aneurysm
evolves. When the aneurysm arises, the thickening of the wall cannot compensate the weak-
ening of the wall that stems from remodeling. During enlargement the highly stretched older
fibers are replaced by new fibers with less resistance, since they are deposited at their preferred
stretch state. Hence, the resistance of the fibers decreases. With higher growth factors, the tissue
adapts more to the changes in the environment. Thus, the point, where the mass increase cannot
compensate the loss of the resistance, is later. Hence, it takes longer until an aneurysm evolves.
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(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 3.31: Slices of the developed aneurysm for different growth factors, green: Kσ
g = 0.125,

orange: Kσ
g = 0.5, blue: Kσ

g = 1.0, and red: Kσ
g = 1.5

3.3.7.4 Mesh refinement

In this section, the influence of the mesh is investigated. since the diameter increases, the ele-
ments at the degradation zone are getting larger. Additionally, the thickness of the wall decreases.
This leads to huge distorted elements at the end of the simulation. To get rid of these elements,
either an adaptive mesh refinement can be performed or the mesh is very fine from the start of
the simulation. The second approach is applied within this section. Therefore the number of el-
ements was increased in the rectangular degradation area, as depicted in Figure 3.32. The exact
number of elements in the refined area for the different meshes is listed in Table 3.3. In the other
regions the mesh was adapted, but not as much refined. A smaller growth factor Kσ

g = 0.125 has
been chosen to get a faster development of the aneurysm, since the simulation is quiet costly for
the finer meshes (mesh 5 consists of approximately 90,000 elements).

nele
z

nele
ϕ

Figure 3.32: Area of mesh refinement

nelez neleϕ

mesh 1 11 8
mesh 2 18 12
mesh 3 36 24
mesh 4 72 48
mesh 5 144 96

Table 3.3: Number of elements in the refined re-
gion for the different meshes

In Figure 3.33 one can see the evolution of the radial displacement of the apex and in Ta-
ble 3.4 the list of its final values for the different meshes. The coarse meshes lead to smaller
aneurysms. This is reasonable, since locking is higher for these meshes. The difference increases
with increasing time, since the distortion of the elements increases during the development of
the aneurysm. The results converge to the solution of the finest mesh with increasing mech size.
The difference between the two finest meshes at the final shape is negligible (about 1.6 %).

53



3 Growth and remodeling

 0

 5

 10

 15

 20

 0  1000  2000  3000  4000

ra
d
ia

l 
d
is

p
la

c
e
m

e
n
t 
[m

m
]

time [d]

mesh 1

mesh 2

mesh 3

mesh 4

mesh 5

Figure 3.33: Evolution of the radial dis-
placement at the apex

ur rel. error
mesh 1 13.51 mm −27.78%
mesh 2 14.98 mm −19.92%
mesh 3 17.46 mm −6.65%
mesh 4 18.41 mm −1.58%
mesh 5 18.70 mm −

Table 3.4: Final values of ur for the dif-
ferent meshes
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4 Inverse analysis

In this chapter, the method, which is used to determine the growth parameters, is introduced.
First, the basic concept of the method is given. In the second part, a possible re-parameterization
is presented.

4.1 Optimization algorithm

Optimization is a popular field of interest in mathematics. For a wide variety of problems, opti-
mization algorithms exist, which are adapted to the needs of the particular problem (Haftka and
Gürdal [35]). Within this work, optimal growth parameters p are searched to be able to reproduce
the growth process of an abdominal aortic aneurysm (AAA). Since the growth problem cannot be
solved analytically, it is not possible to determine analytic derivatives of the objective function.
Thus, the derivatives have to be approximated by Finite Differences. Since the computation of
higher order derivatives with Finite Differences is expensive, the optimization algorithm should
if at all require the gradient. The objective function π for the given problem can be written in the
following form

π (p) = ‖um − u (p)‖2 =
nm∑
j=1

(
um

j − uj (p)
)2

= rTr , (4.1)

where um are the measured displacements, u (p) the computed displacements for given param-
eters p and r the residuum. nm is the number of measured quantities. The displacement vectors
are composed of the displacements of the nodes of interest in directions of interest. That means
not every node is evaluated and not all displacement components in a monitored node have to
be measured. The choice of the objective function (4.1) leads to a least squares optimization
problem as follows

min
p∈Rnp

π (p) , (4.2)

where np corresponds to the number of optimization parameters. For the existence of an unique
optimal solution, it is necessary that the number of measured quantities is larger than the number
of parameters, i.e. nm ≥ np. This condition is not sufficient. An efficient method to solve this
type of problems is the Levenberg-Marquardt algorithm. An adapted version is implemented
in BACI and has been used to fit material properties for lung parenchyma (Rausch et al. [79],
Rausch [78], and Bel-Brunon et al. [10]).

4.1.1 Levenberg-Marquardt algorithm

The origin of this method goes back to Levenberg [61] and Marquardt [67]. It bears resemblance
to Newton’s method for solving a nonlinear equation. The optimal parameters are computed
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iteratively, leading to
pi+1 = pi + ∆pi+1 . (4.3)

A formula for the increment can be derived from the linearization of the displacements with
respect to the parameters, i.e. Linu = u (pi) + J ∆pi+1, where J is the Jacobian matrix of the
displacements u with respect to p. This linearization is inserted into the objective function and
leads in combination with an additional regularization to the following form of the increment

∆pi+1 =
[
JTJ + µ diag

(
JTJ

)]−1
JTr . (4.4)

The scalar variable µ is a regularization factor, which is updated corresponding to the pseudo
transient continuation method (Kelley et al. [53]). The Jacobian matrix can be approximated by
a Finite Difference, yielding

Jjl =
∂uj

∂pl

.
=

uj

(
p + εl

)− uj (p)

‖εl‖ , (4.5)

where εl is a small perturbation of the following form εl
k = δlkε. This means for each optimiza-

tion step, np + 1 forward simulation have to be computed. The np + 1 simulations are composed
of one unperturbed and np perturbed simulations. These simulation can be computed parallel
to each other, since the algorithm is implemented with nested parallelization. Hence, one opti-
mization step takes the time of one forward simulation if enough resources are available. The
optimization algorithm is terminated, when the error of the gradient is smaller than the prescribed
tolerance ε, e.g. ε = 10−5 mm2. When no descent direction is found, the algorithm is stopped
too.

4.1.2 Measured displacements
To be able to evaluate the objective function defined in equation (4.1), the measured displace-
ments have to be computed at the nodes of interest. The measured displacements stem from
computed tomography (CT) data of follow up scans. These two CT scans have to be mapped to
each other to get a displacement field u. To simplify this procedure, the CT images are converted
to binary pictures. The new images only include the luminal volume that is colored white and the
intraluminal thrombus (ILT) that is colored gray. The rest of the image is colored black. Based
on these images a similar image registration as in Bel-Brunon et al. [10] is performed. For more
details regarding image registration the reader is referred to Modersitzki [71] and Haber et al.
[34]. The basic concept is introduced in the following.
In Figure 4.1 one can see one slice of the first CT scan, the source image IS , that is mapped by ζ
to one slice of the second scan, the target image IT . To quantify the quality of the mapping, the
following similarity measure is used

D (u) =

∫

Ω

[IS (x)− IT (ζ (x))]2 dx (4.6)

with ζ (x) = x + u (x) and Ω the domain of the CT scans. The final displacement field u is
defined by a minimization problem in the following form

min
u∈L2(Ω)

(D (u) + αR (u)) (4.7)
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target image IT

ζ

source image IS

Figure 4.1: Mapping between the source image (left) and the target image (right)

with an elastic regularization R (u) (Modersitzki [71]) and a regularization parameter α. The
elastic regularization is added to ensure the well-posedness of the optimization problem. The
minimization problem is solved with a Gauss-Newton optimization scheme combined with a
multiresolutional approach (Haber and Modersitzki [33]). The resulting displacement field u is
specified on the grid that is defined by the pixels of the CT images. Hence, it has to be interpo-
lated to evaluate the measured displacements um in the objective function (4.1) at the respective
nodes.

4.2 Parameter distribution
To get a spatial distribution of the optimization parameters, they have to be parameterized. A dis-
crete element wise description is too expensive with the Levenberg-Marquardt algorithm com-
bined with Finite Differences. Thus, the parameter space is reduced. The parameterization should
be applicable to complex geometries, since the optimization approach shall be used for patient-
specific geometries. In the following sections, a method for the parameterization based on ideas
from multigrid techniques is presented.

4.2.1 Definition of patches
In a first step, the geometry is divided into patches, on which a constant optimization parameter
is prescribed. The following procedure to define patches is especially designed for tube like
structures with a centerline. The structure is split into slices with cutting planes orthogonal to
the centerline. Each slice can be cut into several patches in circumferential direction. In Figure
4.2 one can see twenty patches for the aneurysm that results from the wedge shaped degradation
of elastin. The straight parts at the endings of the aneurysm are treated separately, since they
represent a healthy region. This region is only of minor interest. Hence, the resolution of the
optimization parameter is very low there. To get a relation between the constant optimization
parameters p on the patches and the discrete element wise parameters pele, a patch matrix P̃ is
introduced. It is defined in the following way

P̃ij =

{
1 if element i belongs to patch j

0 else
. (4.8)
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(a) Front view (b) Back view

Figure 4.2: Possible patches for the aneurysm that is depicted in Figure 3.25(b)

The patch matrix fulfills the following condition
∑

j P̃ij = 1. The relation between optimization
parameters and element wise parameters is defined as follows

pele = P̃ p . (4.9)

In the context of multigrid methods, the matrix P̃ would be called a prolongation operator. This
parameterization is discontinuous at the patch boundaries, jumps will occur there. This leads to
artificial discontinuities in the stresses of the solution of the Finite Element problem and may
also influence the convergence of the optimization algorithm. Thus, a smoothing technique is
presented in the following section.

4.2.2 Smoothing of patches

To be able to smooth the jumps between elements, a graph of neighboring elements is build.
Neighboring elements are defined in the following way: two elements are neighbors, if they share
a node. The element graph contains only those elements, who are included in the optimization.
In aneurysms for example the elements of the thrombus are excluded. As a positive side effect,
this graph could be used to define patches with a partitioning algorithm from a third-party library
like ParMETIS (Karypis and Kumar [51]). This library is already used in BACI for distributing
the node graph over different processors. To smooth the transition between the patches, the
Laplacian matrix A (Mohar [72]), of the element graph is required. It is defined as

Aij =





deg (vj) for i = j

−1 if element i is a neighbor of element j

0 else
, (4.10)

where deg (vj) is the degree of the graph vertex vj . In the special case here, it corresponds to the
number of neighboring elements of element j. The Laplacian fulfills the condition

∑
j Aij = 0

and is symmetric. To illustrate the presented quantities, a small two dimensional example is
given in Figure 4.3. In the left picture one can see a mesh that consists of seven elements. The
corresponding element graph is sketched in the middle. The Laplacian matrix is given on the
right. As one can see, elements two and five are neighbors, even if they do not share an edge,
since they share a node.
As smoothing technique the Jacobi method (Smith et al. [90]) is used. The smoothing matrix
has the following form (1− ωD−1A) with damping parameter ω = 2

3
and the diagonal matrix
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Figure 4.3: Example for the Laplacian matrix

D = diag (A). The damping parameter is fixed here for simplicity reasons, generally it can vary
in the interval ]0, 2[. Another choice could be ω = 4

3λmax(A)
. In this case the maximal eigenvalue

of A is needed, which can be approximated for large matrices. The smoothing matrix can be
applied several times (nsmo). The smoothed patch matrix P is defined as

P =

[ ∏
nsmo

(
1− ωD−1A

)
]

P̃ . (4.11)

The sum of all elements of a row remains one (
∑

j Pij = 1), since A has a zero line sum. An
additional feature is the preservation of the sum of each column

∑
i Pij =

∑
i P̃ij . That means

the influence of each patch remains constant, if all elements are treated as equal to each other.
The relation between element-wise and patch-wise parameters is defined as

pele = P p . (4.12)

In Figure 4.4 one can see the influence of the smoothing on a parameter distribution with four
patches. If one smoothing step is applied, the parameters in one element row on each side of
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Figure 4.4: Influence of smoothing on the parameter distribution of a square with four patches,
top row: plot over a line at the top of the square
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4 Inverse analysis

the boundary are altered. With more smoothing steps, the influence of the parameters on the
neighboring patches gets larger. After ten smoothing steps, the values in the corners are slightly
altered, since each patch consists of ten elements in each direction. The values are further altered,
when more smoothing steps are applied. Thus, the optimization parameter has a different value
than all elements corresponding to its patch. In this case, the maximal (or minimal) value of
the optimization parameters p is not identical to the maximal (or minimal) value of the element
wise parameters pele. Hence, the number of smoothing steps has to be limited, when the extreme
values shall be restored. If there are more patches, the limit of smoothing steps decreases even
more, since there will be patches that are smoothed from two sides. Hence, the number of max-
imal smoothing steps reduces to half of the element number. The smoothing of the parameter
between the patches is not linear, as can be seen in the top row of Figure 4.4.

(a) without smoothing (b) nsmo = 5 (c) nsmo = 10 (d) axial cut

Figure 4.5: Influence of smoothing on the parameter distribution of a patient-specific aneurysm

In Figure 4.5 one can see the effect of smoothing for a patient-specific geometry. Thus, the
presented method is applicable to complex geometries. The smoothing occurs only locally at the
boundaries of the patches, in the rest of the patches the original value is restored. In Figure 4.5(d)
one can see that the Thrombus (blue) is handled separately and does not influence the smoothing
of the wall (yellow to red). Hence, a technique has been developed that is able to provide a
spatial distribution of parameters with a reduced number of variables and that is applicable to
patient-specific geometries.
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5 Towards prediction of growth of an
aneurysm

One aim of this work is to find a growth simulation that is able to reproduce the growth be-
tween two known states of an aneurysm. To develop a methodology to accomplish this goal,
an academic setting is defined. It is well suited to validate the proposed framework, since the
growth process is known. In the first section, the academic setting is introduced. In the second,
an important configuration that is defined in the following section is investigated in more detail.
Afterwards, the growth parameters are determined by inverse analysis. In the end, the predicted
results are compared to the reference solution to quantify the error.

5.1 Academic setting

When elastin is degraded in a section of a straight cylinder, the formation of an aneurysm can
be simulated (see Section 3.3.7). Hence, the complete process of the formation of this special
aneurysm with the constraint mixture model is known. This knowledge is used to define the
academic setting. It is called academic, since the simulation starts from a straight cylinder, which
is only an idealized model of the geometry of an artery and because elastin is degraded in a well
defined area.
To develop a suitable methodology to predict growth of an abdominal aortic aneurysm (AAA),
elastin is degraded in a wedge shaped area, see Figure 3.24(b), since this led to the formation of
a fusiform aneurysm, see Figure 3.25(b). The parameters listed in Table 3.1, an axial length of
150 mm, and a uniform growth factor Kσ

g = 1 are utilized for a growth and remodeling simula-
tion starting at the homeostatic state that is described by a straight cylinder. This simulation is
the reference simulation, which shall be reproduced.
The homeostatic variables λk

pre and σk
h have to be defined in advance. Hence, a preliminary

simulation is performed. The pressure is applied to the inner surface of the cylinder and the
homeostatic variables are computed as described in Section 3.3.3. To get rid of the effects of
the fixation at the top and bottom of the cylinder, the values of the homeostatic variables that
were computed in the middle of the cylinder are prescribed to the whole cylinder. Hence, the
homeostatic variables are known for all following simulations.
In order to be as close to a more realistic setting as possible, three configurations are defined
at important points in time: the flying start configuration, the intermediate configuration, and
the predicted configuration. A sketch of the different configurations can be found in Figure 5.1.
In the patient-specific case, two computed tomography (CT) scans of the developing aneurysm
are known, as shown in Figure 1.3. To model the situation of the first CT scan, the simulation
is stopped at time t1 when an aneurysm has formed. This is the case after approximately eight
years, i.e. t1 ≈ 8 y. The resulting geometry is called flying start configuration. It corresponds to
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5 Towards prediction of growth of an aneurysm
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Figure 5.1: Scheme of the academic setting, three substantial steps are marked with colors: the
altered flying start configuration (green), the inverse analysis of growth parameters
(cyan), and the forward simulation to predict future growth (magenta)

the geometry created of the first CT scan. Hence, it will be the starting point of a new simulation
that is used to reproduce the given growth process. Since the second CT scan is usually recorded
one year after the first one, the simulation is again stopped at time t2 = t1 + 1 y to define the
intermediate configuration. Finally, the predicted configuration is set at least another year later,
depending how long one wants to look into the future (t3 = t1 + 2 y).
These three configurations are defined by the reference simulation. Thus, the parameters of the
growth model, e.g. growth factor, elastin content, and others, are known from the reference simu-
lation. The history of the internal variables like collagen stretch and mass is also available. These
quantities are unknown in a realistic setting, since the homeostatic state of a grown aneurysm as
well as the growth parameters are not defined. Hence, when the flying start configuration is used
as starting point for a new growth simulation, these quantities are unknown. Only the deformed
geometry and the homeostatic variables from the forward simulation are utilized. Thus, the re-
sults of the simulation starting from the flying start configuration will differ from the results of
the reference solution. Hence, the growth parameters, like growth factor Kσ

g and elastin content
ιe, have to be adapted to the altered situation to be able to reproduce the reference simulation.
Since the influence of these parameters is only visible in the time course of the simulation, an
inverse analysis is performed to determine them.
To determine growth parameters that are able to reproduce the reference solution, three differ-
ent steps, which are shown in Figure 5.1, are conducted. The first step is to characterize the
influence of the history of the internal variables on the growth process. This knowledge is then
used to modify the history in the flying start configuration to be as close to the reference state as
possible. Afterwards, the growth parameters will be inversely determined. The objective func-
tion is defined as the difference between the results from a simulation starting from the flying
start configuration and the intermediate configuration of the reference simulation. The obtained
growth parameters can be compared with the original chosen parameters to further quantify the
influence of the flying start configuration. As last step the flying start configuration and the in-
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5.2 Flying start configuration

versely determined parameters are used for a forward simulation to predict the future growth of
the aneurysm. This grown configuration can then be compared to the original predicted config-
uration. This is only possible in the academic setting, since normally one does not know this
state. The comparison is a good measure for the quality of the proposed framework and is used
to validate it.
In order to compare the different simulations, the maximal diameters in x and y direction are
examined. The diameters are defined by the difference of the x or y coordinates of the respective
points marked in Figure 5.2. All points that are utilized are located on the outer surface of the
aneurysm. These diameters are sensitive to changes in the growth process, since the deformation
related to the growth process is large in the aneurysm sac. Additionally, the evolution of the
diameter is a measure of the growth gradient. Hence, the diameters are a meaningful choice.

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 5.2: Slices of the flying start configuration, definition of the diameter in x and y direction

Remark: 5.1.1 In the rest of the chapter the reference configuration ΩR (see Section 2.1.1) is
called material configuration to avoid confusions with the reference simulation.

5.2 Flying start configuration

The flying start configuration plays an important role, since it is the starting point of the simu-
lation that shall predict growth. Its geometry is defined by the deformed state of the reference
solution at time t1. Since during the formation of the aneurysm, the wall gets very thin, see
Figure 3.27, the thickness of the wall is taken over in the flying start configuration to exclude
effects arising from a different wall thickness. A constant wall thickness gives completely dif-
ferent results. This information is not available in the patient-specific case. Hence, in this point
the academic setting differs from the patient-specific case.
Since it is assumed that the history of the deformation, i.e. the mapping from the homeostatic
state to the flying start configuration, is not known, differences compared to the reference simu-
lation arise, when the simulation is started from the flying start configuration. These differences
are discussed in the following section. The influence of the history variables is investigated in
the second section. In the third section, methods to define an approximation of the history are
introduced and their influence on the forward simulation of growth is examined.
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5 Towards prediction of growth of an aneurysm

5.2.1 Differences arising from the missing mapping to the
homeostatic state at the flying start configuration

To get a better impression of the situation when the simulation is started from the flying start
configuration without any modifications, the corresponding configurations and kinematic quan-
tities are sketched in Figure 5.3. One important change compared to the case, which is shown in
Figure 3.15, is the new material configuration Ω̃R that is identical to Ωt1 , since the deformation
for t < t1 is unknown. The quantities that change due to this new material configuration are
marked with (̃·).

G
k
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k

h

Ω̃0

G
e

h

κe
n

Ω̃t2

F̃ (t2)

Ω̃t3

F̃ (t2, t3)

G
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h

Ω̃R = Ωt1

F̃ (t3)

timet1 t2 t3

κk
n
(t1) κk

n
(t2) κk

n
(t3)

F̃ (t1, t2)

F̃ (t1)

Figure 5.3: Scheme of different configurations and kinematic quantities after the simulation is
started at the flying start configuration

In a first test, growth and remodeling is started without any special treatment. The deformed
geometry of the reference solution at time t1 is used as geometry for a new simulation. Hence,
information about the past deformation is neglected and the history variables are fixed to the
following values: mk (τ) = mk

0 and λk (τ) = 1 for τ ≤ t1. The time interval [t1 − tlf , t1] is
split into intervals of the length ∆t to define distinct deposition times τ of the different fibers.
The fiber directions are adapted to the new geometry. The elastin content ιe = 1 and the growth
factor Kσ

g = 1 are assumed to be constant if not stated otherwise.
In Figure 5.4 one can see the evolution of the diameters over time. When the pressure is applied,
the diameter is larger than the one of the original geometry. This reflects the neglect of the history
of the deformation. Thus, the geometry already changes before growth starts. To get rid of the
diameter change in the beginning, the modified updated Lagrangian formulation (MULF, Gee
et al. [27, 28]) is used, while the pressure is applied. Hence, the displacements are zero in the
beginning. It results in the green curve in Figure 5.4.
The slope of the black curve in Figure 5.4 is smaller than the one of the reference curve, which
is shown in red. That means the growth gradient is too small. It seams that the wall is able to
compensate more of the enlargement due to remodeling. Thus, the increase of the diameter is
lower. When MULF is applied the slope decreases even more, but the growth problem starts
from the exact geometry. The enlargement is too small in both simulations.
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Figure 5.4: Evolution of diameters over time for a growing aneurysm that was started in the
flying start configuration without an approximation of the history

In Figure 5.5 one can see slices of the deformed aneurysms in the intermediate configuration. In
both cases the aneurysm sac translates in direction of the less damaged area in the bottom of the
pictures. The simulation tends to straighten the healthy artery. It will be seen in the following sec-
tions that this translation is hard to correct. The resulting aneurysms of the restarted simulations
have a slightly thicker wall, which is caused by the higher density production and the resulting
lower enlargement of the aneurysm. The diameter change is underestimated in both cases. Sum-
marizing, the neglected deformation in the flying start configuration has a large influence on the
results of the growth problem. Thus, the flying start configuration has to be investigated in more
detail.

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 5.5: Slices of the intermediate configuration, red: reference solution, black: simulation
starting from the flying start configuration, and green: MULF is used additionally

In the healthy part of the artery, elastin is not degraded and does not remodel. Hence, the com-
plete deformation from the homeostatic state to the flying start configuration leads to stress in
elastin. Since elastin is degraded in the sac of the aneurysm, the largest part of the deformation
does not lead to stresses in elastin. Moreover, elastin does not influence the deformation there.
In the other regions the deformation is small. Additionally, the stiffness of elastin is small com-
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5 Towards prediction of growth of an aneurysm

pared to the stiffness of the collagen fibers (see Table 3.1). Hence, its influence decreases even
more. Thus, the effect of the past deformation on elastin is neglected in the following.
The fiber directions in the flying start configuration have to be newly defined, since those from
the reference solution are defined for a straight cylinder. The original fiber direction transformed
into the current configuration cannot be used, since it is assumed that the history of the de-
formation is not known. The axial and circumferential directions of the cylinder are projected
tangentially to the outer surface of the deformed geometry. They coincide with the original axial
and circumferential directions in the current configuration, since the principal axes of the de-
formation coincide with the axial and circumferential direction in the respective configuration.
The diagonal fibers are oriented diagonally to these two newly defined fiber families. This as-
sumption does not always lead to the original fiber directions, since the deformation in axial
and circumferential direction may be different. Hence, the original diagonal fibers in the current
configuration are oriented closer to the direction with the higher deformation. This effect is not
further investigated, since its influence could not be quantified and a better approximation is not
available.
When the simulation starts from the flying start configuration, the material configuration Ω̃R

is different than the material configuration ΩR of the reference simulation. Hence, the densities
that describe mass per reference volume are now defined with respect to a different configuration
than before. In the following, this effect is further investigated.
To exclude other effects, it is assumed that only the densities are defined with respect to the new
configuration and all other parameters are not affected. All quantities that are defined with respect
to the new reference configuration are marked with (̃·). For better illustration, a local volume
increase is considered. Hence, the volume element dV in the old material configuration ΩR is
transformed into the volume element dṼ in the new material configuration Ω̃R with dV < dṼ .
The density M̃ (t1) is identical to the current density ρ and thus to the initial density ρ0, since
the density remains constant during growth, i.e.

M̃ (t1) = ρ = ρ0 . (5.1)

Since the simulation starts from the flying start configuration, a new basal mass production rate
m̃k

0 is defined. It follows from (3.38) and (5.1) that it is identical to the original value, i.e.

m̃k
0 =

M̃ (t1)

ak
m

= mk
0 , (5.2)

but it is defined with respect to a different volume. The basal density production rate was orig-
inally defined such that the reference density, and hence the mass, remains constant during re-
modeling (3.38). That means for the special case here, the newly defined basal rate is defined
such that it restores the locally increased mass during remodeling. It follows that the local mass
production rate that is related to the basal density production rate is higher, yielding

m̃k
0 dṼ > mk

0 dV . (5.3)

The new definition of the basal rate m̃k
0 influences the density production rate m̃k (t1) that is

defined as follows

m̃k (t1) = m̃k
0

[
1 + K̃σ

g

(
σ̃k (t1)

σk
h

− 1

)]
, (5.4)
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5.2 Flying start configuration

where K̃σ
g denotes an adapted growth factor. Since it was assumed that only the densities are

affected by the restart, the growth stress σ̃k (t1) that is defined in the current configuration has
the same value as before, i.e. σ̃k (t1) = σk (t1). The local mass increase should be independent
of the choice of the reference configuration, yielding

m̃k (t1) dṼ
!
= mk (t1) dV . (5.5)

From the definition of the density production rates, equations (3.42) and (5.4), it follows from
(5.5) for the adapted growth factor that

K̃σ
g = Kσ

g

dV

dṼ︸︷︷︸
<1

+

<0︷ ︸︸ ︷
dV − dṼ(

σk (t1)

σk
h

− 1

)

︸ ︷︷ ︸
>0

dṼ

︸ ︷︷ ︸
<0

< Kσ
g . (5.6)

That means a smaller growth factor K̃σ
g than the reference growth factor Kσ

g is required to not
overestimate the mass production, what explains the smaller enlargement of the diameter in
Figure 5.4. The second term in (5.6) depends on the growth stress σk (t1). Hence, it is not possible
to determine an adapted K̃σ

g that ensures the same mass production for the complete time. This
will influence the results of the inverse analysis, since the growth factor is determined there.
To summarize, it is expected that the optimal growth parameter in the aneurysm sac, where the
volume increases, will be smaller than the reference value.
Since the homeostatic state of a grown aneurysm is not known, the growth simulation has to be
started differently than in the reference simulation. The equations developed in Section 3.3 can
only be solved, when the history of the deformation is known at the beginning. Corresponding
variables are for example the stretch λk (τ) and the density production rate mk (τ) at time τ < t1.
If the simulation starts from the homeostatic state, these quantities can be set to the homeostatic
variables. This is also possible here, but it will lead to a different deformation, see Figures 5.4
and 5.5. Hence, the history of the deformation of the collagen fibers has to be approximated in
the flying start configuration. In order to find a reasonable approximation, the influence of the
history variables on the growth process has to be known.

5.2.2 Influence of history variables
In order to quantify the influence of different history variables, several simulations are per-
formed. In each simulation, the history is manipulated differently, i.e. λk (τ) and mk (τ) are
modified for τ < t1. There are three basic modifications, which can be combined with each
other:

1. Mass is modified such that the mass of the collagen fibers is equally distributed among all
the fibers, i.e.

mk
mod (τ) =

M (t1)− (1− φc) ρ0

4 ak
m

∀ τ ≤ t1, k ∈ {1, 2, 3, 4} . (5.7)
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5 Towards prediction of growth of an aneurysm

During growth, the mass production varies for the different fiber directions. Hence, every
direction has a different influence on the stresses. When the simulation is restarted, this
information is lost. Each fiber family has to be treated equally. This effect is reproduced
with this first modification.

2. For the stretch is assumed that the stretch of all collagen fibers is the same as the one of
the newest fibers, i.e.

λk
mod (τ) = λk (t1) ∀ τ ≤ t1, k ∈ {1, 2, 3, 4} . (5.8)

Since the information about the past deformation is lost, the values of λk (τ) have to be ap-
proximated after the restart. The simplest method is to imprint no history, as it is depicted
in Figure 5.3. That means all fibers have the same value λk (τ) = 1. This corresponds to
the modification given in (5.8) for a forward simulation, where it has to be incorporated
that the deformation does not start from zero.

3. The stretch is linearly interpolated in deposition time between the stretch of the oldest and
the newest fiber, i.e.

λk
mod (τ) = λk (t1 − tlf + ∆t)

t1 − τ

tlf −∆t
− λk (t1)

t1 − tlf + ∆t− τ

tlf −∆t

∀ τ ≤ t1, k ∈ {1, 2, 3, 4} .

(5.9)

Another possibility to approximate the stretch history is to interpolate discrete values of
the past deformation. These discrete values itself are approximated values of λk (τ) at
given points in time. For a linear interpolation only one history value has to be known. It
might be possible to get a good approximation of one history value. A method to compute
an approximation is presented in the following section. Here, the effect of modifying the
time course of the past stretch values is tested with a linear interpolation of the correct
values of the oldest and the newest fiber existing at time t1.

The modifications described above are applied in the following way. The simulation is performed
as usually until the time t1 is reached. Hence, all history variables are known. Before the next
time step t1 + ∆t is computed, the history variables are modified as describe above. Afterwards,
the simulation proceeds as if nothing happened.
In Figures 5.6(a)-(b) one can see the evolution of the diameters over time for four different
modifications. The three modifications listed above are applied individually. Additionally, the
first and second modification are combined. The diameters vary the most when the stretch is
modified as described in the second modification. The difference arises mainly from a jump
directly after the modification. In the case of the second modification, the change in the stretch
history is large, since all values are reset. That means the increased resistance of the older fibers
vanishes. Hence, the stress of the collagen fibers changes and leads to a different deformation.
Since the difference of the individual curves to the reference solution is small compared to the
diameter change, the difference is examined in more detail in Figure 5.6(c)-(d). The maximal
relative difference is 2.5 percent. In the curves of the modified constant stretch history, one can
see small oscillations due to the cosine survival function (3.39b). The third modification is nearly
identical to the reference solution, its difference is almost constant over time. That means a linear
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(b) Diameter in y direction
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(c) Deviation of the diameter in x direction
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(d) Deviation of the diameter in y direction

Figure 5.6: Evolution of diameters and deviation from the reference solution over time for dif-
ferent modifications of the history variables

interpolated stretch history may be a good choice to approximate the flying start configuration.
In summary, stretch has the biggest influence of the history variables. This stems from the fact
that here the formation of an aneurysm is driven by the remodeling process. Hence, the main
focus will be on the stretch history.

5.2.3 Definition of the history
The starting point of the simulations within this section is the flying start configuration. The
simulations performed within this section are identical to the simulation in Section 5.2.1 in the
beginning. That means in particular that distinct deposition times τ are defined. Contrary to the
previous simulation, the history variables mk (τ) and λk (τ) are approximated before growth
starts. These approximations are developed in the following.
In the elastic case, the deformation, hence the current configuration, is defined by the material
of the solid, the applied pressure, the Dirichlet boundary conditions and the initial geometry.
In the inelastic case here, the deformation is also influenced by the history variables. In the
reference simulation, both effects are balanced and define the current configuration. In the flying
start configuration, the solution of the boundary value problem (2.49) leads to a different current
configuration, since e.g. the history of the stretches is different than in the reference solution. In
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5 Towards prediction of growth of an aneurysm

the ideal case, the history is adapted in such a way that the deformed geometry is identical to the
initial geometry. This knowledge can be utilized to define the history variables. When the history
is not adapted, the aneurysm deforms, when the pressure is applied. In the following, methods
are developed to move this stretch into the history of the collagen fibers such that the stresses
remain constant and the deformation is nearly zero afterwards.
The situation is slightly different when MULF is utilized. There, residual stresses are imprinted
into the structure. A virtual deformation is applied to the structure, but the displacements are
set to zero. Thus, reference and loaded configuration are identical. In the case of growth and
remodeling, the residual stresses stem from the different stretch states of the collagen fibers.
Hence, the computed virtual deformation should be shifted to the collagen fibers. Thus, the same
methods can be applied.
All adaptations of the history that are presented in the following are applied after the solution of
the respective time step t has been computed to not disturb the behavior of the Newton iteration.
Thus, the adaptation has only an influence on the next time step, but the convergence of the
Newton iteration is ensured.
To move the deformation into the history of the collagen fibers, the stretch at deposition time is
adapted at time ts. This time value is only an algorithmic quantity, since growth and remodeling
starts for t > ts. The simplest way of an adaptation is to use a constant value independent of the
deposition time of the fiber, i.e. independent of τ , yielding

λk
new;const (τ) :=

1

λk (ts)
(5.10)

for τ ≤ ts. Here, the stretch in fiber direction at time ts is utilized to define the history. From the
definition of the total fiber stretch in (3.36b), follows:

λk (τ, ts) =
λk

preλ
k (ts)

1
=

λk
pre

λk
new;const (τ)

. (5.11)

Hence, after the adaptation the fibers have the same stretch as before, i.e. λk (τ, ts + dt) =
λk (τ, ts), when the deformation is zero, i.e. λk (ts + dt) = 1. In this case, the stress of collagen
remains constant after the adaptation. Since collagen is the main load bearing constituent, the
total deformation will be also nearly zero. That means the deformation has been shifted success-
fully to the history of the collagen fibers. Since there exist other constituents that are not affected
by the adaptation, the deformation is not exact zero and the current configuration slightly differs
from the initial geometry.
As discussed in the previous paragraph, the deformation of the whole structure will be close to
zero after the adaptation. Thus, there is a jump in the deformation after the adaptation. This effect
is challenging for the Newton method that is applied to solve the nonlinear system of equations.
The Newton iteration utilizes an initial guess for the next time step that relies on the previous
time step. Since the deformation is nearly zero after the adaptation, this initial guess might not
be in the ratio for the optimal convergence of the Newton iteration. To make the adaptation more
stable, this initial guess should be adapted too.
In the forward simulation of growth of an aneurysm, the deformation is high in the aneurysm sac
when an aneurysm evolves. Hence, the deformation state, when the fibers are deposited, depends
on the age of the fibers and thus the total stretch λk (τ, t). The oldest fiber of a fiber family has the
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5.2 Flying start configuration

highest stretch and the youngest fiber is nearly not stretched. This is not reflected in the approach
described previously, but it has an influence on the further evolution of the aneurysm. Hence, in
a second variant the stretch is linear interpolated between the oldest and the newest fiber of a
fiber family, while the pressure is applied, leading to

λk (τ, t) =

[(
λk (t)− 1

) t− τ

tlf
+ 1

]
λk

pre (5.12)

for τ ≤ t and t ≤ ts. Hence, the stretch in every fiber depends on his age. At time ts the stretch
history is adapted similarly to the previous approach, the constant value λk (ts) in equation (5.10)
is replaced by the actual stretch of the respective fiber, yielding

λk
new;lin (τ) :=

[(
λk (ts)− 1

) ts − τ

tlf
+ 1

]−1

=
[
λk (τ, ts)

]−1
λk

pre (5.13)

for τ ≤ ts. Additionally to the adaptation, the stretch is not interpolated any more for t > ts,
since the difference between the fibers is incorporated in the history. Again the deformation
nearly vanishes after the adaptation for the same reasons as before. The linear approach is not
applicable with the exponential survival function defined in equation (3.39c), since the difference
of stretch between the oldest and the newest fiber is too high.
When the pressure is applied, the stress in the collagen fibers is defined. In a forward simulation,
it is likely that the density of the fiber family with a higher stress than the other fiber families
is higher, since more mass has been produced. Hence, the different stress values of the fiber
families can be used to redistribute the total density such that the fiber families with higher stress
have a higher portion of the total density. Within one fiber family the density is distributed evenly
between all the fibers of different age. Since the relation between stress and density is defined
through the density production rate (3.42), the following adaptation is used

mk
new(τ) := mk

0

mk (t)

1
4

4∑
l=1

ml (t)

= mk
0

1 + Kσ
g

(
σk(t)
σh

− 1
)

1 + Kσ
g

(
σ1(t)+σ2(t)+σ3(t)+σ4(t)

4σh
− 1

) (5.14)

for τ ≤ t with tm ≤ t < ts. The quantity tm denotes the time when the mass adaptation starts.
In the rare case that

∑4
l=1 ml (t) = 0, the densities are not adapted. Equation (5.14) ensures that

the total density remains constant.
In Figure 5.7 one can see the evolution of the diameter for the different approximations of the
history. For a better comparison, the reference curve and the curve without modifications are
also plotted. The largest difference occurs when MULF is not used, see Figures 5.7(a)-(b). The
simulations with the approximated history start at nearly the same diameter contrary to the unal-
tered solution. In order to quantify the influence of the approximation of the history on the slope
of the deformation, the solutions with MULF are helpful since all simulation start from the same
point, Figures 5.7(c)-(d). The curve with the constant approximation is close to the unmodified
curve. The slope of the curve is slightly higher. But compared to the difference to the reference
solution, the improvement is negligible. The linear approximation is steeper in the beginning and
has a different curvature. When all the original collagen fibers are degraded, the slope is close to
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Figure 5.7: Evolution of diameters over time for different approximations of the history

the slope of the other curves. Due to the difference in the beginning, the linear approximation is
the closest to the reference.
Summarizing, with the adaptation of the history the deviation of the deformed geometry, after
the pressure has been applied, from the initial geometry could be minimized. Thus, the usage
of MULF is not necessary any more. If the identity of initial and loaded geometry has to be
guaranteed, the usage of MULF is recommended. The reproduction of the enlargement of the
aneurysm is only marginally improved. As already discussed, the new reference volume for the
density production rate has to be compensated by a smaller growth factor Kσ

g . Additionally, a
modification of the elastin content ιe of the wall could further improve the behavior.

Remark: 5.2.1 The presented procedures are not meant to transfer the complete deformation
from the homeostatic state to the flying start configuration. Since the collagen fiber families
remodel continually, only a fraction of the whole deformation contributes to stress in the fibers.
Hence, for the collagen fibers it is not necessary to know the complete deformation.

5.3 Calibration of growth parameters
To calibrate the growth model to a given growth problem, an inverse analysis, as described
in Chapter 4, is utilized. In the following sections, the results for different spatial parameter
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5.3 Calibration of growth parameters

abbreviation number of patches design variables value of the other variable
V1.1 1 Kσ

g ιe = 1
V1.2 1 ιe Kσ

g = 1
V1.3 1 ιe Kσ

g fixed to value from V1.1
V1.4 1 Kσ

g and ιe —
V2.1 3 Kσ

g ιe = 1
V2.2 3 ιe Kσ

g fixed to value from V2.1
V2.3 3 Kσ

g and ιe —
V3.1 20 Kσ

g ιe = 1
V3.2 20 ιe Kσ

g = 1
V3.3 20 Kσ

g and ιe —
V4.1 62 Kσ

g and ιe —

Table 5.1: Different variants of parameterizations and design variables

distributions are presented. The distributions are presented in ascending order of the number of
patches. The growth factor Kσ

g and the elastin content ιe are the design variables, which will
be optimized separately or together. In Table 5.1 the different variants of the optimization are
summarized.
To evaluate the objective function (4.1), the displacements of the reference solution presented in
Section 5.1 at selected nodes are utilized. The selection of the nodes depends on the choice of the
distribution of the optimization parameters. The respective displacements reflect the deformation
from the flying start configuration to the intermediate configuration of the reference simulation.
This corresponds to 360 days (≈ 1 year) of growth starting from the flying start configuration.
In Figure 5.8 three variants of selected nodes and the respective displacements are depicted.
The elastin content ιe describes the amount of elastin that has not been degraded, see equation
(3.77). Thus, its value should be located in the interval [0, 1]. Since the method presented in
Chapter 4 can only handle unconstrained optimization problems, a parameterization of the elastin
content is used to ensure that the parameter ιe lies in the interval ]0, 1[, yielding

ιe =
atan (pe) + π

2

π
∈ ]0, 1[ , (5.15)

respectively
pe = tan

(
π ιe − π

2

)
∈ ]−∞,∞[ , (5.16)

where pe is the associated optimization parameter.
The growth factor Kσ

g has to be positive. Hence, it is parameterized with a quadratic function

Kσ
g =

(
pK

)2 ∈ [0,∞[ , (5.17)

where pK is the corresponding optimization parameter.
To evaluate the gradient with Finite Differences within the optimization algorithm, np+1 forward
simulation starting from the flying start configuration are computed. In each forward simulation,
the history is newly defined. Therefore, the constant adaptation of the history defined in equation
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5 Towards prediction of growth of an aneurysm

(a) Deformation of the
outer surface

(b) All nodes without
boundary nodes

(c) Every fifth node (d) Nodes of the
aneurysm sac

Figure 5.8: Different variants of selected nodes of the outer surface that are utilized to evaluate
the objective function, the arrows indicate the measured displacement vectors

(5.10) is utilized, since this method is more stable than the linear one. To guarantee that the initial
geometry and the loaded state coincide in the beginning, MULF is utilized.
As starting values for the optimization algorithm, the growth factor is set to a constant value of
Kσ

g = 1 and the elastin content to ιe = 0.5, when the respective parameter is optimized. The
parameterization of the elastin content led to the choice of 0.5, since the optimization algorithm
should not be influenced by a start value on one branch of the tan function in equation (5.16).

5.3.1 Uniform parameters

As a first step in the optimization procedure, a spatially uniform parameter distribution is as-
sumed. To maximize the influence of the parameters in the aneurysm sac, only displacements in
the body of the aneurysm are monitored, as shown in Figure 5.8(d). The displacements in the
healthy region are different than the displacements in the aneurysm sac. To reproduce the defor-
mation of the healthy region, different parameter values as for the deformation of the aneurysm
sac are required. Since the number of nodes in the healthy region is higher than the number of
nodes in the aneurysm body, they would predominate the total behavior.
Three different sets of parameters are optimized: the growth factor and the elastin content alone
and in the end both parameters together, see Table 5.1. The influence of the optimized parameters
on the evolution of the diameter as well as the total deformation is investigated.
In Figure 5.9 one can see the convergence behavior of the optimization of the growth factor
Kσ

g alone. The error decreases steeply in the beginning and reaches its minimal value after six
iterations. The optimization parameter converges in the same way. The gradient slowly decreases
in the beginning and decreases steeper in the end, until it is smaller than the required tolerance
(logarithmic scale). That means the optimal parameter is roughly found after few iteration steps.
When more iteration steps are performed, the parameters are more accurate.
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Figure 5.9: Convergence of the algorithm for the optimization of the growth factor Kσ
g

The optimal growth factor has the value Kσ
g = 0.5285. It is smaller than the reference value

Kσ
g = 1.0. This was already predicted in Section 5.2.1, as a consequence of the new reference

configuration for the density production. In Figure 5.10 one can see the resulting evolution of
the diameters (black curve). The curve is closer to the reference than the curves from Figure 5.7.
The evolution of the diameter in x direction is slightly overestimated, whereas the evolution of
the diameter in y direction is still underestimated. It seems like the obtained solution cannot fit
both curves and is a compromise.
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Figure 5.10: Evolution of diameters over time for growth simulations with parameters resulting
from different optimization variants with a uniform parameter distribution

When solely the elastin content ιe is optimized, the optimal result is ιe = 1.0 independent of the
choice of the growth factor, which is fixed to the original value or to the previously computed
optimal value. Hence, the resulting curves of the diameter evolution are identical to the curves
without optimization, as shown in Figure 5.10 and Figure 5.4. For both variants the optimization
algorithm converges after four iteration steps.
In a fourth inverse analysis, both parameters are optimized simultaneously. The optimization
algorithm does not converge as fast as the previous ones. After twenty iteration steps, the pre-
scribed tolerance of the norm of the gradient is not yet reached, but the first digits of the param-
eters do not change anymore. Hence, no more optimization steps are performed. The resulting
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5 Towards prediction of growth of an aneurysm

parameters are Kσ
g = 0.5360 and ιe = 1.0. The optimal value for the growth factor is close to

the value that is obtained if Kσ
g is the only optimization parameter (V1.1).

If the parameters are used in a forward simulation, the resulting curves of the diameters over time
are nearly identical, see Figure 5.10. Since the solutions lie so close together, only the deformed
states resulting from the simulations with the parameters of the inverse analysis of the growth
factor and the elastin content alone (V1.1 and V1.2) are plotted in Figure 5.11. The deformed
state of the simulation with the parameters of the optimization of the elastin content alone (blue)
corresponds to the deformed state of the solution without optimization. With a smaller growth
factor, the wall gets thinner and leads to a greater enlargement of the aneurysm. The aneurysm
sac again translates to the bottom compared to the reference solution, as was already observed in
Figure 5.5. It seems like this problem can only be solved with spatially varying parameters. That
means the errors resulting from the loss of the information of the past deformation in the flying
start configuration make a nonuniform distribution of the parameters necessary, as was already
depicted in equation (5.6).

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 5.11: Slices of the deformed solution at the intermediate state with different parameters,
red: reference solution, black: inversely determined growth factor (V1.1), and blue:
inversely determined elastin content (V1.2)

Summarizing, all determined parameters do not improve the translation of the aneurysm sac, but
the evolution of the diameters can be better approximated. Thus, the reproduction of the growth
gradient is improved. The variation of the growth factor has the biggest influence, whereas an
optimization of a constant elastin content makes no difference. A smaller growth factor partly
compensates the errors that were made in the flying start simulation. The influence of this smaller
growth factor on the long term behavior of the aneurysm will be investigated later.

5.3.2 Separation of healthy and diseased part
In a second step, the healthy and diseased parts of the geometry are treated differently. The
geometry is divided into three patches, two healthy patches and one diseased patch, as depicted
in Figure 5.12. The left part corresponds to the first healthy part, referred to as healthy 1, the right
third is the healthy part, referred to as healthy 2 and in the middle one can see the diseased part.
During the optimization routine, all parts are treated as separate patches, each of which has its
own set of parameters. This should yield an improvement especially for the elastin content. To
avoid jumps in parameter values at the patch boundaries, the smoothing methodology described
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5.3 Calibration of growth parameters

in Section 4.2.2 is applied. This time three variants of the optimization are performed, see Table
5.1. First, only the growth factor is optimized while the elastin content is held constant at ιe = 1.
Then, the elastin content is optimized while the growth factor is held constant at the previously
inversely computed value. In a third optimization, both, elastin content and growth factor, are
design variables. Since now the aneurysm sac is treated separately, the deformation mismatch
at the healthy part in included in the objective function. Therefore, every fifth node of the outer
surface is evaluated, as can be seen in Figure 5.8(c).

healthy 1

diseased

healthy 2

Figure 5.12: Example geometry: split into
healthy and diseased part

healthy 1 healthy 2 diseased
V2.1 Kσ

g 1.677 1.836 0.6239
V2.2 ιe 0.8789 0.8732 0.0
V2.3 Kσ

g 1.866 1.814 0.5325
ιe 0.8694 0.8298 1.0

Table 5.2: Final parameters

The results of the optimization are given in Table 5.2. Each optimization reached after few itera-
tion steps of the optimization algorithm a point, where the next optimization step did not lead to a
decrease in the error. Hence, the optimization algorithm was aborted. Thus, the presented results
are only a rough approximation of the optimal results. The same behavior is nearly always ob-
served, when more than one parameter is optimized. Hence, all results presented in the following
sections are only approximations of the optimal solutions. However, the results are sufficiently
accurate to study the qualitative behavior of the aneurysms, which is the major objective of this
work.
In all cases of the optimization, the growth factor is elevated in the healthy part compared to
the reference value, whereas it is smaller in the diseased part. This corresponds to the elevated
volume change in the aneurysm sac compared to the minimal change in the healthy part. When
only the growth factor is optimized, the growth factor in the middle section is larger as the values
of the uniformly determined parameters. In this case, also the symmetry of the healthy parts is
lost in the inverse analysis. The evolution of the diameter in x direction is nearly identical to
the reference curve, see Figure 5.13(a), whereas the evolution of the y diameter is even more
underestimated than before, see Figure 5.13(b).
The inverse determination of the elastin content alone leads to a zero value in the diseased part.
The value in the healthy part is also decreased, but they are nearly identical in both healthy parts.
The evolution of the diameter in y direction is improved, and the evolution of the diameter in
x direction is only slightly worse, as shown in Figure 5.13. Contrary to the simulations in the
previous section, the inverse analysis of the elastin content leads to an improved behavior.
In the case of the optimization of both parameters together, the value of the growth factor in the
middle section is nearly identical to the values of the uniformly determined parameters. On the
other hand it leads to an unreasonable value for the elastin content (ιe = 1.0) in the diseased
part. The other values are close to the values of the optimization variants V2.1 and V2.2. The
evolution of the diameters is not improved compared to the optimal elastin content (V2.2), see
Figure 5.13. In y direction it is slightly better than the evolution of the inverse defined growth
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Figure 5.13: Evolution of diameters over time for growth simulations with parameters resulting
from different optimization variants with three different patches

factor. All three sets of parameters lead not to an improvement of the translation of the aneurysm
sac. Thus, they are not investigated in more detail.

5.3.3 Spatially varying parameters
Especially the diseased part of the aneurysm is of interest, since growth and remodeling mainly
happens there. Hence, this area is better resolved. The single patch is split into 18 patches. Each
patch consists of 40 elements. The resulting patch distribution can be seen in Figure 5.14. It is
identical to the distribution shown from different angles in Figure 4.2. The transition is again
smoothed with five steps. Three optimization problems are solved: growth factor and elastin
content are optimized separately and then together, see Table 5.1. For the optimization of the
elastin content, the growth factor is fixed to its original value Kσ

g = 1.0. This optimization
variant is performed to test if the influence of the elastin content on the solution increases when
it varies over the domain.

(a) Front view (b) Back view

Figure 5.14: Definition of 20 patches for the reference aneurysm

In Figure 5.15 one can see the resulting distribution of the elastin content. In the left pictures,
one can see the distribution for the optimization of the elastin content ιe alone, in the right
pictures, both parameters are optimized. Both distributions are quite similar, but the solution on
the right is not symmetric since the values from two patches differ from the symmetric pattern.
This problem stems from the parameterization of the elastin content with the tangent function.
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5.3 Calibration of growth parameters

(a) Optimization of ιe only (b) Optimization of both parameters

Figure 5.15: Obtained distribution of the elastin content ιe for 20 patches, top row: front view,
and bottom row: back view

The limit ιe ≈ 1.0 corresponds to large values of the optimization parameter, e.g. pe ≈ 1020.
This leads to a bad conditioning of the linear system of equations (4.4) that defines the update of
the optimization parameters. Thus, the parameter pe sometimes oscillates between large positive
and negative numbers.
The elastin content is mainly decreased in the aneurysm sac. The optimization of both parameters
also leads to values smaller than one in the healthy part, but they are still higher than in most
parts of the diseased area. The patterns at the front and back of the aneurysm are quite different.
At the front, where the main part of the aneurysm bulges out, elastin is completely degraded in
the front three patches. This amplifies the enlargement in this direction. Next to these patches,
the elastin content is higher. At the back, the elastin content is elevated in the middle, where the
enlargement after the flying start is too high. The value in the center patch is slightly lower for
the optimization of both parameters compared to the value of the optimization of solely ιe. At
the transition to the healthy parts, elastin is partially degraded.
In Figure 5.16 the final distribution of the growth factor is shown. When the elastin content is
fixed to one and the growth factor is optimized, a peak value at the back of the aneurysm occurs.
The value there is twice as large as the values in the rest. This peak vanishes when the elastin
content is optimized too. In the front of the aneurysm the final value is lower than the optimal
parameter from the previous section. One can clearly see the influence of the separation of the
optimization parameters at the front and back of the aneurysm. Summarizing, the variation of the
growth factor between patches is smaller than the variation of the elastin content. Nevertheless, it
is reasonable to include the elastin content despite its large variation in the optimization process,
since it reduced the outlier of the growth factor in the back of the aneurysm.
The influence of the parameter distribution on the evolution of the diameters can be seen in
Figure 5.17. The variation of the elastin content alone has again nearly no influence on the
evolution. Thus, it is not reasonable to optimize the elastin content alone. The solution with the
inverse determined growth factor matches the evolution of the diameter in x direction quite well
in the beginning. In the end it gets worse. The solution from the optimization of both parameters
is underestimating the enlargement constantly, but gives the best results at the final point of time.
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5 Towards prediction of growth of an aneurysm

(a) Optimization of Kσ
g only (b) Optimization of both parameters

Figure 5.16: Obtained distribution of the growth factor Kσ
g for 20 patches, top row: front view,

and bottom row: back view
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Figure 5.17: Evolution of diameters over time for growth simulations with parameters resulting
from different optimization variants with 20 different patches

It is also most promising for the prediction of growth, since the slope of the curve is close to the
slope of the reference.

In Figure 5.18 one can see the deformed shapes of the aneurysms at the final state. The solu-
tion from the inverse determination of only the elastin content still shows the translation to the
bottom, whereas the other results can reproduce the expansion of the aneurysm without that
translation. The elevated growth factor in the back of the aneurysm, see Figure 5.16, what cor-
responds to the bottom in Figure 5.18, compensates the translation. The black shape is nearly
completely hidden by the green shape. These two shapes are close to the reference shape. Some
local deviation could not be reflected, since the representation of the optimization variables is
not detailed enough.
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5.3 Calibration of growth parameters

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 5.18: Slices of the deformed solution at the intermediate state with different parameters,
red: reference solution, black: inversely determined growth factor (V3.1), blue: in-
verse elastin content (V3.2), and green: both parameters are inversely determined
(V3.3)

Higher resolution with a finer mesh
To get an even higher resolution than with the 18 patches the diseased part is split into 60 patches,
as shown in Figure 5.19. Hence, the whole structure consists now of 62 patches. Since for the
previous example already few elements were part of one patch, the mesh was refined to get a
reasonable number of elements per patch. The new mesh consists of 14400 elements, where
especially the part in the middle has been refined. Since the different mesh size influences the
result of the simulation (see Section 3.3.7), a new reference simulation has been computed. The
flying start configuration is defined at the same time t1 as before.

(a) Front view (b) Back view

Figure 5.19: Definition of 62 patches for the reference aneurysm with a finer mesh

Since the optimization of both parameters led to the best results for the coarse patches, only
an inverse analysis of both parameters together is performed. Thus, 125 forward simulation
have to be computed simultaneously. In Figure 5.20 one can see the resulting distribution of the
parameters. The elastin content ιe in the healthy part is smaller than in parts of the aneurysm sac,
but the values in the healthy part are similar to the values in the healthy part in Figure 5.15(b).
The distribution of the elastin content jumps especially at the back of the aneurysm, but nearly
always two neighboring patches have a similar value. In the center of the back, where the wall
has to be strengthened to circumvent the translation to the bottom, the elastin content is one. In
a nearly circular area around it, the elastin content is decreased. In the front, the elastin content
is zero in the middle. In the other patches of the front the elastin content is higher. Two patches
stand out, since they have a smaller value than the patches around them.
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5 Towards prediction of growth of an aneurysm

(a) Elastin content ιe (b) Growth factor Kσ
g

Figure 5.20: Obtained distribution of the elastin content ιe and the growth factor Kσ
g for 62

patches, top row: front view, and bottom row: back view

The growth factor Kσ
g is similarly distributed as with the coarse resolution depicted in Figure

5.16(b). The minimal value that is constant throughout the aneurysm sac is nearly the same as
before. The value at the center of the back is slightly smaller than before. The main difference
occurs at the transition from the sac to the healthy part, the growth factor is increased in one
row of patches. In this ring, the maximal value of all growth factors is located at the back of
the aneurysm. This increase leads to a strengthening of the wall around the aneurysm sac and
localizes the expansion.
To get a better insight of the influence of the optimized parameters on the time course of the
enlargement, the evolution of the diameters is shown in Figure 5.21. The evolution of the diam-
eter in x direction is nearly identical to the reference. A difference of only 0.5 % in diameter
was achieved. In the end, the enlargement is slightly overestimated. Whereas, the diameter in
y direction is underestimated throughout the whole simulation. The difference increases at the
beginning, but at the end it remains constant and the slope of the curves is similar. Compared
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Figure 5.21: Evolution of diameters over time for a growth simulation with parameters obtained
by the optimization of both parameters with 62 different patches
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5.4 Validation of predicted results

to the results from the coarse mesh, the aneurysm gets larger, as has already been shown in
Section 3.3.7. The higher resolution fits the evolution better than the previous results shown in
Figure 5.17.
The improved behavior can also be seen in the slices of the deformed geometries in the inter-
mediate configuration, as shown in Figure 5.22. The deformed geometry is nearly identical to
the reference solution. At the transition between the sac and the healthy part, where the growth
factor is elevated, the wall is thicker than the wall of the reference. A thickening of the wall also
occurs at the bottom of the aneurysm. In the axial cut, one can see a slight movement of the
aneurysm to the left. A loss of the symmetry of the enlargement has already been observed in
Figure 5.18.

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 5.22: Slices of the deformed solution at the intermediate state with different parameters,
red: reference solution and green: both parameters are inversely determined (V4.1)

5.4 Validation of predicted results
In the previous section, parameters were determined to fit the growth model to the given growth
of an aneurysm within one year. In the most cases, the parameters differed from the reference
value. For example, the best uniform parameter Kσ

g = 0.5285 is smaller than the reference value
of Kσ

g = 1.0. In the following section, the influence of this variation of the parameters on long
term growth is investigated to validate the proposed framework. Therefore, the best values of
each parameterization have been selected. For the uniform parameter, the inverse analysis of the
growth factor alone is chosen (V1.1, Kσ

g = 0.5285), for the split into healthy and diseased part,
the successive optimization of growth factor and elastin content is used (V2.2, first two rows of
Table 5.2) and for the twenty patches, the optimization of both parameters together is chosen
(V3.3, Figures 5.15(b) and 5.16(b)). In a subsequent study, the influence of the parameters of
the higher resolution with the fine mesh is investigated. With these optimal parameters a growth
simulation over two years starting from the flying start configuration is performed and compared
to the respective reference solution.
In Figures 5.23(a)-(b) one can see the evolution of the diameters in x and y direction. Because
the curves lie so close together, the relative difference to the reference solution is plotted in Fig-
ures 5.23(c)-(d). The uniform solution and the solution with the three different patches fit the
evolution of the diameter in x direction well, see Figure 5.23(c). The deviation is less than one
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Figure 5.23: Evolution of diameters and deviation from the reference solution over time for se-
lected inversely determined parameters for growth of two years

percent. The twenty patch solution provides the worst fit to the diameter in x direction and un-
derestimates the enlargement. In the end, the discrepancy is three percent. Since the difference
increases with time, the prediction gets worse, when a longer period of growth is considered.
The deviation from the diameter in y direction, see Figure 5.23(d), is higher for the first two
variants. The maximal difference at the end is approximately five percent. The difference in-
creases with increasing time for the solution from the separation of healthy and diseased part.
Hence, the capability to predict the correct growth decreases with increasing time. Summarizing,
the enlargement is underestimated for all parameters. The prediction gets worse for longer time
scales, but the maximal difference of five percent is small. Thus, the smaller growth factor does
not lead to an overestimation of the enlargement.

Since the evolution of the diameters holds no information about the deformation of the whole
body occurring during growth, the final shape of the aneurysm is sketched in Figure 5.24. All
solutions except the twenty patch solution show a translation to the bottom and cannot reproduce
the shape of the aneurysm, as was already seen at the final point of the inverse analysis, i.e. Figure
5.11. Due to the high growth factor at the bottom of the aneurysm, as shown in Figure 5.16(b),
the twenty patch solution has a thicker wall there. This effect is more visible than before, since
the wall gets very thin in the rest of the aneurysm. The aneurysm also translates in y direction,
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5.4 Validation of predicted results

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 5.24: Slices of the solution with parameters determined by inverse analysis, red: reference
solution, black: uniform growth factor Kσ

g (V1.1), orange: V2.2, and green: V3.3

what can be seen in the cut in axial direction. Due to the asymmetry of the optimal elastin content
ιe, see Figure 5.15(b), the wall is asymmetric weakened. Thus, the aneurysm bulges out into this
direction.
The best results in the intermediate configuration were obtained with the higher resolution of the
finer mesh. Hence, its capacity to predict the evolution of the aneurysm is also investigated. In
Figure 5.25 one can see the evolution of the diameters over time for a time period of two years.
Again, the evolution of the diameter in x direction can be reproduced, see Figure 5.25(a). The
expansion is slightly overestimated, what leads to an relative error of 0.75 percent. The difference
to the reference is constantly increasing in time, see Figure 5.23(c). Thus, the prediction is getting
worse for longer time periods. In y direction, see Figure 5.25(b), the enlargement is constantly
underestimated. After ca 100 days of growth, the variation of the error over time is still relatively
small, see Figure 5.23(d). Compared to the other optimization results, see Figure 5.23(b), the
reproduction of the diameter in y direction is much better. The maximal relative difference is
less than one percent.
Contrary to the evolution of the diameters, the deformed geometry of the optimized solution is
slightly different to the reference solution, as shown in Figure 5.26. At the center of the aneurysm
sac, the radial increase is higher. Hence, the expansion in x direction is overestimated. The
thickening of the wall at the transition between healthy and diseased part gets larger compared
to the intermediate configuration, as depicted in Figure 5.22. Again, the final shape matches the
reference solution the best compared to the other optimization variants.
Not only the shape of the final aneurysm is important but also its state. Hence, in Figures 5.27
and 5.28, the distribution of the change of the reference density and the von Mises stress of the
predicted results (t = t3) is shown for the 62 patches and the reference solution. For the density,
the density change is plotted, since the density is referred to the reference volume. This volume
is different for the obtained solution and the reference solution, since the reference solution starts
from a straight cylinder, whereas the obtained solution starts from the flying start configuration.
Since M (t1) and M (t3) are both referred to the same volume, this effect is canceled out, when
both values are divided by each other. Hence, the quotients are comparable for both solutions.
At the back of the aneurysm, the density increase is elevated for the solution with the optimized
parameters, since the growth factor is there elevated too, see Figure 5.20(b). For the same reason,
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Figure 5.25: Evolution of diameters over time for a growth simulation of two years with param-
eters obtained by the optimization of both parameters with 62 different patches

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 5.26: Slices of the solution with different parameters for the fine mesh, red: reference
solution and green: both parameters are inversely determined

86



5.4 Validation of predicted results

(a) Optimization of both parameters with 62
patches

(b) Reference solution

Figure 5.27: Relative change of the referential density at the predicted state, i.e. t = t3

the density increase is higher at the transition between the healthy and the diseased part. The
maximum value is located there. The density change in the aneurysm sac is lower compared to
the reference. The cause is a lower growth factor in this area. In both figures, the boundary of
the initial degradation of elastin, as shown in Figure 3.24(b), is visible at the back.

(a) Optimization of both parameters with 62
patches

(b) Reference solution

Figure 5.28: Von Mises stress at the predicted state, i.e. t = t3
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5 Towards prediction of growth of an aneurysm

The maximal stress in the optimized solution is higher as in the reference solution, as shown in
Figure 5.28. In both cases, it is located in the aneurysm sac. This higher stress value stems from
the fact that the simulation that starts from the flying start configuration has to bulge out more
to compensate the translation to the bottom. The increase of the growth factor in the bottom
of the aneurysm leads to lower stresses in this region. This higher growth factor was needed to
compensate the translation to the bottom. It has to be stressed again that the translation influences
the stress at the final state.
In summary, the optimized solutions are able to approximate the evolution of the diameters. The
enlargement is slightly underestimated in the most cases. The ability to predict the behavior of
the reference solution decreases the longer the simulation lasts, but the representation of the
parameters with 62 patches gives a good prediction. The final shape of the aneurysm can only
be approximated by spatially distributed growth parameters that compensate the effects arising
from the flying start configuration. This compensation leads to an altered stress state.
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6 Patient-specific case

In the previous chapter, a methodology for determining growth parameters to fit a given growth
process has been developed. This methodology is now exemplarily applied to a patient-specific
case, where two computed tomography (CT) scans of one patient are available. At the time of
the first CT scan, the male patient was 62 years old. The second CT scan was recorded two years
later. In the first section, the derivation of the computational model from the CT scan is briefly
described. With patient-specific geometries certain challenges come along. These challenges are
investigated in the second section. Subsequently, the growth model is calibrated to the measured
displacement field. The obtained parameters are utilized to compute a growth simulation over a
longer period of time. Finally, two modifications of the optimization procedure are discussed.

6.1 Derivation of a computational model

If surgery is necessary, computed tomography (CT) scans are made to plan the surgery. In some
cases, follow up scans are available, where the patient has not been operated. Medical imaging
data utilized in this work was provided by the university hospital Klinikum rechts der Isar of the
Technische Universität München. In the following section, a brief summary of the steps required
to create a computational model of the images is presented. For a more detailed explanation of
this topic, the reader is referred to Maier [64].
As first step, the different anatomical structures, the lumen and the intraluminal thrombus (ILT),
are segmented. Subsequently, the three dimensional geometry of the lumen and the ILT is recon-
structed from the 2D CT data. The aneurysm wall cannot be reconstructed, since the resolution
of the CT scans is not high enough (Reeps et al. [80]).
As next step, the geometry is discretized. For a pure structural simulation, the lumen is not
considered, since it represents the fluid domain. The ILT is meshed in Harpoon (Sharc Ltd,
Manchester, UK) with a hexahedron-dominant mesh. The element edge length is set to 1 mm.
Afterwards, the aneurysm wall is extruded from the ILT surface, if available. Otherwise, the
luminal surface is utilized. The Extrusion can be performed with a constant wall thickness or a
variable one as proposed in Maier [64]. During the extrusion, a discretization of the wall arises
from the extrusion of the surface mesh of the initial surface. Hence, the whole geometry is
discretized.
As last step, the behavior of the tissue has to be described. Thus, strain energy functions (SEFs)
for every component of the geometry are specified. The aneurysm wall is modeled in the same
way as in the previous chapter, see equation (3.34) and Table 3.1. That means the aneurysm wall
consists of an elastic ground substance and four collagen fiber families. The ILT is modeled with
the following SEF

W ILT = c
(
Ī1 − 2 Ī2 − 3

)
+ κβ−2

2

(
β2 ln J + J−β2 − 1

)
(6.1)
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6 Patient-specific case

with the scalar β2 = −2 and c a stress-like parameter (Gasser et al. [26], Maier [64]). The bulk
modulus κ is defined by the Poisson’s ratio ν = 0.48 and the parameter c as follows κ = 8c

(1−2ν)
.

The material parameter c depends on the position in the ILT. At the luminal surface the value
2.62 kPa is set, in the middle of the ILT the value 1.98 kPa and at the outer surface the value
1.73 kPa. In between these three values, the material parameter is linearly interpolated. Hence,
c, and thus κ, vary within the ILT.
In order to solve the boundary value problem (2.49), boundary conditions have to be specified.
The surfaces at the top and bottom, where the aneurysm has been cut, are fixed in all directions.
Thus, all displacements of the ILT and the wall are set to zero at these surfaces. The constant
inner pressure is applied orthogonal at the luminal surface, i.e. either at the ILT or directly at
the wall, when no ILT exists. The pressure P = 13.322 kPa is always referred to the current
configuration.

6.2 Challenges of patient-specific geometries

The simulations in the previous chapter were based on idealized geometries. That simplified
some things that are more complex for patient-specific geometries. In the following sections,
these problems will be investigated. First, the fiber directions are specified. Second, the homeo-
static variables are set. In the end, stress peaks are further examined.

6.2.1 Determination of fiber directions

Two of the four fiber directions are aligned with the axial and the circumferential direction, as
sketched in Figure 3.8. For a straight cylinder, these directions are defined through the cylindri-
cal coordinates. This is not the case for a patient-specific geometry. In Figure 6.1, one can see a
sketch of the geometry of the aneurysm of the 62 year old patient and the respective centerline.

(a) Cut orthogonal to the x direction (b) Cut orthogonal to the y direction

Figure 6.1: Sketch of the geometry and the corresponding centerline of an aneurysm of a 62
years old male patient, grey: ILT, and blue: aneurysm wall
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6.2 Challenges of patient-specific geometries

The centerline is represented by distinct points. The line is only drawn for better visualization.
Especially in the aneurysm sac, a definition of the axial direction is not straight forward. An
additional difficulty arises with the bifurcation of the artery at the bottom of the aneurysm. In
the following, a procedure to determine a reasonable distribution of the fiber directions is pre-
sented. For each structural element of the spatial discretization of the wall, four fiber directions,
as defined in Figure 3.8, are computed. The aneurysm wall is discretized with linear elements
with straight edges that originate from an extrusion of the thrombus surface. Thus, the inner and
outer surface are almost parallel to each other. That means the tangential directions, i.e. axial
and circumferential direction, are nearly identical throughout the element. Hence, the fiber di-
rections are set constant within one element. In a first step, the fibers are geometrically defined.
Afterwards, the fiber distribution is improved.

Geometric definition of the fiber directions
The geometric computation of the fiber directions is based on the discrete centerline given in
Figure 6.1. For each element, the closest point of the centerline to the element center is com-
puted. It is assumed that the direction of the centerline at this point corresponds to the axial
direction of the element. The radial direction is set to the difference vector between the point
of the centerline and the element center. The circumferential direction is now computed such
that the three directions yield an orthogonal system. As last step, the circumferential and axial
directions are projected in the tangential space of the outer surface of the aneurysm. The radial
direction is adapted to obtain again an orthogonal system. Finally, all directions are normalized.
When this local orthonormal coordinate system is defined, the fiber directions can be computed.
For a straight cylinder, the proposed procedure yields the exact fiber directions.

(a) Discontinuities at the aneurysm sac (b) Discontinuities at the bifurcation

Figure 6.2: Circumferential fiber directions for the geometrically defined directions, green dots
depict the discrete centerline

In Figure 6.2 one can see the resulting circumferential fibers at two special places of the aneurysm,
i.e. the aneurysm sac and the bifurcation. The fiber distribution is discontinuous in both cases. To
illustrate the origin of these discontinuities, the discrete points of the centerline are also sketched
in Figure 6.2. In the aneurysm sac, the high curvature in axial direction is critical. Since the
centerline is represented with discrete points, the curvature leads to large differences in the axial
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6 Patient-specific case

directions of two neighboring points. In Figure 6.2(a) one can see wedges of several elements,
where the fibers are nearly aligned. The elements in these wedges correspond to the same point of
the centerline. At the boundary of two wedges, there is a jump to the next point of the centerline.
At the bifurcation, the transfer between the two branches causes problems, see Figure 6.2(b). At
the position of the kink, the closest points of the centerline jump from one branch to the other
for neighboring elements. Since the axial direction of the two branches is different, this transfer
leads to discontinuities. These discontinuities generate artificial jumps of the von Mises stress,
as shown in Figure 6.3. Thus, the fiber directions have to be revised.

(a) At the aneurysm sac (b) At the bifurcation

Figure 6.3: Discontinuities of the von Mises stress resulting from the geometrically defined fiber
directions

Aligning the fiber directions with the principal stresses
Hariton et al. [36, 37] present a strategy for modeling stress-driven collagen remodeling. The
strategy is utilized to determine the directions of two helical collagen fiber families in the arte-
rial wall that is modeled with the Holzapfel-Gasser-Ogden material defined in equation (2.48).
They assume that the preferred directions of the two fiber families are located between the di-
rections of the two maximal principal stresses. The fiber angle in equation (2.47) depends on the
quotient of the two highest principal stress values. That means the two highest principal stress
directions play the role of the circumferential and axial direction. Since the principal stress di-
rections are orthogonal, the third principal stress directions corresponds to the radial direction.
This correlation between principal stress directions and local coordinate system is utilized in the
proposed strategy that proceeds as described in the following. The fiber directions are computed
in an iterative way. Starting point is an isotropic material. The resulting stresses are used to com-
pute the initial fiber directions. These fiber directions lead to a new stress distribution and the
fiber directions are adapted to these changes until the stress field is converged.
In the following paragraph, the correlation between principal stress directions and local coordi-
nate system is investigated in more detail. The directions of the principal stresses are defined by
the load. The aneurysm is loaded with a constant pressure at the inner surface. For a thin walled
cylinder that is fixed in axial direction this leads to compression in radial direction. Since the
cylinder is fixed in axial direction, the stretch in circumferential direction is the highest. Thus,
the lowest principal stress is in radial direction and the highest in circumferential direction. The
middle principal stress coincides with the axial directions. This relation even holds, when the
geometry is not an exact cylinder. Hence, the correlation between principal stresses and local
coordinate system is reasonable.

92



6.2 Challenges of patient-specific geometries

The procedure presented above is adapted to the problem given here. As starting point of the
iterative process, the geometrical fiber directions are used. During the adaptation, the circumfer-
ential and axial fiber directions are aligned with the first and second principal stress direction,
respectively. The other two fiber directions are defined diagonal to the others. Since the aneurysm
does not have the straight shape of a cylinder, the principal directions do not always fulfill the
requirements. For example, sometimes the second principal direction has a radial component.
Hence, the final fibers are projected on the outer surface. To get rid of the boundary effects at
the clamped surfaces at the ends of the aneurysm, the aneurysm is extruded there. More details
regarding these corrections can be found in Heinrich [40]. In Figure 6.4 one can see the resulting
fiber directions in the same regions as in Figure 6.2. The discontinuities are gone and a reason-
able distribution of the fiber directions is defined. The proposed procedure is applicable to all
sorts of aneurysms.

(a) Distribution at the aneurysm sac (b) Distribution at the bifurcation

Figure 6.4: Circumferential fiber directions of the final fiber distribution

6.2.2 Homeostatic variables

The simulations in Chapter 5 start from a straight cylinder, see Figure 5.1, that represents the
homeostatic state. Thus, the prestretch λk

pre and the homeostatic stress σk
h can be computed, as

proposed in Section 3.3.3. Since the homeostatic state of the patient-specific geometry is not
known, the homeostatic variables have to be defined differently. For the given patient-specific
geometry, a long piece of the healthy artery at the top of the aneurysm is included, as shown in
Figure 6.1. Hence, it can be utilized to determine the homeostatic variables.
The procedure to define homeostatic variables that is presented in Section 3.3.3 is utilized for the
patient-specific geometry. Therefore, the pressure is applied at the inner surface of the aneurysm
and the homeostatic variables are adapted as defined in equation (3.63). For the initial prestretch
the value λk

pre = 1.05 is chosen. The applied procedure yields homeostatic variables for the
whole geometry, which are not always reasonable. Thus, a part of the healthy artery at the top,
as depicted in Figure 6.5(a), is extracted from the rest of the aneurysm to determine the home-
ostatic variables. In Figures 6.5(b) and 6.5(c) one can see the distribution of the homeostatic
variables of the circumferential fiber family in the extracted area. The variation of the prestretch
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6 Patient-specific case

(a) Selected area for the
definition of the homeo-
static variables

(b) Prestretch in circumferential direction, view from the
front (left) and the back (right)

(c) Homeostatic stress in circumferential direction

Figure 6.5: Computation of the homeostatic variables as proposed in Section 3.3.3 and distribu-
tion of the resulting homeostatic variables in circumferential direction

is comparable to the variation of the prestretch in the patient-specific artery that is depicted in
Figure 3.18(c). The homeostatic values of the other fiber directions have similar distributions. In
order to get a constant homeostatic value for the complete geometry, the computed values are
averaged over the selected region. The resulting values are summarized in Table 6.1. The value
in axial direction is the smallest, since the aneurysm is fixed in axial direction. The value of the
diagonal direction lies in between the other two values. No distinction between the two different
diagonal fiber families is made.

cir axi dia
λk

pre 1.08 1.04 1.06

σk
h 121.0 kPa 62.2 kPa 93.3 kPa

Table 6.1: Final homeostatic variables for all fiber directions for the patient-specific aneurysm

Remark: 6.2.1 The values of the computed homeostatic variables at the thinner branches at
the bottom of the aneurysm are smaller than the values in Table 6.1. Since it is not possible
to define a smooth and reasonable transition between the three branches, the thinner branches
are not treated separately and the same homeostatic values as in the rest of the aneurysm are
prescribed.

6.2.3 Stress peaks
In the patient-specific case, the geometry is defined by CT scans. Hence, complex geometries
may be generated. The first difficulty is to get a mesh with the required quality. Distorted ele-
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6.3 Calibration of growth parameters

(a) Sharp edge in the initial
geometry

(b) Unlimited density pro-
duction

(c) Limited density produc-
tion

Figure 6.6: Initial and deformed geometries after one year of growth with buckling at the bifur-
cation, colors depict the relative reference density, the maximum of the color scale is
defined by the 99th percentile of the picture in the middle

ments can lead to stress peaks. Additionally, critical geometries, such as kinks and wholes, cause
stress peaks too. Often, both problems occur in the same places. A local refinement and smooth-
ing of the mesh may reduce the stress peaks. The effort for this modification of the mesh has
to be balanced to the improvement of the results. Sometimes, stress peaks may be acceptable
depending on their position. Hence, a safety mechanism should be included in the growth and
remodeling model to achieve reasonable results even when stress peaks occur.
No problems with stress peaks arise for the patient-specific geometry utilized within this chapter.
However, the bifurcation at the bottom of the aneurysm of a different patient (67 years old, male)
has a sharp edge, as shown in Figure 6.6(a), and some elements are distorted in this area. In the
zone around the edge, a stress peak occurs. If the mass production is not limited, these stress
peaks lead to a large increase in density, see Figure 6.6(b). After one year of growth, the density
is maximally increased by a factor of 6000. In 99 percent of the wall, the increase is less than a
factor of 1.3. Thus, the problem is local in a few elements. The large density increase leads to an
increase in volume in these elements. Hence, the wall is buckling and leads to higher distorted
elements. This effect amplifies the stress peaks. Thus, a factor like 6000 can arise.
In Section 3.3.1, a solution has been presented. The mass production rate mk (t) defined in
equation (3.42) is restricted to the interval

[
0,mk

max

]
. In Figure 6.6(c) one can see the deformed

shape for the choice mk
max = 4 mk

0. The buckling has vanished and the density increase has
reasonable values. The influence of the limiting value is restricted to a few elements. The major
part of the geometry is not affected, since the mass production is lower there. Hence, with a
small reasonable modification of the mass production rate the problem with stress peaks could
be solved and an additional safety mechanism is included in the growth model.

6.3 Calibration of growth parameters

With the methods presented in the previous section, it is possible to compute a growth and re-
modeling simulation starting at the patient-specific geometry. The only component that is miss-
ing is the history of the deformation. Since the patient-specific geometry is challenging, it is
not possible to utilize one of the methods presented in Section 5.2.3 to approximate the history.
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6 Patient-specific case

The convergence of the Newton iteration is destroyed after the adaptation. Hence, in the fol-
lowing sections, the history variables are set to the same values as in the homeostatic state, i.e.
λk (τ) = 1 and mk (τ) = mk

0. The time interval [t1 − tlf , t1] is split into intervals of the length
∆t to define distinct deposition times τ of the different fibers. To ensure that the loaded geome-
try is identical to the reference geometry, the modified updated Lagrangian formulation (MULF,
Gee et al. [27, 28]) is utilized.
Since the reference geometry is not symmetric, it is difficult to capture all aspects of the growth
process in two dimensional pictures. In order to quantify important aspects of the growth process,
two orthogonal cutting planes are defined. The intersection of the cutting planes with the initial
geometry is sketched in Figure 6.7. The two cutting planes correspond to axial and longitudinal
cuts through the aneurysm sac. Thus, important aspects of the growth process are registered
with these two cuts. The bar in the figure indicates the length of 20 mm, which corresponds
approximately to the diameter of the main artery.

Figure 6.7: Intersection of cutting planes with the geometry and definition of a length scale

In order to calibrate the growth model to the given growth problem, the two CT scans have to
be transformed into a displacement field. The resulting displacement field is presented in the
following section. Subsequently, three variants of the optimization, which are listed in Table 6.2,
are performed. They are ordered with increasing number of patches. The same design variables
as in Section 5.3 are utilized with the same parameterization, as defined in equations (5.15)
and (5.17). Since the optimization of both parameters together led to the best results for the
spatially distributed parameters (see Section 5.3.3), the optimization algorithm that is utilized in
the following sections is restricted to the optimization of both parameters together, i.e. growth
factor Kσ

g and elastin content ιe, when more than one patch is defined. In the last section, the
evolution of the diameter is investigated in more detail for all optimization variants together.

abbreviation number of patches design variables value of the other variable
P1 1 Kσ

g ιe = 1

P2 20 Kσ
g and ιe —

P3 74 Kσ
g and ιe —

Table 6.2: Different variants of parameterizations and design variables for the patient-specific
geometry
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6.3 Calibration of growth parameters

6.3.1 Measured displacement field
From the first CT scan of the 62 year old patient, the geometry for the flying start configuration is
determined, see Figure 6.1. The inner wall of the aneurysm is covered with a thin layer of ILT. A
second CT scan depicts the growth of the aneurysm after the time period of two years. In order to
determine parameters to fit the given growth process, a displacement field that represents a map-
ping of the first CT scan to the second CT scan is required. To compute this displacement field
for the outer surface, the image registration method presented in Section 4.1.2 is utilized. The ob-
tained nodewise displacement field can be utilized to evaluate the objective function in equation
(4.1) that is the basis of the optimization algorithm. Therefore, only a selection of nodes is eval-
uated to reduce the noise in the displacement field that results from the measurements. Similar
to Figure 5.8(c), every fifth node may be selected or only the nodes in the middle are considered.
The choice of the selection depends on the spatial distribution of the growth parameters.

Figure 6.8: Displacement field that represents a mapping from the first CT scan to the second
CT scan, the data is provided by Sebastian Kehl, Mechanics and High Performance
Computing Group, Technische Universität München

The resulting displacement field is sketched in Figure 6.8. The arrows represent the displace-
ment vectors and the color indicates the displacement magnitude. The maximum displacement
magnitude is 6.34 mm, what corresponds to nearly one-third of the diameter of the healthy artery
at the top. The maximum displacements are located in the aneurysm sac, which bulges further
out. The displacements in the rest are considerably smaller. In two other regions, an expansion
can be observed. One of these regions is located sideways and below the sac. The other one is
located at the healthy artery at the top close to the boundary. The expansion in this area will be
hard to reproduce, since the geometry is fixed at all ends.
To get a more detailed impression of the measured growth, the cutting planes that are defined in
Figure 6.7 are utilized. The respective slices of the initial geometry that corresponds to the flying
start configuration and the deformed outer surface resulting from the measured displacement
field, the intermediate configuration, are sketched in Figure 6.9. The position of the respective
other cut is also drawn in each picture to get a better impression of the exact position of the
cutting planes and to be able correlate both cuts to each other. The enlargement of the aneurysm
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6 Patient-specific case

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 6.9: Slices of the initial geometry (rose) and the deformed outer surface resulting from
the measured displacements (red), position of the cutting planes

sac is again highlighted. The diameter is increased by approximately one-fifth of its original
value. The back of the aneurysm slightly moves in direction of the sac. This movement is not
visible in Figure 6.8, since the arrows point inwards. The increase of the diameter of the main
artery that was pointed out in the previous paragraph can be observed in the longitudinal cut. The
other expansion below and sideways of the sac is not illustrated in the slices, since it is located in
between the cutting planes. Hence, the slices are not suitable to depict all aspects of the growth
of the aneurysm, but the contained information is sufficient to describe the main factors.

6.3.2 Uniform parameters

Within this section it is assumed that the growth parameters are constant over the whole domain.
During the optimization within the academic setting, see Section 5.3.1, it was observed that the
optimization of a uniform elastin content leads to the same results as when it is not included in
the optimization. Hence, the elastin content is fixed to ιe = 1. To maximize the influence of the
deformation of the aneurysm sac on the final parameter value, only nodes in the middle of the
geometry are evaluated in the objective function. The so defined optimization problem results in
a growth factor with the following value: Kσ

g = 1.898.
In Figure 6.10 one can see slices of the deformed aneurysm after two years of growth and of the
deformed outer surface, when the measured displacement field is applied. For a better compar-
ison of the improvement of the fit of the growth process after the inverse analysis, slices of the
deformed outer surface that results of a growth simulation with Kσ

g = 1 are also depicted. In
the axial cut, the results of the two simulations with different growth factors are nearly identical.
The locality of the aneurysm sac in longitudinal direction is increased for the inversely defined
growth factor. The shape of the grown aneurysm is better approximated. Nevertheless, both sim-
ulations underestimate the radial enlargement of the aneurysm sac. In the academic example, a
smaller growth factor led to a larger enlargement of the aneurysm. Hence, a smaller growth fac-
tor than one would have been expected to induce a larger enlargement in this area. But a smaller
growth factor does not lead to an improvement, what the optimization algorithm confirms.

98



6.3 Calibration of growth parameters

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 6.10: Slices of the deformed outer surface resulting from the measured displacements
(red) and of the deformed solution at the intermediate configuration for different
parameters: orange: uniform inverse growth factor Kσ

g = 1.898, and black: fixed
growth factor Kσ

g = 1

The evolution of the diameter over time and the final value of the diameter is investigated in more
detail in a subsequent section. In the patient-specific case the reference time curve is not known,
contrary to the academic setting where the reference curve was known. Thus, it is not reasonable
to plot the time curve of the evolution of the diameter for the uniform parameter alone, since it
cannot be quantified. Hence, the results of all optimization variants are investigated together to
yield a brief comparison of the results.

6.3.3 Spatially varying parameters with 20 patches

In order to better reproduce the enlargement of the aneurysm sac, the area around the sac is split
into 18 patches. The patch distribution is shown in Figure 6.11. In contrast to the patch distribu-
tions in the academic example, see Figures 5.14 and 5.19, the boundaries between the patches
are not straight lines, they have an irregular shape. This is a result of the unstructured mesh in
contrast to the structured mesh in the academic example. Hence, it is even more important to

(a) Front view (b) Back view

Figure 6.11: Definition of 20 patches for the patient-specific aneurysm
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6 Patient-specific case

smooth the parameter values at the patch boundaries. Five smoothing steps are applied to the
patchwise parameters.
Within the optimization algorithm, every fifth node of the outer surface is evaluated in the objec-
tive function. Both parameters, growth factor and elastin content, are design variables. In Figure
6.12 one can see the obtained distribution of both parameters. The irregular patch boundaries
were smoothed by the smoothing operator, they are not visible in the final parameter distribu-
tion. In the back of the aneurysm sac the elastin content is the highest, i.e. ιe = 1. The minimum
value is located in the patch at the aneurysm sac where the apex lies. The elastin content in the
healthy arteries is smaller than one, i.e. ιe = 0.56 respectively ιe = 0.33.

(a) Elastin content ιe (b) Growth factor Kσ
g

Figure 6.12: Obtained distribution of the elastin content ιe and the growth factor Kσ
g for 20

patches, in each picture the left column depicts the front view, and the right col-
umn the back view

The maximum of the growth factor is located at the side of the aneurysm. The value at the back
of the aneurysm is elevated similarly to the elevated value in the academic example, as shown in
Figure 5.20(b). The minimum value is not located in the aneurysm sac but sideways and below
of the sac. This area corresponds to a region where the measured displacements are elevated, as
depicted in Figure 6.8. In this area a smaller growth factor leads to a larger enlargement. The
value in the aneurysm sac, Kσ

g = 1.684, is smaller compared to most of the other patch values.
It is also slightly smaller compared to the uniform value Kσ

g = 1.898.
In Figure 6.13 one can see the deformed geometry resulting from a growth simulation with the
obtained parameter distribution. The deformed outer surface of the simulation with the inversely
defined uniform growth factor is also sketched for a better comparison. The enlargement of the
aneurysm sac is larger than the enlargement with the uniform growth factor, but it is still smaller
than the measured displacements in this area. In the back of the aneurysm, the solution with
the spatially varying parameters fits the measured displacements slightly better than the solution
with the uniform parameter. In the other regions that are depicted in the slices, the change of
the shape of the outer surface is small compared to the spatial variation of the growth factor, i.e.
Kσ

g ∈ [0.49, 4.33], and the local difference to the uniform value Kσ
g = 1.898.
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6.3 Calibration of growth parameters

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 6.13: Slices of the deformed outer surface resulting from the measured displacements
(red) and of the deformed solution at the intermediate configuration for different
parameters: blue: inversely determined Kσ

g and ιe with 20 patches, and orange:
uniform inverse growth factor

6.3.4 Spatially varying parameters with 74 patches

Since a higher number of patches led to an improved approximation of the growth process in the
academic example, as shown in Section 5.3.3, the number of patches is further increased. Every
patch except the two patches of the healthy artery is divided into four new patches. The resulting
74 patches are depicted in Figure 6.14. The patch boundaries consist again of irregular shaped
lines. To evaluate the Jacobian matrix as proposed in equation (4.5), 149 forward simulations
have to be computed in each optimization step. With the help of nested parallelization all forward
simulations can be computed simultaneously.

(a) Front view (b) Back view

Figure 6.14: Definition of 74 patches for the patient-specific aneurysm

For the inverse determination of the parameters, again every fifth node of the outer surface is
evaluated in the objective function. The final distribution of the elastin content can be seen in
Figure 6.15. At the side of the aneurysm body the elastin content is elevated. In the sac of the
aneurysm, it is decreased. All in all, there is no clear pattern visible. In one third of the patches
the elastin content is nearly one and in one third it is nearly zero. In the last third of the patches
the value lies in between. The elastin content in the healthy artery is reduced to a value of
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6 Patient-specific case

Figure 6.15: Obtained distribution of the elastin content ιe for 74 patches

approximately 0.5, the value of the upper patch is slightly higher and the value in the lower
patch is slightly lower. The same qualitative behavior is observed with less patches, as shown in
Figure 6.12(a).
In order to get a better correlation between the values of the elastin content of the different
patches an additional regularization term can be included in the optimization problem. In the
same way the well-posedness of the optimization problem is ensured during image registration,
which is performed to obtain the measured displacement field. There an elastic regularization
term is added to the actual optimization function, see equation (4.7). This approach leads to
an additional algorithmic parameter within the optimization algorithm, the regularization factor,
that has to be chosen carefully.
In Figure 6.16 one can see the spatial distribution of the growth factor. The maximum value
of the color scale was reduced to a value such that a variation between most of the patches is
visible. In two patches outliers were detected. Their values are Kσ

g = 14.186 and Kσ
g = 16.199.

The outliers are located at the side of the aneurysm. The elastin content is zero in the respective
patches. The minimum of the growth factor is located in the same spot as the minimum of the

Figure 6.16: Obtained distribution of the growth factor Kσ
g for 74 patches
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6.3 Calibration of growth parameters

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 6.17: Slices of the deformed outer surface resulting from the measured displacements
(red) and of the deformed solution at the intermediate configuration for different
parameters: inversely determined Kσ

g and ιe with 74 patches (green) and 20 patches
(blue), and orange: uniform inverse growth factor

20 patch distribution, where the measured displacement magnitude is increased. The minimum
value is smaller than before. The value in the aneurysm sac is approximately 1.99, which is
higher than the uniform value Kσ

g = 1.898 and the value Kσ
g = 1.684 that was determined with

20 patches.
In Figure 6.17 one can see the resulting shape of the aneurysm after two years of growth. The
deformed outer surfaces resulting from the parameter distributions of the previous optimization
variants (P1 and P2) are also sketched to be able to better quantify the changes related to the
different parameter distributions. The radial enlargement of the aneurysm sac is not improved.
The maximum value is still smaller than the measured enlargement. The deformation at the back
of the aneurysm can be better approximated. The back moves further in direction of the aneurysm
sac. In the axial cut, it is visible that the aneurysm translates to the bottom left corner of the
picture compared to the other solutions with the inversely determined parameters. The solution
with the newly defined parameters better approximates the target shape of the aneurysm. This
translation is related to the outlier patches of the growth factor, since one of these patches is
located at the top right part of the wall sketched in the slice of the axial cut.
Since the refinement of the patches does not lead to an improvement of the radial enlargement in
direction of the aneurysm sac, no further refinement is performed. It seems like the enlargement
cannot be increased with a different distribution of the growth parameters. The small enlargement
originates from a different source. The remodeling process is not yet dominating the growth
process similar to the example of the formation of a saccular aneurysm in Section 3.3.7, where
the enlargement was small in the beginning until a certain threshold was reached, see Figure
3.26(a). The density increase in the wall is still able to partially compensate the enlargement.
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6 Patient-specific case

6.3.5 Investigation of the diameter

So far only the deformed shape of the aneurysm after growth of two years has been investigated.
Within this section the time course of the development as well as the final values are further ex-
amined. The diameter of the aneurysm that is evaluated at the intersection line of the longitudinal
and axial cutting planes as sketched in Figure 6.18(a) is a good measure of the growth gradient.
Its evolution over time is plotted in Figure 6.18(a) for all three variants of the optimization listed
in Table 6.2. In the beginning, especially the time curve of P3 oscillates (green curve). This os-
cillation reflects the influence of the missing history in the flying start configuration. The slope
of all curves decreases with increasing time.

(a) Diameter (b) ‖u‖ of the apex

Figure 6.18: Definition of the diameter and position of the apex, evolution of diameter and dis-
placement magnitude of the apex over time for growth simulations with parameters
resulting from different optimization variants (see Table 6.2)

The simulation with the parameters from the 20 patch optimization (P2, blue curve) leads to
the highest values. Thus, it is the closest to the measured diameter of the real grown aneurysm
after two years of growth. The other two solutions have a nearly identical value at the end.
This is surprising, since the solution with the most patches should fit the diameter the best. This
behavior results from the better approximation of the deformation at the back of the aneurysm,
see Figure 6.17, what results in a decrease of the diameter, since the back deforms in direction
of the aneurysm sac. To exclude the influence of the back of the aneurysm, the displacement
magnitude of the apex that reflects the enlargement of the aneurysm sac is also investigated.
The position of the apex and the evolution of the displacement magnitude at the apex over time
are plotted in Figure 6.18(b). The influence of the missing history in the beginning is now visible
in all three time curves. It has the largest influence when the uniform growth factor is utilized
(orange curve). Hence, the displacement magnitude is the smallest, what corresponds to the ob-
servations in the previous sections. The other two time curves resemble each other. The solution
with the highest number of patches leads to larger values. With increasing time, the curve of the
solution with 20 patches gets closer to the green curve. Thus, the slope of the curve is higher in
the end and will lead to larger values of the displacement magnitude, when the aneurysm grows
for a longer period of time.
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6.4 Growth over a longer period of time

diameter deviation ‖u‖ deviation
measured 35.83 mm — 5.666 mm —

P1 33.78 mm −5.7% 1.166 mm −79%

P2 34.41 mm −4.0% 2.438 mm −57%

P3 33.78 mm −5.7% 2.509 mm −56%

Table 6.3: Final values of the diameter and the displacement magnitude of the apex for different
optimization variants (see Table 6.2) and deviation from the measured value

To get more detailed information about the quality of the results at the final time, i.e. t = t2, the
values of the two quantities that are introduced in the previous paragraphs are listed in Table 6.3
for all optimization variants and for the measured displacement field. In all cases, the diameter
is underestimated. In the best fit, a relative difference of 4 percent is achieved. Contrary to this
small difference, the difference of the displacement magnitude at the apex is larger. The smallest
relative difference is 56 percent. This is a higher value than the average deviation from the
diameter, which cannot be solely explained by the difference of the order of magnitude of the
respective absolute reference values. The better approximation of the diameter partially results
from a compensation of the lower enlargement of the aneurysm sac by the approximation of the
behavior at the back of the aneurysm, see Figure 6.17. The difficulties with the approximation of
the enlargement of the aneurysm sac have already been seen in the slices of the final geometry,
see Figure 6.17, but now they are also quantitatively described. Due to the latest development of
the proposed methodology, a few challenges arising from the patient-specific application are yet
to be resolved. In the previous and the following sections, valuable insights are gained that will
be required for future improvements, which will be proposed at the end of this chapter.

6.4 Growth over a longer period of time

Within this section, growth of the patient-specific aneurysm over a period of four years is in-
vestigated in more detail. The growth parameter distribution that results from the optimization
with the 74 patches (P3) is utilized. The capacity of a growth simulation with these parameters
to predict the actual growth of the aneurysm is limited, since the enlargement of the aneurysm
sac after two years of growth could not be reproduced. Nevertheless, the simulation is computed,
since the results in the rest of the aneurysm were promising. Additionally, the simulation is uti-
lized to get a better insight into the growth process and to be able to identify quantities that may
help to improve the results of the optimization.
The reference values after two years of growth are also sketched to compare the results. Af-
ter the initial variation due to the missing history, the diameter increases nearly linearly over
time. After four years of growth, the diameter is larger than the reference value for two years
of growth. This is the same for the displacement magnitude of the apex, where the difference at
the end is even larger, since the slope of the curve is increasing with increasing time. Hence, the
model is basically capable to reproduce the enlargement of the aneurysm sac, which is defined
by the measured displacements. The enlargement is just too slow in this area. That means the
enlargement has to be locally accelerated, since the enlargement in other regions was well ap-
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Figure 6.19: Evolution of diameter and displacement magnitude of the apex over time for the
final parameter distribution with 74 patches and respective reference values

proximated. This can be achieved in different ways, for example the geometry may be adapted
locally or other parameters of the growth model that have not been considered yet may be utilized
as design variables in the optimization process. Two potential modifications will be discussed in
the next section.
Up to now only the evolution of the diameter and the displacement magnitude over time are in-
vestigated. These quantities yield no information about the deformation of the whole aneurysm.
Hence, slices of the deformed shape of the aneurysm after growth of four years are shown in
Figure 6.20. For a better comparison, the deformed outer surface after two years of growth and
the outer surface resulting from the measured displacements are also sketched. Both pictures
confirm that the diameter is nearly identical to the measured diameter after two years of growth.
The radial enlargement orthogonal to the diameter is larger as would be expected for growth

(a) Cut in axial direction (b) Cut in longitudinal direction

Figure 6.20: Slices of the deformed outer surface resulting from the measured displacements
(red) and of the deformed solution after two (green) and four (yellow) years of
growth for the inversely determined parameters with 74 patches
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6.4 Growth over a longer period of time

after twice the time period of the measured displacements. Hence, it is again highlighted that the
adaptations of the optimization process have to lead to local changes of the deformation.
In the longitudinal cut, two regions stand out because of the thickness of the wall. At the tran-
sition between healthy and diseased part on top of the aneurysm, the wall gets thicker due to
growth. At the back of the aneurysm, the increased thickness has several reasons. The thickness
of the ILT is high there from the beginning, see Figure 6.9. Since the wall bulges out into the
direction of the aneurysm sac in this area, the thickness is more emphasized. Additionally, a
relatively high growth factor leads to a thickening of the wall next to the thick ILT.
To get a better impression of the growth process, the change of the reference density is plotted
in Figure 6.21. There are areas where the mass increase is higher compared to the rest of the
aneurysm. The growth factor in these areas is often higher than the growth factor in the sur-
roundings, see Figure 6.16. The patches with outliers of the growth factor do not stand out alone,
since the density is also increased in the adjacent patches. In the transition between the bulge of
the aneurysm and the healthy artery, the aneurysm wall starts to buckle. There, strips of density
increase and density decrease lie close together.

Figure 6.21: Relative change of the referential density at the predicted state, i.e. t = t3

To investigate how growth influences stress, the von Mises stress in the flying start configuration
and in the predicted configuration after four years of growth are sketched in Figure 6.22. The
maximum value of the color scale is defined by the 99th percentile of the von Mises stress
of the initial loaded state, i.e. 205 kPa. The 99th percentile after four years of growth is 3.5
percent smaller, its value is 198 kPa. Hence, the maximum stress decreases slightly after growth.
The stress peak on top of the aneurysm at the transition to the healthy artery in the flying start
configuration moves upward during growth and gets slightly smaller. A minimum of stress arises
next to it. The stress pattern in this region matches the buckling that was observed in Figure 6.21.
In other areas of the aneurysm, stress peaks evolve during growth. For example at the side of the
aneurysm where the density increase was already elevated, the stress is elevated too, as shown
in the left pictures of Figure 6.21 and Figure 6.22. Additionally, the stress is elevated in the
region sideways and below the aneurysm sac, where the growth factor has its minimum value,
see Figure 6.16. Thus, the tissue is not able to compensate as much of the increase of stress
with an increase of mass as it could with a higher growth factor similar to the other patches.
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6 Patient-specific case

(a) Initial loaded state, i.e. t = t1

(b) Predicted state, i.e. t = t3 = t1 + 4y

Figure 6.22: Von Mises stress at different points in time

The adaptation of the growth parameters to the larger enlargement in this area results in higher
stresses.

6.5 Potential modifications in the optimization process

In the preceding sections, it has become apparent that the presented optimization process has to
be modified to better approximate the growth of the presented patient-specific geometry. Two
potential modifications are discussed within this section. In the academic example, the wall of
the aneurysm sac was thinner than the wall in the rest of the aneurysm, see Figure 5.2. Up to
now it was assumed that the thickness of the wall of the patient-specific aneurysm is constant.
Hence, the thickness of the wall could be adapted similarly to the academic setting. Since it
is difficult to predict the proper thickness distribution beforehand, the thickness would have to
be included in the optimization process as a design variable. This would lead to a new type of
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design variable, since the thickness is a geometric quantity and not a material parameter. Thus,
the geometry would have to be adapted during the optimization process.
Additionally to the modification of the geometry, the remaining parameters of the growth model
should be reconsidered. For example a reduction of the lifetime of collagen could accelerate
remodeling, since the oldest fibers that have the highest stretch are faster degraded. However,
the influence of a local variation of the lifetime on the simulation results is difficult to quantify,
since it is manifold. To evaluate stress, equation (3.48) is discretized in time resulting in equation
(3.51). Therefore, the time interval [t− tlf , t] is split into discrete intervals [tl, tl+1[. This split
has to be performed globally, since only one time step size ∆t can be utilized in the simulation.
Thus, a local variation of tlf will not influence this split.

(a) Original lifetime tlf = 118 d (b) Adapted lifetime tloc
lf = 110 d

Figure 6.23: Discrete integration over time to compute the reference density Mk (t) for different
lifetimes of collagen with a time step size of ∆t = 20 d

In Figure 6.23 the integration over time to compute the reference density is sketched for a large
time step ∆t = 20 d for two different values of the lifetime of collagen, i.e. tlf = 118 d and
tloc
lf = 110 d. The large time step size is chosen to emphasize the influence of the discretization in

time. If the difference between the reduced local lifetime from the global lifetime is smaller than
the time step size, i.e. tlf − tloc

lf < ∆t, the oldest fibers will still be degraded at the same point in
time. Just the value of qk (tl, t) changes, as it is depicted in Figure 6.23. Hence, the basal density
production rate has to be adapted locally, since the basal density production rate is defined in
equation (3.38) such that the density remains constant during remodeling. Otherwise, the initial
reference density varies within the aneurysm. The density production will be influenced to, since
it depends on the basal density production rate, see equation (3.42). Thus, it cannot be guaranteed
that a local adaptation of the lifetime leads to the desired result.
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7 Summary and outlook
A three-dimensional computational method to predict the growth of an aneurysm was developed
in the present work. The method consists of the following three essential components that were
incorporated in the finite element framework BACI: the computational growth model, the charac-
terization of the initial state, and the calibration of the growth model by solving an optimization
problem. To the best of the author’s knowledge, this is the first methodology that calibrates the
computational growth model not only to accurately reproduce the given growth process but also
to predict the future development of a patient-specific aneurysm.
The first step is a three-dimensional constraint mixture model that was developed to model
growth and remodeling. Biological relevant examples showed the capabilities of the proposed
model. Among others, the computational growth model was able to induce the formation of
an aneurysm after an initial loss of elastin. The stability of the homeostatic state led to a local
enlargement of the artery, which was restricted to a region close to the initial degradation zone.
In the second step, an academic example that was as close as possible to a realistic setting was
defined to characterize the initial state. The example consists of the formation of an aneurysm
after an initial loss of elastin in an idealized artery. This simulation was utilized as reference.
After a pronounced aneurysm arose, the deformed geometry is taken as the starting point for a
new growth simulation, where the past deformation is neglected to mimic the patient-specific
case. With this setting it was feasible to quantify the influence of the missing mapping from
the healthy artery to the aneurysm on the development of the aneurysm and on the growth pa-
rameters. For example, it was predicted that the optimal growth factor would deviate from the
reference value. Moreover, an approximation of the history of the deformation was developed
and its influence on the development of the aneurysm was quantified. The adaptation of the his-
tory ensured the similarity of the initial geometry and the initial loaded configuration. Hence, no
special treatment of the prestress of the patient-specific geometry was necessary.
In the third step, a novel idea for parameterization of the design variables was introduced to
represent the spatial distribution of the growth parameters. With the help of the optimization
algorithm, the growth model was calibrated to match the reference simulation after one year of
growth. The increasing complexity of the spatial distribution of the growth parameters improved
the reproduction of the reference solution. The best result approximated the diameter with more
than 99 percent accuracy. Furthermore, the prediction of the enlargement with the determined
parameters matched the enlargement of the reference aneurysm. The deviation of the diameter
from the reference value was less than one percent after two years of growth. Hence, the proposed
methodology was validated, since the prediction of growth was correct. Density change and
stress distribution of the final state were not in agreement with the reference results due to the
lack of information about the deformation preceding the initial state.
To use the proposed growth and remodeling approach for patient-specific geometries, collagen
fiber directions had to be defined. A procedure that yields a reasonable distribution of fiber di-
rections was developed and successfully applied to the patient-specific geometry of an aneurysm
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of a 62 years old male patient. Moreover, a small section of the healthy artery adjacent to the
aneurysm was utilized to define homeostatic variables for the whole geometry. Additional safety
mechanisms were included in the growth and remodeling model to increase the stability of the
algorithm. For the calibration of the growth model, image registration was utilized to define a
displacement field that depicts the deformation between two consecutive computed tomography
(CT) scans. The solution of an optimization problem with the resulting displacement field as
reference solution yielded spatial distributions of the growth parameters. The simulations with
the determined parameters were able to partially reproduce the displacement field. The deviation
of the diameter from the measured value was four percent for the best fit. The parameters that fit
best for the displacement field are used in the finite element simulation to gain insights into the
further development of the patient-specific aneurysm and to characterize the predicted state after
four years of growth.
In summary, growth of the reference aneurysm has been successfully reproduced under realistic
conditions. Due to the latest development of the proposed methodology, a few challenges arising
from the patient-specific application are yet to be resolved, but valuable insights are gained
that will be required for future improvements. Some issues were already emphasized at several
places within the main part of this thesis and possible remedies were proposed. The stability of
the definition of the history can be increased such that it is also applicable to patient-specific
geometries. The optimization process can be modified to improve the reproduction of the given
growth process. The growth model itself can be extended by accounting for nutrients that are
available during growth. The concentration of the nutrients can be modeled as a scalar transport
problem (Yoshihara et al. [111]).
Currently, the measured displacement field and the growth parameters are determined by solving
two separate optimization problems. The image registration that defines the measured displace-
ment field is performed independently of the growth model; it is assumed that the structure
deforms elastically to fit the requested deformation. The procedure is improved when the growth
and remodeling model is included in the image registration. That means during image registra-
tion the growth parameters and the displacement field are determined at once. In such a case,
the resulting optimization problem will not be in the form of a least squares problem. Hence, the
Levenberg-Marquardt algorithm cannot be applied, and a new optimization algorithm that also
accounts for the transient behavior of the growth problem has to be utilized.
In patient-specific simulations, the results are subjected to uncertainties that originate from vari-
ous sources. For example, it is hard to access the exact constitutive properties that correspond to
a specific patient. In the simulations computed within this work, the constitutive parameters, the
wall thickness of the aneurysms, and the measured displacement field are some of the potential
sources of uncertainties. To obtain a more reliable prediction and to quantify the influence of
these uncertainties on the prediction, an uncertainty quantification method is necessary, which is
applicable to large biomechanical problems like the one recently presented in Biehler et al. [11].
Finally, the proposed methodology should be applied to many patient-specific examples to obtain
further insights into the development of different abdominal aortic aneurysms and to better quan-
tify the capabilities of the methodology. The time span between the first two CT scans should
preferably be larger than one year to better calibrate the growth model, since the missing history
influences the time course of the development especially in the beginning. At best, the method-
ology can be further validated with a patient specific example where at least three consecutive
CT scans exist.
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A Appendix

A.1 Wall shear stress

In this chapter, the wall shear stress dependent term −Kτ
g

(
τk
w(t)
τw;h

− 1
)

in the mass density pro-
duction rate (3.42) is further investigated. Therefore, a digression in fluid mechanics is needed,
since wall shear stress (WSS) is a fluid quantity.

A.1.1 Wall shear stress in fluid mechanics

In order to solve the fluid equations analytical, a simplified geometry is examined. The artery
is modeled as a straight circular tube with radius R. In the following, a fully-developed incom-
pressible axisymmetric flow (Hagen-Poiseuille flow) through the cylinder is assumed. The fluid
is considered as Newtonian, which is not always the case for blood (Katritsis et al. [52]). Because
of the symmetry of the problem, only the equation of the Navier-Stokes equations in cylindri-
cal coordinates that denotes the equilibrium in axial direction remains (Schlichting and Gersten
[84]) yielding

µ

(
d2u

dr2
+

1

r

du

dr

)
=

dp

dz
(A.1)

with u denoting the velocity of the fluid in axial direction z, µ dynamic viscosity, and p pressure.
The velocity u only depends on the radial position r, i.e. u = u (r). As boundary condition
a no-slip condition at r = R is applied. The analytical solution of this problem is defined as
follows

u (r) =
dp

dz

1

4µ

(
r2 −R2

)
. (A.2)

Since the flow is fully developed, the pressure gradient is independent of z and can thus be
replaced by the difference of pressure at the inlet p1 and outlet p2, leading to

u (r) =
p1 − p2

4µL

(
R2 − r2

)
(A.3)

with L denoting the axial length of the cylinder. The volumetric flow rate Q can be expressed as

Q =
πR4 (p1 − p2)

8µL
. (A.4)

Equations (A.3) and (A.4) lead to the following equation for the velocity

u (r) =
2Q

πR4

(
R2 − r2

)
. (A.5)
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For a Newtonian fluid the shear stress is defined as

τ12 = µ
du

dr
=

4µQ

πr3
. (A.6)

The maximal value is located at the wall and is called wall shear stress

τw =
4µQ

πR3
. (A.7)

A.1.2 Application to growth

In this section, the consequences for the growth model are investigated. Since only a structural
simulation is performed, there exists no information about the volumetric flow rate. Thus, it
is assumed to be constant. With this assumption the quotient between current and homeostatic
WSS simplifies to

τw (t)

τw;h

=
4µQ

πr3
i

πR3
i

4µQ
=

(
Ri

ri

)3

(A.8)

with Ri denoting the undeformed and ri the deformed inner radius of the structure. This equation
is only defined at the inner surface of the vessel wall. The endothelial cells sense there the
changes in flow and trigger the growth of the vessel. Hence, WSS is defined to be constant
throughout the wall. If the blood pressure is altered and the radius increases, the quotient is
smaller than one. In this case, a mass increase is expected, which leads to the minus in front of
Kτ

g in the mass production rate equation (3.42).
For more complex geometries, equation (A.8) can be evaluated with the help of a centerline
to estimate the WSS. This value is not exact, since equation (A.7) only holds for a flow in a
cylindrical tube. For true values, one has to perform a fluid-structure interaction simulation that
is not practicable. For abdominal aortic aneurysms, WSS does not play an important role, since
the arterial wall is shielded from the flow by the intraluminal thrombus. Thus, the endothelial
cells cannot sense WSS and this term is omitted in the density production. The shape of a healthy
artery is close to a cylinder. Hence, equation (A.8) can be used in these examples. But one has to
keep in mind that blood is generally not Newtonian and the flow is pulsative, which contradicts
two basic assumptions at the beginning of the derivation of equation (A.8).
Another possibility to include WSS in the mass production rate is the ratio C (t) of constrictors
to dilators, which is also part of the active stress in smooth muscle cells (Valentı́n et al. [103]).
The ratio is defined as

C (t) = CB − CS

(
τw(t)

τw;h

− 1

)
(A.9)

with CB denoting the basal constrictor to dilator ratio and CS a scaling factor. C(t)−CB

CB
is minus

the wall shear stress term in the mass production rate and can replace this term. Thus, the minus
in front of Kτ

g vanishes.
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A.2 Derivatives for the implicit integration within the
constraint mixture model

In this chapter, several derivatives that are needed to solve the linearizations of the equations in
Section 3.3.2.2 are given. For the local Newton iteration to compute stress and density production
in a Gauss point, the linearization of the stress equation (3.59) is used. There are two derivatives
missing:

∂mk

∂Sg
ij

=
∂

{
mk

0

[
1 + Kσ

g

(
σk(Sg)

σh
− 1

)
−Kτ

g

(
τw

τw;h
− 1

)]}

∂Sg
ij

=
mk

0K
σ
g

2σhσk(t)(λk(t))2 det C

[(
Cak

0

)
i

(
CSgCak

0

)
j
+

(
CSgCak

0

)
i

(
Cak

0

)
j

]
, (A.10)

∂Sg

∂mk
=

∂Sk

∂mk
+

∂Svol

∂mk
=

qk(t, t)∆t

ρ0


∂Ψk

(
Ik
4 (t, t)

)

∂Ik
4 (t, t)

(
λk

pre

λk (t)

)2

Ak
0 − κJC−1


 . (A.11)

The second derivative depends on the choice of the growth stress Sg. The result given here is
only valid for σg = σ. To compute the constitutive matrix Cg defined in equation (3.61) the
derivative of the density production rate with respect to the Cauchy-Green tensor is required,
yielding

∂mk

∂Cij

=
mk

0K
σ
g

2σh

[
(ak

0)i(S
gCSgCak
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0)j
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ij
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. (A.12)
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A Appendix

A.3 Definition of the elastin degradation area for the
formation of an aneurysm

In this chapter, the exact definition of the degradation areas shown in Figure 3.24 and used to
trigger growth of an aneurysm is given. The first two functions depend on the axial position
z that is located in the interval [−75, 75] and the azimuthal angle φ. This angle is defined as
φ = atan2

(
y
x

)
, since the center of the cylinder corresponds to the origin. For simplicity the

units are omitted in the following. The axial position is given in mm and the angle in radians.
For the rectangular shape, see Figure 3.24(a), the following function is used

ιerect = 1.0− f z
rect (z) fφ

rect (φ) (A.13)

with

f z
rect (z) =





1 for − 12 ≤ z ≤ 12
1
2

[
1− cos

(
z+16

4
π
)]

for − 16 ≤ z < −12
1
2

[
1 + cos

(
z−12

4
π
)]

for 12 < z ≤ 16

0 else

(A.14)

and

fφ
rect (φ) =



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1 for − 0.5π ≤ φ ≤ −0.25π
1
2

[
1− cos

(
φ+0.55π

0.05π

)]
for − 0.55π ≤ φ < −0.5π

1
2

[
1 + cos

(
φ+0.25π

0.05π

)]
for − 0.25π < φ ≤ −0.2π

0 else

. (A.15)

The elastin content for the wedge shaped area, see Figure 3.24(b), has a similar form, i.e.

ιewedge = 1.0− fwedge (z, φ) (A.16)

with

fwedge (z, φ) =





1 for − 12 g (φ) ≤ z ≤ 12 g (φ)
1
2

[
1− cos

(
z+16 g(φ)

4 g(φ)
π
)]

for − 16 g (φ) ≤ z < −12 g (φ)

1
2

[
1 + cos

(
z−12 g(φ)

4 g(φ)
π
)]

for 12 g (φ) < z ≤ 16 g (φ)

0 else

(A.17)

and

g (φ) = 1− 3 |φ|
4π

. (A.18)

The elastin content for the circles, see Figure 3.24(c), is defined through two circles around the
coordinates (12, 0, 10) and (−12, 0,−10). If the distance of the Gauss point to one of the centers
is smaller than 10 the elastin content is zero, if it is larger than 15 for both circles it is one.
Between the two radii a transition with the cos function similar to (A.14) is applied.
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